Science.gov

Sample records for require muscle spindle-derived

  1. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  2. Application requirements of artificial muscles for swimming robots

    NASA Astrophysics Data System (ADS)

    Kerrebrock, Peter A.; Anderson, Jamie M.; Parry, Joel R.

    2001-07-01

    In the near future, we will find biomimetic undersea robots in the forefront of unmanned underwater applications due to their ability to operate in new, challenging, and highly dynamic environments such as rivers, surf, and turbulent pipe flow. In particular, fish-like vehicles (FLVs) have emerged as a viable technology for highly maneuverable, efficient and stealthy platforms. Attempts to produce fish-like motion using conventional mechanical means have proven difficult, however, resulting in complex and unreliable machines, especially when compared to the simplicity of a rotating propeller and conventional control surfaces. To take full advantage of fish-like propulsion, a new actuation strategy is needed, to which artificial muscles may be uniquely suited. Some artificial muscles are made of materials with relatively low specific gravity (compared to conventional mechanical systems), and so will be nearly neutrally buoyant in underwater applications. This is critical in FLV actuation, as correct longitudinal mass distribution is required to avoid stability problems. Additionally, some artificial muscle formulations require water, sometimes including an electrolyte, which is easily provided in underwater applications. Finally, for stealthy applications, artificial muscles may provide acoustically quiet actuation due to their suppleness and reduced number of interconnecting mechanical components. In this paper, we suggest artificial muscle-based actuation strategies for FLVs, based on experience with the Vorticity Control Unmanned Undersea Vehicle (VCUUV), an eight-foot long autonomous robotic tuna. Recently developed artificial muscles are surveyed and evaluated as to their suitability for fish-like propulsion. Requirements for force, power, and strain as well as implementation issues are discussed.

  3. Cumulative Muscle Protein Synthesis and Protein Intake Requirements.

    PubMed

    Simmons, Erin; Fluckey, James D; Riechman, Steven E

    2016-07-17

    Muscle protein synthesis (MPS) fluctuates widely over the course of a day and is influenced by many factors. The time course of MPS responses to exercise and the influence of training and nutrition can only be pieced together from several different investigations and methods, many of which create unnatural experimental conditions. Measurements of cumulative MPS, the sum synthesis over an extended period, using deuterium oxide have been shown to accurately reflect muscle responses and may allow investigations of the response to exercise, total protein intake requirements, and interaction with protein timing in free-living experimental conditions; these factors have yet to be carefully integrated. Such studies could include clinical and athletic populations to integrate nutritional and exercise recommendations and help guide their revisions to optimize the skeletal muscle function that is so important to overall health. PMID:27215586

  4. Haptoglobin Is Required to Prevent Oxidative Stress and Muscle Atrophy

    PubMed Central

    Lo Verso, Francesca; Santini, Ferruccio; Vitti, Paolo; Chisari, Carmelo; Sandri, Marco; Maffei, Margherita

    2014-01-01

    Background Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. Results We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. Conclusions Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges. PMID:24959824

  5. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle.

    PubMed

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  6. Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle

    PubMed Central

    Ding, Jian; Nie, Mao; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Deng, Zhong-Liang; Wang, Da-Zhi

    2016-01-01

    Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration. PMID:27159388

  7. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  8. A novel site in the muscle creatine kinase enhancer is required for expression in skeletal but not cardiac muscle.

    PubMed

    Fabre-Suver, C; Hauschka, S D

    1996-03-01

    Expression of the muscle creatine kinase (MCK) gene in skeletal and heart muscle is controlled in part by a 5' tissue-specific enhancer. In order to identify new regulatory elements, we designed mutations in a previously untested conserved portion of this enhancer. Transfection analysis of these mutations delineated a new control element, named Trex (Transcriptional regulatory element x), which is required for full transcriptional activity of the MCK enhancer in skeletal but not cardiac muscle cells. Gel mobility shift assays demonstrate that myocyte, myoblast, and fibroblast nuclear extracts but not primary cardiomyocyte nuclear extracts contain a trans-acting factor that binds specifically to Trex. The Trex sequence is similar (7/8 bases) to the TEF-1 consensus DNA-binding site involved in regulating other muscle genes. To determine if TEF-1 interacts with Trex, selected TEF-1 binding sites such as GTIIc and M-CAT and two anti-TEF-1 antisera were used in gel shift assays. These experiments strongly suggest that a factor distinct from TEF-1 binds specifically to Trex. Thus it appears that MCK transcription is regulated in skeletal muscles through a Trex-dependent pathway while Trex is not required for MCK expression in heart. This distinction could account partially for the difference in levels of muscle creatine kinase in these tissues. PMID:8617727

  9. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70

    PubMed Central

    Senf, Sarah M.; Dodd, Stephen L.

    2010-01-01

    The purpose of the current study was to determine whether heat shock protein 70 (Hsp70) directly regulates forkhead box O (FOXO) signaling in skeletal muscle. This aim stems from previous work demonstrating that Hsp70 overexpression inhibits disuse-induced FOXO transactivation and prevents muscle fiber atrophy. However, although FOXO is sufficient to cause muscle wasting, no data currently exist on the requirement of FOXO signaling in the progression of physiological muscle wasting, in vivo. In the current study we show that specific inhibition of FOXO, via expression of a dominant-negative FOXO3a, in rat soleus muscle during disuse prevented >40% of muscle fiber atrophy, demonstrating that FOXO signaling is required for disuse muscle atrophy. Subsequent experiments determined whether Hsp70 directly regulates FOXO3a signaling when independently activated in skeletal muscle, via transfection of FOXO3a. We show that Hsp70 inhibits FOXO3a-dependent transcription in a gene-specific manner. Specifically, Hsp70 inhibited FOXO3a-induced promoter activation of atrogin-1, but not MuRF1. Further studies showed that a FOXO3a DNA-binding mutant can activate MuRF1, but not atrogin-1, suggesting that FOXO3a activates these two genes through differential mechanisms. In summary, FOXO signaling is required for physiological muscle atrophy and is directly inhibited by Hsp70. PMID:19864323

  10. The flexible recruitment of muscle synergies depends on the required force-generating capability.

    PubMed

    Hagio, Shota; Kouzaki, Motoki

    2014-07-15

    To simplify redundant motor control, the central nervous system (CNS) may modularly organize and recruit groups of muscles as "muscle synergies." However, smooth and efficient movements are expected to require not only low-dimensional organization, but also flexibility in the recruitment or combination of synergies, depending on force-generating capability of individual muscles. In this study, we examined how the CNS controls activations of muscle synergies as changing joint angles. Subjects performed multidirectional isometric force generations around right ankle and extracted the muscle synergies using nonnegative matrix factorization across various knee and hip joint angles. As a result, muscle synergies were selectively recruited with merging or decomposition as changing the joint angles. Moreover, the activation profiles, including activation levels and the direction indicating the peak, of muscle synergies across force directions depended on the joint angles. Therefore, we suggested that the CNS selects appropriate muscle synergies and controls their activation patterns based on the force-generating capability of muscles with merging or decomposing descending neural inputs. PMID:24790166

  11. Myoferlin is required for insulin-like growth factor response and muscle growth

    PubMed Central

    Demonbreun, Alexis R.; Posey, Avery D.; Heretis, Konstantina; Swaggart, Kayleigh A.; Earley, Judy U.; Pytel, Peter; McNally, Elizabeth M.

    2010-01-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.—Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth. PMID:20008164

  12. Maintenance Energy Requirements of Double-Muscled Belgian Blue Beef Cows

    PubMed Central

    Fiems, Leo O.; De Boever, Johan L.; Vanacker, José M.; De Campeneere, Sam

    2015-01-01

    Simple Summary Double-muscled Belgian Blue animals are extremely lean, characterized by a deviant muscle fiber type with more fast-glycolytic fibers, compared to non-double-muscled animals. This fiber type may result in lower maintenance energy requirements. On the other hand, lean meat animals mostly have a higher rate of protein turnover, which requires more energy for maintenance. Therefore, maintenance requirements of Belgian Blue cows were investigated based on a zero body weight gain. This technique showed that maintenance energy requirements of double-muscled Belgian Blue beef cows were close to the mean requirements of cows of other beef genotypes. Abstract Sixty non-pregnant, non-lactating double-muscled Belgian Blue (DMBB) cows were used to estimate the energy required to maintain body weight (BW). They were fed one of three energy levels for 112 or 140 days, corresponding to approximately 100%, 80% or 70% of their total energy requirements. The relationship between daily energy intake and BW and daily BW change was developed using regression analysis. Maintenance energy requirements were estimated from the regression equation by setting BW gain to zero. Metabolizable and net energy for maintenance amounted to 0.569 ± 0.001 and 0.332 ± 0.001 MJ per kg BW0.75/d, respectively. Maintenance energy requirements were not dependent on energy level (p > 0.10). Parity affected maintenance energy requirements (p < 0.001), although the small numerical differences between parities may hardly be nutritionally relevant. Maintenance energy requirements of DMBB beef cows were close to the mean energy requirements of other beef genotypes reported in the literature. PMID:26479139

  13. miR-26a is required for skeletal muscle differentiation and regeneration in mice

    PubMed Central

    Dey, Bijan K.; Gagan, Jeffrey; Yan, Zhen; Dutta, Anindya

    2012-01-01

    Multiple microRNAs are known to be induced during the differentiation of myoblasts to myotubes. Yet, experiments in animals have not provided clear evidence for the requirement of most of these microRNAs in myogenic differentiation in vivo. miR-26a is induced during skeletal muscle differentiation and is predicted to target a well-known inhibitor of differentiation, the transforming growth factor β/bone morphogenetic protein (TGF-β/BMP) signaling pathway. Here we show that exogenous miR-26a promotes differentiation of myoblasts, while inhibition of miR-26a by antisense oligonucleotides or by Tough-Decoys delays differentiation. miR-26a targets the transcription factors Smad1 and Smad4, critical for the TGF-β/BMP pathway, and expression of microRNA-resistant forms of these transcription factors inhibits differentiation. Injection of antagomirs specific to miR-26a into neonatal mice derepressed both Smad expression and activity and consequently inhibited skeletal muscle differentiation. In addition, miR-26a is induced during skeletal muscle regeneration after injury. Inhibiting miR-26a in the tibialis anterior muscles through the injection of adeno-associated virus expressing a Tough-Decoy targeting miR-26a prevents Smad down-regulation and delays regeneration. These findings provide evidence for the requirement of miR-26a for skeletal muscle differentiation and regeneration in vivo. PMID:23028144

  14. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    PubMed

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  15. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  16. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  17. UTX demethylase activity is required for satellite cell–mediated muscle regeneration

    PubMed Central

    Wang, Chaochen; Nakka, Kiran; Benyoucef, Aissa; Sebastian, Soji; Zhuang, Lenan; Chu, Alphonse; Palii, Carmen G.; Camellato, Brendan; Brand, Marjorie

    2016-01-01

    The X chromosome–encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell–mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo. PMID:26999603

  18. The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus).

    PubMed

    Morris, Charlotte R; Nelson, Frank E; Askew, Graham N

    2010-08-15

    Little is known about how in vivo muscle efficiency, that is the ratio of mechanical and metabolic power, is affected by changes in locomotory tasks. One of the main problems with determining in vivo muscle efficiency is the large number of muscles generally used to produce mechanical power. Animal flight provides a unique model for determining muscle efficiency because only one muscle, the pectoralis muscle, produces nearly all of the mechanical power required for flight. In order to estimate in vivo flight muscle efficiency, we measured the metabolic cost of flight across a range of flight speeds (6-13 m s(-1)) using masked respirometry in the cockatiel (Nymphicus hollandicus) and compared it with measurements of mechanical power determined in the same wind tunnel. Similar to measurements of the mechanical power-speed relationship, the metabolic power-speed relationship had a U-shape, with a minimum at 10 m s(-1). Although the mechanical and metabolic power-speed relationships had similar minimum power speeds, the metabolic power requirements are not a simple multiple of the mechanical power requirements across a range of flight speeds. The pectoralis muscle efficiency (estimated from mechanical and metabolic power, basal metabolism and an assumed value for the 'postural costs' of flight) increased with flight speed and ranged from 6.9% to 11.2%. However, it is probable that previous estimates of the postural costs of flight have been too low and that the pectoralis muscle efficiency is higher. PMID:20675549

  19. The Drosophila Z-disc Protein Z(210) Is an Adult Muscle Isoform of Zasp52, Which Is Required for Normal Myofibril Organization in Indirect Flight Muscles*

    PubMed Central

    Chechenova, Maria B.; Bryantsev, Anton L.; Cripps, Richard M.

    2013-01-01

    The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology. PMID:23271733

  20. A novel isoform of MAP4 organises the paraxial microtubule array required for muscle cell differentiation

    PubMed Central

    Mogessie, Binyam; Roth, Daniel; Rahil, Zainab; Straube, Anne

    2015-01-01

    The microtubule cytoskeleton is critical for muscle cell differentiation and undergoes reorganisation into an array of paraxial microtubules, which serves as template for contractile sarcomere formation. In this study, we identify a previously uncharacterised isoform of microtubule-associated protein MAP4, oMAP4, as a microtubule organising factor that is crucial for myogenesis. We show that oMAP4 is expressed upon muscle cell differentiation and is the only MAP4 isoform essential for normal progression of the myogenic differentiation programme. Depletion of oMAP4 impairs cell elongation and cell–cell fusion. Most notably, oMAP4 is required for paraxial microtubule organisation in muscle cells and prevents dynein- and kinesin-driven microtubule–microtubule sliding. Purified oMAP4 aligns dynamic microtubules into antiparallel bundles that withstand motor forces in vitro. We propose a model in which the cooperation of dynein-mediated microtubule transport and oMAP4-mediated zippering of microtubules drives formation of a paraxial microtubule array that provides critical support for the polarisation and elongation of myotubes. DOI: http://dx.doi.org/10.7554/eLife.05697.001 PMID:25898002

  1. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.

    PubMed

    Neptune, R R; Zajac, F E; Kautz, S A

    2004-06-01

    Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support. PMID:15111069

  2. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    PubMed

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  3. Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development.

    PubMed

    Huang, Jianhe; Wang, Tao; Wright, Alexander C; Yang, Jifu; Zhou, Su; Li, Li; Yang, Jisheng; Small, Aeron; Parmacek, Michael S

    2015-04-01

    Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes. PMID:25805819

  4. A Screen for Genetic Loci Required for Body-Wall Muscle Development during Embryogenesis in Caenorhabditis Elegans

    PubMed Central

    Ahnn, J.; Fire, A.

    1994-01-01

    We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate. PMID:8070659

  5. Membrane repair of human skeletal muscle cells requires Annexin-A5.

    PubMed

    Carmeille, Romain; Bouvet, Flora; Tan, Sisareuth; Croissant, Coralie; Gounou, Céline; Mamchaoui, Kamel; Mouly, Vincent; Brisson, Alain R; Bouter, Anthony

    2016-09-01

    Defect in membrane repair contributes to the development of limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. In healthy skeletal muscle, unraveling membrane repair mechanisms requires to establish an exhaustive list of the components of the resealing machinery. Here we show that human myotubes rendered deficient for Annexin-A5 (AnxA5) suffer from a severe defect in membrane resealing. This defect is rescued by the addition of recombinant AnxA5 while an AnxA5 mutant, which is unable to form 2D protein arrays, has no effect. Using correlative light and electron microscopy, we show that AnxA5 binds to the edges of the torn membrane, as early as a few seconds after sarcolemma injury, where it probably self-assembles into 2D arrays. In addition, we observed that membrane resealing is associated with the presence of a cluster of lipid vesicles at the wounded site. AnxA5 is present at the surface of these vesicles and may thus participate in plugging the cell membrane disruption. Finally, we show that AnxA5 behaves similarly in myotubes from a muscle cell line established from a patient suffering from LGMD2B, a myopathy due to dysferlin mutations, which indicates that trafficking of AnxA5 during sarcolemma damage is independent of the presence of dysferlin. PMID:27286750

  6. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation.

    PubMed

    Supinski, Gerald S; Alimov, Alexander P; Wang, Lin; Song, Xiao-Hong; Callahan, Leigh A

    2015-09-15

    Calpain contributes to infection-induced diaphragm dysfunction but the upstream mechanism(s) responsible for calpain activation are poorly understood. It is known, however, that cytokines activate neutral sphingomyelinase (nSMase) and nSMase has downstream effects with the potential to increase calpain activity. We tested the hypothesis that infection-induced skeletal muscle calpain activation is a consequence of nSMase activation. We administered cytomix (20 ng/ml TNF-α, 50 U/ml IL-1β, 100 U/ml IFN-γ, 10 μg/ml LPS) to C2C12 muscle cells to simulate the effects of infection in vitro and studied mice undergoing cecal ligation puncture (CLP) as an in vivo model of infection. In cell studies, we assessed sphingomyelinase activity, subcellular calcium levels, and calpain activity and determined the effects of inhibiting sphingomyelinase using chemical (GW4869) and genetic (siRNA to nSMase2 and nSMase3) techniques. We assessed diaphragm force and calpain activity and utilized GW4869 to inhibit sphingomyelinase in mice. Cytomix increased cytosolic and mitochondrial calcium levels in C2C12 cells (P < 0.001); addition of GW4869 blocked these increases (P < 0.001). Cytomix also activated calpain, increasing calpain activity (P < 0.02), and the calpain-mediated cleavage of procaspase 12 (P < 0.001). Procaspase 12 cleavage was attenuated by either GW4869 (P < 0.001), BAPTA-AM (P < 0.001), or siRNA to nSMase2 (P < 0.001) but was unaffected by siRNA to nSMase3. GW4869 prevented CLP-induced diaphragm calpain activation and diaphragm weakness in mice. These data suggest that nSMase2 activation is required for the development of infection-induced diaphragm calpain activation and muscle weakness. As a consequence, therapies that inhibit nSMase2 in patients may prevent infection-induced skeletal muscle dysfunction. PMID:26138644

  7. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans

    PubMed Central

    Etheridge, Timothy; Rahman, Mizanur; Gaffney, Christopher J.; Shaw, Debra; Shephard, Freya; Magudia, Jignesh; Solomon, Deepak E.; Milne, Thomas; Blawzdziewicz, Jerzy; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L.; Vanapalli, Siva A.; Szewczyk, Nathaniel J.

    2015-01-01

    The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.—Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A., Szewczyk, N. J. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. PMID:25491313

  8. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  9. A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression

    SciTech Connect

    Schultz, J.A.; Gremke, L.; Storti, R.V. ); Tansey, T. )

    1991-04-01

    The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of this analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes.

  10. Phosphofructokinase muscle-specific isoform requires caveolin-3 expression for plasma membrane recruitment and caveolar targeting: implications for the pathogenesis of caveolin-related muscle diseases.

    PubMed

    Sotgia, Federica; Bonuccelli, Gloria; Minetti, Carlo; Woodman, Scott E; Capozza, Franco; Kemp, Robert G; Scherer, Philipp E; Lisanti, Michael P

    2003-12-01

    Previous co-immunoprecipitation studies have shown that endogenous PFK-M (phosphofructokinase, muscle-specific isoform) associates with caveolin (Cav)-3 under certain metabolic conditions. However, it remains unknown whether Cav-3 expression is required for the plasma membrane recruitment and caveolar targeting of PFK-M. Here, we demonstrate that recombinant expression of Cav-3 dramatically affects the subcellular localization of PFK-M, by targeting PFK-M to the plasma membrane, and by trans-locating PFK-M to caveolae-enriched membrane domains. In addition, we show that the membrane recruitment and caveolar targeting of PFK-M appears to be strictly dependent on the concentration of extracellular glucose. Interestingly, recombinant expression of PFK-M with three Cav-3 mutants [DeltaTFT (63 to 65), P104L, and R26Q], which harbor the same mutations as seen in the human patients with Cav-3-related muscle diseases, causes a substantial reduction in PFK-M expression levels, and impedes the membrane recruitment of PFK-M. Analysis of skeletal muscle tissue samples from Cav-3(-/-) mice directly demonstrates that Cav-3 expression regulates the phenotypic behavior of PFK-M. More specifically, in Cav-3-null mice, PFK-M is no longer targeted to the plasma membrane, and is excluded from caveolar membrane domains. As such, our current results may be important in understanding the pathogenesis of Cav-3-related muscle diseases, such as limb-girdle muscular dystrophy-1C, distal myopathy, and rippling muscle disease, that are caused by mutations within the human Cav-3 gene. PMID:14633633

  11. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  12. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  13. Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration

    PubMed Central

    Kafadar, Kimberly A.; Yi, Lin; Ahmad, Yusra; So, Leslie; Rossi, Fabio; Pavlath, Grace K.

    2009-01-01

    Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1-/- mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1-/- muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1-/- muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases. PMID:19059231

  14. The Repair of Skeletal Muscle Requires Iron Recycling through Macrophage Ferroportin.

    PubMed

    Corna, Gianfranca; Caserta, Imma; Monno, Antonella; Apostoli, Pietro; Manfredi, Angelo A; Camaschella, Clara; Rovere-Querini, Patrizia

    2016-09-01

    Macrophages recruited at the site of sterile muscle damage play an essential role in the regeneration of the tissue. In this article, we report that the selective disruption of macrophage ferroportin (Fpn) results in iron accumulation within muscle-infiltrating macrophages and jeopardizes muscle healing, prompting fat accumulation. Macrophages isolated from the tissue at early time points after injury express ferritin H, CD163, and hemeoxygenase-1, indicating that they can uptake heme and store iron. At later time points they upregulate Fpn expression, thus acquiring the ability to release the metal. Transferrin-mediated iron uptake by regenerating myofibers occurs independently of systemic iron homeostasis. The inhibition of macrophage iron export via the silencing of Fpn results in regenerating muscles with smaller myofibers and fat accumulation. These results highlight the existence of a local pathway of iron recycling that plays a nonredundant role in the myogenic differentiation of muscle precursors, limiting the adipose degeneration of the tissue. PMID:27465531

  15. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    SciTech Connect

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian; Brandan, Enrique

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No change in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.

  16. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    PubMed

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  17. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  18. Myocardin-related transcription factors are required for skeletal muscle development.

    PubMed

    Cenik, Bercin K; Liu, Ning; Chen, Beibei; Bezprozvannaya, Svetlana; Olson, Eric N; Bassel-Duby, Rhonda

    2016-08-01

    Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies. PMID:27385017

  19. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish

    PubMed Central

    Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.

    2016-01-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  20. Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle

    PubMed Central

    Spinazzola, Janelle M.; Smith, Tara C.; Liu, Min; Luna, Elizabeth J.; Barton, Elisabeth R.

    2015-01-01

    Loss of gamma-sarcoglycan (γ-SG) induces muscle degeneration and signaling defects in response to mechanical load, and its absence is common to both Duchenne and limb girdle muscular dystrophies. Growing evidence suggests that aberrant signaling contributes to the disease pathology; however, the mechanisms of γ-SG-mediated mechanical signaling are poorly understood. To uncover γ-SG signaling pathway components, we performed yeast two-hybrid screens and identified the muscle-specific protein archvillin as a γ-SG and dystrophin interacting protein. Archvillin protein and message levels were significantly upregulated at the sarcolemma of murine γ-SG-null (gsg−/−) muscle but delocalized in dystrophin-deficient mdx muscle. Similar elevation of archvillin protein was observed in human quadriceps muscle lacking γ-SG. Reintroduction of γ-SG in gsg−/− muscle by rAAV injection restored archvillin levels to that of control C57 muscle. In situ eccentric contraction of tibialis anterior (TA) muscles from C57 mice caused ERK1/2 phosphorylation, nuclear activation of P-ERK1/2 and stimulus-dependent archvillin association with P-ERK1/2. In contrast, TA muscles from gsg−/− and mdx mice exhibited heightened P-ERK1/2 and increased nuclear P-ERK1/2 localization following eccentric contractions, but the archvillin–P-ERK1/2 association was completely ablated. These results position archvillin as a mechanically sensitive component of the dystrophin complex and demonstrate that signaling defects caused by loss of γ-SG occur both at the sarcolemma and in the nucleus. PMID:25605665

  1. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy

    PubMed Central

    Peterson, Mark D.; Leferink, Svenja; Darrah, Johanna

    2015-01-01

    Objective To determine energy expenditure and muscle activity among children and adolescents with cerebral palsy (CP), across several conditions that approximate sedentary behavior, and standing. Study design Subjects with spastic CP (n=19; 4–20 years of age; Gross Motor Function Classification System [GMFCS] levels I to V) participated in this cohort study. Energy-expenditure and muscle activity were measured during lying supine, sitting with support, sitting without support, and standing. Energy-expenditure was measured using indirect calorimetry and expressed in metabolic equivalents (METs). Muscle activation was recorded using surface electromyography. The recorded values were calculated for every child and then averaged per posture. Results Mean energy expenditure was >1.5 METs during standing for all GMFCS levels. There was a non-significant trend for greater muscle activation for all postures with less support. Only for children classified at GMFCS level III standing resulted in significantly greater muscle activation (p<0.05) compared with rest. Conclusion Across all GMFCS levels, children and adolescents with CP had elevated energy expenditure during standing that exceeded the sedentary threshold of 1.5 METs. Our findings suggest that changing a child’s position to standing may contribute to the accumulation of light activity and reduction of long intervals of sedentary behavior. PMID:25151195

  2. Peroxisomes Are Required for Lipid Metabolism and Muscle Function in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Manisundaram, Arvind; Ivanova, Pavlina T.; Milne, Stephen B.; Summerville, James B.; Brown, H. Alex; Wangler, Michael; Stern, Michael; McNew, James A.

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology. PMID:24945818

  3. Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster.

    PubMed

    Faust, Joseph E; Manisundaram, Arvind; Ivanova, Pavlina T; Milne, Stephen B; Summerville, James B; Brown, H Alex; Wangler, Michael; Stern, Michael; McNew, James A

    2014-01-01

    Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology. PMID:24945818

  4. Upper extremity muscle tone and response of tidal volume during manually assisted breathing for patients requiring prolonged mechanical ventilation

    PubMed Central

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Yokoi, Yuka; Takahashi, Naoaki

    2015-01-01

    [Purpose] The aim of the present study was to examine, in patients requiring prolonged mechanical ventilation, if the response of tidal volume during manually assisted breathing is dependent upon both upper extremity muscle tone and the pressure intensity of manually assisted breathing. [Subjects] We recruited 13 patients on prolonged mechanical ventilation, and assessed their upper extremity muscle tone using the modified Ashworth scale (MAS). The subjects were assigned to either the low MAS group (MAS≤2, n=7) or the high MAS group (MAS≥3, n=6). [Methods] The manually assisted breathing technique was applied at a pressure of 2 kgf and 4 kgf. A split-plot ANOVA was performed to compare the tidal volume of each pressure during manually assisted breathing between the low and the high MAS groups. [Results] Statistical analysis showed there were main effects of the upper extremity muscle tone and the pressure intensity of the manually assisted breathing technique. There was no interaction between these factors. [Conclusion] Our findings reveal that the tidal volume during the manually assisted breathing technique for patients with prolonged mechanical ventilation depends upon the patient’s upper extremity muscle tone and the pressure intensity. PMID:26357431

  5. Enhanced skeletal muscle protein synthesis rates in pigs treated with somatotropin requires fed amino acids levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic somatotropin (pST) treatment in pigs increases skeletal muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin alone could not account for the pST-induced increase in protein synthesis. This study...

  6. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors

    PubMed Central

    González, Natalia; Moresco, James J.; Bustos, Francisco; Yates, John R.; Olguín, Hugo C.

    2016-01-01

    Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate. PMID:27144531

  7. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    PubMed

    González, Natalia; Moresco, James J; Cabezas, Felipe; de la Vega, Eduardo; Bustos, Francisco; Yates, John R; Olguín, Hugo C

    2016-01-01

    Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (re)acquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate. PMID:27144531

  8. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis.

    PubMed

    Goody, Michelle F; Kelly, Meghan W; Lessard, Kevin N; Khalil, Andre; Henry, Clarissa A

    2010-08-15

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  9. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  10. Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons.

    PubMed

    Oppenheim, R W; Wiese, S; Prevette, D; Armanini, M; Wang, S; Houenou, L J; Holtmann, B; Gotz, R; Pennica, D; Sendtner, M

    2001-02-15

    Developing motoneurons require trophic support from their target, the skeletal muscle. Despite a large number of neurotrophic molecules with survival-promoting activity for isolated embryonic motoneurons, those factors that are required for motoneuron survival during development are still not known. Cytokines of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor (LIF) family have been shown to play a role in motoneuron (MN) survival. Importantly, in mice lacking the LIFRbeta or the CNTFRalpha there is a significant loss of MNs during embryonic development. Because genetic deletion of either (or both) CNTF or LIF fails, by contrast, to perturb MN survival before birth, it was concluded that another ligand exists that is functionally inactivated in the receptor deleted mice, resulting in MN loss during development. One possible candidate for this ligand is the CNTF-LIF family member cardiotrophin-1 (CT-1). CT-1 is highly expressed in embryonic skeletal muscle, secreted by myotubes, and promotes the survival of cultured embryonic mouse and rat MNs. Here we show that ct-1 deficiency causes increased motoneuron cell death in spinal cord and brainstem nuclei of mice during a period between embryonic day 14 and the first postnatal week. Interestingly, no further loss was detectable during the subsequent postnatal period, and nerve lesion in young adult ct-1-deficient mice did not result in significant additional loss of motoneurons, as had been previously observed in mice lacking both CNTF and LIF. CT-1 is the first bona fide muscle-derived neurotrophic factor to be identified that is required for the survival of subgroups of developing motoneurons. PMID:11160399

  11. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    PubMed

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-01

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells. PMID:26769966

  12. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function.

    PubMed

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti

    2015-08-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  13. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function

    PubMed Central

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti

    2015-01-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  14. A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery.

    PubMed

    Tracy, Paige V; DeLancey, John O; Ashton-Miller, James A

    2016-02-01

    Because levator ani (LA) muscle injuries occur in approximately 13% of all vaginal births, insights are needed to better prevent them. In Part I of this paper, we conducted an analysis of the bony and soft tissue factors contributing to the geometric "capacity" of the maternal pelvis and pelvic floor to deliver a fetal head without incurring stretch injury of the maternal soft tissue. In Part II, we quantified the range in demand, represented by the variation in fetal head size and shape, placed on the maternal pelvic floor. In Part III, we analyzed the capacity-to-demand geometric ratio, g, in order to determine whether a mother can deliver a head of given size without stretch injury. The results of a Part I sensitivity analysis showed that initial soft tissue loop length (SL) had the greatest effect on maternal capacity, followed by the length of the soft tissue loop above the inferior pubic rami at ultimate crowning, then subpubic arch angle (SPAA) and head size, and finally the levator origin separation distance. We found the more caudal origin of the puborectal portion of the levator muscle helps to protect it from the stretch injuries commonly observed in the pubovisceral portion. Part II fetal head molding index (MI) and fetal head size revealed fetal head circumference values ranging from 253 to 351 mm, which would increase up to 11 mm upon face presentation. The Part III capacity-demand analysis of g revealed that, based on geometry alone, the 10th percentile maternal capacity predicted injury for all head sizes, the 25th percentile maternal capacity could deliver half of all head sizes, while the 50th percentile maternal capacity could deliver a head of any size without injury. If ultrasound imaging could be operationalized to make measurements of ratio g, it might be used to usefully inform women on their level of risk for levator injury during vaginal birth. PMID:26746116

  15. Knockdown of the C. elegans Kinome identifies Kinases required for normal protein Homeostasis, Mitochondrial network structure, and Sarcomere structure in muscle

    PubMed Central

    2013-01-01

    Background Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation. Results 96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion. Conclusions Roughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis. PMID:24060339

  16. Adaptive Skeletal Muscle Action Requires Anticipation and “Conscious Broadcasting”

    PubMed Central

    Poehlman, T. Andrew; Jantz, Tiffany K.; Morsella, Ezequiel

    2012-01-01

    Historically, the conscious and anticipatory processes involved in voluntary action have been associated with the loftiest heights of nervous function. Concepts like mental time travel, “theory of mind,” and the formation of “the self” have been at the center of many attempts to determine the purpose of consciousness. Eventually, more reductionistic accounts of consciousness emerged, proposing rather that conscious states play a much more basic role in nervous function. Though the widely held integration consensus proposes that conscious states integrate information-processing structures and events that would otherwise be independent, Supramodular Interaction Theory (SIT) argues that conscious states are necessary for the integration of only certain kinds of information. As revealed in this selective review, this integration is related to what is casually referred to as “voluntary” action, which is intimately related to the skeletal muscle output system. Through a peculiar form of broadcasting, conscious integration often controls and guides action via “ideomotor” mechanisms, where anticipatory processes play a central role. Our selective review covers evidence (including findings from anesthesia research) for the integration consensus, SIT, and ideomotor theory. PMID:23264766

  17. Forkhead Box M1 Transcriptional Factor is Required for Smooth Muscle Cells during Embryonic Development of Blood Vessels and Esophagus

    PubMed Central

    Ustiyan, Vladimir; Wang, I-Ching; Ren, Xiaomeng; Zhang, Yufang; Snyder, Jonathan; Xu, Yan; Wert, Susan E.; Lessard, James L.; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2009-01-01

    The Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway and intestinal smooth muscle cells (SMC). Although global deletion of Foxm1 in Foxm1−/− mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1−/− mice). The majority of smFoxm1−/− mice died immediately after birth due to severe pulmonary hemorrhage, and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1−/− blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G2 arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus. PMID:19835856

  18. Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate

    PubMed Central

    Schmitz, Joep P. J.; Jeneson, Jeroen A. L.; van Oorschot, Joep W. M.; Prompers, Jeanine J.; Nicolay, Klaas; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2012-01-01

    The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal muscle was investigated. Hypotheses of key control mechanisms were included in a biophysical model of oxidative phosphorylation and tested against metabolite dynamics recorded by 31P nuclear magnetic resonance spectroscopy (31P MRS). Simulations of the initial model featuring only ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation between myoplasmic free energy of ATP hydrolysis (ΔGp = ΔGpo′+RT ln ([ADP][Pi]/[ATP]) and the rate of mitochondrial ATP synthesis at low fluxes (<0.2 mM/s). Model analyses including Monte Carlo simulation approaches and metabolic control analysis (MCA) showed that this problem could not be amended by model re-parameterization, but instead required reformulation of ADP and Pi feedback control or introduction of additional control mechanisms (feed forward activation), specifically at respiratory Complex III. Both hypotheses were implemented and tested against time course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and validation data obtained by 31P MRS of sedentary subjects and track athletes. The results rejected the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback control of respiratory chain complexes by inorganic phosphate is essential to explain the regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range. PMID:22470528

  19. Destabilization of Nucleophosmin mRNA by the HuR/KSRP complex is required for muscle fiber formation

    PubMed Central

    Cammas, Anne; Sanchez, Brenda Janice; Lian, Xian Jin; Dormoy-Raclet, Virginie; van der Giessen, Kate; de Silanes, Isabel López; Ma, Jennifer; Wilusz, Carol; Richardson, John; Gorospe, Myriam; Millevoi, Stefania; Giovarelli, Matteo; Gherzi, Roberto; Di Marco, Sergio; Gallouzi, Imed-Eddine

    2014-01-01

    HuR promotes myogenesis by stabilizing the MyoD, Myogenin and p21 mRNAs during the fusion of muscle cells to form myotubes. Here we show that HuR, via a novel mRNA destabilizing activity, promotes the early steps of myogenesis by reducing the expression of the cell cycle promoter nucleophosmin (NPM). Depletion of HuR stabilizes the NPM mRNA, increases NPM protein levels and inhibits myogenesis, while its overexpression elicits the opposite effects. NPM mRNA destabilization involves the association of HuR with the decay factor KSRP as well as the ribonuclease PARN and the exosome. The C-terminus of HuR mediates the formation of the HuR-KSRP complex and is sufficient for maintaining a low level of the NPM mRNA as well as promoting the commitment of muscle cells to myogenesis. We therefore propose a model whereby the downregulation of the NPM mRNA, mediated by HuR, KSRP and its associated ribonucleases, is required for proper myogenesis. PMID:24969639

  20. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  1. Muscle-Derived Extracellular Signal-Regulated Kinases 1 and 2 Are Required for the Maintenance of Adult Myofibers and Their Neuromuscular Junctions

    PubMed Central

    Seaberg, Bonnie; Henslee, Gabrielle; Wang, Shuo; Paez-Colasante, Ximena; Landreth, Gary E.

    2015-01-01

    The Ras–extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice. PMID:25605336

  2. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy

    PubMed Central

    Min, Kisuk; Kwon, Oh-Sung; Smuder, Ashley J; Wiggs, Michael P; Sollanek, Kurt J; Christou, Demetra D; Yoo, Jeung-Ki; Hwang, Moon-Hyon; Szeto, Hazel H; Kavazis, Andreas N; Powers, Scott K

    2015-01-01

    Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres. PMID:25643692

  3. Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics

    NASA Astrophysics Data System (ADS)

    Hanson, David F.; White, Victor

    2004-07-01

    The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.

  4. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.

