Sample records for requires multiple pathways

  1. DNA-mediated transfer of a human gene required for low-density lipoprotein receptor expression and for multiple Golgi processing pathways.

    PubMed Central

    Kingsley, D M; Sege, R D; Kozarsky, K F; Krieger, M

    1986-01-01

    Transfection of a hamster cell mutant with human DNA corrected both the low-density lipoprotein receptor-deficient phenotype and the multiple glycosylation defects of the cells. Independently transfected colonies contained a small set of common human DNA fragments. These fragments may correspond to the human analog of a single gene required for several different Golgi processing pathways. Images PMID:3785210

  2. Multiple Pathways for All Students

    ERIC Educational Resources Information Center

    Stirling, Lee Anna

    2012-01-01

    Maine has been focusing on the importance of postsecondary training. Maine's Skowhegan Area High School (SAHS) and Somerset Career and Technical Center (SCTC) have partnered in a Multiple Pathways initiative (funded by the Nellie Mae Education Foundation) to increase students' high school completion rate and to increase enrollment in postsecondary…

  3. Multiple pathways regulate shoot branching

    PubMed Central

    Rameau, Catherine; Bertheloot, Jessica; Leduc, Nathalie; Andrieu, Bruno; Foucher, Fabrice; Sakr, Soulaiman

    2015-01-01

    Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TEOSINTE BRANCHED1, CYCLOIDEA, PCF transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply. PMID:25628627

  4. INVESTIGATION Multiple Pathways of Duplication Formation

    E-print Network

    Roth, John R.

    INVESTIGATION Multiple Pathways of Duplication Formation with and Without Recombination (Rec to "unequal recombination" between separated, directly repeated sequence elements (.100 bp), events that leave a recombinant element at the duplication junction. However, in the bacterial chromosome, duplications form

  5. Multiple Signals Converge on a Differentiation MAPK Pathway

    PubMed Central

    Chavel, Colin A.; Dionne, Heather M.; Birkaya, Barbara; Joshi, Jyoti; Cullen, Paul J.

    2010-01-01

    An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors. PMID:20333241

  6. On the Time Required to Perform Multiplication

    Microsoft Academic Search

    Shmuel Winograd; Yorktown Heights

    1967-01-01

    The time required to perform multiplication is investigated. A lower bound on the time required to perform multiplication, as well as multiplication modulo N, is derived and it is shown that these lower bounds can be approached. Then a lower bound on the amount of time required to perform the most significant part of multiplication (⌞xy\\/N⌟) is derived.

  7. Demonstration of differential quantitative requirements for NSF among multiple vesicle fusion pathways of GLUT4 using a dominant-negative ATPase-deficient NSF

    SciTech Connect

    Chen Xiaoli [Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, NIDDK, NIH, Bethesda, MD (United States); Matsumoto, Hideko [Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, NIDDK, NIH, Bethesda, MD (United States); Hinck, Cynthia S. [Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, NIDDK, NIH, Bethesda, MD (United States); Al-Hasani, Hadi [Institute of Biochemistry, University of Cologne, Cologne (Germany); St-Denis, Jean-Francois [Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, NIDDK, NIH, Bethesda, MD (United States); Whiteheart, Sidney W. [Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY (United States); Cushman, Samuel W. [Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, NIDDK, NIH, Bethesda, MD (United States)]. E-mail: sam_cushman@nih.gov

    2005-07-22

    In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by {approx}50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins.

  8. Multiple pathways process stalled replication forks.

    PubMed

    Michel, Bénédicte; Grompone, Gianfranco; Florès, Maria-Jose; Bidnenko, Vladimir

    2004-08-31

    Impairment of replication fork progression is a serious threat to living organisms and a potential source of genome instability. Studies in prokaryotes have provided evidence that inactivated replication forks can restart by the reassembly of the replication machinery. Several strategies for the processing of inactivated replication forks before replisome reassembly have been described. Most of these require the action of recombination proteins, with different proteins being implicated, depending on the cause of fork arrest. The action of recombination proteins at blocked forks is not necessarily accompanied by a strand-exchange reaction and may prevent rather than repair fork breakage. These various restart pathways may reflect different structures at stalled forks. We review here the different strategies of fork processing elicited by different kinds of replication impairments in prokaryotes and the variety of roles played by recombination proteins in these processes. PMID:15328417

  9. Multiple successional pathways of boreal forest stands in central Canada

    Microsoft Academic Search

    Anthony R. Taylor

    2011-01-01

    Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand-replacing fire (TSF),

  10. Beyond Tracking: Multiple Pathways to College, Career, and Civic Participation

    ERIC Educational Resources Information Center

    Oakes, Jeannie, Ed.; Saunders, Marisa, Ed.

    2008-01-01

    "Beyond Tracking" responds to the a sobering assessment of American high schools by delineating and promoting an innovative and well-defined notion of multiple pathways. The book's authors clearly distinguish their use of the term "multiple pathways" from any updated version of the tracking system that marked so many American high schools during…

  11. Chemotaxis: Navigating by Multiple Signaling Pathways

    NSDL National Science Digital Library

    Peter J. M. Van Haastert (University of Groningen; Department of Biology REV)

    2007-07-24

    During chemotaxis, phosphatidylinositol 3,4,5-trisphosphate (PIP3) accumulates at the leading edge of a eukaryotic cell, where it induces the formation of pseudopodia. PIP3 has been suggested to be the compass of cells navigating in gradients of signaling molecules. Recent observations suggest that chemotaxis is more complex than previously anticipated. Complete inhibition of all PIP3 signaling has little effect, and alternative pathways have been identified. In addition, selective pseudopod growth and retraction are more important in directing cell movement than is the place where new pseudopodia are formed.

  12. CAA white paper streamlines multiple requirements

    SciTech Connect

    Bassett, S.M.

    1996-05-01

    Developed in conjunction with California regulators, EPA has released a second white paper designed to streamline the Title V operating permit program. The paper, White Paper Number 2 for Improved Implementation of the Part 70 Operating Permits Program, was released March 5, 1996. The guidance explains approaches for facility owners and permitting authorities to: streamline multiple applicable requirements; deal with outdated state implementation plan (SIP) provisions; handle permit provisions for insignificant emission units (IEUs); stipulate facility status with regard to applicable requirements; and cross-reference pertinent information in permits and applications. While these streamlining approaches can give facilities much-needed flexibility, EPA imposes significant restrictions on their use. Due to the complexity of the guidance and its length, this article describes only the first streamlining method, reducing multiple requirements.

  13. Developing Teacher Leadership in Singapore: Multiple Pathways for Differentiated Journeys

    ERIC Educational Resources Information Center

    Goodwin, A. Lin; Low, Ee Ling; Ng, Pak Tee

    2015-01-01

    In this article, we examine quality teachers through teacher leadership development. Using Singapore as an illustrative case, we describe the redefinition of the teaching profession to include deliberate structures and multiple pathways designed to nurture teacher leaders, and the role of teacher leaders in supporting education reform. We go on to…

  14. Costs of California Multiple Pathway Programs. Policy Report

    ERIC Educational Resources Information Center

    Parsi, Ace; Plank, David; Stern, David

    2010-01-01

    There is widespread agreement that many of California's high schools are doing a poor job of preparing their students for college and careers. The James Irvine Foundation is sponsoring a major initiative to develop "Multiple Pathways"--now called the Linked Learning approach--as a strategy for improving the performance of California high schools.…

  15. The multiple pathways for itch and their interactions with pain

    PubMed Central

    Davidson, Steve; Giesler, Glenn J

    2010-01-01

    Multiple neural pathways and molecular mechanisms responsible for producing the sensation of itch have recently been identified, including histamine-independent pathways. Physiological, molecular, behavioral and brain imaging studies are converging to describe these pathways and their close association with pain processing. Some conflicting results have arisen, and the precise relationship between itch and pain remains controversial. A better understanding of the generation of itch and of the intrinsic mechanisms that inhibit itch after scratching should facilitate the search for new methods to alleviate clinical pruritus (itch). In this review, we describe the current understanding of the production and inhibition of itch. A model of itch processing within the central nervous system (CNS) is proposed. PMID:21056479

  16. Multiple Pathway Quenchers: Efficient Quenching of Common Fluorophores

    PubMed Central

    Crisalli, Pete; Kool, Eric T.

    2011-01-01

    Fluorescence quenching groups are widely employed in biological detection, sensing, and imaging. To date, a relatively small number of such groups are in common use. Perhaps the most commonly used quencher, dabcyl, has limited efficiency with a broad range of fluorophores. Here we describe a molecular approach to improve the efficiency of quenchers by increasing their electronic complexity. Multiple pathway quenchers (MPQ) are designed to have multiple donor or acceptor groups in their structure, allowing for a multiplicity of conjugation pathways of varied length. This has the effect of broadening the absorption spectrum, which in turn can increase quenching efficiency and versatility. Six such MPQ derivatives are synthesized and tested for quenching efficiency in a DNA hybridization context. Duplexes placing quenchers and fluorophores within contact distance or beyond this distance are used to measure quenching via contact or FRET mechanisms. Results show that several of the quenchers are considerably more efficient than dabcyl at quenching a wider range of common fluorophores, and two quench fluorescein and TAMRA as well as or better than a Black Hole Quencher. PMID:22034828

  17. Smoking worsens multiple sclerosis prognosis: two different pathways are involved.

    PubMed

    Correale, Jorge; Farez, Mauricio F

    2015-04-15

    Smoking worsens multiple sclerosis (MS) prognosis. Our study provides evidence that indoleamine 2,3-dioxygenase activity is reduced in MS patients who smoke, leading to increased production of IL-6 and IL-13. Additionally, both degree of expression and renin-angiotensin system activity levels were increased in MS patients who smoked, inducing increase in IL-17 and IL-22-producing cell numbers as well as significantly greater production of CCL2, CCL3 and CXCL10 chemokines by monocytes. Finally, both pathways contributed to a significant decrease in the number of CD4+CD25+FoxP3+ regulatory T cells in MS patients who smoked. Both pathways could be responsible for the association between smoking and MS risk. PMID:25867464

  18. EVIDENCE FOR MULTIPLE PATHWAYS TO DEUTERIUM ENHANCEMENTS IN PROTOPLANETARY DISKS

    SciTech Connect

    Oeberg, Karin I.; Qi, Chunhua; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hogerheijde, Michiel R., E-mail: koberg@cfa.harvard.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2012-04-20

    The distributions of deuterated molecules in protoplanetary disks are expected to depend on the molecular formation pathways. We use observations of spatially resolved DCN emission from the disk around TW Hya, acquired during ALMA science verification with a {approx}3'' synthesized beam, together with comparable DCO{sup +} observations from the Submillimeter Array, to investigate differences in the radial distributions of these species and hence differences in their formation chemistry. In contrast to DCO{sup +}, which shows an increasing column density with radius, DCN is better fit by a model that is centrally peaked. We infer that DCN forms at a smaller radii and thus at higher temperatures than DCO{sup +}. This is consistent with chemical network model predictions of DCO{sup +} formation from H{sub 2}D{sup +} at T < 30 K and DCN formation from additional pathways involving CH{sub 2}D{sup +} at higher temperatures. We estimate a DCN/HCN abundance ratio of {approx}0.017, similar to the DCO{sup +}/HCO{sup +} abundance ratio. Deuterium fractionation appears to be efficient at a range of temperatures in this protoplanetary disk. These results suggest caution in interpreting the range of deuterium fractions observed in solar system bodies, as multiple formation pathways should be taken into account.

  19. Reovirus uses multiple endocytic pathways for cell entry.

    PubMed

    Schulz, Wade L; Haj, Amelia K; Schiff, Leslie A

    2012-12-01

    Entry of reovirus virions has been well studied in several tissue culture systems. After attachment to junctional adhesion molecule A (JAM-A), virions undergo clathrin-mediated endocytosis followed by proteolytic disassembly of the capsid and penetration to the cytoplasm. However, during in vivo infection of the intestinal tract, and likely in the tumor microenvironment, capsid proteolysis (uncoating) is initiated extracellularly. We used multiple approaches to determine if uncoated reovirus particles, called intermediate subviral particles (ISVPs), enter cells by directly penetrating the limiting membrane or if they take advantage of endocytic pathways to establish productive infection. We found that entry and infection by reovirus ISVPs was inhibited by dynasore, an inhibitor of dynamin-dependent endocytosis, as well as by genistein and dominant-negative caveolin-1, which block caveolar endocytosis. Inhibition of caveolar endocytosis also reduced infection by reovirus virions. Extraction of membrane cholesterol with methyl-?-cyclodextrin inhibited infection by virions but had no effect when infection was initiated with ISVPs. We found this pathway to be independent of both clathrin and caveolin. Together, these data suggest that reovirus virions can use both dynamin-dependent and dynamin-independent endocytic pathways during cell entry, and they reveal that reovirus ISVPs can take advantage of caveolar endocytosis to establish productive infection. PMID:22973022

  20. Reovirus Uses Multiple Endocytic Pathways for Cell Entry

    PubMed Central

    Schulz, Wade L.; Haj, Amelia K.

    2012-01-01

    Entry of reovirus virions has been well studied in several tissue culture systems. After attachment to junctional adhesion molecule A (JAM-A), virions undergo clathrin-mediated endocytosis followed by proteolytic disassembly of the capsid and penetration to the cytoplasm. However, during in vivo infection of the intestinal tract, and likely in the tumor microenvironment, capsid proteolysis (uncoating) is initiated extracellularly. We used multiple approaches to determine if uncoated reovirus particles, called intermediate subviral particles (ISVPs), enter cells by directly penetrating the limiting membrane or if they take advantage of endocytic pathways to establish productive infection. We found that entry and infection by reovirus ISVPs was inhibited by dynasore, an inhibitor of dynamin-dependent endocytosis, as well as by genistein and dominant-negative caveolin-1, which block caveolar endocytosis. Inhibition of caveolar endocytosis also reduced infection by reovirus virions. Extraction of membrane cholesterol with methyl-?-cyclodextrin inhibited infection by virions but had no effect when infection was initiated with ISVPs. We found this pathway to be independent of both clathrin and caveolin. Together, these data suggest that reovirus virions can use both dynamin-dependent and dynamin-independent endocytic pathways during cell entry, and they reveal that reovirus ISVPs can take advantage of caveolar endocytosis to establish productive infection. PMID:22973022

  1. Cobalt protoporphyrin represses osteoclastogenesis through blocking multiple signaling pathways.

    PubMed

    Yashima, Yuka; Okamoto, Kuniaki; Sakai, Eiko; Iwatake, Mayumi; Fukuma, Yutaka; Nishishita, Kazuhisa; Tsukuba, Takayuki

    2015-08-01

    Cobalt protoporphyrin (CoPP) is a metallo-protoporphyrin that works as a powerful inducer of heme oxigenase-1 (HO-1) in various tissues and cells. Our recent studies have demonstrated that induction of HO-1 by several reagents inhibited differentiation and activation of osteoclasts (OCLs), which are multinucleated bone resorbing cells. However, the effects of CoPP on osteoclastogenesis remain to be elucidated. In this study, we report that CoPP inhibits receptor activator of nuclear factor ?B ligand (RANKL)-induced OCL formation in a dose dependent manner. Importantly, CoPP had little cytotoxicity, but rather enhanced cell proliferation of OCLs. CoPP suppressed the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1) as well as those of OCLs markers such as Src and cathepsin K, which are transcriptionally regulated by NFATc1 in mature OCLs. Western blot analyses also showed that CoPP abolished RANKL-stimulated phosphorylation of several major signaling pathways such as I?B, Akt, ERK, JNK and p38 MAPKs in OCL precursor cells. Thus, our results show that CoPP represses osteoclastogenesis through blocking multiple signaling pathways. PMID:25981584

  2. A Distributed Computational Architecture for Integrating Multiple Biomolecular Pathways

    E-print Network

    Ayyadurai, Shiva

    Biomolecular pathways are building blocks of cellular biochemical function. Computational biology is in rapid transition from diagrammatic representation of pathways to quantitative and predictive mathematical models, which ...

  3. Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition

    E-print Network

    Siegrist, M. Sloan

    The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation ...

  4. Genetic variation in multiple biologic pathways, flavonoid intake and breast cancer

    PubMed Central

    Khankari, Nikhil K.; Bradshaw, Patrick T.; McCullough, Lauren E.; Teitelbaum, Susan L.; Steck, Susan E.; Fink, Brian N.; Xu, Xinran; Ahn, Jiyoung; Ambrosone, Christine B.; Crew, Katherine D.; Terry, Mary Beth; Neugut, Alfred I.; Chen, Jia; Santella, Regina M.; Gammon, Marilie D.

    2014-01-01

    Purpose We previously reported an inverse association between flavonoid intake and breast cancer incidence, which has been confirmed by others; but no studies have considered simultaneously potential interactions of flavonoids with multiple genetic polymorphisms involved in biologically-relevant pathways (oxidative stress, carcinogen metabolism, DNA repair, and one-carbon metabolism). Methods To estimate interaction effects between flavonoids and 13 polymorphisms in these four pathways on breast cancer risk, we used population-based data (N = 875 cases and 903 controls) and several statistical approaches, including conventional logistic regression and semi-Bayesian hierarchical modeling (incorporating prior information on the possible biological functions of genes), which also provides biologic pathway-specific effect estimates. Results Compared to the standard multivariate model, the results from the hierarchical model indicate that gene-by-flavonoid interaction estimates are attenuated, but more precise. In the hierarchical model, the average effect of the deleterious versus beneficial gene, controlling for average flavonoid intake in the DNA repair pathway, and adjusted for the three other biologically-relevant pathways (oxidative stress, carcinogen metabolism, and one-carbon metabolism), resulted in a 27% increase risk for breast cancer [Odds Ratio (OR) = 1.27; 95% Confidence Interval (CI) = 0.70, 2.29]. However, the CI was wide. Conclusions Based on results from the semi-Bayesian model, breast cancer risk may be influenced jointly by flavonoid intake and genes involved in DNA repair, but our findings require confirmation. PMID:24281852

  5. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development

    PubMed Central

    Blowes, Liisa M.; Missirlis, Fanis; Riesgo-Escovar, Juan R.

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother’s iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development. PMID:26192321

  6. Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways

    PubMed Central

    Zhao, Michael; Song, Lan; Yu, Tao; Liu, Yu; Liu, Jeffrey C.; McCurdy, Sean; Ma, Anqi; Wither, Joan; Jin, Jian; Zacksenhaus, Eldad; Wrana, Jeffrey L.; Bremner, Rod

    2015-01-01

    Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator induced in many cancers. It is thought to drive tumorigenesis by repressing division, stemness, and/or developmental regulators. Cancers evade immune detection, and diverse immune regulators are perturbed in different tumors. It is unclear how such cell-specific effects are coordinated. Here, we show a profound and cancer-selective role for PRC2 in repressing multiple cytokine pathways. We find that PRC2 represses hundreds of IFN? stimulated genes (ISGs), cytokines and cytokine receptors. This target repertoire is significantly broadened in cancer vs non-cancer cells, and is distinct in different cancer types. PRC2 is therefore a higher order regulator of the immune program in cancer cells. Inhibiting PRC2 with either RNAi or EZH2 inhibitors activates cytokine/cytokine receptor promoters marked with bivalent H3K27me3/H3K4me3 chromatin, and augments responsiveness to diverse immune signals. PRC2 inhibition rescues immune gene induction even in the absence of SWI/SNF, a tumor suppressor defective in ~20% of human cancers. This novel PRC2 function in tumor cells could profoundly impact the mechanism of action and efficacy of EZH2 inhibitors in cancer treatment. PMID:26030458

  7. Requirements for innate immune pathways in environmentally induced autoimmunity

    PubMed Central

    2013-01-01

    There is substantial evidence that environmental triggers in combination with genetic and stochastic factors play an important role in spontaneous autoimmune disease. Although the specific environmental agents and how they promote autoimmunity remain largely unknown, in part because of diverse etiologies, environmentally induced autoimmune models can provide insights into potential mechanisms. Studies of idiopathic and environmentally induced systemic autoimmunity show that they are mediated by common adaptive immune response genes. By contrast, although the innate immune system is indispensable for autoimmunity, there are clear differences in the molecular and cellular innate components that mediate specific systemic autoimmune diseases, suggesting distinct autoimmune-promoting pathways. Some of these differences may be related to the bifurcation of toll-like receptor signaling that distinguishes interferon regulatory factor 7-mediated type I interferon production from nuclear factor-?B-driven proinflammatory cytokine expression. Accordingly, idiopathic and pristane-induced systemic autoimmunity require both type I interferon and proinflammatory cytokines whereas the less aggressive mercury-induced autoimmunity, although dependent on nucleic acid-binding toll-like receptors, does not require type I interferon but needs proinflammatory cytokines. Scavenger receptors and the inflammasome may contribute to silica-induced autoimmunity. Greater understanding of the innate mechanisms responsible for idiopathic and environmentally induced autoimmunity should yield new information into the processes that instigate and drive systemic autoimmunity. PMID:23557436

  8. 10 CFR 63.115 - Requirements for multiple barriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical Criteria Postclosure Performance Assessment § 63.115 Requirements for multiple barriers....

  9. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  10. The Thermodynamics and Kinetics of Protein Folding: A Lattice Model Analysis of Multiple Pathways with Intermediates

    E-print Network

    Dinner, Aaron

    The Thermodynamics and Kinetics of Protein Folding: A Lattice Model Analysis of Multiple Pathways; In Final Form: May 5, 1999 The kinetics and thermodynamics of folding of a representative sequence of a 125 of average pathways: a "fast track" in which the chain forms a stable core that folds directly to the native

  11. Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites

    Microsoft Academic Search

    Ana Mendez; Marie E. Burns; Angela Roca; Janis Lem; Lan-Wing Wu; Melvin I. Simon; Denis A. Baylor; Jeannie Chen

    2000-01-01

    Efficient single-photon detection by retinal rod photoreceptors requires timely and reproducible deactivation of rhodopsin. Like other G protein–coupled receptors, rhodopsin contains multiple sites for phosphorylation at its COOH-terminal domain. Transgenic and electrophysiological methods were used to functionally dissect the role of the multiple phosphorylation sites during deactivation of rhodopsin in intact mouse rods. Mutant rhodopsins bearing zero, one (S338), or

  12. Parenting Practices and Child Social Adjustment: Multiple Pathways of Influence

    Microsoft Academic Search

    Celene E. Domitrovich; Karen L. Bierman

    2001-01-01

    This study explored pathways of influence linking parenting practices, child perceptions of their parents and peers, and social adjustment. Two dimensions of parenting practices were assessed from both parent and child reports: warmth\\/support and hostility\\/ control. Child perceptions of peers also were assessed along these same dimensions. Parenting practices were related to peer-reported social behavior, peer dislike, and child social

  13. Nuclear receptors: integration of multiple signalling pathways through phosphorylation

    Microsoft Academic Search

    Cécile Rochette-Egly

    2003-01-01

    Nuclear receptors (NRs) orchestrate the transcription of specific gene networks in response to binding of their cognate ligand. They also act as mediators in a variety of signalling pathways through integrating diverse phosphorylation events. NR phosphorylation concerns all three major domains, the N-terminal activation function (AF-1), the ligand-binding and the DNA binding domains. Often, phosphorylation of NRs by kinases that

  14. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans

    PubMed Central

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939

  15. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans.

    PubMed

    Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A

    2013-01-01

    Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939

  16. Screening Reactive Metabolites Bioactivated by Multiple Enzyme Pathways Using a Multiplexed Microfluidic System

    PubMed Central

    Wasalathanthri, Dhanuka P.; Faria, Ronaldo C.; Malla, Spundana; Joshi, Amit A.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    A multiplexed, microfluidic platform to detect reactive metabolites is described, and its performance is illustrated for compounds metabolized by oxidative and bioconjugation enzymes in multi-enzyme pathways to mimic natural human drug metabolism. The device features four 8-electrode screen printed carbon arrays coated with thin films of DNA, a ruthenium-polyvinylpyridine (RuPVP) catalyst, and multiple enzyme sources including human liver microsomes (HLM), cytochrome P450 (cyt P450) 1B1 supersomes, microsomal epoxide hydrolase (EH), human S9 liver fractions (Hs9) and N-acetyltransferase (NAT). Arrays are arranged in parallel to facilitate multiple compound screening, enabling up to 32 enzyme reactions and measurements in 20–30 min. In the first step of the assay, metabolic reactions are achieved under constant flow of oxygenated reactant solutions by electrode driven natural catalytic cycles of cyt P450s and cofactor-supported bioconjugation enzymes. Reactive metabolites formed in the enzyme reactions can react with DNA. Relative DNA damage is measuring in the second assay step using square wave voltammetry (SWV) with RuPVP as catalyst. Studies were done on chemicals known to require metabolic activation to induce genotoxicity, and results reproduced known features of metabolite DNA-reactivity for the test compounds. Metabolism of benzo[a]pyrene (B[a]P) by cyt P450s and epoxide hydrolase showed an enhanced relative DNA damage rate for DNA damage compared to cyt P450s alone. DNA damage rates for arylamines by pathways featuring both oxidative and conjugative enzymes at pH 7.4 gave better correlation with rodent genotoxicity metric TD50. Results illustrate the broad utility of the reactive metabolite screening device. PMID:23095952

  17. Importance of preexcited QRS morphology during induced atrial fibrillation to the diagnosis and localization of multiple accessory pathways.

    PubMed

    Fananapazir, L; German, L D; Gallagher, J J; Lowe, J E; Prystowsky, E N

    1990-02-01

    The present investigation evaluates the ability of several electrocardiographic (ECG) and electrophysiologic methods to identify multiple accessory pathways in 47 patients in whom the presence and sites of multiple accessory pathways were confirmed intraoperatively. To establish ECG features that suggested the presence of multiple accessory pathways in these patients, we initially studied the 12-lead ECG during maximal preexcitation in 101 patients with single accessory pathways. Distinctive 12-lead ECG patterns were noted for six defined anatomic areas around the right and left atrioventricular groove. Multiple preexcited QRS morphologies, each typical for a separate accessory pathway, and atypical preexcited QRS morphologies were recorded during atrial fibrillation in 31 of 47 (66%) patients with multiple accessory pathways. By comparison, the ECG during sinus rhythm and rapid atrial pacing identified 14 (32%) and 26 (55%) of the patients, respectively. In 12 (26%) patients in whom evidence for multiple accessory pathways was absent from endocardial mapping data, atrial fibrillation provided the diagnosis. In five (11%) patients, atrial fibrillation was the only method that demonstrated the presence of multiple accessory pathways. A combination of ECG findings during atrial fibrillation and rapid atrial pacing plus endocardial mapping data identified 43 (91%) of the patients with multiple accessory pathways. There were two unique fusion patterns on the 12-lead ECG that were characteristic of specific multiple accessory pathway combinations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2297863

  18. CD69Induced Monocyte Apoptosis Involves Multiple Nonredundant Signaling Pathways

    Microsoft Academic Search

    Rafael Ram??rez; Julia Carracedo; Maria Castedo; Naoufal Zamzami; Guido Kroemer

    1996-01-01

    Simultaneous stimulation of human monocytes\\/macrophages or THP1 cells with LPS and an antibody specific for the activation marker CD69 induces apoptosis. Here we demonstrate the involvement of multiple independent signals that are necessary for apoptosis induction. Thus, inhibitors of phospholipase A2and lipoxygenase prevent apoptosis induction. Similarly, the ADP-ribosylating G-protein-reactive pertussis toxin (PTX) but not a mutant toxin lacking the ADP-ribosylating

  19. The origin of allosteric functional modulation: multiple pre-existing pathways.

    PubMed

    del Sol, Antonio; Tsai, Chung-Jung; Ma, Buyong; Nussinov, Ruth

    2009-08-12

    Although allostery draws increasing attention, not much is known about allosteric mechanisms. Here we argue that in all proteins, allosteric signals transmit through multiple, pre-existing pathways; which pathways dominate depend on protein topologies, specific binding events, covalent modifications, and cellular (environmental) conditions. Further, perturbation events at any site on the protein surface (or in the interior) will not create new pathways but only shift the pre-existing ensemble of pathways. Drugs binding at different sites or mutational events in disease shift the ensemble toward the same conformations; however, the relative populations of the different states will change. Consequently the observed functional, conformational, and dynamic effects will be different. This is the origin of allosteric functional modulation in dynamic proteins: allostery does not necessarily need to invoke conformational rearrangements to control protein activity and pre-existing pathways are always defaulted to during allostery regardless of the stimulant and perturbation site in the protein. PMID:19679084

  20. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  1. Oralmotor slowing in multiple sclerosis: Relationship to neuropsychological tasks requiring an oral response

    E-print Network

    Dennis, Nancy

    Oralmotor slowing in multiple sclerosis: Relationship to neuropsychological tasks requiring an oral with multiple sclerosis (MS) patients now exclude tests that require significant motor writing or manual­462.) Keywords: Multiple sclerosis, Neuropsychological functioning, Cognitive functioning, Oral motor speed

  2. Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Woo, Sooah; Lee, Myeong Min; Schiefelbein, John

    2014-10-01

    SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase in Arabidopsis (Arabidopsis thaliana), is required for positional signaling in the root epidermis and for tissue/organ development in the shoot. To further understand SCM action, we generated a series of kinase domain variants and analyzed their ability to complement scm mutant defects. We found that the SCM kinase domain, but not kinase activity, is required for its role in root epidermal patterning, supporting the view that SCM is an atypical receptor kinase. We also describe a previously uncharacterized role for SCM in fruit dehiscence, because mature siliques from scm mutants fail to open properly. Interestingly, the kinase domain of SCM appears to be dispensable for this developmental process. Furthermore, we found that most of the SCM kinase domain mutations dramatically inhibit inflorescence development. Because this process is not affected in scm null mutants, it is likely that SCM acts redundantly to regulate inflorescence size. The importance of distinct kinase residues for these three developmental processes provides an explanation for the maintenance of the conserved kinase domain in the SCM protein, and it may generally explain its conservation in other atypical kinases. Furthermore, these results indicate that individual leucine-rich repeat receptor-like kinases may participate in multiple pathways using distinct signaling mechanisms to mediate diverse cellular communication events. PMID:25136062

  3. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  4. The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts

    PubMed Central

    Lindner, Jonathan R; Hillman, Paul R; Barrett, Andrea L; Jackson, Megan C; Perry, Trinity L; Park, Youngji; Datta, Sumana

    2007-01-01

    Background Heparan sulfate proteoglycans modulate signaling by a variety of growth factors. The mammalian proteoglycan Perlecan binds and regulates signaling by Sonic Hedgehog, Fibroblast Growth Factors (FGFs), Vascular Endothelial Growth Factor (VEGF) and Platelet Derived Growth Factor (PDGF), among others, in contexts ranging from angiogenesis and cardiovascular development to cancer progression. The Drosophila Perlecan homolog trol has been shown to regulate the activity of Hedgehog and Branchless (an FGF homolog) to control the onset of stem cell proliferation in the developing brain during first instar. Here we extend analysis of trol mutant phenotypes to show that trol is required for a variety of developmental events and modulates signaling by multiple growth factors in different situations. Results Different mutations in trol allow developmental progression to varying extents, suggesting that trol is involved in multiple cell-fate and patterning decisions. Analysis of the initiation of neuroblast proliferation at second instar demonstrated that trol regulates this event by modulating signaling by Hedgehog and Branchless, as it does during first instar. Trol protein is distributed over the surface of the larval brain, near the regulated neuroblasts that reside on the cortical surface. Mutations in trol also decrease the number of circulating plasmatocytes. This is likely to be due to decreased expression of pointed, the response gene for VEGF/PDGF signaling that is required for plasmatocyte proliferation. Trol is found on plasmatocytes, where it could regulate VEGF/PDGF signaling. Finally, we show that in second instar brains but not third instar brain lobes and eye discs, mutations in trol affect signaling by Decapentaplegic (a Transforming Growth Factor family member), Wingless (a Wnt growth factor) and Hedgehog. Conclusion These studies extend the known functions of the Drosophila Perlecan homolog trol in both developmental and signaling contexts. These studies also highlight the fact that Trol function is not dedicated to a single molecular mechanism, but is capable of regulating different growth factor pathways depending on the cell-type and event underway. PMID:17980035

  5. Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy.

    PubMed

    Panzarini, E; Inguscio, V; Dini, L

    2011-01-01

    Rose Bengal acetate photodynamic therapy (RBAc-PDT) induced multiple cell death pathways in HeLa cells through ROS and ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways, whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis occurred as early as 1?h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy, that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70; LC3B; GRP78 and phospho-eIF2? proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others, suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die through different mechanisms is a relevant clue in the choice and design of anticancer PDT. PMID:21654827

  6. Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy

    PubMed Central

    Panzarini, E; Inguscio, V; Dini, L

    2011-01-01

    Rose Bengal acetate photodynamic therapy (RBAc–PDT) induced multiple cell death pathways in HeLa cells through ROS and ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways, whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis occurred as early as 1?h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy, that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70; LC3B; GRP78 and phospho-eIF2? proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others, suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die through different mechanisms is a relevant clue in the choice and design of anticancer PDT. PMID:21654827

  7. Oct4 links multiple epigenetic pathways to the pluripotency network

    PubMed Central

    Ding, Junjun; Xu, Huilei; Faiola, Francesco; Ma'ayan, Avi; Wang, Jianlong

    2012-01-01

    Oct4 is a well-known transcription factor that plays fundamental roles in stem cell self-renewal, pluripotency, and somatic cell reprogramming. However, limited information is available on Oct4-associated protein complexes and their intrinsic protein-protein interactions that dictate Oct4's critical regulatory activities. Here we employed an improved affinity purification approach combined with mass spectrometry to purify Oct4 protein complexes in mouse embryonic stem cells (mESCs), and discovered many novel Oct4 partners important for self-renewal and pluripotency of mESCs. Notably, we found that Oct4 is associated with multiple chromatin-modifying complexes with documented as well as newly proved functional significance in stem cell maintenance and somatic cell reprogramming. Our study establishes a solid biochemical basis for genetic and epigenetic regulation of stem cell pluripotency and provides a framework for exploring alternative factor-based reprogramming strategies. PMID:22083510

  8. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway

    PubMed Central

    Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro; Nguyen, Hai Dang; Maréchal, Alexandre; Hallet, Alexander; Chen, David J.; Zou, Lee

    2014-01-01

    The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR–Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11–RAD50–NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway. PMID:24990965

  9. Creating Multiple Pathways in the Arts: A New York City Case Study

    ERIC Educational Resources Information Center

    Maguire, Cindy; Mishook, Jacob; Garcia, Ivonne; de Gaillande, Genevieve

    2013-01-01

    Increasingly, education policy makers understand the importance of students and families having access to a range of high quality educational opportunities inside and outside of school, 365 days a year. This paper explores the concept of multiple pathways in arts education to further conceptualize and build upon such opportunities, inside and…

  10. Multiple Pathways and State Policy: Toward Education and Training Beyond High School.

    ERIC Educational Resources Information Center

    Callan, Patrick M.; Finney, Joni E.

