Science.gov

Sample records for requirements optical mounts

  1. National Ingition Facility subsystem design requirements optical mounts SSDR 1.4.4

    SciTech Connect

    Richardson, M.

    1996-10-06

    This SSDR establishes the performance, design, development and test requirements for NIF Beam Transport Optomechanical Subsystems. optomechanical Subsystems includes the mounts for the beam transport mirrors, LMl - LM8, the polarizer mount, and the spatial filter lens mounts.

  2. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  3. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  4. Adjustable Optical Mount Is More Rigid

    NASA Technical Reports Server (NTRS)

    Asbury, Bill G.; Coombs, David S.; Jones, Irby W.; Moore, Alvah S., Jr.

    1994-01-01

    Improved mount for lens or mirror in laser offers rigidity similar to that of nonadjustable optical mount. In comparison with older adjustable optical mounts, this one less susceptible to movements and distortions caused by vibrations and by thermal expansions and contractions. Mount contains neither adjustment rods (which grow or shrink as temperature varies) nor springs (which transmit vibrations to mounted optic).

  5. Advanced centering of mounted optics

    NASA Astrophysics Data System (ADS)

    Wenzel, Christian; Winkelmann, Ralf; Klar, Rainer; Philippen, Peter; Garden, Ron; Pearlman, Sasha; Pearlman, Guy

    2016-03-01

    Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of <1 μm and angular errors of < 10 sec are typical alignment results.

  6. Dual resolution, vacuum compatible optical mount

    DOEpatents

    Halpin, John Michael

    2011-10-04

    An optical mount for an optical element includes a mounting plate, a lever arm pivot coupled to mounting plate, and an adjustment plate. The optical mount also includes a flexure pivot mechanically coupling the adjustment plate to the mounting plate and a lever arm. The optical mount further includes a first adjustment device extending from the adjustment plate to make contact with the lever arm at a first contact point. A projection of a line from the first contact point to a pivot point, measured along the lever arm, is a first predetermined distance. The optical mount additionally includes a second adjustment device extending from the adjustment plate to make contact with the lever arm at a second contact point. A projection of a line from the second contact point to the pivot point, measured along the lever arm, is a second predetermined distance greater than the first predetermined distance.

  7. Optical Mounts for Cryogenic Beam Splitters

    NASA Technical Reports Server (NTRS)

    Rudman, A. A.

    1985-01-01

    Spring-loaded optical mounts maintain flatness and alinement of rigid, framed, or pellicle beam splitters over wide temperature range, despite differences in thermal expansion amoung materials. Mounts permit optical adjustments at ambient temperature even though optical system operated subsequently within few degrees of absolute zero. Mounts useful as holders for integrated-circuit master patterns, survey targets, vibrating membranes, noise- or pressure-sensing membranes, osmosis filters, and fuel-cell elements.

  8. Bonded mounts for small cryogenic optics

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Fetterhoff, Ken A.; Myers, James R.; Wheelwright, Paul D.; Cunnington, George R.

    2000-11-01

    Adhesive bonded mounting of small optics for use at cryogenic temperatures provides improved heat transfer, low optical surface distortion, and reduced cost in comparison with conventional flexural mounts. A design methodology based on the thermo-elastic properties of the adhesive and its interaction with the mounted optic is presented. Key factors in the selection of the appropriate adhesive are high thermal conductivity, a low elastic modulus, a low glass-transition temperature, good adhesion characteristics to optic and substrate, and low outgassing. A design example of 17-mm diameter, 2-mm thick circular polycrystalline germanium window used at a temperature of below 100 K is discussed. During cooling at a rate of more than 3 K/sec the temperature at the center of the window mounted in this way lags behind the mount by no more than 20 K at any instant, and reaches equilibrium with the mount in about 50 sec. Maximum optical surface deformation of the mounted optic is less than 0.031 waves RMS differential (1 wave equals 633 nm) for a temperature change of 300 K to 102 K. Predicted peak tensile stress is less than 17 MPa. The adhesive bonded mount is also simple and economical in comparison with the complex flexural mounts often used for cryogenic optics.

  9. Mounting small optics for cryogenic space missions

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Holmes, Howard C.; Jacoby, Mike S.; Kvamme, E. Todd

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) includes numerous optical assemblies. The instrument will operate at 35K after experiencing launch loads at ~293K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain exceptional optical quality during operation. Lockheed Martin Space Systems Company (LMSSC) conceived, designed, analyzed, assembled, tested, and integrated the optical assemblies for the NIRCam instrument. With using examples from NIRCam, this paper covers techniques for mounting small mirrors and lenses for cryogenic space missions.

  10. The impact of human factors, crashworthiness and optical performance design requirements on helmet-mounted display development from the 1970s to the present

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; McLean, William E.; Martin, John S.

    2015-05-01

    Driven by the operational needs of modern warfare, the helmet-mounted display (HMD) has matured from a revolutionary, but impractical, World War I era idea for an infantry marksman's helmet-mounted weapon delivery system to a sophisticated and ubiquitous display and targeting system that dominates current night warfighting operations. One of the most demanding applications for HMD designs has been in Army rotary-wing aviation, where HMDs offer greater direct access to visual information and increased situational awareness in an operational environment where information availability is critical on a second-to-second basis. However, over the past 40 years of extensive HMD development, a myriad of crashworthiness, optical, and human factors issues have both frustrated and challenged designers. While it may be difficult to attain a full consensus on which are the most important HMD design factors, certainly head-supported weight (HSW), exit pupil size, field-of-view, image resolution and physical eye relief have been among the most critical. A confounding factor has been the interrelationship between the many design issues, such as early attempts to use non-glass optical elements to lower HSW, but at the cost of image quality, and hence, pilot visual performance. This paper traces how the role of the demanding performance requirements placed on HMDs by the U.S. Army aviation community has impacted the progress of HMD designs towards the Holy Grail of HMD design: a wide field-of-view, high resolution, binocular, full-color, totally crashworthy system.

  11. 3D-additive manufactured optical mount

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Ciscel, David; Wooten, John

    2015-09-01

    The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.

  12. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  13. Infrared optical element mounting techniques for wide temperature ranges

    SciTech Connect

    Saggin, Bortolino; Tarabini, Marco; Scaccabarozzi, Diego

    2010-01-20

    We describe the optimization of a mounting system for the infrared (IR) optics of a spaceborne interferometer working in the temperature range between -120 deg. C and +150 deg. C. The concept is based on an aluminum alloy frame with designed mechanical compliance, which allows for compensation of the different coefficient of thermal expansion between the optics and the holder; at the same time, the system provides for the high stiffness required to reach natural frequencies above 200 Hz, which are mandatory in most space missions. Thermal adapters with properly chosen thermomechanical characteristics are interposed between the metallic structure and the lens, so as to reduce the interface stresses on the mechanically weak IR material, due to both the thermoelastic and acceleration loads. With the proposed mount, the competitive requirements of stiffness and stress-free mounting can be matched in wide temperature ranges. The case study of the interferometer of a miniaturized Fourier transform IR spectrometer is presented.

  14. Semi-kinematic mount of the FIREBALL large optics

    NASA Astrophysics Data System (ADS)

    Rossin, C.; Grange, R.; Milliard, B.; Martin, L.; Moreaux, G.; Blanchard, P.; Deharveng, J.-M.; Evrard, J.; Martin, C.; McLean, R.; Schiminovich, D.

    2008-07-01

    In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based observatories.

  15. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  16. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  17. Space Shuttle Main Engine nozzle mounted optic for throat plane spectroscopy

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.; Duncan, D. B.; Madzsar, G.

    1991-06-01

    A program intended to develop a flight-capable nozzle mounted optic for monitoring emissions from metals entrained in the Space Shuttle Main Engine (SSME) flowfield is described. The optic will collect light emitted from metal atoms within the high-temperature, high-pressure SSME chamber and transfer the optical signal to a high-resolution spectrometer via a fiber-optic cable. The nozzle mounted optic makes it possible to conduct earth-to-orbit monitoring of flowfield emissions without requiring modifications to the SSME.

  18. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  19. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  20. Merging parallel optics packaging and surface mount technologies

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Volpert, Marion; Routin, Julien; Bernabé, Stéphane; Rossat, Cyrille; Tournaire, Myriam; Hamelin, Régis

    2008-02-01

    Optical links are well known to present significant advantages over electrical links for very high-speed data rate at 10Gpbs and above per channel. However, the transition towards optical interconnects solutions for short and very short reach applications requires the development of innovative packaging solutions that would deal with very high volume production capability and very low cost per unit. Moreover, the optoelectronic transceiver components must be able to move from the edge to anywhere on the printed circuit board, for instance close to integrated circuits with high speed IO. In this paper, we present an original packaging design to manufacture parallel optic transceivers that are surface mount devices. The package combines highly integrated Multi-Chip-Module on glass and usual IC ceramics packaging. The use of ceramic and the development of sealing technologies achieve hermetic requirements. Moreover, thanks to a chip scale package approach the final device exhibits a much minimized footprint. One of the main advantages of the package is its flexibility to be soldered or plugged anywhere on the printed circuit board as any other electronic device. As a demonstrator we present a 2 by 4 10Gbps transceiver operating at 850nm.

  1. Freeform correction polishing for optics with semi-kinematic mounting

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao

    2015-10-01

    Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).

  2. Fiber optic mounted laser driven flyer plates

    SciTech Connect

    Paisley, D.L.

    1990-12-31

    This invention is comprised of a laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs. 2 figs.

  3. Design and analysis of a large-diameter precision optical mount for NFIRAOS

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Joeleff; Hill, Alexis

    2014-08-01

    This study describes the design evolution, finite element analysis (FEA) and experimental testing completed to develop the large optical mounts for the Near-Field IR Adaptive Optics System (NFIRAOS), the facility Adaptive Optics system for the Thirty Meter Telescope (TMT). The mount design incorporates a unique combination of bonded flexure-based linear actuators and a roller-chain radial support. Extensive FEA was completed to refine the design to ensure the final mount design will meet the required operational performance. Experimental work was conducted to ensure that the suitability of the bonded interface between the optic and the flexures and to verify that the high bond stiffness did not cause fracture of the glass during thermal cycling.

  4. System and method for reproducibly mounting an optical element

    DOEpatents

    Eisenbies, Stephen; Haney, Steven

    2005-05-31

    The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.

  5. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

    2007-01-01

    We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

  6. Temporally-stable active precision mount for large optics.

    PubMed

    Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas

    2016-06-13

    We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure. PMID:27410369

  7. Note: Computer controlled rotation mount for large diameter optics

    NASA Astrophysics Data System (ADS)

    Rakonjac, Ana; Roberts, Kris O.; Deb, Amita B.; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  8. Design and performance of an optical mount using cross-flexure pivots

    SciTech Connect

    Rundle, W.J.

    1989-07-01

    The design of an optical mount using commercially available cross-flexure steel pivots is described. The pivots and their incorporation into a 5- /times/ 10-inch rectangular optical mount are illustrated. Test data on this mount show acceptable thermal stability and thermal hysteresis for use in a laboratory optical system. The design is easily scaled to other optic sizes. 9 refs., 5 figs., 1 tab.

  9. Psychophysical Research in Development of a Fiber-optic Helmet Mounted Display

    NASA Technical Reports Server (NTRS)

    Kruk, R. V.; Longridge, T. M.

    1984-01-01

    The Fiber Optic Helmet Mounted Display (FOHMD) was conceived as an innovative solution to existing flight simulator display deficiencies. An initial (breadboard) version of the system was fabricated to permit experimentation which would help define design requirements for a more refined engineering prototype. A series of visual/human factors studies are being conducted at the USAF Human Resources Laboratory (AFHRL) Operations Training Division, Williams AFB, Arizona to determine the optimum fit of human observer operating characteristics and fiber optic helmet mounted display technology. Pilot performance within a variety of high resolution insert/binocular overlap combinations is being assessed in two classes of environment. The first two of four studies planned incorporate an air-to-air combat environment, whereas the second two studies will use a low level environment with air to ground weapons delivery.

  10. Mounting, alignment and integration of large optics in China's high power laser

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xiong, Zhao; Yuan, Xiaodong

    2016-05-01

    SG-III, a high-power laser facility of China, is constructed to produce 0.18MJ energy for physical experiments under controlled laboratory conditions. Each laser beam requires the ability to align to a millimeter-sized target with a precision of 30 μm (RMS) and the single-beam energy will be up to 3.75 KJ. Arrayed along each beam-path, hundreds of optics must be positioned to stringent tolerances. Therefore, this paper introduces the approaches used by engineers to overcome the technical challenges on precise mounting, alignment and integration of large optics in china's high power laser facility.

  11. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  12. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  13. Daytime Polar Alignment of Telescope Mountings Using GPS and Internal Reference Optics

    NASA Astrophysics Data System (ADS)

    Mellon, R. R.; Scheld, D.; Stencel, R. E.

    1998-12-01

    A technique is presented for performing polar alignment of astronomical telescope mountings to high precision during daylight hours. This work originated in the requirement to erect a truck mounted astronomical telescope at multiple locations during the day in order to measure the atmospheric convective turbulence Fried Parameter r0 by tracking stars at various zenith angles. The custom equatorial mounting built for this project incorporates a surveyor's theodolite, which is used to establish an optical line of sight to the North Celestial Pole (NCP). The elevation angle of this line of sight is set directly by adjusting the theodolite tube elevation angle to that of the local geographic latitude obtained from a Global Positioning System (GPS) receiver. The theodolite is set into the azimuth of the Pole by observing an object on the horizon of known bearing angle or by observing the Sun=92s known azimuth at a specified time. Once the theodolite line of sight to the NCP is established, an optical target projector contained within and aligned with the polar axis provides an illuminated pattern, which is viewed by the theodolite. Subsequent adjustments of the elevation and azimuth of the polar axis bring the projected pattern onto the intersection of the crosshairs in the theodolite reticule, thereby bringing the polar axis into close coincidence with the NCP. Denver University astronomers are interested in this application for their proposed Fully Adaptive Segmented Telescope (FAST) instrument, a meter-class instrument which can be transported among high altitude sites (see www. adaptive-optics.com). Equinox Interscience (303-843-0313) can provide this daytime polar alignment capability to interested users for equatorial mountings.

  14. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  15. The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry

    NASA Technical Reports Server (NTRS)

    Johnston, Ken J.; Mozurkewich, D.; Simon, R. S.; Shao, Michael; Colavita, M.

    1992-01-01

    Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed.

  16. Joint helmet-mounted cueing system (JHMCS) helmet qualification testing requirements

    NASA Astrophysics Data System (ADS)

    Orf, Garry W.

    1998-08-01

    The Joint Helmet-Mounted Cueing System (JHMCS) program will provide capability to cue high off-boresight (HOBS) weapons to the operator's line of sight and to confirm weapon sensor LOS for the US Air Force and US Navy (USN) aircrew. This capability will ensure the USAF and USN pilots a first shot opportunity. The JHMCS incorporates an ejection-compatible helmet-mounted display system that will be installed on F- 15, F-16, F/A-18, and F-22 aircraft. The JHMCS includes a flight helmet with display optics, miniature cathode ray tube, magnetic receiver unit, miniature camera, automatic brightness control sensor, and microcontroller. The flight helmet for JHMCS is based on the new lightweight HGU-55A/P. This paper describes the requirements for the helmet qualification tests including: windblast, ejection tower, hanging harness, centrifuge, mass properties, energy attenuation and penetration resistance, noise attenuation, visor characteristics, compatibility demonstration, sled/in- flight ejection, water survival, standard conditions and environment. The test objective, success criteria, equipment configuration, and data collection requirements for each test is discussed.