    PubMed

    Abrigo, Johanna; Rivera, Juan Carlos; Simon, Felipe; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-05-01

    Transforming growth factor beta 1 (TGF-β1) is a classical modulator of skeletal muscle and regulates several processes, such as myogenesis, regeneration, and muscle function in skeletal muscle diseases. Skeletal muscle atrophy, characterised by the loss of muscle strength and mass, is one of the pathological conditions regulated by TGF-β. Atrophy also results in increased myosin heavy chain (MHC) degradation and the expression of two muscle-specific E3 ubiquitin ligases, atrogin-1 and MuRF-1. Reactive oxygen species (ROS) are modulators of muscle wasting, and NAD(P)H oxidase (NOX) is one of the main sources of ROS. While it was recently found that TGF-β1 induces atrophy in skeletal muscle, the underlying mechanism is not fully understood. In this study, the role of NOX-derived ROS in skeletal muscle atrophy induced by TGF-β was assessed. TGF-β1 induced an atrophic effect in C2C12 myotubes, as evidenced by decreased myotube diameter and MHC levels, together with increased MuRF-1 levels. Concomitantly, TGF-β increased NOX-induced ROS contents. Interestingly, NOX inhibition through apocynin and the antioxidant treatment with N-acetyl cysteine (NAC) decreased increased ROS levels in myotubes. Additionally, both apocynin and NAC completely prevented the decreased MHC, decreased myotube diameter, and increased MuRF-1 induced by TGF-β. Injection of TGF-β1 into the tibialis anterior muscle induced atrophy, as observed by decreased fibre diameter and MHC levels, together with increased MuRF-1 levels. Likewise, TGF-β increased the ROS contents in the smaller fibres of skeletal muscle. Additionally, the administration of NAC to mice prevented all atrophic effects and the increase in ROS induced by TGF-β in the tibialis anterior. This is the first study to report that TGF-β has an atrophic effect dependent on NOX-induced ROS in skeletal muscle. PMID:26825874

  5. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  6. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were...

  7. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. PMID:23682682

  8. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima.

    PubMed

    Liang, Ming; Wang, Yun; Liang, Anlin; Mitch, William E; Roy-Chaudhury, Prabir; Han, Guofeng; Cheng, Jizhong

    2015-09-01

    A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery, which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima, indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. As fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene grafts from patients with end-stage kidney disease or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or polytetrafluoroethylene grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1 suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow-up. PMID:25786100

  9. Muscle-specific activity of the skeletal troponin I promoter requires interaction between upstream regulatory sequences and elements contained within the first transcribed exon.

    PubMed Central

    Nikovits, W; Mar, J H; Ordahl, C P

    1990-01-01

    Expression of the skeletal troponin I (sTnI) gene is regulated transcriptionally in a muscle-specific fashion. We show here that the region of the sTnI gene between -160 and +61 (relative to the transcription initiation site) is able to direct expression of the bacterial chloramphenicol acetyltransferase (CAT) gene is muscle cultures at a level approximately 100 times higher than in fibroblast cultures. RNA analysis demonstrated that transcription of the CAT gene was initiated at the same site as transcription of the endogenous sTnI gene and that CAT activity levels were approximately proportional to CAT mRNA levels. Deletion analysis demonstrated that the region between nucleotides -160 and -40 contained sequences essential for full promoter activity. Surprisingly, 3' deletion analysis indicated that the first exon (-6 to +61) of the sTnI gene was also required for full activity of the sTnI promoter in skeletal muscle cells. Chimeric promoter experiments, in which segments of the sTnI and the herpes simplex virus thymidine kinase promoter were interchanged, indicated that reconstitution of a muscle-specific promoter required inclusion of both the upstream and exon I regions of the sTnI gene. Exon I, and the region immediately upstream, showed DNase protection over sequence motifs related to those found in other genes, including the tar region of human immunodeficiency virus type 1. These results demonstrate that expression of the sTnI promoter in embryonic skeletal muscle cells requires complex interaction between two separate promoter regions, one of which resides within the first 61 transcribed nucleotides of the gene. Images PMID:2355914

  10. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  11. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition.

    PubMed

    Xie, Yi; Jin, Yu; Merenick, Bethany L; Ding, Min; Fetalvero, Kristina M; Wagner, Robert J; Mai, Alice; Gleim, Scott; Tucker, David F; Birnbaum, Morris J; Ballif, Bryan A; Luciano, Amelia K; Sessa, William C; Rzucidlo, Eva M; Powell, Richard J; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A

    2015-05-12

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This dedifferentiation also contributes to VSMC hyperplasia after vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, its transactivation of promoters encoding contractile proteins, and its inhibition of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser(290), potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2(-/-) mice. Intimal hyperplasia after arterial injury was greater in Akt2(-/-) mice than in wild-type mice, and the exacerbated response in Akt2(-/-) mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  12. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus.

    PubMed

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-08-15

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176

  13. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway

    PubMed Central

    Crossland, Hannah; Kazi, Abid A.; Lang, Charles H.; Timmons, James A.; Pierre, Philippe; Wilkinson, Daniel J.; Smith, Kenneth; Szewczyk, Nathaniel J.

    2013-01-01

    Focal adhesion kinase (FAK) is an attachment complex protein associated with the regulation of muscle mass through as-of-yet unclear mechanisms. We tested whether FAK is functionally important for muscle hypertrophy, with the hypothesis that FAK knockdown (FAK-KD) would impede cell growth associated with a trophic stimulus. C2C12 skeletal muscle cells harboring FAK-targeted (FAK-KD) or scrambled (SCR) shRNA were created using lentiviral transfection techniques. Both FAK-KD and SCR myotubes were incubated for 24 h with IGF-I (10 ng/ml), and additional SCR cells (±IGF-1) were incubated with a FAK kinase inhibitor before assay of cell growth. Muscle protein synthesis (MPS) and putative FAK signaling mechanisms (immunoblotting and coimmunoprecipitation) were assessed. IGF-I-induced increases in myotube width (+41 ± 7% vs. non-IGF-I-treated) and total protein (+44 ± 6%) were, after 24 h, attenuated in FAK-KD cells, whereas MPS was suppressed in FAK-KD vs. SCR after 4 h. These blunted responses were associated with attenuated IGF-I-induced FAK Tyr397 phosphorylation and markedly suppressed phosphorylation of tuberous sclerosis complex 2 (TSC2) and critical downstream mTOR signaling (ribosomal S6 kinase, eIF4F assembly) in FAK shRNA cells (all P < 0.05 vs. IGF-I-treated SCR cells). However, binding of FAK to TSC2 or its phosphatase Shp-2 was not affected by IGF-I or cell phenotype. Finally, FAK-KD-mediated suppression of cell growth was recapitulated by direct inhibition of FAK kinase activity in SCR cells. We conclude that FAK is required for IGF-I-induced muscle hypertrophy, signaling through a TSC2/mTOR/S6K1-dependent pathway via means requiring the kinase activity of FAK but not altered FAK-TSC2 or FAK-Shp-2 binding. PMID:23695213

  14. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication.

    PubMed

    Kong, Ping; Racedo, Silvia E; Macchiarulo, Stephania; Hu, Zunju; Carpenter, Courtney; Guo, Tingwei; Wang, Tao; Zheng, Deyou; Morrow, Bernice E

    2014-08-15

    Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1(+/+) and Tbx1(-/-) embryos at stages E9.5 (somites 20-25) and E10.5 (somites 30-35). Basic helix-loop-helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1(Cre) and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1(-/-) embryos. Using Tbx1(Cre) knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1(Cre) and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles. PMID:24705356

  15. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication

    PubMed Central

    Kong, Ping; Racedo, Silvia E.; Macchiarulo, Stephania; Hu, Zunju; Carpenter, Courtney; Guo, Tingwei; Wang, Tao; Zheng, Deyou; Morrow, Bernice E.

    2014-01-01

    Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1+/+ and Tbx1−/− embryos at stages E9.5 (somites 20–25) and E10.5 (somites 30–35). Basic helix–loop–helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1Cre and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1−/− embryos. Using Tbx1Cre knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1Cre and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles. PMID:24705356

  16. The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse

    PubMed Central

    Csibi, Alfredo; Cornille, Karen; Leibovitch, Marie-Pierre; Poupon, Anne; Tintignac, Lionel A.; Sanchez, Anthony M. J.; Leibovitch, Serge A.

    2010-01-01

    The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size. PMID:20126553

  17. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP.

    PubMed

    Buono, Roberta; Vantaggiato, Chiara; Pisa, Viviana; Azzoni, Emanuele; Bassi, Maria Teresa; Brunelli, Silvia; Sciorati, Clara; Clementi, Emilio

    2012-02-01

    Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7(+)/Myf5(-) cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. PMID:22084027

  18. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed Central

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-01

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected. PMID:9016574

  19. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  20. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  1. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  2. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  3. Presynaptic NCAM Is Required for Motor Neurons to Functionally Expand Their Peripheral Field of Innervation in Partially Denervated Muscles

    PubMed Central

    Chipman, Peter H.; Schachner, Melitta

    2014-01-01

    The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9creNCAMflx). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM+/+) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9creNCAMflx mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1–4 weeks post-partial denervation in Hb9creNCAMflx mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9creNCAMflx mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9creNCAMflx soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9creNCAMflx sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs. PMID:25100585

  4. Technical note: the United States Department of Agriculture beef yield grade equation requires modification to reflect the current longissimus muscle area to hot carcass weight relationship.

    PubMed

    Lawrence, T E; Farrow, R L; Zollinger, B L; Spivey, K S

    2008-06-01

    With the adoption of visual instrument grading, the calculated yield grade can be used for payment to cattle producers selling on grid pricing systems. The USDA beef carcass grading standards include a relationship between required LM area (LMA) and HCW that is an important component of the final yield grade. As noted on a USDA yield grade LMA grid, a 272-kg (600-lb) carcass requires a 71-cm(2) (11.0-in.(2)) LMA and a 454-kg (1,000-lb) carcass requires a 102-cm(2) (15.8-in.(2)) LMA. This is a linear relationship, where required LMA = 0.171(HCW) + 24.526. If a beef carcass has a larger LMA than required, the calculated yield grade is lowered, whereas a smaller LMA than required increases the calculated yield grade. The objective of this investigation was to evaluate the LMA to HCW relationship against data on 434,381 beef carcasses in the West Texas A&M University (WTAMU) Beef Carcass Research Center database. In contrast to the USDA relationship, our data indicate a quadratic relationship [WTAMU LMA = 33.585 + 0.17729(HCW) -0.0000863(HCW(2))] between LMA and HCW whereby, on average, a 272-kg carcass has a 75-cm(2) (11.6-in.(2)) LMA and a 454-kg carcass has a 96-cm(2) (14.9-in.(2)) LMA, indicating a different slope and different intercept than those in the USDA grading standards. These data indicate that the USDA calculated yield grade equation favors carcasses lighter than 363 kg (800 lb) for having above average muscling and penalizes carcasses heavier than 363 kg (800 lb) for having below average muscling. If carcass weights continue to increase, we are likely to observe greater proportions of yield grade 4 and 5 carcasses because of the measurement bias that currently exists in the USDA yield grade equation. PMID:18310492

  5. Recovery of prostacyclin synthesis in vascular smooth muscle cells following self-inactivation and requirement for growth factors

    SciTech Connect

    Bailey, J.M.; Hla, T.T.; Pash, J.M.

    1986-05-01

    The cyclooxygenase enzyme system is a prime example of a metabolic pathway that is regulated by self inactivation. This is believed to occur in part via the irreversible reaction of the endoperoxide intermediate species with the cyclooxygenase enzyme. This inactivation and recovery of activity is similar to the inactivation observed with aspirin which irreversibly acetylates the enzyme. Self inactivation was studied in cultured rat and bovine aorta smooth muscle cells. The production of the prostanoid PGI2 was demonstrated by incubation of a monolayer of cells with 12 ..mu..M C-14 labeled arachidonic acid. Products were analyzed by thin layer chromatography and identified by their comigration with authentic standards and confirmed by gas chromatography/mass spectrometry. Preincubation of the cells for 10 minutes with arachidonic acid at concentrations as low as 1 ..mu..g/mL inactivated the cells to a second challenge with radiolabeled arachidonic acid. Recovery from self inactivation took place over a three hour time period and was similar to the recovery observed with aspirin pretreatment. Recovery was inhibited by addition of 10 ..mu..g/mL cycloheximide to the medium indicating that it involves synthesis of cyclooxygenase protein. Epidermal growth factor was identified as a serum factor responsible for the rapid recovery of cyclooxygenase activity in rat and bovine aorta smooth muscle cells.

  6. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  7. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  8. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  9. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  10. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  11. Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration

    PubMed Central

    Murphy, Malea M.; Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Yandell, Mark; Kardon, Gabrielle

    2014-01-01

    Summary Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration. PMID:25241745

  12. Runx2/Cbfa1, but not loss of Myocardin, is Required for Smooth Muscle Cell Lineage Reprogramming toward Osteochondrogenesis

    PubMed Central

    Speer, Mei Y.; Li, Xianwu; Hiremath, Pranoti G.; Giachelli, Cecilia M.

    2010-01-01

    Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. Smooth muscle cells (SMCs) may play an important role in vascular cartilaginous metaplasia and calcification via reprogramming to the osteochondrogenic state. To study whether SM lineage reprogramming and thus matrix calcification is reversible and what the necessary regulatory factors are to reverse this process, we used cells isolated from calcifying arterial medias of 4-week-old matrix Gla protein knockout mice (MGP−/− SMCs). We found that vascular cells with an osteochondrogenic phenotype regained SMC properties (positive for SM22α and SM α-actin) and down-regulated osteochondrogenic gene expression (Runx2/Cbfa1 and osteopontin) upon culture in medium that favors SMC differentiation. Over time, the MGP−/− SMCs no longer expressed osteochondrogenic proteins and became indistinguishable from wild-type SMCs. Moreover, phenotypic switch of the restored SMCs to the osteochondrogenic state was re-induced by the pro-calcific factor, inorganic phosphate. Finally, loss- and gain-of-function studies of myocardin, a SM-specific transcription co-activator, and Runx2/Cbfa1, an osteochondrogenic transcription factor, revealed that upregulation of Runx2/Cbfa1, but not loss of myocardin, played a critical role in phosphate-induced SMC lineage reprogramming and calcification. These results are the first to demonstrate reversibility of vascular SMCs to an osteochondrogenic state in response to local environmental cues, and that myocardin-enforced SMC lineage allocation was not sufficient to block vascular calcification. On the other hand, Runx2/Cbfa1 was found to be a decisive factor identified in the process. PMID:20564193

  13. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    SciTech Connect

    Yang, Jie; Zeng, Zhen; Wei, Juncheng; Jiang, Lijun; Ma, Quanfu; Wu, Mingfu; Huang, Xiaoyuan; Ye, Shuangmei; Li, Ye; Ma, Ding; Gao, Qinglei

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responses and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.

  14. Upregulation of Intermediate-Conductance Ca2+-Activated K+ Channels (KCNN4) in Porcine Coronary Smooth Muscle Requires NADPH Oxidase 5 (NOX5)

    PubMed Central

    Gole, Hope K. A.; Tharp, Darla L.; Bowles, Douglas K.

    2014-01-01

    Aims NADPH oxidase (NOX) is the primary source of reactive oxygen species (ROS) in vascular smooth muscle cells (SMC) and is proposed to play a key role in redox signaling involved in the pathogenesis of cardiovascular disease. Growth factors and cytokines stimulate coronary SMC (CSMC) phenotypic modulation, proliferation, and migration during atherosclerotic plaque development and restenosis. We previously demonstrated that increased expression and activity of intermediate-conductance Ca2+-activated K+ channels (KCNN4) is necessary for CSMC phenotypic modulation and progression of stenotic lesions. Therefore, the purpose of this study was to determine whether NOX is required for KCNN4 upregulation induced by mitogenic growth factors. Methods and Results Dihydroethidium micro-fluorography in porcine CSMCs demonstrated that basic fibroblast growth factor (bFGF) increased superoxide production, which was blocked by the NOX inhibitor apocynin (Apo). Apo also blocked bFGF-induced increases in KCNN4 mRNA levels in both right coronary artery sections and CSMCs. Similarly, immunohistochemistry and whole cell voltage clamp showed bFGF-induced increases in CSMC KCNN4 protein expression and channel activity were abolished by Apo. Treatment with Apo also inhibited bFGF-induced increases in activator protein-1 promoter activity, as measured by luciferase activity assay. qRT-PCR demonstrated porcine coronary smooth muscle expression of NOX1, NOX2, NOX4, and NOX5 isoforms. Knockdown of NOX5 alone prevented both bFGF-induced upregulation of KCNN4 mRNA and CSMC migration. Conclusions Our findings provide novel evidence that NOX5-derived ROS increase functional expression of KCNN4 through activator protein-1, providing another potential link between NOX, CSMC phenotypic modulation, and atherosclerosis. PMID:25144362

  15. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  16. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  17. FGF–2 is required to prevent astrogliosis in the facial nucleus after facial nerve injury and mechanical stimulation of denervated vibrissal muscles

    PubMed Central

    Hizay, Arzu; Seitz, Mark; Grosheva, Maria; Sinis, Nektarios; Kaya, Yasemin; Bendella, Habib; Sarikcioglu, Levent; Dunlop, Sarah A.; Angelov, Doychin N.

    2016-01-01

    Abstract Recently, we have shown that manual stimulation of paralyzed vibrissal muscles after facial-facial anastomosis reduced the poly-innervation of neuromuscular junctions and restored vibrissal whisking. Using gene knock outs, we found a differential dependence of manual stimulation effects on growth factors. Thus, insulin-like growth factor-1 and brain-derived neurotrophic factor are required to underpin manual stimulation-mediated improvements, whereas FGF-2 is not. The lack of dependence on FGF-2 in mediating these peripheral effects prompted us to look centrally, i.e. within the facial nucleus where increased astrogliosis after facial-facial anastomosis follows "synaptic stripping". We measured the intensity of Cy3-fluorescence after immunostaining for glial fibrillary acidic protein (GFAP) as an indirect indicator of synaptic coverage of axotomized neurons in the facial nucleus of mice lacking FGF-2 (FGF-2-/- mice). There was no difference in GFAP-Cy3-fluorescence (pixel number, gray value range 17–103) between intact wildtype mice (2.12± 0.37×107) and their intact FGF-2-/- counterparts (2.12± 0.27×107) nor after facial-facial anastomosis +handling (wildtype: 4.06± 0.32×107; FGF-2-/-: 4.39±0.17×107). However, after facial-facial anastomosis, GFAP-Cy3-fluorescence remained elevated in FGF-2-/--animals (4.54±0.12×107), whereas manual stimulation reduced the intensity of GFAP-immunofluorescence in wild type mice to values that were not significantly different from intact mice (2.63± 0.39×10 ). We conclude that FGF-2 is not required to underpin the beneficial effects of manual stimulation at the neuro-muscular junction, but it is required to minimize astrogliosis in the brainstem and, by implication, restore synaptic coverage of recovering facial motoneurons.

  18. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  19. Recovery of Dominant, Autosomal Flightless Mutants of Drosophila Melanogaster and Identification of a New Gene Required for Normal Muscle Structure and Function

    PubMed Central

    Cripps, R. M.; Ball, E.; Stark, M.; Lawn, A.; Sparrow, J. C.

    1994-01-01

    To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle. PMID:8056306

  20. Protein kinase C requirement of Ca2+ channel stimulation by intracellular ATP in guinea-pig basilar artery smooth muscle cells.

    PubMed Central

    McHugh, D; Beech, D J

    1997-01-01

    1. Smooth muscle cells were isolated from guinea-pig basilar artery and conventional whole-cell recordings of Ca2+ channel activity were made at room temperature within 7 h of the isolation procedure. The purpose of the study was to investigate the mechanism of the stimulatory action of intracellular ATP on Ca2+ channels. 2. High (millimolar) concentrations of ATP were needed to produce stimulation of Ca2+ channels, and neither ADP nor AMP mimicked the action of ATP. 3.The ATP effect was not mimicked by stable ATP derivatives (AMP-PNP or AMP-PCP) and was abolished by incubation of cells in non-specific protein kinase inhibitors (staurosporine or H-7) or specific protein kinase C inhibitors (GF109203x, calphostin C or chelerythrine) but not by tyrosine kinase inhibitors (tyrphostin B42 and genistein). 4. The data suggest that ATP-induced stimulation of L-type Ca2+ channels requires functional activity of a protein kinase C isozyme. PMID:9147319

  1. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  2. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.

    PubMed

    Huraskin, Danyil; Eiber, Nane; Reichel, Martin; Zidek, Laura M; Kravic, Bojana; Bernkopf, Dominic; von Maltzahn, Julia; Behrens, Jürgen; Hashemolhosseini, Said

    2016-09-01

    Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers. PMID:27578179

  3. Capillary arterialization requires the bone marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle

    PubMed Central

    Nickerson, Meghan M.; Burke, Caitlin W.; Meisner, Joshua K.; Shuptrine, Casey W.; Song, Ji

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT–WT and CCR2−/−–WT (donor–host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP+–WT mice, by smooth muscle (SM) α-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT–WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM α-actin+ vessels, and a 45% increase in the fraction of vessels coated with SM α-actin, indicating significant capillary arterialization. However, in CCR2−/−–WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP+–WT mice, EGFP and SM α-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle. PMID:19777360

  4. Repression of the cardiac myosin light chain‐2 gene in skeletal muscle requires site‐specific association of antithetic regulator, Nished, and HDACs

    PubMed Central

    Mathew, Sumy; Galatioto, Josephine; Mascareno, Eduardo

    2008-01-01

    Abstract The transcriptional activation mechanisms that regulate tissue‐specific expression of cardiac muscle genes have been extensively investigated, but little is known of the regulatory events involved in repression of cardiac‐specific genes in non‐cardiac cells. We have previously reported that Nished, a ubiquitous transcription factor, interacts with a positive sequence element, the Intron Regulatory Element (IRE) as well as a negatively acting element, the Cardiac‐Specific Sequence (CSS), in myosin light chain‐2 (MLC2v) gene to promote activation and repression of the gene in cardiac and skeletal muscle cells respectively. Here, we show that the negative regulation of cardiac MLC2v gene in skeletal muscle cells is mediated via the interaction of Nished with histone deacetylase (HDAC) co‐repressor. Treatment of cells with the HDAC inhibitor, Trichostatin A (TSA), alleviates the repressor activity of Nished in a dose‐dependent manner. Co‐transfection studies in primary muscle cells in culture and in Nished expressing stable skeletal muscle cell line demonstrate that Nished down‐regulates the cardiac MLC2 gene expression when its association is restricted to CSS alone. Chromatin immunoprecipitation data suggest that the CSS‐mediated repression of cardiac MLC2v gene in skeletal muscle cells excludes the participation of the positive element IRE despite the presence of an identical Nished binding site. Taken together, it appears that the negative control of MLC2v transcription is based on a dual mode of regulations, one that affords inaccessibility of IRE to Nished and second that promotes the formation of the transcription repression complex at the inhibitory CSS site to silence the cardiac gene in skeletal muscle cell. PMID:19604314

  5. Muscle cramps.

    PubMed

    Miller, Timothy M; Layzer, Robert B

    2005-10-01

    Muscle cramps are a common problem characterized by a sudden, painful, involuntary contraction of muscle. These true cramps, which originate from peripheral nerves, may be distinguished from other muscle pain or spasm. Medical history, physical examination, and a limited laboratory screen help to determine the various causes of muscle cramps. Despite the "benign" nature of cramps, many patients find the symptom very uncomfortable. Treatment options are guided both by experience and by a limited number of therapeutic trials. Quinine sulfate is an effective medication, but the side-effect profile is worrisome, and other membrane-stabilizing drugs are probably just as effective. Patients will benefit from further studies to better define the pathophysiology of muscle cramps and to find more effective medications with fewer side-effects. PMID:15902691

  6. Double-muscled and conventional cattle have the same net energy requirements if these are related to mature and current body protein mass, and to gain composition.

    PubMed

    Schiavon, S; Bittante, G

    2012-11-01

    The hypothesis tested in this paper is that double-muscled (DBM) and conventional cattle, considerably differing in body composition, have similar NE requirements when: a) NE(m) is scaled as a function of current (P(i)) and adult (P(m)) protein mass; and b) ME for gain (ME(g)) is estimated from protein (Pr) and lipid (Lr) retention and their partial ME use efficiencies, the k(p) and k(l) values, respectively. First, 2 databases were examined: 1 was developed combining well known literature information from comparative slaughter trials conducted on British beef steers; the other was based on a trial conducted using extremely lean DBM Piemontese bulls. From the first database, NE(m) was calculated to be 1.625 × P(i) ÷ P(m) × P(m)(0.73) (MJ/kg(0.73)). From the second database, the daily ME(g) was determined as 22.8 MJ × Pr ÷ k(p) + 38.74 MJ × Lr ÷ k(l), assuming (from prior reports) that k(p) = 0.20 and k(l) = 0.75. Thereafter, ME(m) was defined as ME intake minus ME(g), and, hence, NE(m) was predicted as 1.625 × P(i) ÷ P(m) × P(m)(0.73) (where 1.625 was the value obtained from the first dataset). The resulting k(m) (NE(m)/ME(m)) averaged 0.67. This k(m) value did not differ from that (0.65; P = 0.12) predicted by Garrett's equation, which uses dietary ME content as the only predictive variable. Second, the procedure was tested for the ability to detect effects on k(m) caused by increasing BW and dietary factors not estimable from the dietary ME content only. Data were gathered from a trial involving 48 DBM Piemontese bulls divided into 4 groups fed 1 of 4 diets differing in CP content (145 or 108 g/kg DM), with or without addition of 80 g/d of rumen-protected CLA (rpCLA). Bulls were examined at 3 consecutive periods of growth, corresponding to 365, 512 and 631 kg of average BW. All energy balance items were influenced by increasing BW, except k(m) (P = 0.61), in agreement with the expectation that NE(m) requirement depends on the degree of maturity (P

  7. p70 S6 kinase activation is not required for insulin-like growth factor-induced differentiation of rat, mouse, or human skeletal muscle cells.

    PubMed

    Canicio, J; Gallardo, E; Illa, I; Testar, X; Palacín, M; Zorzano, A; Kaliman, P

    1998-12-01

    Insulin-like growth factors (IGFs) are potent stimulators of muscle differentiation, and phosphatidylinositol 3-kinase (PI 3-kinase) is an essential second messenger in this process. Little is known about the downstream effectors of the IGF/PI 3-kinase myogenic cascade, and contradictory observations have been reported concerning the involvement of p70 S6 kinase. In an attempt to clarify the role of p70 S6 kinase in myogenesis, here we have studied the effect of rapamycin on rat, mouse, and human skeletal muscle cell differentiation. Both insulin and IGF-II activated p70 S6 kinase in rat L6E9 and mouse Sol8 myoblasts, which was markedly inhibited at 1 ng/ml rapamycin concentrations. Consistent with previous observations in a variety of cell lines, rapamycin exerted a potent inhibitory effect on L6E9 and Sol8 serum-induced myoblast proliferation. In contrast, even at high concentrations (20 ng/ml), rapamycin had no effect on IGF-II-induced proliferation or differentiation. Indeed, neither the morphological differentiation, as assessed by myotube formation, nor the expression of muscle-specific markers such as myogenin, myosin heavy chain, or GLUT4 (glucose transporter-4) glucose carriers was altered by rapamycin. Moreover, here we extended our studies on IGF-II-induced myogenesis to human myoblasts derived from skeletal muscle biopsies. We show that, as observed for rat and mouse muscle cells, human myoblasts can be induced to form multinucleated myotubes in the presence of exogenous IGF-II. Moreover, IGF-II-induced human myotube formation was totally blocked by LY294002, a specific PI 3-kinase inhibitor, but remained unaffected in the presence of rapamycin. PMID:9832443

  8. Muscle cramps

    MedlinePlus

    ... The most common cause of muscle cramps during sports activity is not getting enough fluids. Often, drinking ... alone does not always help. Salt tablets or sports drinks, which also replenish lost minerals, can be ...

  9. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  10. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells.

    PubMed

    Kaliman, P; Canicio, J; Shepherd, P R; Beeton, C A; Testar, X; Palacín, M; Zorzano, A

    1998-01-01

    Phosphatidylinositol 3 (PI 3)-kinases are potently inhibited by two structurally unrelated membrane-permeant reagents: wortmannin and LY294002. By using these two inhibitors we first suggested the involvement of a PI 3-kinase activity in muscle cell differentiation. However, several reports have described that these compounds are not as selective for PI 3-kinase activity as assumed. Here we show that LY294002 blocks the myogenic pathway elicited by insulin-like growth factors (IGFs), and we confirm the specific involvement of PI 3-kinase in IGF-induced myogenesis by overexpressing in L6E9 myoblasts a dominant negative p85 PI 3-kinase-regulatory subunit (L6E9-delta p85). IGF-I, des(1-3)IGF-I, or IGF-II induced L6E9 skeletal muscle cell differentiation as measured by myotube formation, myogenin gene expression, and GLUT4 glucose carrier induction. The addition of LY294002 to the differentiation medium totally inhibited these IGF-induced myogenic events without altering the expression of a non-muscle-specific protein, beta1-integrin. Independent clones of L6E9 myoblasts expressing a dominant negative mutant of the p85-regulatory subunit (delta p85) showed markedly impaired glucose transport activity and formation of p85/p110 complexes in response to insulin, consistent with the inhibition of PI 3-kinase activity. IGF-induced myogenic parameters in L6E9-delta p85 cells, ie. cell fusion and myogenin gene and GLUT4 expression, were severely impaired compared with parental cells or L6E9 cells expressing wild-type p85. In all, data presented here indicate that PI 3-kinase is essential for IGF-induced muscle differentiation and that the specific PI 3-kinase subclass involved in myogenesis is the heterodimeric p85-p110 enzyme. PMID:9440811

  11. Type III-IV muscle afferents are not required for steady-state exercise hyperpnea in healthy subjects and patients with COPD or heart failure.

    PubMed

    Poon, Chi-Sang; Song, Gang

    2015-09-15

    Blockade of group III-IV muscle afferents by intrathecal injection of the μ-opioid agonist fentanyl (IF) in humans has been variously reported to depress exercise hyperpnea in some studies but not others. A key unanswered question is whether such an effect is transient or persists in the steady state. Here we show that in healthy subjects undergoing constant-load cycling exercise IF significantly slows the transient exercise ventilatory kinetics but has no discernible effect on the ventilatory response when exercise is sufficiently prolonged. Thus, the ventilatory response to group III-IV muscle afferents input in healthy subjects is not a simple reflex but acts like a high-pass filter with maximum sensitivity during early-phase exercise and is reset in the late phase. In patients with chronic heart failure (CHF) IF causes sustained CO2 retention not only during exercise but also in the resting state, where muscle afferents feedback is minimal. In patients with chronic obstructive pulmonary disease (COPD), IF also elicits sustained decreases in the exercise ventilatory response but with little or no resultant CO2 retention due to concomitant decreases in physiological VD/VT (dead space-to-ventilation ratio). These results support the proposition that optimal long-term regulation of exercise hyperpnea in health and in disease is determined centrally by the respiratory controller through the continuing adaptation of an internal model which dynamically tracks the metabolic CO2 load and the ventilatory inefficiency 1/1-VD/VT that must be overcome for the maintenance of arterial PCO2 homeostasis, rather than being reflexively driven by group III-IV muscle afferents feedback per se. PMID:25911558

  12. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  13. Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle.

    PubMed

    Pansters, Nicholas A M; Schols, Annemie M W J; Verhees, Koen J P; de Theije, Chiel C; Snepvangers, Frank J; Kelders, Marco C J M; Ubags, Niki D J; Haegens, Astrid; Langen, Ramon C J

    2015-03-01

    Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β. PMID:25496993

  14. Muscle Injuries in Athletes

    PubMed Central

    Delos, Demetris; Maak, Travis G.; Rodeo, Scott A.

    2013-01-01

    Context: Muscle injuries are extremely common in athletes and often produce pain, dysfunction, and the inability to return to practice or competition. Appropriate diagnosis and management can optimize recovery and minimize time to return to play. Evidence Acquisition: Contemporary papers, both basic science and clinical medicine, that investigate muscle healing were reviewed. A Medline/PubMed search inclusive of years 1948 to 2012 was performed. Results: Diagnosis can usually be made according to history and physical examination for most injuries. Although data are limited, initial conservative management emphasizing the RICE principles and immobilization of the extremity for several days for higher grade injuries are typically all that is required. Injection of corticosteroids may clinically enhance function after an acute muscle strain. Additional adjunctive treatments (nonsteroidal anti-inflammatory drugs, platelet-rich plasma, and others) to enhance muscle healing and limit scar formation show promise but need additional data to better define their roles. Conclusion: Conservative treatment recommendations will typically lead to successful outcomes after a muscle injury. There is limited evidence to support most adjunctive treatments. PMID:24459552

  15. Laminin α1 Chain Synthesis in the Mouse Developing Lung: Requirement for Epithelial–Mesenchymal Contact and Possible Role in Bronchial Smooth muscle Development

    PubMed Central

    Schuger, Lucia; Skubitz, Amy P.N.; Zhang, Jun; Sorokin, Lydia; He, Li

    1997-01-01

    Laminins, the main components of basement membranes, are heterotrimers consisting of α, β, and γ polypeptide chains linked together by disulfide bonds. Laminins-1 and -2 are both composed of β1 and γ1 chains and differ from each other on their α chain, which is α1 and α2 for laminin-1 and -2, respectively. The present study shows that whereas laminins-1 and -2 are synthesized in the mouse developing lung and in epithelial–mesenchymal cocultures derived from it, epithelial and mesenchymal monocultures lose their ability to synthesize the laminin α1 chain. Synthesis of laminin α1 chain however returns upon re-establishment of epithelial–mesenchymal contact. Cell–cell contact is critical, since laminin α1 chain is not detected in monocultures exposed to coculture-conditioned medium or in epithelial–mesenchymal cocultures in which heterotypic cell–cell contact is prevented by an interposing filter. Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin α1 chain upon heterotypic cell– cell contact. In a set of functional studies, embryonic lung explants were cultured in the presence of monoclonal antibodies to laminin α1, α2, and β/γ chains. Lung explants exposed to monoclonal antibodies to laminin α1 chain exhibited alterations in peribronchial cell shape and decreased smooth muscle development, as indicated by low levels of smooth muscle α actin and desmin. Taken together, our studies suggest that laminin α1 chain synthesis is regulated by epithelial–mesenchymal interaction and may play a role in airway smooth muscle development. PMID:9334356

  16. Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cell

    PubMed Central

    Briot, Anaïs; Jaroszewicz, Artur; Warren, Carmen M.; Lu, Jing; Touma, Marlin; Rudat, Carsten; Hofmann, Jennifer J.; Airik, Rannar; Weinmaster, Gerry; Lyons, Karen; Wang, Yibin; Kispert, Andreas; Pellegrini, Matteo; Iruela-Arispe, M. Luisa

    2014-01-01

    Summary Acquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcification. Here we report that maturation of sclerotome-derived vSMC depends on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time, Notch/Jag1-mediated repression of sclerotome transcription factors Pax1, Scx and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of the Notch ligand Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. PMID:25535917

  17. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  18. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation.

    PubMed

    Heanue, T A; Reshef, R; Davis, R J; Mardon, G; Oliver, G; Tomarev, S; Lassar, A B; Tabin, C J

    1999-12-15

    We have identified a novel vertebrate homolog of the Drosophila gene dachshund, Dachshund2 (Dach2). Dach2 is expressed in the developing somite prior to any myogenic genes with an expression profile similar to Pax3, a gene previously shown to induce muscle differentiation. Pax3 and Dach2 participate in a positive regulatory feedback loop, analogous to a feedback loop that exists in Drosophila between the Pax gene eyeless (a Pax6 homolog) and the Drosophila dachshund gene. Although Dach2 alone is unable to induce myogenesis, Dach2 can synergize with Eya2 (a vertebrate homolog of the Drosophila gene eyes absent) to regulate myogenic differentiation. Moreover, Eya2 can also synergize with Six1 (a vertebrate homolog of the Drosophila gene sine oculis) to regulate myogenesis. This synergistic regulation of muscle development by Dach2 with Eya2 and Eya2 with Six1 parallels the synergistic regulation of Drosophila eye formation by dachshund with eyes absent and eyes absent with sine oculis. This synergistic regulation is explained by direct physical interactions between Dach2 and Eya2, and Eya2 and Six1 proteins, analogous to interactions observed between the Drosophila proteins. This study reveals a new layer of regulation in the process of myogenic specification in the somites. Moreover, we show that the Pax, Dach, Eya, and Six genetic network has been conserved across species. However, this genetic network has been used in a novel developmental context, myogenesis rather than eye development, and has been expanded to include gene family members that are not directly homologous, for example Pax3 instead of Pax6. PMID:10617572

  19. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse

    PubMed Central

    Yamamoto, Daniel L.; Vitiello, Carmen; Zhang, Jianlin; Gokhin, David S.; Castaldi, Alessandra; Coulis, Gerald; Piaser, Fabio; Filomena, Maria Carmela; Eggenhuizen, Peter J.; Kunderfranco, Paolo; Camerini, Serena; Takano, Kazunori; Endo, Takeshi; Crescenzi, Marco; Luther, Pradeep K. L.; Lieber, Richard L.; Chen, Ju; Bang, Marie-Louise

    2013-01-01

    Summary Nemaline myopathy (NM) is a congenital myopathy with an estimated incidence of 1∶50,000 live births. It is caused by mutations in thin filament components, including nebulin, which accounts for about 50% of the cases. The identification of NM cases with nonsense mutations resulting in loss of the extreme C-terminal SH3 domain of nebulin suggests an important role of the nebulin SH3 domain, which is further supported by the recent demonstration of its role in IGF-1-induced sarcomeric actin filament formation through targeting of N-WASP to the Z-line. To provide further insights into the functional significance of the nebulin SH3 domain in the Z-disk and to understand the mechanisms by which truncations of nebulin lead to NM, we took two approaches: (1) an affinity-based proteomic screening to identify novel interaction partners of the nebulin SH3 domain; and (2) generation and characterization of a novel knockin mouse model with a premature stop codon in the nebulin gene, eliminating its C-terminal SH3 domain (NebΔSH3 mouse). Surprisingly, detailed analyses of NebΔSH3 mice revealed no structural or histological skeletal muscle abnormalities and no changes in gene expression or localization of interaction partners of the nebulin SH3 domain, including myopalladin, palladin, zyxin and N-WASP. Also, no significant effect on peak isometric stress production, passive tensile stress or Young's modulus was found. However, NebΔSH3 muscle displayed a slightly altered force–frequency relationship and was significantly more susceptible to eccentric contraction-induced injury, suggesting that the nebulin SH3 domain protects against eccentric contraction-induced injury and possibly plays a role in fine-tuning the excitation–contraction coupling mechanism. PMID:24046450

  20. Angiotensin II Requires Zinc and Downregulation of the Zinc Transporters ZnT3 and ZnT10 to Induce Senescence of Vascular Smooth Muscle Cells

    PubMed Central

    Patrushev, Nikolay; Seidel-Rogol, Bonnie; Salazar, Gloria

    2012-01-01

    Senescence, a hallmark of mammalian aging, is associated with the onset and progression of cardiovascular disease. Angiotensin II (Ang II) signaling and zinc homeostasis dysfunction are increased with age and are linked to cardiovascular disease, but the relationship among these processes has not been investigated. We used a model of cellular senescence induced by Ang II in vascular smooth muscle cells (VSMCs) to explore the role of zinc in vascular dysfunction. We found that Ang II-induced senescence is a zinc-dependent pathway mediated by the downregulation of the zinc transporters ZnT3 and ZnT10, which work to reduce cytosolic zinc. Zinc mimics Ang II by increasing reactive oxygen species (ROS), activating NADPH oxidase activity and Akt, and by downregulating ZnT3 and ZnT10 and inducing senescence. Zinc increases Ang II-induced senescence, while the zinc chelator TPEN, as well as overexpression of ZnT3 or ZnT10, decreases ROS and prevents senescence. Using HEK293 cells, we found that ZnT10 localizes in recycling endosomes and transports zinc into vesicles to prevent zinc toxicity. Zinc and ZnT3/ZnT10 downregulation induces senescence by decreasing the expression of catalase. Consistently, ZnT3 and ZnT10 downregulation by siRNA increases ROS while downregulation of catalase by siRNA induces senescence. Zinc, siZnT3 and siZnT10 downregulate catalase by a post-transcriptional mechanism mediated by decreased phosphorylation of ERK1/2. These data demonstrate that zinc homeostasis dysfunction by decreased expression of ZnT3 or ZnT10 promotes senescence and that Ang II-induced senescence is a zinc and ROS-dependent process. Our studies suggest that zinc might also affect other ROS-dependent processes induced by Ang II, such as hypertrophy and migration of smooth muscle cells. PMID:22427991

  1. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation

    PubMed Central

    Heanue, Tiffany A.; Reshef, Ram; Davis, Richard J.; Mardon, Graeme; Oliver, Guillermo; Tomarev, Stanislav; Lassar, Andrew B.; Tabin, Clifford J.