    This paper discusses the policy dimensions to increase the nation's educational capital by providing at least two years of education beyond high school for almost every young and working-age adult who is motivated and able to benefit. It focuses on creating multiple pathways resulting from collaborative efforts across educational sectors or…

  11. Quantification of Bt-endotoxin exposure pathways in carabid food webs across multiple transgenic events

    Microsoft Academic Search

    Julie A. Peterson; John J. Obrycki; James D. Harwood

    2009-01-01

    Despite the reported specificity of Bacillus thuringiensis proteins against target pests, a number of studies have indicated that the uptake of Bt-endotoxins from bioengineered crops could have negative effects on natural enemies. It is therefore essential to quantify exposure pathways in non-target arthropod food webs across multiple transgenic events. Adult ground beetles (Coleoptera: Carabidae) were collected from transgenic corn fields

  12. The effects of multiple reflex pathways on the oscillations in neuro-muscular systems

    Microsoft Academic Search

    M. N. O?uztöreli; R. B. Stein

    1976-01-01

    A model of mammalian neuro-muscular systems described previously (Oguztöreli and Stein, 1975) has been extended to include multiple reflex pathways, as have been shown to exist in primates, including man (Milner-Brown et al., 1975). A number of general mathematical properties of the extended system are described. In the final section, using computer solutions, it is shown that the presence of

  13. Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways.

    PubMed

    Cai-McRae, X; Zhong, H; Karantza, V

    2015-06-01

    Previous studies have shown that increased levels of the adaptor protein Sequestosome 1/p62 are observed in human breast cancers and significantly correlate with HER2 overexpression. However, the role of p62 in the pathophysiology of HER2-induced mammary tumorigenesis has not yet been investigated. In this study, we report that p62 facilitates HER2-mediated cell survival in both two-dimensional and three-dimensional cell culture and that HER2-induced cellular transformation requires p62, as well as NRF2, which is known to become stabilized by its release from Kelch-like ECH-associated protein 1 (KEAP1) via p62-KEAP1 interaction. In agreement with these results, genetic ablation of p62 delays HER2-induced mammary tumorigenesis in tumor cell allografts in nude mice, and in MMTV-Neu transgenic mice. We also report that ablation of p62 impairs AKT and ?-catenin activation in association with PTEN (phosphatase and tensin homolog deleted on chromosome ten) accumulation, both in vitro and in vivo. Further in vivo studies suggest that loss of p62 also impairs NF-?B and NRF2 activation. Collectively, our results provide compelling evidence that p62 contributes to HER2-induced mammary tumorigenesis through multiple signaling pathways, including the PTEN/phosphoinositide-3-kinase/AKT axis, WNT/?-catenin signaling, the NF-?B pathway and the NRF2-KEAP1 axis, and offer novel insights into the potential role of p62 in the regulation of the tumor suppressor PTEN. PMID:25088198

  14. Overlapping roles and collective requirement for the co-receptors Gas1, Cdo and Boc in Shh pathway function

    PubMed Central

    Allen, Benjamin L.; Song, Jane Y.; Izzi, Luisa; Althaus, Irene W.; Kang, Jong-Sun; Charron, Frédéric; Krauss, Robert S.; McMahon, Andrew P.

    2011-01-01

    Summary Secreted Hedgehog (Hh) ligands signal through the canonical receptor Patched (Ptch1). However, recent studies implicate three additional Hh-binding, cell surface proteins, Gas1, Cdo and Boc, as putative co-receptors for Hh ligands. A central question is to what degree these co-receptors function similarly and their collective requirement in Hh signal transduction. Here we provide evidence that Gas1, Cdo, and Boc, play overlapping and essential roles during Hh-mediated ventral neural patterning of the mammalian neural tube. Specifically, we demonstrate two important roles for these molecules: an early role in cell fate specification of multiple neural progenitors, and a later role in motor neuron progenitor maintenance. Most strikingly, genetic loss-of-function experiments indicate an obligatory requirement for Gas1, Cdo and Boc in Hh pathway activity in multiple tissues. PMID:21664576

  15. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    PubMed Central

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway. Images PMID:8157002

  16. Multiple Goals, Multiple Pathways: The Role of Goal Orientation in Learning and Achievement.

    ERIC Educational Resources Information Center

    Pintrich, Paul R.

    2000-01-01

    Addresses the role of multiple goals, both mastery and performance goals, and links them to multiple outcomes of motivation, affect, strategy use, and performance. Data from 8th and 9th graders (N=150) reveal that, in line with normative goal therapy, mastery goals were adaptive; but also that performance goals, when coupled with mastery goals,…

  17. The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in Drosophila

    PubMed Central

    Ferreira, Álvaro Gil; Naylor, Huw; Esteves, Sara Santana; Pais, Inês Silva; Martins, Nelson Eduardo; Teixeira, Luis

    2014-01-01

    Pathogen entry route can have a strong impact on the result of microbial infections in different hosts, including insects. Drosophila melanogaster has been a successful model system to study the immune response to systemic viral infection. Here we investigate the role of the Toll pathway in resistance to oral viral infection in D. melanogaster. We show that several Toll pathway components, including Spätzle, Toll, Pelle and the NF-kB-like transcription factor Dorsal, are required to resist oral infection with Drosophila C virus. Furthermore, in the fat body Dorsal is translocated from the cytoplasm to the nucleus and a Toll pathway target gene reporter is upregulated in response to Drosophila C Virus infection. This pathway also mediates resistance to several other RNA viruses (Cricket paralysis virus, Flock House virus, and Nora virus). Compared with control, viral titres are highly increased in Toll pathway mutants. The role of the Toll pathway in resistance to viruses in D. melanogaster is restricted to oral infection since we do not observe a phenotype associated with systemic infection. We also show that Wolbachia and other Drosophila-associated microbiota do not interact with the Toll pathway-mediated resistance to oral infection. We therefore identify the Toll pathway as a new general inducible pathway that mediates strong resistance to viruses with a route-specific role. These results contribute to a better understanding of viral oral infection resistance in insects, which is particularly relevant in the context of transmission of arboviruses by insect vectors. PMID:25473839

  18. Thioredoxin Regulates Multiple Hydrogen Peroxide-Induced Signaling Pathways in Candida albicans?

    PubMed Central

    da Silva Dantas, Alessandra; Patterson, Miranda J.; Smith, Deborah A.; MacCallum, Donna M.; Erwig, Lars P.; Morgan, Brian A.; Quinn, Janet

    2010-01-01

    The ability of the major systemic fungal pathogen of humans, Candida albicans, to sense and respond to reactive oxygen species (ROS), such as H2O2 generated by the host immune system, is required for survival in the host. However, the intracellular signaling mechanisms underlying such responses are poorly understood. Here, we show that thioredoxin (Trx1), in addition to its antioxidant activity, plays a central role in coordinating the response of C. albicans to ROS by regulating multiple pathways. In particular, Trx1 function is important for H2O2-induced phosphorylation of the Hog1 stress-activated protein kinase and to reverse H2O2-induced oxidation and activation of the AP-1 like transcription factor Cap1. Furthermore, Trx1 regulates H2O2-induced hyperpolarized bud growth in a mechanism that involves activation of the Rad53 checkpoint kinase. Consistent with its key roles in responses to ROS, cells lacking Trx1 displayed significantly attenuated virulence in a murine model of C. albicans systemic infection. Collectively, our data indicate that Trx1 has a multifaceted role in H2O2 signaling and promotes C. albicans survival in the host. PMID:20679492

  19. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4

    PubMed Central

    Kim, Yonghwan; Spitz, Gabriella S.; Veturi, Uma; Lach, Francis P.; Auerbach, Arleen D.

    2013-01-01

    SLX4, the newly identified Fanconi anemia protein, FANCP, is implicated in repairing DNA damage induced by DNA interstrand cross-linking (ICL) agents, topoisomerase I (TOP1) inhibitors, and in Holliday junction resolution. It interacts with and enhances the activity of XPF-ERCC1, MUS81-EME1, and SLX1 nucleases, but the requirement for the specific nucleases in SLX4 function is unclear. Here, by complementing a null FA-P Fanconi anemia cell line with SLX4 mutants that specifically lack the interaction with each of the nucleases, we show that the SLX4-dependent XPF-ERCC1 activity is essential for ICL repair but is dispensable for repairing TOP1 inhibitor-induced DNA lesions. Conversely, MUS81-SLX4 interaction is critical for resistance to TOP1 inhibitors but is less important for ICL repair. Mutation of SLX4 that abrogates interaction with SLX1 results in partial resistance to both cross-linking agents and TOP1 inhibitors. These results demonstrate that SLX4 modulates multiple DNA repair pathways by regulating appropriate nucleases. PMID:23093618

  20. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4.

    PubMed

    Kim, Yonghwan; Spitz, Gabriella S; Veturi, Uma; Lach, Francis P; Auerbach, Arleen D; Smogorzewska, Agata

    2013-01-01

    SLX4, the newly identified Fanconi anemia protein, FANCP, is implicated in repairing DNA damage induced by DNA interstrand cross-linking (ICL) agents, topoisomerase I (TOP1) inhibitors, and in Holliday junction resolution. It interacts with and enhances the activity of XPF-ERCC1, MUS81-EME1, and SLX1 nucleases, but the requirement for the specific nucleases in SLX4 function is unclear. Here, by complementing a null FA-P Fanconi anemia cell line with SLX4 mutants that specifically lack the interaction with each of the nucleases, we show that the SLX4-dependent XPF-ERCC1 activity is essential for ICL repair but is dispensable for repairing TOP1 inhibitor-induced DNA lesions. Conversely, MUS81-SLX4 interaction is critical for resistance to TOP1 inhibitors but is less important for ICL repair. Mutation of SLX4 that abrogates interaction with SLX1 results in partial resistance to both cross-linking agents and TOP1 inhibitors. These results demonstrate that SLX4 modulates multiple DNA repair pathways by regulating appropriate nucleases. PMID:23093618

  1. Orexins stimulate steroidogenic acute regulatory protein expression through multiple signaling pathways in human adrenal H295R cells.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Stanfield, Peter R; Randeva, Harpal S

    2008-08-01

    Orexins mediate a variety of physiological processes, including feeding behavior, the circadian pathway, and cortisol secretion. Steroidogenesis is regulated by a variety of neuropeptides, and one of the key rate-limiting steps is cholesterol transport across the mitochondrial membrane by the steroidogenic acute regulatory protein (StAR). StAR expression can be regulated through several different signaling pathways. Despite the clear link between orexins and steroid production, the actions of the orexin family of hormones on steroid biosynthesis are not fully understood. We present data showing that 100 nm of both orexins A and B for 4 or 24 h significantly up-regulates StAR, in H295R pluripotent adrenocortical cells. We present the dose-dependent and time-dependent characteristics of StAR up-regulation at the protein level, showing significant increases after 4 h at a relatively low agonist concentration (1 nm). We have provided a key analysis of the precise G protein-coupled signaling pathways required for the up-regulation of StAR in response to orexins A and B. This has involved dominant-negative G protein analysis, and the direct inhibition of the protein kinase A, protein kinase C, ERK1/2, and p38 pathways. This shows a fundamental role for multiple G protein-coupled and MAPK-mediated signaling pathways leading to StAR expression. Antagonist analysis also showed that orexin effects on StAR were primarily, but not exclusively, acting through the orexin receptor type 1. This is the first study linking orexin action on StAR expression and comprehensively describes the signaling pathways involved in regulating the complexity of hormone biosynthesis. PMID:18450961

  2. Thermal comfort requirements: A study of people with multiple sclerosis

    SciTech Connect

    Webb, L.H.; Parsons, K.C.; Hodder, S.G.

    1999-07-01

    Existing specifications for thermal comfort in built environments are coming under increased criticism for failing to consider the requirements of specific populations. People with physical disabilities are an example of one such population. This paper presents the results of a study on the thermal comfort requirements of 32 people with multiple sclerosis. Subjects were exposed to three conditions: 18.5 C, PMV = {minus}1.5, slightly cool to cool; 23 C, PMV = 0, neutral; 29 C, PMV = +1.5, slightly warm to warm. Results indicate that people with multiple sclerosis have a wide range of responses to the three experimental conditions. The actual percentage dissatisfied was much higher than predicted by Fange's (1970) predicted percentage dissatisfied. Their preferred environment is slightly warmer than 23 C, PMV = 0, neutral. A subgroup of the population prefers an environment that is slightly cooler than 23 C. Further work is needed to qualify if their preferred environments match that of PMV+1 and PMV{minus}1 and to identify if any of the factors such as age, duration of disability, and medication affect the actual mean vote.

  3. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks

    PubMed Central

    Ma, Xiaoke; Gao, Long; Karamanlidis, Georgios; Gao, Peng; Lee, Chi Fung; Garcia-Menendez, Lorena; Tian, Rong; Tan, Kai

    2015-01-01

    Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules). We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression. PMID:26083688

  4. Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition

    PubMed Central

    Siegrist, M. Sloan; Steigedal, Magnus; Ahmad, Rushdy; Mehra, Alka; Dragset, Marte S.; Schuster, Brian M.; Philips, Jennifer A.; Carr, Steven A.

    2014-01-01

    ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ?mycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ?mycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. PMID:24803520

  5. Synergy between Multiple Microtubule-Generating Pathways Confers Robustness to Centrosome-Driven Mitotic Spindle Formation

    PubMed Central

    Hayward, Daniel; Metz, Jeremy; Pellacani, Claudia; Wakefield, James G.

    2014-01-01

    Summary The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules. PMID:24389063

  6. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway

    PubMed Central

    Chen, Yan; Huang, Ruibin; Ding, Jianghua; Ji, Dexiang; Song, Bing; Yuan, Liya; Chang, Hong; Chen, Guoan

    2015-01-01

    Multiple myeloma (MM) was characterized by frequent mutations in KRAS/NRAS/BRAF within the EGFR pathway that could induce resistance to EGFR inhibitors. We here report that EGFR inhibition solely exhibited moderate inhibition in KRAS/NRAS/BRAF wildtype (triple-WT) MM cells, whilst had no effect in myeloma cells with any of the mutated genes. The moderate inhibitory effect was conferred by induction of pentose phosphate pathway (PPP) when cells were treated with Gefitinib, the EGFR inhibitor. Combination of Gefitinib with PPP inhibitor 6AN effected synergistically in triple-WT cells. The inhibition could be restored by addition of NADPH. Dual EGFR/ERBB2 inhibitor Afatinib also exhibited similar effects. Further genetic silencing of EGFR, ERBB2 and mTOR indicated that major effect conferred by ERBB2 was via convergence to EGFR pathway in MM. Our results contributed to the individualized targeted therapy with EGFR inhibitors in MM. PMID:25894462

  7. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway.

    PubMed

    Chen, Yan; Huang, Ruibin; Ding, Jianghua; Ji, Dexiang; Song, Bing; Yuan, Liya; Chang, Hong; Chen, Guoan

    2015-01-01

    Multiple myeloma (MM) was characterized by frequent mutations in KRAS/NRAS/BRAF within the EGFR pathway that could induce resistance to EGFR inhibitors. We here report that EGFR inhibition solely exhibited moderate inhibition in KRAS/NRAS/BRAF wildtype (triple-WT) MM cells, whilst had no effect in myeloma cells with any of the mutated genes. The moderate inhibitory effect was conferred by induction of pentose phosphate pathway (PPP) when cells were treated with Gefitinib, the EGFR inhibitor. Combination of Gefitinib with PPP inhibitor 6AN effected synergistically in triple-WT cells. The inhibition could be restored by addition of NADPH. Dual EGFR/ERBB2 inhibitor Afatinib also exhibited similar effects. Further genetic silencing of EGFR, ERBB2 and mTOR indicated that major effect conferred by ERBB2 was via convergence to EGFR pathway in MM. Our results contributed to the individualized targeted therapy with EGFR inhibitors in MM. PMID:25894462

  8. Multiple Achievement Goals and Multiple Pathways for Learning: The Agenda and Impact of Paul R. Pintrich

    ERIC Educational Resources Information Center

    Harackiewicz, Judith M.; Linnenbrink, Elizabeth A.

    2005-01-01

    This article considers the profound impact that Paul R. Pintrich had on the field of achievement motivation, specifically achievement goal theory. The article highlights Pintrich's groundbreaking research and theorizing, beginning with his early work integrating research on motivation and cognition and ending with his development of a multiple

  9. Depression's multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways.

    PubMed

    Maes, Michael; Kubera, Marta; Obuchowiczwa, Ewa; Goehler, Lisa; Brzeszcz, Joanna

    2011-01-01

    There is now evidence that depression, as characterized by melancholic symptoms, anxiety, and fatigue and somatic (F&S) symptoms, is the clinical expression of peripheral cell-mediated activation, inflammation and induction of oxidative and nitrosative stress (IO&NS) pathways and of central microglial activation, decreased neurogenesis and increased apoptosis. This review gives an explanation for the multiple "co-morbidities" between depression and a large variety of a) brain disorders related to neurodegeneration, e.g. Alzheimer's, Parkinson's and Huntington's disease, multiple sclerosis and stroke; b) medical disorders, such as cardiovascular disorder, chronic fatigue syndrome, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, systemic lupus erythematosus, inflammatory bowel disease, irritable bowel syndrome, leaky gut, diabetes type 1 and 2, obesity and the metabolic syndrome, and HIV infection; and c) conditions, such as hemodialysis, interferon-?-based immunotherapy, the postnatal period and psychosocial stressors. The common denominator of all those disorders/conditions is the presence of microglial activation and/or activation of peripheral IO&NS pathways. There is evidence that shared peripheral and / or central IO&NS pathways underpin the pathophysiology of depression and the previously mentioned disorders and that activation of these IO&NS pathways contributes to shared risk. The IO&NS pathways function as a smoke sensor that detect threats in the peripheral and central parts of the body and signal these threats as melancholic, anxiety, and fatigue and somatic (F&S) symptoms. The presence of concomitant depression is strongly associated with a lower quality of life and increased morbidity and mortality in medical disorders. This may be explained since depression contributes to increased (neuro)inflammatory burden and may therefore drive the inflammatory and degenerative progression. It is concluded that the activation of peripheral and / or central IO&NS pathways may explain the co-occurrence of depression with the above disorders. This shows that depression belongs to the spectrum of inflammatory and degenerative disorders. PMID:21407167

  10. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans

    PubMed Central

    Russell, Joshua; Vidal-Gadea, Andrés G.; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T.

    2014-01-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  11. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    PubMed

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-01

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133

  12. Multiple Requirements of PLK1 during Mouse Oocyte Maturation

    PubMed Central

    Solc, Petr; Kitajima, Tomoya S.; Yoshida, Shuhei; Brzakova, Adela; Kaido, Masako; Baran, Vladimir; Mayer, Alexandra; Samalova, Pavlina; Motlik, Jan; Ellenberg, Jan

    2015-01-01

    Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1’s functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals. PMID:25658810

  13. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53

    PubMed Central

    Reed, Sara M; Hagen, Jussara; Tompkins, Van S; Thies, Katie; Quelle, Frederick W; Quelle, Dawn E

    2014-01-01

    The p53 tumor suppressor is controlled by an interactive network of factors that stimulate or inhibit its transcriptional activity. Within that network, Mdm2 functions as the major antagonist of p53 by promoting its ubiquitylation and degradation. Conversely, Tip60 activates p53 through direct association on target promoters as well as acetylation of p53 at lysine 120 (K120). This study examines the functional relationship between Mdm2 and Tip60 with a novel p53 regulator, NIAM (nuclear interactor of ARF and Mdm2). Previous work showed NIAM can suppress proliferation and activate p53 independently of ARF, indicating that other factors mediate those activities. Here, we demonstrate that NIAM is a chromatin-associated protein that binds Tip60. NIAM can promote p53 K120 acetylation, although that modification is not required for NIAM to inhibit proliferation or induce p53 transactivation of the p21 promoter. Notably, Tip60 silencing showed it contributes to but is not sufficient for NIAM-mediated p53 activation, suggesting other mechanisms are involved. Indeed, growth-inhibitory forms of NIAM also bind to Mdm2, and increased NIAM expression levels disrupt p53–Mdm2 association, inhibit p53 polyubiquitylation, and prevent Mdm2-mediated inhibition of p53 transcriptional activity. Importantly, loss of NIAM significantly impairs p53 activation. Together, these results show that NIAM activates p53 through multiple mechanisms involving Tip60 association and Mdm2 inhibition. Thus, NIAM regulates 2 critical pathways that control p53 function and are altered in human cancers, implying an important role for NIAM in tumorigenesis. PMID:24621507

  14. Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T cell tolerance

    PubMed Central

    Berrien-Elliott, Melissa M.; Jackson, Stephanie R.; Meyer, Jennifer M.; Rouskey, Craig J.; Nguyen, Thanh-Long M.; Yagita, Hideo; Greenberg, Philip D.; DiPaolo, Richard J.; Teague, Ryan M.

    2012-01-01

    Tolerizing mechanisms within the host and tumor microenvironment inhibit T cell effector functions that can control cancer. These mechanisms blunt adoptive immunotherapy with infused T cells due to a complex array of signals that determine T cell tolerance, survival, or deletion. Ligation of the negative regulatory receptors CTLA4, PD-1(PDCD1) or LAG3 on T cells normally hinders their response to antigen through non-redundant biochemical processes that interfere with stimulatory pathways. In this study, we used an established mouse model of T cell tolerance to define the roles of these inhibitory receptors in regulating CD8+ T cell tolerance during adoptive immunotherapy to treat leukemia. Blocking CTLA4 and PD-1 in vivo combined to promote survival of transferred T cells despite powerful deletional signals that mediate Bim (BCL2L11)-dependent apoptosis. However, this dual blockade was not optimal for stimulating effector function by responding T cells, which required the additional blockade of LAG3 to induce full expansion and allow the acquisition of robust cytolytic activity. Thus, the cooperation of multiple distinct regulatory pathways was needed for the survival and effector differentiation of adoptively transferred tumor-reactive CD8+ T cells. Our work defines the immune escape pathways where simultaneous blockade could yield durable immunotherapeutic responses that can eradicate disseminated leukemia. PMID:23188506

  15. Differential requirement of Salvador-Warts-Hippo pathway members for organ size control in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Zhang, Xiaomeng; Albanese, Nathaniel O; Harvey, Kieran F

    2010-03-01

    The Salvador-Warts-Hippo (SWH) pathway contains multiple growth-inhibitory proteins that control organ size during development by limiting activity of the Yorkie oncoprotein. Increasing evidence indicates that these growth inhibitors act in a complex network upstream of Yorkie. This complexity is emphasised by the distinct phenotypes of tissue lacking different SWH pathway genes. For example, eye tissue lacking the core SWH pathway components salvador, warts or hippo is highly overgrown and resistant to developmental apoptosis, whereas tissue lacking fat or expanded is not. Here we explore the relative contribution of SWH pathway proteins to organ size control by determining their temporal activity profile throughout Drosophila melanogaster eye development. We show that eye tissue lacking fat, expanded or discs overgrown displays elevated Yorkie activity during the larval growth phase of development, but not in the pupal eye when apoptosis ensues. Fat and Expanded do possess Yorkie-repressive activity in the pupal eye, but loss of fat or expanded at this stage of development can be compensated for by Merlin. Fat appears to repress Yorkie independently of Dachs in the pupal eye, which would contrast with the mode of action of Fat during larval development. Fat is more likely to restrict Yorkie activity in the pupal eye together with Expanded, given that pupal eye tissue lacking both these genes resembles that of tissue lacking either gene. This study highlights the complexity employed by different SWH pathway proteins to control organ size at different stages of development. PMID:20110315

  16. Oxygen and Hydroxyl Species Induce Multiple Reaction Pathways for the Partial Oxidation of Allyl Alcohol on Gold

    E-print Network

    Henkelman, Graeme

    , acrolein, over oxygen-precovered gold surfaces occurs via multiple reaction pathways. Utilizing temperature -dehydrogenation via interaction with an oxygen adatom or surface hydroxyl species to generate acrolein. Mediation

  17. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks

    USGS Publications Warehouse

    Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.

    2010-01-01

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  18. Multiple dispersed spontaneous mutations: a novel pathway of mutation in a malignant human cell line.

    PubMed Central

    Harwood, J; Tachibana, A; Meuth, M

    1991-01-01

    We analyzed the nature of spontaneous mutations at the autosomal locus coding for adenine phosphoribosyltransferase in the human colorectal carcinoma cell line SW620 to establish whether distinctive mutational pathways exist that might underlie the more complex genome rearrangements arising in tumor cells. Point mutations occur at a low rate in aprt hemizygotes derived from SW620, largely as a result of base substitutions at G.C base pairs to yield transversions and transitions. However, a novel pathway is evident in the form of multiple dispersed mutations in which two errors, separated by as much as 1,800 bp, fall in the same mutant gene. Such mutations could be the result of error-prone DNA synthesis occurring during normal replication or during long-patch excision-repair of spontaneously arising DNA lesions. This process could also contribute to the chromosomal instability evident in these tumor cells. Images PMID:2038324

  19. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae

    PubMed Central

    Pâques, Frédéric; Haber, James E.

    1999-01-01

    The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination. PMID:10357855

  20. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway

    PubMed Central

    Sato, Yukuto; Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2009-01-01

    Background Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. Results We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17) 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8–9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT) pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. Conclusion The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our analyses imply that an increase in gene product sometimes has a significant, yet unexpected, effect on the functions of subcellular networks. PMID:19232106

  1. Multiple pathways in nuclear transport: the import of U2 snRNP occurs by a novel kinetic pathway

    PubMed Central

    1991-01-01

    Protein import to the nucleus is a signal-mediated process that exhibits saturation kinetics. We investigated whether signal bearing proteins compete with U2 and U6 snRNPs during import. When injected into Xenopus oocytes, saturating concentrations of P(Lys)-BSA, a protein bearing multiple nuclear localization signals from SV40 large T- antigen, reduce the rate of [125I]P(Lys)-BSA and of [125I]nucleoplasmin import, consistent with their competing for and sharing the same limiting component of the import apparatus. In contrast, saturating concentrations of P(Lys)-BSA do not reduce the rate of HeLa [32P]U2 snRNP assembly or import. The import of U6 snRNP is also competed by P(Lys)-BSA. We conclude that U2 snRNP is imported into oocyte nuclei by a kinetic pathway that is distinct from the one followed by P(Lys)-BSA, nucleoplasmin, and U6 snRNP. PMID:1824847

  2. Induction of Multiple Immune Regulatory Pathways with Differential Impact in HCV/HIV Coinfection

    PubMed Central

    Cho, Hyosun; Kikuchi, Masahiro; Li, Yun; Nakamoto, Nobuhiro; Amorosa, Valerianna K.; Valiga, Mary E.; Chang, Kyong-Mi

    2014-01-01

    Persistent viral infections including HCV, HBV, and HIV are associated with increased immune regulatory pathways including the extrinsic FoxP3+CD4+ regulatory T cells (Tregs) and intrinsic inhibitory pathways such as programed death-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) with potentially reversible suppression of antiviral effector T cells (1–12). Immunological consequences of viral coinfections relative to these immune regulatory pathways and their interplay are not well-defined. In this study, we examined the frequency, phenotype, and effector function of circulating T cell subsets in patients with chronic HCV and/or HIV infection, hypothesizing that HCV/HIV coinfection will result in greater immune dysregulation with pathogenetic consequences (13, 14). We show that multiple T cell inhibitory pathways are induced in HCV/HIV coinfection including FoxP3+ Tregs, PD-1, and CTLA-4 in inverse association with overall CD4 T cell frequency but not with liver function or HCV RNA titers. The inverse association between CD4 T cell frequency and their FoxP3, PD-1, or CTLA-4 expression remained significant in all subjects combined regardless of HCV and/or HIV infection, suggesting a global homeostatic mechanism to maintain immune regulation relative to CD4 T cell frequency. PD-1 blockade rescued T cell responses to HIV but not HCV without significant impact by CTLA-4 blockade in vitro. Collectively, these findings highlight complex immune interactions in viral coinfections and differential regulatory pathways influencing virus-specific T cells that are relevant in immunotherapeutic development. PMID:25071758

  3. Genomewide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways

    PubMed Central

    Gelernter, Joel; Kranzler, Henry R.; Sherva, Richard; Koesterer, Ryan; Almasy, Laura; Zhao, Hongyu; Farrer, Lindsay A.

    2013-01-01

    Background We report a GWAS of two populations, African- and European-American (AA, EA) for opioid dependence (OD) in three sets of subjects, to identify pathways, genes, and alleles important in OD risk. Methods Design employed three phases (based on separate sample collections). Phase 1 included our discovery GWAS dataset consisting of 5,697 subjects (58% AA) diagnosed with opioid and/or other substance dependence (SD), and controls. Subjects were genotyped using the Illumina OmniQuad microarray, yielding 890,000 SNPs suitable for analysis. Additional genotypes were imputed using the 1000 Genomes reference panel. Top-ranked findings were further evaluated in Phase 2 by incorporating information from the publicly available SAGE dataset, with GWAS data from 4,063 subjects (32% AA). In Phase 3, the most significant SNPs from Phase 2 were genotyped in 2,549 independent subjects (32% AA). Analyses were performed using case-control and ordinal trait designs. Results Most significant results emerged from the AA subgroup. Genomewide-significant associations (p<5.0×10?8) were observed with SNPs from multiple loci - KCNC1*rs60349741 most significant after combining results from datasets in every phase of the study. The most compelling results were obtained with genes involved in potassium signaling pathways (e.g., KCNC1, KCNG2, and KCNA4). Pathway analysis also implicated genes involved in calcium signaling and long-term potentiation. Conclusions This is the first study to identify risk variants for OD using GWAS. Our results strongly implicate risk pathways, provide insights into novel therapeutic and prevention strategies, and may provide biologically bridge OD and other non-SD psychiatric traits where similar pathways have been implicated. PMID:24143882

  4. Mechanically Untying a Protein Slipknot: Multiple Pathways Revealed by Force Spectroscopy and Steered Molecular Dynamics Simulations

    PubMed Central

    He, Chengzhi; Genchev, Georgi Z.; Lu, Hui; Li, Hongbin

    2013-01-01

    Protein structure is highly diverse when considering a wide range of protein types, helping to give rise to the multitude of functions that proteins perform. In particular, certain proteins are known to adopt a knotted or slipknotted fold. How such proteins undergo mechanical unfolding was investigated utilizing a combination of single molecule atomic force microscopy (AFM), protein engineering and steered molecular dynamics (SMD) simulations to show the mechanical unfolding mechanism of the slipknotted protein AFV3-109. Our results reveal that the mechancial unfolding of AFV3-109 can proceed via multiple parallel unfolding pathways that all cause the protein slipknot to untie, and the polypeptide chain to completely extend. These distinct unfolding pathways proceed either via a two-state or three-state unfolding process involving the formation of a well-defined, stable intermediate state. SMD simulations predict the same contour length increments for different unfolding pathways as single molecule AFM results, thus provding a plausible molecular mechanism for the mechanical unfolding of AFV3-109. These SMD simulations also reveal that two-state unfolding is initiated from both the N- and C-termini, while three-state unfolding is initiated only from the C-terminus. In both pathways, the protein slipknot was untied during unfolding, and no tightened slipknot conformation observed. Detailed analysis revealed that interactions between key structural elements lock the knotting loop in place, preventing it from shrinking and the formation of a tightened slipknot conformation. Our results demonstrate the bifurcation of the mechancial unfolding pathway of AFV3-109, and point to the generality of a kinetic partitioning mechanism for protein folding/unfolding. PMID:22626004

  5. Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis

    PubMed Central

    Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.

    2014-01-01

    Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564

  6. APL-1, the Alzheimer’s Amyloid Precursor Protein in Caenorhabditis elegans, Modulates Multiple Metabolic Pathways Throughout Development

    PubMed Central

    Ewald, Collin Y.; Raps, Daniel A.; Li, Chris

    2012-01-01

    Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer’s disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development. PMID:22466039

  7. Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex

    PubMed Central

    Wold, Mitchell S.; Gong, Shiaoching; Phillips, Greg R.; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-01-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis. PMID:25275521

  8. Partitioning the effects of an ecosystem engineer: kangaroo rats control community structure via multiple pathways.

    PubMed

    Prugh, Laura R; Brashares, Justin S

    2012-05-01

    1.?Ecosystem engineers impact communities by altering habitat conditions, but they can also have strong effects through consumptive, competitive and other non-engineering pathways. 2.?Engineering effects can lead to fundamentally different community dynamics than non-engineering effects, but the relative strengths of these interactions are seldom quantified. 3.?We combined structural equation modelling and exclosure experiments to partition the effects of a keystone engineer, the giant kangaroo rat (Dipodomys ingens), on plants, invertebrates and vertebrates in a semi-arid California grassland. 4.?We separated the effects of burrow creation from kangaroo rat density and found that kangaroo rats increased the diversity and abundance of other species via both engineering and non-engineering pathways. 5.?Engineering was the primary factor structuring plant and small mammal communities, whereas non-engineering effects structured invertebrate communities and increased lizard abundance. 6.?These results highlight the importance of the non-engineering effects of ecosystem engineers and shed new light on the multiple pathways by which strong-interactors shape communities. PMID:22098534

  9. ?-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways

    PubMed Central

    Yap, W N; Chang, P N; Han, H Y; Lee, D T W; Ling, M T; Wong, Y C; Yap, Y L

    2008-01-01

    Tocotrienol-rich fraction (TRF) has demonstrated antiproliferative effect on prostate cancer (PCa) cells. To elucidate this anticancer property in PCa cells, this study aimed, first, to identify the most potent isomer for eliminating PCa cells; and second, to decipher the molecular pathway responsible for its activity. Results showed that the inhibitory effect of ?-tocotrienol was most potent, which resulted in induction of apoptosis as evidenced by activation of pro-caspases and the presence of sub-G1 cell population. Examination of the pro-survival genes revealed that the ?-tocotrienol-induced cell death was associated with suppression of NF-?B, EGF-R and Id family proteins (Id1 and Id3). Meanwhile, ?-tocotrienol treatment also resulted in the induction of JNK-signalling pathway and inhibition of JNK activity by a specific inhibitor (SP600125) was able to partially block the effect of ?-tocotrienol. Interestingly, ?-tocotrienol treatment led to suppression of mesenchymal markers and the restoration of E-cadherin and ?-catenin expression, which was associated with suppression of cell invasion capability. Furthermore, a synergistic effect was observed when cells were co-treated with ?-tocotrienol and Docetaxel. Our results suggested that the antiproliferative effect of ?-tocotrienol act through multiple-signalling pathways, and demonstrated for the first time the anti-invasion and chemosensitisation effect of ?-tocotrienol against PCa cells. PMID:19002171

  10. Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem.