  17. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.

    PubMed

    Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung

    2015-12-14

    We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues. PMID:26698993

  18. Adjustable mount for electro-optic transducers in an evacuated cryogenic system

    NASA Technical Reports Server (NTRS)

    Crossley, Edward A., Jr. (Inventor); Haynes, David P. (Inventor); Jones, Howard C. (Inventor); Jones, Irby W. (Inventor)

    1987-01-01

    The invention is an adjustable mount for positioning an electro-optic transducer in an evacuated cryogenic environment. Electro-optic transducers are used in this manner as high sensitivity detectors of gas emission lines of spectroscopic analysis. The mount is made up of an adjusting mechanism and a transducer mount. The adjusting mechanism provided five degrees of freedom, linear adjustments and angular adjustments. The mount allows the use of an internal lens to focus energy on the transducer element thereby improving the efficiency of the detection device. Further, the transducer mount, although attached to the adjusting mechanism, is isolated thermally such that a cryogenic environment can be maintained at the transducer while the adjusting mechanism remains at room temperature. Radiation shields also are incorporated to further reduce heat flow to the transducer location.

  19. Optical studies of meteors at Mount Hopkins Observatory

    NASA Technical Reports Server (NTRS)

    Weekes, T. C.; Williams, J. T.

    1974-01-01

    The 10-m optical reflector and an array of phototubes are used to extend the optical measurements beyond the present limit achieved by the Vidicon system. The first detection of optical meteors with M sub v = + 12 is reported. It is hoped that this system can be used to determine intermediate points in the meteor frequency mass curve for sporadic meteors and to study in detail the faint components of meteor showers. Preliminary observations made on three nights in September 1974 are presented.

  20. Side-mounted IR window aero-optic and aerothermal analysis

    NASA Astrophysics Data System (ADS)

    Pond, John E.; Welch, Charles T.; Sutton, George W.

    1999-07-01

    Addition of a side mounted IR seeker, to an existing missile design, introduces new issues involving the aerodynamic flow over the optical window and its near field effect on the ability of the seeker to view the target. Image aberration, distortion and boresight shift vary according to flow conditions and the thermal state of the window system. A detailed analysis of the aerodynamic flow and its aero-optic effect for a side mounted IR window was performed to quantify target image degradation, window heating and bending, and window structural failure probability due to aerothermal and aero-optical effects.

  1. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  2. Embedded and surface-mounted fiber optic sensors for civil structural monitoring

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Marazzi, Silvio; Vurpillot, Samuel

    1997-05-01

    Civil structural monitoring by optical fiber sensors, require the development of reliable sensors that can be embedded or surface mounted in concrete, mortars, steel, timber and other construction materials as well as in rocks, soils and road pavements. These sensors should be rapid and simple to install in order to avoid any interference with the building site schedule and not to require specialized operators to accomplish the task. The sensors have to be rugged enough to withstand the harsh conditions typically found in civil engineering including, dust, moisture, shocks, EM disturbances and unskilled workman. It is also desirable that the instrumentation survives for tens of years in order to allow a constant monitoring of the structure aging. This contribution presents the results of a four-year effort to develop, test and industrially produce a palette of sensors responding to the above requirements and adapted to different applications and host materials. These sensors include a small version (length up to 2 m) adapted for embedding in mortars, grout and glues, an intermediate version of length between 20 cm and 6 m adapted to direct concrete embedding or surface installation and a long version adapted to measure large deformations (up to 2%) over length up to 30 m and especially adapted for geostructures monitoring.

  3. Analysis of Mount St. Helens ash from optical photoelectric photometry

    NASA Technical Reports Server (NTRS)

    Cardelli, J. A.; Ackerman, T. P.

    1983-01-01

    The optical properties of suspended dust particles from the eruption of Mt. St. Helens on July 23, 1980 are investigated using photoelectric observations of standard stars obtained on the 0.76-m telescope at the University of Washington 48 hours after the eruption. Measurements were made with five broad-band filters centered at 3910, 5085, 5480, 6330, and 8050 A on stars of varying color and over a wide range of air masses. Anomalous extinction effects due to the volcanic ash were detected, and a significant change in the wavelength-dependent extinction parameter during the course of the observations was established by statistical analysis. Mean particle size (a) and column density (N) are estimated using the Mie theory, assuming a log-normal particle-size distribution: a = 0.18 micron throughout; N = 1.02 x 10 to the 9th/sq cm before 7:00 UT and 2.33 x 10 to the 9th/sq cm after 8:30 UT on July 25, 1980. The extinction is attributed to low-level, slowly migrating ash, possibly combined with products of gas-to-particle conversion and coagulation.

  4. A conceptual design for a Cassegrain-mounted high-resolution optical spectrograph for large-aperture telescopes

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia S.; Osterman, Steven; Burgh, Eric; Beasley, Matthew; Scowen, Paul; Veach, Todd; Jordan, Steven; Ebbets, Dennis; Lieber, Michael; deCino, James; Castilho, Bruno Vaz; Gneiding, Clemens; César de Oliveira, Antonio

    2013-09-01

    We present a conceptual design for a high-resolution optical spectrograph appropriate for mounting at Cassegrain on a large aperture telescope. The design is based on our work for the Gemini High Resolution Optical Spectrograph (CUGHOS) project. Our design places the spectrograph at Cassegrain focus to maximize throughput and blue wavelength coverage, delivering R=40,000 resolving power over a continuous 320-1050 nm waveband with throughputs twice those of current instruments. The optical design uses a two-arm, cross-dispersed echelle format with each arm optimized to maximize efficiency. A fixed image slicer is used to minimize optics sizes. The principal challenge for the instrument design is to minimize flexure and degradation of the optical image. To ensure image stability, our opto-mechanical design combines a cost-effective, passively stable bench employing a honeycomb aluminum structure with active flexure control. The active flexure compensation consists of hexapod mounts for each focal plane with full 6-axis range of motion capability to correct for focus and beam displacement. We verified instrument performance using an integrated model that couples the optical and mechanical design to image performance. The full end-to-end modeling of the system under gravitational, thermal, and vibrational perturbations shows that deflections of the optical beam at the focal plane are <29 μm per exposure under the worst case scenario (<10 μm for most orientations), with final correction to 5 μm or better using open-loop active control to meet the stability requirement. The design elements and high fidelity modeling process are generally applicable to instruments requiring high stability under a varying gravity vector.

  5. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, J.M.

    1994-04-19

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.

  6. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, Joel M.

    1994-01-01

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.

  7. NIF small mirror mount

    SciTech Connect

    McCarville, T

    1999-07-01

    A number of small mirror mounts have been identified that meet the stringent stability, wave front, and cleanliness standards of the NIF. These requirements are similar to those required in other performance critical optical design applications. Future design teams would conserve time and effort if recognized standards were established for mirror mount design and performance characteristics. Standards for stability, physical features, wave front distortion, and cleanliness would simplify the qualification process considerably. At this point such standards are not difficult to define, as the technical support work has been performed repeatedly by mirror mount consumers and suppliers.

  8. The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2009-05-01

    Traditionally head up displays and helmet mounted displays use a conventional arrangement of complex lenses to generate a display for the pilot from an image source such as a Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD). These systems tend to be complex, comprising many components and they also add mass and adversely modify the centre of the gravity of the helmet. This has resulted in the development of the Holographic Optical Waveguide, a revolutionary new optical technology which dramatically reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. This is made possible by embedding within the substrate a specially designed hologram which has carefully tailored set of optical properties. The image (or light waves) is constrained to follow a path through the substrate. As these waves pass through the substrate the hologram is programmed to allow some energy to escape in a carefully controlled manner reforming the image that was injected into the substrate. At the same time the hologram design modifies the image geometry such that the user views it as a full size conformal image precisely overlaid on his outside world view. Furthermore this image is maintained over a very large exit-pupil giving the user great flexibility in the installation of the display onto a helmet. The image is formed conventionally from a reflective LCD illuminated with a high brightness LED. The Q-SightTM Helmet Mounted Display (HMD) which exploits this concept is part of a modular-family of Helmet Mounted Displays; allowing the addition of capability as required in a flexible, low-cost way. The basic monocular QSightTM architecture offers plug-and-play solutions into any cockpit with either Analog (stroke) or Digital Video Interface (DVI) connections. This offers a significant upgrade opportunity

  9. A low-cost mirror mount control system for optics setups

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Maithreyi; Gühr, Markus

    2015-02-01

    We describe a flexible, simple to build, low-cost, and computer-controlled optical mirror actuator system, developed for undergraduate research laboratories. Geared motors for hobby robotics are controlled by an Arduino microcontroller in combination with an H bridge to finely position mirror mount actuators. We present a graphical user interface based on the Python script language. The price of the fully controlled actuator system is only a small fraction of the price of a commercial system. It can be quickly implemented due to the use of open-hardware electronics. We discuss the performance of the system and give an outlook for future expansions and use in advanced optical setups.

  10. Comparison of optical and video see-through, head-mounted displays

    NASA Astrophysics Data System (ADS)

    Rolland, Jannick P.; Holloway, Richard L.; Fuchs, Henry

    1995-12-01

    One of the most promising and challenging future uses of head-mounted displays (HMDs) is in applications where virtual environments enhance rather than replace real environments. To obtain an enhanced view of the real environment, the user wears a see-through HMD to see 3D computer-generated objects superimposed on his/her real-world view. This see-through capability can be accomplished using either an optical or a video see-through HMD. We discuss the tradeoffs between optical and video see-through HMDs with respect to technological, perceptual, and human factors issues, and discuss our experience designing, building, using, and testing these HMDs.

  11. Self-normalized photoacoustic technique for thermo-optical characterization of samples mounted between transparent media

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Díaz-Reyes, J.; Jaime-Fonseca, M. R.; Martínez-Pérez, L.; Pescador-Rojas, J. A.

    2016-03-01

    A self-normalized photoacoustic technique for thermo-optical characterization of materials, mounted between transparent media, is presented. It involves a complex ratio of photoacoustic signals in transmission and front configurations, taking the modulation frequency as the only variable. The analytical solutions for the corresponding 1D heat diffusion problems are analyzed to provide suitable methodologies for measuring the optical absorption coefficients and thermal diffusivity of such samples. This methodology was tested by measuring the optical absorption coefficient, at 660 nm, of methylene blue solutions at various concentrations and the thermal diffusivity of a black drawing ink sample. In addition, an approximated range of optical absorption coefficients, where this photoacoustic methodology is adequate, was established.

  12. Optical design and cryogenic mounting of the optics for a pyramid waterfront sensor working in the near infrared wavelength range

    NASA Astrophysics Data System (ADS)

    Bizenberger, P.; Baumeister, H.; Büchler Costa, J.; Peter, D.

    2005-09-01

    This paper describes the whole process of designing, manufacturing and assembling the optics for an infrared pyramid wavefront sensor, called PYRAMIR. This sensor is built to work with the adaptive optical system at the 3.5 m telescope of the Calar Alto Observatory, Spain, which controls a 97 actuator deformable mirror. PYRAMIR is working in combination with an infrared science camera, which is used for observations. Since the wavefront sensor works in the near infrared (1.0 μm to 2.4 μm), the detector, the optics and all the mechanics are cooled to liquid nitrogen temperature. For this cryogenic condition, special care has to be taken for the optical design and the mounting of the lenses. We describe in detail the process from infrared optical design and cryo-mechanical engineering, to the final assembly of the opto-mechanical units and testing in the lab. Technical solutions are illustrated and the final performance is demonstrated.

  13. Simulation and flight trials of a simple helmet-mounted sight system incorporating an optical helmet tracking system

    NASA Astrophysics Data System (ADS)

    Robbins, Steven J.

    1999-07-01

    British Aerospace (BAe) have been involved in a number of Helmet Mounted Display programs over some twenty years. The continuing trials around the globe are indicative of the growing interest in Helmet Mounted Displays and recognition that today's Helmet Systems technology is becoming 'fit for purpose.' In 1997 BAe initiated a series of Simulation and Flight Trials of the latest Helmet System Technology for combat fixed wing aircraft. The focus of the R&D is to evaluate the Helmet System as an integrated part of the aircraft weapon system by establishing quantitative measures of operational performance. The comparison between different levels of sophistication of both aircraft integration and helmet capability in terms of the resultant operational performance will provide hard evidence to ensure that appropriate levels of Helmet System technology are matched to different platform capability. The basis of the 1997 trial was an assessment of the operational effectiveness of a simple Helmet Mounted Sight (HMS) system in short range air-to-air combat applicable to high off-boresight missiles such as ASRAAM and was carried out in a BAe Hawk 200 against Hawk target aircraft. Although Helmet Mounted Sights have been flight-tested in the past, the available information has generally been limited to the integration aspects and a qualitative assessment of the technology and less attention was paid towards a quantification of the system operational effectiveness. The 1997 program produced a strong foundation for assessing the cost-benefit of various capabilities of Helmet System planned for subsequent trials. The Flight Trial aircraft incorporated the Pilkington Optronics-Kentron GuardianTM Helmet Mounted Sight System and of particular interest, the Helmet System included the latest Optical Helmet Tracking System technology. The trials included an assessment of the Helmet System technology and specifically, the integration aspects and performance of the Optical Helmet

  14. Corneal-Imaging Calibration for Optical See-Through Head-Mounted Displays.

    PubMed

    Plopski, Alexander; Itoh, Yuta; Nitschke, Christian; Kiyokawa, Kiyoshi; Klinker, Gudrun; Takemura, Haruo

    2015-04-01

    In recent years optical see-through head-mounted displays (OST-HMDs) have moved from conceptual research to a market of mass-produced devices with new models and applications being released continuously. It remains challenging to deploy augmented reality (AR) applications that require consistent spatial visualization. Examples include maintenance, training and medical tasks, as the view of the attached scene camera is shifted from the user's view. A calibration step can compute the relationship between the HMD-screen and the user's eye to align the digital content. However, this alignment is only viable as long as the display does not move, an assumption that rarely holds for an extended period of time. As a consequence, continuous recalibration is necessary. Manual calibration methods are tedious and rarely support practical applications. Existing automated methods do not account for user-specific parameters and are error prone. We propose the combination of a pre-calibrated display with a per-frame estimation of the user's cornea position to estimate the individual eye center and continuously recalibrate the system. With this, we also obtain the gaze direction, which allows for instantaneous uncalibrated eye gaze tracking, without the need for additional hardware and complex illumination. Contrary to existing methods, we use simple image processing and do not rely on iris tracking, which is typically noisy and can be ambiguous. Evaluation with simulated and real data shows that our approach achieves a more accurate and stable eye pose estimation, which results in an improved and practical calibration with a largely improved distribution of projection error. PMID:26357098

  15. Mount St. Helens dust veil observed at Boulder, Colorado by optical techniques

    NASA Technical Reports Server (NTRS)

    Lerfald, G.

    1982-01-01

    Following the May 18, 1980, eruption of Mount St. Helens, photometric and photograhic observations were taken at Boulder, Colorado, to record the optical effects of volcanic dust atmospherically transported to this area. The instruments used included a narrow-beamwidth solar photometer which recorded solar irradiance in eight narrow-bandwidth channels in the wavelength range 0.3 to 1.1 microns, a solar aureole photometer, and two time-lapse camera systems. The eight-channel solar photometer data have been analyzed to obtain the wavelength dependence of optical thickness. At the longer wavelengths, on May 20, 1980, the optical thickness was as much as nine times that expected from a 'clean atmosphere' model. During the first several days following the eruption, the dust veil sometimes exhibited sufficient spatial structure that its motion can be seen on the time-lapse films. The results of analysis to date are presented and the plans for additional analysis are outlined.