    1999-01-01

    We have identified a novel vertebrate homolog of the Drosophila gene dachshund, Dachshund2 (Dach2). Dach2 is expressed in the developing somite prior to any myogenic genes with an expression profile similar to Pax3, a gene previously shown to induce muscle differentiation. Pax3 and Dach2 participate in a positive regulatory feedback loop, analogous to a feedback loop that exists in Drosophila between the Pax gene eyeless (a Pax6 homolog) and the Drosophila dachshund gene. Although Dach2 alone is unable to induce myogenesis, Dach2 can synergize with Eya2 (a vertebrate homolog of the Drosophila gene eyes absent) to regulate myogenic differentiation. Moreover, Eya2 can also synergize with Six1 (a vertebrate homolog of the Drosophila gene sine oculis) to regulate myogenesis. This synergistic regulation of muscle development by Dach2 with Eya2 and Eya2 with Six1 parallels the synergistic regulation of Drosophila eye formation by dachshund with eyes absent and eyes absent with sine oculis. This synergistic regulation is explained by direct physical interactions between Dach2 and Eya2, and Eya2 and Six1 proteins, analogous to interactions observed between the Drosophila proteins. This study reveals a new layer of regulation in the process of myogenic specification in the somites. Moreover, we show that the Pax, Dach, Eya, and Six genetic network has been conserved across species. However, this genetic network has been used in a novel developmental context, myogenesis rather than eye development, and has been expanded to include gene family members that are not directly homologous, for example Pax3 instead of Pax6. PMID:10617572

  2. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  3. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  4. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  5. Muscle disease.

    PubMed

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15) PMID:24488829

  6. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells.

    PubMed

    Wang, Qingjie; Wang, Dong; Yan, Gaoling; Sun, Ling; Tang, Chengchun

    2016-02-01

    Hypoxia induces pulmonary vasoconstriction and reconstruction in the pulmonary arteries and pulmonary veins (PVs), and elevation of intracellular calcium concentration ([Ca2+]i) is a primary factor of these processes. In the present study, the role of transient receptor potential cation channels (TRPCs) in mediating the hypoxia-induced elevation of [Ca2+]i in rat distal pulmonary venous smooth muscle cells (PVSMCs) was investigated. Rats with chronic hypoxic pulmonary hypertension (CHPH) were used for in vivo experiments, and PVSMCs were isolated for in vitro experiments. [Ca2+]i was measured using fura-2-based fluorescence calcium imaging. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of TRPCs. Methyl thiazolyl tetrazolium and Transwell assays were used to investigate the proliferation and migration of PVSMCs, respectively. The results of the present study demonstrated that TRPC6 was increased in the distal PVs of CHPH rats, and in PVSMCs exposed to hypoxic conditions (4% O2, 72 h); however, TRPC1 was not. The 1-oleoyl-2-acetyl-sn-glycerol-induced [Ca2+]i elevation was increased in PVSMCs isolated from CHPH rats and in PVSMCs cultured under hypoxic conditions (4% O2, 72 h). Hypoxia induced PVSMC [Ca2+]i elevation, proliferation and migration. These alterations were inhibited following TRPC6 knockdown. Results from the present study suggest that TRPC6 expression is increased during chronic hypoxia, which contributes to Ca2+ entry into the cell, thus promoting proliferation and migration of PVSMCs. PMID:26718737

  7. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells

    PubMed Central

    WANG, QINGJIE; WANG, DONG; YAN, GAOLING; SUN, LING; TANG, CHENGCHUN

    2016-01-01

    Hypoxia induces pulmonary vasoconstriction and reconstruction in the pulmonary arteries and pulmonary veins (PVs), and elevation of intracellular calcium concentration ([Ca2+]i) is a primary factor of these processes. In the present study, the role of transient receptor potential cation channels (TRPCs) in mediating the hypoxia-induced elevation of [Ca2+]i in rat distal pulmonary venous smooth muscle cells (PVSMCs) was investigated. Rats with chronic hypoxic pulmonary hypertension (CHPH) were used for in vivo experiments, and PVSMCs were isolated for in vitro experiments. [Ca2+]i was measured using fura-2-based fluorescence calcium imaging. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of TRPCs. Methyl thiazolyl tetrazolium and Transwell assays were used to investigate the proliferation and migration of PVSMCs, respectively. The results of the present study demonstrated that TRPC6 was increased in the distal PVs of CHPH rats, and in PVSMCs exposed to hypoxic conditions (4% O2, 72 h); however, TRPC1 was not. The 1-oleoyl-2-acetyl-sn-glycerol-induced [Ca2+]i elevation was increased in PVSMCs isolated from CHPH rats and in PVSMCs cultured under hypoxic conditions (4% O2, 72 h). Hypoxia induced PVSMC [Ca2+]i elevation, proliferation and migration. These alterations were inhibited following TRPC6 knockdown. Results from the present study suggest that TRPC6 expression is increased during chronic hypoxia, which contributes to Ca2+ entry into the cell, thus promoting proliferation and migration of PVSMCs. PMID:26718737

  8. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  9. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  10. Eye muscle repair - discharge

    MedlinePlus

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  11. Extraocular muscle function testing

    MedlinePlus

    Extraocular muscle function testing examines the function of the eye muscles. A health care provider observes the movement of ... evaluate weakness or other problem in the extraocular muscles. These problems may result in double vision or ...

  12. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  13. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  14. The number and choice of muscles impact the results of muscle synergy analyses

    PubMed Central

    Steele, Katherine M.; Tresch, Matthew C.; Perreault, Eric J.

    2013-01-01

    One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF) by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small subset of muscles

  15. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice.

    PubMed Central

    Shield, M A; Haugen, H S; Clegg, C H; Hauschka, S D

    1996-01-01

    Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle. PMID:8756664

  16. Cell death regulates muscle fiber number.

    PubMed

    Sarkissian, Tatevik; Arya, Richa; Gyonjyan, Seda; Taylor, Barbara; White, Kristin

    2016-07-01

    Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself. PMID:27131625

  17. Artificial Muscle Kits for the Classroom

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.

  18. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  19. Paradoxical muscle movement in human standing

    PubMed Central

    Loram, Ian D; Maganaris, Constantinos N; Lakie, Martin

    2004-01-01

    In human standing, gravity causes forward toppling about the ankle joint which is prevented by activity in the soleus and gastrocnemius muscles. It has long been assumed that when people sway forwards the calf muscles are stretched and conversely that they shorten with backward sway. Consequently, for many years, two explanations for standing stabilization have flourished. First, tonic muscle activity itself may generate adequate intrinsic ankle stiffness. Second, if intrinsic ankle stiffness is inadequate, the resistance to stretch of the calf muscles may be augmented by stretch reflexes or by central control. These explanations require that the passive tissue (Achilles' tendon, foot) transmitting the calf muscle tension is stiff. However, our recent measurements have indicated that this passive tissue is not stiff during standing. Accordingly, we predicted a counterintuitive mode of control where the muscles and body must, on average, move in opposite directions (paradoxical movements). Here we use dynamic ultrasound imaging in vivo with novel automated tracking of muscle length to test our hypothesis. We show that soleus and gastrocnemius do indeed move paradoxically, shortening when the body sways forward and lengthening when the body returns. This confirms that intrinsic ankle stiffness is too low to stabilize human standing. Moreover, it shows that the increase in active tension is associated with muscle shortening. This pattern cannot be produced by muscle stretch reflexes and can only arise from the anticipatory neural control of muscle length that is necessary for balance. PMID:15047776

  20. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  1. Are muscle synergies useful for neural control?

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2013-01-01

    The observation that the activity of multiple muscles can be well approximated by a few linear synergies is viewed by some as a sign that such low-dimensional modules constitute a key component of the neural control system. Here, we argue that the usefulness of muscle synergies as a control principle should be evaluated in terms of errors produced not only in muscle space, but also in task space. We used data from a force-aiming task in two dimensions at the wrist, using an electromyograms (EMG)-driven virtual biomechanics technique that overcomes typical errors in predicting force from recorded EMG, to illustrate through simulation how synergy decomposition inevitably introduces substantial task space errors. Then, we computed the optimal pattern of muscle activation that minimizes summed-squared muscle activities, and demonstrated that synergy decomposition produced similar results on real and simulated data. We further assessed the influence of synergy decomposition on aiming errors (AEs) in a more redundant system, using the optimal muscle pattern computed for the elbow-joint complex (i.e., 13 muscles acting in two dimensions). Because EMG records are typically not available from all contributing muscles, we also explored reconstructions from incomplete sets of muscles. The redundancy of a given set of muscles had opposite effects on the goodness of muscle reconstruction and on task achievement; higher redundancy is associated with better EMG approximation (lower residuals), but with higher AEs. Finally, we showed that the number of synergies required to approximate the optimal muscle pattern for an arbitrary biomechanical system increases with task-space dimensionality, which indicates that the capacity of synergy decomposition to explain behavior depends critically on the scope of the original database. These results have implications regarding the viability of muscle synergy as a putative neural control mechanism, and also as a control algorithm to restore

  2. Physiology and metabolism of tissue-engineered skeletal muscle.

    PubMed

    Cheng, Cindy S; Davis, Brittany N J; Madden, Lauran; Bursac, Nenad; Truskey, George A

    2014-09-01

    Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions. PMID:24912506

  3. Physiology and Metabolism of Tissue Engineered Skeletal Muscle

    PubMed Central

    Cheng, Cindy S.; Davis, Brittany N.J.; Madden, Lauran; Bursac, Nenad; Truskey, George A.

    2014-01-01

    Skeletal muscle is a major target for tissue engineering, given its relative size in the body, fraction of cardiac output that passes through muscle beds, as well as its key role in energy metabolism and diabetes, and the need for therapies for muscle diseases such as muscular dystrophy and sarcopenia. To date, most studies with tissue-engineered skeletal muscle have utilized murine and rat cell sources. On the other hand, successful engineering of functional human muscle would enable different applications including improved methods for preclinical testing of drugs and therapies. Some of the requirements for engineering functional skeletal muscle include expression of adult forms of muscle proteins, comparable contractile forces to those produced by native muscle, and physiological force-length and force-frequency relations. This review discusses the various strategies and challenges associated with these requirements, specific applications with cultured human myoblasts, and future directions. PMID:24912506

  4. Muscle Wasting in Fasting Requires Activation of NF-κB and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5.

    PubMed

    Lee, Donghoon; Goldberg, Alfred L

    2015-12-18

    NF-κB is best known for its pro-inflammatory and anti-apoptotic actions, but in skeletal muscle, NF-κB activation is important for atrophy upon denervation or cancer. Here, we show that also upon fasting, NF-κB becomes activated in muscle and is critical for the subsequent atrophy. Following food deprivation, the expression and acetylation of the p65 of NF-κB on lysine 310 increase markedly in muscles. NF-κB inhibition in mouse muscles by overexpression of the IκBα superrepressor (IκBα-SR) or of p65 mutated at Lys-310 prevented atrophy. Knockdown of GCN5 with shRNA or a dominant-negative GCN5 or overexpression of SIRT1 decreased p65K310 acetylation and muscle wasting upon starvation. In addition to reducing atrogene expression, surprisingly inhibiting NF-κB with IκBα-SR or by GCN5 knockdown in these muscles also enhanced AKT and mechanistic target of rapamycin (mTOR) activities, which also contributed to the reduction in atrophy. These new roles of NF-κB and GCN5 in regulating muscle proteolysis and AKT/mTOR signaling suggest novel approaches to combat muscle wasting. PMID:26515065

  5. How robust is human gait to muscle weakness?

    PubMed Central

    van der Krogt, Marjolein M.; Delp, Scott L.; Schwartz, Michael H.

    2015-01-01

    Humans have a remarkable capacity to perform complex movements requiring agility, timing, and strength. Disuse, aging, and disease can lead to a loss of muscle strength, which frequently limits the performance of motor tasks. It is unknown, however, how much weakness can be tolerated before normal daily activities become impaired. This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking. By clarifying which muscles are critical to maintaining normal gait, our results provide important insights for developing therapies to prevent or improve gait pathology. PMID:22386624

  6. [Muscle fiber atrophy].

    PubMed

    Nonaka, Ikuya

    2012-01-01

    Muscle fibers have been classified into two major forms of red (slow twitch) and white (fast twitch) muscles. The red muscle utilizes lipid as energy source through mitochondrial metabolism and function to sustain the position against gravity (sometimes called as antigravity muscle). Under microgravity the red muscle is selectively involved. In our unloading study by hindlimb suspension experiment on rats, the one of the representative red muscle of soleus muscle underwent rapid atrophy; they reduced their weights about 50% after 2 week-unloading. In addition, myofibrils were occasionally markedly disorganized with selective thin filament loss. Mitochondria in the degenerated area were decreased in number. The white muscle fibers in the soleus muscle had mostly transformed to the red ones. It took about 1 month to recover morphologically. The satellite cell playing a major role in muscle regeneration was not activated. There still remained unsolved what are the mechanosensors to keep muscle function under normal gravity. Dr Nikawa's group proposed that one of ubiquitin ligases, Cbl-b is activated under microgravity and induces muscle fiber degeneration. There might be many factors to induce muscle atrophy and degeneration under microgravity. Further study is necessary to explore the pathomechanism of muscle atrophy in disused and under immobility conditions. PMID:23196603

  7. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  8. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. PMID:26746010

  9. Engineering skeletal muscle repair.

    PubMed

    Juhas, Mark; Bursac, Nenad

    2013-10-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaired. In this article, we will describe current approaches to restore the function of diseased or injured muscle through combined use of myogenic stem cells, biomaterials, and functional tissue-engineered muscle. Furthermore, we will discuss possibilities for expanding the future use of human cell sources toward the development of cell-based clinical therapies and in vitro models of human muscle disease. PMID:23711735

  10. Healthy Muscles Matter

    MedlinePlus

    ... keep my muscles more healthy? Definitions What can go wrong? Injuries Almost everyone has had sore muscles ... If you have been inactive, “start low and go slow” by gradually increasing how often and how ...

  11. Eye muscle repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  12. Muscle function loss

    MedlinePlus

    ... nervous system that cause muscle function loss include: Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) Bell's palsy Botulism ... of recent progress. Curr Opin Rheum Read More Amyotrophic lateral sclerosis Botulism Broken bone Guillain-Barré syndrome Muscle cramps ...

  13. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  14. Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration.

    PubMed

    Tanaka, Kathleen Kelly; Hall, John K; Troy, Andrew A; Cornelison, D D W; Majka, Susan M; Olwin, Bradley B

    2009-03-01

    Skeletal muscle satellite cells, located between the basal lamina and plasma membrane of myofibers, are required for skeletal muscle regeneration. The capacity of satellite cells as well as other cell lineages including mesoangioblasts, mesenchymal stem cells, and side population (SP) cells to contribute to muscle regeneration has complicated the identification of a satellite stem cell. We have characterized a rare subset of the muscle SP that efficiently engrafts into the host satellite cell niche when transplanted into regenerating muscle, providing 75% of the satellite cell population and 30% of the myonuclear population, respectively. These cells are found in the satellite cell position, adhere to isolated myofibers, and spontaneously undergo myogenesis in culture. We propose that this subset of SP cells (satellite-SP cells), characterized by ABCG2, Syndecan-4, and Pax7 expression, constitutes a self-renewing muscle stem cell capable of generating both satellite cells and their myonuclear progeny in vivo. PMID:19265661

  15. Exercising with a Muscle Disease

    MedlinePlus

    ... are: • cramping in muscles (probably related to insufficient energy supply for muscles) • pain in muscles • weakness of exercised muscles • dark urine that looks like cola, following exercise (seek ...

  16. Genetic differences in airway smooth muscle function.

    PubMed

    Martin, James G; Jo, Taisuke

    2008-01-01

    The genetic basis for airway smooth muscle properties is poorly explored. Contraction and relaxation are altered in asthmatic airway smooth muscle, but the basis for the alterations and the role that muscle-specific susceptibility genes may play is largely unexplored. Alterations in the beta-adrenergic receptor, signaling pathways affecting inositol phosphate metabolism, adenylyl and guanylyl cyclase activity, and contractile proteins such as the myosin heavy chain are all suggested by experimental model systems. Significant changes in proliferative and secretory capacities of asthmatic smooth muscle are also demonstrated, but their genetic basis also requires elucidation. Certain asthma-related genes such as ADAM33, although potentially important for smooth muscle function, have been incompletely explored. PMID:18094088

  17. Sexual dimorphism in skeletal muscle protein turnover.

    PubMed

    Smith, Gordon I; Mittendorfer, Bettina

    2016-03-15

    Skeletal muscle is the major constituent of lean body mass and essential for the body's locomotor function. Women have less muscle mass (and more body fat) than men and are therefore not able to exert the same absolute maximal force as men. The difference in body composition between the sexes is evident from infancy but becomes most marked after puberty (when boys experience an accelerated growth spurt) and persists into old age. During early adulthood until approximately the fourth decade of life, muscle mass is relatively stable, both in men and women, but then begins to decline, and the rate of loss is slower in women than in men. In this review we discuss the underlying mechanisms responsible for the age-associated sexual dimorphism in muscle mass (as far as they have been elucidated to date) and highlight areas that require more research to advance our understanding of the control of muscle mass throughout life. PMID:26702024

  18. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  19. Anticipatory motor patterns limit muscle stretch during landing in toads.

    PubMed

    Azizi, Emanuel; Abbott, Emily M

    2013-02-23

    To safely land after a jump or hop, muscles must be actively stretched to dissipate mechanical energy. Muscles that dissipate energy can be damaged if stretched to long lengths. The likelihood of damage may be mitigated by the nervous system, if anticipatory activation of muscles prior to impact alters the muscle's operating length. Anticipatory motor recruitment is well established in landing studies and motor patterns have been shown to be modulated based on the perceived magnitude of the impact. In this study, we examine whether motor recruitment in anticipation of landing can serve a protective function by limiting maximum muscle length during a landing event. We use the anconeus muscle of toads, a landing muscle whose recruitment is modulated in anticipation of landing. We combine in vivo measurements of muscle length during landing with in vitro characterization of the force-length curve to determine the muscle's operating length. We show that muscle shortening prior to impact increases with increasing hop distance. This initial increase in muscle shortening functions to accommodate the larger stretches required when landing after long hops. These predictive motor strategies may function to reduce stretch-induced muscle damage by constraining maximum muscle length, despite variation in the magnitude of impact. PMID:23256184

  20. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  1. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  2. Oxidative Metabolism in Muscle

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Binzoni, T.; Quaresima, V.

    1997-06-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

  3. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  4. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    SciTech Connect

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  5. Resolving shifting patterns of muscle energy use in swimming fish.

    PubMed

    Gerry, Shannon P; Ellerby, David J

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  6. Intermuscular coherence contributions in synergistic muscles during pedaling.

    PubMed

    De Marchis, Cristiano; Severini, Giacomo; Castronovo, Anna Margherita; Schmid, Maurizio; Conforto, Silvia

    2015-06-01

    The execution of rhythmical motor tasks requires the control of multiple skeletal muscles by the Central Nervous System (CNS), and the neural mechanisms according to which the CNS manages their coordination are not completely clear yet. In this study, we analyze the distribution of the neural drive shared across muscles that work synergistically during the execution of a free pedaling task. Electromyographic (EMG) activity was recorded from eight lower limb muscles of eleven healthy untrained participants during an unconstrained pedaling exercise. The coordinated activity of the lower limb muscles was described within the framework of muscle synergies, extracted through the application of nonnegative matrix factorization. Intermuscular synchronization was assessed by calculating intermuscular coherence between pairs of EMG signals from co-active, both synergistic and non-synergistic muscles within their periods of co-activation. The spatiotemporal structure of muscle coordination during pedaling was well represented by four muscle synergies for all the subjects. Significant coherence values within the gamma band (30-60 Hz) were identified only for one out of the four extracted muscle synergies. This synergy is mainly composed of the activity of knee extensor muscles, and its function is related to the power production and crank propelling during the pedaling cycle. In addition, a significant coherence peak was found in the lower frequencies for the GAM/SOL muscle pair, possibly related to the ankle stabilizing function of these two muscles during the pedaling task. No synchronization was found either for the other extracted muscle synergies or for pairs of co-active but non-synergistic muscles. The obtained results seem to suggest the presence of intermuscular synchronization only when a functional force production is required, with the observed gamma band contribution possibly reflecting a cortical drive to synergistic muscles during pedaling. PMID:25821181

  7. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  8. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    PubMed Central

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  9. Effects of microgravity on rat muscle

    NASA Technical Reports Server (NTRS)

    Riley, D. A.

    1990-01-01

    It is well known that humans exposed to long term spaceflight experience undesirable progressive muscle weakness and increased fatigability. This problem has prompted the implementation of inflight exercise programs because most investigators believe that the major cause of diminished muscle performance is a combination of disuse and decreased workload. Inflight exercise has improved muscle health, but deficits have persisted, indicating that either the regimens utilized were suboptimal or there existed additional debilitating factors which were not remedied by exercise. Clarification of this question requires an improved understanding of the cellular and molecular basis of spaceflight-induced muscle deterioration. To this end, multiple investigations have been performed on the muscles from rats orbited 5 to 22 days in Cosmos biosatellites and Spacelab-3 (2,4,5,8,10 to 14,16,18,19,21 to 23,25,27,28). The eight Cosmos 1887 investigations examined the structural and biochemical changes in skeletal and cardiac muscles of rats exposed to microgravity for 12.5 days and returned to terrestrial gravity 2.3 days before tissues were collected. Even though interpretation of these results was complicated by the combination of inflight and postflight induced alterations, the consensus is that there is marked heterogeneity in both degree and type of responses from the whole muscle level down to the molecular level. Collectively, the muscle investigations of Cosmos 1887 clearly illustrate the wide diversity of muscle tissue responses to spaceflight. Judging from the summary report of this mission, heterogeneity of responses is not unique to muscle tissue. Elucidating the mechanism underlying this heterogeneity holds the key to explaining adaptation of the organism to prolonged spaceflight.

  10. Muscle injuries and strategies for improving their repair.

    PubMed

    Laumonier, Thomas; Menetrey, Jacques

    2016-12-01

    Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery. PMID:27447481

  11. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  12. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  13. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  14. External physical and biochemical stimulation to enhance skeletal muscle bioengineering

    PubMed Central

    Plock, Jan; Eberli, Daniel

    2015-01-01

    Purpose of review Cell based muscle tissue engineering carries the potential to revert the functional loss of muscle tissue caused by disease and trauma. Although muscle tissue can be bioengineered using various precursor cells, major limitations still remain. Recent findings In the last decades several cellular pathways playing a crucial role in muscle tissue regeneration have been described. These pathways can be influenced by external stimuli and they not only orchestrate the regenerative process after physiologic wear and muscle trauma, but they also play an important part in aging and maintaining the stem cell niche, which is required to maintain long-term muscle function. Summary In this review article we will highlight possible new avenues using external physical and biochemical stimulation in order to optimize muscle bioengineering. PMID:25453267

  15. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  16. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  17. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster

    PubMed Central

    Mensah, Lawrence B.; Davison, Claire; Fan, Shih-Jung; Morris, John F.; Goberdhan, Deborah C. I.; Wilson, Clive

    2015-01-01

    Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K’s direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles

  18. Influence of different control strategies on muscle activation patterns in trunk muscles

    PubMed Central

    Hansen, Laura; Anders, Christoph

    2014-01-01

    Abstract Adequate training of the trunk muscles is essential to prevent low back pain. Although sit‐ups are simple to perform, the perceived high effort is the reason why training the abdominal muscles is seldom continued over a longer period of time. It is well known that the abdominal muscles are inferior to the back muscles in terms of force, but this cannot explain the extreme difference in perceived effort between trunk flexion and extension tasks. Therefore, this study was aimed at the identification of control strategy influences on the muscular stress level. Thirty‐nine subjects were investigated. The performed tasks were restricted to the sagittal plane and were implemented with simulated and realized tilt angles. Subjects were investigated in an upright position with their lower bodies fixed and their upper bodies free. Posture‐controlled tasks involved graded forward and backward tilting, while force‐controlled tasks involved the application of force based on a virtual tilt angle. The Surface EMG (SEMG) was taken from five trunk muscles on both sides. Control strategies seemed to have no systematic influence on the SEMG amplitudes of the back muscles. In contrast, the abdominal muscles exhibited significantly higher stress levels under posture‐controlled conditions without relevantly increasing antagonistic co‐activation of back muscles. The abdominal muscles' relative differences ranged from an average of 20% for the external oblique abdominal muscle to approximately 40% for the rectus abdominal muscle. The perceived high effort expended during sit‐ups can now be explained by the posture‐controlled contractions that are required. PMID:25501425

  19. Tissue Engineered Strategies for Skeletal Muscle Injury

    PubMed Central

    Longo, Umile Giuseppe; Loppini, Mattia; Berton, Alessandra; Spiezia, Filippo; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression and elevation), nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells. PMID:25098362

  20. Ischemia causes muscle fatigue.

    PubMed

    Murthy, G; Hargens, A R; Lehman, S; Rempel, D M

    2001-05-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue. PMID:11398857

  1. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  2. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  3. Types of muscle tissue (image)

    MedlinePlus

    ... appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow visceral organs, ... shaped, and are also under involuntary control. Skeletal muscle fibers occur in muscles which are attached to the ...

  4. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in the walls of the heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  5. Pelvic floor muscle training exercises

    MedlinePlus

    Pelvic floor muscle training exercises are a series of exercises designed to strengthen the muscles of the pelvic floor. ... Pelvic floor muscle training exercises are recommended for: Women ... Men with urinary stress incontinence after prostate surgery ...

  6. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  7. Autoimmune muscle disease.

    PubMed

    Mammen, Andrew

    2016-01-01

    Patients with polymyositis (PM), dermatomyositis (DM), and immune-mediated necrotizing myopathy (IMNM) present with the subacute onset of symmetric proximal muscle weakness, elevated muscle enzymes, myopathic findings on electromyography, and autoantibodies. DM patients are distinguished by their cutaneous manifestations. Characteristic features on muscle biopsy include the invasion of nonnecrotic muscle fibers by T cells in PM, perifascicular atrophy in DM, and myofiber necrosis without prominent inflammation in IMNM. Importantly, these are regarded as autoimmune diseases and most patients respond partially, if not completely, to immunosuppressive therapy. Patients with inclusion body myositis (IBM) usually present with the insidious onset of asymmetric weakness in distal muscles (e.g., wrist flexors, and distal finger flexors), often when more proximal muscle groups are relatively preserved. Although IBM muscle biopsies usually have focal invasion of myofibers by lymphocytes, the majority of IBM biopsies also include rimmed vacuoles. While most IBM patients do have autoantibodies, treatment with immunosuppressive agents does not improve their clinical course. Along with the presence of abnormally aggregated proteins on muscle biopsy, the refractory nature and relentless course of IBM suggest that the underlying pathophysiology may include a dominant myodegenerative component. This chapter will focus on the epidemiology, clinical presentation, and treatment of the autoimmune myopathies and IBM. An emphasis will be placed on recent advances, indicating that these are a diverse family of diseases and that each of more than a dozen myositis autoantibodies is associated with a distinct clinical phenotype. PMID:27112692

  8. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  9. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  10. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.

    PubMed

    Srivastava, Kyle H; Elemans, Coen P H; Sober, Samuel J

    2015-10-21

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  11. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    PubMed Central

    Srivastava, Kyle H.; Elemans, Coen P.H.

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  12. Isolated Total Rupture of Extraocular Muscles.

    PubMed

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-09-01

    Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2-60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of -3 to -4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for an early surgical

  13. Isolated Total Rupture of Extraocular Muscles

    PubMed Central

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-01-01

    Abstract Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 2–60). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of −3 to −4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5 mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for

  14. Feasible muscle activation ranges based on inverse dynamics analyses of human walking.

    PubMed

    Simpson, Cole S; Sohn, M Hongchul; Allen, Jessica L; Ting, Lena H

    2015-09-18

    Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle's activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements. PMID:26300401

  15. Sex-specific prediction of neck muscle volumes

    PubMed Central

    Zheng, Liying; Siegmund, Gunter; Ozyigit, Gulsum; Vasavada, Anita

    2013-01-01

    Biomechanical analyses of the head and neck system require knowledge of neck muscle forces, which are often estimated from neck muscle volumes. Here we use magnetic resonance images (MRIs) of 17 subjects (6 females, 11 males) to develop a method to predict the volumes of 16 neck muscles by first predicting the total neck muscle volume (TMV) from subject sex and anthropometry, and then predicting individual neck muscle volumes using fixed volume proportions for each neck muscle. We hypothesized that the regression equations for total muscle volume as well as individual muscle volume proportions would be sex specific. We found that females have 59% lower TMV compared to males (females: 510±43 cm3, males: 814±64 cm3; p<0.0001) and that TMV (in cm3) was best predicted by a regression equation that included sex (male=0, female=1) and neck circumference (NC, in cm): TMV=269+13.7NC−233 Sex (adjusted R2=0.868; p<0.01). Individual muscle volume proportions were not sex specific for most neck muscles, although small sex differences existed for three neck muscles (obliqus capitis inferior, longus capitis, and sternocleidomastoid). When predicting individual muscle volumes in subjects not used to develop the model, coefficients of concordance ranged from 0.91 to 0.99. This method of predicting individual neck muscle volumes has the advantage of using only one sex-specific regression equation and one set of sex-specific volume proportions. These data can be used in biomechanical models to estimate muscle forces and tissue loads in the cervical spine. PMID:23351366

  16. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans

    PubMed Central

    Romer, Lee M; Lovering, Andrew T; Haverkamp, Hans C; Pegelow, David F; Dempsey, Jerome A

    2006-01-01

    The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at ≥ 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 ± 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (−56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 ± 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80% versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force (Qtw), in response to supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Qtw was reduced −28 ± 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (−20 ± 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue (Qtw=−12 ± 8% IRL-CTRL versus −20 ± 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se, and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work. PMID:16373384

  17. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  18. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  19. Imaging of the muscle-bone relationship.

    PubMed

    Ireland, Alex; Ferretti, José Luis; Rittweger, Jörn

    2014-12-01

    Muscle can be assessed by imaging techniques according to its size (as thickness, area, volume, or alternatively, as a mass) and architecture (fiber length and pennation angle), with values used as an anthropometric measure or a surrogate for force production. Similarly, the size of the bone (as area or volume) can be imaged using MRI or pQCT, although typically bone mineral mass is reported. Bone imaging measures of mineral density, size, and geometry can also be combined to calculate bone's structural strength-measures being highly predictive of bone's failure load ex vivo. Imaging of muscle-bone relationships can, hence, be accomplished through a number of approaches by adoption and comparison of these different muscle and bone parameters, dependent on the research question under investigation. These approaches have revealed evidence of direct, mechanical muscle-bone interactions independent of allometric associations. They have led to important information on bone mechanoadaptation and the influence of muscular action on bone, in addition to influences of age, gender, exercise, and disuse on muscle-bone relationships. Such analyses have also produced promising diagnostic tools for clinical use, such as identification of primary, disuse-induced, and secondary osteoporosis and estimation of bone safety factors. Standardization of muscle-bone imaging methods is required to permit more reliable comparisons between studies and differing imaging modes, and in particular to aid adoption of these methods into widespread clinical practice. PMID:25095743

  20. Slipped and lost extraocular muscles.

    PubMed

    Lenart, T D; Lambert, S R

    2001-09-01

    A slipped or lost muscle should be considered in the differential diagnosis of a patient presenting with a marked limitation of duction and inability to rotate the eye beyond the midline. Loss of a rectus muscle can occur after strabismus surgery, trauma, paranasal sinus surgery, orbital surgery, or retinal detachment surgery. The extraocular rectus muscle most frequently slipped or lost is the medial rectus muscle. Forced ductions, active force generation, saccadic velocity studies, differential intraocular pressure measurements, and orbital imaging studies may aid in identifying a slipped or lost muscle. However, no single diagnostic test provides absolute reliability for determining a lost muscle. Slipped muscles develop when the muscular capsule is imbricated without including the muscle or muscle tendon during strabismus surgery. When the capsule is reattached to the sclera, the tendon and muscle are then free to slip posteriorally from the site of attachment. Slipped muscles are retrieved by following the thin avascular muscle capsule posteriorally until the muscle is identified. A lost muscle can be found using a traditional conjunctival approach, by an external orbitotomy, or by an endoscopic transnasal approach. Although many diagnostic maneuvers are useful in identifying a lost rectus muscle, the oculocardiac reflex is the most important. Once the lost muscle is identified, the muscle should be imbricated with a nonabsorbable synthetic suture and securely reattached to the globe. PMID:11705143

  1. Thyrotoxic muscle disease

    PubMed Central

    Ramsay, Ian

    1968-01-01

    Evidence suggests that most hyperthyroid patients have a proximal myopathy. The more severe this is the more frequently are distal muscles, and ultimately, bulbar muscles involved. Probably acute thyrotoxic myopathy or encephalopathy supervenes on a previous chronic background or occurs concurrently with skeletal muscle involvement. Using careful electromyographic techniques evidence of myopathy may be found in most thyrotoxics; it disappears with adequate treatment of the primary disease. Myasthenia gravis and periodic paralysis are also associated with thyrotoxicosis and their differentiation is discussed. Infiltrative ophthalmopathy is not related to the effects of excess thyroid hormone, but is possibly due to EPS working in conjunction with LATS. ImagesFig. 2 PMID:4871773

  2. Volumetric Muscle Loss.

    PubMed

    Pollot, Beth E; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig. PMID:27492162

  3. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria.

    PubMed

    Heden, Timothy D; Neufer, P Darrell; Funai, Katsuhiko

    2016-08-01

    Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism. PMID:27370525

  4. Caring for muscle spasticity or spasms

    MedlinePlus

    High muscle tone - care; Increased muscle tension - care; Upper motor neuron syndrome - care; Muscle stiffness - care ... Muscle spasticity, or spasms, causes your muscles to become stiff or rigid. It can also cause exaggerated, ...

  5. Potency of nondepolarizing muscle relaxants on muscle-type acetylcholine receptors in denervated mouse skeletal muscle

    PubMed Central

    Wang, Hong; Yang, Bin; Han, Guang-wei; Li, Shi-tong

    2010-01-01

    Aim: To investigate the changing resistance to nondepolarizing muscle relaxants (NDMRs) during the first month after denervation. Methods: The denervated and innervated skeletal muscle cells were examined on days 1, 4, 7, 14, 21, and 28 after denervation. Individual denervated and innervated cells were prepared from the flexor digitorum brevis of the surgically denervated and contralateral hind feet, respectively. Nicotinic acetylcholine receptors (nAChRs) in the cells were activated with 30 μmol/L acetylcholine, either alone or in combination with various concentrations of vecuronium. Currents were recorded using a whole-cell patch-clamp technique. Results: The concentrations of vecuronium resulting in half-maximal inhibitory responses (IC50) increased 1.2- (P>0.05), 1.7-, 3.7-, 2.5-, 1.9-, and 1.8-fold (P<0.05) at Days 1, 4, 7, 14, 21, and 28 after denervation, respectively, compared to the innervated control. Resistance to vecuronium appeared at Day 4, peaked at Day 7, and declined at Day 14 after denervation. Nevertheless, IC50 values at Day 28 remained significantly higher than those for the innervated control, suggesting that the resistance to vecuronium had not disappeared at Day 28. Conclusion: The NDMR doses required to achieve satisfactory clinical effects differ at different times after muscle denervation. PMID:21102480

  6. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention.