    PubMed

    Tuncbag, Nurcan; Braunstein, Alfredo; Pagnani, Andrea; Huang, Shao-Shan Carol; Chayes, Jennifer; Borgs, Christian; Zecchina, Riccardo; Fraenkel, Ernest

    2013-02-01

    Signaling and regulatory networks are essential for cells to control processes such as growth, differentiation, and response to stimuli. Although many "omic" data sources are available to probe signaling pathways, these data are typically sparse and noisy. Thus, it has been difficult to use these data to discover the cause of the diseases and to propose new therapeutic strategies. We overcome these problems and use "omic" data to reconstruct simultaneously multiple pathways that are altered in a particular condition by solving the prize-collecting Steiner forest problem. To evaluate this approach, we use the well-characterized yeast pheromone response. We then apply the method to human glioblastoma data, searching for a forest of trees, each of which is rooted in a different cell-surface receptor. This approach discovers both overlapping and independent signaling pathways that are enriched in functionally and clinically relevant proteins, which could provide the basis for new therapeutic strategies. Although the algorithm was not provided with any information about the phosphorylation status of receptors, it identifies a small set of clinically relevant receptors among hundreds present in the interactome. PMID:23383998

  11. Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways

    PubMed Central

    Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep

    2014-01-01

    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is characterized by a distinct metabolic phenotype spanning multiple pathways. Metabolomics profiling revealed a panel of biomarkers for disease prognosis, and future studies are planned to validate these findings in larger cohorts of patients with severe AAH. PMID:25461442

  12. Multiple modes of proepicardial cell migration require heartbeat

    PubMed Central

    2014-01-01

    Background The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. Results We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with “donor” hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO injected hearts. Conclusions Epicardial cells stem from a heterogeneous population of progenitors, suggesting that the progenitors in the PE have distinct identities. PE cells attach to the heart via a cellular bridge and free-floating cell clusters. Pericardiac fluid advections are not necessary for the development of the PE cluster, however heartbeat is required for epicardium formation. Epicardium formation can occur in culture without normal hydrodynamic and hemodynamic forces, but not without contraction. PMID:24885804

  13. Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans

    PubMed Central

    Fischer, Sylvia E.J.; Pan, Qi; Breen, Peter C.; Qi, Yan; Shi, Zhen; Zhang, Chi; Ruvkun, Gary

    2013-01-01

    Gene segments from other organisms, such as viruses, are detected as foreign and targeted for silencing by RNAi pathways. A deep-sequencing map of the small RNA response to repeated transgenes introduced to Caenorhabditis elegans revealed that specific segments are targeted by siRNAs. Silencing of the foreign gene segments depends on an antiviral response that involves changes in active and silent chromatin modifications and altered levels of antisense siRNAs. Distinct Argonaute proteins target foreign genes for silencing or protection against silencing. We used a repeated transgene in a genome-wide screen to identify gene disruptions that enhance silencing of foreign genetic elements and identified 69 genes. These genes cluster in four groups based on overlapping sets of coexpressed genes, including a group of germline-expressed genes that are likely coregulated by the E2F transcription factor. Many of the gene inactivations enhance exogenous RNAi. About half of the 69 genes have roles in endogenous RNAi pathways that regulate diverse processes, including silencing of duplicated genes and transposons and chromosome segregation. Of these newly identified genes, several are required for siRNA biogenesis or stability in the oocyte-specific ERGO-1 pathway, including eri-12, encoding an interactor of the RNAi-defective protein RDE-10, and ntl-9/CNOT9, one of several CCR4/NOT complex genes that we identified. The conserved ARF-like small GTPase ARL-8 is required specifically for primary siRNA biogenesis or stability in the sperm-specific ALG-3/4 endogenous RNAi pathway. PMID:24352423

  14. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy?

    PubMed

    Gambella, Manuela; Palumbo, Antonio; Rocci, Alberto

    2015-07-01

    The interaction between neoplastic cells and the microenvironment is critical in several cancers and plays a central role in multiple myeloma. Microenvironmental stimuli support plasma cell proliferation, survival, motility and can determine drug resistance. The network between plasma cells and surrounding cells is also responsible for increasing angiogenesis, unbalancing bone formation and bony lesions. The MET/HGF pathway is a key player in this interaction and has been found to be abnormally active in both malignant plasma cells and surrounding cells. Patients with abnormal MET and/or HGF levels usually have a poor outcome even when treated with novel drugs. This review addresses the role of MET/HGF in the pathogenesis of myeloma and describes the role of MET/HGF signaling as a prognostic factor. The different techniques to detect MET/HGF abnormalities are examined and a description of compounds targeting MET/HGF is also provided. PMID:25967746

  15. The Afferent Visual Pathway: Designing a Structural-Functional Paradigm of Multiple Sclerosis

    PubMed Central

    Costello, Fiona

    2013-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system (CNS) believed to arise from a dysfunctional immune-mediated response in a genetically susceptible host. The actual cause of MS is not known, and there is ongoing debate about whether this CNS disorder is predominantly an inflammatory versus a degenerative condition. The afferent visual pathway (AVP) is frequently involved in MS, such that one in every five individuals affected presents with acute optic neuritis (ON). As a functionally eloquent system, the AVP is amenable to interrogation with highly reliable and reproducible tests that can be used to define a structural-functional paradigm of CNS injury. The AVP has numerous unique advantages as a clinical model of MS. In this review, the parameters and merits of the AVP model are highlighted. Moreover, the roles the AVP model may play in elucidating mechanisms of brain injury and repair in MS are described. PMID:24288622

  16. Angiogenic activity of sesamin through the activation of multiple signal pathways

    SciTech Connect

    Chung, Byung-Hee [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of) [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Jung Joon [Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of)] [Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Jong-Dai [Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of)] [Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Jeoung, Dooil; Lee, Hansoo [Division of Life Sciences, Kangwon National University, Chuncheon (Korea, Republic of)] [Division of Life Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Choe, Jongseon; Ha, Kwon-Soo [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of)] [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Geun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of)] [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of)] [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of)

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125{sup FAK}-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  17. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    PubMed Central

    Wang, Fengfeng; Wong, S. C. Cesar; Chan, Lawrence W. C.; Cho, William C. S.; Yip, S. P.; Yung, Benjamin Y. M.

    2014-01-01

    Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC. PMID:24895601

  18. Tributyltin Engages Multiple Nuclear Receptor Pathways and Suppresses Osteogenesis in Bone Marrow Multipotent Stromal Cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor ? (PPAR?), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPAR? ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPAR?'s role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPAR? and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPAR? (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPAR? antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR. PMID:25932594

  19. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  20. Nuclear Localization of de Novo Thymidylate Biosynthesis Pathway Is Required to Prevent Uracil Accumulation in DNA*

    PubMed Central

    MacFarlane, Amanda J.; Anderson, Donald D.; Flodby, Per; Perry, Cheryll A.; Allen, Robert H.; Stabler, Sally P.; Stover, Patrick J.

    2011-01-01

    Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity. PMID:22057276

  1. Genome Regions Involved in Multiple Regulatory Pathways Identified Using GSEL, a Genome-Wide Database of Regulatory Sequence Elements of

    E-print Network

    Lovley, Derek

    Genome Regions Involved in Multiple Regulatory Pathways Identified Using GSEL, a Genome://www.geobacter.org/research/gsel/). It compiles information on predicted transcription regulatory elements in the genome of G. sulfurreducens. These elements were derived from analyses that employed genome-wide transcription profiling, comparative genomics

  2. Multiple pathways to the same end: Mechanisms of myonuclear apoptosis in sarcopenia of aging

    PubMed Central

    Marzetti, Emanuele; Privitera, Giuseppe; Simili, Vincenzo; Wohlgemuth, Stephanie E.; Aulisa, Lorenzo; Pahor, Marco; Leeuwenburgh, Christiaan

    2015-01-01

    Sarcopenia, the age-related decline in muscle mass and function, represents a significant health issue due to the high prevalence of frailty and disability associated with this condition. Nevertheless, the cellular mechanisms responsible for the loss of muscle mass in old age are still largely unknown. An altered regulation of myocyte apoptosis has recently emerged as a possible contributor to the pathogenesis of sarcopenia. Studies in animal models have shown that the severity of skeletal muscle apoptosis increases over the course of aging and correlates with the degree of muscle mass and strength decline. Several apoptotic pathways are operative in aged muscles, with the mitochondria- and TNF-?-mediated pathways likely being the most relevant to sarcopenia. However, despite the growing number of studies on the subject, a definite mechanistic link between myocyte apoptosis and age-related muscle atrophy has not yet been established. Furthermore, the evidence on the role played by apoptosis in human sarcopenia is still sparse. Clearly, further research is required to better define the involvement of myocyte apoptosis in the pathogenesis of muscle loss at advanced age. This knowledge will likely help in the design of more effective therapeutic strategies to preserve muscle mass into old age, thus fostering independence of the elderly population and reducing the socioeconomic burden associated with sarcopenia. PMID:20191247

  3. Theoretical Tracking of Resonance-Enhanced Multiple Ionization Pathways in X-ray Free-Electron Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ho, Phay J.; Bostedt, Christoph; Schorb, Sebastian; Young, Linda

    2014-12-01

    We present an extended Monte Carlo rate equation approach to examine the inner-shell ionization dynamics of atoms in an intense x-ray free-electron laser (XFEL) pulse. In addition to photoionization, Auger decay, and fluorescence processes, we include bound-to-bound transitions in the rate equation calculations. Using an efficient computational scheme, we account for "hidden resonances" unveiled during the course of an XFEL pulse. For Ar, the number of possible electron configurations is increased ten-billion-fold over that required under nonresonant conditions. We investigated the complex ionization dynamics of Ar atoms exposed to an 480-eV XFEL pulse, where production of ions above charge state 10 + is not allowed via direct one-photon ionization. We found that resonance-enhanced x-ray multiple ionization pathways play a dominant role in producing these nominally inaccessible charge states. Our calculated results agree with the measured Ar ion yield and pulse-duration dependence. We also predict the surprising ion yields reported earlier for Kr and Xe. The Monte Carlo rate equation method enables theoretical exploration of the complex dynamics of resonant high-intensity x-ray processes.

  4. Multiple W\\/O\\/W emulsions—Using the required HLB for emulsifier evaluation

    Microsoft Academic Search

    T. Schmidts; D. Dobler; A.-C. Guldan; N. Paulus; F. Runkel

    2010-01-01

    Stable emulsions are best formulated with emulsifiers or combinations of emulsifiers, which possess HLB values close to the required HLB of the oil phase. In this work, we have investigated the application of this established method to the development of multiple emulsions. This is of particular interest, since multiple emulsions are highly sensitive in terms of variations of the individual

  5. and indirect interactions Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct

    E-print Network

    Betz, William J.

    The basis for excitation­contraction (EC) coupling in skeletal muscle is a direct functional interactionand indirect interactions Bidirectional signaling between calcium channels of skeletal muscle signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions

  6. CytoSolve: A Scalable Computational Method for Dynamic Integration of Multiple Molecular Pathway Models

    E-print Network

    Dewey, C. Forbes

    A grand challenge of computational systems biology is to create a molecular pathway model of the whole cell. Current approaches involve merging smaller molecular pathway models’ source codes to create a large monolithic ...

  7. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation

    PubMed Central

    Ivanov, Sergey; Fedorova, Elena E.; Limpens, Erik; De Mita, Stephane; Genre, Andrea; Bonfante, Paola; Bisseling, Ton

    2012-01-01

    Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium–legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium–legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium–legume symbiosis. PMID:22566631

  8. Signaling pathways required for macrophage scavenger receptor-mediated phagocytosis: analysis by scanning cytometry

    PubMed Central

    Sulahian, Timothy H; Imrich, Amy; DeLoid, Glen; Winkler, Aaron R; Kobzik, Lester

    2008-01-01

    Background Scavenger receptors are important components of the innate immune system in the lung, allowing alveolar macrophages to bind and phagocytose numerous unopsonized targets. Mice with genetic deletions of scavenger receptors, such as SR-A and MARCO, are susceptible to infection or inflammation from inhaled pathogens or dusts. However, the signaling pathways required for scavenger receptor-mediated phagocytosis of unopsonized particles have not been characterized. Methods We developed a scanning cytometry-based high-throughput assay of macrophage phagocytosis that quantitates bound and internalized unopsonized latex beads. This assay allowed the testing of a panel of signaling inhibitors which have previously been shown to target opsonin-dependent phagocytosis for their effect on unopsonized bead uptake by human in vitro-derived alveolar macrophage-like cells. The non-selective scavenger receptor inhibitor poly(I) and the actin destabilizer cytochalasin D were used to validate the assay and caused near complete abrogation of bead binding and internalization, respectively. Results Microtubule destabilization using nocodazole dramatically inhibited bead internalization. Internalization was also significantly reduced by inhibitors of tyrosine kinases (genistein and herbimycin A), protein kinase C (staurosporine, chelerythrine chloride and Gö 6976), phosphoinositide-3 kinase (LY294002 and wortmannin), and the JNK and ERK pathways. In contrast, inhibition of phospholipase C by U-73122 had no effect. Conclusion These data indicate the utility of scanning cytometry for the analysis of phagocytosis and that phagocytosis of unopsonized particles has both shared and distinct features when compared to opsonin-mediated phagocytosis. PMID:18687123

  9. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    SciTech Connect

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin [State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275 (China); Yang Kai, E-mail: yangkai@mail.sysu.edu.c [State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275 (China); Pang Yi [State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-08-15

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  10. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4?µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  11. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    PubMed

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ?2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  12. Mycophenolic Acid Inhibits Migration and Invasion of Gastric Cancer Cells via Multiple Molecular Pathways

    PubMed Central

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ?2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  13. DEPTOR is linked to a TORC1-p21 survival proliferation pathway in multiple myeloma cells

    PubMed Central

    Yang, Yonghui; Bardeleben, Carolyne; Frost, Patrick; Hoang, Bao; Shi, Yijiang; Finn, Richard; Gera, Joseph; Lichtenstein, Alan

    2014-01-01

    We investigated the mechanism by which gene silencing of the mTOR inhibitor, DEPTOR, induces cytoreductive effects on multiple myeloma (MM) cells. DEPTOR knockdown resulted in anti-MM effects in several MM cell lines. Using an inducible shRNA to silence DEPTOR, 8226 MM cells underwent TORC1 activation, downregulation of AKT/SGK activity, apoptosis, cell cycle arrest and senescence. These latter cytotoxic effects were prevented by TORC1 paralysis (Raptor knockdown) but not by over-expression of AKT activity. In addition, DEPTOR knockdown-induced MM death was not associated with activation of the unfolded protein response, suggesting that enhanced ER stress did not play a role. In contrast, DEPTOR knockdown in 8226 cells induced p21 expression, independent of p53, and p21 knockdown prevented all of the cytotoxic effects following DEPTOR silencing. DEPTOR silencing resulted in p21 upregulation in additional MM cell lines. Furthermore, DEPTOR silencing in a murine xenograft model resulted in anti-MM effects associated with p21 upregulation. DEPTOR knockdown also resulted in a decreased expression of p21-targeting miRNAs and transfection of miRNA mimics prevented p21 upregulation and apoptosis following DEPTOR silencing. Use of a shRNA-resistant DEPTOR construct ruled out off-target effects of the shRNA. These results indicate that DEPTOR regulates growth and survival of MM cells via a TORC1/p21 pathway and suggest an involvement of p21-targeted miRNAs. PMID:25568666

  14. Curcumin Induces Apoptosis of Upper Aerodigestive Tract Cancer Cells by Targeting Multiple Pathways

    PubMed Central

    Amin, A. R. M. Ruhul; Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Khuri, Fadlo Raja; Shin, Dong Moon

    2015-01-01

    Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2. PMID:25910231

  15. Identification of Common Biological Pathways and Drug Targets Across Multiple Respiratory Viruses Based on Human Host Gene Expression Analysis

    PubMed Central

    Smith, Steven B.; Dampier, William; Tozeren, Aydin; Brown, James R.; Magid-Slav, Michal

    2012-01-01

    Background Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug repositioning. Methods/Results In this study, we performed a large-scale analysis of microarray datasets involving host response to infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus, coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through database and literature searches. A total of 67 common biological pathways were identified among the seven different respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS) pathway, which is known to be involved in the progression of neurodegenerative Parkinson's disease. Conclusions Our study suggests that multiple and diverse respiratory viruses invoke several common host response pathways. Further analysis of these pathways suggests potential opportunities for therapeutic intervention. PMID:22432004

  16. Kinetic modelling of phospholipid synthesis in Plasmodium knowlesi unravels crucial steps and relative importance of multiple pathways

    PubMed Central

    2013-01-01

    Background Plasmodium is the causal parasite of malaria, infectious disease responsible for the death of up to one million people each year. Glycerophospholipid and consequently membrane biosynthesis are essential for the survival of the parasite and are targeted by a new class of antimalarial drugs developed in our lab. In order to understand the highly redundant phospholipid synthethic pathways and eventual mechanism of resistance to various drugs, an organism specific kinetic model of these metabolic pathways need to be developed in Plasmodium species. Results Fluxomic data were used to build a quantitative kinetic model of glycerophospholipid pathways in Plasmodium knowlesi. In vitro incorporation dynamics of phospholipids unravels multiple synthetic pathways. A detailed metabolic network with values of the kinetic parameters (maximum rates and Michaelis constants) has been built. In order to obtain a global search in the parameter space, we have designed a hybrid, discrete and continuous, optimization method. Discrete parameters were used to sample the cone of admissible fluxes, whereas the continuous Michaelis and maximum rates constants were obtained by local minimization of an objective function.The model was used to predict the distribution of fluxes within the network of various metabolic precursors. The quantitative analysis was used to understand eventual links between different pathways. The major source of phosphatidylcholine (PC) is the CDP-choline Kennedy pathway. In silico knock-out experiments showed comparable importance of phosphoethanolamine-N-methyltransferase (PMT) and phosphatidylethanolamine-N-methyltransferase (PEMT) for PC synthesis. The flux values indicate that, major part of serine derived phosphatidylethanolamine (PE) is formed via serine decarboxylation, whereas major part of phosphatidylserine (PS) is formed by base-exchange reactions. Sensitivity analysis of CDP-choline pathway shows that the carrier-mediated choline entry into the parasite and the phosphocholine cytidylyltransferase reaction have the largest sensitivity coefficients in this pathway, but does not distinguish a reaction as an unique rate-limiting step. Conclusion We provide a fully parametrized kinetic model for the multiple phospholipid synthetic pathways in P. knowlesi. This model has been used to clarify the relative importance of the various reactions in these metabolic pathways. Future work extensions of this modelling strategy will serve to elucidate the regulatory mechanisms governing the development of Plasmodium during its blood stages, as well as the mechanisms of action of drugs on membrane biosynthetic pathways and eventual mechanisms of resistance. PMID:24209716

  17. Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines:a collaborative filtering method

    PubMed Central

    2012-01-01

    Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Conclusions Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1. PMID:22849868

  18. Replication-independent activation of human plasmacytoid dendritic cells by the paramyxovirus SV5 Requires TLR7 and autophagy pathways.

    PubMed

    Manuse, Mary J; Briggs, Caitlin M; Parks, Griffith D

    2010-09-30

    The paramyxovirus Simian Virus 5 (SV5) is a poor inducer of interferon (IFN) secretion in all cell types tested so far, including primary epithelial cells and primary human myeloid dendritic cells. SV5 is hypothesized to limit induction of antiviral responses through control of viral gene expression and production of the V protein antagonist. Plasmacytoid dendritic cells (pDCs) are known to uniquely express toll-like receptor (TLR)-7 and are a main producer of IFN-alpha among peripheral blood mononuclear cells in response to many viruses. Here, we tested whether SV5 would remain a poor inducer of IFN in primary human pDCs. The efficiency of SV5 infection of pDCs could be increased by an increasing multiplicity of infection. pDCs infected by both live and UV-inactivated SV5 induced large amounts of IFN-alpha secretion and resulted in upregulation of maturation markers CD80 and CD86. However, IL-6 secretion was not induced by SV5 infection. When TLR7 signaling was inhibited, SV5 induced less IFN secretion and CD80 expression, and there was a corresponding increase in number of infected cells. Similar effects were seen with inhibitors of cellular autophagy pathways, suggesting that the SV5 activation of pDC requires access to the cytoplasm and autophagic sampling of cytoplasmic contents. These results have implications for control of SV5 infections in vivo and for development of SV5 as a vaccine vector. PMID:20605567

  19. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

    PubMed Central

    Mitsche, Matthew A; McDonald, Jeffrey G; Hobbs, Helen H; Cohen, Jonathan C

    2015-01-01

    Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI: http://dx.doi.org/10.7554/eLife.07999.001 PMID:26114596

  20. Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages.

    PubMed

    Sarkies, Peter; Selkirk, Murray E; Jones, John T; Blok, Vivian; Boothby, Thomas; Goldstein, Bob; Hanelt, Ben; Ardila-Garcia, Alex; Fast, Naomi M; Schiffer, Phillip M; Kraus, Christopher; Taylor, Mark J; Koutsovoulos, Georgios; Blaxter, Mark L; Miska, Eric A

    2015-02-01

    Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements. PMID:25668728

  1. Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration.

    PubMed

    Hayashi, Shinichi; Tamura, Koji; Yokoyama, Hitoshi

    2014-04-01

    The Hippo signaling pathway is conserved from insects to mammals and is important for multiple processes, including cell proliferation, apoptosis and tissue homeostasis. Hippo signaling is also crucial for regeneration, including intercalary regeneration, of the whole body in the flatworm and of the leg in the cricket. However, its role in vertebrate epimorphic regeneration is unknown. Therefore, to identify principles of regeneration that are conserved among bilaterians, we investigated the role of Hippo signaling in the limb bud regeneration of an anuran amphibian, Xenopus laevis. We found that a transcription factor, Yap1, an important downstream effector of Hippo signaling, is upregulated in the regenerating limb bud. To evaluate Yap1?s function in limb bud regeneration, we made transgenic animals that expressed a dominant-negative form of Yap under a heat-shock promoter. Overexpression of a dominant-negative form of Yap in tadpoles reduced cell proliferation, induced ectopic apoptosis, perturbed the expression domains of limb-patterning genes including hoxa13, hoxa11, and shh in the regenerating limb bud. Transient expression of a dominant-negative Yap in transgenic tadpoles also caused limb bud regeneration defects, and reduced intercalary regeneration. These results indicate that Yap1 has a crucial role in controlling the limb regenerative capacity in Xenopus, and suggest that the involvement of Hippo signaling in regeneration is conserved between vertebrates and invertebrates. This finding provides molecular evidence that common principles underlie regeneration across phyla, and may contribute to the development of new therapies in regenerative medicine. PMID:24491818

  2. Lifespan Extension Conferred by Endoplasmic Reticulum Secretory Pathway Deficiency Requires Induction of the Unfolded Protein Response

    PubMed Central

    Labunskyy, Vyacheslav M.; Gerashchenko, Maxim V.; Delaney, Joe R.; Kaya, Alaattin; Kennedy, Brian K.; Kaeberlein, Matt; Gladyshev, Vadim N.

    2014-01-01

    Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity. PMID:24391512

  3. A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration

    PubMed Central

    Zhang, Yuzhen; Goss, Ashley M.; Cohen, Ethan David; Kadzik, Rachel; Lepore, John J.; Muthukumaraswamy, Karthika; Yang, Jifu; DeMayo, Francesco J.; Whitsett, Jeffrey A.; Parmacek, Michael S.; Morrisey, Edward E.

    2008-01-01

    Epithelial organs including the lung are known to possess regenerative abilities through activation of endogenous stem cell populations but the molecular pathways regulating stem cell expansion and regeneration are not well understood. Here we show that Gata6 regulates the temporal appearance and number of bronchioalveolar stem cells (BASCs) in the lung leading to the precocious appearance of BASCs and concurrent loss in epithelial differentiation in Gata6 null lung epithelium. This expansion of BASCs is the result of a dramatic increase in canonical Wnt signaling in lung epithelium upon loss of Gata6. Expression of the non-canonical Wnt receptor Fzd2 is down-regulated in Gata6 mutants and increased Fzd2 or decreased (?-catenin expression rescues, in part, the lung epithelial defects in Gata6 mutants. During lung epithelial regeneration, we show that canonical Wnt signaling is activated in the niche containing BASCs and forced activation of Wnt signaling leads to a dramatic increase in BASC numbers. Moreover, Gata6 is required for proper lung epithelial regeneration and postnatal loss of Gata6 leads to increased BASC expansion and decreased differentiation. Together, these data demonstrate that Gata6 regulated Wnt signaling controls the balance between stem/progenitor expansion and epithelial differentiation required for both lung development and regeneration. PMID:18536717

  4. Moisture transport pathways into the American Southwest from multiple oceanic sources as deduced from hydrogen isotopes.

    NASA Astrophysics Data System (ADS)

    Strong, M.; Sharp, Z. D.; Gutzler, D. S.

    2006-12-01

    There has been a long-standing controversy regarding the oceanic sources of atmospheric moisture over the southwestern US, especially during the summer monsoon circulation. Past arguments have been made for moisture sources in the Gulf of Mexico, Gulf of California, Eastern Pacific, or some combination thereof. To help resolve this problem, we are using hydrogen isotopes as a tracer to reconstruct the history of moisture being advected into central New Mexico. The hydrogen isotope composition (?D) of water vapor is dependent on many factors, including the temperature of the source ocean, rainout history, contributions from evapotranspiration over the continent, and mixing between air masses. Since April 1, 2005 we have been measuring ?D of atmospheric water vapor (?Dwv) at ground level 1 to 3 times per day. In addition, we periodically collect water vapor in ~300m vertical increments to ~3km above the surface using a light aircraft. We see significant temporal variations in ?Dwv on several different scales in the ground-level ?Dwv measurements. Lower ?Dwv values in the winter are consistent with moisture transport from the Pacific Ocean, while larger ?Dwv values in the summer imply moisture from a warmer body of water. During the fall, winter, and spring, large variations in ?Dwv (up to 80‰) can occur over the period of a few days to a few hours whereas during the summer monsoon season the ?Dwv values are much less variable. The relationship between ?Dwv and dew point also varies throughout the year; good correlations exist through portions of spring, fall, and winter, while at other times no correlation is apparent. During the summer monsoon season, a distinctive anticorrelation exists between dew point and ?Dwv. Using trajectory analyses, we have been able to demonstrate that many of the variations in ?Dwv can be explained by changes in moisture transport pathways. It appears that the source of the moisture being advected into central New Mexico can switch from the Gulf of Mexico to the Gulf of California in as little as 12 hours. Variations of ?Dwv are also observed within vertical profiles, where multiple layers of water vapor with distinctive ?Dwv values are usually noted. Trajectory analyses terminated at different altitudes allow us to correlate these variations of ?Dwv with different source regions. It appears that within a single column of air, water vapor from multiple source regions may be present. We also conclude that water vapor contributions from evapotranspiration in this semi-arid area are too small to significantly affect ?Dwv values.

  5. Morbillivirus V Proteins Exhibit Multiple Mechanisms to Block Type 1 and Type 2 Interferon Signalling Pathways

    PubMed Central

    Chinnakannan, Senthil K.; Nanda, Sambit K.; Baron, Michael D.

    2013-01-01

    Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV) and measles virus (MeV) have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFN?/?) and type II (IFN?) interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV), measles virus (MeV), peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action. PMID:23431397

  6. Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.

    PubMed

    Chinnakannan, Senthil K; Nanda, Sambit K; Baron, Michael D

    2013-01-01

    Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV) and measles virus (MeV) have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFN?/?) and type II (IFN?) interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV), measles virus (MeV), peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action. PMID:23431397

  7. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway. PMID:23028443

  8. Microarray detection of E2F pathway activation and other targets in multiple sclerosis peripheral blood mononuclear cells

    Microsoft Academic Search

    Antonio H Iglesias; Sandra Camelo; Daehee Hwang; Raul Villanueva; George Stephanopoulos; Fernando Dangond

    2004-01-01

    We performed microarray analysis of peripheral blood mononuclear cells (PBMCs) from multiple sclerosis (MS) patients and detected a profile of immune cell activation, autoantigen upregulation, and enhanced E2F pathway transcription. Accordingly, E2f1-deficient mice manifested only mild disability upon induction of experimental autoimmune encephalomyelitis (EAE). Furthermore, PBMCs from Avonex-treated patients had lower expression of E2F targets. The profile was enriched in

  9. Bmi1 Is Required for Hedgehog Pathway-Driven Medulloblastoma Expansion12

    PubMed Central

    Michael, Lowell Evan; Westerman, Bart A; Ermilov, Alexandre N; Wang, Aiqin; Ferris, Jennifer; Liu, Jianhong; Blom, Marleen; Ellison, David W; van Lohuizen, Maarten; Dlugosz, Andrzej A

    2008-01-01

    Inappropriate Hedgehog (Hh) signaling underlies development of a subset of medulloblastomas, and tumors with elevated HH signaling activity express the stem cell self-renewal gene BMI1. To test whether Bmi1 is required for Hh-driven medulloblastoma development, we varied Bmi1 gene dosage in transgenic mice expressing an oncogenic Hh effector, SmoA1, driven by a glial fibrillary acidic protein (GFAP) promoter. Whereas 100% of SmoA1; Bmi1+/+ or SmoA1;Bmi1+/- mice examined between postnatal (P) days 14 and 26 had typical medulloblastomas (N = 29), tumors were not detected in any of the SmoA1;Bmi1-/- animals examined (N = 6). Instead, small ectopic collections of cells were present in the region of greatest tumor load in SmoA1 animals, suggesting that medulloblastomas were initiated but failed to undergo expansion into frank tumors. Cells within these Bmi1-/- lesions expressed SmoA1 but were largely nonproliferative, in contrast to cells in Bmi1+/+ tumors (6.2% vs 81.9% PCNA-positive, respectively). Ectopic cells were negative for the progenitor marker nestin, strongly GFAP-positive, and highly apoptotic, relative to Bmi1+/+ tumor cells (29.6% vs 6.3% TUNEL-positive). The alterations in proliferation and apoptosis in SmoA1;Bmi1-/- ectopic cells are associated with reduced levels of Cyclin D1 and elevated expression of cyclin-dependent kinase inhibitor p19Arf, two inversely regulated downstream targets of Bmi1. These data provide the first demonstration that Bmi1 is required for spontaneous de novo development of a solid tumor arising in the brain, suggest a crucial role for Bmi1-dependent, nestin-expressing progenitor cells in medulloblastoma expansion, and implicate Bmi1 as a key factor required for Hh pathway-driven tumorigenesis. PMID:19048113

  10. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP)/PAC1HOP1 Receptor Activation Coordinates Multiple Neurotrophic Signaling Pathways

    PubMed Central

    May, Victor; Lutz, Eve; MacKenzie, Christopher; Schutz, Kristin C.; Dozark, Kate; Braas, Karen M.

    2010-01-01

    MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on G?q/phosphatidylinositol 3-kinase ? activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase ?-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways. PMID:20093365

  11. Multiple Developmental Pathways to Conduct Disorder: Current Conceptualizations and Clinical Implications

    PubMed Central

    Pardini, Dustin; Frick, Paul J.