  16. System requirements for head down and helmet mounted displays in the military avionics environment

    SciTech Connect

    Flynn, M.F.; Kalmanash, M.; Sethna, V.

    1996-12-31

    The introduction of flat panel display technologies into the military avionics cockpit is a challenging proposition, due to the very difficult system level requirements which must be met. These relate to environmental extremes (temperature and vibrational), sever ambient lighting conditions (10,000 fL to nighttime viewing), night vision system compatibility, and wide viewing angle. At the same time, the display system must be packaged in minimal space and use minimal power. The authors will present details on the display system requirements for both head down and helmet mounted systems, as well as information on how these challenges may be overcome.

  17. Overview of benefits, challenges, and requirements of wheeled-vehicle mounted infrared sensors

    NASA Astrophysics Data System (ADS)

    Miller, John Lester; Clayton, Paul; Olsson, Stefan F.

    2013-06-01

    Requirements for vehicle mounted infrared sensors, especially as imagers evolve to high definition (HD) format will be detailed and analyzed. Lessons learned from integrations of infrared sensors on armored vehicles, unarmored military vehicles and commercial automobiles will be discussed. Comparisons between sensors for driving and those for situation awareness, targeting and other functions will be presented. Conclusions will be drawn regarding future applications and installations. New business requirements for more advanced digital image processing algorithms in the sensor system will be discussed. Examples of these are smarter contrast/brightness adjustments algorithms, detail enhancement, intelligent blending (IR-Vis) modes, and augmented reality.

  18. A compact eyetracked optical see-through head-mounted display

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Gao, Chunyu

    2012-03-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical HMD does, while additionally tracking the gaze direction of the user. There is ample evidence that a fully-integrated ETHMD system offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. For instance eyetracking capability in HMDs adds a very valuable tool and objective metric for scientists to quantitatively assess user interaction with 3D environments and investigate the effectiveness of various 3D visualization technologies for various specific tasks including training, education, and augmented cognition tasks. In this paper, we present an innovative optical approach to the design of an optical see-through ET-HMD system based on freeform optical technology and an innovative optical scheme that uniquely combines the display optics with the eye imaging optics. A preliminary design of the described ET-HMD system will be presented.

  19. Design of a flexure mount for optics in dynamic and cryogenic environments

    NASA Technical Reports Server (NTRS)

    Pollard, Lloyd Wayne

    1989-01-01

    The design of a flexure mount for a mirror operating in a cryogenic environment is presented. This structure represents a design effort recently submitted to NASA Ames for the support of the primary mirror of the Space Infrared Telescope Facility (SIRTF). The support structure must passively accommodate the differential thermal contraction between the glass mirror and the aluminium structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit without exceeding the micro-yield of the material anywhere in the flexure mount. Procedures used to establish the maximum allowable radial stiffness of the flexural mount, based on the finite element program NASTRAN and the optical program FRINGE, are discussed. Early design concepts were evaluated using a parametric design program, and the development of that program is presented. Dynamic loading analyses performed with NASTRAN are discussed. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, modified root of sum of squares, is presented. Model combination schemes using MRSS, SRSS, and ABS are compared to the results of the modal frequency response analysis performed with NASTRAN.

  20. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  1. Design and structural/optical analysis of a kinematic mount for the testing of silicon carbide mirrors at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Christopher; Frohlich, Charles; Shirgur, Badri; Mink, Ronald G.

    2004-10-01

    A kinematic mount has been designed to support two Silicon Carbide-based spherical mirrors during cryogenic testing at the Goddard Space Flight Center. The mirrors are flight representative test mirrors for the NIRSpec Instrument of the James Webb Space Telescope (JWST), provided by Galileo Avionica of Florence, Italy. One is cold-pressed Silicon Carbide (SiC) and one is Carbon reinforced Silicon Carbide (C/SiC); both are coated in a SiC-based chemical vapor deposit. Each is lightweighted and has an integral mount on the rear surface. The integral mount is used as an interface to the kinematic mount, which is designed to support the mirrors during cryogenic testing while minimizing distortions induced by CTE mismatch among the materials. Additionally, an alternative "simply supported" mount is used to hold the mirrors around the outer edge of the optical surface. This eliminates the bending of the integral mount under the weight of the mirror and evaluates the effectiveness of the kinematic mount. The mirrors were analyzed for optical performance during testing from room temperature to 20K using Finite Element Analysis (FEA) with MSC/NASTRAN 2001. Predicted surface figure error (SFE) based on the removal of bias, tilt, and power was calculated using an in-house Matlab script for spherical mirrors. SFE was verified using the SigFit optical post-processing program to provide Zernike polynomial input for analysis with the Zemax optical software. The results show that the kinematic mount induces minimal figure error on the optical surface.

  2. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan

    2015-06-01

    The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. PMID:25882923

  3. Optical see-through head-mounted display with occlusion capability

    NASA Astrophysics Data System (ADS)

    Gao, Chunyu; Lin, Yuxiang; Hua, Hong

    2013-05-01

    Lack of mutual occlusion capability between computer-rendered and real objects is one of fundamental problems for most existing optical see-through head-mounted displays (OST-HMD). Without the proper occlusion management, the virtual view through an OST-HMD appears "ghost-like", floating in the real world. To address this challenge, we have developed an innovative optical scheme that uniquely combines the eyepiece and see-through relay optics to achieve an occlusion-capable OST-HMD system with a very compelling form factor and high optical performances. The proposed display system was based on emerging freeform optical design technologies and was designed for highly efficient liquid crystal on silicon (LCoS) type spatial light modulator (SLM) and bright Organic LED (OLED) microdisplay. The proposed display technology was capable of working in both indoor and outdoor environments. Our current design offered a 1280x1024 color resolution based on 0.8" microdisplay and SLM. The MTF values for the majority of the fields at the cutoff frequency of 40lps/mm, which is determined by the pixel size of the microdisplay, are better than 15%. The design achieved a diagonal FOV of 40 degrees, 31.7 degrees horizontally and 25.6 degrees vertically, an exit pupil diameter of 8mm (non-vignetted), and an eye clearance of 18mm. The optics weights about 20 grams per eye. Our proposed occlusion capable OST-HMD system can easily find myriads of applications in various military and commercial sectors such as military training, gaming and entertainment.

  4. Mounting for Fabrication, Metrology, and Assembly of Full Shell Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Kolodziejczak, Jeffery; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  5. Mounting for fabrication, metrology, and assembly of full-shell grazing-incidence optics

    NASA Astrophysics Data System (ADS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. S.; O'Dell, Stephen L.; Kolodziejczak, Jeffery J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-07-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study.

  6. Design and validation of the mounting structure for BETTII balloon-based telescope with thin-walled optics

    NASA Astrophysics Data System (ADS)

    Furst, Stephen; Dow, Tom; Garrard, Ken; Sohn, Alex; Fixsen, Dale; Rinehart, Stephen; Mentzell, Eric; Veach, Todd; Rizzo, Maxime; Dhabal, Arnab

    2016-04-01

    The NASA Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) system is designed to study the infrared emissions from star formation and active galactic nuclei through a double-Fourier Michelson interferometer located on a balloon at an altitude of 37 km. The BETTII external optics include a pair of identical beam-reducing, four-mirror telescopes, each with a 522-mm aperture, nonrotationally symmetric primary mirror. These telescopes were designed and assembled at the North Carolina State University Precision Engineering Consortium and are composed entirely of thin-walled aluminum components. The mounting structure is designed to be light weight and stiff to reduce thermal equilibration time in the rarified air at the edge of space and to maintain robust alignment of the optical elements. The mounts also prevent deformation of the large optical elements via custom-built kinematic Kelvin couplings and fixed-load clamps; the maximum form error of the optical surfaces are 300 nm RMS. This work details the design of the thin mirrors and mounting structure as well as validation of the mount assembly process, mount stiffness, and the kinematic couplings.

  7. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  8. Eyetracked optical see-through head-mounted display as an AAC device

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Hu, Xinda; Gao, Chunyu; Qin, Xiao

    2014-06-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical headmounted display (HMD) does, while additionally tracking the gaze direction of the user. An HMD with fullyintegrated eyetracking capability offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. A key limitation of the state-of-the-art ET-HMD technology is the lack of compactness and portability. In this paper, we present an innovative design of a high resolution optical see-through ET-HMD system based on freeform optical technology. A prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, true high-definition image resolution for the virtual display, and better than 0.5 arc minute of angular resolution for the see-through view. We will demonstrate the application of the technology as an assistive and augmentative communication (AAC) device.

  9. Characterization of optical turbulence at the solar observatory at the Mount Teide, Tenerife

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; Sucher, Erik

    2013-10-01

    Optical turbulence represented by the structure function parameter of the refractive index Cn2 is regarded as one of the chief causes of image degradation of ground-based astronomical telescopes operating in visible or infrared wavebands. Especially, it affects the attainable spatial resolution. Therefore since the middle of September 2012 the optical turbulence has been monitored between two German solar telescopes at the Observatory in Tenerife /Canary Islands /Spain. It comprises the solar telescope GREGOR and the vacuum tower telescope VTT mounted on two 30 m high towers. Between the two towers at the level of the telescopes, Cn2 was measured using a Laser-Scintillometer SLS40 (Scintec, Rottenburg, Germany). The horizontal distance of the measurement path was 75 m. The first results of the measurements starting from the 15th September 2012 up to the end of December 2012 are presented and analyzed using simultaneous measured meteorological data of wind, temperature and humidity. Daily and seasonal variations are shown and discussed.

  10. Detector Mount Design for IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Park, Kwijong; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyoung; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Jaffe, Daniel T.

    2014-06-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA) detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL) mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  11. Astronaut operations requirements document for the White Light Coronagraph experiment s-052 for the Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Ross, C. L.

    1973-01-01

    Information necessary for successful performance of the observer's function in the White Light Coronagraph portion of the Apollo Telescope Mount experiments is presented. The pre-flight, in-flight, and post-flight operations required to perform the S-052 experiment are described. A discussion of the scientific objectives of the experiment and a description of the hardware are provided.

  12. Long-term and seasonal variability of the aerosol optical depth at Mount Kasprowy Wierch (Poland)

    NASA Astrophysics Data System (ADS)

    Markowicz, Krzysztof M.; Uscka-Kowalkowska, Joanna

    2015-03-01

    This paper presents the results of long-term observations (1964-2003) of direct solar radiation, to determine aerosol optical depth (AOD), made with a Linke-Feussner actinometer at the Tatra Mountain Meteorological Observatory on Mount Kasprowy Wierch (1991 m above sea level, 49.233°N, 19.982°E). To this end, broadband direct solar flux (0.29-2.9 µm) and wideband solar radiation measured with OG530 and RG630 filters are used to estimate the broadband and wideband (0.53-0.63 µm) AOD. The inversion algorithm used is based on the MODTRAN (MODerate resolution atmospheric TRANsmission) radiative transfer model applied to estimate direct flux for aerosol-free atmosphere. Total water vapor content, which accounts for the largest extinction of clear-sky direct flux, was obtained by radio sounding from the Poprad-Ganovce station (33 km from Mount Kasprowy Wierch) and from water vapor pressure measurements at the Observatory. The almost 900 clear-sky observations, performed close to noon time, found a significant long-term reduction of AOD. AOD decadal trends were -0.006 (-8 ± 4% [2σ]) with a 95% confidence interval of ± 0.003 and -0.014 (-13 ± 4% [2σ]) with a 95% confidence interval of ± 0.004 for broadband and wideband, respectively. Similar trends, but for years with negligible contamination of volcanic aerosol, are -0.012 (-16 ± 6% [2σ]) and -0.018 (-17 ± 6% [2σ]) with a 95% confidence interval of ± 0.003 and ± 0.004. However, positive AOD trends (from 0 to 0.04 per decade) were found between 1964 and 1983 and negative AOD trends (from -0.016 to -0.035 per decade) were found between 1984 and 2003. Changes of the AOD trends between both periods are associated with global dimming and brightening phenomenon, which took place in the second half of the twentieth century and at the beginning of the 21st century. The long-term mean broadband and wideband AOD were 0.07 ± 0.01 and 0.11 ± 0.02, respectively. Both quantities show a significant annual cycle, with

  13. Evaluation of contrast loss introduced by scattering effects at optical mounts: field dependence in the IR region

    NASA Astrophysics Data System (ADS)

    Pizarro, C.; Blanco, P.; Arasa, J.; Cifuentes, A. F.

    2005-09-01

    The reduction of contrast due to scattering by optical mounts and buffers was studied, especially for the systems that must work in the infrared region. When a particular optical system is optimized [1,2] up a specified field value the scattering effects introduced by optical mounts and buffers must be taken into account. The scattering effect plays an important role in the IR region where the influence of off-field effects is important. The contrast reduction due to scattering effects is not uniform with the object position, in other words the influence of scattering effects has field dependence. The scattering model used is based on the classical point of view of the scattering electromagnetic wave and it is adapted for optical evaluation using ray-tracing techniques. In order to test the validity of our scattering model we calculated the distribution of illumination produced for a laser beam in a plane-parallel plate with perfect scattering properties at the back surface. The comparison between the results obtained form our model and the analytical models permit us to extrapolate the use of our model in systems that involve more complex geometry. The model was applied in a four element IR objective with germanium and silicon lenses. In all the situations the contrast as a function of the field value was calculated, with and without the scattering effects. By contemplating the contrast loss, a better choice of materials, geometries and buffer positions can be made possible.

  14. Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display.

    PubMed

    Song, Weitao; Cheng, Dewen; Deng, Zhaoyang; Liu, Yue; Wang, Yongtian

    2015-10-01

    It has always been a challenge to break the resolution/field-of-view (FOV) invariant to design a large FOV and high-resolution optical system, especially for a head-mounted display (HMD) system. In this study, a tiled HMD using two compact rotationally symmetrical eyepieces was designed and developed. Some issues on exit pupil and eye relief were analyzed in detail and taken into consideration during the design procedure. The overall optical system is compact with high performance. The system volume is smaller than 30  mm×35  mm×30  mm. Based on two 0.61 in. microdisplay devices, the overall tiled system demonstrates an FOV of 66°(H)×32°(V) with a 7.5 mm exit pupil diameter and a 15.7 mm eye relief. PMID:26479645

  15. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements.

    PubMed

    Wang, Qingfeng; Cheng, Dewen; Wang, Yongtian; Hua, Hong; Jin, Guofan

    2013-03-01

    Free-form surfaces (FFSs) provide more freedom to design an optical system with fewer elements and hence to reduce the size and weight of the overall system than rotationally symmetric optical surfaces. In this paper, an optical see-through (OST), head-mounted display (HMD) consisting of a free-form, wedge-shaped prism and a free-form lens is designed and fabricated through the injection molding method. The free-form prism for the projection system is designed with a field-of-view (FOV) of 36°; the free-form lens is cemented to the prism for the see-through system to achieve a FOV of 50°. The free-form prism and lens are expanded at the edge area during the design stage in order to reduce the effects of surface deformation in the working area in molding fabrication process and to improve ergonomic fit with the head of a user. The tolerance analyzes considering the mold design for the free-form optical systems are carried out using the Monte Carlo method. The FFS optical elements are successfully fabricated and the system performance is carefully examined. The results indicate that the performance of the OST-HMD is sufficient for both entertainment and scientific applications. PMID:23458822

  16. Effects of Configuration of Optical Combiner on Near-Field Depth Perception in Optical See-Through Head-Mounted Displays.