    PubMed

    Brioche, Thomas; Pagano, Allan F; Py, Guillaume; Chopard, Angèle

    2016-08-01

    Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase. PMID:27106402

  7. Steroid control of muscle remodeling during metamorphosis in Manduca sexta.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-04-01

    During metamorphosis in the tobacco hornworm, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. The degeneration of muscle DEO1 involves the dismantling of its contractile apparatus followed by the degeneration of muscle nuclei. As some nuclei are degenerating, others begin to incorporate 5-bromodeoxyuridine (BrdU), indicating the onset of nuclear proliferation. This proliferation is initially most evident at the site where the motoneuron contacts the muscle remnant. The developmental events involved in muscle remodeling are under the control of the steroid hormones, the ecdysteroids. The loss of the contractile elements of the larval muscle requires the rise and fall of the prepupal peak of ecdysteroids, whereas the subsequent loss of muscle nuclei is influenced by the slight rise in ecdysteroids seen after pupal ecdysis. Incorporation of BrdU by muscle nuclei depends on both the adult peak of the ecdysteroids and contact with the motoneuron. Unilateral axotomy blocks proliferation within the rudiment, but it does not block its subsequent differentiation into a very thin muscle in the adult. PMID:8656216

  8. Control of ankle extensor muscle activity in walking cats.

    PubMed

    Hatz, Kathrin; Mombaur, Katja; Donelan, J Maxwell

    2012-11-01

    Our objective was to gain insight into the relative importance of feedforward control and different proprioceptive feedback pathways to ongoing ankle extensor activity during walking in the conscious cat. We asked whether the modulation of stance phase muscle activity is due primarily to proprioceptive feedback and whether the same proprioceptive gains and feedforward commands can automatically generate the muscle activity required for changes in walking slope. To test these hypotheses, we analyzed previously collected muscle activity and mechanics data from cats with an isolated medial gastrocnemius muscle walking along a sloped pegway. Models of proprioceptor dynamics predicted afferent activity from the measured muscle mechanics. We modeled muscle activity as the weighted sum of the activity predicted from the different proprioceptive pathways and a simple model of central drive. We determined the unknown model parameters using optimization procedures that minimized the error between the predicted and measured muscle activity. We found that the modulation of muscle activity within the stance phase and across walking slopes is indeed well described by neural control that employs constant central drive and constant proprioceptive feedback gains. Furthermore, it is force feedback from Ib afferents that is primarily responsible for modulating muscle activity; group II afferent feedback makes a small contribution to tonic activity, and Ia afferent feedback makes no contribution. Force feedback combined with tonic central drive appears to provide a simple control mechanism for automatically compensating for changes in terrain without requiring different commands from the brain or even modification of central nervous system gains. PMID:22933727

  9. Muscle Fiber Types and Training.

    ERIC Educational Resources Information Center

    Karp, Jason R.

    2001-01-01

    The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…

  10. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  11. Eye muscle repair

    MedlinePlus

    ... Your child's eyes should look normal a few weeks after the surgery. ... Surgical Approach to the Rectus Muscles. In: Tasman W, Jaeger EA, ... Hug D, Plummer LS, Stass-Isern M. Disorders of eye movement and ...

  12. Neurogenic muscle cramps.

    PubMed

    Katzberg, Hans D

    2015-08-01

    Muscle cramps are sustained, painful contractions of muscle and are prevalent in patients with and without medical conditions. The objective of this review is to present updates on the mechanism, investigation and treatment of neurogenic muscle cramps. PubMed and Embase databases were queried between January 1980 and July 2014 for English-language human studies. The American Academy of Neurology classification of studies (classes I-IV) was used to assess levels of evidence. Mechanical disruption, ephaptic transmission, disruption of sensory afferents and persistent inward currents have been implicated in the pathogenesis of neurogenic cramps. Investigations are directed toward identifying physiological triggers or medical conditions predisposing to cramps. Although cramps can be self-limiting, disabling or sustained muscle cramps should prompt investigation for underlying medical conditions. Lifestyle modifications, treatment of underlying conditions, stretching, B-complex vitamins, diltiezam, mexiletine, carbamazepine, tetrahydrocannabinoid, leveteracitam and quinine sulfate have shown evidence for treatment. PMID:25673127

  13. Muscles of the Trunk

    MedlinePlus

    ... Home » Cancer Registration & Surveillance Modules » Anatomy & Physiology » Muscular System » Muscle Groups » Trunk Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  14. Muscle biopsy (image)

    MedlinePlus

    A muscle biopsy involves removal of a plug of tissue usually by a needle to be later used for examination. Sometimes ... there is a patchy condition expected an open biopsy may be used. Open biopsy involves a small ...

  15. Muscle fatigue (image)

    MedlinePlus

    ... above your shoulders until they drop is one exercise that may be performed during the Tensilon test. In this test, the drug Tensilon is administered, and the response in the muscles are evaluated to help diagnose myasthenia gravis or ...

  16. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  17. Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics.

    PubMed

    Wall, Benjamin T; Morton, James P; van Loon, Luc J C

    2015-01-01

    The recovery from many injuries sustained in athletic training or competition often requires an extensive period of limb immobilisation (muscle disuse). Such periods induce skeletal muscle loss and consequent declines in metabolic health and functional capacity, particularly during the early stages (1-2 weeks) of muscle disuse. The extent of muscle loss during injury strongly influences the level and duration of rehabilitation required. Currently, however, efforts to intervene and attenuate muscle loss during the initial two weeks of injury are minimal. Mechanistically, muscle disuse atrophy is primarily attributed to a decline in basal muscle protein synthesis rate and the development of anabolic resistance to food intake. Dietary protein consumption is of critical importance for stimulating muscle protein synthesis rates throughout the day. Given that the injured athlete greatly reduces physical activity levels, maintaining muscle mass whilst simultaneously avoiding gains in fat mass can become challenging. Nevertheless, evidence suggests that maintaining or increasing daily protein intake by focusing upon the amount, type and timing of dietary protein ingestion throughout the day can restrict the loss of muscle mass and strength during recovery from injury. Moreover, neuromuscular electrical stimulation may be applied to evoke involuntary muscle contractions and support muscle mass maintenance in the injured athlete. Although more applied work is required to translate laboratory findings directly to the injured athlete, current recommendations for practitioners aiming to limit the loss of muscle mass and/or strength following injury in their athletes are outlined herein. PMID:25027662

  18. Bound potassium in muscle II.

    PubMed

    Hummel, Z

    1980-01-01

    Experiments were performed to decide between the alternatives a) the ionized K+ is in a dissolved state in the muscle water, or b) a part of the muscle potassium is in a "bound' state. Sartorius muscles of Rana esculenta were put into glicerol for about one hour at 0-2 degrees C. Most of muscle water came out, but most of muscle potassium remained in the muscles. In contrast to this: from muscle in heat rigor more potassium was released due to glicerol treating than from the intact ones. 1. Supposition a) is experimentally refuted. 2. Supposition b) corresponds to the experimental results. PMID:6969511

  19. The integrated function of muscles and tendons during locomotion.

    PubMed

    Roberts, Thomas J

    2002-12-01

    The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body. PMID:12485693

  20. Increased risk of muscle tears below physiological temperature ranges

    PubMed Central

    Scott, E. E. F.; Hamilton, D. F.; Wallace, R. J.; Muir, A. Y.

    2016-01-01

    Objectives Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. DOI: 10

  1. Diabetic Muscle Infarction

    PubMed Central

    Morcuende, José A; Dobbs, Matthew B; Buckwalter, Joseph A; Crawford, Haemish

    2000-01-01

    Diabetic muscle infarction is a rare complication of diabetes mellitus that is not clearly defined in the orthopaedic literature. This study is a descriptive case series of 7 new cases of diabetic muscle infarction and 55 previously reported cases in the literature. In the majority of patients, diabetic muscle infarction presents as a localized, exquisitely painful swelling and limited range of motion of the lower extremity. No cases affecting the muscles of the upper extremity have been observed. The onset is usually acute, persists for several weeks, and resolves spontaneously over several weeks to months without the need for intervention. Diabetic muscle infarction is a condition that should be considered in the differential diagnosis of any diabetic patient with lower extremity pain and swelling without systemic signs of infection. Magnetic resonance imaging is sensitive and specific enough to make the diagnosis. Muscle biopsy and surgical irrigation and debridement are not recommended since they are associated with complications. Pain management and activity restriction in the acute phase followed by gentle physical therapy is the treatment of choice. Recurrences in the same or opposite limb are common. Although the short-term prognosis is very good and the majority of cases resolve spontaneously, the long-term survival is uncertain in this patient population. PMID:10934627

  2. Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers

    PubMed Central

    Roche, Stuart M.; Gumucio, Jonathan P.; Brooks, Susan V.; Mendias, Christopher L.; Claflin, Dennis R.

    2015-01-01

    Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced. PMID:26131687

  3. Muscle function in avian flight: achieving power and control

    PubMed Central

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  4. Mitochondrial isolation from skeletal muscle.

    PubMed

    Garcia-Cazarin, Mary L; Snider, Natalie N; Andrade, Francisco H

    2011-01-01

    Mitochondria are organelles controlling the life and death of the cell. They participate in key metabolic reactions, synthesize most of the ATP, and regulate a number of signaling cascades. Past and current researchers have isolated mitochondria from rat and mice tissues such as liver, brain and heart. In recent years, many researchers have focused on studying mitochondrial function from skeletal muscles. Here, we describe a method that we have used successfully for the isolation of mitochondria from skeletal muscles. Our procedure requires that all buffers and reagents are made fresh and need about 250-500 mg of skeletal muscle. We studied mitochondria isolated from rat and mouse gastrocnemius and diaphragm, and rat extraocular muscles. Mitochondrial protein concentration is measured with the Bradford assay. It is important that mitochondrial samples be kept ice-cold during preparation and that functional studies be performed within a relatively short time (~1 hr). Mitochondrial respiration is measured using polarography with a Clark-type electrode (Oxygraph system) at 37°C⁷. Calibration of the oxygen electrode is a key step in this protocol and it must be performed daily. Isolated mitochondria (150 μg) are added to 0.5 ml of experimental buffer (EB). State 2 respiration starts with addition of glutamate (5 mM) and malate (2.5 mM). Then, adenosine diphosphate (ADP) (150 μM) is added to start state 3. Oligomycin (1 μM), an ATPase synthase blocker, is used to estimate state. Lastly, carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP, 0.2 μM) is added to measurestate, or uncoupled respiration. The respiratory control ratio (RCR), the ratio of state 3 to state 4, is calculated after each experiment. An RCR ≥ 4 is considered as evidence of a viable mitochondria preparation. In summary, we present a method for the isolation of viable mitochondria from skeletal muscles that can be used in biochemical (e.g., enzyme activity, immunodetection, proteomics

  5. Time to Maximal Voluntary Isometric Contraction (MVC) for Five Different Muscle Groups in College Adults.

    ERIC Educational Resources Information Center

    Morris, A. F.; And Others

    1983-01-01

    College men and women were studied to ascertain the force-time components of a rapid voluntary muscle contraction for five muscle groups. Researchers found that the time required for full contraction differs: (1) in men and women; and (2) among the five muscle groups. (Authors/PP)

  6. Muscle hardness characteristics of the masseter muscle after repetitive muscle activation: comparison to the biceps brachii muscle.

    PubMed

    Kashima, Koji; Higashinaka, Shuichi; Watanabe, Naoshi; Maeda, Sho; Shiba, Ryosuke

    2004-10-01

    The purpose of this study was to compare hardness characteristics of the masseter muscle to those of the biceps brachii muscle during repetitive muscle movements. Seventeen asymptomatic female subjects participated in this study. Each subject, on separate days, undertook a 5-minute unilateral chewing gum task on the right side and a 5-minute flexion-extension exercise on the right hand with a 2kg dumbbell. Using a handheld hardness meter, muscle hardness was measured in the right masseter and in the biceps brachii muscle at eight time points (before the task, immediately after the task, and at 1, 3, 5, 10, 30, and 60 minutes after the task), and the data obtained before and after the task on each muscle were compared. Comparisons of the normalized data were also performed between the two muscles at each time point. As a result, a significant increase in muscle hardness was seen at 1 minute after the task in the biceps brachii muscle (p=0.0093). In contrast, the masseter muscle showed a tendency to lower hardness, with the lowest point of hardness occurring at 10 minutes after the task (p = 0.0160). Between the two muscles, there was a difference in the normalized data immediately after the task, and at 1, 5, and 10 minutes after the task (0.01 muscle hardness characteristics of the masseter muscle completely differed from those of the biceps brachii muscle after repetitive muscle activation. PMID:15532311

  7. Effects in skeletal muscle.

    PubMed

    Young, Andrew

    2005-01-01

    The first biological action of amylin to be described was the inhibition of insulin-stimulated incorporation of radiolabeled glucose into glycogen in the isolated soleus muscle of the rat. This antagonism of insulin action in muscle was non-competitive, occurring with equal potency and efficacy at all insulin concentrations. Amylin inhibited activation of glycogen synthase, partially accounting for the inhibition of radiolabeled glucose incorporation. However, this did not account for a low rate of labeling at higher amylin concentrations, wherein the radioglycogen accumulation was even less than in incubations where insulin was absent. The principal action of amylin accounting for reduction of insulin-stimulated accumulation of glycogen was activation of glycogen phosphorylase via a cyclic AMP-, protein kinase C-dependent signaling pathway to cause glycogenolysis (glycogen breakdown). At physiological concentrations, amylin activated glycogen phosphorylase at its ED50, but because glycogen phosphorylase is present in such high activity, the resulting flux out of glycogen was estimated to be similar to insulin-mediated flux of glucosyl moieties into glycogen. Thus, in the rat, endogenous amylin secreted in response to meals appeared to mobilize carbon from skeletal muscle. Amylin-induced glycogenolysis resulted in intramuscular accumulation of glucose-6-phosphate and release of lactate from tissue beds that included muscle. When muscle glycogen was pre-labeled with tritium in the three position, amylin could be shown to evoke the release of free glucose. This is made possible by glucosyl moieties cleaved at the branch points in glycogen being released as free glucose, rather than being phosphorylated, as occurs with the bulk of the glycogen glucosyls. Free glucose is free to exit cells via facilitated transport, down a concentration gradient that might exist under such circumstances. When measured by a sensitive technique utilizing efflux of labeled glucose, amylin

  8. Muscle Disuse as a Pivotal Problem in Sarcopenia-related Muscle Loss and Dysfunction.

    PubMed

    Bell, K E; von Allmen, M T; Devries, M C; Phillips, S M

    2016-01-01

    An age-associated loss of muscle mass and strength--sarcopenia--begins at around the fifth decade of life, with mass being lost at ~0.5-1.2% per year and strength at ~3% per year. Sarcopenia can contribute to a variety of negative health outcomes, including an increased risk for falls and fractures, the development of metabolic diseases like type 2 diabetes mellitus, and increase the chance of requiring assisted living. Linear sarcopenic declines in muscle mass and strength are, however, punctuated by transient periods of muscle disuse that can accelerate losses of muscle and strength, which could result in increased risk for the aforementioned conditions. Muscle disuse is recognizable with bed rest or immobilization (for example, due to surgery or acute illness requiring hospitalization); however, recent work has shown that even a relative reduction in ambulation (reduced daily steps) results in significant reductions in muscle mass, strength and possibly an increase in disease risk. Although reduced ambulation is a seemingly "benign" form of disuse, compared to bed rest and immobilization, reports have documented that 2-3 weeks of reduced daily steps may induce: negative changes in body composition, reductions in muscle strength and quality, anabolic resistance, and decrements in glycemic control in older adults. Importantly, periods of reduced ambulation likely occur fairly frequently and appear more difficult to fully recover from, in older adults. Here we explore the consequences of muscle disuse due to reduced ambulatory activity in older adults, with frequent comparisons to established models of disuse: bed rest and immobilization. PMID:26980367

  9. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor γ co-activator 1α translocation to subsarcolemmal mitochondria in skeletal muscle

    PubMed Central

    Smith, Brennan K; Mukai, Kazutaka; Lally, James S; Maher, Amy C; Gurd, Brendon J; Heigenhauser, George J F; Spriet, Lawrence L; Holloway, Graham P

    2013-01-01

    In skeletal muscle, mitochondria exist as two subcellular populations known as subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS mitochondria preferentially respond to exercise training, suggesting divergent transcriptional control of the mitochondrial genomes. The transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam) have been implicated in the direct regulation of the mitochondrial genome in mice, although SS and IMF differences may exist, and the potential signalling events regulating the mitochondrial content of these proteins have not been elucidated. Therefore, we examined the potential for PGC-1α and Tfam to translocate to SS and IMF mitochondria in human subjects, and performed experiments in rodents to identify signalling mechanisms regulating these translocation events. Acute exercise in humans and rats increased PGC-1α content in SS but not IMF mitochondria. Acute exposure to 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside in rats recapitulated the exercise effect of increased PGC-1α protein within SS mitochondria only, suggesting that AMP-activated protein kinase (AMPK) signalling is involved. In addition, rendering AMPK inactive (AMPK kinase dead mice) prevented exercise-induced PGC-1α translocation to SS mitochondria, further suggesting that AMPK plays an integral role in these translocation events. In contrast to the conserved PGC-1α translocation to SS mitochondria across species (humans, rats and mice), acute exercise only increased mitochondrial Tfam in rats. Nevertheless, in rat resting muscle PGC-1α and Tfam co-immunoprecipate with α-tubulin, suggesting a common cytosolic localization. These data suggest that exercise causes translocation of PGC-1α preferentially to SS mitochondria in an AMPK-dependent manner. PMID:23297307

  10. Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke

    PubMed Central

    Knarr, Brian A.; Reisman, Darcy S.; Binder-Macleod, Stuart A.; Higginson, Jill S.

    2012-01-01

    Musculoskeletal simulations have been used to explore compensatory strategies, but have focused on responses to simulated atrophy in a single muscle or muscle group. In a population such as stroke, however, impairments are seen in muscle activation across multiple muscle groups. The objective of this study was to identify available compensatory strategies for muscle weakness during gait by simulating activation deficits in multiple muscle groups. Three dimensional dynamics simulations were created from 10 healthy subjects (48.8±13.3yrs, self-selected speed 1.28±0.17m/s) and constraints were set on the activation capacity of the plantar flexor, dorsiflexor, and hamstrings muscle groups to simulate activation impairments seen post stroke. When the muscle groups are impaired individually, the model requires that the plantar flexor, dorsiflexor, and hamstrings muscle groups are activated to at least 55%, 64%, and 18%, respectively, to recreate the subjects’ normal gait pattern. The models were unable to recreate the normal gait pattern with simultaneous impairment of all three muscle groups. Other muscle groups are unable to assist the dorsiflexor muscles during early swing, which suggests that rehabilitation or assistive devices may be required to correct foot drop. By identifying how muscles can interact, clinicians may be able to develop specific strategies for using gait retraining and orthotic assistance to best address an individual’s needs. PMID:23273489

  11. Skeletal muscle responses to unweighting in humans

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.

    1991-01-01

    An overview of earth-based studies is presented emphasizing the data on muscular strength and size derived from experiments under simulated microgravity. The studies involve the elimination of weight-bearing responsibility of lower-limb human musculature to simulate the unweighting effects of space travel in the absence of exercise. Reference is given to bedrest and unilateral lower-limb suspension, both of which provide data that demonstrate the decreased strength of the knee extensors of 20-25 percent. The response is related to the decrease in cross-sectional area of the knee extensors which is a direct indication of muscle-fiber atrophy. Most of the effects of unweighting are associated with extensor muscles in the lower limbs and not with postural muscles. Unweighting is concluded to cause significant adaptations in the human neuromuscular system that require further investigation.

  12. Positronium Formation in Muscle

    PubMed Central

    Gustafson, D. R.

    1970-01-01

    Positronium formation in muscle at +4°C and -4°C was examined by the measurement of the angular correlation of positron annihilation radiation. Since the positronium formation rate in ice is considerably higher than it is in water, there should be a comparable increase in the positronium formation rate in muscle tissue if recent speculation that cellular water is ordered in a semicrystalline icelike state is correct. Comparison of the angular correlation from muscle at +4°C with that from water at +4°C shows no enhancement of the positronium formation rate. Frozen muscle at -4°C shows an enhancement of the positronium formation rate of approximately half that found in ice at -4°C, indicating that most cellular water undergoes a normal water-ice transition when frozen. It is concluded therefore that cell water in muscle is not ordered in a hexagonal icelike structure. While the results are consistent with the hypothesis that cell water is in the liquid state, the hypothesis that cell water is ordered in an undetermined close packed structure which transforms to the hexagonal ice structure at or near 0°C cannot be ruled out. PMID:5436881

  13. Corticospinal Excitability of Trunk Muscles during Different Postural Tasks

    PubMed Central

    Chiou, Shin-Yi; Gottardi, Sam E. A.; Hodges, Paul W.; Strutton, Paul H.

    2016-01-01

    Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function. PMID:26807583

  14. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  15. Regulators of Autophagosome Formation in Drosophila Muscles

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Samsonova, Anastasia; Tao, Rong; Perrimon, Norbert

    2015-01-01

    Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function. PMID:25692684

  16. Muscle Cells Provide Instructions for Planarian Regeneration

    PubMed Central

    Witchley, Jessica N.; Mayer, Mirjam; Wagner, Daniel E.; Owen, Jared H.; Reddien, Peter W.

    2014-01-01

    Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown. Here, we report that position control genes (PCGs) that control regeneration and tissue turnover are expressed in a subepidermal layer of nonneoblast cells. These subepidermal cells coexpress many PCGs. We propose that these subepidermal cells provide a system of body coordinates and positional information for regeneration, and identify them to be muscle cells of the planarian body wall. Almost all planarian muscle cells express PCGs, suggesting a dual function: contraction and control of patterning. PCG expression is dynamic in muscle cells after injury, even in the absence of neoblasts, suggesting that muscle is instructive for regeneration. We conclude that planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of any body region. PMID:23954785

  17. Decoding upper limb residual muscle activity in severe chronic stroke

    PubMed Central

    Ramos-Murguialday, Ander; García-Cossio, Eliana; Walter, Armin; Cho, Woosang; Broetz, Doris; Bogdan, Martin; Cohen, Leonardo G; Birbaumer, Niels

    2015-01-01

    Objective Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients. Methods Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined. Results Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles. Interpretation These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments. PMID:25642429

  18. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology.

    PubMed

    Tee, Jin-Ming; Peppelenbosch, Maikel P

    2010-08-01

    The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies. PMID:20515317

  19. Neural control of muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Markelonis, G. J.

    1983-01-01

    Cholinergic innervation regulates the physiological and biochemical properties of skeletal muscle. The mechanisms that appear to be involved in this regulation include soluble, neurally-derived polypeptides, transmitter-evoked muscle activity and the neurotransmitter, acetylcholine, itself. Despite extensive research, the interacting neural mechanisms that control such macromolecules as acetylcholinesterase, the acetylcholine receptor and glucose 6-phosphate dehydrogenase remain unclear. It may be that more simplified in vitro model systems coupled with recent dramatic advances in the molecular biology of neurally-regulated proteins will begin to allow researchers to unravel the mechanisms controlling the expression and maintenance of these macromolecules.

  20. [Muscle-skeletal pain].

    PubMed

    Vygonskaya, M V; Filatova, E G

    2016-01-01

    The paper is devoted to the most complicated aspects of low back pain. The differences between specific and nonspecific low back pain using the "red flags" system is highlighted. The authors consider the causes of pain chronification (the "yellow flags" system) and the necessity of using a biopsychosocial model. Main pathogenetic mechanisms of chronic muscle/skeletal pain are considered and the possible involvement of several mechanism in the pathogenesis of chronic pain as well as the use of complex therapy is discussed. The high efficacy and safety of ketorolac in treatment of nonspecific muscle/skeletal pain is demonstrated. PMID:27042717

  1. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  2. An Ongoing Role for Structural Sarcomeric Components in Maintaining Drosophila melanogaster Muscle Function and Structure

    PubMed Central

    Perkins, Alexander D.; Tanentzapf, Guy

    2014-01-01

    Animal muscles must maintain their function while bearing substantial mechanical loads. How muscles withstand persistent mechanical strain is presently not well understood. The basic unit of muscle is the sarcomere, which is primarily composed of cytoskeletal proteins. We hypothesized that cytoskeletal protein turnover is required to maintain muscle function. Using the flight muscles of Drosophila melanogaster, we confirmed that the sarcomeric cytoskeleton undergoes turnover throughout adult life. To uncover which cytoskeletal components are required to maintain adult muscle function, we performed an RNAi-mediated knockdown screen targeting the entire fly cytoskeleton and associated proteins. Gene knockdown was restricted to adult flies and muscle function was analyzed with behavioural assays. Here we analyze the results of that screen and characterize the specific muscle maintenance role for several hits. The screen identified 46 genes required for muscle maintenance: 40 of which had no previously known role in this process. Bioinformatic analysis highlighted the structural sarcomeric proteins as a candidate group for further analysis. Detailed confocal and electron microscopic analysis showed that while muscle architecture was maintained after candidate gene knockdown, sarcomere length was disrupted. Specifically, we found that ongoing synthesis and turnover of the key sarcomere structural components Projectin, Myosin and Actin are required to maintain correct sarcomere length and thin filament length. Our results provide in vivo evidence of adult muscle protein turnover and uncover specific functional defects associated with reduced expression of a subset of cytoskeletal proteins in the adult animal. PMID:24915196

  3. Eye muscle repair - series (image)

    MedlinePlus

    ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ... The extraocular muscles of the eye (external to the eyeball) control the positioning of the eyes. They coordinate of the eye ...

  4. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  5. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  6. Muscle Cramp - A Common Pain

    MedlinePlus

    ... Osteopathic Manipulative Treatment Becoming a DO Video Library Muscle Cramp – A Common Pain Page Content Has a ... body’s natural tendency toward self-healing. Causes of Muscle Cramps Unfortunately, cramps can occur anywhere, anytime to ...

  7. Active vs. inactive muscle (image)

    MedlinePlus

    ... may lose 20 to 40 percent of their muscle -- and, along with it, their strength -- as they ... have found that a major reason people lose muscle is because they stop doing everyday activities that ...

  8. Fluid mechanics of muscle vibrations.

    PubMed Central

    Barry, D T; Cole, N M

    1988-01-01

    The pressure field produced by an isometrically contracting frog gastrocnemius muscle is described by the fluid mechanics equations for a vibrating sphere. The equations predict a pressure amplitude that is proportional to the lateral acceleration of the muscle, inversely proportional to the square of the distance from the muscle, and cosinusoidally related to the major axis of lateral movement. The predictions are confirmed by experiments that measure the pressure amplitude distribution and by photographs of muscle movement during contraction. The lateral movement of muscle has the appearance of an oscillating system response to a step function input--the oscillation may be at the resonant frequency of the muscle and therefore may provide a means to measure muscle stiffness without actually touching the muscle. PMID:3260803

  9. Dielectric elastomer switches for smart artificial muscles

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Calius, Emilio P.; Inamura, Tokushu; Xie, Sheng Q.; Anderson, Iain A.

    2010-08-01

    Some of the most exciting possibilities for dielectric elastomer artificial muscles consist of biologically inspired networks of smart actuators working towards common goals. However, the creation of these networks will only be realised once intelligence and feedback can be fully distributed throughout an artificial muscle device. Here we show that dielectric elastomer artificial muscles can be built with intrinsic sensor, control, and driver circuitry, bringing them closer in capability to their natural analogues. This was achieved by exploiting the piezoresistive behaviour of the actuator's highly compliant electrodes using what we have called the dielectric elastomer switch. We developed suitable switching material using carbon loaded silicone grease and experimentally demonstrated the primitives required for self-sensing actuators and digital computation, namely compliant electromechanical NAND gates and oscillator circuits. We anticipate that dielectric elastomer switches will reduce the need for bulky and rigid external circuitry as well as provide the simple distributed intelligence required for soft, biologically inspired networks of actuators. Examples include many-degree-of-freedom robotic hearts, intestines, and manipulators; wearable assistive devices; smart sensor skins and fabrics; and ultimately new types of artificial muscle embedded, electromechanical computers.

  10. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    PubMed

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  11. Genetics Home Reference: rippling muscle disease

    MedlinePlus

    ... Genetics Home Health Conditions rippling muscle disease rippling muscle disease Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Rippling muscle disease is a condition in which the muscles ...

  12. Effects of practice on variability of muscle force.

    PubMed

    Chung-Hoon, Kaiwi; Tracy, Brian L; Marcus, Robin; Dibble, Lee; Burgess, Paul; Lastayo, Paul C

    2015-04-01

    The motor skill required to decrease the variability in muscle force steadiness can be challenging. The purposes of this study were to determine whether muscle force steadiness improved following repeated trials and whether the number of trials varied for healthy younger adults, healthy older adults, and older adults who have fallen to obtain stable muscle force steadiness measures. Sixty participants performed 30 concentric and eccentric contractions of the knee extensors on an isokinetic dynamometer. Each group had significant improvements in muscle force steadiness and obtained stable measures within six to nine trials. Healthy younger and older adults, and older adults who have fallen, can improve muscle force steadiness. These findings provide a framework for methodological approaches when testing steadiness in varying populations. PMID:25799026

  13. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle

    PubMed Central

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R.; Soderblom, Erik J.; Bryan, Miles; Moseley, M. Arthur; Muoio, Deborah M.; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders. PMID:26870796

  14. Contractures and muscle disease.

    PubMed

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. PMID:26867558

  15. Sculpturing new muscle phenotypes

    NASA Technical Reports Server (NTRS)

    Babij, P.; Booth, F. W.

    1988-01-01

    Changes in the pattern of muscle activity are followed by new patterns of protein synthesis, both in the contractile elements and in the enzymes of energy metabolism. Although the signal transducers have not been identified, techniques of molecular biology have clearly shown that the adaptive responses are the regulated consequence of differential gene expression.

  16. The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis.

    PubMed

    Gómez-Del Arco, Pablo; Perdiguero, Eusebio; Yunes-Leites, Paula Sofia; Acín-Pérez, Rebeca; Zeini, Miriam; Garcia-Gomez, Antonio; Sreenivasan, Krishnamoorthy; Jiménez-Alcázar, Miguel; Segalés, Jessica; López-Maderuelo, Dolores; Ornés, Beatriz; Jiménez-Borreguero, Luis Jesús; D'Amato, Gaetano; Enshell-Seijffers, David; Morgan, Bruce; Georgopoulos, Katia; Islam, Abul B M M K; Braun, Thomas; de la Pompa, José Luis; Kim, Johnny; Enriquez, José A; Ballestar, Esteban; Muñoz-Cánoves, Pura; Redondo, Juan Miguel

    2016-05-10

    Heart muscle maintains blood circulation, while skeletal muscle powers skeletal movement. Despite having similar myofibrilar sarcomeric structures, these striated muscles differentially express specific sarcomere components to meet their distinct contractile requirements. The mechanism responsible is still unclear. We show here that preservation of the identity of the two striated muscle types depends on epigenetic repression of the alternate lineage gene program by the chromatin remodeling complex Chd4/NuRD. Loss of Chd4 in the heart triggers aberrant expression of the skeletal muscle program, causing severe cardiomyopathy and sudden death. Conversely, genetic depletion of Chd4 in skeletal muscle causes inappropriate expression of cardiac genes and myopathy. In both striated tissues, mitochondrial function was also dependent on the Chd4/NuRD complex. We conclude that an epigenetic mechanism controls cardiac and skeletal muscle structural and metabolic identities and that loss of this regulation leads to hybrid striated muscle tissues incompatible with life. PMID:27166947

  17. Motor imagery of voluntary muscle relaxation induces temporal reduction of corticospinal excitability.

    PubMed

    Kato, Kouki; Watanabe, Jun; Muraoka, Tetsuro; Kanosue, Kazuyuki

    2015-03-01

    Voluntary muscle relaxation is an "active process" requiring cortical activation. However, cortical activation during motor imagery of muscle relaxation has not been well understood. The purpose of this study was to clarify time-dependent changes in corticospinal excitability during the imagery of muscle relaxation. Ten participants imagined volitional muscle relaxation from an imagined pinching with their right index finger and thumb in response to an auditory cue. Transcranial magnetic stimulation was applied at the left primary motor area of the first dorsal interosseous (FDI) muscle at different time intervals after the auditory cue. Motor evoked potentials (MEPs) were recorded from the right hand and forearm muscles. The MEP amplitudes of the FDI and the synergist temporally decreased after the auditory cue as compared with those present in the resting condition. Our finding indicates that motor imagery of muscle relaxation induces a temporal reduction of the corticospinal excitability related to the targeted muscle. PMID:25448688

  18. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  19. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    PubMed

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. PMID:26219865

  20. Mandibular arch muscle identity is regulated by a conserved molecular process during vertebrate development.

    PubMed

    Knight, Robert D; Mebus, Katharina; Roehl, Henry H

    2008-06-15

    Vertebrate head muscles exhibit a highly conserved pattern of innervation and skeletal connectivity and yet it is unclear whether the molecular basis of their development is likewise conserved. Using the highly conserved expression of Engrailed 2 (En2) as a marker of identity in the dorsal mandibular muscles of zebrafish, we have investigated the molecular signals and tissues required for patterning these muscles. We show that muscle En2 expression is not dependent on signals from the adjacent neural tube, pharyngeal endoderm or axial mesoderm and that early identity of head muscles does not require bone morphogenetic pathway, Notch or Hedgehog (Hh) signalling. However, constrictor dorsalis En2 expression is completely lost after a loss of fibroblast growth factor (Fgf) signalling and we show that is true throughout head muscle development. These results suggest that head muscle identity is dependent on Fgf signalling. Data from experiments performed in chick suggest a similar regulation of En2 genes by Fgf signalling revealing a conserved mechanism for specifying head muscle identity. We present evidence that another key gene important in the development of mouse head muscles, Tbx1, is also critical for specification of mandibular arch muscle identity and that this is independent of Fgf signalling. These data imply that dorsal mandibular arch muscle identity in fish, chick and mouse is specified by a highly conserved molecular process despite differing functions of these muscles in different lineages. PMID:18338789

  1. Effects of Active Individual Muscle Stretching on Muscle Function

    PubMed Central

    Nakamura, Kouichi; Kodama, Takayuki; Mukaino, Yoshito

    2014-01-01

    [Purpose] We investigated the effect of active individual muscle stretching (AID) on muscle function. [Subjects] We used the right legs of 40 healthy male students. [Methods] Subjects were divided into an AID group, which performed stretching, and a control group, which did not. We examined and compared muscle function before and after stretching in the AID and control groups using a goniometer and Cybex equipment. [Results] A significant increase in flexibility and a significant decrease in muscle strength output were observed in the AID group after the intervention. [Conclusion] These results suggest that AID induces an increase in flexibility and a temporary decrease in muscle output strength. PMID:24707080

  2. Evidence - The intraoral palpability of the lateral pterygoid muscle - A prospective study.

    PubMed

    Stelzenmueller, Wolfgang; Umstadt, Horst; Weber, Dominic; Goenner-Oezkan, Volkan; Kopp, Stefan; Lisson, Jörg

    2016-07-01

    The intraoral palpability of the inferior caput of the lateral pterygoid muscle has been a matter of ambiguity because of its topography. Thus, none of the recently published studies has provided reliable proof of the possibility of digital intraoral palpation, although palpation of the muscle is part of most of the examination catalogs for clinical functional analysis and functional therapy. Digital muscle palpation was performed intraorally on five preparations after exposure of the infratemporal fossa and visualization of the lateral pterygoid muscle. Direct digital palpation of the lateral pterygoid muscle was seen in all five cases. The successful palpation was carried out and approved during laterotrusion to the examined side (relaxation). While opening and closing the mouth (contraction) the muscle is palpable. In real-time kinematic measurements (MRI) an impression of the lateral caput of the left lateral pterygoid muscle of a 30-year-old control male person was found up to 6mm. Electromyographic detection by direct signal conduction with concomitant palpation is possible. The injection electrode tested in situ in the muscle was felt transorally with the palpating finger. The intraoral palpability of the inferior caput of the lateral pterygoid muscle is verified. The basic requirement for successfully palpating the lateral pterygoid muscle is the exact knowledge of muscle topography and the intraoral palpation pathway. After documented palpation of the muscle belly in cadaverous preparations, MRI and EMG also visualized palpation of the lateral pterygoid muscle in vivo. The palpation technique seems to be essential and basically feasible. PMID:26706107

  3. Pennation angles of the intrinsic muscles of the foot.

    PubMed

    Ledoux, W R; Hirsch, B E; Church, T; Caunin, M

    2001-03-01

    As mathematical models of the musculoskeletal system become increasingly detailed and precise, they require more accurate information about the architectural parameters of the individual muscles. These muscles are typically represented as Hill-type models, which require data on fiber length, physiological cross-sectional area (PCSA) and pennation angle. Most of this information for lower limb muscles has been published, except for data on the pennation angle of the intrinsic muscles of the foot. Each (n=20) intrinsic muscle of three human feet was dissected free. The dorsal and plantar surfaces were photographed and a digitized color image was imported into Abobe Photoshop. The muscles were divided into "anatomical units". For each anatomical unit (n=26), a line was drawn along the tendon axis and a number of other lines were drawn along individual muscle fibers. The angle between the tendon line and each fiber line was defined as the pennation angle of that fiber. By visual inspection, an effort was made to take measurements such that they represented the distribution of fibers in various parts of the muscle. Although some individual muscles had higher or lower pennation angles, when averaged for all specimens, the second dorsal interosseous had the smallest pennation angle (6.7+/-6.81 degrees) while the abductor digiti minimi had the largest (19.1+/-11.19 degrees). Since the cosines of the angles range from 0.9932 to 0.9449, the effect of the pennation angle on the force generated by the muscle was not great. PMID:11182133

  4. Pannexin 1 channels in skeletal muscles

    PubMed Central

    Cea, Luis A.; Riquelme, Manuel A.; Vargas, Anibal A.; Urrutia, Carolina; Sáez, Juan C.