    2013-01-01

    Objectives Recent research has uncovered several developmental pathways through which children and adolescents can develop a tendency to display the severe antisocial behavior associated with the diagnosis of conduct disorder (CD). Methods This focused review is designed to briefly outline three different etiological pathways described in the literature. These pathways are distinguished by the age of onset of the antisocial behavior, the presence/absence of significant levels of callous-unemotional traits, and the presence/absence of problems with anger regulation. Results Evidence from developmental psychopathology research (particularly longitudinal studies) that support the different life-course trajectories and putative etiological factors associated with antisocial behavior across these pathways is presented. Conclusions Limitations in the available research on these developmental pathways and implications of this research for the prevention and treatment of children and adolescents with CD are discussed. PMID:23390429

  12. Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation

    Microsoft Academic Search

    Celine Jacquemont; Toshiyasu Taniguchi

    2007-01-01

    Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross- linking agents (melphalan and cisplatin) through unknown mechanisms. The Fanconi anemia pathway is a DNA damage- activated signaling pathway, which regulates cellular resis- tance to DNA cross-linking agents. Monoubiquitination and nuclear foci formation of FANCD2 are critical steps of the Fanconi anemia pathway. Here, we

  13. An enzymatic pathway for the biosynthesis of the formylhydroxyornithine required for rhodochelin iron coordination.

    PubMed

    Bosello, Mattia; Mielcarek, Andreas; Giessen, Tobias W; Marahiel, Mohamed A

    2012-04-10

    Rhodochelin, a mixed catecholate-hydroxamate type siderophore isolated from Rhodococcus jostii RHA1, holds two L-?-N-formyl-?-N-hydroxyornithine (L-fhOrn) moieties essential for proper iron coordination. Previously, bioinformatic and genetic analysis proposed rmo and rft as the genes required for the tailoring of the L-ornithine (L-Orn) precursor [Bosello, M. (2011) J. Am. Chem. Soc.133, 4587-4595]. In order to investigate if both Rmo and Rft constitute a pathway for L-fhOrn biosynthesis, the enzymes were heterologously produced and assayed in vitro. In the presence of molecular oxygen, NADPH and FAD, Rmo monooxygenase was able to convert L-Orn into L-?-N-hydroxyornithine (L-hOrn). As confirmed in a coupled reaction assay, this hydroxylated intermediate serves as a substrate for the subsequent N(10)-formyl-tetrahydrofolate-dependent (N(10)-fH(4)F) Rtf-catalyzed formylation reaction, establishing a route for the L-fhOrn biosynthesis, prior to its incorporation by the NRPS assembly line. It is of particular interest that a major improvement to this study has been reached with the use of an alternative approach to the chemoenzymatic FolD-dependent N(10)-fH(4)F conversion, also rescuing the previously inactive CchA, the Rft-homologue in coelichelin assembly line [Buchenau, B. (2004) Arch. Microbiol.182, 313-325; Pohlmann, V. (2008) Org. Biomol. Chem.6, 1843-1848]. PMID:22439765

  14. Structural Requirements for Yersinia YopJ Inhibition of MAP Kinase Pathways

    PubMed Central

    Burdette, Dara; Mukherjee, Sohini; Keitany, Gladys; Goldsmith, Elizabeth; Orth, Kim

    2008-01-01

    MAPK signaling cascades are evolutionally conserved. The bacterial effector, YopJ, uses the unique activity of Ser/Thr acetylation to inhibit the activation of the MAPK kinase (MKK) and prevent activation by phosphorylation. YopJ is also able to block yeast MAPK signaling pathways using this mechanism. Based on these observations, we performed a genetic screen to isolate mutants in the yeast MKK, Pbs2, that suppress YopJ inhibition. One suppressor contains a mutation in a conserved tyrosine residue and bypasses YopJ inhibition by increasing the basal activity of Pbs2. Mutations on the hydrophobic face of the conserved G ?-helix in the kinase domain prevent both binding and acetylation by YopJ. Corresponding mutants in human MKKs showed that they are conserved not only structurally, but also functionally. These studies reveal a conserved binding site found on the superfamily of MAPK kinases while providing insight into the molecular interactions required for YopJ inhibition. PMID:18167536

  15. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    SciTech Connect

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States) [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States) [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)] [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China)] [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China)] [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States)] [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States)] [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)] [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ? Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ? mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ? BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ? mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ? mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  16. Multiple and Interconnected Pathways for l-Lysine Catabolism in Pseudomonas putida KT2440

    PubMed Central

    Revelles, Olga; Espinosa-Urgel, Manuel; Fuhrer, Tobias; Sauer, Uwe; Ramos, Juan L.

    2005-01-01

    l-Lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates d-lysine, l-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of l-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use l-lysine as the sole carbon and nitrogen source, although they still used l-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of l-lysine to ?-aminovaleramide and the hydrolysis of the latter to ?-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of ?1-piperidine-2-carboxylate into aminoadipate. Based on l-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of l-lysine indicates that in addition to the existing connection between the d- and l-lysine pathways at the early steps of the catabolism of l-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of l-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism. PMID:16237033

  17. Multiple Smaller Missions as a Direct Pathway to Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Abell, P.; Andrews-Hanna, J.; Archer, P. D.; Baldridge, A. M.; Bell, J. F.; Bishop, J.; Bleacher, J. E.; Bourke, M. C.; Brown, A. J.; Chevrier, V. F.; Corrigan, C. M.; Crown, D. A.; Draper, D. S.; Ehlmann, B. L.; Evans, C. A.; Fergason, R. L.; Fries, M.; Gibson, E. K.; Glotch, T.; Graff, T. G.; Graham, L. D.; Grotzinger, J.; Gruener, J.; Hausrath, E. M.; Hynek, B. M.; Jones, J. H.; Kite, E. S.; Knauth, L. P.; Knudson, A. T.; Kounaves, S. P.; Lederer, S. M.; Lemmon, M. T.; Michalski, J.; Ming, D.; Murchie, S.; Newsom, H. E.; Noe Dobrea, E.; Oehler, D. Z.; Osterloo, M. M.; Rogers, A. D.; Seaman, C. H.; Searls, M. L.; Stern, J. C.; Socki, R. A.; Sutter, B.; Vaniman, D.; Weitz, C. M.; Williams, R. M. E.; Wray, J. J.; Wright, S. P.; Zolotov, M.

    2012-06-01

    Recent discoveries have revealed multiple compelling landing sites for Mars Sample Return. We propose to replace the single flagship-class sample caching mission architecture with a series of smaller missions to multiple landing sites.

  18. A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus.

    PubMed

    Arrieta, Juan G; Sotolongo, Mailin; Menéndez, Carmen; Alfonso, Dubiel; Trujillo, Luis E; Soto, Melvis; Ramírez, Ricardo; Hernández, Lázaro

    2004-08-01

    The endophytic diazotroph Gluconacetobacter diazotrophicus secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10) to utilize plant sucrose. LsdA, unlike other extracellular levansucrases from gram-negative bacteria, is transported to the periplasm by a signal-peptide-dependent pathway. We identified an unusually organized gene cluster encoding at least the components LsdG, -O, -E, -F, -H, -I, -J, -L, -M, -N, and -D of a type II secretory system required for LsdA translocation across the outer membrane. Another open reading frame, designated lsdX, is located between the operon promoter and lsdG, but it was not identified in BLASTX searches of the DDBJ/EMBL/GenBank databases. The lsdX, -G, and -O genes were isolated from a cosmid library of strain SRT4 by complementation of an ethyl methanesulfonate mutant unable to transport LsdA across the outer membrane. The downstream genes lsdE, -F, -H, -I, -J, -L, -M, -N, and -D were isolated through chromosomal walking. The high G+C content (64 to 74%) and the codon usage of the genes identified are consistent with the G+C content and codon usage of the standard G. diazotrophicus structural gene. Sequence analysis of the gene cluster indicated that a polycistronic transcript is synthesized. Targeted disruption of lsdG, lsdO, or lsdF blocked LsdA secretion, and the bacterium failed to grow on sucrose. Replacement of Cys(162) by Gly at the C terminus of the pseudopilin LsdG abolished the protein functionality, suggesting that there is a relationship with type IV pilins. Restriction fragment length polymorphism analysis revealed conservation of the type II secretion operon downstream of the levansucrase-levanase (lsdA-lsdB) locus in 14 G. diazotrophicus strains representing 11 genotypes recovered from four different host plants in diverse geographical regions. To our knowledge, this is the first report of a type II pathway for protein secretion in the Acetobacteraceae. PMID:15262940

  19. A Type II Protein Secretory Pathway Required for Levansucrase Secretion by Gluconacetobacter diazotrophicus

    PubMed Central

    Arrieta, Juan G.; Sotolongo, Mailin; Menéndez, Carmen; Alfonso, Dubiel; Trujillo, Luis E.; Soto, Melvis; Ramírez, Ricardo; Hernández, Lázaro

    2004-01-01

    The endophytic diazotroph Gluconacetobacter diazotrophicus secretes a constitutively expressed levansucrase (LsdA, EC 2.4.1.10) to utilize plant sucrose. LsdA, unlike other extracellular levansucrases from gram-negative bacteria, is transported to the periplasm by a signal-peptide-dependent pathway. We identified an unusually organized gene cluster encoding at least the components LsdG, -O, -E, -F, -H, -I, -J, -L, -M, -N, and -D of a type II secretory system required for LsdA translocation across the outer membrane. Another open reading frame, designated lsdX, is located between the operon promoter and lsdG, but it was not identified in BLASTX searches of the DDBJ/EMBL/GenBank databases. The lsdX, -G, and -O genes were isolated from a cosmid library of strain SRT4 by complementation of an ethyl methanesulfonate mutant unable to transport LsdA across the outer membrane. The downstream genes lsdE, -F, -H, -I, -J, -L, -M, -N, and -D were isolated through chromosomal walking. The high G+C content (64 to 74%) and the codon usage of the genes identified are consistent with the G+C content and codon usage of the standard G. diazotrophicus structural gene. Sequence analysis of the gene cluster indicated that a polycistronic transcript is synthesized. Targeted disruption of lsdG, lsdO, or lsdF blocked LsdA secretion, and the bacterium failed to grow on sucrose. Replacement of Cys162 by Gly at the C terminus of the pseudopilin LsdG abolished the protein functionality, suggesting that there is a relationship with type IV pilins. Restriction fragment length polymorphism analysis revealed conservation of the type II secretion operon downstream of the levansucrase-levanase (lsdA-lsdB) locus in 14 G. diazotrophicus strains representing 11 genotypes recovered from four different host plants in diverse geographical regions. To our knowledge, this is the first report of a type II pathway for protein secretion in the Acetobacteraceae. PMID:15262940

  20. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis

    PubMed Central

    Jeanblanc, Jerome; Logrip, Marian L.; Janak, Patricia H.; Ron, Dorit

    2013-01-01

    We previously found that the brain-derived neurotrophic factor (BDNF) in the dorsolateral striatum (DLS) is part of a homeostatic pathway that gates ethanol self-administration [Jeanblanc et al. (2009). J Neurosci, 29, 13494–13502)]. Specifically, we showed that moderate levels (10%) of ethanol consumption increase BDNF expression within the DLS, and that direct infusion of BDNF into the DLS decreases operant self-administration of a 10% ethanol solution. BDNF binding to its receptor, TrkB, activates the mitogen-activated protein kinase (MAPK), phospholipase C-? (PLC-?) and phosphatidylinositol 3-kinase (PI3K) pathways. Thus, here, we set out to identify which of these intracellular pathway(s) plays a role in the regulation of ethanol consumption by BDNF. We found that inhibition of the MAPK, but not PLC-? or PI3K, activity blocks the BDNF-mediated reduction of ethanol consumption. As activation of the MAPK pathway leads to the initiation of transcription and/or translation events, we tested whether the BDNF-mediated reduction of ethanol self-administration requires de novo protein synthesis. We found that the inhibitory effect of BDNF on ethanol intake is blocked by the protein synthesis inhibitor cycloheximide. Together, our results show that BDNF attenuates ethanol drinking via activation of the MAPK pathway in a protein synthesis-dependent manner within the DLS. PMID:23189980

  1. The 3-Hydroxy-2-Butanone Pathway Is Required for Pectobacterium carotovorum Pathogenesis

    PubMed Central

    Marquez-Villavicencio, Maria del Pilar; Weber, Brooke; Witherell, R. Andrews; Willis, David K.; Charkowski, Amy O.

    2011-01-01

    Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the ?-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH. PMID:21876734

  2. Multiple Folding Pathways of the SH3 Domain Jose M. Borreguero,* Feng Ding,y

    E-print Network

    Buldyrev, Sergey

    . Eugene Stanley,* and Nikolay V. Dokholyany *Center for Polymer Studies and Department of Physics, Boston a fast pathway (50 ms) in the folding of lysozyme with no intermediates and a slow phase (420 ms

  3. Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem

    E-print Network

    Tuncbag, Nurcan

    Signaling networks are essential for cells to control processes such as growth and response to stimuli. Although many “omic” data sources are available to probe signaling pathways, these data are typically sparse and noisy. ...

  4. Multiple Interprofessional Education Activities Delivered Longitudinally Within a Required Clinical Assessment Course

    PubMed Central

    Griggs, Caroline

    2014-01-01

    Objective. To determine if the incorporation of multiple interprofessional educational (IPE) activities delivered as a longitudinal curriculum within a required clinical assessment course changed pharmacy students’ perceptions regarding interprofessional collaboration. Design. Seventy-one third-year pharmacy students participated in Clinical Assessment, a required applications-based course with a laboratory component. Nine separate IPE activities were embedded into the course longitudinally over the semester using various active-learning strategies and simulated patients. The IPE activities required student participation from medical, nursing, and physician assistant students. Assessment. Pharmacy students completed an 18-item validated survey instrument, the Interdisciplinary Education Perception Scale (IEPS), on the first (pre-survey) and last (post-survey) day of the course. After completing the course, scores improved on 16 of 18 survey items that measured pharmacy students’ perceptions of interprofessional collaboration. Conclusion. Incorporating multiple IPE activities longitudinally into a required clinical assessment course significantly changed pharmacy students’ perceptions of interprofessional collaboration. PMID:24558282

  5. Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in hcp Zr

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Yip, Sidney; Yildiz, Bilge

    2014-09-01

    This paper presents an extension of the autonomous basin climbing (ABC) method, an atomistic activation-relaxation technique for sampling transition-state pathways. The extended algorithm (ABC-E) allows the sampling of multiple transition pathways from a given minimum, with the additional feature of identifying the pathways in the order of increasing activation barriers, thereby prioritizing them according to their importance in the kinetics. Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are identified for both the interstitials and vacancies, and benchmarked against results from other methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum anisotropy at intermediate temperatures (400~700?K), a non-monotonic behavior that we explain to originate from the stabilities and migration mechanisms associated with different SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and computational efficiency are demonstrated through a direct comparison between the ABC-E and the activation relaxation technique.

  6. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways.

    PubMed

    Yong, Xin; Tang, Bo; Li, Bo-Sheng; Xie, Rui; Hu, Chang-Jiang; Luo, Gang; Qin, Yong; Dong, Hui; Yang, Shi-Ming

    2015-01-01

    Helicobacter pylori (H. pylori) infection is strongly associated with the development of gastric diseases but also with several extragastric diseases. The clinical outcomes caused by H. pylori infection are considered to be associated with a complex combination of host susceptibility, environmental factors and bacterial isolates. Infections involving H. pylori strains that possess the virulence factor CagA have a worse clinical outcome than those involving CagA-negative strains. It is remarkable that CagA-positive H. pylori increase the risk for gastric cancer over the risk associated with H. pylori infection alone. CagA behaves as a bacterial oncoprotein playing a key role in H. pylori-induced gastric cancer. Activation of oncogenic signaling pathways and inactivation of tumor suppressor pathways are two crucial events in the development of gastric cancer. CagA shows the ability to affect the expression or function of vital protein in oncogenic or tumor suppressor signaling pathways via several molecular mechanisms, such as direct binding or interaction, phosphorylation of vital signaling proteins and methylation of tumor suppressor genes. As a result, CagA continuously dysregulates of these signaling pathways and promotes tumorigenesis. Recent research has enriched our understanding of how CagA effects on these signaling pathways. This review summarizes the results of the most relevant studies, discusses the complex molecular mechanism involved and attempts to delineate the entire signaling pathway. PMID:26160167

  7. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    PubMed Central

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. PMID:24073005

  8. Number of Repetitions Required to Retain Single-Digit Multiplication Math Facts for Elementary Students.

    PubMed

    Burns, Matthew K; Ysseldyke, Jim; Nelson, Peter M; Kanive, Rebecca

    2014-11-24

    Computational fluency is an important aspect of math proficiency. Despite widely held beliefs about the differential difficulty of single-digit multiplication math facts, little empirical work has examined this issue. The current study analyzed the number of repetitions needed to master multiplication math facts. Data from 15,402 3rd, 4th, and 5th graders were analyzed using a national database. Results suggested that (a) students with lower math skills required significantly (p < .001) more repetitions than more skilled students; (b) across all students, single-digit multiplication facts with 4s, 5s, 6s, and 7s required significantly (p < .001) more repetition than did 2s and 3s; and (c) the number of practice sessions needed to attain mastery significantly (p < .001) decreased with increase in grade level. Implications for instructional planning and implementation are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:25420042

  9. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    SciTech Connect

    Adachi, Atsuo [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)] [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)] [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)] [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)] [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)] [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  10. Coil-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance.

    PubMed

    Bhattarai, Kishor K; Xie, Qi-Guang; Pourshalimi, Daniel; Younglove, Ted; Kaloshian, Isgouhi

    2007-03-01

    Tomato (Solanum lycopersicum) has a unique resistance gene, Mi-1, that confers resistance to animals from distinct taxa, nematodes, and piercing and sucking insects. Mi-1 encodes a protein with a nucleotide-binding site and leucine-rich repeat motifs. Early in the potato aphid (Macrosiphum euphorbiae)--tomato interactions, aphid feeding induces the expression of the jasmonic acid (JA)-regulated proteinase inhibitor genes, Pin1 and Pin2. The jail-1 (jasmonic acid insensitive 1) tomato mutant, which is impaired in JA perception, was used to gain additional insight into the JA signaling pathway and its role in the Mi-1-mediated aphid resistance. The jail-1 mutant has a deletion in the Coil gene that encodes a putative F-box protein. In this study, aphid colonization, survival, and fecundity were compared on wild-type tomato and jail-1 mutant. In choice assays, the jail-1 mutant showed higher colonization by potato aphids compared with wild-type tomato. In contrast, no-choice assays showed no difference in potato aphid survival or fecundity between jail-1 and the wild-type parent. Plants homozygous for Mi-1 and for the jail mutation were not compromised in resistance to potato aphids, using either choice or no-choice assays. In addition, the accumulation of JA-regulated Pin1 transcripts after aphid feeding was Coil dependent. Taken together, these data indicate that, although potato aphids activate Coil-dependent defense response in tomato, this response is not required for Mi-1-mediated resistance to aphids. PMID:17378430

  11. Panax ginseng extract rich in ginsenoside protopanaxatriol offers combinatorial effects in nitric oxide production via multiple signaling pathways.

    PubMed

    Ahn, Hee Yoon; Hong, So Young; Kim, Ji Yeon; Kwon, Oran

    2013-12-01

    The root of Panax ginseng C.A. Meyer has been shown to induce nitric oxide (NO) release resulting in a hypotensive effect. However, the main active component contributing to vascular endothelium relaxation remains uncertain. In this study, we hypothesized that multiple components of ginseng extract might have combinatory effects providing greater health benefits than a single ginsenosides. To test this hypothesis, we compared the NO-releasing and endothelial NO synthase (eNOS) activating potency of wide range of ginseng extracts (crude extract, CE; protopanaxatriol-enriched extract, TE; protopanaxadiol-enriched extract, DE) and individual ginsenosides (Rg1, Re and Rb1) in human umbilical vein endothelial cells. We found that TE had the highest potency in NO production, followed by CE, DE, and Rg1. We also observed that TE-treatment resulted in rapid activation of intracellular signaling pathways, immediate linear rise of NO, and increased eNOS activation. TE-induced activation of eNOS was abolished by pretreatment with wortmannin (inhibitor for PI3K-Akt), compound C (inhibitor for AMP activated protein kinase, AMPK) or L-NAME (inhibitor for NOS), whereas Rg1-induced eNOS phosphorylation was only partially attenuated. Further analysis revealed that TE, but not Rg1, results in AMPK phosphorylation at Thr(172). These novel finding add evidence that the multiple components of Panax ginseng extract rich in protopanaxatriol offers combinatorial effects in NO production and vascular endothelium relaxation via multiple signaling pathways. PMID:23596560

  12. Concurrent specification and analysis of software quality requirements from multiple perspectives

    SciTech Connect

    Liu, X.F.; Sigman, S.; Zobrist, G. [Univ. of Missouri, Rolla, MO (United States)

    1996-12-31

    Requirement analysis from different perspectives to capture design rationale poses two challenges: (1) process and product quality requirements arising from different perspectives usually conflict with each other; and (2) both process and product quality requirements are often vague and imprecise. Existing methodologies are limited in addressing these issues. In this paper a formal framework is developed for an integrated analysis of software process and product quality requirements and evaluation of design issues from multiple perspectives. Requirements are modeled using an ontology and fuzzy sets. A method for analyzing inter-viewpoint and inter-perspective relationships and for analyzing the relationships between design options and the requirements is introduced. The techniques described by the framework are illustrated using a distributed order processing system.

  13. Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400.

    PubMed

    Marx, Christopher J; Miller, Jonathan A; Chistoserdova, Ludmila; Lidstrom, Mary E

    2004-04-01

    Burkholderia species are free-living bacteria with a versatile metabolic lifestyle. The genome of B. fungorum LB400 is predicted to encode three different pathways for formaldehyde oxidation: an NAD-linked, glutathione (GSH)-independent formaldehyde dehydrogenase; an NAD-linked, GSH-dependent formaldehyde oxidation system; and a tetrahydromethanopterin-methanofuran-dependent formaldehyde oxidation system. The other Burkholderia species for which genome sequences are available, B. mallei, B. pseudomallei, and B. cepacia, are predicted to contain only the first two of these pathways. The roles of the three putative formaldehyde oxidation pathways in B. fungorum LB400 have been assessed via knockout mutations in each of these pathways, as well as in all combinations of knockouts. The resulting mutants have the expected loss of enzyme activities and exhibit defects of varying degrees of severity during growth on choline, a formaldehyde-producing substrate. Our data suggest that all three pathways are involved in formaldehyde detoxification and are functionally redundant under the tested conditions. PMID:15028703

  14. The Requirement for Sodium as a Micronutrient by Species Having the C4 Dicarboxylic Photosynthetic Pathway

    PubMed Central

    Brownell, P. F.; Crossland, C. J.

    1972-01-01

    Six species having characteristics of plants with the C4 dicarboxylic photosynthetic pathway, Echinochloa utilis L. Ohwi et Yabuno (Japanese millet), Cynodon dactylon L. (Bermuda grass), Kyllinga brevifolia Rottb., Amaranthus tricolor L. cv. Early splendour, Kochia childsii Hort., and Portulaca grandiflora Hook (rose moss), responded decisively to 0.1 milliequivalent per liter NaCl supplied to their culture solutions initially containing less than 0.08 microequivalent per liter Na. Chlorosis and necrosis occurred in leaves of plants not receiving sodium. Portulaca failed to set flower in the sodium-deficient cultures. Under similar conditions Poa pratensis L. (Kentucky blue grass) having characteristics of the C3 photosynthetic pathway made normal growth and did not respond to the addition of sodium. It is concluded from these results and previously reported work that sodium is generally essential for species having the C4 pathway but not for species with the C3 pathway. Images PMID:16658050

  15. Displacements required during multiple drapefolding along the northwest Bighorn Mountain front, Wyoming

    E-print Network

    Tirey, Martha Margaret

    1978-01-01

    DISPLACEMENTS REQUIRED DURING 1&IULTIPLE DRAPE-FOLDII'1G ALONG THE NORTH1NEST BIGHORN MOUNTAIN FRONT, 1NYOMING A Thesis by MARTHA MARGARET TIREY Su'bmitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirement for the degree of . MASTER OF SCIE1'ICE May 19'78 Major Subject: Geology DISPLACHMHNTS REQUIRED DURING MULTIPLE DRAPE-FOLDING ALONG THE NORTHWEST BIGHORN MiOUNTAIN FRONT, WYOMING A Thesis by MARTHA MARGARET TIREY Approved as to style end...

  16. Assay of the Multiple Energy-Producing Pathways of Mammalian Cells

    PubMed Central

    Bochner, Barry R.; Siri, Mark; Huang, Richard H.; Noble, Shawn; Lei, Xiang-He; Clemons, Paul A.; Wagner, Bridget K.

    2011-01-01

    Background To elucidate metabolic changes that occur in diabetes, obesity, and cancer, it is important to understand cellular energy metabolism pathways and their alterations in various cells. Methodology and Principal Findings Here we describe a technology for simultaneous assessment of cellular energy metabolism pathways. The technology employs a redox dye chemistry specifically coupled to catabolic energy-producing pathways. Using this colorimetric assay, we show that human cancer cell lines from different organ tissues produce distinct profiles of metabolic activity. Further, we show that murine white and brown adipocyte cell lines produce profiles that are distinct from each other as well as from precursor cells undergoing differentiation. Conclusions This technology can be employed as a fundamental tool in genotype-phenotype studies to determine changes in cells from shared lineages due to differentiation or mutation. PMID:21455318

  17. Multiple Genetic Alterations within the PI3K Pathway Are Responsible for AKT Activation in Patients with Ovarian Carcinoma

    PubMed Central

    De Marco, Carmela; Rinaldo, Nicola; Bruni, Paola; Malzoni, Carmine; Zullo, Fulvio; Fabiani, Fernanda; Losito, Simona; Scrima, Marianna; Marino, Federica Zito; Franco, Renato; Quintiero, Alfina; Agosti, Valter; Viglietto, Giuseppe

    2013-01-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is activated in multiple cancers including ovarian carcinoma (OC). However, the relative contribution of the single components within the PI3K pathway to AKT activation in OC is still unclear. We examined 98 tumor samples from Italian OC patients for alterations in the members of the PI3K pathway. We report that AKT is significantly hyperactive in OC compared to normal tissue (n?=?93; p<0.0001) and that AKT activation is preferentially observed in the elderly (>58 years old; n?=?93; p<0.05). The most frequent alteration is the overexpression of the p110? catalytic subunit of PI3K (63/93, ?68%); less frequent alterations comprise the loss of PTEN (24/89, 27%) and the overexpression of AKT1 (18/96, 19%) or AKT2 (11/88,12.5%). Mutations in the PIK3CA or KRAS genes were detected at lower frequency (12% and 10%, respectively) whereas mutations in AKT1 or AKT2 genes were absent. Although many tumors presented a single lesion (28/93, of which 23 overexpressed PIK3CA, 1 overexpressed AKT and 4 had lost PTEN), many OC (35/93) presented multiple alterations within the PI3K pathway. Apparently, aberrant PI3K signalling was mediated by activation of the canonical downstream AKT-dependent mTOR/S6K1/4EBP1 pathway and by regulation of expression of oncogenic transcription factors that include HMGA1, JUN-B, FOS and MYC but not by AKT-independent activation of SGK3. FISH analysis indicated that gene amplification of PIK3CA, AKT1 and AKT2 (but not of PI3KR1) and the loss of PTEN are common and may account for changes in the expression of the corresponding proteins. In conclusion, our results indicate that p110? overexpression represents the most frequent alteration within the PI3K/AKT pathway in OC. However, p110? overexpression may not be sufficient to activate AKT signalling and drive ovarian tumorigenesis since many tumors overexpressing PI3K presented at least one additional alteration. PMID:23408974

  18. Multiple vasodilator pathways from the pelvic plexus to the penis of the rat

    Microsoft Academic Search

    WG Dail; F Harji; J Gonzales; R Galindo

    1999-01-01

    The main penile or cavernous nerve is usually regarded as the most important vasodilator projection in the rat. Although other descending pathways have been described, there is little detailed information on their importance. In this present report, we provide topographic and quantitative information on lateral and ventral penile branches and examine the vasodilator fibers which join the pudendal neurovascular bundle.

  19. Multiple Developmental Pathways Leading to a Single Morph: Monosulcate Pollen (Examples From the Asparagales)

    PubMed Central

    PENET, L.; NADOT, S.; RESSAYRE, A.; FORCHIONI, A.; DREYER, L.; GOUYON, P. H.

    2004-01-01

    • Background and Aims Early developmental events in microsporogenesis are known to play a role in pollen morphology: variation in cytokinesis type, cell wall formation, tetrad shape and aperture polarity are responsible for pollen aperture patterning. Despite the existence of other morphologies, monosulcate pollen is one of the most common aperture types in monocots, and is also considered as the ancestral condition in this group. It is known to occur from either a successive or a simultaneous cytokinesis. In the present study, the developmental sequence of microsporogenesis is investigated in several species of Asparagales that produce such monosulcate pollen, representing most families of this important monocot clade. • Methods The developmental pathway of microsporogenesis was investigated using light transmission and epifluorescence microscopy for all species studied. Confocal microscopy was used to confirm centripetal cell plate formation. • Key Results Microsporogenesis is diverse in Asparagales, and most variation is generally found between families. It is confirmed that the whole higher Asparagales clade has a very conserved microsporogenesis, with a successive cytokinesis and centrifugal cell plate formation. Centripetal cell wall formation is described in Tecophilaeaceae and Iridaceae, a feature that had so far only been reported for eudicots. • Conclusions Monosulcate pollen can be obtained from several developmental pathways, leading thus to homoplasy in the monosulcate character state. Monosulcate pollen should not therefore be considered as the ancestral state unless it is produced through the ancestral developmental pathway. The question about the ancestral developmental pathway leading to monosulcy remains open. PMID:15567807

  20. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.

    PubMed

    Han, Jing; Hou, Jing; Zhang, Fan; Ai, Guomin; Li, Ming; Cai, Shuangfeng; Liu, Hailong; Wang, Lei; Wang, Zejian; Zhang, Siliang; Cai, Lei; Zhao, Dahe; Zhou, Jian; Xiang, Hua

    2013-05-01

    Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of (13)C positional enrichment in 3HV. Notably, (13)C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ?phaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction. PMID:23435886

  1. Multiple Propionyl Coenzyme A-Supplying Pathways for Production of the Bioplastic Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Haloferax mediterranei

    PubMed Central

    Han, Jing; Hou, Jing; Zhang, Fan; Ai, Guomin; Li, Ming; Cai, Shuangfeng; Liu, Hailong; Wang, Lei; Wang, Zejian; Zhang, Siliang; Cai, Lei; Zhao, Dahe; Zhou, Jian

    2013-01-01

    Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of 13C positional enrichment in 3HV. Notably, 13C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ?phaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction. PMID:23435886

  2. Small Molecule Inhibitors of the Candida albicans Budded-to-Hyphal Transition Act through Multiple Signaling Pathways

    PubMed Central

    Midkiff, John; Borochoff-Porte, Nathan; White, Dylan; Johnson, Douglas I.

    2011-01-01

    The ability of the pathogenic yeast Candida albicans to interconvert between budded and hyphal growth states, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans development and virulence. The BHT is under the control of multiple cell signaling pathways that respond to external stimuli, including nutrient availability, high temperature, and pH. Previous studies identified 21 small molecules that could inhibit the C. albicans BHT in response to carbon limitation in Spider media. However, the studies herein show that the BHT inhibitors had varying efficacies in other hyphal-inducing media, reflecting their varying abilities to block signaling pathways associated with the different media. Chemical epistasis analyses suggest that most, but not all, of the BHT inhibitors were acting through either the Efg1 or Cph1 signaling pathways. Notably, the BHT inhibitor clozapine, a FDA-approved drug used to treat atypical schizophrenia by inhibiting G-protein-coupled dopamine receptors in the brain, and several of its functional analogs were shown to act at the level of the Gpr1 G-protein-coupled receptor. These studies are the first step in determining the target and mechanism of action of these BHT inhibitors, which may have therapeutic anti-fungal utility in the future. PMID:21966518

  3. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis.

    PubMed

    Dahal, N; Abdelhamed, H; Lu, J; Karsi, A; Lawrence, M L

    2014-02-21

    Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC). We have shown recently that tricarboxylic acid cycle (TCA) and one-carbon (C1) metabolism are involved in E. ictaluri pathogenesis. However, the effect of multiple mutations in these pathways is unknown. Here, we report four novel E. ictaluri mutants carrying double gene mutations in TCA cycle (Ei?mdh?sdhC, Ei?frdA?sdhC), C1 metabolism (Ei?glyA?gcvP), and both TCA and C1 metabolism pathways (Ei?gcvP?sdhC). In-frame gene deletions were constructed by allelic exchange and mutants' virulence and vaccine efficacy were evaluated using in vivo bioluminescence imaging (BLI) as well as end point mortality counts in catfish fingerlings. Results indicated that all the double gene mutants were attenuated compared to wild-type (wt) E. ictaluri. There was a 1.39-fold average reduction in bioluminescence, and hence bacterial numbers, from all the mutants except for Ei?frdA?sdhC at 144 h post-infection. Vaccination with mutants was very effective in protecting channel catfish against subsequent infection with virulent E. ictaluri 93-146 strain. In particular, immersion vaccination resulted in complete protection. Our results provide further evidence on the importance of TCA and C1 metabolism pathways in bacterial pathogenesis. PMID:24418045

  4. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front

    PubMed Central

    Zhu, Yabing; Du, Yishuai; Song, Xiaorui; Chen, Yuanxin; Huang, Ronglian; Que, Huayong; Fang, Xiaodong; Zhang, Guofan

    2013-01-01

    Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way. PMID:23840499

  5. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway

    PubMed Central

    Tanaka, Shigeyuki; Han, Xiaowei; Kahmann, Regine

    2015-01-01

    Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid (SA) signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate SA signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target SA biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal. PMID:26042138

  6. Interactions of multiple signaling pathways in neuropeptide Y-mediated bimodal vascular smooth muscle cell growth.

    PubMed

    Pons, Jennifer; Kitlinska, Joanna; Jacques, Danielle; Perreault, Claudine; Nader, Moni; Everhart, Lindsay; Zhang, Ying; Zukowska, Zofia

    2008-07-01

    Neuropeptide Y (NPY), a sympathetic cotransmitter, acts via G protein-coupled receptors to stimulate constriction and vascular smooth muscle cell (VSMC) proliferation through interactions with its Y1 receptors. However, VSMC proliferation appears bimodal, with high- and low-affinity peaks differentially blocked by antagonists of both Y1 and Y5 receptors. Here, we sought to determine the signaling mechanisms of NPY-mediated bimodal mitogenesis. In rat aortic VSMCs, NPY's mitogenic effect at all concentrations was blocked by pertussis toxin and was associated with decreased forskolin-stimulated cAMP levels. NPY also increased intracellular calcium levels; in contrast to mitogenesis, this effect was dose dependent. The rise in intracellular Ca2+ depended on extracellular Ca2+ and was mediated via activation of Y1 receptors, but not Y5 receptors. Despite differences in calcium, the signaling pathways activated at low and high NPY concentrations were similar. The mitogenic effect of the peptide at all doses was completely blocked by inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), protein kinase C (PKC), and mitogen-activated protein kinase kinase, MEK1/2. Thus, in VSMCs, NPY-mediated mitogenesis signals primarily via Y1 receptors activating 2 Ca2+-dependent, growth-promoting pathways -- PKC and CaMKII. At the high-affinity peak, these 2 pathways are amplified by Y5 receptor-mediated, calcium-independent inhibition of the adenylyl cyclase - protein kinase A (PKA) pathway. All 3 mechanisms converge to the extracellular signal-regulated kinases (ERK1/2) signaling cascade and lead to VSMC proliferation. PMID:18641693

  7. Noise-induced quantum coherence in photosynthetic complexes with multiple energy transfer pathways

    E-print Network

    Dmitri V. Voronine; Konstantin E. Dorfman; Bin Cao; Amitabh Joshi

    2014-08-12

    We theoretically investigate exciton relaxation dynamics in molecular aggregates based on model photosynthetic complexes under various conditions of incoherent excitation. We show that noise-induced quantum coherence is generated between spatially-separated exciton states which belong to the same or different energy transfer pathways, coupled via real and virtual transfer processes. Such quantum coherence effects may be used to improve light-harvesting efficiency and to reveal quantum phenomena in biology.