    PubMed

    Lee, Sangyoon; Hua, Hong

    2016-04-01

    The ray-shift phenomenon means the apparent distance shift in the display image plane between virtual and physical objects. It is caused by the difference in the refraction of virtual display and see-through optical paths derived from optical combiners that are necessary to provide a see-through capability in optical see-through head-mounted displays. In this work, through a human-subject experiment, we investigated the effects of ray-shift phenomenon induced by the optical combiner on depth perception for near-field distances (40 cm-100 cm). In our experiment, we considered three different configurations of optical combiner: horizontal-tilt and vertical-tilt configurations (using plate beamsplitters horizontally and vertically tilted by 45°, respectively), and non-tilt configuration (using rectangular solid waveguides). Participants' depth perception errors in these configurations were compared with those in an ordinary condition (i.e., the condition where physical objects are directly shown without the displays) and theoretically estimated ones. According to the experimental results, the measured percentage depth perception errors were similar to the theoretically estimated ones, where the amount of estimated percentage depth errors was greater than 0.3%. Furthermore, the participants showed significantly larger depth perception errors in the horizontal-tilt configuration than in an ordinary condition, while no large errors were found in the vertical-tilt configuration. In the non-tilt configuration, the results were dependent on the thickness of optical combiner and target distance. PMID:26780807

  17. 3D optical see-through head-mounted display based augmented reality system and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  18. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    NASA Astrophysics Data System (ADS)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  19. An intelligent system and a relational data base for codifying helmet-mounted display symbology design requirements

    NASA Astrophysics Data System (ADS)

    Rogers, Steven P.; Hamilton, David B.

    1994-06-01

    To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.

  20. OPTICAL POLARIMETRY OF THE BLAZAR CGRaBS J0211+1051 FROM MOUNT ABU INFRARED OBSERVATORY

    SciTech Connect

    Chandra, Sunil; Baliyan, Kiran S.; Ganesh, Shashikiran; Joshi, Umesh C.

    2012-02-10

    We report the detection of high polarization in the first detailed optical linear polarization measurements on the BL Lac object CGRaBS J0211+1051, which flared in {gamma}-rays on 2011 January 23 as reported by Fermi. The observations were made during 2011 January 30-February 3 using a photo-polarimeter mounted at the 1.2 m telescope of Mount Abu Infrared Observatory. CGRaBS J0211+1051 was detected to have a {approx}21.05% {+-} 0.41% degree of polarization (DP) with a steady position angle (P.A.) at 43 Degree-Sign on 2011 January 30. During January 31 and February 1, while polarization shows some variation, the P.A. remained steady through the night. Several polarization flashes occurred during February 2 and 3 resulting in changes in the DP by more than 4% at short timescales ({approx}17-45 minutes). The intra-night variability shown by the source appears to be related to the turbulence in the relativistic jet. A mild wavelength dependence of polarization is not ruled out during the nights of February 2 and 3. The source exhibited significant inter-night variations in the DP (changing by about 2%-9%) and P.A. (changing by 2 Degree-Sign -22 Degree-Sign ) during the five nights of observations. A sudden change in the P.A. accompanied by a rise in the DP could be indicative of the fresh injection of plasma in the jet. The detection of a high and variable DP suggests that the source is a low-energy peaked blazar.

  1. Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    NASA Technical Reports Server (NTRS)

    Vukobratovich, Daniel; Richard, Ralph M.; Valente, Tina M.; Cho, Myung K.

    1990-01-01

    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types.

  2. Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    NASA Technical Reports Server (NTRS)

    Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.

    2010-01-01

    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.

  3. Subjective Evaluation of a Semi-Automatic Optical See-Through Head-Mounted Display Calibration Technique.

    PubMed

    Moser, Kenneth; Itoh, Yuta; Oshima, Kohei; Swan, J Edward; Klinker, Gudrun; Sandor, Christian

    2015-04-01

    With the growing availability of optical see-through (OST) head-mounted displays (HMDs) there is a present need for robust, uncomplicated, and automatic calibration methods suited for non-expert users. This work presents the results of a user study which both objectively and subjectively examines registration accuracy produced by three OST HMD calibration methods: (1) SPAAM, (2) Degraded SPAAM, and (3) Recycled INDICA, a recently developed semi-automatic calibration method. Accuracy metrics used for evaluation include subject provided quality values and error between perceived and absolute registration coordinates. Our results show all three calibration methods produce very accurate registration in the horizontal direction but caused subjects to perceive the distance of virtual objects to be closer than intended. Surprisingly, the semi-automatic calibration method produced more accurate registration vertically and in perceived object distance overall. User assessed quality values were also the highest for Recycled INDICA, particularly when objects were shown at distance. The results of this study confirm that Recycled INDICA is capable of producing equal or superior on-screen registration compared to common OST HMD calibration methods. We also identify a potential hazard in using reprojection error as a quantitative analysis technique to predict registration accuracy. We conclude with discussing the further need for examining INDICA calibration in binocular HMD systems, and the present possibility for creation of a closed-loop continuous calibration method for OST Augmented Reality. PMID:26357099

  4. Optoelectronic Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  5. Design of infrared astronomical satellite /IRAS/ primary mirror mounts

    NASA Technical Reports Server (NTRS)

    Schreibman, M.; Young, P.

    1980-01-01

    The design of an operational mount to rigidly secure the primary mirror to its baseplate without the introduction of figure error always proves to be a major task on diffraction limited optical systems. A summary of the design of the Infrared Astronomical Satellite (IRAS) primary mirror mount is given. The mirror was designed to be alligned and tested at room temperature and operated in a zero 'g' field at temperatures of 2K. To minimize overstressing, a stiffness requirement of greater than 150 Hz was required for cold launch and room temperature vibration acceptance testing. Additional isolation was required to minimize strains, introduced via the mounting base, due to thermal and mechanical distortions.

  6. Optimization of surface-mount-device light-emitting diode packaging: investigation of effects of component optical properties on light extraction efficiency

    NASA Astrophysics Data System (ADS)

    Kashiwao, Tomoaki; Hiura, Mayu; Lim, Yee Yan; Bahadori, Alireza; Ikeda, Kenji; Deguchi, Mikio

    2016-02-01

    An investigation of the effects of the optical properties of surface-mount-device (SMD) light-emitting diode (LED) (side-view and top-view LEDs) packaging (PKG) components on the light extraction efficiency ηPKG using ray-tracing simulations is presented. In particular, it is found that the optical properties of the PKG resin and the lead-frame (L/F) silver-plating significantly affect ηPKG. Thus, the effects of the surface reflection methods of these components are investigated in order to optimize the optical design of the LED PKG. It is shown that there exists peak extraction efficiency for each PKG, and the cavity angle formed by the cavity wall is important to the optical design. In addition, the effect of phosphor present in the mold resin is examined using a Mie scattering simulation. Finally, an SMD LED PKG optical design method is proposed on the basis of the simulation results.

  7. Full-disk magnetograms obtained with a Na magneto-optical filter at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Garneau, Glenn; Misch, Tony; Progovac, Dusan; Shieber, Tom; Tomczyk, Steve; Ulrich, Roger K.

    1988-01-01

    The first full-disk magnetograms to be obtained with the Na magneto-optical filter (MOF) which is located at the 60 foot solar tower of the Mount Wilson Observatory are presented. This MOF was employed as a longitudinal magnetograph on June 18, 19, and July 1, 1987. On those three days the MOF was combined with a large format (1024 x 1024 pixel) virtual phase change coupled device camera and a high-speed data acquisition system. The combined system was used to record both line-of-sight magnetograms and Dopplergrams which covered the entire visible solar hemisphere. The pixel size of these magnetograms and Dopplergrams was 2.3 arcseconds. On each of the three days a time series of nine pairs of magnetograms and Dopplergrams was obtained at the rate of one pair every two minutes. On the same three day longitudinal magnetograms have one arcsecond pixels were obtained with the vacuum telescope at Kitt Peak. The MOF and vacuum tower magnetograms were compared at both the JPL Multi-Mission Image Processing Laboratory and at USC and have found the two sets of images to be well correlated both in spatial distribution and strength of the measured magnetic field. The simultaneously-obtained MOF Dopplergrams to remove the crosstalk which was present between the Doppler and Zeeman shifts of the NaD lines from the magnetograms from all three days and will also describe recent improvements to the system which allowed the obtaining of full-disk magnetograms as rapidly as one every 25 seconds.

  8. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  9. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  10. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  11. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  12. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  13. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  14. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  15. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  16. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer.

    PubMed

    Piao, Mei-Lan; Kim, Nam

    2014-04-01

    We developed a head-mounted display (HMD) that achieved high levels of color uniformity and optical efficiency. The full-color holographic volume grating (HVG) attached on the specially designed wedge-shaped waveguide HMD system provided a 17° horizontal field of view (FOV). Theoretical analyses showed that the proposed waveguide resolved the problems of thickness and limited FOV. In this system, the HVG was recorded using a special sequential recording process on single photopolymer unit with 633, 532, and 473 nm wavelengths. The results confirm that the designed and fabricated waveguide can be employed in future commercial HMS. PMID:24787179

  17. Perspective on precision machining, polishing, and optical requirements

    SciTech Connect

    Sanger, G.M.

    1981-08-18

    While precision machining has been applied to the manufacture of optical components for a considerable period, the process has, in general, had its thinking restricted to producing only the accurate shapes required. The purpose of this paper is to show how optical components must be considered from an optical (functional) point of view and that the manufacturing process must be selected on that basis. To fill out this perspective, simplistic examples of how optical components are specified with respect to form and finish are given, a comparison between optical polishing and precision machining is made, and some thoughts on which technique should be selected for a specific application are presented. A short discussion of future trends related to accuracy, materials, and tools is included.

  18. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  19. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  20. Disruptive advancement in precision lens mounting

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève

    2015-09-01

    Threaded rings are used to fix lenses in a large portion of opto-mechanical assemblies. This is the case for the low cost drop-in approach in which the lenses are dropped into cavities cut into a barrel and clamped with threaded rings. The walls of a cavity are generally used to constrain the lateral and axial position of the lens within the cavity. In general, the drop-in approach is low cost but imposes fundamental limitations especially on the optical performances. On the other hand, active alignment methods provide a high level of centering accuracy but increase the cost of the optical assembly. This paper first presents a review of the most common lens mounting techniques used to secure and center lenses in optical systems. Advantages and disadvantages of each mounting technique are discussed in terms of precision and cost. Then, the different contributors which affect the centering of a lens when using the drop-in approach, such as the threaded ring, friction, and manufacturing errors, are detailed. Finally, a patent pending lens mounting technique developed at INO that alleviates the drawbacks of the drop-in and the active alignment approaches is introduced. This innovative auto-centering method requires a very low assembly time, does not need tight manufacturing tolerances and offers a very high level of centering accuracy, usually less than 5 μm. Centering test results performed on real optical assemblies are also presented.

  1. Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers

    SciTech Connect

    Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J

    2001-12-10

    Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes.

  2. Star tracker for the Apollo telescope mount

    NASA Technical Reports Server (NTRS)

    Lee, C. E.

    1971-01-01

    The star tracker for the Apollo Telescope Mount (ATM) has been designed specifically to meet the requirements of the Skylab vehicle and mission. The functions of the star tracker are presented, as well as descriptions of the optical-mechanical assembly (OMA) and the star tracker electronics (STE). Also included are the electronic and mechanical specifications, interface and operational requirements, support equipment and test requirements, and occultation information. Laboratory functional tests, environmental qualification tests, and life tests have provided a high confidence factor in the performance of the star tracker in the laboratory and on the Skylab mission.

  3. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  4. Single-mode fibre optic Bragg grating sensing on the base of birefringence in surface-mounting and embedding applications

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Tsuda, Hiroshi; Koo, Bon-Yong

    2007-02-01

    Birefringence effects in the two typical installation techniques of fibre Bragg grating(FBG) sensor are investigated: surface-mounting and embedding configurations. When the FBG is bonded on a host material, the sensitivity loss in ultrasonic measurement caused by glue-induced low-birefringence is first reported. Next, the transverse stress-induced high birefringence when the FBG is embedded into a fabric composite laminate is measured as 3.6×10 -4. Such induced-birefringence effects are experimentally analysed in mechanical applications. Simple and effective solutions with respect to the respective installation configurations for removing the birefringence effect are proposed and the obtained zero-birefringence cases are compared with the birefringent cases.

  5. Silicon Carbide Mounts for Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  6. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    NASA Technical Reports Server (NTRS)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  7. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Hua, Hong; Talha, M M

    2009-05-10

    It has been a challenge to design an optical see-through head-mounted display (OST-HMD) that has a wide field of view (FOV) and low f-number (f/#) while maintaining a compact, lightweight, and nonintrusive form factor. In this paper, we present an OST-HMD design using a wedge-shaped freeform prism cemented with a freeform lens. The prism, consisting of three freeform surfaces (FFSs), serves as the near-eye viewing optics that magnifies the image displayed through a microdisplay, and the freeform lens is an auxiliary element attached to the prism in order to maintain a nondistorted see-through view of a real-world scene. Both the freeform prism and the lens utilize plastic materials to achieve light weight. The overall dimension of the optical system per eye is no larger than 25 mm by 22 mm by 12 mm, and the weight is 8 g. Based on a 0.61 in. microdisplay, our system demonstrates a diagonal FOV of 53.5 degrees and an f/# of 1.875, with an 8 mm exit pupil diameter and an 18.25 mm eye relief. PMID:19424386

  8. Automatic calibration of an optical see-through head-mounted display for augmented reality applications in computer-assisted interventions

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Ede, Christopher; Birkfellner, Wolfgang; Hummel, Johann; Seemann, Rudolf; Bergmann, Helmar

    2004-05-01

    We are developing an optical see through head mounted display in which preoperative planning data provided by a computer aided surgery system is overlaid to the optical image of the patient. In order to cope with head movements of the surgeon the device has to be calibrated for a wide zoom and focus range. For such a calibration accurate and robust localization of a huge amount of calibration points is of utmost importance. Because of the negligible radial distortion of the optics in our device, we were able to use projective invariants for stable detection of the calibration fiducials on a planar grid. The pattern at the planar grid was designed using a different cross ratio for four consecutive points in x respectively y direction. For automated image processing we put a CCD camera behind the eye piece of the device. The resulting image was thresholded and segmented, after deleting the artefacts a Sobel edge detector was applied and the image was Hough transformed to detect the x and y axes. Then the world coordinates of fiducial points on the grid could be detected. A series of six camera calibrations with two zoom settings was done. The mean values of the errors for the two calibrations were 0.08 mm respectively 0.3 mm.