    2014-01-01

    Normal myotubes and adult innervated skeletal myofibers express the glycoprotein pannexin1 (Panx1). Six of them form a “gap junction hemichannel-like” structure that connects the cytoplasm with the extracellular space; here they will be called Panx1 channels. These are poorly selective channels permeable to ions, small metabolic substrate, and signaling molecules. So far little is known about the role of Panx1 channels in muscles but skeletal muscles of Panx1−/− mice do not show an evident phenotype. Innervated adult fast and slow skeletal myofibers show Panx1 reactivity in close proximity to dihydropyridine receptors in the sarcolemma of T-tubules. These Panx1 channels are activated by electrical stimulation and extracellular ATP. Panx1 channels play a relevant role in potentiation of muscle contraction because they allow release of ATP and uptake of glucose, two molecules required for this response. In support of this notion, the absence of Panx1 abrogates the potentiation of muscle contraction elicited by repetitive electrical stimulation, which is reversed by exogenously applied ATP. Phosphorylation of Panx1 Thr and Ser residues might be involved in Panx1 channel activation since it is enhanced during potentiation of muscle contraction. Under denervation, Panx1 levels are upregulated and this partially explains the reduction in electrochemical gradient, however its absence does not prevent denervation-induced atrophy but prevents the higher oxidative state. Panx1 also forms functional channels at the cell surface of myotubes and their functional state has been associated with intracellular Ca2+ signals and regulation of myotube plasticity evoked by electrical stimulation. We proposed that Panx1 channels participate as ATP channels and help to keep a normal oxidative state in skeletal muscles. PMID:24782784

  5. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  6. Muscle oxygen saturation heterogeneity among leg muscles during ramp exercise.

    PubMed

    Takagi, Shun; Kime, Ryotaro; Niwayama, Masatsugu; Murase, Norio; Katsumura, Toshihito

    2013-01-01

    We examined whether O(2) saturation in several leg muscles changes as exercise intensity increases. Twelve healthy young males performed 20 W/min ramp bicycle exercise until exhaustion. Pulmonary O(2) uptake (VO(2)) was monitored continuously during the experiments to determine peak oxygen uptake. Muscle O(2) saturation (SmO(2)) was also monitored continuously at the belly of the vastus lateralis (VL), rectus femoris, vastus medialis, biceps femoris, gastrocnemius lateralis, gastrocnemius medialis, and tibialis anterior by near-infrared spatial resolved spectroscopy. Although the VL muscle mainly contributes during cycling exercise, deoxygenation was enhanced not only in the VL muscle but also in the other thigh muscles and lower leg muscles with increased exercise intensity. Furthermore, SmO(2) response during ramp cycling exercise differed considerably between leg muscles. PMID:22879044

  7. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  8. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism.

    PubMed

    Kusters, Yvo H A M; Barrett, Eugene J

    2016-03-15

    We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism. PMID:26714849

  9. Development of a free latissimus dorsi muscle flap in cats.

    PubMed

    Nicoll, S A; Fowler, J D; Remedios, A M; Clapson, J B; George, D

    1996-01-01

    Anatomic and experimental evaluation of the feline latissimus dorsi muscle was performed to assess its potential use as a free muscle flap. In the anatomic study, nonselective angiography of the subscapular artery was performed in nine heparinized feline cadavers. The muscle dimensions and vascular anatomy of the dissected latissimus dorsi muscle were recorded. In the experimental study four cats underwent heterotopic transplantation of a partial latissimus dorsi flap, and three cats underwent orthotopic transplantation of a complete latissimus dorsi flap. The mean length and width of the latissimus dorsi muscle was 19.0 and 5.4 cm, respectively. The dominant vascular pedicle was the thoracodorsal artery and vein. The average length and diameter of the thoracodorsal artery was 2.7 cm and 0.6 mm, respectively. Minor vascular pedicles were provided by branches of the intercostal arteries. Numerous choke anastomoses existed between the two pedicle systems. Viability of muscle flaps based on subjective evaluation, angiography, and histopathology, was 66% and 100% in the heterotopic and orthotopic studies, respectively. Flap failure seemed to be caused by both arterial and venous thrombosis. The latissimus dorsi muscle flap met criteria required for application in microvascular reconstruction. The vascular pattern was appropriate and consistent. Donor site morbidity was low, whereas surgical accessibility was high. The muscle satisfied the physical criteria of a free flap. Long-term anastomotic patency and flap viability was shown. PMID:8719085

  10. Generating dynamic simulations of movement using computed muscle control.

    PubMed

    Thelen, Darryl G; Anderson, Frank C; Delp, Scott L

    2003-03-01

    Computation of muscle excitation patterns that produce coordinated movements of muscle-actuated dynamic models is an important and challenging problem. Using dynamic optimization to compute excitation patterns comes at a large computational cost, which has limited the use of muscle-actuated simulations. This paper introduces a new algorithm, which we call computed muscle control, that uses static optimization along with feedforward and feedback controls to drive the kinematic trajectory of a musculoskeletal model toward a set of desired kinematics. We illustrate the algorithm by computing a set of muscle excitations that drive a 30-muscle, 3-degree-of-freedom model of pedaling to track measured pedaling kinematics and forces. Only 10 min of computer time were required to compute muscle excitations that reproduced the measured pedaling dynamics, which is over two orders of magnitude faster than conventional dynamic optimization techniques. Simulated kinematics were within 1 degrees of experimental values, simulated pedal forces were within one standard deviation of measured pedal forces for nearly all of the crank cycle, and computed muscle excitations were similar in timing to measured electromyographic patterns. The speed and accuracy of this new algorithm improves the feasibility of using detailed musculoskeletal models to simulate and analyze movement. PMID:12594980

  11. Recognition and repair of the slipped rectus muscle.

    PubMed

    Plager, D A; Parks, M M

    1988-01-01

    Since the first description of the slipped muscle as a complication of strabismus surgery in 1979, the distinctions between it and the lost muscle have become blurred both in the literature and in general understanding. Sixtytwo slipped muscles in 52 consecutive patients were reviewed in an effort to more fully describe this Important and often unrecognized entity. The range of clinical presentation of slipped muscle is large: from the immediate large postoperative over- or undercorrection with absent duction, to the gradual moderate deviation with subtly reduced excursion. The auctions provided by the slipped muscles ranged from complete absence to almost normal, with an average of 19° excursion beyond the midline. At surgery, recognizing the empty muscle capsule attached to the sclera with the tendon slipped posteriorly within it is imperative for its repair. Recognition is facilitated by suspecting it from clinical findings. Correction of the motility defect requires advancement of the muscle tissue and not just its empty capsule. Slippage can probably be prevented by using a surgical technique, which firmly locks the suture to the tendon and not just to the muscle capsule. PMID:24880054

  12. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis.

    PubMed

    Seebacher, Frank; Tallis, Jason A; James, Rob S

    2014-06-01

    Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. PMID:24625645

  13. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance.

    PubMed

    Bonner, Jeffrey S; Lantier, Louise; Hasenour, Clinton M; James, Freyja D; Bracy, Deanna P; Wasserman, David H

    2013-02-01

    Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF(-/-)) and wild-type littermates (mVEGF(+/+)) on a C57BL/6 background. The mVEGF(-/-) mice had an ~60% and ~50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF(-/-) mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF(-/-) mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035

  14. Extraocular muscle injury during endoscopic sinus surgery: an ophthalmologic perspective.

    PubMed

    Park, K-A; Oh, S Y

    2016-05-01

    PurposeThe purpose of this study is to describe the clinical characteristics and treatment results of medial rectus muscle (MR) transection incurred during endoscopic sinus surgery.MethodsThis retrospective study included 16 patients with MR transection incurred during endoscopic sinus surgery between 1994 and 2015. The operative notes of the surgical procedure, the pattern of strabismus, the type of muscle injury, the type of corrective strabismus surgery, and the surgical outcomes were reviewed.ResultsNine patients had partial resection of MR and seven patients had complete transection of MR, resulting from an injury incurred during endoscopic sinus surgery. Three of the nine patients with partial resection injury were initially diagnosed as complete resection and subsequently re-diagnosed as partial resection in a review of the images during this study. Five of the nine patients with partial MR resection underwent only simple recession/resection surgery. Patients with complete MR transection underwent muscle transposition or globe fixation surgeries and often multiple operations were required.ConclusionsThe results of this study showed that the treatment strategies could vary depending on the nature of muscle injury. In cases with complete transection, muscle transposition or globe fixation surgeries are often required, with multiple operations. However, partial muscle resection with only simple recession/resection surgery shows a favorable outcome in many cases. The use of proper imaging techniques, a thorough review of the images with various planes, and close follow-up are important for determining the nature of the muscle injury. PMID:26892024

  15. Understanding and misunderstanding extraocular muscle pulleys.

    PubMed

    Miller, Joel M

    2007-01-01

    As evidence has mounted for the critical role of extraocular muscle (EOM) pulleys in normal ocular motility and disease, opposition to the notion has grown more strident. We review the stages through which pulley theory has developed, distinguishing passive, coordinated, weak differential, and strong differential pulley theories and focusing on points of controversy. There is overwhelming evidence that much of the eye's kinematics, once thought to require brainstem coordination of EOM innervations, is determined by orbital biomechanics. The main criticisms of pulley theory only apply to the strong differential theory, abandoned in 2002. Critiques of the notion of dual EOM insertions are shown to be mistaken. The role of smooth muscle and the issue of rotational noncommutativity are clarified. We discuss how pulley sleeves can be stabilized as required by the theory, noting that more work needs to be done in specifying the tissues involved. PMID:17997665

  16. Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo.

    PubMed

    Rana, Kesha; Chiu, Maria W S; Russell, Patricia K; Skinner, Jarrod P; Lee, Nicole K L; Fam, Barbara C; Zajac, Jeffrey D; MacLean, Helen E

    2016-08-01

    The aim of this study was to investigate the direct muscle cell-mediated actions of androgens by comparing two different mouse lines. The cre-loxP system was used to delete the DNA-binding activity of the androgen receptor (AR) in mature myofibers (MCK mAR(ΔZF2)) in one model and the DNA-binding activity of the AR in both proliferating myoblasts and myofibers (α-actin mAR(ΔZF2)) in another model. We found that hind-limb muscle mass was normal in MCK mAR(ΔZF2) mice and that relative mass of only some hind-limb muscles was reduced in α-actin mAR(ΔZF2) mice. This suggests that myoblasts and myofibers are not the major cellular targets mediating the anabolic actions of androgens on male muscle during growth and development. Levator ani muscle mass was decreased in both mouse lines, demonstrating that there is a myofiber-specific effect in this unique androgen-dependent muscle. We found that the pattern of expression of genes including c-myc, Fzd4 and Igf2 is associated with androgen-dependent changes in muscle mass; therefore, these genes are likely to be mediators of anabolic actions of androgens. Further research is required to identify the major targets of androgen actions in muscle, which are likely to include indirect actions via other tissues. PMID:27402875

  17. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training?

    PubMed Central

    2015-01-01

    Abstract Respiratory and limb muscle dysfunction is emerging as an important pathophysiological abnormality in pulmonary arterial hypertension (PAH). Muscle abnormalities appear to occur frequently and promote dyspnea, fatigue, and exercise limitation in patients with PAH. Preliminary data suggest that targeted muscle training may be of benefit, although further evidence is required to consolidate these findings into specific recommendations for exercise training in patients with PAH. This article reviews the current evidence on prevalence, risk factors, and implications of respiratory and limb muscle dysfunction in patients with PAH. It also reviews the impact of exercise rehabilitation on morphologic, metabolic, and functional muscle profile and outcomes in PAH. Future research priorities are highlighted. PMID:26401245

  18. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  19. Skeletal muscle adaptations and muscle genomics of performance horses.

    PubMed

    Rivero, José-Luis L; Hill, Emmeline W

    2016-03-01

    Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in muscle growth, muscle contraction and specific metabolic pathways have been found to be functionally relevant for the early performance evaluation of elite athletic horses. The candidate genes discussed in this review are important for a healthy individual to improve performance. However, muscle performance limiting conditions are widespread in horses and many of these conditions are also genetically influenced. PMID:26831154

  20. Mentalis muscle related reflexes.

    PubMed

    Gündüz, Ayşegül; Uyanık, Özlem; Ertürk, Özdem; Sohtaoğlu, Melis; Kızıltan, Meral Erdemir

    2016-05-01

    The mentalis muscle (MM) arises from the incisive fossa of the mandible, raises and protrudes the lower lip. Here, we aim to characterize responses obtained from MM by supraorbital and median electrical as well as auditory stimuli in a group of 16 healthy volunteers who did not have clinical palmomental reflex. Reflex activities were recorded from the MM and orbicularis oculi (O.oc) after supraorbital and median electrical as well as auditory stimuli. Response rates over MM were consistent after each stimulus, however, mean latencies of MM response were longer than O.oc responses by all stimulation modalities. Shapes and amplitudes of responses from O.oc and MM were similar. Based on our findings, we may say that MM motoneurons have connections with trigeminal, vestibulocochlear and lemniscal pathways similar to other facial muscles and electrophysiological recording of MM responses after electrical and auditory stimulation is possible in healthy subjects. PMID:26721248

  1. Piriformis muscle syndrome.

    PubMed

    Kuncewicz, Elzbieta; Gajewska, Ewa; Sobieska, Magdalena; Samborski, Włodzimierz

    2006-01-01

    Sciatica is characterized by radiating pain from the sacro-lumbar region to the buttocks and down to the lower limb. The causes of sciatica usually relate to degenerative changes in the spine and lesions to the intervertebral discs. Secondary symptomatic sciatica may by caused by metastases to the vertebra, tuberculosis of the spine, tumors located inside the vertebral channel, or entrapment of the sciatic nerve in the piriformis muscle. The piriformis syndrome is primarily caused by fall injury, but other causes are possible, including pyomyositis, dystonia musculorum deformans, and fibrosis after deep injections. Secondary causes like irritation of the sacroiliac joint or lump near the sciatic notch have been described. In the general practice the so-called posttraumatic piriformis muscle syndrome is common. The right treatment can be started following a thorough investigation into the cause of symptoms. PMID:17385355

  2. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  3. Hyperammonemia results in reduced muscle function independent of muscle mass.

    PubMed

    McDaniel, John; Davuluri, Gangarao; Hill, Elizabeth Ann; Moyer, Michelle; Runkana, Ashok; Prayson, Richard; van Lunteren, Erik; Dasarathy, Srinivasan

    2016-02-01

    The mechanism of the nearly universal decreased muscle strength in cirrhosis is not known. We evaluated whether hyperammonemia in cirrhosis causes contractile dysfunction independent of reduced skeletal muscle mass. Maximum grip strength and muscle fatigue response were determined in cirrhotic patients and controls. Blood and muscle ammonia concentrations and grip strength normalized to lean body mass were measured in the portacaval anastomosis (PCA) and sham-operated pair-fed control rats (n = 5 each). Ex vivo contractile studies in the soleus muscle from a separate group of Sprague-Dawley rats (n = 7) were performed. Skeletal muscle force of contraction, rate of force development, and rate of relaxation were measured. Muscles were also subjected to a series of pulse trains at a range of stimulation frequencies from 20 to 110 Hz. Cirrhotic patients had lower maximum grip strength and greater muscle fatigue than control subjects. PCA rats had a 52.7 ± 13% lower normalized grip strength compared with control rats, and grip strength correlated with the blood and muscle ammonia concentrations (r(2) = 0.82). In ex vivo muscle preparations following a single pulse, the maximal force, rate of force development, and rate of relaxation were 12.1 ± 3.5 g vs. 6.2 ± 2.1 g; 398.2 ± 100.4 g/s vs. 163.8 ± 97.4 g/s; -101.2 ± 22.2 g/s vs. -33.6 ± 22.3 g/s in ammonia-treated compared with control muscle preparation, respectively (P < 0.001 for all comparisons). Tetanic force, rate of force development, and rate of relaxation were depressed across a range of stimulation from 20 to 110 Hz. These data provide the first direct evidence that hyperammonemia impairs skeletal muscle strength and increased muscle fatigue and identifies a potential therapeutic target in cirrhotic patients. PMID:26635319

  4. [Myokines - muscle tissue hormones].

    PubMed

    Stránská, Zuzana; Svačina, Štěpán

    2015-04-01

    Physical inactivity is demonstrably related to the manifestation of chronic diseases which significantly modify the quality and prognosis of life in a negative way. The benefits of exercise are surely mediated by many pathophysiological mechanisms interrelated in varying degrees, which have not yet been fully examined in their complexity. In the late 20th century it was positively proven that a working striated muscle really regulates the metabolic and physiological response in the other organs. These involve several hundred substances with autocrine, paracrine and endocrine effects. These proteins and peptides, if released into the blood stream, substantially affect the metabolism of distant organs. They were classified as "myokines" (cytokines produced by myocytes). The identified myokines include e.g. IL4, IL6, IL7, IL15, myostatin, LIF (leukemia inhibitory factor), BDNF (brain-derived neurotrophic factor), IGF1 (insulin-like growth factor), FGF2 (fibroblast growth factor 2), FGF21, FSTL1 (follistatin-related protein 1), irisin, EPO (erythropoetin) and BAIBA (β-aminoisobutyric acid). Myokines have first of all an immunoregulatory role in the human body. Another important effect of myokines is, coincidentally also in the interaction with adipose tissue, the regulation of energy homeostasis. They also affect the growth of muscle fibres and their regeneration, stimulate angiogenesis, they are involved in the regulation of glucose metabolism and have a proven effect on lipids. Considering their diverse function, myokines present a prospective therapeutic goal in the treatment of disorders of muscle growth and regeneration as well as obesity. Another recent research moves toward uncovering of the "myokine resistance" as a result of long-term muscle inactivity and its association with chronic subclinical inflammation. PMID:25894270

  5. Muscle paralysis in thyrotoxicosis.

    PubMed

    Siddiqui, Fraz Anwar; Sheikh, Aisha

    2015-01-01

    Thyrotoxic periodic paralysis (TPP) is a condition characterised by muscle paralysis due to hypokalaemia usually secondary to thyrotoxicosis. We report a case of a 31-year-old man with no known comorbidities who presented to a tertiary healthcare unit with a 1-month history of difficulty in breathing, palpitations, weight loss and hoarseness of voice. On examination, his thyroid gland was palpable and fine hand tremors were present. An initial provisional diagnosis of hyperthyroidism was made. Three months after initial presentation, the patient presented in emergency with severe muscle pain and inability to stand. Laboratory results revealed hypokalaemia. All the symptoms reverted over the next few hours on administration of intravenous potassium. A diagnosis of TTP was established. After initial presentation, the patient was treated with carbimazole and propranolol. Once he was euthyroid, radioactive iodine ablation therapy (15 mCi) was carried out as definitive therapy, after which the patient's symptoms resolved; he is currently doing fine on levothyroxine replacement and there has been no recurrence of muscle paralysis. PMID:26025973

  6. Dietary protein and muscle in older persons

    PubMed Central

    Paddon-Jones, Douglas; Leidy, Heather

    2014-01-01

    Purpose of Review To highlight recent advances in nutrition and protein research that have the potential to improve health outcomes and status in aging adults. Recent Findings The beneficial effects of dietary protein on muscle health in older adults continue to be refined. Recent research has bolstered support for moderately increasing protein consumption beyond the current RDA by adopting a meal-based approach in lieu of a less specific daily recommendation. Results from muscle protein anabolism, appetite regulation and satiety research support that contention that meeting a protein threshold (approximately 30 g/meal) represents a promising strategy for middle-aged and older adults concerned with maintaining muscle mass while controlling body fat. Summary Optimizing dietary protein intake to improve health requires a detailed consideration of topics including muscle protein anabolism, appetite control and satiety. While each area of research continues to advance independently, recent collaborative and translational efforts have highlighted broad, translational consistencies related to the daily distribution and quantity of dietary protein. PMID:24310053

  7. Histochemical study of posterior cricoarytenoid muscle reinnervation by a nerve-muscle pedicle in the cat.

    PubMed

    Fata, J J; Malmgren, L T; Gacek, R R; Dum, R; Woo, P

    1987-01-01

    Reinnervation of the posterior cricoarytenoid (PCA) muscle with a nerve-muscle pedicle (NMP) has been proposed for patients with bilateral abductor vocal cord paralysis. Since its success has been controversial, a glycogen depletion histochemical technique was used to examine reinnervation. An ansa cervicalis NMP was implanted into the denervated PCA in nine cats. Eight months later, vocal cord activity was evaluated. The NMP nerve was stimulated extensively in seven cats (experimental group). Optical densities of NMP-supplied PCA muscle fibers from experimental and control groups were compared to detect differences in glycogen content. The results demonstrated quantitative evidence of reinnervation in two experimental animals. Electrical stimulation of the NMP produced abduction in one of these two animals, but was never observed during spontaneous respiration or airway occlusion. These observations indicate that reinnervation can occur but abduction requires electrical stimulation. The NMP technique may be more successful with an electrical pacer. PMID:3674642

  8. Human skeletal muscle xenograft as a new preclinical model for muscle disorders.

    PubMed

    Zhang, Yuanfan; King, Oliver D; Rahimov, Fedik; Jones, Takako I; Ward, Christopher W; Kerr, Jaclyn P; Liu, Naili; Emerson, Charles P; Kunkel, Louis M; Partridge, Terence A; Wagner, Kathryn R

    2014-06-15

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. PMID:24452336

  9. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  10. Increased excitability of acidified skeletal muscle: role of chloride conductance.

    PubMed

    Pedersen, Thomas H; de Paoli, Frank; Nielsen, Ole B

    2005-02-01

    Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl- currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K(+)-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 +/- 151 to 938 +/- 64 microS/cm2, P < 0.01) but not with changes in potassium conductance (405 +/- 20 to 455 +/- 30 microS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl- or by blocking the major muscle Cl- channel, ClC-1, with 30 microM 9-AC. It is concluded that recovery of excitability in K(+)-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl- currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl- channels is important for maintenance of excitability in working muscle. PMID:15684096

  11. Serum albumin and muscle measures in a cohort of healthy young and old participants.

    PubMed

    Reijnierse, E M; Trappenburg, M C; Leter, M J; Sipilä, S; Stenroth, L; Narici, M V; Hogrel, J Y; Butler-Browne, G; McPhee, J S; Pääsuke, M; Gapeyeva, H; Meskers, C G M; Maier, A B

    2015-10-01

    Consensus on clinically valid diagnostic criteria for sarcopenia requires a systematical assessment of the association of its candidate measures of muscle mass, muscle strength, and physical performance on one side and muscle-related clinical parameters on the other side. In this study, we systematically assessed associations between serum albumin as a muscle-related parameter and muscle measures in 172 healthy young (aged 18-30 years) and 271 old participants (aged 69-81 year) from the European MYOAGE study. Muscle measures included relative muscle mass, i.e., total- and appendicular lean mass (ALM) percentage, absolute muscle mass, i.e., ALM/height(2) and total lean mass in kilograms, handgrip strength, and walking speed. Muscle measures were standardized and analyzed in multivariate linear regression models, stratified by age. Adjustment models included age, body composition, C-reactive protein and lifestyle factors. In young participants, serum albumin was positively associated with lean mass percentage (p = 0.007) and with ALM percentage (p = 0.001). In old participants, serum albumin was not associated with any of the muscle measures. In conclusion, the association between serum albumin and muscle measures was only found in healthy young participants and the strongest for measures of relative muscle mass. PMID:26310888

  12. Nutraceutical effects of branched-chain amino acids on skeletal muscle.

    PubMed

    Shimomura, Yoshiharu; Yamamoto, Yuko; Bajotto, Gustavo; Sato, Juichi; Murakami, Taro; Shimomura, Noriko; Kobayashi, Hisamine; Mawatari, Kazunori

    2006-02-01

    BCAA catabolism in skeletal muscle is regulated by the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, located at the second step in the BCAA catabolic pathway. The activity of the BCKDH complex is regulated by a phosphorylation/dephosphorylation cycle. Almost all of BCKDH complex in skeletal muscle under normal and resting conditions is in an inactive/phosphorylated state, which may contribute to muscle protein synthesis and muscle growth. Exercise activates the muscle BCKDH complex, resulting in enhanced BCAA catabolism. Therefore, exercise may increase the BCAA requirement. It has been reported that BCAA supplementation before exercise attenuates the breakdown of muscle proteins during exercise in humans and that leucine strongly promotes protein synthesis in skeletal muscle in humans and rats, suggesting that a BCAA supplement may attenuate muscle damage induced by exercise and promote recovery from the damage. We have examined the effects of BCAA supplementation on delayed-onset muscle soreness (DOMS) and muscle fatigue induced by squat exercise in humans. The results obtained showed that BCAA supplementation prior to squat exercise decreased DOMS and muscle fatigue occurring for a few days after exercise. These findings suggest that BCAAs may be useful for muscle recovery following exercise. PMID:16424141

  13. Mechanics of Vascular Smooth Muscle.

    PubMed

    Ratz, Paul H

    2015-01-01

    Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM. PMID:26756629

  14. Muscle-specific microRNAs in skeletal muscle development.

    PubMed

    Horak, Martin; Novak, Jan; Bienertova-Vasku, Julie

    2016-02-01

    Proper muscle function constitutes a precondition for good heath and an active lifestyle during an individual's lifespan and any deviations from normal skeletal muscle development and its functions may lead to numerous health conditions including e.g. myopathies and increased mortality. It is thus not surprising that there is an increasing need for understanding skeletal muscle developmental processes and the associated molecular pathways, especially as such information could find further uses in therapy. The understanding of complex skeletal muscle developmental networks was broadened with the discovery of microRNA (miRNA) molecules. MicroRNAs are evolutionary conserved small non-coding RNAs capable of negatively regulating gene expression on a post-transcriptional level by means of miRNA-mRNA interaction. Several miRNAs expressed exclusively in muscle have been labeled myomiRs. MyomiRs represent an integral part of skeletal muscle development, i.e. playing a significant role during skeletal muscle proliferation, differentiation and regeneration. The purpose of this review is to provide a summary of current knowledge regarding the involvement of myomiRs in the individual phases of myogenesis and other aspects of skeletal muscle biology, along with an up-to-date list of myomiR target genes and their functions in skeletal muscle and miRNA-related therapeutic approaches and future prospects. PMID:26708096

  15. Rippling muscle disease in childhood.

    PubMed

    Schara, Ulrike; Vorgerd, Matthias; Popovic, Nikola; Schoser, Benedikt G H; Ricker, Kenneth; Mortier, Wilhelm

    2002-07-01

    Rippling muscle disease is a rare autosomal dominant disorder first described in 1975. Recently, it could be classified as a caveolinopathy; in European families, mutations in the caveolin-3 gene were revealed as causing this disease. Although clinical symptoms were almost all described in adulthood, we are now reporting clinical data of seven children with rippling muscle disease owing to mutations in the caveolin-3 gene. Initial symptoms were frequent falls, inability to walk on heels, tiptoe walking with pain and a warm-up phenomenon, calf hypertrophy, and an elevated serum creatine kinase level. Percussion-/pressure-induced rapid contractions, painful muscle mounding, and rippling could be observed even in early childhood. The diagnosis can be confirmed by molecular genetic analysis. Muscle biopsy must be considered in patients without muscle weakness or mechanical hyperirritability to differentiate between rippling muscle disease and limb-girdle muscular dystrophy 1C. PMID:12269726

  16. Swimming muscles power suction feeding in largemouth bass

    PubMed Central

    Camp, Ariel L.; Roberts, Thomas J.; Brainerd, Elizabeth L.

    2015-01-01

    Most aquatic vertebrates use suction to capture food, relying on rapid expansion of the mouth cavity to accelerate water and food into the mouth. In ray-finned fishes, mouth expansion is both fast and forceful, and therefore requires considerable power. However, the cranial muscles of these fishes are relatively small and may not be able to produce enough power for suction expansion. The axial swimming muscles of these fishes also attach to the feeding apparatus and have the potential to generate mouth expansion. Because of their large size, these axial muscles could contribute substantial power to suction feeding. To determine whether suction feeding is powered primarily by axial muscles, we measured the power required for suction expansion in largemouth bass and compared it to the power capacities of the axial and cranial muscles. Using X-ray reconstruction of moving morphology (XROMM), we generated 3D animations of the mouth skeleton and created a dynamic digital endocast to measure the rate of mouth volume expansion. This time-resolved expansion rate was combined with intraoral pressure recordings to calculate the instantaneous power required for suction feeding. Peak expansion powers for all but the weakest strikes far exceeded the maximum power capacity of the cranial muscles. The axial muscles did not merely contribute but were the primary source of suction expansion power and generated up to 95% of peak expansion power. The recruitment of axial muscle power may have been crucial for the evolution of high-power suction feeding in ray-finned fishes. PMID:26100863

  17. Swimming muscles power suction feeding in largemouth bass.

    PubMed

    Camp, Ariel L; Roberts, Thomas J; Brainerd, Elizabeth L

    2015-07-14

    Most aquatic vertebrates use suction to capture food, relying on rapid expansion of the mouth cavity to accelerate water and food into the mouth. In ray-finned fishes, mouth expansion is both fast and forceful, and therefore requires considerable power. However, the cranial muscles of these fishes are relatively small and may not be able to produce enough power for suction expansion. The axial swimming muscles of these fishes also attach to the feeding apparatus and have the potential to generate mouth expansion. Because of their large size, these axial muscles could contribute substantial power to suction feeding. To determine whether suction feeding is powered primarily by axial muscles, we measured the power required for suction expansion in largemouth bass and compared it to the power capacities of the axial and cranial muscles. Using X-ray reconstruction of moving morphology (XROMM), we generated 3D animations of the mouth skeleton and created a dynamic digital endocast to measure the rate of mouth volume expansion. This time-resolved expansion rate was combined with intraoral pressure recordings to calculate the instantaneous power required for suction feeding. Peak expansion powers for all but the weakest strikes far exceeded the maximum power capacity of the cranial muscles. The axial muscles did not merely contribute but were the primary source of suction expansion power and generated up to 95% of peak expansion power. The recruitment of axial muscle power may have been crucial for the evolution of high-power suction feeding in ray-finned fishes. PMID:26100863

  18. Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration.

    PubMed

    Bauchinger, U; Biebach, H

    2001-05-01

    Samples of flight and leg muscle tissue were taken from migratory garden warblers at three different stages of migration: (1) pre-flight: when birds face an extended flight phase within the next few days, (2) post-flight: when they have just completed an extended flight phase, and (3) recovery: when they are at the end of a stop-over period following an extended flight phase. The changes in body mass are closely related to the changes in flight (P<0.001) and leg muscle mass (P<0.001), suggesting that the skeletal muscles are involved in the protein metabolism associated with migratory flight. From pre- to post-flight, the flight and the leg muscle masses decrease by about 22%, but are restored to about 12% above the pre-flight masses during the recovery period. Biochemical analyses show that following flight a selective reduction occurred in the myofibrillar (contractile) component of the flight muscle (P<0.01). As this selective reduction accounts only for a minor part of the muscle mass changes, sarcoplasmic (non-contractile) and myofibrillar proteins of both the flight and leg muscle act as a protein source during long-distance migration. As a loss of leg muscle mass is additionally observed besides the loss in flight muscle mass, mass change seems not to be strictly associated with the mechanical power output requirements during flight. Whereas the specific content of sarcoplasmic proteins in the flight muscle is nearly twice as high as that in the leg muscle (P<0.001), the specific content of myofibrillar proteins differs only slightly (P < 0.05), being comparably low in both muscles. The ratio of non-contractile to contractile proteins in the flight muscle is one of the highest observed in muscles of a vertebrate. PMID:11409626

  19. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration

    PubMed Central

    Upadhyayula, Pavan; Chen, Robert Y.; Chooljian, Marc S.; Li, Ju; Kung, Sunny; Jiang, Kevin P.; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation, but systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin- a hormone best known for its role in lactation, parturition, and social behaviors - is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signaling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation throughactivation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle, but instead leads to premature sarcopenia. Considering that oxytocin is an FDA approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle aging. PMID:24915299

  20. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.

    PubMed

    Elabd, Christian; Cousin, Wendy; Upadhyayula, Pavan; Chen, Robert Y; Chooljian, Marc S; Li, Ju; Kung, Sunny; Jiang, Kevin P; Conboy, Irina M

    2014-01-01

    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social behaviours--is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signalling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation through activation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle but instead leads to premature sarcopenia. Considering that oxytocin is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle ageing. PMID:24915299

  1. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease.

    PubMed

    Almada, Albert E; Wagers, Amy J

    2016-05-01

    Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine. PMID:26956195

  2. The regulation and function of the striated muscle activator of rho signaling (STARS) protein

    PubMed Central

    Wallace, Marita A.; Lamon, Séverine; Russell, Aaron P.

    2012-01-01

    Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function. PMID:23248604

  3. Task, muscle and frequency dependent vestibular control of posture

    PubMed Central

    Forbes, Patrick A.; Siegmund, Gunter P.; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls. PMID:25620919

  4. Motor control deficits of orofacial muscles in cerebral palsy.

    PubMed Central

    Vaughan, C W; Neilson, P D; O'Dwyer, N J

    1988-01-01

    Voluntary control of the masseter and orbicularis oris superioris muscles was examined in able bodied and cerebral palsied subjects using visual tracking tasks. A smoothed measure of muscle activity (the full-wave rectified and low-pass filtered electromyogram) was presented as a marker on a computer display screen and the subjects could control the vertical position of the marker by voluntarily altering the level of isometric contraction of one of the muscles. A target marker was also displayed on the screen and the subjects were required to follow or "track" the irregular movements of this target with the response marker. Their success in aligning the response marker with the target was analysed for these orofacial muscles. The masseter is influenced by muscle spindle based reflexes, while the orbicularis oris superioris lacks such reflex control. The cerebral palsied subjects displayed similarly poor control over both muscles, implying that their voluntary motor deficits are not related to abnormal muscle spindle based reflexes. It is suggested that the impairment may be related to perceptual-motor integration. PMID:3379427

  5. Beneficial cilostazol therapeutic effects in mdx dystrophic skeletal muscle.

    PubMed

    Hermes, Túlio de Almeida; Macedo, Aline Barbosa; Fogaça, Aline Reis; Moraes, Luis Henrique Rapucci; de Faria, Felipe Meira; Kido, Larissa Akemi; Cagnon, Valéria Helena Alves; Minatel, Elaine

    2016-02-01

    This study evaluated the possible protective effects of cilostazol against myonecrosis in dystrophic diaphragm muscle in vivo, focusing on oxidative stress, the inflammatory response and angiogenesis. Young mdx mice, the experimental animal for Duchenne muscular dystrophy, received cilostazol for 14 days. A second group of mdx mice and a control group of C57BL/10 mice received a saline solution. In the mdx mice, cilostazol treatment was associated with reduced loss of muscle strength (-34.4%), decreased myonecrosis, reduced creatine kinase levels (-63.3%) and muscle fibres stained for immunoglobulin G in dystrophic diaphragm muscle (-81.1%), and a reduced inflammatory response, with a decreased inflammatory area (-22%), macrophage infiltration (-44.9%) and nuclear factor-κB (-24%) and tumour necrosis factor-α (-48%) content in dystrophic diaphragm muscle. Furthermore, cilostazol decreased oxidative stress and attenuated reactive oxygen species production (-74%) and lipid peroxidation (-17%) in dystrophic diaphragm muscle, and promoted the up-regulation of angiogenesis, increasing the number of microvessels (15%). In conclusion, the present results show that cilostazol has beneficial effects in dystrophic muscle. More research into the potential of cilostazol as a novel therapeutic agent for the treatment of dystrophinopathies is required. PMID:26639107

  6. Human jaw muscle motor behaviour. I. Motor drive.

    PubMed

    Hellsing, G

    1987-01-01

    Jaw muscle motor behaviour, however complicated, has important implications for the every day dental practice. In recent years the understanding of jaw and other skeletal muscle function has increased considerably. Direct recording of primary afferent discharge in conscious human beings and animals during normal function has caused radical changes of the concepts of muscle receptor function. Central pattern generators at segmental levels and suprasegmental programming centres are important mechanisms behind voluntary and automatic movements of different kinds. The most important proprioceptive function is probably to provide reassurance of correct movement pattern, to adjust the central programming to environmental changes and to directly influence slow movements requiring precision. Muscle spindle receptors contribute to mandibular kinesthesia. Muscle spindles are rarely present in jaw opening muscles. Despite this fact an excitatory reflex similar to the stretch reflex but with longer latency has been demonstrated. Further on a reciprocal organisation with antagonist inhibition has been shown to exist between jaw openers and closers. Motor behaviour of jaw and limb muscles thus seem to have many characteristics in common. PMID:2964735

  7. Microfluidic devices for construction of contractile skeletal muscle microtissues.

    PubMed

    Shimizu, Kazunori; Araki, Hiroyuki; Sakata, Kohei; Tonomura, Wataru; Hashida, Mitsuru; Konishi, Satoshi

    2015-02-01

    Cell-culture microchips mimicking tissue/organ-specific functions are required as alternatives to animal testing for drug discovery and disease models. Although three-dimensional (3D) cell culture microfluidic devices can create more biologically relevant cellular microenvironments and higher throughput analysis platforms of cell behavior than conventional techniques, devices for skeletal muscle cells have not been developed. In the present study, we aimed to develop microfluidic devices for 3D cultures of skeletal muscle cells. Skeletal muscle cells mixed with a collagen type-I solution was introduced into the microchannel for cells (MC-C) and was gelated. Then, the medium was introduced into the microchannel for medium (MC-M). During this process, connecting microchannels (Con-MCs) prevented leakage of the collagen solution mixed with cells from MC-C to MC-M and supplied the nutrients from the medium in MC-M to the cells in MC-C. Skeletal muscle microtissues cultured in the microchannel for a week consisted of myotubes were confirmed by histological analysis and immunofluorescence staining. The skeletal muscle microtissues in the microchannel contracted in response to externally applied electrical stimulation (1 and 50 Hz). These results indicate that the functional skeletal muscle microtissues were constructed in the microchannel. Thus, the microfluidic device for culturing 3D skeletal muscle microtissues presented in this study has a potential to be used for drug discovery and toxicological tests. PMID:25085533

  8. Muscle dysmorphia: current insights.

    PubMed

    Tod, David; Edwards, Christian; Cranswick, Ieuan

    2016-01-01

    Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people's beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples), which are largely confined to Western (North American, British, and Australian) males. Although much research has been undertaken since the term "muscle dysmorphia" entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base than currently exists. Future work will help clinicians assist a group of people whose quality of life and health are placed at risk by their muscular preoccupation. PMID:27536165

  9. Muscle dysmorphia: current insights

    PubMed Central

    Tod, David; Edwards, Christian; Cranswick, Ieuan

    2016-01-01

    Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples), which are largely confined to Western (North American, British, and Australian) males. Although much research has been undertaken since the term “muscle dysmorphia” entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base than currently exists. Future work will help clinicians assist a group of people whose quality of life and health are placed at risk by their muscular preoccupation. PMID:27536165

  10. Smooth Muscle Strips for Intestinal Tissue Engineering

    PubMed Central

    Walthers, Christopher M.; Lee, Min; Wu, Benjamin M.; Dunn, James C. Y.