  8. Multiple genetic variants along candidate pathways influence plasma high-density lipoprotein cholesterol concentrations

    Microsoft Academic Search

    Yingchang Lu; M. E. T. Dollé; Sandra Imholz; R. van't Slot; W. M. M. Verschuren; C. Wijmenga; E. J. M. Feskens; J. M. A. Boer

    2008-01-01

    The known genetic variants determining plasma HDL cholesterol (HDL-C) levels explain only part of its variation. Three hundred eighty-four single nucleotide polymorphisms (SNPs) across 251 genes based on pathways potentially relevant to HDL-C metabolism were selected and genotyped in 3,575 subjects from the Doetinchem cohort, which was examined thrice over 11 years. Three hundred fifty-three SNPs in 239 genes passed

  9. Multispecific Drug Transporter Slc22a8 (Oat3) Regulates Multiple Metabolic and Signaling Pathways

    PubMed Central

    Wu, Wei; Jamshidi, Neema; Eraly, Satish A.; Liu, Henry C.; Bush, Kevin T.; Palsson, Bernhard O.

    2013-01-01

    Multispecific drug transporters of the solute carrier and ATP-binding cassette families are highly conserved through evolution, but their true physiologic role remains unclear. Analyses of the organic anion transporter 3 (OAT3; encoded by Slc22a8/Oat3, originally Roct) knockout mouse have confirmed its critical role in the renal handling of common drugs (e.g., antibiotics, antivirals, diuretics) and toxins. Previous targeted metabolomics of the knockout of the closely related Oat1 have demonstrated a central metabolic role, but the same approach with Oat3 failed to reveal a similar set of endogenous substrates. Nevertheless, the Oat3 knockout is the only Oat described so far with a physiologically significant phenotype, suggesting the disturbance of metabolic or signaling pathways. Here we analyzed global gene expression in Oat3 knockout tissue, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways. Metabolic reconstruction with the recently developed “mouse Recon1” supported the involvement of Oat3 in the aforementioned pathways. Untargeted metabolomics were used to determine whether the predicted metabolic alterations could be confirmed. Many significant changes were observed; several metabolites were tested for direct interaction with mOAT3, whereas others were supported by published data. Oat3 thus appears critical for the handling of phase I (hydroxylation) and phase II (glucuronidation) metabolites. Oat3 also plays a role in bioenergetic pathways (e.g., the tricarboxylic acid cycle), as well as those involving vitamins (e.g., folate), steroids, prostaglandins, gut microbiome products, uremic toxins, cyclic nucleotides, amino acids, glycans, and possibly hyaluronic acid. The data seemingly consistent with the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011), also suggests that Oat3 is essential for the handling of dietary flavonoids and antioxidants. PMID:23920220

  10. Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies

    SciTech Connect

    Schnackenberg, Laura K. [Division of Systems Toxicology, National Center for Toxicological Research, Food and Drug Administration, FDA, Jefferson, AR 72079 (United States)], E-mail: richard.beger@fda.hhs.gov; Chen Minjun [Environmental Bioinformatics Computational Toxicology Center, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Sun, Jinchun; Holland, Ricky D.; Dragan, Yvonne; Tong Weida [Division of Systems Toxicology, National Center for Toxicological Research, Food and Drug Administration, FDA, Jefferson, AR 72079 (United States); Welsh, William [Environmental Bioinformatics Computational Toxicology Center, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Beger, Richard D. [Division of Systems Toxicology, National Center for Toxicological Research, Food and Drug Administration, FDA, Jefferson, AR 72079 (United States)

    2009-02-15

    Drug-induced liver injury has been associated with the generation of reactive metabolites, which are primarily detoxified via glutathione conjugation. In this study, it was hypothesized that molecules involved in the synthesis of glutathione would be diminished to replenish the glutathione depleted through conjugation reactions. Since S-adenosylmethionine (SAMe) is the primary source of the sulfur atom in glutathione, UPLC/MS and NMR were used to evaluate metabolites involved with the transulfuration pathway in urine samples collected during studies of eight liver toxic compounds in Sprague-Dawley rats. Urinary levels of creatine were increased on day 1 or day 2 in 8 high dose liver toxicity studies. Taurine concentration in urine was increased in only 3 of 8 liver toxicity studies while SAMe was found to be reduced in 4 of 5 liver toxicity studies. To further validate the results from the metabonomic studies, microarray data from rat liver samples following treatment with acetaminophen was obtained from the Gene Expression Omnibus (GEO) database. Some genes involved in the trans-sulfuration pathway, including guanidinoacetate N-methyltransferase, glycine N-methyltransferase, betaine-homocysteine methyltransferase and cysteine dioxygenase were found to be significantly decreased while methionine adenosyl transferase II, alpha increased at 24 h post-dosing, which is consistent with the SAMe and creatine findings. The metabolic and transcriptomic results show that the trans-sulfuration pathway from SAMe to glutathione was disturbed due to the administration of heptatotoxicants.

  11. A Gata6Wnt pathway required for epithelial stem cell development and airway regeneration

    Microsoft Academic Search

    Yuzhen Zhang; Ashley M Goss; Ethan David Cohen; Rachel Kadzik; John J Lepore; Karthika Muthukumaraswamy; Jifu Yang; Francesco J DeMayo; Jeffrey A Whitsett; Michael S Parmacek; Edward E Morrisey

    2008-01-01

    Epithelial organs, including the lung, are known to possess regenerative abilities through activation of endogenous stem cell populations, but the molecular pathways regulating stem cell expansion and regeneration are not well understood. Here we show that Gata6 regulates the temporal appearance and number of bronchioalveolar stem cells (BASCs) in the lung, its absence in Gata6-null lung epithelium leading to the

  12. Human-Gyrovirus-Apoptin Triggers Mitochondrial Death Pathway—Nur77 is Required for Apoptosis Triggering

    PubMed Central

    Chaabane, Wiem; Cie?lar-Pobuda, Artur; El-Gazzah, Mohamed; Jain, Mayur V.; Rzeszowska-Wolny, Joanna; Rafat, Mehrdad; Stetefeld, Joerg; Ghavami, Saeid; ?os, Marek J.

    2014-01-01

    The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin–induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin–induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin–induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway. PMID:25246270

  13. Ginseng saponin metabolite 20(S)-protopanaxadiol inhibits tumor growth by targeting multiple cancer signaling pathways.

    PubMed

    Gao, Jian-Li; Lv, Gui-Yuan; He, Bai-Cheng; Zhang, Bing-Qiang; Zhang, Hongyu; Wang, Ning; Wang, Chong-Zhi; Du, Wei; Yuan, Chun-Su; He, Tong-Chuan

    2013-07-01

    Plant-derived active constituents and their semi-synthetic or synthetic analogs have served as major sources of anticancer drugs. 20(S)-protopanaxadiol (PPD) is a metabolite of ginseng saponin of both American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng C.A. Meyer). We previously demonstrated that ginsenoside Rg3, a glucoside precursor of PPD, exhibits anti-proliferative effects on HCT116 cells and reduces tumor size in a xenograft model. Our subsequent study indicated that PPD has more potent antitumor activity than that of Rg3 in vitro although the mechanism underlying the anticancer activity of PPD remains to be defined. Here, we investigated the mechanism underlying the anticancer activity of PPD in human cancer cells in vitro and in vivo. PPD was shown to inhibit growth and induce cell cycle arrest in HCT116 cells. The in vivo studies indicate that PPD inhibits xenograft tumor growth in athymic nude mice bearing HCT116 cells. The xenograft tumor size was significantly reduced when the animals were treated with PPD (30 mg/kg body weight) for 3 weeks. When the expression of previously identified Rg3 targets, A kinase (PRKA) anchor protein 8 (AKAP8L) and phosphatidylinositol transfer protein ? (PITPNA), was analyzed, PPD was shown to inhibit the expression of PITPNA while upregulating AKAP8L expression in HCT116 cells. Pathway-specific reporter assays indicated that PPD effectively suppressed the NF-?B, JNK and MAPK/ERK signaling pathways. Taken together, our results suggest that the anticancer activity of PPD in colon cancer cells may be mediated through targeting NF-?B, JNK and MAPK/ERK signaling pathways, although the detailed mechanisms underlying the anticancer mode of PPD action need to be fully elucidated. PMID:23633038

  14. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ? 0.77), glove-surface (rp ? 0.76), and air-glove measurements (rp ? 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.]. PMID:25357184

  15. Immortalized Suprachiasmatic Nucleus Cells Express Components of Multiple Circadian Regulatory Pathways

    E-print Network

    Gillette, Martha U.

    Immortalized Suprachiasmatic Nucleus Cells Express Components of Multiple Circadian Regulatory fibroblasts, Rat-1 fibroblasts and spontaneously immortalized embryonic mouse fibroblasts after syn is a pluripotent and immortal- ized line of SCN progenitor cells from fetal rat hypo- thalamic tissue that exhibits

  16. A way through the woods: opening pathways to mental health care for women with multiple needs

    Microsoft Academic Search

    Sarah Anderson

    2011-01-01

    Purpose – This paper reports on a pilot project that helps women offenders and other women with multiple needs to access mental health care. The paper aims to increase understanding of the mental health needs of these women and the barriers they face in accessing and sustaining engagement with appropriate care. Design\\/methodology\\/approach – Key principles and early findings are presented

  17. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    PubMed

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance. PMID:25769101

  18. ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway

    Microsoft Academic Search

    Antti Nykänen; Benjamin Haley; Phillip D. Zamore

    2001-01-01

    We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive ?360 kDa protein\\/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active

  19. Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway.

    PubMed

    Sterniczuk, Roxanne; Yamakawa, Glenn R; Pomeroy, Tara; Antle, Michael C

    2014-01-24

    Daily photic resetting of the circadian system relies on the transmission of light information from the retina to retinorecipient cells within the ventrolateral suprachiasmatic nucleus (SCN) core, and subsequent activation of rhythmic clock cells in the dorsolateral region. Some neurochemicals such as gastrin-releasing peptide (GRP) mimic the phase shifting effects of light and induce Ca(2+)-dependent gene expression in the SCN. Activation of the cAMP-response element binding protein (CREB) is necessary for Ca(2+)-dependent transcription to occur and accompanies behavioral phase shifting; however, several biochemical cascades are involved in this phenomenon. One pathway that has been implicated in photic responses involves protein kinase A (PKA). It is not known if this pathway participates in mediating phase shifts to GRP. Here we show that preventing PKA activation attenuates both light- and GRP-induced phase shifts in locomotor behavior, but only during the early-subjective night. This finding demonstrates that activation of PKA is an important component in the photic signaling pathway and may mediate GRP output signaling from the SCN core to the shell; however, this effect appears to be temporally dependent. PMID:24287375

  20. Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1

    PubMed Central

    Brosché, Mikael; Kangasjärvi, Jaakko

    2012-01-01

    Production of reactive oxygen species (ROS) is linked to signalling in both developmental and stress responses. The level of ROS is controlled by both production and removal through various scavengers including ascorbic acid and glutathione. Here, the role of low ascorbic acid or glutathione concentrations was investigated on ozone-induced cell death, defence signalling, and developmental responses. Low ascorbic acid concentrations in vtc1 activated expression of salicylic acid (SA)-regulated genes, a response found to be dependent on the redox-regulated transcriptional co-regulator NPR1. In contrast, low glutathione concentrations in cad2 or pad2 reduced expression of SA-regulated genes. Testing different responses to jasmonic acid (JA) revealed the presence of at least two separate JA signalling pathways. Treatment of the vtc1 mutant with JA led to hyper-induction of MONODEHYDROASCORBATE REDUCTASE3, indicating that low ascorbic acid concentrations prime the response to JA. Furthermore, NPR1 was found to be a positive regulator of JA-induced expression of MDHAR3 and TAT3. The vtc1 and npr1 mutants were sensitive to glucose inhibition of seed germination; an opposite response was found in cad2 and pad2. Overall, low ascorbic acid concentrations mostly led to opposite phenotypes to low glutathione concentrations, and both antioxidants interacted with SA and JA signalling pathways. PMID:22213815

  1. The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism

    PubMed Central

    Liang, Shuang; Zhou, Yuanpeng; Wang, Huijun; Qian, Yanyan; Ma, Duan; Tian, Weidong; Persaud-Sharma, Vishwani; Yu, Chen; Ren, Yunyun; Zhou, Shufeng; Li, Xiaotian

    2014-01-01

    Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs) of genes in the folic acid pathway on homocysteine (Hcy) metabolism. Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA) and support vector machine (SVM) regressions were used to analyze the joint effects of SNPs on the Hcy level. Results. SNPs of MTHFR (rs1801133 and rs3733965) were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133), SNPs of RFC1 (rs1051266), TCN2 (rs9606756), BHMT (rs3733890), and CBS (rs234713 and rs2851391) were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC) (r = 0.247). The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P = 0.000). Moreover, this difference was even more significant in moderate and high levels of folic acid. Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid. PMID:24524080

  2. Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways.

    PubMed

    Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N Rao; Aebersold, Ruedi; Helliwell, Stephen B; Loewith, Robbie

    2015-06-12

    Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841

  3. Multiple Independent Fusions of Glucose-6-Phosphate Dehydrogenase with Enzymes in the Pentose Phosphate Pathway

    PubMed Central

    Stover, Nicholas A.; Dixon, Thomas A.; Cavalcanti, Andre R. O.

    2011-01-01

    Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms. PMID:21829610

  4. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver

    PubMed Central

    Martyniuk, Christopher J.; Spade, Daniel J.; Blum, Jason L.; Kroll, Kevin J.; Denslow, Nancy D.

    2011-01-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver. PMID:21276474

  5. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.

    PubMed

    Zhang, Chuanzhi; Zhang, Junli; Kang, Zhen; Du, Guocheng; Chen, Jian

    2015-05-01

    Microbial production of L-phenylalanine (L-Phe) from renewable sources has attracted much attention recently. In the present study, Corynebacterium glutamicum 13032 was rationally engineered to produce L-Phe from inexpensive glucose. First, all the L-Phe biosynthesis pathway genes were investigated and the results demonstrated that in addition to AroF and PheA, the native PpsA, TktA, AroE and AroA, and the heterologous AroL and TyrB were also the key enzymes for L-Phe biosynthesis. Through combinational expression of these key enzymes, the L-Phe production was increased to 6.33 ± 0.13 g l(-1) which was about 1.48-fold of that of the parent strain C. glutamicum (pXM-pheA (fbr)-aroF (fbr)) (fbr, feedback-inhibition resistance). Furthermore, the production of L-Phe was improved to 9.14 ± 0.21 g l(-1) by modifying the glucose and L-Phe transport systems and blocking the acetate and lactate biosynthesis pathways. Eventually, the titer of L-Phe was enhanced to 15.76 ± 0.23 g l(-1) with a fed-batch fermentation strategy. To the best of our knowledge, this was the highest value reported in rationally engineered C. glutamicum 13032 strains. The results obtained will also contribute to rational engineering of C. glutamicum for production of other valuable aromatic compounds. PMID:25665502

  6. Signaling of Chloroquine-Induced Stress in the Yeast Saccharomyces cerevisiae Requires the Hog1 and Slt2 Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash

    2014-01-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule. PMID:25022582

  7. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    PubMed

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation. PMID:25743115

  8. M402, a Novel Heparan Sulfate Mimetic, Targets Multiple Pathways Implicated in Tumor Progression and Metastasis

    Microsoft Academic Search

    He Zhou; Sucharita Roy; Edward Cochran; Radouane Zouaoui; Chia Lin Chu; Jay Duffner; Ganlin Zhao; Sean Smith; Zoya Galcheva-Gargova; Juliane Karlgren; Nancy Dussault; Rain Y. Q. Kwan; Erick Moy; Marishka Barnes; Alison Long; Chris Honan; Yi Wei Qi; Zachary Shriver; Tanmoy Ganguly; Birgit Schultes; Ganesh Venkataraman; Takashi Kei Kishimoto

    2011-01-01

    Heparan sulfate proteoglycans (HSPGs) play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS) mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions,

  9. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells

    PubMed Central

    Pan, Jing-Xuan; Ding, Ke; Wang, Cheng-Yan

    2012-01-01

    Niclosamide, an oral antihelminthic drug, has been used to treat tapeworm infection for about 50 years. Niclosamide is also used as a molluscicide for water treatment in schistosomiasis control programs. Recently, several groups have independently discovered that niclosamide is also active against cancer cells, but its precise mechanism of antitumor action is not fully understood. Evidence supports that niclosamide targets multiple signaling pathways (NF-?B, Wnt/?-catenin, Notch, ROS, mTORC1, and Stat3), most of which are closely involved with cancer stem cells. The exciting advances in elucidating the antitumor activity and the molecular targets of this drug will be discussed. A method for synthesizing a phosphate pro-drug of niclosamide is provided. Given its potential antitumor activity, clinical trials for niclosamide and its derivatives are warranted for cancer treatment. PMID:22237038

  10. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

    PubMed

    Petermann, Eva; Orta, Manuel Luís; Issaeva, Natalia; Schultz, Niklas; Helleday, Thomas

    2010-02-26

    Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways. PMID:20188668

  11. Life Stress, Genes, and Depression: Multiple Pathways Lead to Increased Risk and New Opportunities for Intervention

    NSDL National Science Digital Library

    Dennis S. Charney (National Institute of Mental Health; Mood and Anxiety Disorders Research Program REV)

    2004-03-23

    This STKE Review with 2 figures and 122 references concerns the interaction between stress, genetic factors, and vulnerability to depression. Evidence suggests that the combination of genetics, early life stress, and ongoing stress determine how an individual responds to stress and his vulnerability to psychiatric disorders, such as depression. It is likely that genetic factors and life stress contribute not only to alterations in various neurotransmitter systems, but also to the impairments of cellular plasticity and resilience that are observed in depression. Increased understanding of the specific cellular and neurochemical alterations that contribute to depression, and of the intracellular signaling pathways that underlie cellular plasticity and resilience, may lead to the identification of novel therapeutic targets and, therefore, to the development of novel antidepressant therapies.

  12. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity

    PubMed Central

    Li, Jiejie; Henty-Ridilla, Jessica L.; Staiger, Benjamin H.; Day, Brad; Staiger, Christopher J.

    2015-01-01

    Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response. PMID:26018794

  13. Targeting multiple angiogenic pathways simultaneously: experience with nintedanib in non-small-cell lung cancer.

    PubMed

    Durm, Greg; Hanna, Nasser

    2014-05-01

    Angiogenesis plays a major role in the growth and progression of non-small-cell lung cancer (NSCLC), and there is increasing interest in the development of therapies that block this particular aspect of tumorigenesis. Bevacizumab was the first US FDA-approved inhibitor of angiogenesis after demonstrating improved progression-free survival and overall survival in combination with chemotherapy in treating NSCLC. However, the benefit of bevacizumab is only modest and transient as the tumors inevitably develop resistance to this particular treatment. Therefore, new therapies are being developed that attempt to inhibit angiogenesis through several different pathways. One promising new drug, nintedanib, is an oral triple angiokinase inhibitor that acts by blocking not only VEGFR, but also FGFR and PDGFR, which are involved in the development of resistance to bevacizumab. This article discusses the rationale for this approach and summarizes the clinical trial data on nintedanib, including the two most recent Phase III trials. PMID:24947258

  14. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity.

    PubMed

    Li, Jiejie; Henty-Ridilla, Jessica L; Staiger, Benjamin H; Day, Brad; Staiger, Christopher J

    2015-01-01

    Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response. PMID:26018794

  15. Hsp104 targets multiple intermediates on the amyloid pathway and suppresses the seeding capacity of Abeta fibrils and protofibrils.

    PubMed

    Arimon, Muriel; Grimminger, Valerie; Sanz, Fausto; Lashuel, Hilal A

    2008-12-31

    The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to "catalyze" the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms by which Hsp104 modulates aggregation and fibrillogenesis, the effect of Hsp104 on the fibrillogenesis of amyloid beta (Abeta) was investigated by characterizing its ability to interfere with oligomerization and fibrillogenesis of different species along the amyloid-formation pathway of Abeta. To probe the disaggregation activity of Hsp104, its ability to dissociate preformed protofibrillar and fibrillar aggregates of Abeta was assessed in the presence and in the absence of ATP. Our results show that Hsp104 inhibits the fibrillization of monomeric and protofibrillar forms of Abeta in a concentration-dependent but ATP-independent manner. Inhibition of Abeta fibrillization by Hsp104 is observable up to Hsp104/Abeta stoichiometric ratios of 1:1000, suggesting a preferential interaction of Hsp104 with aggregation intermediates (e.g., oligomers, protofibrils, small fibrils) on the pathway of Abeta amyloid formation. This hypothesis is consistent with our observations that Hsp104 (i) interacts with Abeta protofibrils, (ii) inhibits conversion of protofibrils into amyloid fibrils, (iii) arrests fibril elongation and reassembly, and (iv) abolishes the capacity of protofibrils and sonicated fibrils to seed the fibrillization of monomeric Abeta. Together, these findings suggest that the strong inhibition of Abeta fibrillization by Hsp104 is mediated by its ability to act at different stages and target multiple intermediates on the pathway to amyloid formation. PMID:18851977

  16. Thalidomide decreases gelatinase production by malignant B lymphoid cell lines through disruption of multiple integrin-mediated signaling pathways

    PubMed Central

    Segarra, Marta; Lozano, Ester; Corbera-Bellalta, Marc; Vilardell, Carme; Cibeira, Maria-Teresa; Esparza, Jordi; Izco, Nora; Bladé, Joan; Cid, Maria C.

    2010-01-01

    Background Thalidomide and its analogs are effective agents in the treatment of multiple myeloma. Since gelatinases (matrix metalloproteinases-2 and -9) play a crucial role in tumor progression, we explored the effect of thalidomide on gelatinase production by malignant B lymphoid cell lines. Design and Methods We investigated the effect of therapeutic doses of thalidomide on integrin-mediated production of gelatinases by malignant B lymphoid cell lines by gelatin zymography, western-blot, reverse transcriptase polymerase chain reaction and invasive capacity through Matrigel-coated Boyden chambers. We also explored the effect of thalidomide on the activation status of the main signaling pathways involved in this process. Results Thalidomide strongly inhibited gelatinase production by B-cell lines and primary myeloma cells in response to fibronectin, the most efficient gelatinase inducer identified in lymphoid cells. Thalidomide disrupted integrin-mediated signaling pathways involved in gelatinase induction and release, such as Src and MAP-kinase ERK activation, resulting in decreased cell motility and invasiveness. Unexpectedly, treatment with thalidomide elicited an increase in fibronectin-induced Akt phosphorylation through phosphoinositide 3-kinase-independent pathways since thalidomide decreased fibronectin-induced phosphoinositide 3-kinase phosphorylation and reversed the inhibition of Akt phosphorylation achieved by the phosphoinositide 3-kinase inhibitors wortmannin and LY294002. Conclusions Disruption of integrin-mediated signaling may be an important mechanism through which thalidomide and its analogs impair tumor cell interactions with the microenvironment. The unexpected effects of thalidomide on Akt activation indicate the need for further studies to elucidate whether the interference with Akt downstream effects would synergize with the anti-tumor activity of thalidomide. PMID:19815837

  17. Multiple pathways of duplication formation with and without recombination (RecA) in Salmonella enterica.

    PubMed

    Reams, Andrew B; Kofoid, Eric; Kugelberg, Elisabeth; Roth, John R

    2012-10-01

    Duplications are often attributed to "unequal recombination" between separated, directly repeated sequence elements (>100 bp), events that leave a recombinant element at the duplication junction. However, in the bacterial chromosome, duplications form at high rates (10(-3)-10(-5)/cell/division) even without recombination (RecA). Here we describe 1800 spontaneous lac duplications trapped nonselectively on the low-copy F'(128) plasmid, where lac is flanked by direct repeats of the transposable element IS3 (1258 bp) and by numerous quasipalindromic REP elements (30 bp). Duplications form at a high rate (10(-4)/cell/division) that is reduced only about 11-fold in the absence of RecA. With and without RecA, most duplications arise by recombination between IS3 elements (97%). Formation of these duplications is stimulated by IS3 transposase (Tnp) and plasmid transfer functions (TraI). Three duplication pathways are proposed. First, plasmid dimers form at a high rate stimulated by RecA and are then modified by deletions between IS3 elements (resolution) that leave a monomeric plasmid with an IS3-flanked lac duplication. Second, without RecA, duplications occur by single-strand annealing of DNA ends generated in different sister chromosomes after transposase nicks DNA near participating IS3 elements. The absence of RecA may stimulate annealing by allowing chromosome breaks to persist. Third, a minority of lac duplications (3%) have short (0-36 bp) junction sequences (SJ), some of which are located within REP elements. These duplication types form without RecA, Tnp, or Tra by a pathway in which the palindromic junctions of a tandem inversion duplication (TID) may stimulate deletions that leave the final duplication. PMID:22865732

  18. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells.

    PubMed

    Yen, Hung-Rong; Liu, Ching-Ju; Yeh, Chia-Chou

    2015-06-25

    Naringenin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative properties and the ability to induce apoptosis in hepatoma cell lines. However, there are no reports describing its effects on the invasion and metastasis of hepatoma cell lines, and the detailed molecular mechanisms of its effects are still unclear. In this study, we investigated the mechanisms underlying naringenin-mediated inhibition of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (HepG2, Huh-7, and HA22T) and murine embryonic liver cells (BNL CL2). Naringenin suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-?B (NF-?B) activity. It suppressed TPA-induced AP-1 activity through inhibiting the phosphorylation of the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and it suppressed TPA-induced inhibition of NF-?B nuclear translocation through I?B. Additionally, it suppressed TPA-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-?B and AP-1. These data suggest that naringenin suppresses the invasiveness and metastatic potential of hepatocellular carcinoma (HCC) by inhibiting multiple signal transduction pathways. PMID:25866363

  19. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway.

    PubMed

    Wan, Gang; Xie, Weidong; Liu, Zhenyan; Xu, Wei; Lao, Yuanzhi; Huang, Nunu; Cui, Kai; Liao, Meijian; He, Jie; Jiang, Yuyang; Yang, Burton B; Xu, Hongxi; Xu, Naihan; Zhang, Yaou

    2014-01-01

    Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3' untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G 1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway. PMID:24262949

  20. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    PubMed Central

    Zhang, Zhiyu; Du, Guang-Jian; Wang, Chong-Zhi; Wen, Xiao-Dong; Calway, Tyler; Li, Zejuan; He, Tong-Chuan; Du, Wei; Bissonnette, Marc; Musch, Mark W.; Chang, Eugene B.; Yuan, Chun-Su

    2013-01-01

    Compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC). A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC. PMID:23434653

  1. The hedgehog processing pathway is required for NSCLC growth and survival.

    PubMed

    Rodriguez-Blanco, J; Schilling, N S; Tokhunts, R; Giambelli, C; Long, J; Liang Fei, D; Singh, S; Black, K E; Wang, Z; Galimberti, F; Bejarano, P A; Elliot, S; Glassberg, M K; Nguyen, D M; Lockwood, W W; Lam, W L; Dmitrovsky, E; Capobianco, A J; Robbins, D J

    2013-05-01

    Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers. PMID:22733134

  2. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways

    PubMed Central

    Cui, Shi-Yun; Wang, Rui; Chen, Long-Bang

    2014-01-01

    MicroRNAs are endogenous, small (18–25 nucleotides) non-coding RNAs, which regulate genes expression by directly binding to the 3?-untranslated regions of the target messenger RNAs. Emerging evidence shows that alteration of microRNAs is involved in cancer development. MicroRNA-145 is commonly down-regulated in many types of cancer, regulating various cellular processes, such as the cell cycle, proliferation, apoptosis and invasion, by targeting multiple oncogenes. This review aims to summarize the recent published literature on the role of microRNA-145 in regulating tumourigenesis and progression, and explore its potential for cancer diagnosis, prognosis and treatment. PMID:25124875

  3. Tumor suppression by PTEN requires the activation of the PKR-eIF2alpha phosphorylation pathway.

    PubMed

    Mounir, Zineb; Krishnamoorthy, Jothi Latha; Robertson, Gavin P; Scheuner, Donalyn; Kaufman, Randal J; Georgescu, Maria-Magdalena; Koromilas, Antonis E

    2009-01-01

    Inhibition of protein synthesis by phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2) at Ser(51) occurs as a result of the activation of a family of kinases in response to various forms of stress. Although some consequences of eIF2alpha phosphorylation are cytoprotective, phosphorylation of eIF2alpha by RNA-dependent protein kinase (PKR) is largely proapoptotic and tumor suppressing. Phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is a tumor suppressor protein that is mutated or deleted in various human cancers, with functions that are mediated through phosphatase-dependent and -independent pathways. Here, we demonstrate that the eIF2alpha phosphorylation pathway is downstream of PTEN. Inactivation of PTEN in human melanoma cells reduced eIF2alpha phosphorylation, whereas reconstitution of PTEN-null human glioblastoma or prostate cancer cells with either wild-type PTEN or phosphatase-defective mutants of PTEN induced PKR activity and eIF2alpha phosphorylation. The antiproliferative and proapoptotic effects of PTEN were compromised in mouse embryonic fibroblasts that lacked PKR or contained a phosphorylation-defective variant of eIF2alpha. Induction of the pathway leading to phosphorylation of eIF2alpha required an intact PDZ-binding motif in PTEN. These findings establish a link between tumor suppression by PTEN and inhibition of protein synthesis that is independent of PTEN's effects on phosphoinositide 3'-kinase signaling. PMID:20029030

  4. Multiplication

    NSDL National Science Digital Library

    Ms.Roberts

    2009-02-24

    How sharp are your multiplication skills? Give these great math games a try ! Play Asteroids blaster and test your multiplication skills. How fast can you solve the problem... play a round of Baseball multiplication and see! Multiplication is fun and delicious with Crazy Cones. Help Lemonade Larry determine the correct amount! Test your multiplication skills with Tic Tac Toe! ...

  5. Free Energy Landscape and Multiple Folding Pathways of an H-Type RNA Pseudoknot

    PubMed Central

    Bian, Yunqiang; Zhang, Jian; Wang, Jun; Wang, Jihua; Wang, Wei

    2015-01-01

    How RNA sequences fold to specific tertiary structures is one of the key problems for understanding their dynamics and functions. Here, we study the folding process of an H-type RNA pseudoknot by performing a large-scale all-atom MD simulation and bias-exchange metadynamics. The folding free energy landscapes are obtained and several folding intermediates are identified. It is suggested that the folding occurs via multiple mechanisms, including a step-wise mechanism starting either from the first helix or the second, and a cooperative mechanism with both helices forming simultaneously. Despite of the multiple mechanism nature, the ensemble folding kinetics estimated from a Markov state model is single-exponential. It is also found that the correlation between folding and binding of metal ions is significant, and the bound ions mediate long-range interactions in the intermediate structures. Non-native interactions are found to be dominant in the unfolded state and also present in some intermediates, possibly hinder the folding process of the RNA. PMID:26030098

  6. M402, a Novel Heparan Sulfate Mimetic, Targets Multiple Pathways Implicated in Tumor Progression and Metastasis

    PubMed Central

    Cochran, Edward; Zouaoui, Radouane; Chu, Chia Lin; Duffner, Jay; Zhao, Ganlin; Smith, Sean; Galcheva-Gargova, Zoya; Karlgren, Juliane; Dussault, Nancy; Kwan, Rain Y. Q.; Moy, Erick; Barnes, Marishka; Long, Alison; Honan, Chris; Qi, Yi Wei; Shriver, Zachary; Ganguly, Tanmoy; Schultes, Birgit; Venkataraman, Ganesh; Kishimoto, Takashi Kei

    2011-01-01

    Heparan sulfate proteoglycans (HSPGs) play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS) mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1?, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis. PMID:21698156

  7. The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's syndrome.

    PubMed

    Enger, Tone B; Samad-Zadeh, Arman; Bouchie, Meghan P; Skarstein, Kathrine; Galtung, Hilde K; Mera, Toshiyuki; Walker, Janice; Menko, A Sue; Varelas, Xaralabos; Faustman, Denise L; Jensen, Janicke L; Kukuruzinska, Maria A

    2013-11-01

    Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin has pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating the organ size, cell proliferation, and differentiation. We now show that Hippo signaling is required for SMG-branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and ?-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from non-obese diabetic mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and connective tissue growth factor, known downstream targets of TAZ. Our studies show that Hippo signaling has a crucial role in SMG-branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans. PMID:24080911

  8. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong, E-mail: yerong24@fudan.edu.cn

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  9. Multiple calcium pathways induce the expression of SNAP-25 protein in chromaffin cells.

    PubMed

    García-Palomero, E; Montiel, C; Herrero, C J; García, A G; Alvarez, R M; Arnalich, F M; Renart, J; Lara, H; Cárdenas, A M

    2000-03-01

    Incubation of bovine adrenal chromaffin cells in high K+ (38 mM) during 24-48 h enhanced 2.5 to five times the expression of SNAP-25 protein and mRNA, respectively. This increase was reduced 86% by furnidipine (an L-type Ca2+ channel blocker) but was unaffected by either omega-conotoxin GVIA (an N-type Ca2+ channel blocker) or -agatoxin IVA (a P/Q-type Ca2+ channel blocker). Combined blockade of N and P/Q channels with omega-conotoxin MVIIC did, however, block by 76% the protein expression. The inhibitory effects of fumidipine were partially reversed when the external Ca2+ concentration was raised from 1.6 to 5 mM. These findings, together with the fact that nicotinic receptor activation or Ca2+ release from internal stores also enhanced SNAP-25 protein expression, suggest that an increment of cytosolic Ca2+ concentration ([Ca2+]), rather than its source or Ca2+ entry pathway, is the critical signal to induce the protein expression. The greater coupling between L-type Ca2+ channels and protein expression might be due to two facts: (a) L channels contributed 50% to the global [Ca2+]i rise induced by 38 mM K+ in indo-1-loaded chromaffin cells and (b) L channels undergo less inactivation than N or P/Q channels on sustained stimulation of these cells. PMID:10693936

  10. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways.