  9. Stability in computed optical interferometric tomography (Part I): Stability requirements

    PubMed Central

    Shemonski, Nathan D.; Adie, Steven G.; Liu, Yuan-Zhi; South, Fredrick A.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    As imaging systems become more advanced and acquire data at faster rates, increasingly dynamic samples can be imaged without concern of motion artifacts. For optical interferometric techniques such as optical coherence tomography, it often follows that initially, only amplitude-based data are utilized due to unstable or unreliable phase measurements. As systems progress, stable phase maps can also be acquired, enabling more advanced, phase-dependent post-processing techniques. Here we report an investigation of the stability requirements for a class of phase-dependent post-processing techniques – numerical defocus and aberration correction with further extensions to techniques such as Doppler, phase-variance, and optical coherence elastography. Mathematical analyses and numerical simulations over a variety of instabilities are supported by experimental investigations. PMID:25321004

  10. System requirements for a deep-space optical transceiver

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chung; Alexander, James W.; Hemmati, Hamid; Monacos, Steve; Yan, Tsun-Yee; Lee, Sukhan; Lesh, James R.; Zingales, Sam

    1999-04-01

    The functional requirements and design drivers for an Optical Communications subsystem are assessed based on the system requirements imposed by a proposed Europa Orbiter mission. Unlike near-Earth optical communications systems, deep space missions impose a unique set of requirements that drives the subsystem design. Significant challenges on laser efficiency, thermal control, pointing and tracking, stray/scatter light control, and subsystem mass/power need to be addressed for a successful subsystem implementation. The baseline design concept for a lasercom subsystem for the Europa orbiter mission employs a 30-cm diameter, diffraction-limited telescope, and a diode pumped solid state laser operating at 1.06 micrometer to support downlink communications. The baseline pointing and tracking approach is to perform Earth Image Tracking with occasional calibration using the Earth- moon or Earth-star images. At high phase angles when the Earth image does not provide sufficient brightness for high rate tracking, inertial sensors (accelerometers) measurements are used to propagate the knowledge of the optical boresight at a higher rate in between celestial reference updates. Additionally, uplink beacon tracking will be used to support pointing at short range and near solar opposition when Earth image alone does not provide sufficient signal power for tracking.

  11. Effect of cyclone Nilofar on mesospheric wave dynamics as inferred from optical nightglow observations from Mount Abu, India

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2016-06-01

    Mesospheric nightglow intensities at three emissions (O2(0-1), OH(6-2) bands, and Na(589.3 nm)) from a low-latitude location, Gurushikhar, Mount Abu (24.6°N, 72.8°E), in India, showed similar wave features on 26 October 2014 with a common periodicity of around 4 h. A convective activity due to the cyclone Nilofar, which had developed in the Arabian Sea during 25-31 October 2014, was found to be the source as this too showed a gravity wave period coherent with that of the mesospheric emissions on the 26th. The periodicities at the source region were obtained using outgoing longwave radiation fluxes (derived from Kalpana-1 satellite) which were used as a tracer of tropospheric activity. Cyclone Nilofar had two centers located at a distance of 1103 and 1665 km from the observational station. From the phase offset in time between residuals of O2 and OH emission intensities and the observed common periodicity the vertical phase speed and wavelength have been found to be 1.13 ms-1 and 16.47 km. From the wavelet analyses it is seen that the travel time of the wave from the convection region to O2 emission height was around 8.1 h. From these observations the horizontal phase speed and wavelength of the wave in the mesosphere were calculated to be 37.8 ms-1 and 553 km. These results thus provide not only unambiguous evidence on the vertical coupling of atmospheres engendered by the tropical cyclone Nilofar but also the characteristics of waves that exist during such cyclonic events.

  12. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges.

    PubMed

    Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated. PMID:23556841

  13. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  14. The National Ignition Facility Wavefront Requirements and Optical Architecture

    SciTech Connect

    Spaeth, M L; Manes, K R; Widmayer, C C; Williams, W; Whitman, P A; Henesian, M

    2004-01-05

    With the first four of its eventual 192 beams now executing shots, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is already the world's largest and most energetic laser. The optical system performance requirements that are in place for NIF are derived from the goals of the missions it is designed to serve. These missions include inertial confinement fusion (ICF) research and the study of matter at extreme energy densities and pressures. These mission requirements have led to a design strategy for achieving high quality focusable energy and power from the laser and to specifications on optics that are important for an ICF laser. The design of NIF utilizes a multipass architecture with a single large amplifier type that provides high gain, high extraction efficiency and high packing density. We have taken a systems engineering approach to the practical implementation of this design that specifies the wavefront parameters of individual optics in order to achieve the desired cumulative performance of the laser beamline. This presentation provides a detailed look at the causes and effects of performance degradation in large laser systems and how NIF has been designed to overcome these effects. We will also present results of spot size performance measurements that have validated many of the early design decisions that have been incorporated in the NIF laser architecture.

  15. The National Ignition Facility Wavefront Requirements and Optical Architecture

    SciTech Connect

    Spaeth, M L; Manes, K R; Widmayer, C C; Williams, W H; Whitman, P K; Henesian, M A; Stowers, I F; Honig, J

    2004-06-03

    With the first four of its eventual 192 beams now executing shots and generating more than 100 kilojoules of laser energy at its primary wavelength of 1.06 {micro}m, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is already the world's largest and most energetic laser. The optical system performance requirements that are in place for NIF are derived from the goals of the missions it is designed to serve. These missions include inertial confinement fusion (ICF) research and the study of matter at extreme energy densities and pressures. These mission requirements have led to a design strategy for achieving high quality focusable energy and power from the laser and to specifications on optics that are important for an ICF laser. The design of NIF utilizes a multipass architecture with a single large amplifier type that provides high gain, high extraction efficiency and high packing density. We have taken a systems engineering approach to the practical implementation of this design that specifies the wavefront parameters of individual optics in order to achieve the desired cumulative performance of the laser beamline. This presentation provides a detailed look at the causes and effects of performance degradation in large laser systems and how NIF has been designed to overcome these effects. We will also present results of spot size performance measurements that have validated many of the early design decisions that have been incorporated in the NIF laser architecture.

  16. Ground based in situ measurements of arctic cloud microphysical and optical properties at Mount Zeppelin (Ny-Alesund Svalbard)

    NASA Astrophysics Data System (ADS)

    Guyot, Gwennolé; Jourdan, Olivier; Olofson, Frans; Schwarzenboeck, Alfons; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Bernard, Christophe; Tunved, Peter; Ancellet, Gérard; Law, Kathy; Wobrock, Wolfram; Shcherbakov, Valery

    2015-04-01

    The high sensitivity of the polar regions to climate perturbation, due to complex feedback mechanisms existing in this region, was shown by many studies (Solomon et al., 2007; Verlinde et al., 2007; IPCC, 2007). In particular, climate simulations suggest that cloud feedback plays an important role in the arctic warming (Vavrus 2004; Hassol, 2005). Moreover, the high seasonal variability of arctic aerosol properties (Engwall et al., 2008; Tunveld et al., 2013) is expected to significantly impact the cloud properties during the winter-summer transition. Field measurements are needed for improved understanding and representation of cloud-aerosol interactions in climate models. Within the CLIMSLIP project (CLimate IMpacts of Short-LIved Pollutants and methane in the arctic), a two months (March-April 2012) ground-based cloud measurement campaign was performed at Mt Zeppelin station, Ny-Alesund, Svalbard. The experimental set-up comprised a wide variety of instruments. A CPI (Cloud Particle Imager) was used for the microphysical and morphological characterization of ice particles. Measurements of sized-resolved liquid cloud parameters were performed by the FSSP-100 (Forward Scattering Spectrometer Probe). The Nevzorov Probe measured the bulk properties (LWC and IWC) of clouds. The Polar Nephelometer (PN) was used to assess the single scattering properties of an ensemble of cloud particles. This cloud instrumentation combined with the aerosol properties (size distribution and total concentration) continuously measured at the station allowed us to study the variability of the microphysical and optical properties of low level Mixed Phase Clouds (MPC) as well as the aerosol-cloud interaction in the Arctic. Typical properties of MPC, snow precipitation and blowing snow will be presented. First results suggest that liquid water is ubiquitous in arctic low level clouds. Precipitations are characterized by large (typically 1 mm sized) stellar and pristine shape particles

  17. Non-RF wireless helmet-mounted display and two-way audio connectivity using covert free-space optical communications

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Volfson, L.

    2011-06-01

    Providing the warfighter with Head or Helmet Mounted Displays (HMDs) while in tracked vehicles provides a means to visually maintain access to systems information while in a high vibration environment. The high vibration and unique environment of military tracked and turreted vehicles impact the ability to distinctly see certain information on an HMD, especially small font size or graphics and information that requires long fixation (staring), rather than a brief or peripheral glance. The military and commercial use of HMDs was compiled from market research, market trends, and user feedback. Lessons learned from previous military and commercial use of HMD products were derived to determine the feasibility of HMDs use in the high vibration and the unique environments of tracked vehicles. The results are summarized into factors that determine HMD features which must be specified for successful implementation.

  18. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel.

    PubMed

    Chang, Kao-Der; Li, Chang-Yi; Pan, Jui-Wen; Cheng, Kuei-Yuan

    2014-03-10

    Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system in this study. We adopt a hybrid simulated method to evaluate the light extraction efficiency (LEE) and far-field pattern in the air, and study the relationship between them. The simulation results show that OLEDs implanted with the QC structure can provide a collimated far-field pattern to increase the brightness. Using this 10-fold QC arrangement the maxima LEE of the OLEDs can be increased by 1.20 times. Compared with conventional OLEDs, the viewing angle of the OLED panel decreases from 120 degrees to 26 degrees with an improvement in the optical efficiency of the HMD system by 2.66 times. Moreover, the normalized on-axis intensity in the pupil of the eyepiece can be enlarged up to 3.95 times which suggests that the OLED panel can save 74.68% energy while achieving the same on-axis intensity as conventional OLEDs. PMID:24922267

  19. Launch-rated kinematic mirror mount with six-degree-of-freedom adjustments

    NASA Astrophysics Data System (ADS)

    Sawyer, Kevin A.; Hurley, Barbara N.; Brindos, Raymond R.; Wong, James

    1999-09-01

    A kinematic, fully adjustable, six degree-of-freedom mirror mount has been developed for a space-based optical system. The optics vary in size from five inches to 10-inches and weigh up to 1.75 Kg. Many of the optics require multiple degrees-of-freedom for alignment and all elements need to be held to micron tolerances during orbit. The mount design described herein provides three-axis linear motions of at least three millimeters and multiple degrees of tilt. Each mount weighs approximately the same as its optic and exhibits gravity deflections less than .0002 radian. Natural frequencies for even the largest mirror mounts in the system are greater than 100 Hz. A unique feature of the mount design is the ability to easily adjust the mirror from behind without the need for complex jigs or tooling. The mirror mount is entirely self contained and is mechanically locked after final adjustments are made. A motion algorithm based on hexapod simulator control laws has been adopted to calculate the leg adjustments required to perform the mirror motions of tip, tilt, yaw, focus, and the two lateral shifts.

  20. Design of bipod flexure mounts for the IRIS spectrometer

    NASA Astrophysics Data System (ADS)

    Weingrod, Isaac; Chou, Catherine Y.; Holmes, Buck; Hom, Craig; Irwin, James Wes; Lindstrom, Obert; Lopez, Frank; Stubbs, David M.; Wüelser, Jean-Pierre

    2013-09-01

    The Interface Region Imaging Spectrograph (IRIS) is a NASA SMall Explorer (SMEX) mission launched onboard a Pegasus™ booster on June 27, 2013. The spacecraft and instrument were designed and built at the Lockheed Martin Space Systems Company. The primary mission goal is to learn how the solar atmosphere is energized. IRIS will obtain high-resolution UV spectra and images in space (0.4 arcsec) and time (1s), focusing on the chromosphere and transition region of our sun, which is a complex interface region between the photosphere and corona. The IRIS instrument uses a Cassegrain telescope to feed a dual spectrograph and slit-jaw imager, which operate in the 133-141 nm and 278-283 nm wavelengths, respectively. Within the spectrograph there are sixteen optics, each requiring subtle mounting features to meet exacting surface figure and stability requirements. This paper covers the opto-mechanical design for the most challenging optic mounts, which include the Collimator, UV Fold Mirrors, and UV Gratings. Although all mounts are unique in size and shape, the fundamental design remains the same. The mounts are highly kinematic, thermally matched, and independent of friction. Their development will be described in detail, starting with the driving requirements and an explanation of the underlying design philosophy.

  1. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  2. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  3. Solderability of surface mount devices

    NASA Astrophysics Data System (ADS)

    Holder, Nanette S.

    1993-06-01

    As electronic products become much smaller, a limiting factor in the reduction of product size has been the size of the electronic components which make up the product. The leads of the current electronic components are inserted onto a printed circuit board through holes. Due to the use of wire leads, it becomes more difficult to decrease the size of the components. A new method was created to mount components directly to the surface of the printed circuit board. This new technique is surface mount technology. A concern over the use of this is experienced by the military. Since the leads are not inserted through the board and crimped before soldering as conventional components are mounted, there is some regard as to whether the components can be mounted securely to the board. Due to the high forces that many munitions experience when dispensed, it is imperative that the electronic components be soldered to the circuits boards so they will not slip out of place or fall from the board. The military also requires many munitions to lie dormant in storage warehouses for up to 20 years. When the munition is needed, it must perform reliably. Little work has been done to study the effects of this long-term storage on these surface mount devices, particularly on the ability of different soldering techniques used to attach surface mount components to printed circuit boards to withstand damaging effects of long-term storage.

  4. Magnetic core mounting system

    SciTech Connect

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  5. Mechanical design of mounts for IGRINS focal plane arrays and field flattening lenses

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyeong; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Pavel, Michael; Jaffe, Daniel T.

    2014-07-01

    IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  6. Mounting and Alignment of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  7. Holographic center high-mounted stoplight

    NASA Astrophysics Data System (ADS)

    Smith, Ronald T.

    1991-07-01

    The holographic center high mounted stoplight achieves the required performance of a conventional center high mounted stoplight, but without the obstruction to the driver's view through the rear window. A lamp located in the roof illuminates a transmission image hologram mounted on the inner surface of the automobile rear window. The hologram strongly diffracts the incident light rearward but is transparent to the driver looking in his rearview mirror.

  8. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  9. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  10. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  11. Helmet-Mounted Liquid-Crystal Display

    NASA Technical Reports Server (NTRS)

    Smith, Steve; Plough, Alan; Clarke, Robert; Mclean, William; Fournier, Joseph; Marmolejo, Jose A.

    1991-01-01

    Helmet-mounted binocular display provides text and images for almost any wearer; does not require fitting for most users. Accommodates users from smallest interpupillary distance to largest. Two liquid-crystal display units mounted in helmet. Images generated seen from any position head can assume inside helmet. Eyes directed to position for best viewing.

  12. Flexible pivot mount eliminates friction and hysteresis

    NASA Technical Reports Server (NTRS)

    Highman, C. O.

    1970-01-01

    Flexible steel pivot mount, suspended by flat vertical beryllium copper springs, is capable of rotation, free of hysteresis and starting friction. Mount requires no lubrication, is made in varying sizes, and is driven with either dc torque motor or mechanical linkage.

  13. Liner mounting assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  14. 29 CFR 1926.553 - Base-mounted drum hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Base-mounted drum hoists. 1926.553 Section 1926.553 Labor... § 1926.553 Base-mounted drum hoists. (a) General requirements. (1) Exposed moving parts such as gears... is ineffective. (4) All base-mounted drum hoists in use shall meet the applicable requirements...

  15. 29 CFR 1926.553 - Base-mounted drum hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Base-mounted drum hoists. 1926.553 Section 1926.553 Labor... § 1926.553 Base-mounted drum hoists. (a) General requirements. (1) Exposed moving parts such as gears... is ineffective. (4) All base-mounted drum hoists in use shall meet the applicable requirements...

  16. 29 CFR 1926.553 - Base-mounted drum hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Base-mounted drum hoists. 1926.553 Section 1926.553 Labor... § 1926.553 Base-mounted drum hoists. (a) General requirements. (1) Exposed moving parts such as gears... is ineffective. (4) All base-mounted drum hoists in use shall meet the applicable requirements...