    2014-01-01

    Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle. PMID:25486279

  11. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  12. Enhancement of skeletal muscle regeneration.

    PubMed

    Bischoff, R; Heintz, C

    1994-09-01

    We have studied the effect of adding extra satellite cells or soluble factors from crushed muscle on regeneration of minced fragments from rat tibialis muscle. The muscle mince was wrapped in an artificial epimysium to prevent adhesions and cell immigration from adjacent muscles. Regeneration was quantitatively assessed by electrophoretic determination of the muscle-specific form of creatine kinase. Control minces exhibited three periods of change in creatine kinase activity during a 7-week regeneration period. Activity fell rapidly during the first week, then rose gradually from 1-3 weeks and increased more rapidly from 3-7 weeks. To augment the original complement of myogenic cells, satellite cells were isolated from the contralateral muscle, purified by density gradient centrifugation, and expanded in culture for 3 days before adding to the muscle mince. The added cells resulted in a 3-fold enhancement of creatine kinase activity throughout the regeneration period. Soluble muscle extract incorporated into a collagen matrix also stimulated regeneration when added to muscle mince. The extract accelerated the rate of creatine kinase increase during the 1-3 week period beyond that observed in the control or cell augmented mince, suggesting that factors in the extract may facilitate revascularization or reinnervation. The specific activity of creatine kinase was increased in regenerates augmented with both cells and extract, indicating that the effects enhance primarily myogenic processes. PMID:7803846

  13. An electrooptical muscle contraction sensor.

    PubMed

    Chianura, Alessio; Giardini, Mario E

    2010-07-01

    An electrooptical sensor for the detection of muscle contraction is described. Infrared light is injected into the muscle, the backscattering is observed, and the contraction is detected by measuring the change, that occurs during muscle contraction, between the light scattered in the direction parallel and perpendicular to the muscle cells. With respect to electromyography and to optical absorption-based sensors, our device has the advantage of lower invasiveness, of lower sensitivity to electromagnetic noise and to movement artifacts, and of being able to distinguish between isometric and isotonic contractions. PMID:20490943

  14. Muscle coordination: the discussion continues

    PubMed

    Prilutsky

    2000-01-01

    In this response, the major criticisms of the target article are addressed. Terminology from the target article that may have caused some confusion is clarified. In particular, the tasks that have the basic features of muscle coordination, as identified in the target article, have been limited in scope. A new metabolic optimization criterion suggested by Alexander (2000) is examined for its ability to predict muscle coordination in walking. Issues concerning the validation of muscle force predictions, the rules of muscle coordination, and the role of directional constraints in coordination of two-joint muscles are discussed. It is shown in particular that even in one-joint systems, the forces predicted by the criterion of Crowninshield and Brand (1981) depend upon the muscle moment arms and the physiological cross-sectional areas in much more complex ways than either previously assumed in the target article, or incorrectly derived by Herzog and Ait-Haddou (2000). It is concluded that the criterion of Crowninshield and Brand qualitatively predicts the basic coordination features of the major one- and two-joint muscles in a number of highly skilled, repetitive motor tasks performed by humans under predictable conditions and little demands on stability and accuracy. A possible functional significance of such muscle coordination may be the minimization of perceived effort, muscle fatigue, and/or energy expenditure. PMID:10675817

  15. Free Flap Functional Muscle Transfers.

    PubMed

    Garcia, Ryan M; Ruch, David S

    2016-08-01

    Free functional muscle transfers remain a powerful reconstructive tool to restore upper extremity function when other options such as tendon or nerve transfers are not available. This reconstructive technique is commonly used for patients following trauma, ischemic contractures, and brachial plexopathies. Variable outcomes have been reported following free functional muscle transfers that are related to motor nerve availability and reinnervation. This article highlights considerations around donor motor nerve selection, dissection, and use of the gracilis muscle, and the surgical approach to performing a free functional muscle transfer to restore elbow flexion and/or digit flexion. PMID:27387083

  16. Muscle Stimulation Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.

  17. How human gait responds to muscle impairment in total knee arthroplasty patients: Muscular compensations and articular perturbations.

    PubMed

    Ardestani, Marzieh M; Moazen, Mehran

    2016-06-14

    Post-surgical muscle weakness is prevalent among patients who undergo total knee arthroplasty (TKA). We conducted a probabilistic multi-body dynamics (MBD) to determine whether and to what extent habitual gait patterns of TKA patients may accommodate strength deficits in lower extremity muscles. We analyzed muscular and articular compensations in response to various muscle impairments, and the minimum muscle strength requirements needed to preserve TKA gait patterns in its habitual status. Muscle weakness was simulated by reducing the strength parameter of muscle models in MBD analysis. Using impaired models, muscle and joint forces were calculated and compared versus those from baseline gait i.e. TKA habitual gait before simulating muscle weakness. Comparisons were conducted using a relatively new statistical approach for the evaluation of gait waveforms, i.e. Spatial Parameter Mapping (SPM). Principal component analysis was then conducted on the MBD results to quantify the sensitivity of every joint force component to individual muscle impairment. The results of this study contain clinically important, although preliminary, suggestions. Our findings suggested that: (1) hip flexor and ankle plantar flexor muscles compensated for hip extensor weakness; (2) hip extensor, hip adductor and ankle plantar flexor muscles compensated for hip flexor weakness; (3) hip and knee flexor muscles responded to hip abductor weakness; (4) knee flexor and hip abductor balanced hip adductor impairment; and (5) knee extensor and knee flexor weakness were compensated by hip extensor and hip flexor muscles. Future clinical studies are required to validate the results of this computational study. PMID:27063251

  18. Novel transcriptional profile in wrist muscles from cerebral palsy patients

    PubMed Central

    Smith, Lucas R; Pontén, Eva; Hedström, Yvette; Ward, Samuel R; Chambers, Henry G; Subramaniam, Shankar; Lieber, Richard L

    2009-01-01

    Background Cerebral palsy (CP) is an upper motor neuron disease that results in a progressive movement disorder. Secondary to the neurological insult, muscles from CP patients often become spastic. Spastic muscle is characterized by an increased resistance to stretch, but often develops the further complication of contracture which represents a prominent disability in children with CP. This study's purpose is to characterize alterations of spastic muscle on the transcriptional level. Increased knowledge of spastic muscle may lead to novel therapies to improve the quality of life for children with CP. Method The transcriptional profile of spastic muscles were defined in children with cerebral palsy and compared to control patients using Affymetrix U133A chips. Expression data were verified using quantitative-PCR (QPCR) and validated with SDS-PAGE for select genes. Significant genes were determined using a 2 × 2 ANOVA and results required congruence between 3 preprocessing algorithms. Results CP patients clustered independently and 205 genes were significantly altered, covering a range of cellular processes. Placing gene expression in the context of physiological pathways, the results demonstrated that spastic muscle in CP adapts transcriptionally by altering extracellular matrix, fiber type, and myogenic potential. Extracellular matrix adaptations occur primarily in the basal lamina although there is increase in fibrillar collagen components. Fiber type is predominately fast compared to normal muscle as evidenced by contractile gene isoforms and decrease in oxidative metabolic gene transcription, despite a paradoxical increased transcription of slow fiber pathway genes. We also found competing pathways of fiber hypertrophy with an increase in the anabolic IGF1 gene in parallel with a paradoxical increase in myostatin, a gene responsible for stopping muscle growth. We found evidence that excitation-contraction coupling genes are altered in muscles from patients with

  19. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    PubMed

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. PMID:27358404

  20. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    PubMed

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation. PMID:27125667

  1. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  2. Muscle analysis using pQCT, DXA and MRI.

    PubMed

    Erlandson, M C; Lorbergs, A L; Mathur, S; Cheung, A M

    2016-08-01

    Skeletal muscle is one of the larger organs of the body and is integrally involved in metabolic processes in both health and disease. The ability to accurately and precisely measure skeletal muscle structure is essential for understanding the changes that occur naturally over the lifespan as well as those observed in chronic disease, and in response to targeted interventions. Musculoskeletal imaging allows for the quantification of skeletal muscle mass and select modalities are also able to determine muscle quality. The purpose of this paper is to review peripheral quantitative computed tomography (pQCT), dual X-ray energy absorptiometry (DXA) and magnetic resonance imaging (MRI) techniques used to assess skeletal muscle size and quality in-vivo. Each modality is briefly described and the strengths and limitations are provided. No single imaging technique will be able to best address every clinical and research question of interest. Selecting the most appropriate imaging device for measuring skeletal muscle depends on access to technology, availability of expertise required for image acquisition and analysis, characteristics of the population, anatomical site of interest, and the level of structural detail required. PMID:27005009

  3. Defining feasible bounds on muscle activation in a redundant biomechanical task; practical implications of redundancy

    PubMed Central

    Sohn, M. Hongchul; McKay, J. Lucas; Ting, Lena H.

    2013-01-01

    Measured muscle activation patterns often vary significantly from musculoskeletal model predictions that use optimization to resolve redundancy. Although experimental muscle activity exhibits both inter- and intra-subject variability we lack adequate tools to quantify the biomechanical latitude that the nervous system has when selecting muscle activation patterns. Here, we identified feasible ranges of individual muscle activity during force production in a musculoskeletal model to quantify the degree to which biomechanical redundancy allows for variability in muscle activation patterns. In a detailed cat hindlimb model matched to the posture of three cats, we identified the lower and upper bounds on muscle activity in each of 31 muscles during static endpoint force production across different force directions and magnitudes. Feasible ranges of muscle activation were relatively unconstrained across force magnitudes such that only a few (0∼13%) muscles were found to be truly “necessary” (e.g. exhibited non-zero lower bounds) at physiological force ranges. Most muscles were “optional” having zero lower bounds, and frequently had “maximal” upper bounds as well. Moreover, “optional” muscles were never selected by optimization methods that either minimized muscle stress, or that scaled the pattern required for maximum force generation. Therefore, biomechanical constraints were generally insufficient to restrict or specify muscle activation levels for producing a force in a given direction, and many muscle patterns exist that could deviate substantially from one another but still achieve the task. Our approach could be extended to identify the feasible limits of variability in muscle activation patterns in dynamic tasks such as walking. PMID:23489436

  4. Protein metabolism and requirements.

    PubMed

    Biolo, Gianni

    2013-01-01

    Skeletal muscle adaptation to critical illness includes insulin resistance, accelerated proteolysis, and increased release of glutamine and the other amino acids. Such amino acid efflux from skeletal muscle provides precursors for protein synthesis and energy fuel to the liver and to the rapidly dividing cells of the intestinal mucosa and the immune system. From these adaptation mechanisms, severe muscle wasting, glutamine depletion, and hyperglycemia, with increased patient morbidity and mortality, may ensue. Protein/amino acid nutrition, through either enteral or parenteral routes, plays a pivotal role in treatment of metabolic abnormalities in critical illness. In contrast to energy requirement, which can be accurately assessed by indirect calorimetry, methods to determine individual protein/amino acid needs are not currently available. In critical illness, a decreased ability of protein/amino acid intake to promote body protein synthesis is defined as anabolic resistance. This abnormality leads to increased protein/amino acid requirement and relative inefficiency of nutritional interventions. In addition to stress mediators, immobility and physical inactivity are key determinants of anabolic resistance. The development of mobility protocols in the intensive care unit should be encouraged to enhance the efficacy of nutrition. In critical illness, protein/amino acid requirement has been defined as the intake level associated with the lowest rate of catabolism. The optimal protein-sparing effects in patients receiving adequate energy are achieved when protein/amino acids are administered at rates between 1.3 and 1.5 g/kg/day. Extra glutamine supplementation is required in conditions of severe systemic inflammatory response. Protein requirement increases during hypocaloric feeding and in patients with acute renal failure on continuous renal replacement therapy. Evidence suggests that receiving adequate protein/amino acid intake may be more important than achieving

  5. The Interscutularis Muscle Connectome

    PubMed Central

    Lu, Ju; Tapia, Juan Carlos; White, Olivia L; Lichtman, Jeff W

    2009-01-01

    The complete connectional map (connectome) of a neural circuit is essential for understanding its structure and function. Such maps have only been obtained in Caenorhabditis elegans. As an attempt at solving mammalian circuits, we reconstructed the connectomes of six interscutularis muscles from adult transgenic mice expressing fluorescent proteins in all motor axons. The reconstruction revealed several organizational principles of the neuromuscular circuit. First, the connectomes demonstrate the anatomical basis of the graded tensions in the size principle. Second, they reveal a robust quantitative relationship between axonal caliber, length, and synapse number. Third, they permit a direct comparison of the same neuron on the left and right sides of the same vertebrate animal, and reveal significant structural variations among such neurons, which contrast with the stereotypy of identified neurons in invertebrates. Finally, the wiring length of axons is often longer than necessary, contrary to the widely held view that neural wiring length should be minimized. These results show that mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form. This variability may arise from the dominant role of synaptic competition in establishing the final circuit. PMID:19209956

  6. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  7. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  8. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. PMID:27402344

  9. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  10. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  11. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle.

    PubMed

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian; Schjerling, Peter; Vernet, Erik; Steinberg, Gregory R; Richter, Erik A; Jørgensen, Sebastian B

    2015-07-15

    Members of the IL-6 family, IL-6 and ciliary neurotrophic factor (CNTF), have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well characterized. Effects of LIF on skeletal muscle glucose uptake and palmitate oxidation and signaling were investigated in ex vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat-fed mice. Inhibitors were used to investigate involvement of specific signaling pathways. LIF increased muscle glucose uptake in dose (50-5,000 pM/l) and time-dependent manners with maximal effects at the 30-min time point. LIF increased Akt Ser(473) phosphorylation (P) in soleus and EDL, whereas AMPK Thr(172) P was unaffected. Incubation with parthenolide abolished LIF-induced glucose uptake and STAT3 Tyr(705) P, whereas incubation with LY-294002 and wortmannin suppressed both basal and LIF-induced glucose uptake and Akt Ser(473) P, indicating that JAK and PI 3-kinase signaling is required for LIF-stimulated glucose uptake. Incubation with rapamycin and AZD8055 indicated that mammalian target of rapamycin complex (mTORC)2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin-resistant mice, whereas soleus developed LIF resistance. Lack of SOCS3 and AMPKα2 did not affect LIF-stimulated glucose uptake. In conclusion, LIF acutely increased muscle glucose uptake by a mechanism potentially involving the PI 3-kinase/mTORC2/Akt pathway and is not impaired in EDL muscle from obese insulin-resistant mice. PMID:25968579

  12. Caring for muscle spasticity or spasms

    MedlinePlus

    ... muscle tone - care; Increased muscle tension - care; Upper motor neuron syndrome - care; Muscle stiffness - care ... Krivickas LS. Motor neuron disease. In: Frontera, WR, Silver JK, eds. Essentials of Physical Medicine and Rehabilitation. 2nd ed. Philadelphia, PA: ...

  13. Infraspinatus muscle atrophy from suprascapular nerve compression.

    PubMed

    Cordova, Christopher B; Owens, Brett D

    2014-02-01

    Muscle weakness without pain may signal a nerve compression injury. Because these injuries should be identified and treated early to prevent permanent muscle weakness and atrophy, providers should consider suprascapular nerve compression in patients with shoulder muscle weakness. PMID:24463748

  14. Trichinella spiralis in human muscle (image)

    MedlinePlus

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked ... produce large numbers of larvae that migrate into muscle tissue. The cysts may cause muscle pain and ...

  15. Human skeletal muscle biochemical diversity.

    PubMed

    Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L

    2012-08-01

    The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability. PMID:22786631

  16. Human skeletal muscle biochemical diversity

    PubMed Central

    Tirrell, Timothy F.; Cook, Mark S.; Carr, J. Austin; Lin, Evie; Ward, Samuel R.; Lieber, Richard L.

    2012-01-01

    SUMMARY The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy – titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to ‘tune’ the protein's mechanotransduction capability. PMID:22786631

  17. Fuel-powered artificial muscles.

    PubMed

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J; Kozlov, Mikhail E; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J; Ferraris, John P; Macdiarmid, Alan G; Baughman, Ray H

    2006-03-17

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher. PMID:16543453

  18. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    muscles associated with producing a specific synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We conclude that generalization of function across postures does not arise from limb biomechanics or a single optimality criterion. Muscle synergies may reflect acquired motor solutions globally tuned for generalizability across biomechanical contexts, facilitating rapid motor adaptation. PMID:26869914

  19. Intermuscular pressure between synergistic muscles correlates with muscle force.

    PubMed

    Reinhardt, Lars; Siebert, Tobias; Leichsenring, Kay; Blickhan, Reinhard; Böl, Markus

    2016-08-01

    The purpose of the study was to examine the relationship between muscle force generated during isometric contractions (i.e. at a constant muscle-tendon unit length) and the intermuscular (between adjacent muscles) pressure in synergistic muscles. Therefore, the pressure at the contact area of the gastrocnemius and plantaris muscle was measured synchronously to the force of the whole calf musculature in the rabbit species Oryctolagus cuniculus Similar results were obtained when using a conductive pressure sensor, or a fibre-optic pressure transducer connected to a water-filled balloon. Both methods revealed a strong linear relationship between force and pressure in the ascending limb of the force-length relationship. The shape of the measured force-time and pressure-time traces was almost identical for each contraction (r=0.97). Intermuscular pressure ranged between 100 and 700 mbar (70,000 Pa) for forces up to 287 N. These pressures are similar to previous (intramuscular) recordings within skeletal muscles of different vertebrate species. Furthermore, our results suggest that the rise in intermuscular pressure during contraction may reduce the force production in muscle packages (compartments). PMID:27489217

  20. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  1. Bulk muscles, loose cables.

    PubMed

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  2. Drosophila Araucan and Caupolican Integrate Intrinsic and Signalling Inputs for the Acquisition by Muscle Progenitors of the Lateral Transverse Fate

    PubMed Central

    Carrasco-Rando, Marta; Tutor, Antonio S.; Prieto-Sánchez, Silvia; González-Pérez, Esther; Barrios, Natalia; Letizia, Annalisa; Martín, Paloma; Campuzano, Sonsoles; Ruiz-Gómez, Mar

    2011-01-01

    A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes araucan and caupolican as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as slouch and vestigial. In addition, we show that Caupolican-dependent slouch expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity. PMID:21811416

  3. Return to Play After Soleus Muscle Injuries

    PubMed Central

    Pedret, Carles; Rodas, Gil; Balius, Ramon; Capdevila, Lluis; Bossy, Mireia; Vernooij, Robin W.M.; Alomar, Xavier

    2015-01-01

    Background Soleus muscle injuries are common in different sports disciplines. The time required for recovery is often difficult to predict, and reinjury is common. The length of recovery time might be influenced by different variables, such as the involved part of the muscle. Hypothesis Injuries in the central aponeurosis have a worse prognosis than injuries of the lateral or medial aponeurosis as well as myofascial injuries. Study Design Case series; Level of evidence, 4. Methods A total of 61 high-level or professional athletes from several sports disciplines (soccer, tennis, track and field, basketball, triathlon, and field hockey) were reviewed prospectively to determine the recovery time for soleus muscle injuries. Clinical and magnetic resonance imaging evaluation was performed on 44 soleus muscle injuries. The association between the different characteristics of the 5 typical muscle sites, including the anterior and posterior myofascial and the lateral, central, and medial aponeurosis disruption, as well as the injury recovery time, were determined. Recovery time was correlated with age, sport, extent of edema, volume, cross-sectional area, and retraction extension or gap. Results Of the 44 patients with muscle injuries who were analyzed, there were 32 (72.7%) strains affecting the myotendinous junction (MT) and 12 (23.7%) strains of the myofascial junction. There were 13 injuries involving the myotendinous medial (MTM), 7 affecting the MT central (MTC), 12 the MT lateral (MTL), 8 the myofascial anterior (MFA), and 4 the myofascial posterior (MFP). The median recovery time (±SD) for all injuries was 29.1 ± 18.8 days. There were no statistically significant differences between the myotendinous and myofascial injuries regarding recovery time. The site with the worst prognosis was the MTC aponeurosis, with a mean recovery time of 44.3 ± 23.0 days. The site with the best prognosis was the MTL, with a mean recovery time of 19.2 ± 13.5 days (P < .05). There

  4. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    PubMed

    Baumert, Philipp; Lake, Mark J; Stewart, Claire E; Drust, Barry; Erskine, Robert M

    2016-09-01

    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage. PMID:27294501

  5. Quantitative model for predicting lymph formation and muscle compressibility in skeletal muscle during contraction and stretch

    PubMed Central

    Causey, Laura; Cowin, Stephen C.; Weinbaum, Sheldon

    2012-01-01

    Skeletal muscle is widely perceived as nearly incompressible despite the fact that blood and lymphatic vessels within the endomysial and perimysial spaces undergo significant changes in diameter and length during stretch and contraction. These fluid shifts between fascicle and interstitial compartments have proved extremely difficult to measure. In this paper, we propose a theoretical framework based on a space-filling hexagonal fascicle array to provide predictions of the displacement of blood and lymph into and out of the muscle’s endomysium and perimysium during stretch and contraction. We also use this model to quantify the distribution of blood and initial lymphatic (IL) vessels within a fascicle and its perimysial space using data for the rat spinotrapezius muscle. On average, there are 11 muscle fibers, 0.4 arteriole/venule pairs, and 0.2 IL vessels per fascicle. The model predicts that the blood volume in the endomysial space increases 24% and decreases 22% for a 20% contraction and stretch, respectively. However, these significant changes in blood volume in the endomysium produce a change of only ∼2% in fascicle cross-sectional area. In contrast, the entire muscle deviates from isovolumetry by 7% and 6% for a 20% contraction and stretch, respectively, largely attributable to the significantly larger blood volume changes that occur in the perimysial space. This suggests that arcade blood vessels in the perimysial space provide the primary pumping action required for the filling and emptying of ILs during muscular contraction and stretch. PMID:22615376

  6. Molecular Signaling in Muscle Plasticity

    NASA Technical Reports Server (NTRS)

    Epstein, Henry F.

    1999-01-01

    Extended spaceflight under microgravity conditions leads to significant atrophy of weight-bearing muscles. Atrophy and hypertrophy are the extreme outcomes of the high degree of plasticity exhibited by skeletal muscle. Stimuli which control muscle plasticity include neuronal, hormonal, nutritional, and mechanical inputs. The mechanical stimulus for muscle is directly related to the work or exercise against a load performed. Little or no work is performed by weight-bearing muscles under microgravity conditions. A major hypothesis is that focal adhesion kinase (FAK) which is associated with integrin at the adherens junctions and costa meres of all skeletal muscles is an integral part of the major mechanism for molecular signaling upon mechanical stimulation in all muscle fibers. Additionally, we propose that myotonic protein kinase (DMPK) and dystrophin (DYSTR) also participate in distinct mechanically stimulated molecular signaling pathways that are most critical in type I and type II muscle fibers, respectively. To test these hypotheses, we will use the paradigms of hindlimb unloading and overloading in mice as models for microgravity conditions and a potential exercise countermeasure, respectively, in mice. We expect that FAK loss-of-function will impair hypertrophy and enhance atrophy in all skeletal muscle fibers whereas DYSTR and DMPK loss-of-function will have similar but more selective effects on Type IT and Type I fibers, respectively. Gene expression will be monitored by muscle-specific creatine kinase M promoter-reporter construct activity and specific MRNA and protein accumulation in the soleus (type I primarily) and plantaris (type 11 primarily) muscles. With these paradigms and assays, the following Specific Project Aims will be tested in genetically altered mice: 1) identify the roles of DYSTR and its pathway; 2) evaluate the roles of the DMPK and its pathway; 3) characterize the roles of FAK and its pathway and 4) genetically analyze the mechanisms

  7. Modeling of the Skeletal Muscle Microcirculation

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Beth, Christophe; Salado, Jerome

    2004-11-01

    Numerical simulations of blood flow in a microvascular network require extensive modeling. This contribution focuses on the reconstruction of a complete network topology from microscopic images of rat skeletal muscle and skeletal muscle fascia. The bifurcating network is composed of a feeding arterial network, a collecting venous network, and bundles of capillaries. Multiple topologies of each network component are recontructed and statistical properties of the network, such as distributions of vessel diameters, vessel lengths, and branching patters are determined. Particular attention has been paid to venous vessel loops that are observed only in the muscle fascia. The flow in the microvessel network is then computed. In the simulations, the microvessels are distensible by pressure, and the arterioles are actively contractile. The blood has non-Newtonian apparent viscosity. Models of each of these properties have previously been determined and are used in the computations. The method of indefinite admittances is used to compute the flow in the network. The apparent viscosity is computed from the local hematocrit, which is found using a combination of breadth first search and Dykstra's algorithms. The computations allow the determination of additional properties of the network, such as flow velocities, shear stresses, and hematocrit.

  8. Jaw muscles of New World squirrels.

    PubMed

    Ball, S S; Roth, V L

    1995-06-01

    The jaw, suprahyoid, and extrinsic tongue muscles are described for eight species of New World squirrels, spanning more than an order of magnitude in body mass. Anatomical differences are discussed in the light of body size, natural history, and phylogeny. The relative sizes of different muscles, their orientations, and the shapes and positions of their areas of attachment vary but show few trends in relation to body size. The anatomical differences are likewise not readily explained by the mechanical requirements of the animals' diets, which are similar. The most marked anatomical differences occur in Sciurillus (the pygmy tree squirrel), as well as those genera--Glaucomys (the flying squirrel) and Tamias (the chipmunk)--that are taxonomically most distinct from the tree squirrels. Sciurillus is noteworthy for its unusually small temporalis and an anterior deep masseter that is oriented to assist in retraction of the jaw. Tamias has a more vertically oriented temporalis and greater inclination in the anterior masseter muscles than the other squirrels, features that may be associated with its large diastema and relatively posteriorly situated cheek teeth, which in turn may relate to its having cheek pouches. Our results form a valuable database of information to be used in further studies of functional morphology and phylogeny. PMID:7541086

  9. Evaluation of surgeon’s muscle fatigue during thoracoscopic pulmonary lobectomy using interoperative surface electromyography

    PubMed Central

    Yoon, Seung-Hyun; Jung, Myung-Chul

    2016-01-01

    Background The aim of this study was to document the physical stress experienced by a surgeon during thoracoscopic pulmonary lobectomy and mediastinal lymph node dissection for lung cancer by measuring the intraoperative electromyography (EMG). Methods Surface EMG was recorded during 12 cases of thoracoscopic lobectomy. During the operation, 16 channels of a wireless EMG were used to measure muscle activity and fatigue from the bilateral muscles of the splenius capitis (SC), upper trapezius (UT), middle deltoid (MD), flexor carpi radialis (FCR), extensor carpi radialis (ECR), lumbar erector spinae (LES), rectus femoralis (RF), and tibialis anterior (TA). The EMG signals were processed to collect the values of the root mean square for muscle activity and median frequency (MF) for muscle fatigue. Results All operations were completed without adverse events. The mean operating time was 99.16±35.15 minutes. During the operation, the mean muscle activity of all muscles was 21.91±12.85 mV. High muscle activity was observed in the bilateral FCR and ECR, whereas low muscle activity was observed in the bilateral SC and LES. The final MFs in the bilateral SC and LES were found to be decreased from the initial status, which implied increased muscle fatigue. The muscles of the right and left LES were significantly fatigued by up to 29% and 37% compared to their initial status (P=0.021 and P=0.007, respectively). The MFs of the bilateral LES decreased with time (an average decreases of 0.008/5 minutes, P=0.002 in right LES and 0.004/5 minutes, P=0.018 in left LES). Conclusions During thoracoscopic lobectomy, muscle fatigue was observed in muscles related to a static posture, such as the bilateral SC, UT, and ES. Further studies are required to investigate the ergonomic adjustments needed to reduce muscle fatigue in these static muscles. PMID:27293833

  10. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  11. Thermosensitivity of muscle: high-intensity thermal stimulation of muscle tissue induces muscle pain in humans.

    PubMed

    Graven-Nielsen, T; Arendt-Nielsen, L; Mense, S

    2002-04-15

    Small-calibre afferent units responding to thermal stimuli have previously been reported to exist in muscle. The question as to whether these receptors in humans mediate subjective thermal sensations from muscle remains unresolved. The aims of the present study were to determine in humans whether intramuscular injection of warm and cold isotonic saline elicits temperature sensations, muscle pain or any other sensations. In 15 subjects, no thermal sensations assessed on a temperature visual analogue scale (VAS) could be detected with intramuscular injections of isotonic saline (1.5 ml) into the anterior tibial muscle at temperatures ranging from 8 to 48 degrees C. The same subjects recorded strongly increasing scores on a temperature VAS when thermal stimuli in the same intensity range were applied to the skin overlying the muscle by a contact thermode. However, I.M. isotonic saline of 48 degrees C induced muscle pain with peak scores of 3.2 +/- 0.8 cm on a VAS scale ranging from 0 to 10 cm. Using the the McGill pain questionnaire a subgroup, of subjects qualitatively described the pain using the 'thermal hot' and 'dullness' word groups. Temperature measurements within the muscle during the stimulating injections showed that the time course of the pain sensation elicited by saline at 48 degrees C paralleled that of the intramuscular temperature and far outlasted the injection time. The present data show that high-intensity thermal stimulation of muscle is associated with muscle pain. High-threshold warm-sensitive receptors may mediate the pain following activation by temperatures of 48 degrees C or more. Taken together, the data indicate that thermosensation from a given volume of muscle is less potent than nociception. PMID:11956350

  12. The accommodative ciliary muscle function is preserved in older humans

    PubMed Central

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-01-01

    Presbyopia, the loss of the eye’s accommodation capability, affects all humans aged above 45–50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accommodation mechanism of the ciliary muscle are complicated to apply in the older subjects, as they typically require fixation stability during long measurement times and/or to have an ultrasound probe directly in contact with the eye. Instead, we used our own developed method based on high-speed recording of lens wobbling to study the ciliary muscle activity in a small group of pseudophakic subjects (around 80 years old). There was a significant activity of the muscle, clearly able to contract under binocular stimulation of accommodation. This supports a purely lenticular-based theory of presbyopia and it might stimulate the search for new solutions to presbyopia by making use of the remaining contraction force still presented in the aging eye. PMID:27151778

  13. Electrostatic forces in muscle and cylindrical gel systems.

    PubMed Central

    Millman, B M; Nickel, B G

    1980-01-01

    Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for k calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approximately 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems. PMID:7248458

  14. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  15. The accommodative ciliary muscle function is preserved in older humans.

    PubMed

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-01-01

    Presbyopia, the loss of the eye's accommodation capability, affects all humans aged above 45-50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accommodation mechanism of the ciliary muscle are complicated to apply in the older subjects, as they typically require fixation stability during long measurement times and/or to have an ultrasound probe directly in contact with the eye. Instead, we used our own developed method based on high-speed recording of lens wobbling to study the ciliary muscle activity in a small group of pseudophakic subjects (around 80 years old). There was a significant activity of the muscle, clearly able to contract under binocular stimulation of accommodation. This supports a purely lenticular-based theory of presbyopia and it might stimulate the search for new solutions to presbyopia by making use of the remaining contraction force still presented in the aging eye. PMID:27151778

  16. Differentiation of fast and slow muscle fibers by bioimpedance

    NASA Astrophysics Data System (ADS)

    Moreno, M.-V.; Khider, N.; Ribbe, E.; Damez, J.-L.

    2010-04-01

    The differentiation of fast and slow muscle fibers in vivo still requires constraining equipment (ergometer, biopsy ...) and invasive techniques. These fibers conduct the electrical current differently. Therefore the aim of this study is to see if it is possible to differentiate quickly, by bioimpedance, fast and slow fibers, and firstly muscles which are typical composed by slow or fast fibers. To do this, we used a multifrequency impedancemeter Z-Metrix® (BioparHom© Company, France). We collected the electrical characteristics (Longitudinal and Transversal, from 1 to 1000 kHz) for a population of 20 rats aged 70 days, on Soleus muscles (composed principally of slow fibers) and Extensor Digitroum Longus (EDL) muscles (composed principally of fast fibers). We compared the means of alpha (L/T), R (L/T) and X (L/T) with Wilcoxon tests. We obtained non significant differences between electrical data obtained on EDL and Soleus muscles, but we could see differences on graphics representation and with the example of one rat. Therefore, we can assume that differentiation, by bioimpedance, of muscles typed slow and fast fibers, could be possible.

  17. Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  18. Mechanical ventilation alone, and in the presence sepsis, induces peripheral skeletal muscle catabolism in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...

  19. A Simplified Method for Tissue Engineering Skeletal Muscle Organoids in Vitro

    NASA Technical Reports Server (NTRS)

    Shansky, Janet; DelTatto, Michael; Chromiak, Joseph; Vandenburgh, Herman

    1996-01-01

    Tissue-engineered three dimensional skeletal muscle organ-like structures have been formed in vitro from primary myoblasts by several different techniques. This report describes a simplified method for generating large numbers of muscle organoids from either primary embryonic avian or neonatal rodent myoblasts, which avoids the requirements for stretching and other mechanical stimulation.

  20. MUSCLE-SPECIFIC OVEREXPRESSION OF ID-1 IMPAIRS THE DEVELOPMENTAL ACCRETION OF MYOFIBRILLAR PROTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The onset of myofibrillar protein accretion in myotubes requires the activation of muscle-specific gene expression by bHLH muscle-specific transcription factors (MRFs). We wished to determine if variations in the relative abundance of MRFs influences the composition of proteins expressed during skel...

  1. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing. PMID:23100084

  2. Prioritization of skeletal muscle growth for emergence from hibernation.

    PubMed

    Hindle, Allyson G; Otis, Jessica P; Epperson, L Elaine; Hornberger, Troy A; Goodman, Craig A; Carey, Hannah V; Martin, Sandra L

    2015-01-15

    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding. PMID:25452506

  3. Prioritization of skeletal muscle growth for emergence from hibernation

    PubMed Central

    Hindle, Allyson G.; Otis, Jessica P.; Epperson, L. Elaine; Hornberger, Troy A.; Goodman, Craig A.; Carey, Hannah V.; Martin, Sandra L.

    2015-01-01

    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October–February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding. PMID:25452506

  4. Dimensionality of joint torques and muscle patterns for reaching.

    PubMed

    Russo, Marta; D'Andola, Mattia; Portone, Alessandro; Lacquaniti, Francesco; d'Avella, Andrea

    2014-01-01

    Muscle activities underlying many motor behaviors can be generated by a small number of basic activation patterns with specific features shared across movement conditions. Such low-dimensionality suggests that the central nervous system (CNS) relies on a modular organization to simplify control. However, the relationship between the dimensionality of muscle patterns and that of joint torques is not fixed, because of redundancy and non-linearity in mapping the former into the latter, and needs to be investigated. We compared the torques acting at four arm joints during fast reaching movements in different directions in the frontal and sagittal planes and the underlying muscle patterns. The dimensionality of the non-gravitational components of torques and muscle patterns in the spatial, temporal, and spatiotemporal domains was estimated by multidimensional decomposition techniques. The spatial organization of torques was captured by two or three generators, indicating that not all the available coordination patterns are employed by the CNS. A single temporal generator with a biphasic profile was identified, generalizing previous observations on a single plane. The number of spatiotemporal generators was equal to the product of the spatial and temporal dimensionalities and their organization was essentially synchronous. Muscle pattern dimensionalities were higher than torques dimensionalities but also higher than the minimum imposed by the inherent non-negativity of muscle activations. The spatiotemporal dimensionality of the muscle patterns was lower than the product of their spatial and temporal dimensionality, indicating the existence of specific asynchronous coordination patterns. Thus, the larger dimensionalities of the muscle patterns may be required for CNS to overcome the non-linearities of the musculoskeletal system and to flexibly generate endpoint trajectories with simple kinematic features using a limited number of building blocks. PMID:24624078

  5. Dimensionality of joint torques and muscle patterns for reaching

    PubMed Central

    Russo, Marta; D'Andola, Mattia; Portone, Alessandro; Lacquaniti, Francesco; d'Avella, Andrea

    2014-01-01

    Muscle activities underlying many motor behaviors can be generated by a small number of basic activation patterns with specific features shared across movement conditions. Such low-dimensionality suggests that the central nervous system (CNS) relies on a modular organization to simplify control. However, the relationship between the dimensionality of muscle patterns and that of joint torques is not fixed, because of redundancy and non-linearity in mapping the former into the latter, and needs to be investigated. We compared the torques acting at four arm joints during fast reaching movements in different directions in the frontal and sagittal planes and the underlying muscle patterns. The dimensionality of the non-gravitational components of torques and muscle patterns in the spatial, temporal, and spatiotemporal domains was estimated by multidimensional decomposition techniques. The spatial organization of torques was captured by two or three generators, indicating that not all the available coordination patterns are employed by the CNS. A single temporal generator with a biphasic profile was identified, generalizing previous observations on a single plane. The number of spatiotemporal generators was equal to the product of the spatial and temporal dimensionalities and their organization was essentially synchronous. Muscle pattern dimensionalities were higher than torques dimensionalities but also higher than the minimum imposed by the inherent non-negativity of muscle activations. The spatiotemporal dimensionality of the muscle patterns was lower than the product of their spatial and temporal dimensionality, indicating the existence of specific asynchronous coordination patterns. Thus, the larger dimensionalities of the muscle patterns may be required for CNS to overcome the non-linearities of the musculoskeletal system and to flexibly generate endpoint trajectories with simple kinematic features using a limited number of building blocks. PMID:24624078

  6. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings

    PubMed Central

    Pascual, Sergi; Casadevall, Carme; Orozco-Levi, Mauricio; Barreiro, Esther

    2015-01-01

    Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future. PMID:26623119

  7. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells

    PubMed Central

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-01-01

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  8. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells.