    PubMed

    Wang, Guangxiu; Dai, Fang; Yu, Kai; Jia, Zhifan; Zhang, Anling; Huang, Qiang; Kang, Chunsheng; Jiang, Hao; Pu, Peiyu

    2015-04-01

    Resveratrol (Res), a natural polyphenolic compound, has anticancer activity in a variety of cancers. In the present study, the antitumor effect and underlying molecular mechanism of Res on rat C6 glioma growth was studied. The results demonstrated that Res inhibited glioma cell proliferation, arrested cell cycle in S phase and induced apoptosis in vitro. Res also suppressed intracranial C6 tumor growth in vivo and prolonged survival in a fraction of the rats bearing intracranial gliomas. Res significantly downregulated the specific miRs, including miR-21, miR-30a-5p and miR-19, which have been identified as oncomiRs in our previous studies, and altered the expression of their targeting and crucial genes for glioma formation and progression such as p53, PTEN, EGFR, STAT3, COX-2, NF-?B and PI3K/AKT/mTOR pathway. Therefore, the anti-glioma effect of Res, at least in part, is through the regulation of oncogenic miRNAs. The effect of Res on non-coding RNAs should be studied further. Res is a potential multi-targeting drug for the treatment of gliomas. PMID:25646654

  11. Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline

    PubMed Central

    Beaucher, Michelle; Zheng, Xiao-Feng; Amariei, Flavia; Rong, Yikang S.

    2012-01-01

    Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways thatsuppress telomere addition at DSBs, paving the way for future mechanistic studies. PMID:22446318

  12. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway

    PubMed Central

    Chen, Ding; Lei, Lei; Lu, Chunxue; Flores, Rhonda; DeLisa, Matthew P.; Roberts, Tucker C.; Romesberg, Floyd E.; Zhong, Guangming

    2010-01-01

    The chlamydial protease/proteasome-like activity factor (CPAF) is secreted into the host cytosol to degrade various host factors that benefit chlamydial intracellular survival. Although the full-length CPAF is predicted to contain a putative signal peptide at its N terminus, the secretion pathway of CPAF is still unknown. Here, we have provided experimental evidence that the N-terminal sequence covering the M1–G31 region was cleaved from CPAF during chlamydial infection. The CPAF N-terminal sequence, when expressed in a phoA gene fusion construct, was able to direct the export of the mature PhoA protein across the inner membrane of wild-type Escherichia coli. However, E. coli mutants deficient in SecB failed to support the CPAF signal-peptide-directed secretion of PhoA. Since native PhoA secretion was known to be independent of SecB, this SecB dependence must be rendered by the CPAF leader peptide. Furthermore, lack of SecY function also blocked the CPAF signal-peptide-directed secretion of PhoA. Most importantly, CPAF secretion into the host cell cytosol during chlamydial infection was selectively inhibited by an inhibitor specifically targeting type I signal peptidase but not by a type III secretion-system-specific inhibitor. Together, these observations have demonstrated that the chlamydial virulence factor CPAF relies on Sec-dependent transport for crossing the chlamydial inner membrane, which has provided essential information for further delineating the pathways of CPAF action and understanding chlamydial pathogenic mechanisms. PMID:20522495

  13. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  14. Hepatitis C virus activates Bcl-2 and MMP-2 expression through multiple cellular signaling pathways.

    PubMed

    Li, Youxing; Zhang, Qi; Liu, Yin; Luo, Zhen; Kang, Lei; Qu, Jing; Liu, Weiyong; Xia, Xueshan; Liu, Yingle; Wu, Kailang; Wu, Jianguo

    2012-12-01

    Hepatitis C virus (HCV) infection is associated with numerous liver diseases and causes serious global health problems, but the mechanisms underlying the pathogenesis of HCV infections remain largely unknown. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase-2 (MMP-2), and B-cell lymphoma 2 (Bcl-2) are significantly stimulated in HCV-infected patients. We further show that HCV activates STAT3, MMP-2, Bcl-2, extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK) in infected Huh7.5.1 cells. Functional screening of HCV proteins revealed that nonstructural protein 4B (NS4B) is responsible for the activation of MMP-2 and Bcl-2 by stimulating STAT3 through repression of the suppressor of cytokine signaling 3 (SOCS3). Our results also demonstrate that multiple signaling cascades, including several members of the protein kinase C (PKC) family, JNK, ERK, and STAT3, play critical roles in the activation of MMP-2 and Bcl-2 mediated by NS4B. Further studies revealed that the C-terminal domain (CTD) of NS4B is sufficient for the activation of STAT3, JNK, ERK, MMP-2, and Bcl-2. We also show that amino acids 227 to 250 of NS4B are essential for regulation of STAT3, JNK, ERK, MMP-2, and Bcl-2, and among them, three residues (237L, 239S, and 245L) are crucial for this regulation. Thus, we reveal a novel mechanism underlying HCV pathogenesis in which multiple intracellular signaling cascades are cooperatively involved in the activation of two important cellular factors, MMP-2 and Bcl-2, in response to HCV infection. PMID:22951829

  15. PPAR? inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    PubMed

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-? (PPAR?) as a potential therapeutic target for this disease and showed that a specific PPAR? antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPAR? inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPAR? inhibitor GW6471, as well as a siRNA specific to PPAR?, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPAR? antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPAR? antagonism. Our data support the concept that targeting PPAR?, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor. PMID:25810260

  16. Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival.

    PubMed

    Wilsker, Deborah; Chung, Jon H; Pradilla, Ivan; Petermann, Eva; Helleday, Thomas; Bunz, Fred

    2012-01-01

    Many anticancer agents induce DNA strand breaks or cause the accumulation of DNA replication intermediates. The protein encoded by ataxia-telangiectasia mutated and Rad 3-related (ATR) generates signals in response to these altered DNA structures and activates cellular survival responses. Accordingly, ATR has drawn increased attention as a potential target for novel therapeutic strategies designed to potentiate the effects of existing drugs. In this study, we use a unique panel of genetically modified human cancer cells to unambiguously test the roles of upstream and downstream components of the ATR pathway in the responses to common therapeutic agents. Upstream, the S-phase-specific cyclin-dependent kinase (Cdk) 2 was required for robust activation of ATR in response to diverse chemotherapeutic agents. While Cdk2-mediated ATR activation promoted cell survival after treatment with many drugs, signaling from ATR directly to the checkpoint kinase Chk1 was required for survival responses to only a subset of the drugs tested. These results show that specifically inhibiting the Cdk2/ATR/Chk1 pathway via distinct regulators can differentially sensitize cancer cells to a wide range of therapeutic agents. PMID:22084169

  17. Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival

    PubMed Central

    Wilsker, Deborah; Chung, Jon H.; Pradilla, Ivan; Petermann, Eva; Helleday, Thomas; Bunz, Fred

    2011-01-01

    Many anticancer agents induce DNA strand breaks or cause the accumulation of DNA replication intermediates. The protein encoded by ataxia-telangiectasia mutated and Rad 3-related (ATR) generates signals in response to these altered DNA structures, and activates cellular survival responses. Accordingly, ATR has drawn increased attention as a potential target for novel therapeutic strategies designed to potentiate the effects of existing drugs. In this study, we employ a unique panel of genetically modified human cancer cells to unambiguously test the roles of upstream and downstream components of the ATR pathway in the responses to common therapeutic agents. Upstream, the S-phase specific cyclin-dependent kinase Cdk2 was required for robust activation of ATR in response to diverse chemotherapeutic agents. While Cdk2-mediated ATR activation promoted cell survival after treatment with many drugs, signaling from ATR directly to the checkpoint kinase Chk1 was required for survival responses to only a subset of the drugs tested. These results demonstrate that specifically inhibiting the Cdk2/ATR/Chk1 pathway via distinct regulators can differentially sensitize cancer cells to a wide range of therapeutic agents. PMID:22084169

  18. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways.

    PubMed

    Hirota, Yuko; Yamashita, Shun-ichi; Kurihara, Yusuke; Jin, Xiulian; Aihara, Masamune; Saigusa, Tetsu; Kang, Dongchon; Kanki, Tomotake

    2015-01-01

    In cultured cells, not many mitochondria are degraded by mitophagy induced by physiological cellular stress. We observed mitophagy in HeLa cells using a method that relies on the pH-sensitive fluorescent protein Keima. With this approach, we found that mitophagy was barely induced by carbonyl cyanide m-chlorophenyl hydrazone treatment, which is widely used as an inducer of PARK2/Parkin-related mitophagy, whereas a small but modest amount of mitochondria were degraded by mitophagy under conditions of starvation or hypoxia. Mitophagy induced by starvation or hypoxia was marginally suppressed by knockdown of ATG7 and ATG12, or MAP1LC3B, which are essential for conventional macroautophagy. In addition, mitophagy was efficiently induced in Atg5 knockout mouse embryonic fibroblasts. However, knockdown of RAB9A and RAB9B, which are essential for alternative autophagy, but not conventional macroautophagy, severely suppressed mitophagy. Finally, we found that the MAPKs MAPK1/ERK2 and MAPK14/p38 were required for mitophagy. Based on these findings, we conclude that mitophagy in mammalian cells predominantly occurs through an alternative autophagy pathway, requiring the MAPK1 and MAPK14 signaling pathways. PMID:25831013

  19. Uterine Rbpj is required for embryonic-uterine orientation and decidual remodeling via Notch pathway-independent and -dependent mechanisms

    PubMed Central

    Zhang, Shuang; Kong, Shuangbo; Wang, Bingyan; Cheng, Xiaohong; Chen, Yongjie; Wu, Weiwei; Wang, Qiang; Shi, Junchao; Zhang, Ying; Wang, Shumin; Lu, Jinhua; Lydon, John P; DeMayo, Francesco; Pear, Warren S; Han, Hua; Lin, Haiyan; Li, Lei; Wang, Hongmei; Wang, Yan-ling; Li, Bing; Chen, Qi; Duan, Enkui; Wang, Haibin

    2014-01-01

    Coordinated uterine-embryonic axis formation and decidual remodeling are hallmarks of mammalian post-implantation embryo development. Embryonic-uterine orientation is determined at initial implantation and synchronized with decidual development. However, the molecular mechanisms controlling these events remain elusive despite its discovery a long time ago. In the present study, we found that uterine-specific deletion of Rbpj, the nuclear transducer of Notch signaling, resulted in abnormal embryonic-uterine orientation and decidual patterning at post-implantation stages, leading to substantial embryo loss. We further revealed that prior to embryo attachment, Rbpj confers on-time uterine lumen shape transformation via physically interacting with uterine estrogen receptor (ER?) in a Notch pathway-independent manner, which is essential for the initial establishment of embryo orientation in alignment with uterine axis. While at post-implantation stages, Rbpj directly regulates the expression of uterine matrix metalloproteinase in a Notch pathway-dependent manner, which is required for normal post-implantation decidual remodeling. These results demonstrate that uterine Rbpj is essential for normal embryo development via instructing the initial embryonic-uterine orientation and ensuring normal decidual patterning in a stage-specific manner. Our data also substantiate the concept that normal mammalian embryonic-uterine orientation requires proper guidance from developmentally controlled uterine signaling. PMID:24971735

  20. Correlations of ion structure with multiple fragmentation pathways arising from collision-induced dissociations of selected ?-hydroxycarboxylic acid anions.

    PubMed

    Greene, Lana E; Grossert, J Stuart; White, Robert L

    2013-03-01

    Under conditions of collision-induced dissociation (CID), anions of ?-hydroxycarboxylic acids usually fragment to yield the distinctive hydroxycarbonyl anion (m/z 45) and/or the complementary product anion formed by neutral loss of formic acid (46 u). Further support for the known two-step mechanism, involving an ion-neutral complex for the formation of the hydroxycarbonyl anion from the carboxyl group, is herein provided by tandem mass spectrometric results and density functional theory computations on the glycolate, lactate and 3-phenyllactate ions. A fourth, structurally related ?-hydroxycarboxylate ion, obtained by deprotonation of mandelic acid, showed only loss of carbon dioxide upon CID. Density functional theory computations on the mandelate ion indicated that similar energy inputs were required for a direct, phenyl-assisted decarboxylation and a postulated novel rearrangement to a carbonate ester, which yielded the benzyl oxide ion upon loss of CO2. Rearrangement of the glycolate ion led to expulsion of carbon monoxide, whereas the 3-phenyllactate ion showed the loss of water and formation of the benzyl anion and the benzyl radical as competing processes. The fragmentation pathways proposed for lactate and 3-phenyllactate are supported by isotopic labeling. The relative computed energies of saddle points and product ions for all proposed fragmentation pathways are consistent with the energies supplied during CID experiments and the observed relative intensities of product ions. The diverse reaction pathways characterized for this set of four ?-hydroxycarboxylate ions demonstrate that it is crucial to understand the effects of structural variations when attempting to predict the gas-phase reactivity and CID spectra of carboxylate ions. PMID:23494786

  1. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating.

    PubMed

    Ma, J; González, A; Chen, R

    1996-09-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six-state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels. PMID:8882865

  2. Assessing data quality for a federal environmental restoration project: Rationalizing the requirements of multiple clients

    SciTech Connect

    Kiszka, V.R.; Carlsen, T.M.

    1994-07-01

    Most environmental restoration projects at federal facilities face the difficult task of melding the quality assurance (QA) requirements of multiple clients, as well as dealing with historical data that are often of unknown quality. At Lawrence Livermore National Laboratory (LLNL), we have successfully integrated the requirements of our multiple clients by carefully developing a QA program that efficiently meets our clients` needs. The Site 300 Experimental Test Site is operated by LLNL in support of its national defense program. The responsibility for conducting environmental contaminant investigations and restoration at Site 300 is vested in the Site 300 Environmental Restoration Project (Site 300 ERP) of LLNL`s Environmental Restoration Division. LLNL Site 300 ERP must comply with the QA requirements of several clients, which include: the LLNL Environmental Protection Department, the DOE, the US Environmental Protection Agency-Region IX (EPA), the California Regional Water Quality Control Board -- Central Valley Region, and the California Department of Toxic Substances Control. This comprehensive QA program was used to determine the acceptability of historical data. The Site 300 ERP began soil and ground water investigations in 1982. However, we did not begin receiving analytical quality assurance/quality control (QA/QC) data until 1989; therefore, the pre-1989 data that were collected are of unknown quality. The US EPA QAMS-005/80 defines data quality as the totality of features and characteristics of data that bears on its ability to satisfy a given purpose. In the current context, the characteristics of major importance are accuracy, precision, completeness, representativeness, and comparability. Using our established QA program, we determined the quality of this historical data based on its comparability to the post-1989 data. By accepting this historical data, we were able to save a considerable amount of money in recharacterization costs.

  3. T cell-specific inhibition of multiple apoptotic pathways blocks negative selection and causes autoimmunity

    PubMed Central

    Burger, Megan L; Leung, Kenneth K; Bennett, Margaux J; Winoto, Astar

    2014-01-01

    T cell self-tolerance is thought to involve peripheral tolerance and negative selection, involving apoptosis of autoreactive thymocytes. However, evidence supporting an essential role for negative selection is limited. Loss of Bim, a Bcl-2 BH3-only protein essential for thymocyte apoptosis, rarely results in autoimmunity on the C57BL/6 background. Mice with T cell-specific over-expression of Bcl-2, that blocks multiple BH3-only proteins, are also largely normal. The nuclear receptor Nur77, also implicated in negative selection, might function redundantly to promote apoptosis by associating with Bcl-2 and exposing its potentially pro-apoptotic BH3 domain. Here, we report that T cell-specific expression of a Bcl2 BH3 mutant transgene results in enhanced rescue of thymocytes from negative selection. Concomitantly, Treg development is increased. However, aged BH3 mutant mice progressively accumulate activated, autoreactive T cells, culminating in development of multi-organ autoimmunity and lethality. These data provide strong evidence that negative selection is crucial for establishing T cell tolerance. DOI: http://dx.doi.org/10.7554/eLife.03468.001 PMID:25182415

  4. Understanding the role of adjunctive nonpharmacological therapies in management of the multiple pathways to depression.

    PubMed

    Velehorschi, Corina; Bleau, Pierre; Vermani, Monica; Furtado, Melissa; Klassen, Larry J

    2014-12-01

    Major depressive disorder (MDD) is a common disorder with a lifetime prevalence of 16.2% and the fourth highest cause of disability globally. It is hypothesized to be a syndromatic manifestation of multiple pathological processes leading to similar clinical manifestation. MDD is associated with at least three categories of peripheral hormone-type factors including neurotrophic factors, proinflammatory cytokines, and processes that impair regulation of the hypothalamic-pituitary-adrenocortical axis. Neuroimaging studies have identified functional abnormalities including subcortical systems associated with reward and emotion processing, medial prefrontal and anterior cingulate cortical regions and the lateral prefrontal cortical systems involved in cognitive control and voluntary emotion regulation. Studies investigating the effects of psychotherapy and pharmacotherapy on functional brain measures show normalization of brain function with return to euthymia. Nevertheless, approximately 50% of patients with MDD will not respond sufficiently and 60 to 70% will not achieve full remission with first-line pharmacotherapy, therefore clinicians strive to improve patient responses through the use of adjunct therapies. This review discusses recent research in the various biological processes associated with MDD as well as recent data in support of the use of adjunctive non-pharmacological therapies including psychotherapy, bibliotherapy, Internet therapy, "natural" or herbal approaches, exercise therapy, and somatic therapies. PMID:25539873

  5. MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS)

    PubMed Central

    2013-01-01

    Background MicroRNA are small noncoding RNA molecules that are involved in the control of gene expression. To investigate the role of microRNA in multiple sclerosis (MS), we performed genome-wide expression analyses of mRNA and microRNA in T-cells from MS patients and controls. Methods Heparin-anticoagulated peripheral blood was collected from MS-patients and healthy controls followed by isolation of T-cells. MicroRNA and RNA from T-cells was prepared and hybridized to Affymetrix miR 2.0 array and Affymetrix U133Plus 2.0 Human Genome array (Santa Clara, CA), respectively. Verifications were performed with real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results We identified 2,452 differentially expressed genes and 21 differentially expressed microRNA between MS patients and controls. By Kolmogorov-Smirnov test, 20 of 21 differentially expressed microRNA were shown to affect the expression of their target genes, many of which were involved in the immune system. Tumor necrosis factor ligand superfamily member 14 (TNFSF14) was a microRNA target gene significantly decreased in MS. The differential expression of mir-494, mir-197 and the predicted microRNA target gene TNFSF14 was verified by real-time PCR and ELISA. Conclusion These findings indicate that microRNA may be important regulatory molecules in T-cells in MS. PMID:23895517

  6. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways.

    PubMed

    Gong, Pichang; Quan, Hui; He, Chaoying

    2014-12-01

    Peptide aptamers are artificial short peptides that potentially interfere with the biological roles of their target proteins; however, this technology has not yet been applied to plant functional genomics. MAGO and Y14, the two core subunits of the exon junction complex (EJC), form obligate heterodimers in eukaryotes. In Oryza sativa L. (rice), each of the two genes has two homologs, designated OsMAGO1 and OsMAGO2, and OsY14a and OsY14b, respectively. Here, we characterized a 16-amino acida peptide aptamer (PAP) for the rice MAGO proteins. PAP and rice Y14 bound competitively to rice MAGO proteins. Specifically targeting the MAGO proteins by expressing the aptamer in transgenic rice plants did not affect the endogenous synthesis and accumulation of MAGO proteins; however, the phenotypic variations observed in multiple organs phenocopied those of transgenic rice plants harboring RNA interference (RNAi) constructs in which the accumulation of MAGO and/or OsY14a transcripts and MAGO proteins was downregulated severely. Morphologically, the aptamer transgenic plants were short with abnormally developed flowers, and the stamens exhibited reduced degradation and absorption of both the endothecium and tapetum, thus confirming that EJC core heterodimers play essential roles in rice development, growth and reproduction. This study reveals that as a complementary approach of RNAi, peptide aptamers are powerful tools for interfering with the function of proteins in higher plants. PMID:25230811

  7. CAP defines a second signalling pathway required for insulin-stimulated glucose transport

    NASA Astrophysics Data System (ADS)

    Baumann, Christian A.; Ribon, Vered; Kanzaki, Makoto; Thurmond, Debbie C.; Mora, Silvia; Shigematsu, Satoshi; Bickel, Perry E.; Pessin, Jeffrey E.; Saltiel, Alan R.

    2000-09-01

    Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl protooncogene product. Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP. Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction. Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.

  8. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice

    PubMed Central

    2010-01-01

    Background Grain endosperm chalkiness of rice is a varietal characteristic that negatively affects not only the appearance and milling properties but also the cooking texture and palatability of cooked rice. However, grain chalkiness is a complex quantitative genetic trait and the molecular mechanisms underlying its formation are poorly understood. Results A near-isogenic line CSSL50-1 with high chalkiness was compared with its normal parental line Asominori for grain endosperm chalkiness. Physico-biochemical analyses of ripened grains showed that, compared with Asominori, CSSL50-1 contains higher levels of amylose and 8 DP (degree of polymerization) short-chain amylopectin, but lower medium length 12 DP amylopectin. Transcriptome analysis of 15 DAF (day after flowering) caryopses of the isogenic lines identified 623 differential expressed genes (P < 0.01), among which 324 genes are up-regulated and 299 down-regulated. These genes were classified into 18 major categories, with 65.3% of them belong to six major functional groups: signal transduction, cell rescue/defense, transcription, protein degradation, carbohydrate metabolism and redox homeostasis. Detailed pathway dissection demonstrated that genes involved in sucrose and starch synthesis are up-regulated, whereas those involved in non-starch polysaccharides are down regulated. Several genes involved in oxidoreductive homeostasis were found to have higher expression levels in CSSL50-1 as well, suggesting potential roles of ROS in grain chalkiness formation. Conclusion Extensive gene expression changes were detected during rice grain chalkiness formation. Over half of these differentially expressed genes are implicated in several important categories of genes, including signal transduction, transcription, carbohydrate metabolism and redox homeostasis, suggesting that chalkiness formation involves multiple metabolic and regulatory pathways. PMID:21192807

  9. Multiple Redox-Active Chlorophylls in the Secondary Electron-Transfer Pathways of Oxygen-Evolving Photosystem II†

    PubMed Central

    Tracewell, Cara A.; Brudvig, Gary W.

    2009-01-01

    Photosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680+. We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and ?-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at cryogenic temperatures. In contrast to previous results for Mn-depleted PS II, multiple near-IR absorption bands are resolved in the light-minus-dark difference spectra of oxygen-evolving PS II core complexes including two fast-decaying bands at 793 nm and 814 nm and three slow-decaying bands at 810 nm, 825 nm, and 840 nm. We assign these bands to chlorophyll cation radicals (Chl+). The fast-decaying bands observed after illumination at 20 K could be generated again by re-illuminating the sample. Quantization by EPR gives a yield of 0.85 radicals per PS II, and the yield of oxidized cytochrome b559 by optical difference spectroscopy is 0.15 per PS II. Potential locations of Chl+ and Car+ species, and the pathways of secondary electron transfer based on the rates of their formation and decay, are discussed. This is the first evidence that Chls in the light-harvesting proteins CP43 and CP47 are oxidized by P680+ and may have a role in Chl fluorescence quenching. We also suggest that a possible role for negatively charged lipids (phosphatidyldiacylglycerol and sulphoquinovosyldiacylglycerol identified in the PS II structure) could be to decrease the redox potential of specific Chl and Car cofactors. These results provide new insight into the alternate electron-donation pathways to P680+. PMID:18850718

  10. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells

    PubMed Central

    Zhang, Xiaohong; Guo, Wei; Chen, Wangbing; Tian, Yun; Fu, Lingyi; Shi, Dingbo; Cheng, Jianding; Huang, Wenlin; Deng, Wuguo

    2013-01-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib) abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-?B and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-?B and CREB2. Pretreatment with a p300 inhibitor (roscovitine) abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-?B/CREB2, and cytochrome c/caspase pathways. PMID:23737956

  11. Blanket/First Wall Challenges and Required R&D on the pathway to DEMO

    E-print Network

    Abdou, Mohamed

    and with Be in CB, can extract tritium from Li, fast tritium release from CB · In the 1980's: · Many blanket part of fusion reactor studies. Major R&D accomplishments in the 1970's: can breed tritium with Li and facilities required for Blanket R&D · Major R&D Tasks were defined, far-sighted Roadmap was identified. Asked

  12. Analysis of Signal Transducer and Activator of Transcription 3 (Stat 3) Pathway in Multiple Myeloma

    PubMed Central

    Quintanilla-Martinez, Leticia; Kremer, Marcus; Specht, Katja; Calzada-Wack, Julia; Nathrath, Michaela; Schaich, Robert; Höfler, Heinz; Fend, Falko

    2003-01-01

    The signal transducer and activator of transcription molecules (Stats) play key roles in cytokine-induced signal transduction. Recently, it was proposed that constitutively activated Stat 3 (Stat 3 phosphorylated) contributes to the pathogenesis of multiple myeloma (MM) by preventing apoptosis and inducing proliferation. The study aim was to investigate Stat 3 activation in a series of multiple myeloma (MM) cases and its effect on downstream targets such as the anti-apoptotic proteins Bcl-xL, Mcl-1, and Bcl-2, and the cell-cycle protein cyclin D1. Forty-eight cases of MM were analyzed. Immunohistochemistry was performed on paraffin sections using antibodies against cyclin D1, Bcl-2, Bcl-xL, Mcl-1, p21, Stat 3, and Stat 3 phosphorylated (P). Their specificity was corroborated by Western blot analysis using eight human MM cell lines as control. The proliferation rate was assessed with the antibody MiB1. In addition, the mRNA levels of cyclin D1 and Stat 3 were determined by quantitative real-time reverse transcriptase-polymerase chain reaction of paraffin-embedded microdissected tissue. Three different groups determined by the expression of Stat 3P and cyclin D1 (protein and mRNA) were identified: group 1, Stat 3-activated (23 cases, 48%). All cases revealed nuclear expression of Stat 3P. No elevation of Stat 3 mRNA was identified in any of the cases. Three cases in this group showed intermediate to low cyclin D1 protein and mRNA expression. Group 2 included 15 (31%) cases with cyclin D1 staining and lack of Stat 3P. All cases showed intermediate to high levels of cyclin D1 mRNA expression. Group 3 included 10 (21%) cases with no expression of either cyclin D1 or Stat 3P. High levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were identified in 89% and 100% of all cases, respectively. In contrast to Bcl-xL and Mcl-1, the expression of Bcl-2 showed an inverse correlation with proliferation rate (P: 0.0003). No significant differences were found between the three groups in terms of proliferation rate or expression of anti-apoptotic proteins. However, cyclin D1+ cases were always well differentiated and were more likely to show a lymphoplasmocytoid differentiation (chi-square = 9.55). Overall, constitutive activation of Stat 3 was found in almost half (48%) of the investigated MM cases. However, this does not seem to have a major impact on the expression of anti-apoptotic proteins and proliferation. We showed that cyclin D1 overexpression and Stat 3 activation are, mutually exclusive events in MM (P = 0.0066). The universal expression of Mcl-1, independent of activated Stat 3, suggests that its expression is constitutive and that it might play an important role in the pathogenesis of MM. PMID:12707028

  13. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    PubMed

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1? (SDF-1?) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1?/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-?B) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1?-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. PMID:25034231

  14. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways

    PubMed Central

    Nardone, S; Sharan Sams, D; Reuveni, E; Getselter, D; Oron, O; Karpuj, M; Elliott, E

    2014-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by dysfunction in social interaction, communication and stereotypic behavior. Genetic and environmental factors have been implicated in the development of ASD, but the molecular mechanisms underlying their interaction are not clear. Epigenetic modifications have been suggested as molecular mechanism that can mediate the interaction between the environment and the genome to produce adaptive or maladaptive behaviors. Here, using the Illumina 450?K methylation array we have determined the existence of many dysregulated CpGs in two cortical regions, Brodmann area 10 (BA10) and Brodmann area 24 (BA24), of individuals who had ASD. In BA10 we found a very significant enrichment for genomic areas responsible for immune functions among the hypomethylated CpGs, whereas genes related to synaptic membrane were enriched among hypermethylated CpGs. By comparing our methylome data with previously published transcriptome data, and by performing real-time PCR on selected genes that were dysregulated in our study, we show that hypomethylated genes are often overexpressed, and that there is an inverse correlation between gene expression and DNA methylation within the individuals. Among these genes there were C1Q, C3, ITGB2 (C3R), TNF-?, IRF8 and SPI1, which have recently been implicated in synaptic pruning and microglial cell specification. Finally, we determined the epigenetic dysregulation of the gene HDAC4, and we confirm that the locus encompassing C11orf21/TSPAN32 has multiple hypomethylated CpGs in the autistic brain, as previously demonstrated. Our data suggest a possible role for epigenetic processes in the etiology of ASD. PMID:25180572

  15. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  16. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    SciTech Connect

    Orrego, C.; Eisenstadt, E.

    1987-06-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA/sup +/ gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability.

  17. Requirement of JNK for Stress Induced Activation of the Cytochrome c-Mediated Death Pathway

    Microsoft Academic Search

    Cathy Tournier; Patricia Hess; Derek D. Yang; Jie Xu; Tod K. Turner; Anjaruwee Nimnual; Dafna Bar-Sagi; Stephen N. Jones; Richard A. Flavell; Roger J. Davis

    2000-01-01

    The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated

  18. AKT/mTOR and c-Jun N-terminal kinase signaling pathways are required for chrysotile asbestos-induced autophagy.

    PubMed

    Lin, Ziying; Liu, Tie; Kamp, David W; Wang, Yahong; He, Huijuan; Zhou, Xu; Li, Donghong; Yang, Lawei; Zhao, Bin; Liu, Gang

    2014-07-01

    Chrysotile asbestos is closely associated with excess mortality from pulmonary diseases such as lung cancer, mesothelioma, and asbestosis. Although multiple mechanisms in which chrysotile asbestos fibers induce pulmonary disease have been identified, the role of autophagy in human lung epithelial cells has not been examined. In this study, we evaluated whether chrysotile asbestos induces autophagy in A549 human lung epithelial cells and then analyzed the possible underlying molecular mechanism. Chrysotile asbestos induced autophagy in A549 cells based on a series of biochemical and microscopic autophagy markers. We observed that asbestos increased expression of A549 cell microtubule-associated protein 1 light chain 3 (LC3-II), an autophagy marker, in conjunction with dephosphorylation of phospho-AKT, phospho-mTOR, and phospho-p70S6K. Notably, AKT1/AKT2 double-knockout murine embryonic fibroblasts (MEFs) had negligible asbestos-induced LC3-II expression, supporting a crucial role for AKT signaling. Chrysotile asbestos also led to the phosphorylation/activation of Jun N-terminal kinase (JNK) and p38 MAPK. Pharmacologic inhibition of JNK, but not p38 MAPK, dramatically inhibited the protein expression of LC3-II. Moreover, JNK2(-/-) MEFs but not JNK1(-/-) MEFs blocked LC3-II levels induced by chrysotile asbestos. In addition, N-acetylcysteine, an antioxidant, attenuated chrysotile asbestos-induced dephosphorylation of P-AKT and completely abolished phosphorylation/activation of JNK. Finally, we demonstrated that chrysotile asbestos-induced apoptosis was not affected by the presence of the autophagy inhibitor 3-methyladenine or autophagy-related gene 5 siRNA, indicating that the chrysotile asbestos-induced autophagy may be adaptive rather than prosurvival. Our findings demonstrate that AKT/mTOR and JNK2 signaling pathways are required for chrysotile asbestos-induced autophagy. These data provide a mechanistic basis for possible future clinical applications targeting these signaling pathways in the management of asbestos-induced lung disease. PMID:24735948

  19. Klf5 Deletion Promotes Pten Deletion–Initiated Luminal-Type Mouse Prostate Tumors through Multiple Oncogenic Signaling Pathways12

    PubMed Central

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N.; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-01-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5. PMID:25425963

  20. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  1. Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.

    2014-12-01

    Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was uniformly elevated above water dissolved MeHg in the other estuaries studied. Several estuaries had higher MeHg at low tide suggesting input as water was delivered from the watersheds. We conclude that the relative importance of sources is dependent on the physical (water residence time, water depth) and chemical characteristics (sediment organic carbon content) of the estuary.

  2. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLC? docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  3. A novel pathway of rapid TLR-triggered activation of integrin-dependent leukocyte adhesion that requires Rap1 GTPase

    PubMed Central

    Chung, Kyoung-Jin; Mitroulis, Ioannis; Wiessner, Johannes R.; Zheng, Ying Yi; Siegert, Gabriele; Sperandio, Markus; Chavakis, Triantafyllos

    2014-01-01

    Rapid ?2-integrin activation is indispensable for leukocyte adhesion and recruitment to sites of infection and is mediated by chemokine- or P-selectin glycoprotein ligand-1–induced inside-out signaling. Here we uncovered a novel pathway for rapid activation of integrin-dependent leukocyte adhesion, triggered by toll-like receptor (TLR)–mediated signaling. TLR2 or TLR5 ligation rapidly activated integrin-dependent leukocyte adhesion to immobilized ICAM-1 and fibronectin. Consistently, in vivo administration of the TLR2-ligand Pam3CSK4 increased integrin-dependent slow rolling and adhesion to endothelium within minutes, as identified by intravital microscopy in the cremaster model. TLR2 and TLR5 ligation increased ?2-integrin affinity, as assessed by the detection of activation-dependent neoepitopes. TLR2- and TLR5-triggered integrin activation in leukocytes required enhanced Rap1 GTPase activity, which was mediated by Rac1 activation and NADPH oxidase-2–dependent reactive oxygen species production. This novel direct pathway linking initial pathogen recognition by TLRs to rapid ?2-integrin activation may critically regulate acute leukocyte infiltration to sites of pathogen invasion. PMID:25057020

  4. Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    PubMed Central

    Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique

    2012-01-01

    Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of ?6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r?=?0.82, p<0.001, and r?=?0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225

  5. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment...Telephonic Reporting of Unsafe Conditions at Highway-Rail and Pathway Grade Crossings ...maintaining railroads with respect to the same highway-rail or pathway grade crossing;...