  17. 29 CFR 1926.553 - Base-mounted drum hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Base-mounted drum hoists. 1926.553 Section 1926.553 Labor... § 1926.553 Base-mounted drum hoists. (a) General requirements. (1) Exposed moving parts such as gears... is ineffective. (4) All base-mounted drum hoists in use shall meet the applicable requirements...

  18. Helmet-Mounted Visual Display For Flight Simulation

    NASA Technical Reports Server (NTRS)

    Cook, Anthony M.

    1990-01-01

    Helmet-mounted visual display system provides pilot with broad range of visual information for flight simulation. Offers nearly unlimited field of regard. Optical fibers transmit wide-angle images in response to motions of head. Two "pancake" lenses mounted on lightweight helmet. Cable of optical fibers carries images to each lens. "Light-valve" projectors deliver computer-generated binocular images to cables.

  19. Optical terminal requirements for aeronautical multi-hop networks

    NASA Astrophysics Data System (ADS)

    Karras, Kimon; Marinos, Dimitris; Kouros, Pavlos

    2008-08-01

    High speed free space optical data links are currently finding limited use in military aircraft; however the technology is slowly starting to diffuse to civilian applications, where they could be used to provide a high bandwidth connection. However there are several issues that have to be resolved before the technology is ready for deployment. An important part of these are physical layer issues which deal with the ability to transmit and receive the optical signal reliably, as well as mechanical issues which focus on the construction of high performance, small and lightweight terminals for the optical transceiver. The later in conjunction with the cost of such a terminal create a significant limitation on the number of such equipment that any aircraft might carry on board. This paper attempts to evaluate how various such parameters affect the capability of an aircraft to take part in and help form a mesh network. The study was conducted by modeling the aircraft into a custom built SystemC based simulator tool and evaluating the connectivity achieved for varying several parameters, such as the pointing and acquisition time of the terminal and the number of terminals on board.

  20. Development and manufacture of visor for helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert

    2004-01-01

    The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.

  1. Space Flight Requirements for Fiber Optic Components: Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2006-01-01

    This viewgraph presentation reviews the qualification testing requirements for Fiber Optic Components used during space flight. Since most components for space flight fiber optic components are now commercial of the shelf (COTS) products, and the changes at Goddard Space Flight Center, such as short term projects, and low budgets and other changes, have made full qualification of Fiber Optic Components not only too expensive also impossible. This presentation reviews the environmental parameters, the testing and or testing requirements of some optical components on board some NASA satellites.

  2. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mountings to provide a secure base in transit. “Skids” or similar devices shall be deemed to comply with this requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting...

  3. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  4. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  5. Thermistor mount efficiency calibration

    SciTech Connect

    Cable, J.W.

    1980-05-01

    Thermistor mount efficiency calibration is accomplished by use of the power equation concept and by complex signal-ratio measurements. A comparison of thermistor mounts at microwave frequencies is made by mixing the reference and the reflected signals to produce a frequency at which the amplitude and phase difference may be readily measured.

  6. The correct lens mount lightweighting design and thermal stress OPD analysis in Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Chan, Chia-Yen; Lin, Wei-Cheng; Chang, Shenq-Tsong; Huang, Ting-Ming

    2013-09-01

    This study is trying to evaluate different lens barrel material, caused lens stress OPD (Optical Path Different) in different temperature condition. The Cassegrain telescope's correct lens assembly are including as correct lens, lens mount, spacer, mount barrel and retainer. The lens barrel initial design is made by invar, but system mass limit is need to lightweighting to meet requirement. Therefore, the lens barrel material is tried to replace to lower density material, such as aluminum and titanium alloy. Meanwhile, the aluminum or titanium alloy material properties CTE (Coefficient of Thermal Expansion) are larger then invar. Thus, the high CTE material will introduce larger thermal stress into the optical system in different temperature condition. This article is analysis the correct lens assembly thermal stress and optical performance in different lens mount material. From above conditions, using FEM (Finite Element Method) and optical software, simulation and optimization the lens mount to achieve system mass requirement.

  7. Apollo Telescope Mount Thermal Unit

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM thermal unit being tested in MSFC's building 4619. The thermal unit consisted of an active fluid-cooling system of water and methanol that was circulated to radiators on the outside of the canister. The thermal unit provided temperature stability to the ultrahigh resolution optical instruments that were part of the ATM.

  8. Quaternary glaciation of Mount Everest

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Robinson, Ruth; Benn, Douglas I.; Finkel, Robert C.; Davis, Nicole K.; Yi, Chaolu; Putkonen, Jaakko; Li, Dewen; Murray, Andrew S.

    2009-07-01

    The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24-27 ka (Jilong moraine), 14-17 ka (Rongbuk moraine), 8-2 ka (Samdupo moraines) and ˜1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8-7.7 ka) and Samdupo II (˜2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.

  9. Structural considerations in designing magnetorheological fluid mounts

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Ciocanel, Constantin; Elahinia, Mohammad

    2010-04-01

    Modern vehicles have been increasingly equipped with advanced technologies such as hybrid and cylinder-on-demand to enhance fuel efficiency. These technologies also come with vibration problems due to the switching between the power sources or the variation of the number of active cylinders. To mitigate these vibrations, a large variety of vibration isolators have been proposed, ranging from passive to active isolators. Semi-active mounts are often preferred to other solutions because of their overall low power requirement in operation as well as relatively simpler configurations. Among the semi-active categories, the magnetorheological fluid (MRF) mounts have been proven to be a viable solution for modern vehicle vibration isolation. These mounts can change their stiffness and damping characteristic without involving moving parts, by controlling the yield stress of the MRF housed inside the mount by means of magnetic field. This study looked into several innovative designs for MRF mounts. The characteristics of the mount depend significantly on the compliances of the rubber, the number and arrangement of the fluid chambers and the number of flow passages connecting the chambers. These parameters provide the designers with various options to design the mounts to function in various conditions and over a wide range of frequencies. Different values of the aforementioned parameters were selected to form specific designs with certain characteristics. Mathematical models have been developed for each design and MATLAB/Simulink was used to simulate the response of each mount to certain excitations. As the hydraulic and magnetorheological (MR) effects are dominant in the mount, the elastomer behavior is considered linear. A discussion of the advantages and disadvantages of each design, based on the simulated response, is presented. The outcomes of this study can be a useful reference for MRF mount designers and leads to the development of a general MRF mount design

  10. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  11. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    NASA Technical Reports Server (NTRS)

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in

  12. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  13. Raster graphic helmet-mounted display study

    NASA Technical Reports Server (NTRS)

    Beamon, William S.; Moran, Susanna I.

    1990-01-01

    A design of a helmet mounted display system is presented, including a design specification and development plan for the selected design approach. The requirements for the helmet mounted display system and a survey of applicable technologies are presented. Three helmet display concepts are then described which utilize lasers, liquid crystal display's (LCD's), and subminiature cathode ray tubes (CRT's), respectively. The laser approach is further developed in a design specification and a development plan.

  14. How to meet intersatellite links mission requirements by an adequate optical terminal design?

    NASA Astrophysics Data System (ADS)

    Duchmann, O.; Planche, G.

    1991-06-01

    The SILEX system involves a large set of advanced techniques and technologies which need to be merged and confronted. A macroscopic approach makes it possible to consider an optical terminal, with reference to common space fields of activities as a combination of a communication payload, an attitude and orbit control system, an optical instrument, and an on-board data handling system. It requires great technical expertise in areas commonly mastered in these techniques, namely, highly sensitive detectors such as coupled charge detector matrices, avalanche photodiodes, accurate and/or high bandwidth pointing and steering mechanisms, high optical quality mirrors and optical coatings, and accurate thermal control. Basic system and engineering tasks are to be mastered to combine them in an optimal way. This calls, among other things, for requirements analysis to derive the main design drivers and specific constraints with respect to each technique involved, and sizing and configuration of the system.

  15. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source

    PubMed Central

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  16. Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.

    PubMed

    Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco

    2016-01-01

    Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567

  17. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  18. Manufacturing development of visor for binocular helmet mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David; Edwards, Timothy; Larkin, Eric; Skubon, John; Speirs, Robert; Sowden, Tom

    2007-09-01

    The HMD (Helmet Mounted Display) visor is a sophisticated article. It is both the optical combiner for the display and personal protective equipment for the pilot. The visor must have dimensional and optical tolerances commensurate with precision optics; and mechanical properties sufficient for a ballistic shield. Optimized processes and tooling are necessary in order to manufacture a functional visor. This paper describes the manufacturing development of the visor for the Joint Strike Fighter (JSF) HMD. The analytical and experimental basis for the tool and manufacturing process development are described; as well as the metrological and testing methods to verify the visor design and function. The requirements for the F-35 JSF visor are a generation beyond those for the HMD visor which currently flies on the F-15, F-16 and F/A-18. The need for greater precision is manifest in the requirements for the tooling and molding process for the visor. The visor is injection-molded optical polycarbonate, selected for its combination of optical, mechanical and environmental properties. Proper design and manufacture of the tool - the mold - is essential. Design of the manufacturing tooling is an iterative process between visor design, mold design, mechanical modeling and polymer-flow modeling. Iterative design and manufacture enable the mold designer to define a polymer shrinkage factor more precise than derived from modeling or recommended by the resin supplier.

  19. Transducer-Mounting Fixture

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  20. MountPointAttributes

    Energy Science and Technology Software Center (ESTSC)

    2001-06-16

    MountPointAttributes is a software component that provides client code with a technique to raise the local namespace of a file to a global namespace. Its abstractions and mechanisms allow the client code to gather global properties of a file and to use them in devising an effective storage access strategy on this file.

  1. The AMiBA Hexapod Telescope Mount

    NASA Astrophysics Data System (ADS)

    Koch, Patrick M.; Kesteven, Michael; Nishioka, Hiroaki; Jiang, Homin; Lin, Kai-Yang; Umetsu, Keiichi; Huang, Yau-De; Raffin, Philippe; Chen, Ke-Jung; Ibañez-Romano, Fabiola; Chereau, Guillaume; Huang, Chih-Wei Locutus; Chen, Ming-Tang; Ho, Paul T. P.; Pausch, Konrad; Willmeroth, Klaus; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Han, Chih-Chiang; Kubo, Derek; Li, Chao-Te; Liao, Yu-Wei; Liu, Guo-Chin; Martin-Cocher, Pierre; Oshiro, Peter; Wang, Fu-Cheng; Wei, Ta-Shun; Wu, Jiun-Huei Proty; Birkinshaw, Mark; Chiueh, Tzihong; Lancaster, Katy; Lo, Kwok Yung; Martin, Robert N.; Molnar, Sandor M.; Patt, Ferdinand; Romeo, Bob

    2009-04-01

    The Array for Microwave Background Anisotropy (AMiBA) is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components—the support cone, universal joints, jack screws, and platform—and outline the control system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 μm rms. This is negligible for optical pointing corrections, radio alignment, and radio phase errors for the currently operational seven-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0farcm 4 rms which meets our goal for the seven-element target specifications.

  2. Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives

    NASA Astrophysics Data System (ADS)

    Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan

    2015-09-01

    The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.

  3. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  4. In Brief: Mount Wilson centennial

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The 60-inch reflecting telescope at Mount Wilson Observatory, in southern California, which helped scientists measure the Milky Way and determine our solar system's position within it, celebrates its 100th anniversary in December. ``The 60-inch continued the Copernican Revolution by dethroning the Sun from the center of our galaxy,'' noted observatory director Harold McAlister. The telescope, with its silver-on-glass reflectors, also established the basic design for observatory telescopes on Earth. Capable of operating in several different optical configurations, the telescope was the first one built primarily for photographic and spectrographic use. With its 5-foot-diameter mirror, the telescope was the largest in the world until 1917. The telescope is retired from active science but is made available to groups for viewing astronomical objects. The observatory was founded by astronomer George Ellery Hale under the auspices of the Carnegie Institution of Washington. For more information, visit http://www.mtwilson.edu.

  5. Proposed SLR Optical Bench Required to Track Debris Using 1550 nm Lasers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coyle, D. B.; McGarry, J. F.; Bufton, J.; Cheek, J. W.; Clarke, G.; Hull, S. M.; Skillman, D. R.; Stysley, P. R.; Sun, X.; Young, R. P.; Zagwodzki, T.

    2015-01-01

    A previous study has indicated that by using approx.1550 nm wavelengths a laser ranging system can track debris objects in an "eye safe" manner, while increasing the expected return rate by a factor of approx. 2/unit area of the telescope. In this presentation we develop the optical bench required to use approx.1550nm lasers, and integration with a 532nm system. We will use the optical bench configuration for NGSLR as the baseline, and indicate a possible injection point for the 1550 nm laser. The presentation will include what elements may need to be changed for transmitting the required power on the approx.1550nm wavelength, supporting the alignment of the laser to the telescope, and possible concerns for the telescope optics.

  6. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    SciTech Connect

    Adams, C.

    1996-10-20

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment.

  7. SAMPLING AND CALIBRATION REQUIREMENTS FOR OPTICAL REFLECTANCE SOIL PROPERTY SENSORS FOR KOREAN PADDY SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e....

  8. Head-mounted LED for optogenetic experiments of freely-behaving animal

    NASA Astrophysics Data System (ADS)

    Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.

    2016-03-01

    Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal

  9. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  10. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  11. Mount Erebus activity

    NASA Astrophysics Data System (ADS)

    An international team of scientists reports that unusually high seismic activity joggled Mount Erebus last fall. However, the Antarctic volcano showed no external signs of an eruption.When scientists from the United States, Japan, and New Zealand returned to the world's southernmost active volcano last November for their annual field expedition, they found that seismic stations recorded 650 small tremors on October 8; prior to that, the number of quakes had averaged between 20 and 80 per day. The October 8 maximum was followed by 140 on October 9 and 120 on October 10. Philip R. Kyle, assistant professor of geochemistry at the New Mexico Institute of Mining and Technology in Socorro and leader of the team studying Mount Erebus, noted that some of the strongest earthquakes recorded during the team's 3 years of observations occurred on October 8; these registered less than 2 on the Richter scale.

  12. Plasma Screen Floating Mount

    DOEpatents

    Eakle, Robert F.; Pak, Donald J.

    2004-10-26

    A mounting system for a flat display screen, particularly a plasma display screen, suspends the screen separately in each of the x-, y- and z-directions. A series of frames located by linear bearings and isolated by springs and dampers allows separate controlled movement in each axis. The system enables the use of relatively larger display screens in vehicles in which plasma screen are subject to damage from vibration.

  13. Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...

  14. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    SciTech Connect

    Kempel, P.; Hands, J.

    1996-08-22

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements `for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document. Rather, such information is provided in SDR 001

  15. Matrix light and pixel light: optical system architecture and requirements to the light source

    NASA Astrophysics Data System (ADS)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  16. Distance Perception of Stereoscopically Presented Virtual Objects Optically Superimposed on Physical Objects by a Head-Mounted See-Through Display

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.

  17. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  18. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  19. Focal Plane Alignment Utilizing Optical CMM

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

    2012-01-01

    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation

  20. IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

    NASA Astrophysics Data System (ADS)

    Rukdee, Surangkhana; Park, Chan; Kim, Kang-Min; Lee, Sung-Ho; Chun, Moo-Young; Yuk, In-Soo; Oh, Hee-Young; Jung, Hwa-Kyoung; Lee, Chung-Uk; Lee, Han-Shin; Rafal, Marc D.; Barnes, Stuart; Jaffe, Daniel T.