    PubMed

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-09-15

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  9. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  10. Muscle Co-Contraction Modulates Damping and Joint Stability in a Three-Link Biomechanical Limb

    PubMed Central

    Heitmann, Stewart; Ferns, Norm; Breakspear, Michael

    2012-01-01

    Computational models of neuromotor control require forward models of limb movement that can replicate the natural relationships between muscle activation and joint dynamics without the burdens of excessive anatomical detail. We present a model of a three-link biomechanical limb that emphasizes the dynamics of limb movement within a simplified two-dimensional framework. Muscle co-contraction effects were incorporated into the model by flanking each joint with a pair of antagonist muscles that may be activated independently. Muscle co-contraction is known to alter the damping and stiffness of limb joints without altering net joint torque. Idealized muscle actuators were implemented using the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but omits series elasticity. The natural force-length-velocity relationships of contractile muscle tissue were incorporated into the actuators using ideal mathematical forms. Numerical stability analysis confirmed that co-contraction of these simplified actuators increased damping in the biomechanical limb consistent with observations of human motor control. Dynamic changes in joint stiffness were excluded by the omission of series elasticity. The analysis also revealed the unexpected finding that distinct stable (bistable) equilibrium positions can co-exist under identical levels of muscle co-contraction. We map the conditions under which bistability arises and prove analytically that monostability (equifinality) is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic findings in the full biomechanical limb model. PMID:22275897

  11. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings.

    PubMed

    Gea, Joaquim; Pascual, Sergi; Casadevall, Carme; Orozco-Levi, Mauricio; Barreiro, Esther

    2015-10-01

    Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future. PMID:26623119

  12. Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb.

    PubMed

    Heitmann, Stewart; Ferns, Norm; Breakspear, Michael

    2011-01-01

    Computational models of neuromotor control require forward models of limb movement that can replicate the natural relationships between muscle activation and joint dynamics without the burdens of excessive anatomical detail. We present a model of a three-link biomechanical limb that emphasizes the dynamics of limb movement within a simplified two-dimensional framework. Muscle co-contraction effects were incorporated into the model by flanking each joint with a pair of antagonist muscles that may be activated independently. Muscle co-contraction is known to alter the damping and stiffness of limb joints without altering net joint torque. Idealized muscle actuators were implemented using the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but omits series elasticity. The natural force-length-velocity relationships of contractile muscle tissue were incorporated into the actuators using ideal mathematical forms. Numerical stability analysis confirmed that co-contraction of these simplified actuators increased damping in the biomechanical limb consistent with observations of human motor control. Dynamic changes in joint stiffness were excluded by the omission of series elasticity. The analysis also revealed the unexpected finding that distinct stable (bistable) equilibrium positions can co-exist under identical levels of muscle co-contraction. We map the conditions under which bistability arises and prove analytically that monostability (equifinality) is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic findings in the full biomechanical limb model. PMID:22275897

  13. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice

    SciTech Connect

    Bhagavati, Satyakam . E-mail: satyakamb@hotmail.com; Xu Weimin

    2005-07-29

    Embryonic stem (ES) cells have great therapeutic potential because of their capacity to proliferate extensively and to form any fully differentiated cell of the body, including skeletal muscle cells. Successful generation of skeletal muscle in vivo, however, requires selective induction of the skeletal muscle lineage in cultures of ES cells and following transplantation, integration of appropriately differentiated skeletal muscle cells with recipient muscle. Duchenne muscular dystrophy (DMD), a severe progressive muscle wasting disease due to a mutation in the dystrophin gene and the mdx mouse, an animal model for DMD, are characterized by the absence of the muscle membrane associated protein, dystrophin. Here, we show that co-culturing mouse ES cells with a preparation from mouse muscle enriched for myogenic stem and precursor cells, followed by injection into mdx mice, results occasionally in the formation of normal, vascularized skeletal muscle derived from the transplanted ES cells. Study of this phenomenon should provide valuable insights into skeletal muscle development in vivo from transplanted ES cells.

  14. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases

    PubMed Central

    Boyer, Justin G.; Ferrier, Andrew; Kothary, Rashmi

    2013-01-01

    Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases. PMID:24391590

  15. How different modes of child delivery influence abdominal muscle activities in the active straight leg raise.

    PubMed

    Kwon, Yu-Jeong; Hyung, Eun-Ju; Yang, Kyung-Hye; Lee, Hyun-Ok

    2014-08-01

    [Purpose] The purpose of this study was to examine the activities of the abdominal muscles of women who had experienced vaginal delivery in comparison with those who had experienced Cesarean childbirth. [Subjects and Methods] A total of 14 subjects (7 vaginal delivery, 7 Cesarean section) performed an active straight leg raise to 20 cm above the ground, and we measured the activities of the internal oblique abdominal muscle, the external oblique abdominal muscle, and the rectus abdominal muscle on both sides using electromyography. The effort required to raise the leg was scored on a Likert scale. Then, the subjects conducted maximum isometric contraction for hip joint flexion with the leg raised at 20 cm, and maximum torque and abdominal muscle activities were measured using electromyography. [Results] During the active straight leg raise, abdominal muscle activities were higher in the Cesarean section subjects. The Likert scale did not show a significant difference. The activities of the abdominal muscles and the maximum torque of the hip joint flexion at maximum isometric contraction were higher in the vaginal delivery subjects. [Conclusion] The abdominal muscles of Cesarean section subjects showed greater recruitment for maintaining pelvic stability during the active straight leg raising, but were relatively weaker when powerful force was required. Therefore, we consider that more abdominal muscle training is necessary for maintaining pelvic stability of Cesarean section subjects. PMID:25202194

  16. How to build fast muscles: synchronous and asynchronous designs.

    PubMed

    Syme, Douglas A; Josephson, Robert K

    2002-08-01

    In animals, muscles are the most common effectors that translate neuronal activity into behavior. Nowhere is behavior more restricted by the limits of muscle performance than at the upper range of high-frequency movements. Here, we see new and multiple designs to cope with the demands for speed. Extremely rapid oscillations in force are required to power cyclic activities such as flight in insects or to produce vibrations for sound. Such behaviors are seen in a variety of invertebrates and vertebrates, and are powered by both synchronous and asynchronous muscles. In synchronous muscles, each contraction/relaxation cycle is accompanied by membrane depolarization and subsequent repolarization, release of activator calcium, attachment of cross-bridges and muscle shortening, then removal of activator calcium and cross-bridge detachment. To enable all of these to occur at extremely high frequencies a suite of modifications are required, including precise neural control, hypertrophy of the calcium handling machinery, innovative mechanisms to bind calcium, and molecular modification of the cross-bridges and regulatory proteins. Side effects are low force and power output and low efficiency, but the benefit of direct, neural control is maintained. Asynchronous muscles, in which there is not a 1:1 correspondence between neural activation and contraction, are a radically different design. Rather than rapid calcium cycling, they rely on delayed activation and deactivation, and the resonant characteristics of the wings and exoskeleton to guide their extremely high-frequency contractions. They thus avoid many of the modifications and attendant trade-offs mentioned above, are more powerful and more efficient than high-frequency synchronous muscles, but are considerably more restricted in their application. PMID:21708773

  17. Myotonometry as a Surrogate Measure of Muscle Strength

    NASA Technical Reports Server (NTRS)

    Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.

    2007-01-01

    Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to

  18. Stochastic modelling of muscle recruitment during activity.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco

    2015-04-01

    Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1-15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1-15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R (2) = 0.94; RMSE = 19 N) than the static optimization solution (R (2) = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions. PMID

  19. Stochastic modelling of muscle recruitment during activity

    PubMed Central

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco

    2015-01-01

    Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1–15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1–15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern (R2 = 0.94; RMSE = 19 N) than the static optimization solution (R2 = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions. PMID:25844155

  20. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  1. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  2. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts. PMID:26575597

  3. Medicines to Treat Muscle Spasms and Pain

    MedlinePlus

    Medicines to Treat Muscle Spasms and Pain Do you have a lot of muscle pain? Are your muscles extremely stiff and tense? If the answer is ... factsheet to learn about two conditions that cause muscle pain and stiffness, and the medicines used to ...

  4. Hypodynamic and hypokinetic condition of skeletal muscles

    NASA Technical Reports Server (NTRS)

    Katinas, G. S.; Oganov, V. S.; Potapov, A. N.

    1980-01-01

    Data are presented in regard to the effect of unilateral brachial amputation on the physiological characteristics of two functionally different muscles, the brachial muscle (flexor of the brachium) and the medial head of the brachial triceps muscle (extensor of the brachium), which in rats represents a separate muscle. Hypokinesia and hypodynamia were studied.

  5. 38 CFR 4.78 - Muscle function.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle...) Evaluation of muscle function. (1) An evaluation for diplopia will be assigned to only one eye. When...

  6. 38 CFR 4.78 - Muscle function.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle...) Evaluation of muscle function. (1) An evaluation for diplopia will be assigned to only one eye. When...

  7. 38 CFR 4.78 - Muscle function.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle...) Evaluation of muscle function. (1) An evaluation for diplopia will be assigned to only one eye. When...

  8. 38 CFR 4.78 - Muscle function.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle...) Evaluation of muscle function. (1) An evaluation for diplopia will be assigned to only one eye. When...

  9. 38 CFR 4.78 - Muscle function.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle...) Evaluation of muscle function. (1) An evaluation for diplopia will be assigned to only one eye. When...

  10. Muscle-Eye-Brain Disease

    PubMed Central

    Shenoy, Anant M.; Markowitz, Jennifer A.; Bonnemann, Carsten G.; Krishnamoorthy, Kalpathy; Bossler, Aaron D.; Tseng, Brian S.

    2010-01-01

    A term female infant was evaluated for global developmental delay, hypotonia, hyporeflexia, diffuse weakness including facial muscles, and visual impairment with optic nerve hypoplasia. In the absence of family history or perinatal concerns, an extensive investigation was performed, including lab studies, muscle biopsy, brain MRI and focused genetic testing. This revealed elevated serum CK, a structurally abnormal brain, and a dystrophic-appearing muscle biopsy with evidence of a glycosylation defect in the alpha-dystroglycan complex. Of the 6 known related genes, testing of the POMGnT1 gene showed three heterozygous missense mutations. Thus her history, examination, biopsy specimen, imaging, laboratory, and genetic studies are all consistent with the diagnosis of Muscle-Eye-Brain (MEB) disease. MEB is one of an emerging spectrum of congenital disorders that involve both central and peripheral nervous systems, described further in this case report. PMID:20215985

  11. Muscle Gene Therapy for Hemophilia

    PubMed Central

    Sabatino, Denise E.; Arruda, Valder R.

    2013-01-01

    Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia. PMID:24883231

  12. Pelvic floor muscle training exercises

    MedlinePlus

    ... nlm.nih.gov/pubmed/22258946 . Dumoulin C, Hay-Smith J. Pelvic floor muscle training versus no treatment, ... nlm.nih.gov/pubmed/20091581 . Herderschee R, Hay-Smith EJC, Herbison GP, Roovers JP, Heineman MJ. Feedback ...

  13. Muscles of the Lower Extremity

    MedlinePlus

    ... Home » Cancer Registration & Surveillance Modules » Anatomy & Physiology » Muscular System » Muscle Groups » Lower Extremity Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  14. Modified muscle sparing posterolateral thoracotomy.

    PubMed Central

    Ashour, M

    1990-01-01

    A modified posterolateral thoracotomy is described that combines the advantages of complete muscle sparing through a thoracolumbar fascial slide with excellent exposure. The technique is easy to perform. The procedure was associated with relatively little postoperative pain, coughing was effective, and early ambulation was achieved. Experience with this approach in the first 49 patients suggests that it offers an attractive alternative to the standard muscle cutting posterolateral thoracotomy approach for elective procedures. PMID:2281426

  15. Muscle function during takeoff and landing flight in the pigeon (Columba livia).

    PubMed

    Robertson, Angela M Berg; Biewener, Andrew A

    2012-12-01

    This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body

  16. Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force.

    PubMed

    Hug, François; Tucker, Kylie; Gennisson, Jean-Luc; Tanter, Mickaël; Nordez, Antoine

    2015-07-01

    Estimation of individual muscle force remains one of the main challenges in biomechanics. This review presents a series of experiments that used ultrasound shear wave elastography to support the hypothesis that muscle stiffness is linearly related to both active and passive muscle forces. Examples of studies that used measurement of muscle stiffness to estimate changes in muscle force are presented. PMID:25906424

  17. Impairment of Gradual Muscle Adjustment during Wrist Circumduction in Parkinson's Disease

    PubMed Central

    Toxopeus, Carolien M.; de Jong, Bauke M.; Valsan, Gopal; Conway, Bernard A.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    2011-01-01

    Purposeful movements are attained by gradually adjusted activity of opposite muscles, or synergists. This requires a motor system that adequately modulates initiation and inhibition of movement and selectively activates the appropriate muscles. In patients with Parkinson's disease (PD) initiation and inhibition of movements are impaired which may manifest itself in e.g. difficulty to start and stop walking. At single-joint level, impaired movement initiation is further accompanied by insufficient inhibition of antagonist muscle activity. As the motor symptoms in PD primarily result from cerebral dysfunction, quantitative investigation of gradually adjusted muscle activity during execution of purposeful movement is a first step to gain more insight in the link between impaired modulation of initiation and inhibition at the levels of (i) cerebrally coded task performance and (ii) final execution by the musculoskeletal system. To that end, the present study investigated changes in gradual adjustment of muscle synergists using a manipulandum that enabled standardized smooth movement by continuous wrist circumduction. Differences between PD patients (N = 15, off-medication) and healthy subjects (N = 16) concerning the relation between muscle activity and movement performance in these groups were assessed using kinematic and electromyographic (EMG) recordings. The variability in the extent to which a particular muscle was active during wrist circumduction – defined as muscle activity differentiation - was quantified by EMG. We demonstrated that more differentiated muscle activity indeed correlated positively with improved movement performance, i.e. higher movement speed and increased smoothness of movement. Additionally, patients employed a less differentiated muscle activity pattern than healthy subjects. These specific changes during wrist circumduction imply that patients have a decreased ability to gradually adjust muscles causing a decline in movement

  18. Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism?

    PubMed

    Horstman, Astrid M H; Olde Damink, Steven W; Schols, Annemie M W J; van Loon, Luc J C

    2016-01-01

    Cachexia is a significant clinical problem associated with very poor quality of life, reduced treatment tolerance and outcomes, and a high mortality rate. Mechanistically, any sizeable loss of skeletal muscle mass must be underpinned by a structural imbalance between muscle protein synthesis and breakdown rates. Recent data indicate that the loss of muscle mass with aging is, at least partly, attributed to a blunted muscle protein synthetic response to protein feeding. Whether such anabolic resistance is also evident in conditions where cachexia is present remains to be addressed. Only few data are available on muscle protein synthesis and breakdown rates in vivo in cachectic cancer patients. When calculating the theoretical changes in basal or postprandial fractional muscle protein synthesis and breakdown rates that would be required to lose 5% of body weight within a six-month period, we can define the changes that would need to occur to explain the muscle mass loss observed in cachectic patients. If changes in both post-absorptive and postprandial muscle protein synthesis and breakdown rates contribute to the loss of muscle mass, it would take alterations as small as 1%-2% to induce a more than 5% decline in body weight. Therefore, when trying to define impairments in basal and/or postprandial muscle protein synthesis or breakdown rates using contemporary stable isotope methodology in cancer cachexia, we need to select large homogenous groups of cancer patients (>40 patients) to allow us to measure physiological and clinically relevant differences in muscle protein synthesis and/or breakdown rates. Insight into impairments in basal or postprandial muscle protein synthesis and breakdown rates in cancer cachexia is needed to design more targeted nutritional, pharmaceutical and/or physical activity interventions to preserve skeletal muscle mass and, as such, to reduce the risk of complications, improve quality of life, and lower mortality rates during the various

  19. Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism?

    PubMed Central

    Horstman, Astrid M. H.; Olde Damink, Steven W.; Schols, Annemie M. W. J.; van Loon, Luc J. C.

    2016-01-01

    Cachexia is a significant clinical problem associated with very poor quality of life, reduced treatment tolerance and outcomes, and a high mortality rate. Mechanistically, any sizeable loss of skeletal muscle mass must be underpinned by a structural imbalance between muscle protein synthesis and breakdown rates. Recent data indicate that the loss of muscle mass with aging is, at least partly, attributed to a blunted muscle protein synthetic response to protein feeding. Whether such anabolic resistance is also evident in conditions where cachexia is present remains to be addressed. Only few data are available on muscle protein synthesis and breakdown rates in vivo in cachectic cancer patients. When calculating the theoretical changes in basal or postprandial fractional muscle protein synthesis and breakdown rates that would be required to lose 5% of body weight within a six-month period, we can define the changes that would need to occur to explain the muscle mass loss observed in cachectic patients. If changes in both post-absorptive and postprandial muscle protein synthesis and breakdown rates contribute to the loss of muscle mass, it would take alterations as small as 1%–2% to induce a more than 5% decline in body weight. Therefore, when trying to define impairments in basal and/or postprandial muscle protein synthesis or breakdown rates using contemporary stable isotope methodology in cancer cachexia, we need to select large homogenous groups of cancer patients (>40 patients) to allow us to measure physiological and clinically relevant differences in muscle protein synthesis and/or breakdown rates. Insight into impairments in basal or postprandial muscle protein synthesis and breakdown rates in cancer cachexia is needed to design more targeted nutritional, pharmaceutical and/or physical activity interventions to preserve skeletal muscle mass and, as such, to reduce the risk of complications, improve quality of life, and lower mortality rates during the various

  20. Measurement of skeletal muscle radiation attenuation and basis of its biological variation

    PubMed Central

    Aubrey, J; Esfandiari, N; Baracos, V E; Buteau, F A; Frenette, J; Putman, C T; Mazurak, V C

    2014-01-01

    Skeletal muscle contains intramyocellular lipid droplets within the cytoplasm of myocytes as well as intermuscular adipocytes. These depots exhibit physiological and pathological variation which has been revealed with the advent of diagnostic imaging approaches: magnetic resonance (MR) imaging, MR spectroscopy and computed tomography (CT). CT uses computer-processed X-rays and is now being applied in muscle physiology research. The purpose of this review is to present CT methodologies and summarize factors that influence muscle radiation attenuation, a parameter which is inversely related to muscle fat content. Pre-defined radiation attenuation ranges are used to demarcate intermuscular adipose tissue [from −190 to −30 Hounsfield units (HU)] and muscle (−29 HU to +150 HU). Within the latter range, the mean muscle radiation attenuation [muscle (radio) density] is reported. Inconsistent criteria for the upper and lower HU cut-offs used to characterize muscle attenuation limit comparisons between investigations. This area of research would benefit from standardized criteria for reporting muscle attenuation. Available evidence suggests that muscle attenuation is plastic with physiological variation induced by the process of ageing, as well as by aerobic training, which probably reflects accumulation of lipids to fuel aerobic work. Pathological variation in muscle attenuation reflects excess fat deposition in the tissue and is observed in people with obesity, diabetes type II, myositis, osteoarthritis, spinal stenosis and cancer. A poor prognosis and different types of morbidity are predicted by the presence of reduced mean muscle attenuation values in patients with these conditions; however, the biological features of muscle with these characteristics require further investigation. PMID:24393306

  1. Muscle redox signalling pathways in exercise. Role of antioxidants.

    PubMed

    Mason, Shaun A; Morrison, Dale; McConell, Glenn K; Wadley, Glenn D

    2016-09-01

    Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E

  2. β-Catenin gain of function in muscles impairs neuromuscular junction formation

    PubMed Central

    Wu, Haitao; Lu, Yisheng; Barik, Arnab; Joseph, Anish; Taketo, Makoto Mark; Xiong, Wen-Cheng; Mei, Lin

    2012-01-01

    Neuromuscular junction (NMJ) formation requires proper interaction between motoneurons and muscle cells. β-Catenin is required in muscle cells for NMJ formation. To understand underlying mechanisms, we investigated the effect of β-catenin gain of function (GOF) on NMJ development. In HSA-β-catflox(ex3)/+ mice, which express stable β-catenin specifically in muscles, motor nerve terminals became extensively defasciculated and arborized. Ectopic muscles were observed in the diaphragm and were innervated by ectopic phrenic nerve branches. Moreover, extensive outgrowth and branching of spinal axons were evident in the GOF mice. These results indicate that increased β-catenin in muscles alters presynaptic differentiation. Postsynaptically, AChR clusters in HSA-β-catflox(ex3)/+ diaphragms were distributed in a wider region, suggesting that muscle β-catenin GOF disrupted the signal that restricts AChR clustering to the middle region of muscle fibers. Expression of stable β-catenin in motoneurons, however, had no effect on NMJ formation. These observations provide additional genetic evidence that pre- and postsynaptic development of the NMJ requires an intricate balance of β-catenin activity in muscles. PMID:22627288

  3. Respiratory involvement in inherited primary muscle conditions

    PubMed Central

    Shahrizaila, N; Kinnear, W J M; Wills, A J

    2006-01-01

    Patients with inherited muscle disorders can develop respiratory muscle weakness leading to ventilatory failure. Predicting the extent of respiratory involvement in the different types of inherited muscle disorders is important, as it allows clinicians to impart prognostic information and offers an opportunity for early interventional management strategies. The approach to respiratory assessment in patients with muscle disorders, the current knowledge of respiratory impairment in different muscle disorders and advice on the management of respiratory complications are summarised. PMID:16980655

  4. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using µ-calpain knockout (...

  5. Diseases and disorders of muscle.

    PubMed

    Pearson, A M; Young, R B

    1993-01-01

    Muscle may suffer from a number of diseases or disorders, some being fatal to humans and animals. Their management or treatment depends on correct diagnosis. Although no single method may be used to identify all diseases, recognition depends on the following diagnostic procedures: (1) history and clinical examination, (2) blood biochemistry, (3) electromyography, (4) muscle biopsy, (5) nuclear magnetic resonance, (6) measurement of muscle cross-sectional area, (7) tests of muscle function, (8) provocation tests, and (9) studies on protein turnover. One or all of these procedures may prove helpful in diagnosis, but even then identification of the disorder may not be possible. Nevertheless, each of these procedures can provide useful information. Among the most common diseases in muscle are the muscular dystrophies, in which the newly identified muscle protein dystrophin is either absent or present at less than normal amounts in both Duchenne and Becker's muscular dystrophy. Although the identification of dystrophin represents a major breakthrough, treatment has not progressed to the experimental stage. Other major diseases of muscle include the inflammatory myopathies and neuropathies. Atrophy and hypertrophy of muscle and the relationship of aging, exercise, and fatigue all add to our understanding of the behavior of normal and abnormal muscle. Some other interesting related diseases and disorders of muscle include myasthenia gravis, muscular dysgenesis, and myclonus. Disorders of energy metabolism include those caused by abnormal glycolysis (Von Gierke's, Pompe's, Cori-Forbes, Andersen's, McArdle's, Hers', and Tauri's diseases) and by the acquired diseases of glycolysis (disorders of mitochondrial oxidation). Still other diseases associated with abnormal energy metabolism include lipid-related disorders (carnitine and carnitine palmitoyl-transferase deficiencies) and myotonic syndromes (myotonia congenita, paramyotonia congenita, hypokalemic and hyperkalemic

  6. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions.

    PubMed

    Raiteri, Brent J; Cresswell, Andrew G; Lichtwark, Glen A

    2016-01-01

    across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle's line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation. PMID:27547566

  7. Exercise test in muscle channelopathies and other muscle disorders.

    PubMed

    Kuntzer, T; Flocard, F; Vial, C; Kohler, A; Magistris, M; Labarre-Vila, A; Gonnaud, P M; Ochsner, F; Soichot, P; Chan, V; Monnier, G

    2000-07-01

    We studied the percentage change in compound muscle action potential (CMAP) amplitude and area during and after a 5-min maximal contraction of the muscle. The exercise test (ET) was performed on 64 patients with different muscle disorders and on 46 normal controls. The range of normal ET values was defined as the mean + 2 SD of the control values. The mean sensitivity of the test was 63% in the whole group with ion channel muscle disorders, the highest sensitivity being seen in primary periodic paralysis (81%) and the lowest in chloride channelopathies (17%). In thyrotoxic periodic paralysis, the ET was abnormal in the three of the four patients studied. In patients with myotonic dystrophy, a smaller than normal increase in CMAP amplitude occurred during and after exercise, whereas in proximal myotonic myopathy a normal initial increase in CMAP amplitude was followed by an abnormal decrement. We conclude that the ET can be of use in confirming abnormal muscle membrane excitability in patients with calcium and sodium channelopathies and thyrotoxic periodic paralysis. In chloride channelopathy, the test may also be abnormal, but shows no, or only a small, increase in amplitude or area in the immediate postexercise period. The test may also be abnormal in proximal myotonic myopathy, but is normal in myotonic dystrophy. PMID:10883004

  8. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease.

    PubMed

    Talbot, Jared; Maves, Lisa

    2016-07-01

    Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website. PMID:27199166

  9. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system. PMID:27492182

  10. Electroactive Polymers (EAP) as Artificial Muscles: Reality and Challenges

    SciTech Connect

    Bar-Cohen, Yoseph

    2003-04-30

    Human with bionic muscles is synonymous with science fiction or a superhuman actor in a TV series. With bionic muscles, the character is portrayed as capable of strength and speeds that are far superior to human. Recent development in EAP with large electrically induced strain may one day be used to make such bionics possible. Meanwhile, as this technology evolves novel mechanisms that are biologically inspired are starting to emerge, where EAP materials are providing actuation with lifelike response and more flexible configurations. Even though the actuation force and robustness require further improvement, there have been already several reported successes. In this seminar the current and future efforts will be reviewed.

  11. Rotating turkeys and self-commutating artificial muscle motors

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Gisby, Todd A.; Anderson, Iain A.

    2012-02-01

    Electrostatic motors—first used by Benjamin Franklin to rotisserie a turkey—are making a comeback in the form of high energy density dielectric elastomer artificial muscles. We present a self-commutated artificial muscle motor that uses dielectric elastomer switches in the place of bulky external electronics. The motor simply requires a DC input voltage to rotate a shaft (0.73 Nm/kg, 0.24 Hz) and is a step away from hard metallic electromagnetic motors towards a soft, light, and printable future.

  12. Poor maternal nutrition inhibits muscle development in ovine offspring

    PubMed Central

    2014-01-01

    Background Maternal over and restricted nutrition has negative consequences on the muscle of offspring by reducing muscle fiber number and altering regulators of muscle growth. To determine if over and restricted maternal nutrition affected muscle growth and gene and protein expression in offspring, 36 pregnant ewes were fed 60%, 100% or 140% of National Research Council requirements from d 31 ± 1.3 of gestation until parturition. Lambs from control-fed (CON), restricted-fed (RES) or over-fed (OVER) ewes were necropsied within 1 d of birth (n = 18) or maintained on a control diet for 3 mo (n = 15). Semitendinosus muscle was collected for immunohistochemistry, and protein and gene expression analysis. Results Compared with CON, muscle fiber cross-sectional area (CSA) increased in RES (58%) and OVER (47%) lambs at 1 d of age (P < 0.01); however at 3 mo, CSA decreased 15% and 17% compared with CON, respectively (P < 0.01). Compared with CON, muscle lipid content was increased in OVER (212.4%) and RES (92.5%) at d 1 (P < 0.0001). Muscle lipid content was increased 36.1% in OVER and decreased 23.6% in RES compared with CON at 3 mo (P < 0.0001). At d 1, myostatin mRNA abundance in whole muscle tended to be greater in OVER (P = 0.07) than CON. Follistatin mRNA abundance increased in OVER (P = 0.04) and tended to increase in RES (P = 0.06) compared with CON at d 1. However, there was no difference in myostatin or follistatin protein expression (P > 0.3). Phosphorylated Akt (ser473) was increased in RES at 3 mo compared with CON (P = 0.006). Conclusions In conclusion, maternal over and restricted nutrient intake alters muscle lipid content and growth of offspring, possibly through altered gene and protein expression. PMID:25247074

  13. Intercostal muscle blood flow limitation in athletes during maximal exercise

    PubMed Central

    Vogiatzis, Ioannis; Athanasopoulos, Dimitris; Habazettl, Helmut; Kuebler, Wolfgang M; Wagner, Harrieth; Roussos, Charis; Wagner, Peter D; Zakynthinos, Spyros

    2009-01-01

    We investigated whether, during maximal exercise, intercostal muscle blood flow is as high as during resting hyperpnoea at the same work of breathing. We hypothesized that during exercise, intercostal muscle blood flow would be limited by competition from the locomotor muscles. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle perfusion were measured simultaneously in ten trained cyclists by near-infrared spectroscopy using indocyanine green dye. Measurements were made at several exercise intensities up to maximal (WRmax) and subsequently during resting isocapnic hyperpnoea at minute ventilation levels up to those at WRmax. During resting hyperpnoea, intercostal muscle blood flow increased linearly with the work of breathing (R2= 0.94) to 73.0 ± 8.8 ml min−1 (100 g)−1 at the ventilation seen at WRmax (work of breathing ∼550–600 J min−1), but during exercise it peaked at 80% WRmax (53.4 ± 10.3 ml min−1 (100 g)−1), significantly falling to 24.7 ± 5.3 ml min−1 (100 g)−1 at WRmax. At maximal ventilation intercostal muscle vascular conductance was significantly lower during exercise (0.22 ± 0.05 ml min−1 (100 g)−1 mmHg−1) compared to isocapnic hyperpnoea (0.77 ± 0.13 ml min−1 (100 g)−1 mmHg−1). During exercise, both cardiac output and vastus lateralis muscle blood flow also plateaued at about 80% WRmax (the latter at 95.4 ± 11.8 ml min−1 (100 g)−1). In conclusion, during exercise above 80% WRmax in trained subjects, intercostal muscle blood flow and vascular conductance are less than during resting hyperpnoea at the same minute ventilation. This suggests that the circulatory system is unable to meet the demands of both locomotor and intercostal muscles during heavy exercise, requiring greater O2 extraction and likely contributing to respiratory muscle fatigue. PMID:19451206

  14. Electromyogram premotion silent period and tension development in human muscle.

    PubMed

    Kawahats, K; Miyashita, M

    1983-11-01

    The EMG silent period has been observed frequently just before rapid movement from a slightly sustained contraction of the muscle. Our experiments were designed to show the relation between the tension developed in an intact human muscle and the occurrence of this silent period. Tension in the knee extensor was obtained from the floor reaction force of a living subject in a squatting position on the basis of a lever ratio-joint angle diagram obtained directly from measurements on an isolated knee extensor muscle of a human cadaver. The muscle tension was calculated under the condition that the floor reaction force in the squatting position passed through the anklebone, and decreased from 8.7 to 0.8 kN with an increase in the knee joint angle from 1.13 to 2.74 rad. When the center of pressure was not assumed, the increased knee extensor muscle torque with a decrease in the knee angle was estimated biomechanically from the free body diagram. Consistently, the EMG recordings confirmed an increased muscle activity with a reduction in the joint angle. The premotion silent period for the knee extensors and their antagonist with movement from the squatting position appeared to be limited to a knee joint angle of 2.44 to 3.07 rad, where the requirement for tension in those muscles was low. This silent period could be interpreted as an electromyographic transitional phase attributable to a switching mechanism in central nervous activity. The premotion silent period was most likely to appear prior to a swift, well coordinated movement. PMID:6628618

  15. Androgens Regulate Gene Expression in Avian Skeletal Muscles

    PubMed Central

    Fuxjager, Matthew J.; Barske, Julia; Du, Sienmi; Day, Lainy B.; Schlinger, Barney A.

    2012-01-01

    Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird’s body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction. PMID:23284699

  16. Muscle stiffness measured under conditions simulating natural sound production.

    PubMed

    Dobrunz, L E; Pelletier, D G; McMahon, T A

    1990-08-01

    Isolated whole frog gastrocnemius muscles were electrically stimulated to peak twitch tension while held isometrically in a bath at 4 degrees C. A quartz hydrophone detected vibrations of the muscle by measuring the pressure fluctuations caused by muscle movement. A small steel collar was slipped over the belly of the muscle. Transient forces including plucks and steady sinusoidal driving were applied to the collar by causing currents to flow in a coil held near the collar. The instantaneous resonant frequencies measured by the pluck and driving techniques were the same at various times during a twitch contraction cycle. The strain produced by the plucking technique in the outermost fibers was less than 1.6 x 10(-4%), a strain three orders of magnitude less than that required to drop the tension to zero in quick-length-change experiments. Because the pressure transients recorded by the hydrophone during plucks and naturally occurring sounds were of comparable amplitude, strains in the muscle due to naturally occurring sound must also be of the order 10(-3%). A simple model assuming that the muscle is an elastic bar under tension was used to calculate the instantaneous elastic modulus E as a function of time during a twitch, given the tension and resonant frequency. The result for Emax, the peak value of E during a twitch, was typically 2.8 x 10(6) N/m2. The methods used here for measuring muscle stiffness are unusual in that the apparatus used for measuring stiffness is separate from the apparatus controlling and measuring force and length. PMID:2207252

  17. Nuclear positioning in muscle development and disease

    PubMed Central

    Folker, Eric S.; Baylies, Mary K.

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease. PMID:24376424

  18. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  19. Ear projection and the posterior auricular muscle insertion.

    PubMed

    Guyuron, B; DeLuca, L

    1997-08-01

    Prominent ears is a common congenital anomaly affecting approximately 5 percent of the general population. The etiology has been attributed to three basic deformities in the ear structure: valgus of the concha with a cranioauricular angle greater than 40 degrees, underfolding of the anthelix, and rarely, hypertrophy of the concha. It is believed that by virtue of its insertion onto the ponticulus, the cranial surface of the concha, the posterior auricular muscle may function to pull the auricle back toward the head. A proximally (anteromedially) displaced insertion site would decrease the length of the effective momentum of the muscle, leading to protrusion of the auricle. This study was conducted to determine if indeed a relationship between the posterior muscle insertion site and ear projection could be established clinically by measuring these parameters intraoperatively in patients presenting for otoplasty and in patients without prominent ears who required conchal cartilage grafts for other procedures. PMID:9252616

  20. Rapid fluorescence screening assay for tetracyclines in chicken muscle.

    PubMed

    Schneider, Marilyn J; Lehotay, Steven J

    2004-01-01

    A simple, rapid fluorescence assay was developed for screening tetracyclines in chicken muscle at the U.S. tolerance level (2 mg/kg). The method requires only a homogenization of the tissue in acetonitrile-ammonium hydroxide, centrifugation, addition of Mg+2, and another centrifugation before fluorescence of the supernatant is measured at 505 nm (excitation at 385 nm). Comparison of the fluorescence of control chicken muscle extracts with extracts from muscle fortified with either 2 mg/kg tetracycline, oxytetracycline, or chlortetracycline showed no overlap. A threshold level set at the average fluorescence for a series of fortified 2 mg/kg samples minus 3sigma minimized false-negative responses to provide a successful screening method. The method was tested with blinded samples as controls or samples fortified with tetracycline, oxytetracycline, or chlortetracycline in order to demonstrate its utility. This approach can provide an alternative to microbial screening assays. PMID:15287655

  1. Low level laser therapy on injured rat muscle

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  2. Choosing a skeletal muscle relaxant.

    PubMed

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  3. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

    PubMed Central

    Vernooij, Carlijn A.; Reynolds, Raymond F.; Lakie, Martin

    2016-01-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  4. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement.

    PubMed

    Vernooij, Carlijn A; Reynolds, Raymond F; Lakie, Martin

    2016-05-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  5. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca(2+) release channel.

    PubMed

    Filipova, Dilyana; Walter, Anna M; Gaspar, John A; Brunn, Anna; Linde, Nina F; Ardestani, Mostafa A; Deckert, Martina; Hescheler, Jürgen; Pfitzer, Gabriele; Sachinidis, Agapios; Papadopoulos, Symeon

    2016-01-01

    In mature skeletal muscle, the intracellular Ca(2+) concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca(2+) release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1's potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca(2+) signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca(2+) signaling during muscle organ development. PMID:26831464

  6. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    SciTech Connect

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  7. Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback

    PubMed Central

    Sponberg, Simon; Libby, Thomas; Mullens, Chris H.; Full, Robert J.