  6. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment...Telephonic Reporting of Unsafe Conditions at Highway-Rail and Pathway Grade Crossings ...maintaining railroads with respect to the same highway-rail or pathway grade crossing;...

  7. 49 CFR 234.306 - Multiple dispatching or maintaining railroads with respect to the same highway-rail or pathway...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...maintaining railroads with respect to the same highway-rail or pathway grade crossing; appointment...Telephonic Reporting of Unsafe Conditions at Highway-Rail and Pathway Grade Crossings ...maintaining railroads with respect to the same highway-rail or pathway grade crossing;...

  8. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions.

    PubMed

    Nagashima, Shigeo; Takahashi, Masaharu; Jirintai, Suljid; Tanaka, Toshinori; Nishizawa, Tsutomu; Yasuda, Jiro; Okamoto, Hiroaki

    2011-12-01

    We have previously demonstrated that an intact PSAP motif in the ORF3 protein is required for the formation and release of membrane-associated hepatitis E virus (HEV) particles with ORF3 proteins on their surface. In this study, we investigated the direct interaction between the ORF3 protein and tumour susceptibility gene 101 (Tsg101), a cellular factor involved in the budding of viruses containing the P(T/S)AP late-domain, in PLC/PRF/5 cells expressing the wild-type or PSAP-mutated ORF3 protein and Tsg101 by co-immunoprecipitation. Tsg101 bound to wild-type ORF3 protein, but not to the PSAP-inactive ORF3 protein. To examine whether HEV utilizes the multivesicular body (MVB) pathway to release the virus particles, we analysed the efficiency of virion release from cells upon introduction of small interfering RNA (siRNA) against Tsg101 or dominant-negative (DN) mutants of Vps4 (Vps4A and Vps4B). The relative levels of virus particles released from cells depleted of Tsg101 decreased to 6.4?% of those transfected with negative control siRNA. Similarly, virion egress was significantly reduced by the overexpression of DN forms (Vps4AEQ or Vps4BEQ). The relative levels of virus particles released from cells expressing Vps4AEQ and Vps4BEQ were 19.2 and 15.6?%, respectively, while the overexpression of wild-type Vps4A and Vps4B did not alter the levels of virus release. These results indicate that the ORF3 protein interacts with Tsg101 through the PSAP motifs in infected cells, and that Tsg101 and the enzymic activities of Vps4A and Vps4B are involved in HEV release, thus suggesting that HEV requires the MVB pathway for egress of virus particles. PMID:21880841

  9. Multiplication

    NSDL National Science Digital Library

    Ms. Walker

    2008-03-26

    Here are some fun games to make practicing multiplication fun!!! Before you start the fun... click Multiplication Tables to review what you already know! Can you figure out the Multiplication Hidden Picture... you better know your math skills first or the picture will burst! It\\'s times to have a \\"blast\\"... Blow me away with theMultiplication Tunnel Blaster Now your ready to join the team! Show me ...

  10. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    PubMed Central

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  11. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 Promote Seedling Photomorphogenesis in Multiple Light Signaling Pathways1[C][W][OPEN

    PubMed Central

    Zhou, Peng; Song, Meifang; Yang, Qinghua; Su, Liang; Hou, Pei; Guo, Lin; Zheng, Xu; Xi, Yulin; Meng, Fanhua; Xiao, Yang; Yang, Li; Yang, Jianping

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved RING finger E3 ubiquitin ligase, which mediates degradation of several photomorphogenesis promoting factors, including ELONGATED HYPOCOTYL5 (HY5) and LONG HYPOCOTYL IN FAR-RED1 (HFR1), through a 26S proteasome-dependent pathway. PHYTOCHROME RAPIDLY REGULATED1 (PAR1) was first detected as an early repressed gene in both phytochrome A (phyA)-mediated far-red and phyB-mediated red signaling pathways, and subsequent studies showed that both PAR1 and PAR2 are negative factors of shade avoidance in Arabidopsis. However, the role of PAR1 and PAR2 in seedling deetiolation, and their relationships with other photomorphogenesis promoting and repressing factors are largely unknown. Here, we confirmed that both PAR1 and PAR2 redundantly enhance seedling deetiolation in multiple photoreceptor signaling pathways. Their transcript abundances are repressed by phyA, phyB, and cryptochrome1 under far-red, red, and blue light conditions, respectively. Both PAR1 and PAR2 act downstream of COP1, and COP1 mediates the degradation of PAR1 and PAR2 through the 26S proteasome pathway. Both PAR1 and PAR2 act in a separate pathway from HY5 and HFR1 under different light conditions, except for sharing in the same pathway with HFR1 under far-red light. Together, our results substantiate that PAR1 and PAR2 are positive factors functioning in multiple photoreceptor signaling pathways during seedling deetiolation. PMID:24335334

  12. Requirement for Both Shc and Phosphatidylinositol 3? Kinase Signaling Pathways in Polyomavirus Middle T-Mediated Mammary Tumorigenesis

    PubMed Central

    Webster, Marc A.; Hutchinson, John N.; Rauh, Michael J.; Muthuswamy, Senthil K.; Anton, Martina; Tortorice, Christopher G.; Cardiff, Robert D.; Graham, Frank L.; Hassell, John A.; Muller, William J.

    1998-01-01

    Transgenic mice expressing the polyomavirus (PyV) middle T antigen (MT) develop multifocal mammary tumors which frequently metastasize to the lung. The potent transforming activity of PyV MT is correlated with its capacity to activate and associate with a number of signaling molecules, including the Src family tyrosine kinases, the 85-kDa Src homology 2 subunit of the phosphatidylinositol 3? (PI-3?) kinase, and the Shc adapter protein. To uncover the role of these signaling proteins in MT-mediated mammary tumorigenesis, we have generated transgenic mice that express mutant PyV MT antigens decoupled from either the Shc or the PI-3? kinase signaling pathway. In contrast to the rapid induction of metastatic mammary tumors observed in the strains expressing wild-type PyV MT, mammary epithelial cell-specific expression of either mutant PyV MT resulted in the induction of extensive mammary epithelial hyperplasias. The mammary epithelial hyperplasias expressing the mutant PyV MT defective in recruiting the PI-3? kinase were highly apoptotic, suggesting that recruitment of PI-3? kinase by MT affects cell survival. Whereas the initial phenotypes observed in both strains were global mammary epithelial hyperplasias, focal mammary tumors eventually arose in all female transgenic mice. Genetic and biochemical analyses of tumorigenesis in the transgenic strains expressing the PyV MT mutant lacking the Shc binding site revealed that a proportion of the metastatic tumors arising in these mice displayed evidence of reversion of the mutant Shc binding site. In contrast, no evidence of reversion of the PI-3? kinase binding site was noted in tumors derived from the strains expressing the PI-3? kinase binding site MT mutant. Tumor progression in both mutant strains was further correlated with upregulation of the epidermal growth factor receptor family members which are known to couple to the PI-3? kinase and Shc signaling pathways. Taken together, these observations suggest that PyV MT-mediated tumorigenesis requires activation of both Shc and PI-3? kinase, which appear to be required for stimulation of cell proliferation and survival signaling pathways, respectively. PMID:9528804

  13. Kinetically distinct sorting pathways through the Golgi exhibit different requirements for Arf1.

    PubMed

    Whitt, Michael A; Cox, Michelle E; Kansal, Rita; Cox, John V

    2015-03-01

    To investigate the role of cytoplasmic sequences in directing transmembrane protein trafficking through the Golgi, we analyzed the sorting of VSV tsO45 G fusions with either the native G cytoplasmic domain (G) or an alternative cytoplasmic tail derived from the chicken AE1-4 anion exchanger (G(AE) ). At restrictive temperature G(AE) and G accumulated in the ER, and upon shifting the cells to permissive temperature both proteins folded and underwent transport through the Golgi. However, G(AE) and G did not form hetero-oligomers upon the shift to permissive temperature and they progressed through the Golgi with distinct kinetics. In addition, the transport of G through the proximal Golgi was Arf1 and COPI-dependent, while G(AE) progression through the proximal Golgi was Arf1 and COPI-independent. Although Arf1 did not regulate the sorting of G(AE) in the cis-Golgi, Arf1 did regulate the exit of G(AE) from the TGN. The trafficking of G(AE) through the Golgi was similar to that of the native AE1-4 anion exchanger, in that the progression of both proteins through the proximal Golgi was Arf1-independent, while both required Arf1 to exit the TGN. We propose that the differential recognition of cytosolic signals in membrane-spanning proteins by the Arf1-dependent sorting machinery may influence the rate at which cargo progresses through the Golgi. PMID:25470762

  14. Activities of multiple cancer-related pathways are associated with BRAF mutation and predict the resistance to BRAF/MEK inhibitors in melanoma cells

    PubMed Central

    Liu, Dingxie; Liu, Xuan; Xing, Mingzhao

    2014-01-01

    Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNF?, EGFR, IFN?, hypoxia, IFN?, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNF?, EGFR, IFN?, and IFN? pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy. PMID:24200969

  15. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway.

    PubMed

    Singh, Navjot; Ma, Zhuo; Gemmill, Trent; Wu, Xiaoyun; Defiglio, Holland; Rossettini, Anne; Rabeler, Christina; Beane, Olivia; Morse, Randall H; Palumbo, Michael J; Hanes, Steven D

    2009-10-23

    Genome-wide studies have identified abundant small, noncoding RNAs, including small nuclear RNAs, small nucleolar RNAs (snoRNAs), cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs), that are transcribed by RNA polymerase II (pol II) and terminated by an Nrd1-dependent pathway. Here, we show that the prolyl isomerase Ess1 is required for Nrd1-dependent termination of noncoding RNAs. Ess1 binds the carboxy-terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of approximately 10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, stable unannotated transcripts, and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase. We also provide evidence for a competition between Nrd1 and Pcf11 for CTD binding that is regulated by Ess1. These data indicate that a prolyl isomerase is required for specifying the "CTD code." PMID:19854134

  16. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang, E-mail: fhua2@emory.edu [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)] [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States); Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G. [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)] [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  17. Selective Requirement of the Shikimate Pathway of Legionella pneumophila for Intravacuolar Growth within Human Macrophages but Not within Acanthamoeba.

    PubMed

    Jones, Snake C; Price, Christopher T D; Santic, Marina; Abu Kwaik, Yousef

    2015-06-01

    Legionella pneumophila utilizes the Dot/Icm type IV translocation system to proliferate within a vacuole in a wide variety of natural amoebal hosts and in alveolar macrophages of the human accidental host. Although L. pneumophila utilizes host amino acids as the main sources of carbon and energy, it is not known whether de novo synthesis of amino acids by intravacuolar L. pneumophila contributes to its nutrition. The aroB and aroE genes encode enzymes for the shikimate pathway that generates the aromatic amino acids Phe, Trp, and Tyr. Here we show the aroB and aroE mutants of L. pneumophila to be defective in growth in human monocyte-derived macrophages (hMDMs) but not in Acanthamoeba spp. The aroB and aroE mutants are severely attenuated in intrapulmonary proliferation in the A/J mouse model of Legionnaires' disease, and the defect is fully complemented by the respective wild-type alleles. The two mutants grow normally in rich media but do not grow in defined media lacking aromatic amino acids, and the growth defect is rescued by inclusion of the aromatic amino acids, which are essential for production of the pyomelanin pigment. Interestingly, supplementation of infected hMDMs with the three aromatic amino acids or with Trp alone rescues the intramacrophage defect of the aroE but not the aroB mutant. Therefore, the shikimate pathway of L. pneumophila is differentially required for optimal growth within human macrophages, which are auxotrophic for Trp and Phe, but is dispensable for growth within the Acanthamoeba spp. that synthesize the aromatic amino acids. PMID:25847958

  18. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory.

    PubMed

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-01-01

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons. PMID:25988357

  19. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory

    PubMed Central

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-01-01

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons. PMID:25988357

  20. Lipopolysaccharide-induced activation of NF-{kappa}B non-canonical pathway requires BCL10 serine 138 and NIK phosphorylations

    SciTech Connect

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K. [Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612-7227 (United States)] [Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612-7227 (United States); Tobacman, Joanne K., E-mail: jkt@uic.edu [Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612-7227 (United States)

    2010-11-15

    Background and aims: B-cell lymphoma/leukemia (BCL)-10 and reactive oxygen species mediate two pathways of NF-{kappa}B (RelA) activation by lipopolysaccharide (LPS) in human colonic epithelial cells. The pathway for LPS activation of RelB by the non-canonical pathway (RelB) in non-myeloid cells was not yet reported, but important for understanding the range of potential microbial LPS-induced effects in inflammatory bowel disease. Methods: Experiments were performed in human colonic epithelial cells and in mouse embryonic fibroblasts deficient in components of the IkappaB kinase (IKK) signalosome, in order to detect mediators of the non-canonical pathway of NF-{kappa}B activation, including nuclear RelB and p52 and phospho- and total NF-{kappa}B inducing kinase (NIK). BCL10 was silenced by siRNA and effects of mutations of specific phosphorylation sites of BCL10 (Ser138Gly and Ser218Gly) were determined. Results: By the non-canonical pathway, LPS exposure increased nuclear RelB and p52, and phospho-NIK, with no change in total NIK. Phosphorylation of BCL10 serine 138 was required for NIK phosphorylation, since mutation of this residue eliminated the increases in phospho-NIK and nuclear RelB and p52. Mutations of either serine 138 or serine 218 reduced RelA, p50, and phospho-I{kappa}B{alpha} of the canonical pathway. Effects of LPS stimulation and BCL10 silencing on NIK phosphorylation were demonstrated in confocal images. Conclusions: LPS induces activation of both canonical and non-canonical pathways of NF-{kappa}B in human colonic epithelial cells, and the non-canonical pathway requires phosphorylations of BCL10 (serine 138) and NIK. These findings demonstrate the important role of BCL10 in mediating LPS-induced inflammation in human colonic epithelial cells and may open new avenues for therapeutic interventions.

  1. Dual inhibition of canonical and non-canonical NF-?B pathways demonstrates significant anti-tumor activities in multiple myeloma

    PubMed Central

    Fabre, Claire; Mimura, Naoya; Bobb, Kathryn; Kong, Sun-Young; Gorgun, Güllü; Cirstea, Diana; Hu, Yiguo; Minami, Jiro; Ohguchi, Hiroto; Zhang, Jie; Meshulam, Jeffrey; Carrasco, Ruben D.; Tai, Yu-Tzu; Richardson, Paul G.; Hideshima, Teru; Anderson, Kenneth C.

    2015-01-01

    Purpose NF-?B transcription factor plays a key role in the pathogenesis of multiple myeloma (MM) in the context of the bone marrow (BM) microenvironment. Both canonical and non-canonical pathways contribute to total NF-?B activity. Recent studies have demonstrated a critical role for the non-canonical pathway: selective inhibitors of the canonical pathway present a limited activity, mutations of the non-canonical pathway are frequent, and bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-?B activity. Experimental design MM cell lines, primary patient cells, and the human MM xenograft murine model were used to examine the biologic impact of dual inhibition of both canonical and non-canonical NF-?B pathways. Results We show that PBS-1086 induces potent cytotoxicity in MM cells, but not in peripheral blood mononuclear cells. PBS-1086 overcomes the proliferative and anti-apoptotic effects of the BM milieu, associated with inhibition of NF-?B activity. Moreover, PBS-1086 strongly enhances the cytotoxicity of bortezomib in bortezomib-resistant MM cell lines and patient MM cells. PBS-1086 also inhibits osteoclastogenesis through an inhibition of RANKL-induced NF-?B activation. Finally, in a xenograft model of human MM in the BM milieu, PBS-1086 shows significant in vivo anti-MM activity and prolongs host survival, associated with apoptosis and inhibition of both NF-?B pathways in tumor cells. Conclusions Our data demonstrate that PBS-1086 is a promising dual inhibitor of the canonical and non-canonical NF-?B pathways. Our preclinical study therefore provides the framework for clinical evaluation of PBS-1086 in combination with bortezomib for the treatment of MM and related bone lesions. PMID:22806876

  2. Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways

    Microsoft Academic Search

    Jong-Sung Park; Liang Qiao; Zao-Zong Su; Darin Hinman; Karen Willoughby; Robert McKinstry; Adly Yacoub; Gregory J Duigou; Charles S H Young; Steven Grant; Michael P Hagan; Earl Ellis; Paul B Fisher; Paul Dent

    2001-01-01

    We investigated the role of radiation-induced mitogen activated protein kinase (MAPK) pathway activity in the regulation of proliferation, cell survival and vascular endothelial growth factor (VEGF) production in primary astrocytes and in T9 and RT2 glioblastoma cells derived from Fisher 344 rats. In these cells, ionizing radiation (2 Gy) caused activation of the MAPK pathway which was blocked by specific

  3. Multiple WASP-interacting Protein Recognition Motifs Are Required for a Functional Interaction with N-WASP*

    E-print Network

    Prehoda, Ken

    Multiple WASP-interacting Protein Recognition Motifs Are Required for a Functional Interaction with N-WASP* Received for publication,October 23, 2006, and in revised form, December 27, 2006 Published Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom The WASP

  4. Multiplication

    NSDL National Science Digital Library

    Ms. Williams

    2011-04-06

    Which way of learning multiplication helped you the best? First you will need to use organizer Then you need to go to thinking blocks Next go to multiplication rap song Then go to dinosaur game and times table and lattice method and finally flashcards after this look over your graphic organizer and think about which site was most helpful for you. You will then be divided into groups where you will make your own creative lesson ...

  5. The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization

    Microsoft Academic Search

    Bärbel Rohrer; Beth Coughlin; Kannan Kunchithapautham; Qin Long; Stephen Tomlinson; Kazue Takahashi; V. Michael Holers

    2011-01-01

    Human genetic studies have demonstrated that polymorphisms in different complement proteins can increase the risk for developing AMD. There are three pathways of complement activation, classical (CP), alternative (AP), and lectin (LP), which all activate a final common pathway. Proteins encoded by the AMD risk genes participate in the AP (CFB), CP\\/LP (C2), or in the AP and final common

  6. Identification of a Calcineurin-Independent Pathway Required for Sodium Ion Stress Response inSaccharomyces cerevisiae

    Microsoft Academic Search

    Raymond W. Ganster; Rhonda R. McCartney; Martin C. Schmidt

    The calcium-dependent protein phosphatase calcineurin plays an essential role in ion homeostasis in yeast. In this study, we identify a parallel ion stress response pathway that is independent of the calcineurin signaling pathway. Cells with null alleles in both STD1 and its homologue, MTH1, manifest numerous phenotypes observed in calcineurin mutants, including sodium, lithium, manganese, and hydroxyl ion sensitivity, as

  7. Seeking unique and common biological themes in multiple gene lists or datasets: pathway pattern extraction pipeline for pathway-level comparative analysis

    Microsoft Academic Search

    Ming Yi; Uma Mudunuri; Anney Che; Robert M. Stephens

    2009-01-01

    Background: One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying

  8. Proteomic profiling of naïve multiple myeloma patient plasma cells identifies pathways associated with favourable response to bortezomib-based treatment regimens.

    PubMed

    Dytfeld, Dominik; Rosebeck, Shaun; Kandarpa, Malathi; Mayampurath, Anoop; Mellacheruvu, Dattatreya; Alonge, Mattina M; Ngoka, Lambert; Jasielec, Jagoda; Richardson, Paul G; Volchenboum, Samuel; Nesvizhskii, Alexey I; Sreekumar, Arun; Jakubowiak, Andrzej J

    2015-07-01

    Toward our goal of personalized medicine, we comprehensively profiled pre-treatment malignant plasma cells from multiple myeloma patients and prospectively identified pathways predictive of favourable response to bortezomib-based treatment regimens. We utilized two complementary quantitative proteomics platforms to identify differentially-regulated proteins indicative of at least a very good partial response (VGPR) or complete response/near complete response (CR/nCR) to two treatment regimens containing either bortezomib, liposomal doxorubicin and dexamethasone (VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our results suggest enrichment of 'universal response' pathways that are common to both treatment regimens and are probable predictors of favourable response to bortezomib, including a subset of endoplasmic reticulum stress pathways. The data also implicate pathways unique to each regimen that may predict sensitivity to DNA-damaging agents, such as mitochondrial dysfunction, and immunomodulatory drugs, which was associated with acute phase response signalling. Overall, we identified patterns of tumour characteristics that may predict response to bortezomib-based regimens and their components. These results provide a rationale for further evaluation of the protein profiles identified herein for targeted selection of anti-myeloma therapy to increase the likelihood of improved treatment outcome of patients with newly-diagnosed myeloma. PMID:25824111

  9. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein

    PubMed Central

    Guglielmelli, Tommasina; Giugliano, Emilia; Brunetto, Vanessa; Rapa, Ida; Cappia, Susanna; Giorcelli, Jessica; Rrodhe, Sokol; Papotti, Mauro; Saglio, Giuseppe

    2015-01-01

    mTOR is a protein kinase that plays a central role in regulating critical cellular processes. We evaluated the activation and cellular localization of the mTOR pathway in multiple myeloma (MM) and analyzed the role of pomalidomide in regulating mTOR. By immunohistochemistry cytoplasmic p-mTOR stained positive in 57 out 101 (57.6%) cases with a nuclear p-mTOR localization in 14 out 101 samples (13.8%). In the 70 MM samples analyzed for the entire pathway, p-mTOR expression significantly correlated with p-AKT, p-P70S6K, and p-4E-BP1 suggesting that the AKT/mTOR pathway is activated in a subset of MM patients. Immunofluorescence assays demonstrated that mTOR protein is distributed throughout the cytoplasm and the nucleus at baseline in MM cell lines and in plasma cells of 13 MM patients and that pomalidomide facilitated the shift of the mTOR protein in the nucleus. By western blotting, treatment with pomalidomide increased nuclear mTOR and p-mTOR expression levels in the nucleus with a concomitant decrease of the cytoplasmic fractions while does not seem to affect significantly AKT phosphorylation status. In MM cells the anti-myeloma activity of pomalidomide may be mediated by the regulation of the mTOR pathway. PMID:26097872

  10. The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization.

    PubMed

    Rohrer, Bärbel; Coughlin, Beth; Kunchithapautham, Kannan; Long, Qin; Tomlinson, Stephen; Takahashi, Kazue; Holers, V Michael

    2011-03-01

    Human genetic studies have demonstrated that polymorphisms in different complement proteins can increase the risk for developing AMD. There are three pathways of complement activation, classical (CP), alternative (AP), and lectin (LP), which all activate a final common pathway. Proteins encoded by the AMD risk genes participate in the AP (CFB), CP/LP (C2), or in the AP and final common pathway (C3). Here we tested which pathway is essential in mouse laser-induced CNV. CNV was analyzed using single complement pathway knockouts (i.e., eliminating one complement pathway at a time), followed by a double knockout in which only the AP is present, and the CP and LP are disabled, using molecular, histological and electrophysiological outcomes. First, single-gene knockouts were analyzed and compared to wild type mice; C1q(-/-) (no CP), MBL(-/-) (no LP), and CFB(-/-) (no AP). Six days after the laser-induced lesion, mice without a functional AP had reduced CNV progression (P<0.001) and preserved ERG amplitudes, whereas those without a functional CP or LP were indistinguishable from the wild type controls (P>0.3). Second, AP-only mice (C1q(-/-)MBL(-/-)) were as protected from developing CNV as the CFB(-/-) mice. The degree of pathology in each strain correlated with protein levels of the angiogenic and anti-angiogenic protein VEGF and PEDF, respectively, as well as levels of terminal pathway activation product C5a, and C9. The analysis of complement activation pathways in mouse laser-induced CNV allows for the following conclusions. Comparing the single pathway knockouts with those having only a functional AP showed: (1) that AP activation is necessary, but not alone sufficient for injury; and (2) that initial complement activation proceeds via both the LP and CP. Thus, these data indicate an important role for the AP in the generation of complement-dependent injury in the RPE and choroid via amplification of CP- and LP-initiated complement activation. Improving our understanding of the local regulation of this pathway in the eye is essential for developing improved treatment approaches for AMD. PMID:21257205

  11. Watermarking Multiple Constant Multiplications Solutions

    E-print Network

    Wong, Jennifer L.

    Watermarking Multiple Constant Multiplications Solutions Jennifer L. Wong, Ji-Qing Ya, Miodrag Potkonjak University of California, Los Angeles, CA 90095 Abstract-- Multiplications and multipliers these requirements is to use combinations of shifts and additions to execute multiplications. The approach

  12. Mold sensitization is common amongst patients with severe asthma requiring multiple hospital admissions

    Microsoft Academic Search

    B Ronan O'Driscoll; Linda C Hopkinson; David W Denning

    2005-01-01

    BACKGROUND: Multiple studies have linked fungal exposure to asthma, but the link to severe asthma is controversial. We studied the relationship between asthma severity and immediate type hypersensitivity to mold (fungal) and non-mold allergens in 181 asthmatic subjects. METHODS: We recruited asthma patients aged 16 to 60 years at a University hospital and a nearby General Practice. Patients were categorized

  13. Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae.

    PubMed

    Erlich, Rachel L; Fry, Rebecca C; Begley, Thomas J; Daee, Danielle L; Lahue, Robert S; Samson, Leona D

    2008-01-01

    Yeast strains lacking Anc1, a member of the YEATS protein family, are sensitive to several DNA damaging agents. The YEATS family includes two human genes that are common fusion partners with MLL in human acute leukemias. Anc1 is a member of seven multi-protein complexes involved in transcription, and the damage sensitivity observed in anc1Delta cells is mirrored in strains deleted for some other non-essential members of several of these complexes. Here we show that ANC1 is in the same epistasis group as SRS2 and RAD5, members of the postreplication repair (PRR) pathway, but has additive or synergistic interactions with several other members of this pathway. Although PRR is traditionally divided into an "error-prone" and an "error-free" branch, ANC1 is not epistatic with all members of either established branch, and instead defines a new error-free branch of the PRR pathway. Like several genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous mutation rates, including the expansion of (CAG)(25) repeats. Anc1's role in the PRR pathway, as well as its role in suppressing triplet repeats, point to a possible mechanism for a protein of potential medical interest. PMID:19005567

  14. From a Subtractive to Multiplicative Approach: A Concept-Driven Interactive Pathway on the Selective Absorption of Light

    ERIC Educational Resources Information Center

    Viennot, Laurence; de Hosson, Cécile

    2015-01-01

    This research documents the aims and the impact of a teaching experiment on how the absorption of light depends on the thickness of the absorbing medium. This teaching experiment is more specifically characterized as bringing to bear a "concept-driven interactive pathway". It is designed to make students analyse the absorption of light…

  15. Male alternative reproductive behaviours in a Mediterranean wrasse, Symphodus ocellatus: Evidence from otoliths for multiple life-history pathways

    Microsoft Academic Search

    Suzanne H. Alonzo; Michael Taborsky; Peter Wirtz

    Although alternative reproductive behaviours have been studied extensively, it has only been possible in a few cases to document the underlying life-history pathways and factors that determine their expression. In Symphodus ocellatus, a Mediterranean wrasse, males adopt a variety of behaviours. Within a season, they may invest in territory defence, nest building and broodcare (nesting males); join nesting males in

  16. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    PubMed Central

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  17. A Functional Phenylacetic Acid Catabolic Pathway Is Required for Full Pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans Host Model

    Microsoft Academic Search

    Robyn J. Law; Jason N. R. Hamlin; Aida Sivro; Stuart J. McCorrister; Georgina A. Cardama; Silvia T. Cardona

    2008-01-01

    Burkholderia cenocepacia is a member of the Burkholderia cepacia complex, a group of metabolically versatile bacteria that have emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Previously a screen of transposon mutants in a rat pulmonary infection model identified an attenuated mutant with an insertion in paaE, a gene related to the phenylacetic acid (PA) catabolic pathway. In

  18. Enhancement of HCO3 Permeability across the Apical Membrane of Bovine Corneal Endothelium by Multiple Signaling Pathways

    Microsoft Academic Search

    Yan Zhang; Qiang Xie; Xing Cai Sun; Joseph A. Bonanno

    PURPOSE. In this study, the involvement of signaling pathways in the regulation of HCO3 permeability across the apical membrane of the corneal endothelium was examined. METHODS. Cultured bovine corneal endothelial cells (CBCECs) were grown to confluence on permeable membranes. Apical and basolateral sides were perfused with a HCO3 -rich Cl- free Ringer's solution (28.5 mM; pH 7.5). Relative changes in

  19. Specifying MultipleViewed Software Requirements With Conceptual Graphs Title Pages

    E-print Network

    Delugach, Harry S.

    Methodology's (SREM) RSL [2] [3], SADT [4] [5], CORE diagrams [6], RML [7], entity­ dataflow diagrams [8], or statecharts [9]. While these languages have been carefully designed to suit the purposes of requirements

  20. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways.

    PubMed

    Padhan, Jibesh Kumar; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder S

    2015-08-01

    Swertia chirayita, an endangered medicinal herb, contains three major secondary metabolites swertiamarin, amarogentin and mangiferin, exhibiting valuable therapeutic traits. No information exists as of today on the biosynthesis of these metabolites in S. chirayita. The current study reports the expression profiling of swertiamarin, amarogentin and mangiferin biosynthesis pathway genes and their correlation with the respective metabolites content in different tissues of S. chirayita. Root tissues of greenhouse grown plants contained the maximum amount of secoiridoids (swertiamarin, 2.8% of fr. wt and amarogentin, 0.1% of fr. wt), whereas maximum accumulation of mangiferin (1.0% of fr. wt) was observed in floral organs. Differential gene expression analysis and their subsequent principal component analysis unveiled ten genes (encoding HMGR, PMK, MVK, ISPD, ISPE, GES, G10H, 8HGO, IS and 7DLGT) of the secoiridoids biosynthesis pathway and five genes (encoding EPSPS, PAL, ADT, CM and CS) of mangiferin biosynthesis with elevated transcript amounts in relation to corresponding metabolite contents. Three genes of the secoiridoids biosynthesis pathway (encoding PMK, ISPD and IS) showed elevated levels (?57-104 fold increase in roots), and EPSPS of mangiferin biosynthesis showed an about 117 fold increase in transcripts in leaf tissues of the greenhouse grown plants. The study does provide leads on potential candidate genes correlating with the metabolites biosynthesis in S. chirayita as an initiative towards its genetic improvement. PMID:26028519

  1. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport.

    PubMed

    Orlova, Irina; Marshall-Colón, Amy; Schnepp, Jennifer; Wood, Barbara; Varbanova, Marina; Fridman, Eyal; Blakeslee, Joshua J; Peer, Wendy Ann; Murphy, Angus S; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2006-12-01

    In plants, benzoic acid (BA) is believed to be synthesized from Phe through shortening of the propyl side chain by two carbons. It is hypothesized that this chain shortening occurs via either a beta-oxidative or non-beta-oxidative pathway. Previous in vivo isotope labeling and metabolic flux analysis of the benzenoid network in petunia (Petunia hybrida) flowers revealed that both pathways yield benzenoid compounds and that benzylbenzoate is an intermediate between L-Phe and BA. To test this hypothesis, we generated transgenic petunia plants in which the expression of BPBT, the gene encoding the enzyme that uses benzoyl-CoA and benzyl alcohol to make benzylbenzoate, was reduced or eliminated. Elimination of benzylbenzoate formation decreased the endogenous pool of BA and methylbenzoate emission but increased emission of benzyl alcohol and benzylaldehyde, confirming the contribution of benzylbenzoate to BA formation. Labeling experiments with 2H5-Phe revealed a dilution of isotopic abundance in most measured compounds in the dark, suggesting an alternative pathway from a precursor other than Phe, possibly phenylpyruvate. Suppression of BPBT activity also affected the overall morphology of petunia plants, resulting in larger flowers and leaves, thicker stems, and longer internodes, which was consistent with the increased auxin transport in transgenic plants. This suggests that BPBT is involved in metabolic processes in vegetative tissues as well. PMID:17194766

  2. Synthetic promoters consisting of defined cis-acting elements link multiple signaling pathways to probenazole-inducible system * #

    PubMed Central

    Zhu, Zheng; Gao, Jiong; Yang, Jin-xiao; Wang, Xiao-yan; Ren, Guo-dong; Ding, Yu-long; Kuai, Ben-ke

    2015-01-01

    Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the ?-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ’s action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study. PMID:25845359

  3. Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety.

    PubMed

    Weinreb, O; Amit, T; Bar-Am, O; Sagi, Y; Mandel, S; Youdim, M B H

    2006-01-01

    Our recent studies aimed to elucidate the molecular and biochemical mechanism of actions of the novel anti-Parkinson's drug, rasagiline, an irreversible and selective monoamine oxidase (MAO)-B inhibitor and its propargyl moiety, propargylamine. In cell death models induced by serum withdrawal in rat PC12 cells and human SH-SY5Y neuroblastoma cells, both rasagiline and propargylamine exerted neuroprotective and neurorescue activities via multiple survival pathways, including: stimulation of protein kinase C (PKC) phosphorylation; up-regulation of protein and gene levels of PKCalpha, PKCepsilon and the anti-apoptotic Bcl-2, Bcl-xL, and Bcl-w; and up-regulation of the neurotrophic factors, BDNF and GDNF mRNAs. Rasagiline and propargylamine inhibited the cleavage and subsequent activation of pro-caspase-3 and poly ADP-ribose polymerase. Additionally, these compounds significantly down-regulated PKCgamma mRNA and decreased the level of the pro-apoptotic proteins, Bax, Bad, Bim and H2A.X. Rasagiline and propargylamine both regulated amyloid precursor protein (APP) processing towards the non-amyloidogenic pathway. These structure-activity studies have provided evidence that propargylamine promoted neuronal survival via neuroprotective/neurorescue pathways similar to that of rasagiline. In addition, recent study demonstrated that chronic low doses of rasagiline administered to mice subsequently to 1 methyl-4 phenyl 1,2,3,6 tetrahydropyridine (MPTP), rescued dopaminergic neurons in the substantia nigra pars compacta via activation of the Ras-PI3K-Akt survival pathway, suggesting that rasagiline may possess a disease modifying activity. PMID:17017568

  4. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.