    2012-06-01

    The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold m irror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

  1. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  2. Holographic Helmet-Mounted Display Unit

    NASA Technical Reports Server (NTRS)

    Burley, James R., II; Larussa, Joseph A.

    1995-01-01

    Helmet-mounted display unit designed for use in testing innovative concepts for display of information to aircraft pilots. Operates in conjunction with computers generating graphical displays. Includes two ocular subunits containing miniature cathoderay tubes and optics providing 40 degrees vertical, 50 degrees horizontal field of view to each eye, with or without stereopsis. In future color application, each ocular subunit includes trichromatic holographic combiner tuned to red, green, and blue wavelengths of phosphors used in development of miniature color display devices.

  3. Full-sky Astrometric Mapping Explorer (FAME): CCD Tests and Optical Requirements

    NASA Astrophysics Data System (ADS)

    Johnston, K. J.

    2002-12-01

    The FAME project team has pursued several studies in order to resolve technical, schedule, and mission cost concerns and to investigate requirements for future space astrometry missions. Two CCD fabrication runs have been completed with good yields of operating CCDs. The first fabrication run, using a mixture of 37 and 100 ohm cm substrate, produced 100 ohm cm devices with a reduced CTE. Thus, only 37 ohm cm substrate was used in the second run. To mitigate the effects of on-orbit radiation damage, FAME CCDs are designed with charge injection capabilities. The current FAME CCDs have a reduced yield of devices with good operating charge injection. The CCDs are currently being tested for image centroiding accuracy and operating characteristics, both before and after laboratory irradiation. The intent is to learn more about the radiation effects on the CCDs and the methods of mitigating the effects of charge transfer inefficiency. Results of these tests will be given. The requirements for very accurate centroiding of images places strict requirements on the optical design, distortions, and the tolerances on the alignment and thermal variations of the optical components of the instrument. The exact requirements necessary to reach the measurement accuracy have a large effect on the schedule and cost of manufacturing and installing the optics. Therefore, special studies have been conducted to determine the exact requirements for the optical design. The science that would result from the FAME observations remains compelling, which is the reason for the efforts to continue to develop the project. The latest status and future plans for FAME will be included.

  4. Who discovered Mount Everest?

    NASA Astrophysics Data System (ADS)

    Dickey, Parke A.

    The discovery that Mount Everest is the highest mountain in the world was made by the officers of the Survey of India. This organization measured a network of triangulation across India between 1800 and 1870. In order to reduce the measurements to geodetic coordinates, it was necessary to determine the size and shape of the earth. This was accomplished by measuring the length of an arc of the meridian under the direction of the Surveyor General, Sir George Everest. This measurement disagreed with the observations of the stars for latitude by 5 seconds of arc (530 ft or 162 m). In 1855, Pratt and Airy pointed out that the discrepancy was due to the gravitational effect of the Himalayas. Their work was the first indication that the material of the earth's crust under the mountains is lighter than that under plains. During the course of the survey the officers made observations on the snowy Himalayas. They were excluded from Nepal; observations had to be taken from more than 100 mi (160 km) away in jungles infested by malaria. Mount Everest was observed by three different officers between November 27, 1847, and January 17, 1850. The height of the mountain had to be determined by the (human) computers in the survey headquarters in Dehra Dun. The fact that it is the highest mountain in the Himalayas, and probably in the world, was announced by Surveyor General Andrew Waugh in 1856. It is not clear whether the chief computer who made the calculations was an Indian, Radanath Sikhdar, or an Englishman born in India of an Indian mother, John B. N. Hennesy. The local name for the mountain, if it had any, was unknown, so Waugh named it Mount Everest, in honor of the great scientist who was largely responsible for the accomplishments of the Survey of India.

  5. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  6. Mounting of SSM's

    NASA Astrophysics Data System (ADS)

    Pohjonen, Juha

    1993-01-01

    A step by step description of how to mount SSM's (Second Surface Mirrors) on the space instruments is presented. Experiences of the first SSM implementation are described. The Soho satellite has in its payload, an instrument ERNE, which has a radiation wing covered with SSM. SSM's are easy to use and reliable for thermal control design to space instruments. SSM's have a very small alpha(sub s) compared to the epsilon(sub n). The radiation from the Sun is reflected and at the same time the heat generated by the instrument is emitted to the space. This gives a good opportunity to tune the thermal control design according to the temperature.

  7. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  8. Surface mount component jig

    DOEpatents

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  9. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  10. SXI Prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  11. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  12. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  13. Mount control system for the CFGT telescope

    NASA Astrophysics Data System (ADS)

    Xu, Xinqi; Dong, Zhiming; Zhou, Wangping

    2006-06-01

    The concept for Chinese Future Giant Telescope (CFGT) with 30-m aperture has been around for several years, although the requirements for control system are still far from completed and conclusive at this stage. Since the project was proposed more study on a number of key issues relevant to the control system has been conducted. In particular the mount control system for the giant telescope has been put forward under exploration. With our ongoing 4-m LAMOST telescope just underwent a successful mount drive test the LAMOST control group has become more knowledgeable with hands on experience that would be quite useful for mount drive design of even large telescope. This paper focuses on the mount control system design for CFGT telescope in general. Particular aspects such as the effect of large moment of inertia with ultra low-speed and multi-disturbance are included. Friction drive is opted for both historical and economical reasons. Drive stiffness and servo control parameters optimization are discussed based on the workshop test with LAMOST mount that could possibly be mapped to CFGT.

  14. REM. Rapid Eye Mount

    SciTech Connect

    Molinari, E.; Vergani, S.D.; Zerbi, F. M.; Covino, S.; Chincarini, G.

    2004-09-28

    REM is a robotic fast moving telescope designed to immediately point and observe in optical and IR the GRBs detected by satellites. Its immediate data gathering capabilities and its accurate astrometry will issue early alerts for the VLT.

  15. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  16. Solutions to helmet-mounted display visual correction compatibility issues

    NASA Astrophysics Data System (ADS)

    Rash, Clarence E.; Kalich, Melvyn E.; van de Pol, Corina

    2002-08-01

    To meet the goal of 24-hour, all-weather operation, U.S. Army aviation uses a number of imaging sensor systems on its aircraft. Imagery provided by these systems is presented on helmet-mounted displays (HMDs). Fielded systems include the Integrated Helmet Display Sighting System (IHADSS) used on the AH-64 Apache. Proposed future HMD systems such as the Helmet Integrated Display Sighting System (HIDSS) and the Microvision, Inc., Aircrew Integrated Helmet System (AIHS) scanning laser system are possible choices for the Army's RAH-66 Comanche helicopter. Ever present in current and future HMD systems is the incompatibility problem between the design-limited physical eye relief of the HMD and the need to provide for the integration of laser and nuclear, biological and chemical (NBC) protection, as well as the need to address the changing optical and vision requirements of the aging aviator. This paper defines the compatibility issue, reviews past efforts to solve this problem (e.g., contact lenses, NBC masks, optical inserts, etc.), and identifies emerging techniques (e.g., refractive surgery, adaptive optics, etc.) that require investigation.

  17. Laser housing having integral mounts and method of manufacturing same

    DOEpatents

    Herron, Michael Alan; Brickeen, Brian Keith

    2004-10-19

    A housing adapted to position, support, and facilitate aligning various components, including an optical path assembly, of a laser. In a preferred embodiment, the housing is constructed from a single piece of material and broadly comprises one or more through-holes; one or more cavities; and one or more integral mounts, wherein the through-holes and the cavities cooperate to define the integral mounts. Securement holes machined into the integral mounts facilitate securing components within the integral mounts using set screws, adhesive, or a combination thereof. In a preferred method of making the housing, the through-holes and cavities are first machined into the single piece of material, with at least some of the remaining material forming the integral mounts.

  18. Grism cryogenic mount for the Euclid-NISP mission

    NASA Astrophysics Data System (ADS)

    Rossin, Ch.; Grange, R.; Sanchez, P.; Caillat, A.; Costille, A.; Laurent, P.; Dessaux, F.; Ceria, W.

    2014-07-01

    The spectroscopic channel of the Euclid Near Infrared SpectroPhotometer (NISP) relies on four grisms mounted on a wheel via Invar mounts. The mount design was studied to maintain the optical performances and alignment at cryogenic operating temperature (120K), and to survive launch vibrations. We designed two stages of radially compliant blades: one set of 9 blades is bonded to the Silica grism and the second set of 3 blades is located at interface points with the wheel. Severe packaging and mass constraints yielded us to design a ring mount with strong weight relief. In fall 2013 we proceeded to thermal cycling (323K-105K), vibration tests (10.7 g rms) to successfully qualify the grism mount in the Euclid environment. Thanks to detailed finite element analyses, we correlated simulations and tests.

  19. Camera Mount for a Head-Up Display

    NASA Technical Reports Server (NTRS)

    Geoge, Wayne; Barnes, Monica; Johnson, Larry; Shelton, Kevin

    2007-01-01

    A mounting mechanism was designed and built to satisfy requirements specific to a developmental head-up display (HUD) to be used by pilots in a Boeing 757 airplane. This development was necessitated by the fact that although such mounting mechanisms were commercially available for other airplanes, there were none for the 757. The mounting mechanism supports a miniature electronic camera that provides a forward view. The mechanism was designed to be integrated with the other HUD instrumentation and to position the camera so that what is presented to the pilot is the image acquired by the camera, overlaid with alphanumeric and/or graphical symbols, from a close approximation of the pilot s natural forward perspective. The mounting mechanism includes an L-shaped mounting arm that can be adjusted easily to the pilot s perspective, without prior experience. The mounting mechanism is lightweight and flexible and presents little hazard to the pilot.

  20. Math5 is required for retinal ganglion cell and optic nerve formation

    PubMed Central

    Brown, Nadean L.; Patel, Sima; Brzezinski, Joseph; Glaser, Tom

    2006-01-01

    SUMMARY The vertebrate retina contains seven major neuronal and glial cell types in an interconnected network that collects, processes and sends visual signals through the optic nerve to the brain. Retinal neuron differentiation is thought to require both intrinsic and extrinsic factors, yet few intrinsic gene products have been identified that direct this process. Math5 (Atoh7) encodes a basic helix-loop-helix (bHLH) transcription factor that is specifically expressed by mouse retinal progenitors. Math5 is highly homologous to atonal, which is critically required for R8 neuron formation during Drosophila eye development. Like R8 cells in the fly eye, retinal ganglion cells (RGCs) are the first neurons in the vertebrate eye. Here we show that Math5 mutant mice are fully viable, yet lack RGCs and optic nerves. Thus, two evolutionarily diverse eye types require atonal gene family function for the earliest stages of retinal neuron formation. At the same time, the abundance of cone photoreceptors is significantly increased in Math5−/− retinae, suggesting a binary change in cell fate from RGCs to cones. A small number of nascent RGCs are detected during embryogenesis, but these fail to develop further, suggesting that committed RGCs may also require Math5 function. PMID:11493566

  1. Optical control of gas-contained liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Venedictov, S. V.; Mitrofanov, G. A.; Svetlakov, N. E.; Strel'nikov, M. Y.

    1997-09-01

    The comparative analysis of the requirement sensitivity threshold for chromatographic and optical methods of monitoring of gases content of liquid dielectrics was made. There is suggested to use the optical manner for the express- analysis of content of gases in transformer oil. The measurement equipment is mounted immediately on filled by oil electrical apparatus.

  2. Mount Zion Cemetery, 1975 Plot Plan Mount Zion Cemetery/ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Mount Zion Cemetery, 1975 Plot Plan - Mount Zion Cemetery/ Female Union Band Cemetery, Bounded by 27th Street right-of-way N.W. (formerly Lyons Mill Road), Q Street N.W., & Mill Road N.W., Washington, District of Columbia, DC

  3. 3D head mount display with single panel

    NASA Astrophysics Data System (ADS)

    Wang, Yuchang; Huang, Junejei

    2014-09-01

    The head mount display for entertainment usually requires light weight. But in the professional application has more requirements. The image quality, field of view (FOV), color gamut, response and life time are considered items, too. A head mount display based on 1-chip TI DMD spatial light modulator is proposed. The multiple light sources and splitting images relay system are the major design tasks. The relay system images the object (DMD) into two image planes to crate binocular vision. The 0.65 inch 1080P DMD is adopted. The relay has a good performance which includes the doublet to reduce the chromatic aberration. Some spaces are reserved for placing the mirror and adjustable mechanism. The mirror splits the rays to the left and right image plane. These planes correspond to the eyepieces objects and image to eyes. A changeable mechanism provides the variable interpupillary distance (IPD). The folding optical path makes sure that the HMD center of gravity is close to the head and prevents the uncomfortable downward force being applied to head or orbit. Two RGB LED assemblies illuminate to the DMD in different angle. The light is highly collimated. The divergence angle is small enough such that one LED ray would only enters to the correct eyepiece. This switching is electronic controlled. There is no moving part to produce vibration and fast switch would be possible. Two LED synchronize with 3D video sync by a driving board which also controls the DMD. When the left eye image is displayed on DMD, the LED for left optical path turns on. Vice versa for right image and 3D scene is accomplished.

  4. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  5. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  6. Mouse Cochlear Whole Mount Immunofluorescence

    PubMed Central

    Akil, Omar; Lustig, Lawrence R.

    2016-01-01

    This protocol comprises the entire process of immunofluorescence staining on mouse cochlea whole mount, starting from tissue preparation to the mounting of the tissue. This technique provides “three-dimensional” views of the stained components in order to determine the localization of a protein of interest in the tissue in its natural state and environment. PMID:27547786

  7. Polymer optical interconnects: meeting the requirements for datacom and telecom applications

    NASA Astrophysics Data System (ADS)

    Shacklette, Lawrence W.; Norwood, Robert A.; Eldada, Louay A.; Glass, Cathy; Nguyen, Duc; Poga, Constantina; Xu, Baopei; Yin, Shing; Yardley, James T.

    1997-10-01

    An advanced versatile low-cost polymeric waveguide technology has been developed for optoelectronic applications. This technology is based upon new polymeric materials for ultra-low-loss optical interconnection, particularly for the key wavelengths of 0.83, 1 .3, and 1 .55 microns. Development of these materials has required a thorough understanding of fundamental principles of optical absorption due to both vibrational and electronic resonant absorptions. We have thus created materials with measured losses at 830 nm which are in the range ofO.02 dB/cm. At longer wavelengths, the losses can be higher due to the vibrational absorption within the polymer. However through careful selection of chemical structure, polymeric materials with intrinsic loss below 0.08 dB/cm have been demonstrated at 1 .55 micron wavelength. These high-performance organic polymers can be readily made into both multimode and single-mode optical waveguide structures with controlled numerical aperture (NA) and geometry. We will discuss the use of these materials in a variety of passive photonic devices.

  8. Requirements to the light sources and photodetectors used for design of optical tomographs

    NASA Astrophysics Data System (ADS)

    Khohlov, K. L.; Sokolov, V. K.; Leonov, O. V.