    2011-01-01

    Muscles are multi-functional structures that interface neural and mechanical systems. Muscle work depends on a large multi-dimensional space of stimulus (neural) and strain (mechanical) parameters. In our companion paper, we rewrote activation to individual muscles in intact, behaving cockroaches (Blaberus discoidalis L.), revealing a specific muscle's potential to control body dynamics in different behaviours. Here, we use those results to provide the biologically relevant parameters for in situ work measurements. We test four hypotheses about how muscle function changes to provide mechanisms for the observed control responses. Under isometric conditions, a graded increase in muscle stress underlies its linear actuation during standing behaviours. Despite typically absorbing energy, this muscle can recruit two separate periods of positive work when controlling running. This functional change arises from mechanical feedback filtering a linear increase in neural activation into nonlinear work output. Changing activation phase again led to positive work recruitment, but at different times, consistent with the muscle's ability to also produce a turn. Changes in muscle work required considering the natural sequence of strides and separating swing and stance contributions of work. Both in vivo control potentials and in situ work loops were necessary to discover the neuromechanical coupling enabling control. PMID:21502130

  8. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca2+ release channel

    PubMed Central

    Filipova, Dilyana; Walter, Anna M.; Gaspar, John A.; Brunn, Anna; Linde, Nina F.; Ardestani, Mostafa A.; Deckert, Martina; Hescheler, Jürgen; Pfitzer, Gabriele; Sachinidis, Agapios; Papadopoulos, Symeon

    2016-01-01

    In mature skeletal muscle, the intracellular Ca2+ concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca2+ release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1’s potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca2+ signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca2+ signaling during muscle organ development. PMID:26831464

  9. Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106.

    PubMed

    Anderson, Douglas M; Cannavino, Jessica; Li, Hui; Anderson, Kelly M; Nelson, Benjamin R; McAnally, John; Bezprozvannaya, Svetlana; Liu, Yun; Lin, Weichun; Liu, Ning; Bassel-Duby, Rhonda; Olson, Eric N

    2016-08-01

    Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis. PMID:27418600

  10. Computation of trunk muscle forces, spinal loads and stability in whole-body vibration

    NASA Astrophysics Data System (ADS)

    Bazrgari, B.; Shirazi-Adl, A.; Kasra, M.

    2008-12-01

    Whole-body vibration has been indicated as a risk factor in back disorders. Proper prevention and treatment management, however, requires a sound knowledge of associated muscle forces and loads on the spine. Previous trunk model studies have either neglected or over-simplified the trunk redundancy with time-varying unknown muscle forces. Trunk stability has neither been addressed. A novel iterative dynamic kinematics-driven approach was employed to evaluate muscle forces, spinal loads and system stability in a seated subject under a random vertical base excitation with ˜±1 g peak acceleration contents. This iterative approach satisfied equations of motion in all directions/levels while accounting for the nonlinear passive resistance of the ligamentous spine. The effect of posture, co-activity in abdominal muscles and changes in buttocks stiffness were also investigated. The computed vertical accelerations were in good agreement with measurements. The input base excitation, via inertial and muscle forces, substantially influenced spinal loads and system stability. The flexed posture in sitting increased the net moment, muscle forces and passive spinal loads while improving the trunk stability. Similarly, the introduction of low to moderate antagonistic coactivity in abdominal muscles increased the passive spinal loads and improved the spinal stability. A trade-off, hence, exists between lower muscle forces and spinal loads on one hand and more stable spine on the other. Base excitations with larger peak acceleration contents substantially increase muscle forces/spinal loads and, hence, the risk of injury.

  11. An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle.

    PubMed

    Zhao, Cuiping; Swank, Douglas M

    2013-06-18

    The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration. PMID:23790374

  12. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  13. Free rectus femoris muscle transfer for one-stage reconstruction of established facial paralysis.

    PubMed

    Koshima, I; Moriguchi, T; Soeda, S; Hamanaka, T; Tanaka, H; Ohta, S

    1994-09-01

    The free vascularized rectus femoris muscle graft with a long motor nerve was used for reconstruction of unilateral established facial paralysis in one stage. The pedicle vessels were anastomosed to the recipient vessels in the ipsilateral face, and the motor nerve of the muscle, which was led through the upper lip, was sutured to the contralateral facial nerve. The advantages of this one-stage reconstruction as compared with surgery involving second-stage reconstruction are that the reconstruction can be completed in one stage and that the period required for muscle refunctioning after surgery is short. The vascular supply of the rectus femoris muscle can emanate mainly from the lateral circumflex femoral artery. In our cadaveric study, five types of variation were found for origination of a nutrient artery of the muscle. The most common type was one in which the artery derived from the descending branch of the lateral circumflex femoral artery (39 percent). The motor nerve of the rectus femoris muscle is derived from the femoral nerve under the inguinal ligament and runs downward through the intermuscular space between the sartorius muscle and the iliopsoas muscle before entering the posteromedial part of the upper third of the rectus muscle. The advantages of using the rectus muscle are as follows: (1) safety and simplicity exist with one main large arterial supply for arterial anastomosis; (2) the length of the femoral nerve (more than 20 cm) is adequate for reaching the contralateral facial nerve for suturing; (3) a simultaneous operation by two teams is possible with the patient in the supine position; (4) the force and distance of contraction are appropriate to reanimate the face; (5) the rectus muscle can be separated as a segment with appropriate lengths, size, and power for replacing lost muscles in the face; (6) the tendinous fascia in both ends provides a reliable point for anchoring sutures, which provides firmer attachment; and (7) no loss of donor

  14. Evaluation of a simple method for determining muscle volume in vivo.

    PubMed

    Infantolino, Benjamin W; Challis, John H

    2016-06-14

    The quantification in vivo of muscle volume is important, for example, to understand how muscles change with aging, and respond to rehabilitation. Albracht et al. (2008) suggested that muscle volume can be estimated in vivo from the measurement of muscle cross-sectional area and muscle belly length only. The purpose of this study was to evaluate this proposed relationship for determining muscle volume for both the Vastus Lateralis (VL) and First Dorsal Interosseous (FDI) using ultrasound imaging. The cross-sectional area and length of 22 cadaver FDI and 6 VL muscles in cadavers were imaged using ultrasound, these muscles were then dissected and muscle volumes measured directly using the water displacement technique. Estimated muscle volumes were compared with their direct measurement, and for the VL the percentage root mean square error in the estimation of muscle volume was 5.0%, and the Bland-Altman analysis had all volume estimates within the 95% confidence interval, with no evidence of bias (proportional or constant) in the volume estimates. In contrast, percentage root mean square error for the FDI was 18.8%, with the Bland-Altman analysis showing volume estimates outside of the 95% confidence interval and proportional bias. These results indicate that the simple method proposed by Albracht et al. (2008) for the estimation of muscle volume is appropriate the VL but not the FDI using ultrasound imaging. Morphological disparities likely account for these differences, if accurate and fast measures of the volume of the FDI are required other approaches should be explored. PMID:27156375

  15. Muscle Ciliary Neurotrophic Factor Receptor α Promotes Axonal Regeneration and Functional Recovery Following Peripheral Nerve Lesion

    PubMed Central

    Lee, Nancy; Spearry, Rachel P.; Leahy, Kendra M.; Robitz, Rachel; Trinh, Dennis S.; Mason, Carter O.; Zurbrugg, Rebekah J.; Batt, Myra K.; Paul, Richard J.; Maclennan, A. John

    2014-01-01

    Ciliary neurotrophic factor (CNTF) administration maintains, protects, and promotes the regeneration of both motor neurons (MNs) and skeletal muscle in a wide variety of models. Expression of CNTF receptor α (CNTFRα), an essential CNTF receptor component, is greatly increased in skeletal muscle following neuromuscular insult. Together the data suggest that muscle CNTFRα may contribute to neuromuscular maintenance, protection, and/or regeneration in vivo. To directly address the role of muscle CNTFRα, we selectively-depleted it in vivo by using a “floxed” CNTFRα mouse line and a gene construct (mlc1f-Cre) that drives the expression of Cre specifically in skeletal muscle. The resulting mice were challenged with sciatic nerve crush. Counting of nerve axons and retrograde tracing of MNs indicated that muscle CNTFRα contributes to MN axonal regeneration across the lesion site. Walking track analysis indicated that muscle CNTFRα is also required for normal recovery of motor function. However, the same muscle CNTFRα depletion unexpectedly had no detected effect on the maintenance or regeneration of the muscle itself, even though exogenous CNTF has been shown to affect these functions. Similarly, MN survival and lesion-induced terminal sprouting were unaffected. Therefore, muscle CNTFRα is an interesting new example of a muscle growth factor receptor that, in vivo under physiological conditions, contributes much more to neuronal regeneration than to the maintenance or regeneration of the muscle itself. This novel form of muscle–neuron interaction also has implications in the therapeutic targeting of the neuromuscular system in MN disorders and following nerve injury. PMID:23504871

  16. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    PubMed Central

    Cresswell, Andrew G.; Lichtwark, Glen A.

    2016-01-01

    across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation. PMID:27547566

  17. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    PubMed

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  18. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  19. In vivo behaviour of human muscle tendon during walking.

    PubMed Central

    Fukunaga, T.; Kubo, K.; Kawakami, Y.; Fukashiro, S.; Kanehisa, H.; Maganaris, C. N.

    2001-01-01

    In the present study we investigated in vivo length changes in the fascicles and tendon of the human gastrocnemius medialis (GM) muscle during walking. The experimental protocol involved real-time ultrasound scanning of the GM muscle, recording of the electrical activity of the muscle, measurement of knee- and ankle-joint rotations, and measurement of ground reaction forces in six men during walking at 3 km h(-1) on a treadmill. Fascicular lengths were measured from the sonographs recorded. Musculotendon complex length changes were estimated from anatomical and joint kinematic data. Tendon length changes were obtained combining the musculotendon complex and fascicular length-change data. The fascicles followed a different length-change pattern from those of the musculotendon complex and tendon throughout the step cycle. Two important features emerged: (i) the muscle contracted near-isometrically in the stance phase, with the fascicles operating at ca. 50 mm; and (ii) the tendon stretched by ca. 7 mm during single support, and recoiled in push-off. The behaviour of the muscle in our experiment indicates consumption of minimal metabolic energy for eliciting the contractile forces required to support and displace the body. On the other hand, the spring-like behaviour of the tendon indicates storage and release of elastic-strain energy. Either of the two mechanisms would favour locomotor economy PMID:11217891

  20. Spatiotemporal characteristics of muscle patterns for ball catching

    PubMed Central

    D'Andola, M.; Cesqui, B.; Portone, A.; Fernandez, L.; Lacquaniti, F.; d'Avella, A.

    2013-01-01

    What sources of information and what control strategies the central nervous system (CNS) uses to perform movements that require accurate sensorimotor coordination, such as catching a flying ball, is still debated. Here we analyzed the EMG waveforms recorded from 16 shoulder and elbow muscles in six subjects during catching of balls projected frontally from a distance of 6 m and arriving at two different heights and with three different flight times (550, 650, 750 ms). We found that a large fraction of the variation in the muscle patterns was captured by two time-varying muscle synergies, coordinated recruitment of groups of muscles with specific activation waveforms, modulated in amplitude and shifted in time according to the ball's arrival height and flight duration. One synergy was recruited with a short and fixed delay from launch time. Remarkably, a second synergy was recruited at a fixed time before impact, suggesting that it is timed according to an accurate time-to-contact estimation. These results suggest that the control of interceptive movements relies on a combination of reactive and predictive processes through the intermittent recruitment of time-varying muscle synergies. Knowledge of the dynamic effect of gravity and drag on the ball may be then implicitly incorporated in a direct mapping of visual information into a small number of synergy recruitment parameters. PMID:23966939

  1. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission. PMID:23192310

  2. Effects of use and disuse on growing skeletal muscle

    SciTech Connect

    Darr, K.C.

    1988-01-01

    In the first series of experiments, the time course and extent of satellite cell activation were studied in the soleus and extensor digitorum longus (EDL) muscles of untrained growing and mature rats after a single bout of prolonged eccentric treadmill running. Satellite cell mitotic activity was quantitated in autoradiographs of whole-fiber segments after injection of {sup 3}H-thymidine. Labelling in growing muscles progressively increased to peak at 72 h postexercise, whereas mature muscles exhibited an earlier peak at 24 (soleus) and 48 (EDL) h, followed by a more rapid decline to control levels by 120 h postexercise. In all exercised muscles the calculated satellite cell activation was far greater than required to repair the small number of necrotic fibers identified at the light-microscopic levels. In a second series of experiments, postnatal growth of 20d old rat EDL and soleus muscles was studied after 3, 10, 20 and 30d of hindlimp suspension. Radial growth of suspended soleus myofibers was attenuated 76% over the total suspension period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In contrast radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers by day 3 of suspension.

  3. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases

    PubMed Central

    Nie, Mao; Deng, Zhong-Liang; Liu, Jianming; Wang, Da-Zhi

    2015-01-01

    A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs' functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia. PMID:26258142

  4. Engineered Skeletal Muscle Units for Repair of Volumetric Muscle Loss in the Tibialis Anterior Muscle of a Rat

    PubMed Central

    VanDusen, Keith W.; Syverud, Brian C.; Williams, Michael L.; Lee, Jonah D.

    2014-01-01

    Volumetric muscle loss (VML) is the traumatic, degenerative, or surgical loss of muscle tissue, which may result in function loss and physical deformity. To date, clinical treatments for VML—the reflected muscle flap or transferred muscle graft—are limited by tissue availability and donor site morbidity. To address the need for more innovative skeletal muscle repair options, our laboratory has developed scaffoldless tissue-engineered skeletal muscle units (SMUs), multiphasic tissue constructs composed of engineered skeletal muscle with engineered bone-tendon ends, myotendinous junctions, and entheses, which in vitro can produce force both spontaneously and in response to electrical stimulation. Though phenotypically immature in vitro, we have shown that following 1 week of implantation in an ectopic site, our muscle constructs develop vascularization and innervation, an epimysium-like outer layer of connective tissue, an increase in myosin protein content, formation of myofibers, and increased force production. These findings suggest that our engineered muscle tissue survives implantation and develops the interfaces necessary to advance the phenotype toward adult muscle. The purpose of this study was to evaluate the potential of our SMUs to restore muscle tissue to sites of acute VML. Our results indicate that our SMUs continue to mature in vivo with longer recovery times and have the potential to repair VML sites by providing additional muscle fibers to damaged muscles. We conclude from this study that our SMUs have the potential to restore lost tissue volume in cases of acute VML. PMID:24813922

  5. Changes in masticatory muscle activity according to food size in experimental human mastication.

    PubMed

    Miyawaki, S; Ohkochi, N; Kawakami, T; Sugimura, M

    2001-08-01

    The purpose of this study was to investigate the changes in masticatory muscle activity according to food size in human mastication. Sixteen subjects performed deliberate unilateral chewing of similarly cone shaped hard gummy jellies weighing 5 and 10 g. The masseter and anterior temporal muscle activity on both sides was recorded for the first 10 strokes. The normalized muscle activity during the chewing of the 10 g jelly was significantly higher than that of the 5-g jelly, and there was a considerably high significant correlationship between the muscle activity during the chewing of the 10- and 5-g jellies in each muscle on each side. The 10 g/5 g jelly ratio for the masseter muscle activity on the non-chewing side almost coincided with the theoretical energy ratio required to shear, although that of the chewing side was lower than the ratio. The 10 g/5 g jelly ratio for the temporal muscle activity on both sides almost coincided with the food height ratio. The results suggest that anterior temporal and masseter muscle activity changes according to the rate of change in the height of hard coherent food bolus and food resistance required to shear, respectively, during mastication. PMID:11556960

  6. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  7. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. PMID:27304505

  8. Cricopharyngeal muscle hypertrophy: radiologic-anatomic correlation.

    PubMed

    Torres, W E; Clements, J L; Austin, G E; Knight, K

    1984-05-01

    There is a divergence of opinion concerning the cricopharyngeal muscle defect commonly seen in the pharyngoesophageal area on barium esophagram. Some observers believe this defect is the result of neuromuscular dysfunction with the demonstration of the unrelaxed muscle bundle; however, others believe it is the result of actual hypertrophy of the cricopharyngeal muscle. Radiologic and pathologic study of 24 unselected autopsy cases revealed cricopharyngeal hypertrophy in 13 cases by radiologic criteria. Histologic examination revealed that the cricopharyngeal muscle thickness was uniformly greater in these cases than in the radiographically normal cases. The cricopharyngeal muscle defect is associated with actual hypertrophy of the cricopharyngeal muscle in many cases. PMID:6609574

  9. [Myalgia of the masticatory muscles].

    PubMed

    Schindler, H J; Türp, J C

    2009-06-01

    Masticatory muscle pain can be regarded as a regional manifestation of musculoskeletal disorders similar to those observed in other body regions. Along with temporomandibular joint pain and some painless disturbances related to mandibular mobility they are subsumed under the term temporomandibular disorders (TMD). Masticatory muscle pain is assumed to be associated with a variety of biophysiological risk factors. Valid diagnostic instruments make it possible to differentiate between the various TMD subgroups. In most cases, masticatory muscle pain can be treated/managed successfully. In a considerable number of patients, however, the pain persists over a long period of time despite therapeutic interventions. Understanding of the underlying neurobiological background of acute and chronic pain may help in therapeutic decision-making and evaluation of the therapeutic effects. PMID:19551421

  10. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  11. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds. PMID:26629627

  12. Immunohistochemical alterations after muscle trauma.

    PubMed

    Fechner, G; Bajanowski, T; Brinkmann, B

    1993-01-01

    The proteins fibrin, fibrinogen, fibronectin and complement C5b-9 were investigated in mechanically damaged skeletal muscle. An accumulation of fibrin, fibrinogen and fibronectin could be observed immediately after intra-vital trauma in damaged fibre zones, later an accumulation at the torn edges of the fibres. The accumulation of complement C5b-9 began one hour after trauma. After post mortem trauma no positive reactions could be observed for any of the proteins. The degree of expression of these proteins can therefore be used to differentiate between vital and postmortem muscle damage as well as the estimation of wound age in the early antemortem time period. PMID:8431399

  13. Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method

    NASA Astrophysics Data System (ADS)

    Rashid, Tariq; Shahinpoor, Mohsen

    1999-05-01

    Ionic polymer platinum composite (IPPC) artificial muscles have been the subject of research activities at AMRI (Artificial Muscle Research Institute) and have been identified as smart intelligent material. The potential for such artificial muscles is so vast that muscles of different enhanced characteristics will be required in the future to accomplish different desired tasks. However the immediate challenges are to identify, control and enhance different desired characteristics of artificial muscles (IPPC). One important milestone that may be regarded, as the most critical one is to enhance force produced by these artificial muscles. Obviously force enhancement if successful may put these artificial muscles into one-to-one competition against the available line of traditional force actuators which fall in the same category. In order to experimentally approach the process of optimizing the force output of ionic polymeric platinum composite (IPPC) artificial muscles, an orthogonal array method was used to identify potential specific manufacturing procedures. These sets of procedures will eventually be helpful to identify the different desired characteristics of manufactured artificial muscles. One manufactured artificial muscles are tested for force outputs, the best ones would then be easily traced back to manufacturing procedure and will be further enhanced up to the desired levels by further refining the underlying manufacturing procedures. The measure chosen for optimization process was basically the force generated by a specific piece of muscle of specific geometry.

  14. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    PubMed

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles. PMID:27075540

  15. Therapeutic approaches for muscle wasting disorders.

    PubMed

    Lynch, Gordon S; Schertzer, Jonathan D; Ryall, James G

    2007-03-01

    Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients. PMID:17258813

  16. Inhibition of skeletal muscle development: less differentiation gives more muscle.

    PubMed

    Füchtbauer, Ernst-Martin

    2002-01-01

    The fact that stem cells have to be protected from premature differentiation is true for many organs in the developing embryo and the adult organism. However, there are several arguments that this is particularly important for (skeletal) muscle. There are some evolutionary arguments that muscle is a "default" pathway for mesodermal cells, which has to be actively prevented in order to allow cells to differentiate into other tissues. Myogenic cells originate from very small areas of the embryo where only a minor portion of these cells is supposed to differentiate. Differentiated muscle fibres are unconditionally post-mitotic, leaving undifferentiated stem cells as the only source of regeneration. The mechanical usage of muscle and its superficial location in the vertebrate body makes regeneration a frequently used mechanism. Looking at the different inhibitory mechanisms that have been found within the past 10 or so years, it appears as if evolution has taken this issue very serious. At all possible levels we find regulatory mechanisms that help to fine tune the differentiation of myogenic cells. Secreted molecules specifying different populations of somitic cells, diffusing or membrane-bound signals among fellow myoblasts, modulating molecules within the extracellular matrix and last, but not least, a changing set of activating and repressing cofactors. We have come a long way from the simple model of MyoD just to be turned on at the right time in the right cell. PMID:12132393

  17. Eligibility Requirements

    MedlinePlus

    ... Home > Donating Blood > Eligibility Requirements Printable Version Eligibility Requirements This page uses Javascript. Your browser either doesn' ... donors » Weigh at least 110 lbs. Additional weight requirements apply for donors 18-years-old and younger ...

  18. Chevron formation of the zebrafish muscle segments

    PubMed Central

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C.; Brusch, Lutz

    2014-01-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. PMID:25267843

  19. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers

    PubMed Central

    Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke

    2014-01-01

    Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572

  20. Muscle stem cells at a glance.

    PubMed

    Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2014-11-01

    Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment. PMID:25300792

  1. Kegel Exercises for Your Pelvic Muscles

    MedlinePlus

    ... control until after 6 to 12 weeks of daily exercises. Still, most women notice an improvement after just ... Weak pelvic muscles often lead to urine leakage. Daily exercises can strengthen pelvic muscles. These exercises often improve ...

  2. Muscle preservation in long duration space missions: The eccentric factor

    NASA Technical Reports Server (NTRS)

    Buchanan, Paul; Dudley, Gary A.; Tesch, Per A.; Hather, Bruce M.

    1990-01-01

    In our quest to understand, and eventually prevent, the loss of muscle strength and mass that occurs during prolonged periods in microgravity, we have organized our research approach by systems and useful terrestrial analogs. Our hypothesis was that: The eccentric movement, or lengthening component, of dynamic, resistive exercise, is required for the production of the greatest gains in strength and muscle hypertrophy in the most metabolically efficient, and time effective manner. The exercises selected were leg presses, leg (knee) extensions, and hamstring curls. In this 30 week study, 38 male subjects, between the ages of 25 and 50, were divided into four groups. One group performed 5 sets of 8-12 repetitions per set of conventional concentric/eccentric (CON/ECC) exercises. Another group performed only the concentric (CON) movement on the same schedule. The third group performed twice the number of sets in the concentric only mode (CON/CON), and the last group served as controls. We interpret these data as convincing evidence that the eccentric component of heavy resistance training is required along with the concentric for the most effective increase in strength and muscle fiber size in the least time. We also conclude that such heavy exercise of any such muscle group need not consume inordinately long periods of time, and is quite satisfactorily effective when performed on 72 hour centers.

  3. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.

    PubMed

    Cornelison, D D; Filla, M S; Stanley, H M; Rapraeger, A C; Olwin, B B

    2001-11-01

    Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration. PMID:11784020

  4. Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles

    PubMed Central

    Carvajal Monroy, Paola L.; Yablonka-Reuveni, Zipora; Grefte, Sander; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A.D.T.G.; Von den Hoff, Johannes W.

    2015-01-01

    Fibrosis and defective muscle regeneration can hamper the functional recovery of the soft palate muscles after cleft palate repair. This causes persistent problems in speech, swallowing, and sucking. In vitro culture systems that allow the study of satellite cells (myogenic stem cells) from head muscles are crucial to develop new therapies based on tissue engineering to promote muscle regeneration after surgery. These systems will offer new perspectives for the treatment of cleft palate patients. A protocol for the isolation, culture and differentiation of satellite cells from head muscles is presented. The isolation is based on enzymatic digestion and trituration to release the satellite cells. In addition, this protocol comprises an innovative method using extracellular matrix gel coatings of millimeter size, which requires only low numbers of satellite cells for differentiation assays. PMID:26274878

  5. Molecular mechanisms and therapeutics of the deficit in specific force in ageing skeletal muscle.

    PubMed

    Delbono, Osvaldo

    2002-01-01

    The age-related impairment in muscle force is only partially explained by the loss of muscle mass. The loss both in specific and absolute forces contributes to the muscle weakness measured in the elderly and in animal models of ageing. Successful interventions aimed at preventing age-associated functional deficits will require a better insight into the mechanisms underlying the decline in muscle-specific force. The present review article is focused on recent evidence supporting excitation-contraction uncoupling as a key factor underlying fast and slow muscle fiber impairment with ageing. The molecular, functional and structural factors supporting this theory and counteracting measures such as insulin-like growth factor 1 transgenic overexpression are discussed. PMID:12237563

  6. Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles

    PubMed Central

    Rangarajan, Swathi; Madden, Lauran; Bursac, Nenad

    2014-01-01

    The field of tissue engineering involves design of high-fidelity tissue substitutes for predictive experimental assays in vitro and cell-based regenerative therapies in vivo. Design of striated muscle tissues, such as cardiac and skeletal muscle, has been particularly challenging due to a high metabolic demand and complex cellular organization and electromechanical function of the native tissues. Successful engineering of highly functional striated muscles may thus require creation of biomimetic culture conditions involving medium perfusion, electrical and mechanical stimulation. When optimized, these external cues are expected to synergistically and dynamically activate important intracellular signaling pathways leading to accelerated muscle growth and development. This review will discuss the use of different types of tissue culture bioreactors aimed at providing conditions for enhanced structural and functional maturation of engineered striated muscles. PMID:24366526

  7. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  8. Modulation of the skeletal muscle sodium channel alpha-subunit by the beta 1-subunit.

    PubMed

    Wallner, M; Weigl, L; Meera, P; Lotan, I

    1993-12-28

    Co-expression of cloned sodium channel beta 1-subunit with the rat skeletal muscle-subunit (alpha microI) accelerated the macroscopic current decay, enhanced the current amplitude, shifted the steady state inactivation curve to more negative potentials and decreased the time required for complete recovery from inactivation. Sodium channels expressed from skeletal muscle mRNA showed a similar behaviour to that observed from alpha microI/beta 1, indicating that beta 1 restores 'physiological' behaviour. Northern blot analysis revealed that the Na+ channel beta 1-subunit is present in high abundance (about 0.1%) in rat heart, brain and skeletal muscle, and the hybridization with untranslated region of the 'brain' beta 1 cDNA to skeletal muscle and heart mRNA indicated that the different Na+ channel alpha-subunits in brain, skeletal muscle and heart may share a common beta 1-subunit. PMID:8282123

  9. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    PubMed Central

    Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura

    2013-01-01

    Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419

  10. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  11. Biometry of the ciliary muscle during dynamic accommodation assessed with OCT

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Hernandez, Victor; de Freitas, Carolina; Manns, Fabrice; Parel, Jean-Marie

    2014-02-01

    Little is known about the structural changes of the ciliary muscle with age and how it may contribute to presbyopia. Optical coherence tomography (OCT) has been used to perform ciliary muscle biometry at different age and accommodative states with low resolution and speed. Dynamic imaging and accurate biometry of the ciliary muscle requires high-speed, high-resolution and correction of the OCT image distortions. We integrate an existing custom-made Spectral Domain OCT (SD-OCT) platform working at 840nm for biometry of the human eye with a SD-OCT system working at 1325nm that enables high-speed and high-resolution transscleral imaging of the ciliary muscle dynamically during accommodation and we developed an algorithm to provide corrected thickness measurements of the ciliary muscle.

  12. Video Analysis of Muscle Motion

    ERIC Educational Resources Information Center

    Foster, Boyd

    2004-01-01

    In this article, the author discusses how video cameras can help students in physical education and sport science classes successfully learn and present anatomy and kinesiology content at levels. Video analysis of physical activity is an excellent way to expand student knowledge of muscle location and function, planes and axes of motion, and…

  13. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  14. Novel Analog For Muscle Deconditioning

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Bloomberg, Jacob

    2010-01-01

    Existing models of muscle deconditioning are cumbersome and expensive (ex: bedrest). We propose a new model utilizing a weighted suit to manipulate strength, power or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre- and post-flight astronaut performance data using the same tasks. Spline regression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of: leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/ BW of 79 J/kg, knee extension (KE) isokinetic/BW of 6 Nm/Kg and KE torque/BW of 1.9 Nm/kg. Conclusions: Laboratory manipulation of strength / BW has promise as an appropriate analog for spaceflight-induced loss of muscle function for predicting occupational task performance and establishing operationally relevant exercise targets.

  15. Novel Analog For Muscle Deconditioning

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Ryder, Jeff; Buxton, Roxanne; Redd. Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle; Fiedler, James; Ploutz-Snyder, Robert; Bloomberg, Jacob

    2011-01-01

    Existing models (such as bed rest) of muscle deconditioning are cumbersome and expensive. We propose a new model utilizing a weighted suit to manipulate strength, power, or endurance (function) relative to body weight (BW). Methods: 20 subjects performed 7 occupational astronaut tasks while wearing a suit weighted with 0-120% of BW. Models of the full relationship between muscle function/BW and task completion time were developed using fractional polynomial regression and verified by the addition of pre-and postflightastronaut performance data for the same tasks. Splineregression was used to identify muscle function thresholds below which task performance was impaired. Results: Thresholds of performance decline were identified for each task. Seated egress & walk (most difficult task) showed thresholds of leg press (LP) isometric peak force/BW of 18 N/kg, LP power/BW of 18 W/kg, LP work/BW of 79 J/kg, isokineticknee extension (KE)/BW of 6 Nm/kg, and KE torque/BW of 1.9 Nm/kg.Conclusions: Laboratory manipulation of relative strength has promise as an appropriate analog for spaceflight-induced loss of muscle function, for predicting occupational task performance and establishing operationally relevant strength thresholds.

  16. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    PubMed Central

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Sandri, Marco; Chamberlain, Jeffrey; James, David E.; Gregorevic, Paul

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  17. Intramuscular variation in fresh ham muscle color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was conducted to characterize a defect involving pale muscle tissue in the superficial, ventral portion of ham muscles, resulting in two-toned appearance of cured ham products. Biceps femoris muscles (n = 200), representing 3 production systems, were obtained from the ham-boning lin...

  18. Mathematical Model Of Nerve/Muscle Interaction

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1990-01-01

    Phasic Excitation/Activation (PEA) mathematical model simulates short-term nonlinear dynamics of activation and control of muscle by nerve. Includes electronic and mechanical elements. Is homeomorphic at level of its three major building blocks, which represent motoneuron, dynamics of activation of muscle, and mechanics of muscle.

  19. Distribution of veterinary drug residues among muscles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Food and Drug Administration sets tolerances for veterinary drug residues in muscle, but does not specify which muscle should be sampled for analysis. The goal of this research was to determine if antibiotic residue levels are dependent on muscle type. In this study, penicillin G (Pen G) d...

  20. Regulation of muscle growth in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates. Skeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accompanied by the rapid accumulatio...

  1. Defining muscle elastance as a parameter.

    PubMed

    Palladino, Joseph L; Noordergraaf, Abraham

    2007-01-01

    Functional descriptions of striated muscle are often based on the measured variables force and initial velocity of shortening, embodied as Hill's contractile element. The fundamental difficulty of describing the mechanical properties of muscle with a force-velocity relation that is set a priori, and the practical problem of the act of measurement changing muscle's force-velocity relation or elastance curve, are described. As an alternative, a new model of muscle contraction is presented, which characterizes muscle's contractile state with parameters, rather than variables. Muscle is treated as a force generator that is time, length, and velocity dependent. Muscle dynamics develop from a single equation based on the formation and relaxation of crossbridge bonds. This analytical function permits the calculation of muscle elastance via E(m)=[abstract: see text]. This new muscle model is defined independently from load properties, and muscle elastance is dynamic and reflects changing numbers of crossbridge bonds. This parameter is more representative of the mechanical properties of muscle than are variables such as muscle force and shortening velocity. PMID:18003207

  2. Immunity to Trichinella spiralis muscle infection

    PubMed Central

    Fabre, M.V.; Beiting, D.P.; Bliss, S.K.; Appleton, J.A.

    2009-01-01

    Trichinella spiralis larvae establish chronic infections in skeletal muscles of immunocompetent hosts. Muscle infection is crucial to transmission and survival of the parasite in nature. Chronic infections by this highly immunogenic parasite are associated with modulation or escape from potentially destructive immune responses. This review summarizes our current knowledge of immunity to muscle infection with T. spiralis. PMID:19070961

  3. Multiple Sclerosis Affects Skeletal Muscle Characteristics

    PubMed Central

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank; Krekels, Maartje; Grevendonk, Lotte; Eijnde, Bert O.

    2014-01-01

    Background The impact of multiple sclerosis (MS) on skeletal muscle characteristics, such as muscle fiber cross sectional area (CSA), fiber type proportion, muscle strength and whole muscle mass, remains conflicting. Methods In this cross sectional study, body composition and muscle strength of the quadriceps were assessed in 34 MS (EDSS: 2.5±0.19) patients and 18 matched healthy controls (HC). Hereafter a muscle biopsy (m.vastus lateralis) was taken. Results Compared to HC, mean muscle fiber CSA of all fibers, as well as CSA of type I, II and IIa fibers were smaller and muscle strength of the quadriceps was lower in MS patients. Whole body composition was comparable between groups. However, compared to HC, the biopsied leg tended to have a higher fat percentage (p = 0.1) and a lower lean mass (p = 0.06) in MS patients. Conclusion MS seems to negatively influence skeletal muscle fiber CSA, muscle strength and muscle mass of the lower limbs of mildly affected MS patients. This emphasises the need for rehabilitation programs focusing on muscle preservation of the lower limb. Trial Registration ClinicalTrials.gov NCT01845896 PMID:25264868

  4. Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures

    PubMed Central

    Peng, Yi-Chien; Lo, Kuo-Cheng; Wang, Lin-Hwa

    2015-01-01

    This study investigated the differences in joint motions and muscle activities of the lower extremities involved in various squatting postures. The motion capture system with thirty-one reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the quadriceps, biceps femoris, tibialis anterior, and gastrocnemius muscles of the pivot and stride leg. The joint extension and flexion in wide squatting are greater than in general squatting (p = 0.005). Knee joint extension and flexion in general squatting are significantly greater than in wide squatting (p = 0.001). The adduction and abduction of the hip joint in stride passing are significantly greater than in step squatting (p = 0.000). Furthermore, the adduction and abduction of the knee joint in stride passing are also significantly greater than in step squatting (p = 0.000). When stride passing is performed, the muscle activation of the hamstring of the pivot foot in general squatting is significantly greater than in wide squatting (p < 0.05), and this difference continues to the stride period. Most catchers use a general or wide squatting width, exclusive of a narrow one. Therefore, the training design for strengthening the lower extremity muscles should consider the appropriateness of the common squat width to enhance squat-up performance. For lower limb muscle activation, wide squatting requires more active gastrocnemius and tibialis anterior muscles. Baseball players should extend the knee angle of the pivot foot before catching the ball. Key points Common squatting width can enhance squat-up performance through strengthening lower body muscle. Wide squatting width might improve lower body muscle activation, leading to more effective communication between the brain and the muscle group. The benefit might be improved coordination of lower body muscle. Common and wide squatting width might be cycled through training to enhance the strengthen and

  5. Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures.

    PubMed

    Peng, Yi-Chien; Lo, Kuo-Cheng; Wang, Lin-Hwa

    2015-09-01

    This study investigated the differences in joint motions and muscle activities of the lower extremities involved in various squatting postures. The motion capture system with thirty-one reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the quadriceps, biceps femoris, tibialis anterior, and gastrocnemius muscles of the pivot and stride leg. The joint extension and flexion in wide squatting are greater than in general squatting (p = 0.005). Knee joint extension and flexion in general squatting are significantly greater than in wide squatting (p = 0.001). The adduction and abduction of the hip joint in stride passing are significantly greater than in step squatting (p = 0.000). Furthermore, the adduction and abduction of the knee joint in stride passing are also significantly greater than in step squatting (p = 0.000). When stride passing is performed, the muscle activation of the hamstring of the pivot foot in general squatting is significantly greater than in wide squatting (p < 0.05), and this difference continues to the stride period. Most catchers use a general or wide squatting width, exclusive of a narrow one. Therefore, the training design for strengthening the lower extremity muscles should consider the appropriateness of the common squat width to enhance squat-up performance. For lower limb muscle activation, wide squatting requires more active gastrocnemius and tibialis anterior muscles. Baseball players should extend the knee angle of the pivot foot before catching the ball. Key pointsCommon squatting width can enhance squat-up performance through strengthening lower body muscle.Wide squatting width might improve lower body muscle activation, leading to more effective communication between the brain and the muscle group. The benefit might be improved coordination of lower body muscle.Common and wide squatting width might be cycled through training to enhance the strengthen and

  6. Excess TGF-β mediates muscle weakness associated with bone metastases in mice

    PubMed Central

    Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.

    2015-01-01

    Cancer-associated muscle weakness is poorly understood and there is no effective treatment. Here, we find that seven different mouse models of human osteolytic bone metastases, representing breast, lung and prostate cancers, as well as multiple myeloma exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that TGF-β, released from the bone surface as a result of metastasis-induced bone destruction upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor/calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling required for proper muscle contraction. We found that inhibiting RyR1 leak, TGF-β signaling, TGF-β release from bone or Nox4 all improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast cancer- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, higher levels of Nox4 protein and Nox4 binding to RyR1, and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a non-malignant metabolic bone disorder associated with increased TGF-β activity. Thus, metastasis-induced TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production. PMID:26457758

  7. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    PubMed Central

    2011-01-01

    Age-related muscle wasting (sarcopenia) is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i) elevated basal-fasted rates of muscle protein breakdown, ii) a reduction in basal muscle protein synthesis (MPS), or iii) a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise. PMID:21975196

  8. Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology

    PubMed Central

    Donati, Chiara; Cencetti, Francesca; Bruni, Paola

    2013-01-01

    Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in the regulation of biological processes such as proliferation, differentiation, motility, and survival. Here we review the role of S1P in the biology and homeostasis of skeletal muscle. S1P derives from the catabolism