    2007-02-01

    Feasibility of a high-resolution tomography for the analysis of the thyroid gland structure has been already demonstrated. It is based on registration of ballistic photons (BP). To generate BP the method of optic heterodyning is used. A high-resolution tomograph based on this technique is similar to Mach-Zehnder interferometer. An APD is used as a photodetector. The light coming through human tissues experiences both absorption and scattering. A certain amount of optical energy must be generated by the light source in order to provide acceptable SNR at the output of the photodetector. In others words, the number of BPs must be above a certain threshold. Since human tissues have various absorption coefficients, during the design of a tomograph a special attention must be paid to the following parameters: 1. Wavelength of the laser; 2. Coherence length of the laser; 3. Minimum required optical power; 4. Beam diameter and form of the generation area. This article is devoted to following items: 1. Experimental results of measuring the spectral response of thyroid gland tissues, fat cellular tissue, human skin are provided; 2. The model of the light transmission through the glands is described. With the help of this model we definite the approximate amplitude of the absorption and scattering spectral coefficients for both the gland and adjacent tissues.

  9. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; Schwartz, D. A.; Brissenden, R. J.; Elvis, M.; Freeman, M.; Gaetz, T.; Gorenstein, P.; Jerius, D.; Juda, M.; Murray, S. S.; Podgorski, W. A.; Wolk, S. J.; Trolier-McKinstry, S.

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  10. Optical design of adjustable light emitting diode for different lighting requirements

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Ning; Yu, Jie; Tong, Yu-Zhen; Zhang, Guo-Yi

    2012-12-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements.

  11. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  12. MUSE: feeding and mounting 24 spectrographs

    NASA Astrophysics Data System (ADS)

    Nicklas, Harald; Seifert, Walter; Xu, Wenli; Hofmann, Denni; Köhler, Christof; Loupias, Magali

    2008-07-01

    The Multi Unit Spectroscopic Explorer MUSE is an integral field device containing 24 spectrographs at the Nasmyth focus of the VLT unit telescope. The total field size of 1'x1' needs to be split and separated into 24 sub-fields which are relayed along a central structure into the entrance aperture of the individual spectrographs. The realization of the optics for field splitting and separation as well as the relay optics to direct the light of the individual fields to the spectrographs is described here. A very tight link exists between the relay optics system layout and the mechanical arrangement of the spectrographs in the common central structure. A compact mounting is essential due to the restricted space for such a large instrument even on the VLT Nasmyth platform. A suitable arrangement of vertical and horizontal stacking of the spectrographs was found enabling their feeding from the unobstructed front side of the instrumental structure. The central instrument mount was designed as a stiff structure absorbing print-through effects due to thermal mismatch with the telescope platform but rigid enough to withstand earthquakes.

  13. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  14. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provide a secure base in transit. “Skids” or similar devices shall be deemed to comply with this requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc.,...

  15. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provide a secure base in transit. “Skids” or similar devices shall be deemed to comply with this requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc.,...

  16. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provide a secure base in transit. “Skids” or similar devices shall be deemed to comply with this requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc.,...

  17. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provide a secure base in transit. “Skids” or similar devices shall be deemed to comply with this requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc.,...

  18. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James, III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared and a far-infrared interferometer and operates at 170 Kelvin. The mid-infrared interferometer is a Michelson- type Fourier transform spectrometer utilizing a 3 inch diameter potassium bromide beamsplitter/compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. The stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  19. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter Through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared (MIR) and a far-infrared interferometer (FIR) and operates at 170 Kelvin. The MIR is a Michelson Fourier transform spectrometer utilizing a 76 mm (3 inch) diameter potassium bromide beamsplitter and compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. 'Me stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  20. Design concepts for the EST mount

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Süss, Martin; Fischer, David

    2012-09-01

    The EST has unique an optical layout, with an on-axis Gregorian tube system and the altitude axis behind the M1 mirror unit - a great challenge for the mount designer in regard of balancing. Three different structural design concepts and various alternatives for the bearing and drive systems were investigated. Hydrostatic bearings with direct drives are compared with roller bearings and geared drives. The influence of available bearing and drive technology were investigated by FE calculations, dynamic analysis and end-to-end simulations. The finally recommended design concept is based on large-diameter segmented roller bearings and so-called pinion motors in both axes.

  1. Next-generation head-mounted display

    NASA Astrophysics Data System (ADS)

    McGuire, James P., Jr.

    2010-02-01

    Head Mounted Displays (HMDs) have been utilized by the military for various applications since the 1980's. In the 1990's, this technology migrated to the consumer market. Most of these early systems suffered the major drawback that they were "look-at" versus "see through" systems, which prevented the user from seeing their environment. This reduced the utility of the devices and could potentially lead to safety issues. This presentation discusses the optical design of a novel see-through High Definition display device with a 40 degree field of view.

  2. Characterization of Polarizing Splitter Optics in Extreme Environments

    SciTech Connect

    Tucker, Ryand; Olson, Matthew; Morelli, Gregg

    2013-01-04

    Development of laser systems capable of surviving extreme conditions experienced in military applications requires mounts and components that are able to survive these conditions. The characterization of mounted and/or bonded optical assemblies in harsh environments is critical for the development of laser and optical systems for functionality in these extreme conditions. Customized mounts, bonding assemblies and packaging strategies are utilized to develop and field reliable and robust optical subassemblies. Thin film polarizers operating at 45o and polarizing beam splitter cubes were chosen for initial testing based on past experiences, advancements in optical coating and construction technologies and material properties. Shock, vibration, shear strength, tensile strength and temperature testing are performed on mounted polarizing beam splitter cubes and thin film polarizers from two manufacturers. Previous testing showed that polarizing beam splitter cubes constructed using epoxy would become damaged in the laser resonator. The cubes being tested in this report are constructed using epoxy- free direct optical contact bonding. Thin film polarizers operating at 45o are chosen opposed to Brewster’s angle thin film polarizers to reduce the size and simplify design and construction since an optical wedge is not required. The components and mounts are each environmentally tested beyond the manufacturers’ specifications for shock, vibration, and temperature. Component functionality is monitored during and after the environmental testing. Experimental results from the testing will be discussed as will the impact on future laser resonator designs.

  3. Conceptual design for PSP mounting bracket

    SciTech Connect

    Ransom, G.; Stein, R.

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  4. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  5. Low-strain laser-based solder joining of mounted lenses

    NASA Astrophysics Data System (ADS)

    Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Burkhardt, Diana; Schmidt, Erik; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2015-09-01

    A novel laser-based soldering technique - Solderjet Bumping - using liquid solder droplets in a flux-free process with only localized heating is presented. We demonstrate an all inorganic, adhesive free bonding of optical components and support structures suitable for optical assemblies and instruments under harsh environmental conditions. Low strain bonding suitable for a following high-precision adjustment turning process is presented, addressing components and subsystems for objectives for high power and short wavelengths. The discussed case study shows large aperture transmissive optics (diameter approx. 74 mm and 50 mm) made of fused silica and LAK9G15, a radiation resistant glass, bonded to thermally matched metallic mounts. The process chain of Solderjet Bumping - cleaning, solderable metallization, handling, bonding and inspection - is discussed. This multi-material approach requires numerical modelling for dimensioning according to thermal and mechanical loads. The findings of numerical modelling, process parametrization and environmental testing (thermal and vibrational loads) are presented. Stress and strain introduced into optical components as well as deformation of optical surfaces can significantly deteriorate the wave front of passing light and therefore reduce system performance significantly. The optical performance with respect to stress/strain and surface deformation during bonding and environmental testing were evaluated using noncontact and nondestructive optical techniques: polarimetry and interferometry, respectively. Stress induced surface deformation of less than 100 nm and changes in optical path difference below 5 nm were achieved. Bond strengths of about 55 MPa are reported using tin-silver-copper soft solder alloy.

  6. Revisiting binary sequence length requirements to accurately emulate optical transmission systems in highly dispersive regime

    NASA Astrophysics Data System (ADS)

    Grellier, Edouard; Antona, Jean-Christophe; Bononi, Alberto; Bigo, Sébastien

    2008-11-01

    When increasing channel bit rate beyond 10Gb/s or when operating over fiber lines with sparse or no in-line dispersion compensation, Kerr-like non-linear effects can be considered as second order with respect to dispersive effects, because pulse broadening can expand over numerous neighbor pulses, before optical non-linear effects imprint their signature noticeably. To accurately emulate the interactions between pulses in this case, a few studies emphasized that Pseudo- Random Binary Sequences (PRBS) should be used, with exponential dependence of the required PRBS length on bit rate and accumulated dispersion. In this paper, we explain our strategy to numerically estimate the required number of random, noisy bits for Monte-Carlo simulations, and show that it weakly increases in presence of pulse to pulse correlations and commonly tolerated levels of non-linearities (i.e. leading to transmission penalties as high as 1.5dB, for reference BERs of 10-2, 10-3 or 10-5) . Then we determine the actual required PRBS length that yields the same (sufficient) BER accuracy as the MC method. We demonstrate its actual dependence on BER, and show that MC theory provides a reliable upper bound in FEC-assisted, highly dispersive systems.

  7. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  8. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  9. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  10. Test program on the contamination of ultraviolet region mirrors by Apollo Telescope Mount materials

    NASA Technical Reports Server (NTRS)

    Austin, J. D.

    1974-01-01

    Results are presented of testing performed to measure the effects of material outgas products on the reflectances of ultraviolet-region mirrors. These tests were to provide data on changes of ultraviolet reflectances of first-surface mirrors which had been exposed to the outgas products of selected materials under specific time and thermal-vacuum conditions. The requirement for such data was based on the extreme sensitivity of the sophisticated optical instruments in the Skylab mission's Apollo Telescope Mount (ATM) to condensed outgas products from materials, and on the desire to insure that no serious hazard of contaminating these instruments existed.

  11. Development of an aviator's helmet-mounted night-vision goggle system

    NASA Astrophysics Data System (ADS)

    Wilson, Gerry H.; McFarlane, Robert J.

    1990-10-01

    Helmet Mounted Systems (HMS) must be lightweight, balanced and compatible with life support and head protection assemblies. This paper discusses the design of one particular HMS, the GEC Ferranti NITE-OP/NIGHTBIRD aviator's Night Vision Goggle (NVG) developed under contracts to the Ministry of Defence for all three services in the United Kingdom (UK) for Rotary Wing and fast jet aircraft. The existing equipment constraints, safety, human factor and optical performance requirements are discussed before the design solution is presented after consideration of these material and manufacturing options.

  12. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  13. A history of helmet mounted displays

    NASA Astrophysics Data System (ADS)

    Foote, Bob; Melzer, James

    2015-05-01

    In more than 40 years of development, the Helmet-Mounted Display (HMD) has become a key part of the equipment for fixed and rotary wing pilots and ground soldiers, proving to be a force multiplier and reducing user workload. Rockwell Collins has been a key player in the development of modern HMD technology and is currently fielding major HMDs supporting pilots around the world including the Joint Hemet Mounted Cueing System (JHMCS) and Strike Eye. This paper will outline the history of HMDs over the last 40 years for fixed wing, rotorcraft and soldiers and discuss Rockwell Collins' role. We will discuss the development and testing required for introduction of HMDs into the modern pilot environment. Within the paper we will point out some of the misconceptions, facts and legends of HMDS.

  14. Adjustable link for kinematic mounting systems

    DOEpatents

    Hale, L.C.

    1997-07-01

    An adjustable link for kinematic mounting systems is disclosed. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two. 3 figs.

  15. Adjustable link for kinematic mounting systems

    DOEpatents

    Hale, Layton C.

    1997-01-01

    An adjustable link for kinematic mounting systems. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two.

  16. Power and length requirements for all-optical switching in semiconductor-doped glass waveguides

    NASA Astrophysics Data System (ADS)

    Mayweather, Derek T.; Digonnet, Michel J. F.; Pantell, Richard H.; Shaw, H. J.

    1994-10-01

    We present a theoretical model that computes the nonlinear index (n2) of semiconductor- doped glasses (SDG), based on the material's properties, and predicts the power and length requirements, as well as the optimum operating wavelengths, for an all-optical SDG waveguide switch. The main conclusions are that (1) n2 depends strongly on pump intensity, which partly explains the large disparity in reported values of n2, (2) the pump and signal wavelengths should be in specific and different ranges to minimize switching power and signal loss, (3) for CdSSe- and CdTe-doped glasses, n2 is relatively small, and the switching power requirement for these two SDGs is consequently quite high (2 - 16 W). We provide evidence that this weak nonlinearity, compared to that of similar semiconductors in bulk, is due to the strong nonradiative recombination of carriers arising from the small size of the semiconductor microcrystallites. Projections indicate that the switching power would be reduced by up to three orders of magnitude by increasing the microcrystallite size, thus producing a slower (ns) but more power-efficient switch.

  17. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the

  18. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  19. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  20. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  1. Solar panel truss mounting systems and methods

    SciTech Connect

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  2. Space radar image of Mount Everest

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These are two comparison images of Mount Everest and its surroundings, along the border of Nepal and Tibet. The peak of Mount Everest, the highest elevation on Earth at 8,848 meters (29,028 feet), can be seen near the center of each image. The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, 1994. The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10, 1994. Both images show an area approximately 70 kilometers by 38 kilometers (43 miles by 24 miles) that is centered at 28.0 degrees north latitude and 86.9 degrees east longitude. North is toward the upper left. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Radar illumination is from the top of the frame. The optical photograph has been geometrically adjusted to better match the area shown in the radar image. Many features of the Himalayan terrain are visible in both images. Snow covered areas appear white in the optical photograph while the same areas appear bright blue in the radar image. The radar image was taken in early spring and shows deep snow cover, while the optical photograph was taken in late summer and shows minimum snow cover. The curving and branching features seen in both images are glaciers. The two wavelengths and multiple polarizations of the SIR-C radar are sensitive to characteristics of the glacier surfaces that are not detected by conventional photography, such as the ice roughness, water content and stratification. For this reason, the glaciers show a variety of colors in the radar image (blue, purple, red

  3. Using a Head-Mounted Camera to Infer Attention Direction

    ERIC Educational Resources Information Center

    Schmitow, Clara; Stenberg, Gunilla; Billard, Aude; von Hofsten, Claes

    2013-01-01

    A head-mounted camera was used to measure head direction. The camera was mounted to the forehead of 20 6- and 20 12-month-old infants while they watched an object held at 11 horizontal (-80° to + 80°) and 9 vertical (-48° to + 50°) positions. The results showed that the head always moved less than required to be on target. Below 30° in the…

  4. An improved instrument mounting arm.

    PubMed

    Gendeh, B S; Khalid, B A; Alberti, P W

    2001-02-01

    Although some form of commercial instrument mounting arm is available, a paucity of information in the literature may cause problems in selecting the most appropriate model for an ENT department wishing to trial their invention for use in the clinic or operating theatre. The instrument mounting arm described here is based on existing designs used by hobbyists and model makers for many years but the main benefit of this innovation is its multi-purpose use in the operating theatre and cost effectiveness since it is made of aluminum alloy. It is compact, stable and easily adjustable and can incorporate an endoscope holder or an operating end piece to mount various ENT instruments that offers considerable advantages to the unassisted operator. PMID:11320829

  5. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  6. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  7. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  8. A Few Observations about Mounting Moderately Sized Mirrors

    SciTech Connect

    Kaufman, M. I.

    2011-09-01

    Most of the mirror mounting literature has focused on small (less than 0.1 meters) or large (greater than 1 meter) mirrors. We will examine the theory and practice of mounting moderately sized mirrors (between 0.1 and 1 meter). Two examples will be taken from optical diagnostic systems designed for the National Ignition Facility (NIF). In both cases the mirrors were removable (not bonded in place). One of the examples will be for a mirror with a poor aspect ratio (i.e. diameter to thickness ratio greater than 15:1).

  9. Mount St. Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Fong, W.; Snetsinger, K. G.; Ferry, G. V.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  10. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.