    PubMed Central

    Zalevsky, J; MacQueen, A J; Duffy, J B; Kemphues, K J; Villeneuve, A M

    1999-01-01

    Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showing that him-14 functions during the pachytene stage, indicate that him-14 is not needed to establish pairing or synapsis and likely has a more direct role in crossover formation. him-14 encodes a germline-specific member of the MutS family of DNA mismatch repair (MMR) proteins. him-14 has no apparent role in MMR, but like its Saccharomyces cerevisiae ortholog MSH4, has a specialized role in promoting crossing over during meiosis. Despite this conservation, worms and yeast differ significantly in their reliance on this pathway: whereas worms use this pathway to generate most, if not all, crossovers, yeast still form 30-50% of their normal number of crossovers when this pathway is absent. This differential reliance may reflect differential stability of crossover-competent recombination intermediates, or alternatively, the presence of two different pathways for crossover formation in yeast, only one of which predominates during nematode meiosis. We discuss a model in which HIM-14 promotes crossing over by interfering with Holliday junction branch migration. PMID:10545458

  5. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR.

    PubMed

    Verma, Rita; Marchese, Adriano

    2015-03-13

    G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein G?i or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt. PMID:25605718

  6. Drosophila Heat Shock Response Requires the JNK Pathway and Phosphorylation of Mixed Lineage Kinase at a Conserved Serine-Proline Motif

    PubMed Central

    Gonda, Rebecca L.; Garlena, Rebecca A.; Stronach, Beth

    2012-01-01

    Defining context specific requirements for proteins and pathways is a major challenge in the study of signal transduction. For example, the stress-activated protein kinase (SAPK) pathways are comprised of families of closely related transducers that are activated in a variety of tissues and contexts during development and organismal homeostasis. Consequently, redundant and pleiotropic effects have hampered a complete understanding of the individual contributions of transducers in distinct contexts. Here, we report on the function of a context-specific regulatory phosphorylation site, PXSP, in the Drosophila mixed lineage kinase protein, Slpr, a mitogen-activated protein kinase kinase kinase (MAP3K) in the Jun Kinase (JNK) pathway. Genetic analysis of the function of non-phosphorylatable (PXAP) and phosphomimetic mutant (PXEP) Slpr transgenes in several distinct contexts revealed minimal effects in JNK-dependent tissue closure processes but differential requirements in heat stress response. In particular, PXAP expression resulted in sensitivity of adults to sustained heat shock, like p38 and JNK pathway mutants. In contrast, PXEP overexpression conferred some resistance. Indeed, phosphorylation of the PXSP motif is enriched under heat shock conditions and requires in part, the p38 kinases for the enrichment. These data suggest that coordination of signaling between p38 and Slpr serves to maintain JNK signaling during heat stress. In sum, we demonstrate a novel role for JNK signaling in the heat shock response in flies and identify a posttranslational modification on Slpr, at a conserved site among MAP3K mixed lineage kinase family members, which bolsters stress resistance with negligible effects on JNK-dependent developmental processes. PMID:22848763

  7. Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src.

    PubMed Central

    Kuo, W L; Chung, K C; Rosner, M R

    1997-01-01

    To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src. PMID:9234720

  8. miR-185 Plays an Anti-Hypertrophic Role in the Heart via Multiple Targets in the Calcium-Signaling Pathways

    PubMed Central

    Kim, Jin Ock; Song, Dong Woo; Kwon, Eun Jeong; Hong, Seong-Eui; Song, Hong Ki; Min, Choon Kee; Kim, Do Han

    2015-01-01

    MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKII?) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKII? activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure. PMID:25767890

  9. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    PubMed

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes. PMID:24486762

  10. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants

    PubMed Central

    Bargmann, Bastiaan O. R.; Laxalt, Ana M.; ter Riet, Bas; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A.; Bartels, Dorothea; Munnik, Teun

    2009-01-01

    High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) ?-class PLD, LePLD?1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLD?1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLD?1 and AtPLD? were found to be activated in response to salt stress. Moreover, pld?1 and pld? single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth. PMID:19017627

  11. Vegetables’ juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications

    PubMed Central

    Tiwari, Ashok K.; Kumar, D. Anand; Sweeya, Pisupati S.; Chauhan, H. Anusha; Lavanya, V.; Sireesha, K.; Pavithra, K.; Zehra, Amtul

    2014-01-01

    Objective: Hyperglycemia induced generation of free radicals and consequent development of oxidative stress by polyol pathway is one of the crucial mechanisms stirring up development of diabetic complications. We evaluated influence of ten vegetables’ juice on polyol pathway along with their antioxidant and antioxidative stress potentials. Materials and Methods: Aldose reductase activity was determined utilising goat lens and human erythrocytes. In goat lens, utilization of nicotinamine adenine dinucleotide phosphate (NADPH) and aldose reductase inhibition was assayed. In human erythrocytes, sorbitol formation was measured as an index of aldose reductase activity under normoglycemic and hyperglycemic conditions. Ability of juices in inhibiting oxidative damage to deoxyribose sugar and calf thymus DNA and inhibitory activity against hydrogen peroxide induced hemolysis of erythrocytes was also analysed. Phytochemical contents like total polyphenol, total flavonoid and total protein were measured to find their influence on biological activities. Results: Vegetables’ juice displayed varying degrees of inhibitory potentials in mitigating NADPH dependent catalytic activity of aldose reductase in goat lens, accumulation of sorbitol in human erythrocytes under different glucose concentrations; Fenton-reaction induced oxidative damage to deoxyribose sugar, and calf thymus DNA. Substantial variations in vegetables phytochemicals content were also noticed in this study. Conclusions: Vegetables’ juice possesses potent activities in influencing polyol pathway by various mechanisms in favour of reducing development of oxidative stress independent of their inherent antioxidative properties. Juice of ivy gourd followed by green cucumber and ridge gourd were among the most potent for they displayed strong activities on various parameters analysed in this study. These vegetables’ juice may become part of mechanism-based complementary antioxidant therapy to prevent development of diabetic complications. PMID:24991118

  12. Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells.

    PubMed

    Yanagibashi, Tsutomu; Nagai, Yoshinori; Watanabe, Yasuharu; Ikutani, Masashi; Hirai, Yoshikatsu; Takatsu, Kiyoshi

    2015-01-01

    LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-? (TRIF) pathways, but relatively few studies have examined these pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88(-/-) B cells were markedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF(-/-) B cells were also impaired in these responses compared with WT B cells, but showed better responses than MyD88(-/-) B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88(-/-) B cells showed similar patterns of CSR to WT B cells. However, TRIF(-/-) B cells showed the impaired in the CSR. Compared with WT and MyD88(-/-) B cells, TRIF(-/-) B cells exhibited reduced cell division, fewer IgG1(+) cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expression in response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization was impaired in TRIF(-/-) mice, while MyD88(-/-) mice exhibited increased IgG1 production. Thus, MyD88 and TRIF pathways differently regulate TLR4-induced immune responses in B cells. PMID:25448706

  13. FCAT Retakes: Trends in Multiple Attempts at Satisfying FCAT Graduation Requirements. Research Brief. Volume 0805

    ERIC Educational Resources Information Center

    Froman, Terry; Brown, Shelly

    2009-01-01

    According to Florida Law, students must pass the Grade 10 FCAT, among other academic requirements, in order to receive a standard high school diploma. Specifically, students must achieve a "passing" score of 300 or above on both the FCAT SSS Reading and the FCAT SSS Mathematics tests. Technically, students can retake the FCAT as many times as they…

  14. Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases.

    PubMed

    Aoki, J; Katoh, H; Yasui, H; Yamaguchi, Y; Nakamura, K; Hasegawa, H; Ichikawa, A; Negishi, M

    1999-06-01

    We reported previously that activation of the prostaglandin E receptor EP3 subtype triggered neurite retraction through the small GTPase Rho-, and its target, RhoA-binding kinase alpha (ROKalpha)-, dependent pathway in EP3 receptor-expressing PC12 cells. Here we examined the involvement of tyrosine kinases in this pathway in nerve growth factor-differentiated PC12 cells. Tyrphostin A25, a tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by activation of the EP3 receptor, however, it failed to block neurite retraction and cell rounding induced by microinjection of constitutively active RhoA, RhoAV14, indicating that a tyrphostin-sensitive tyrosine kinase was involved in the pathway from the EP3 receptor to Rho activation. On the other hand, genistein, another tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by both activation of the EP3 receptor and microinjection of RhoAV14. However, genistein did not block neuronal morphological changes induced by microinjection of a constitutively active mutant of ROKalpha. These results indicate that two different tyrosine kinases, tyrphostin A25-sensitive and genistein-sensitive kinases, are involved in the EP3 receptor-mediated neurite retraction acting upstream and downstream of Rho, respectively. PMID:10333476

  15. Primary involvement of the motor area in association with the nigrostriatal pathway in multiple system atrophy: neuropathological and morphometric evaluations

    Microsoft Academic Search

    Mu Su; Yasuji Yoshida; Yutaka Hirata; Yasuhito Watahiki; Ken Nagata

    2001-01-01

    To evaluate the changes that occur in the motor and supplementary motor cortices in cases of multiple system atrophy (MSA), we carried out morphological and morphometric studies in 7 cases of MSA and 11 age-matched controls. Neuropathological study revealed presence of glial cytoplasmic inclusions (GCIs) in the cortex and subcortical white matter of the motor and supplementary motor areas, loss

  16. RECOGNITION AND PHAGOCYTOSIS OF APOPTOTIC T CELLS BY RESIDENT MURINE TISSUE MACROPHAGES REQUIRES MULTIPLE SIGNAL TRANSDUCTION EVENTS

    PubMed Central

    Hu, Bin; Punturieri, Antonello; Todt, Jill; Sonstein, Joanne; Polak, Timothy; Curtis, Jeffrey L.

    2015-01-01

    Macrophages (Mø) ingest apoptotic cells with unique effects on their cytokine production, but the signaling pathways involved are virtually unknown. Signal transduction in response to recognition of apoptotic thymocytes by resident murine alveolar (AMø) or peritoneal (PMø) Mø was studied by in vitro phagocytosis assay. Phagocytosis was decreased in a dose-dependent and non-toxic fashion by inhibiting phosphatidylinositol 3 kinase (wortmannin and LY294002), protein tyrosine phosphorylation (herbimycin A, genistein, piceatannol and, for AMø only, PP2), and protein kinase C (staurosporine, Gö 6976 and calphostin C). Exposure of Mø to apoptotic or heat-killed thymocytes, but not to viable thymocytes, rapidly activated ERK1/2, as detected by specific phosphorylation, but did not activate NF-?B or MAP kinases p38 or JNK. Mø phagocytosis of apoptotic T cells requires tyrosine, serine/threonine, and lipid phosphorylation. Mø recognition of apoptotic T cells triggers rapid but limited MAP kinase activation. PMID:11994514

  17. Multiple Domains of the Jaagsiekte Sheep Retrovirus Envelope Protein Are Required for Transformation of Rodent Fibroblasts

    PubMed Central

    Hofacre, Andrew; Fan, Hung

    2004-01-01

    Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma. We previously showed that the gene encoding JSRV envelope protein (Env) appears to function as an oncogene, since it can transform mouse NIH 3T3 cells. The cytoplasmic tail of the Env transmembrane protein (TM) is necessary for the transformation. However, previous experiments did not exclude the involvement of the Env surface protein (SU) in transformation. In this study, we created a series of nested deletion mutants through the SU domain and assessed their ability to transform rodent fibroblasts. All SU deletion mutants downstream of the predicted signal peptide were unable to transform murine NIH 3T3 or rat 208F cells. Transport to the plasma membrane of selected deleted Env proteins was confirmed by confocal immunofluorescence microscopy of hemagglutinin-tagged versions. Additional sequential SU deletion mutants lacking 50-amino-acid (aa) blocks throughout SU also were unable to transform. Furthermore, minimal insertion mutants of two amino acids (Leu/Gln) at various positions in SU also abolished transformation. These data indicate that domains in SU facilitate efficient JSRV transformation. This could reflect a necessity of SU for appropriate configuration of the Env protein or independent activation by SU of a signaling pathway necessary for transformation. Complementation between SU and TM mutants for transformation supported the latter hypothesis. Cotransfection with ?GP Y590F (mutant in the TM cytoplasmic tail) with ?GP SU?103-352 (lacking most of SU) resulted in efficient transformation. The resulting transformants showed evidence for the presence and expression of both mutant plasmids. PMID:15367614

  18. An Oleic Acid–Mediated Pathway Induces Constitutive Defense Signaling and Enhanced Resistance to Multiple Pathogens in Soybean

    Microsoft Academic Search

    Aardra Kachroo; Da-Qi Fu; Wendy Havens; DuRoy Navarre; Pradeep Kachroo; Said A. Ghabrial

    2008-01-01

    Stearoyl-acyl carrier protein-desaturase (SACPD)-catalyzed synthesis of oleic acid (18:1) is an essential step in fatty acid biosynthesis. Arabidopsis mutants (ssi2) with reduced SACPD activity accumulate salicylic acid (SA) and exhibit enhanced resistance to multiple pathogens. We show that reduced levels of 18:1 induce similar defense-related phe- notypes in soybean. A Bean pod mottle virus (BPMV)-based vector was employed to effectively

  19. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis

    Microsoft Academic Search

    George A. O'Toole; Roberto Kolter

    1998-01-01

    Summary Populations of surface-attached microorganisms com- prising either single or multiple species are commonly referred to as biofilms. Using a simple assay for the initiation of biofilm formation (e.g. attachment to an abiotic surface) by Pseudomonas fluorescens strain WCS365, we have shown that: (i) P. fluorescens can form biofilms on an abiotic surface when grown on a range of nutrients;

  20. Requirement for safety monitoring for approved multiple sclerosis therapies: an overview

    PubMed Central

    Rommer, P S; Zettl, U K; Kieseier, B; Hartung, H-P; Menge, T; Frohman, E; Greenberg, B M; Hemmer, B; Stüve, O

    2014-01-01

    During the last two decades, treatment options for patients with multiple sclerosis (MS) have broadened tremendously. All agents that are currently approved for clinical use have potential side effects, and a careful risk–benefit evaluation is part of a decision algorithm to identify the optimal treatment choice for an individual patient. Whereas glatiramer acetate and interferon beta preparations have been used in MS for decades and have a proven safety record, more recently approved drugs appear to be more effective, but potential risks might be more severe. The potential complications of some novel therapies might not even have been identified to their full extent. This review is aimed at the clinical neurologist in that it offers insights into potential adverse events of each of the approved MS therapeutics: interferon beta, glatiramer acetate, mitoxantrone, natalizumab, fingolimod and teriflunomide, as well as recently approved therapeutics such as dimethyl fumarate and alemtuzumab. It also provides recommendations for monitoring the different drugs during therapy in order to avoid common side effects. PMID:24102425

  1. Recombinant factor VIIa enhances platelet deposition from flowing haemophilic blood but requires the contact pathway to promote fibrin deposition.

    PubMed

    Li, R; Panckeri, K A; Fogarty, P F; Diamond, S L

    2015-03-01

    In prior microfluidic studies with haemophilic blood perfused over collagen, we found that a severe deficiency (<1% factor level) reduced platelet and fibrin deposition, while a moderate deficiency (1-5%) only reduced fibrin deposition. We investigated: (i) the differential effect of rFVIIa (0.04-20 nm) on platelet and fibrin deposition, and (ii) the contribution of the contact pathway to rFVIIa-induced haemophilic blood clotting. Haemophilic or healthy blood with low and high corn trypsin inhibitor (CTI, 4 or 40 ?g mL(-1) ) was perfused over collagen at an initial venous wall shear rate of 100 s(-1) . At 100 s(-1) wall shear rate, where FXIIa leads to thrombin production without added tissue factor, FXI-deficient blood (3%) or severely FVIII-deficient blood (<1%) produced no fibrin at either CTI level. Whereas rFVIIa potently enhanced platelet deposition, fibrin generation was not rescued. Distinct from the high CTI condition, engagement of the contact pathway (low CTI) in moderately FVIII-deficient (3%) or moderately FIX-deficient blood (5%) resulted in enhanced platelet and fibrin deposition following 4 nm rFVIIa supplementation. In mildly FVIII-deficient blood (15%) at <24 h since haemostatic therapy, rFVIIa enhanced both platelet and fibrin generation in either CTI condition although fibrin was produced more quickly and abundantly in low CTI. For tissue factor-free conditions of severe haemophilic blood clotting, we conclude that rFVIIa reliably generates low levels of 'signaling' thrombin sufficient to enhance platelet deposition on collagen, but is insufficient to drive fibrin polymerization unless potentiated by the contact pathway. PMID:25311576

  2. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    USGS Publications Warehouse

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  3. Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents ?-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy

    PubMed Central

    Pukaß, Katharina; Richter-Landsberg, Christiane

    2015-01-01

    ?-Synuclein (?-syn) positive glial cytoplasmic inclusions (GCI) originating in oligodendrocytes (ODC) are a characteristic hallmark in multiple system atrophy (MSA). Their occurrence may be linked to a failure of the ubiquitin proteasome system (UPS) or the autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin, and deubiquitinated by deubiquitinating enzymes (DUBs) before proteolytic degradation is performed. The DUB ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a component of the UPS, it is abundantly expressed in neuronal brain cells and has been connected to Parkinson’s disease (PD). It interacts with ?-syn and tubulin. The present study was undertaken to investigate whether UCH-L1 is a constituent of ODC, the myelin forming cells of the CNS, and is associated with GCIs in MSA. Furthermore, LDN-57444 (LDN), a specific UCH-L1 inhibitor, was used to analyze its effects on cell morphology, microtubule (MT) organization and the proteolytic degradation system. Towards this an oligodendroglial cell line (OLN cells), stably transfected with ?-syn or with ?-syn and GFP-LC3, to monitor the autophagic flux, was used. The data show that UCH-L1 is expressed in ODC derived from the brains of newborn rats and colocalizes with ?-syn in GCIs of MSA brain sections. LDN treatment had a direct impact on the MT network by affecting tubulin posttranslational modifications, i.e., acetylation and tyrosination. An increase in ?-tubulin detyrosination was observed and detyrosinated MT were abundantly recruited to the cellular extensions. Furthermore, small ?-syn aggregates, which are constitutively expressed in OLN cells overexpressing ?-syn, were abolished, and LDN caused the upregulation of the autophagic pathway. Our data add to the knowledge that the UPS and the autophagy-lysosomal pathway are tightly balanced, and that UCH-L1 and its regulation may play a role in neurodegenerative diseases with oligodendroglia pathology. PMID:25999815

  4. Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury

    PubMed Central

    Rieder, Sadiye Amcaoglu; Nagarkatti, Prakash; Nagarkatti, Mitzi

    2012-01-01

    BACKGROUND AND PURPOSE Inhalation of the superantigen,staphylococcal enterotoxin B (SEB), leads to the activation of the host T and invariant natural killer (iNK) T cells, thereby resulting in acute lung inflammation and respiratory failure but the underlying mechanism(s) of disease remain elusive, with limited treatment options. In this study, we investigated the therapeutic effectiveness of resveratrol, a plant polyphenol, during SEB-induced lung inflammation. EXPERIMENTAL APPROACH C57BL/6 mice were exposed to SEB (50 µg·per mouse), administered intranasally, and were treated with resveratrol (100 mg·kg?1) before or after SEB exposure. Lung injury was studied by measuring vascular permeability, histopathological examination, nature of infiltrating cells, inflammatory cytokine induction in the bronchoalveolar fluid (BALF), apoptosis in SEB-activated T cells and regulation of SIRT1 and NF-?B signalling pathways. KEY RESULTS Pretreatment and post-treatment with resveratrol significantly reduced SEB-induced pulmonary vascular permeability, and inflammation. Resveratrol significantly reduced lung infiltrating cells and attenuated the cytokine storm in SEB-exposed mice, which correlated with increased caspase-8-dependent apoptosis in SEB-activated T cells. Resveratrol treatment also markedly up-regulated Cd11b+ and Gr1+ myeloid-derived suppressor cells (MDSCs) that inhibited SEB-mediated T cell activation in vitro. In addition, resveratrol treatment was accompanied by up-regulation of SIRT1 and down-regulation of NF-?B in the inflammatory cells of the lungs. CONCLUSIONS AND IMPLICATIONS The current study demonstrates that resveratrol may constitute a novel therapeutic modality to prevent and treat SEB-induced lung inflammation inasmuch because it acts through several pathways to reduce pulmonary inflammation. PMID:22646800

  5. Structural Conversion of A?17-42 Peptides from Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways.

    PubMed

    Cheon, Mookyung; Hall, Carol K; Chang, Iksoo

    2015-05-01

    Discovering the mechanisms by which proteins aggregate into fibrils is an essential first step in understanding the molecular level processes underlying neurodegenerative diseases such as Alzheimer's and Parkinson's. The goal of this work is to provide insights into the structural changes that characterize the kinetic pathways by which amyloid-? peptides convert from monomers to oligomers to fibrils. By applying discontinuous molecular dynamics simulations to PRIME20, a force field designed to capture the chemical and physical aspects of protein aggregation, we have been able to trace out the entire aggregation process for a system containing 8 A?17-42 peptides. We uncovered two fibrillization mechanisms that govern the structural conversion of A?17-42 peptides from disordered oligomers into protofilaments. The first mechanism is monomeric conversion templated by a U-shape oligomeric nucleus into U-shape protofilament. The second mechanism involves a long-lived and on-pathway metastable oligomer with S-shape chains, having a C-terminal turn, en route to the final U-shape protofilament. Oligomers with this C-terminal turn have been regarded in recent experiments as a major contributing element to cell toxicity in Alzheimer's disease. The internal structures of the U-shape protofilaments from our PRIME20/DMD simulation agree well with those from solid state NMR experiments. The approach presented here offers a simple molecular-level framework to describe protein aggregation in general and to visualize the kinetic evolution of a putative toxic element in Alzheimer's disease in particular. PMID:25955249

  6. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways.

    PubMed

    Balmer, Jasmin; Zulliger, Rahel; Roberti, Stefano; Enzmann, Volker

    2015-01-01

    Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3) both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg). Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE) cells, primary retinal cells, and the cone photoreceptor (PRC) cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1) was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3. PMID:26151844

  7. Research Resource: Whole Transcriptome RNA Sequencing Detects Multiple 1?,25-Dihydroxyvitamin D3-Sensitive Metabolic Pathways in Developing Zebrafish

    PubMed Central

    Craig, Theodore A.; Zhang, Yuji; McNulty, Melissa S.; Middha, Sumit; Ketha, Hemamalini; Singh, Ravinder J.; Magis, Andrew T.; Funk, Cory; Price, Nathan D.; Ekker, Stephen C.

    2012-01-01

    The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitamin D3, 1?,25-dihydroxyvitamin D3 [1?,25(OH)2D3)].We observed significant changes in RNAs of transcription factors, leptin, peptide hormones, and RNAs encoding proteins of fatty acid, amino acid, xenobiotic metabolism, receptor-activator of NF?B ligand (RANKL), and calcitonin-like ligand receptor pathways. Early highly restricted, and subsequent massive changes in more than 10% of expressed cellular RNA were observed. At days post fertilization (dpf) 2 [24 h 1?,25(OH)2D3-treatment], only four RNAs were differentially expressed (hormone vs. vehicle). On dpf 4 (72 h treatment), 77 RNAs; on dpf 6 (120 h treatment) 1039 RNAs; and on dpf 7 (144 h treatment), 2407 RNAs were differentially expressed in response to 1?,25(OH)2D3. Fewer RNAs (n = 481) were altered in dpf 7 larvae treated for 24 h with 1?,25(OH)2D3 vs. those treated with hormone for 144 h. At dpf 7, in 1?,25(OH)2D3-treated larvae, pharyngeal cartilage was larger and mineralization was greater. Changes in expression of RNAs for transcription factors, peptide hormones, and RNAs encoding proteins integral to fatty acid, amino acid, leptin, calcitonin-like ligand receptor, RANKL, and xenobiotic metabolism pathways, demonstrate heretofore unrecognized mechanisms by which 1?,25(OH)2D3 functions in vivo in developing eukaryotes. PMID:22734042

  8. Extended pausing by humans on multiple fixed-ratio schedules with varied reinforcer magnitude and response requirements.

    PubMed

    Williams, Dean C; Saunders, Kathryn J; Perone, Michael

    2011-03-01

    We conducted three experiments to reproduce and extend Perone and Courtney's (1992) study of pausing at the beginning of fixed-ratio schedules. In a multiple schedule with unequal amounts of food across two components, they found that pigeons paused longest in the component associated with the smaller amount of food (the lean component), but only when it was preceded by the rich component. In our studies, adults with mild intellectual disabilities responded on a touch-sensitive computer monitor to produce money. In Experiment 1, the multiple-schedule components differed in both response requirement and reinforcer magnitude (i.e., the rich component required fewer responses and produced more money than the lean component). Effects shown with pigeons were reproduced in all 7 participants. In Experiment 2, we removed the stimuli that signaled the two schedule components, and participants' extended pausing was eliminated. In Experiment 3, to assess sensitivity to reinforcer magnitude versus fixed-ratio size, we presented conditions with equal ratio sizes but disparate magnitudes and conditions with equal magnitudes but disparate ratio sizes. Sensitivity to these manipulations was idiosyncratic. The present experiments obtained schedule control in verbally competent human participants and, despite procedural differences, we reproduced findings with animal participants. We showed that pausing is jointly determined by past conditions of reinforcement and stimuli correlated with upcoming conditions. PMID:21541121

  9. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications

    PubMed Central

    Burroughs, A Maxwell; Aravind, L

    2014-01-01

    A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein–protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins. PMID:24646681

  10. Knockdown of Akt1 Promotes Akt2 Upregulation and Resistance to Oxidative-Stress-Induced Apoptosis Through Control of Multiple Signaling Pathways

    PubMed Central

    Zhang, Lan; Sun, Shuming; Zhou, Jie; Liu, Jiao; Lv, Jia-Han; Yu, Xiang-Qiang; Li, Chi; Gong, Lili; Yan, Qin; Deng, Mi; Xiao, Ling; Ma, Haili; Liu, Jin-Ping; Peng, Yun-Lei; Wang, Dao; Liao, Gao-Peng; Zou, Li-Jun; Liu, Wen-Bin; Xiao, Ya-Mei

    2011-01-01

    Abstract The Akt signaling pathway plays a key role in promoting the survival of various types of cells from stress-induced apoptosis, and different members of the Akt family display distinct physiological roles. Previous studies have shown that in response to UV irradiation, Akt2 is sensitized to counteract the induced apoptosis. However, in response to oxidative stress such as hydrogen peroxide, it remains to be elucidated what member of the Akt family would be activated to initiate the signaling cascades leading to resistance of the induced apoptosis. In the present study, we present the first evidence that knockdown of Akt1 enhances cell survival under exposure to 50??M H2O2. This survival is derived from selective upregulation and activation of Akt2 but not Akt3, which initiates 3 major signaling cascades. First, murine double minute 2 (MDM2) is hyperphosphorylated, which promotes p53 degradation and attenuates its Ser-15 phosphorylation, significantly attenuating Bcl-2 homologous antagonist killer (Bak) upregulation. Second, Akt2 activation inactivates glycogen synthase kinase 3 beta (GSK-3?) to promote stability of myeloid leukemia cell differentiation protein 1 (MCL-1). Finally, Akt2 activation promotes phosphorylation of FOXO3A toward cytosolic export and thus downregulates Bim expression. Overexpression of Bim enhances H2O2-induced apoptosis. Together, our results demonstrate that among the Akt family members, Akt2 is an essential kinase in counteracting oxidative-stress-induced apoptosis through multiple signaling pathways. Antioxid. Redox Signal. 15, 1–17. PMID:21303257

  11. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations.

    PubMed

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu; Yang, Qiaoyun; Zhao, Yuxia; Li, Ran; Ge, Jie; Qiu, Xinghua; Li, Guang

    2015-02-01

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log2 ratio >1 or <-1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. PMID:25679774

  12. The Shh Signaling Pathway Is Upregulated in Multiple Cell Types in Cortical Ischemia and Influences the Outcome of Stroke in an Animal Model

    PubMed Central

    Jin, Yongmin; Raviv, Nataly; Barnett, Austin; Bambakidis, Nicholas C.; Filichia, Emily; Luo, Yu

    2015-01-01

    Recently the sonic hedgehog (shh) signaling pathway has been shown to play an important role in regulating repair and regenerative responses after brain injury, including ischemia. However, the precise cellular components that express and upregulate the shh gene and the cellular components that respond to shh signaling remain to be identified. In this study, using a distal MCA occlusion model, our data show that the shh signal is upregulated both at the cortical area near the injury site and in the adjacent striatum. Multiple cell types upregulate shh signaling in ischemic brain, including neurons, reactive astrocytes and nestin-expressing cells. The shh signaling pathway genes are also expressed in the neural stem cells (NSCs) niche in the subventricular zone (SVZ). Conditional deletion of the shh gene in nestin-expressing cells both at the SVZ niche and at the ischemic site lead to significantly more severe behavioral deficits in these shh iKO mice after cortical stroke, measured using an automated open field locomotion apparatus (Student’s t-test, p<0.05). In contrast, animals given post-stroke treatment with the shh signaling agonist (SAG) demonstrated less deficits in behavioral function, compared to vehicle-treated mice. At 7 days after stroke, SAG-treated mice showed higher values in multiple horizontal movement parameters compared to vehicle treated mice (Student’s t-test, p<0.05) whereas there were no differences in pre-stroke measurements, (Student’s t-test, p>0.05). In summary, our data demonstrate that shh signaling plays critical and ongoing roles in response to ischemic injury and modulation of shh signaling in vivo alters the functional outcome after cortical ischemic injury. PMID:25927436

  13. Role of the phosphatidylinositol 3-kinase\\/Akt and mTOR\\/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma

    Microsoft Academic Search

    Frédéric Pene; Yann-Erick Claessens; Odile Muller; Franck Viguié; Patrick Mayeux; François Dreyfus; Catherine Lacombe; Didier Bouscary

    2002-01-01

    Multiple myeloma (MM) is a plasma cell malignancy preliminary localized in the bone marrow and characterized by its capacity to disseminate. IL-6 and IGF-1 have been shown to mediate proliferative and anti-apoptotic signals in plasmocytes. However, in primary plasma-cell leukemia (PCL) and in end-stage aggressive extramedullar disease, the cytokine requirement for both effects may be not mandatory. This suggests that

  14. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    SciTech Connect

    Belakavadi, Madesh [Department of Applied Botany and Biotechnology, University of Mysore, Mysore-570006 (India)]. E-mail: belakama@umdnj.edu; Prabhakar, B.T. [Department of Applied Botany and Biotechnology, University of Mysore, Mysore-570006 (India); Salimath, Bharathi P. [Department of Applied Botany and Biotechnology, University of Mysore, Mysore-570006 (India)

    2005-10-07

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.

  15. Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6—STAT3 signaling pathway

    PubMed Central

    Liang, Siyuan; Ristich, Vladimir; Arase, Hisashi; Dausset, Jean; Carosella, Edgardo D.; Horuzsko, Anatolij

    2008-01-01

    The expression of Ig-like transcript (ILT) inhibitory receptors is a characteristic of tolerogenic dendritic cells (DCs). However, the mechanisms of modulation of DCs via ILT receptors remain poorly defined. HLA-G is a preferential ligand for several ILTs. Recently, we demonstrated that triggering of ILT4 by HLA-G1 inhibits maturation of human monocyte-derived conventional DCs and murine DCs from ILT4 transgenic mice, resulting in diminished expression of MHC class II molecules, CD80 and CD86 costimulatory molecules, and prolongation of skin allograft survival. Different isoforms of HLA-G have diverse effects on the efficiency to induce ILT-mediated signaling. In this work, we show that HLA-G1 tetrameric complex and HLA-G5 dimer, but not HLA-G5 monomer, induce strong ILT-mediated signaling. We determined that the arrest of maturation of ILT4-positive DCs by HLA-G ligands involves the IL-6 signaling pathway and STAT3 activation. Ligation of ILT4 with HLA-G on DCs results in recruitment of SHP-1 and SHP-2 protein tyrosine phosphatases. We propose a model where SHP-2 and the IL-6–STAT3 signaling pathway play critical roles in the modulation of DC differentiation by ILT4 and HLA-G. PMID:18550825

  16. Structural Requirements for Sorting Pro-Vasopressin to the Regulated Secretory Pathway in a Neuronal Cell Line

    PubMed Central

    Cool, David R.; Jackson, Steven B.; Waddell, Karen S.

    2009-01-01

    Vasopressin is a peptide hormone normally secreted via the regulated secretory pathway in neuro-endocrine cells. In an effort to determine which region of vasopressin contains sufficient information for sorting, we created five constructs with the cDNA for vasopressin or regions of vasopressin in frame with the gene for green fluorescent protein (GFP). Fluorescence microscopy of Neuro-2a cells expressing the constructs revealed full-length vasopressin-GFP (VP-GFP), neurophysin-GFP (NP-GFP) and arginine-vasopressin/neurophysin-GFP (AN-GFP), were localized to punctate granules in the neurites and accumulated at the tips of neurites, characteristic of regulated secretory granules. These fusion proteins were secreted in a regulated manner as determined by pulse-chase labeling experiments. Two other chimeric proteins, signalpeptide-GFP and AVP-GFP were localized to a perinuclear region, characteristic of the endoplasmic reticulum. Pulse/chase [35S]labeling followed by immunoprecipitation using anti-GFP antibody indicated that these two fusion proteins were constitutively secreted. We conclude that the neurophysin region of pro-vasopressin contains information that is both sufficient and necessary for sorting GFP into the regulated secretory pathway. PMID:19830265

  17. Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety

    PubMed Central

    Zhao, Xuan; Zhong, Hang; Wang, Rui; Liu, Dan; Waxman, Samuel; Zhao, Linxiang; Jing, Yongkui

    2015-01-01

    Anti-apoptotic protein Mcl-1 plays an important role in protecting cell from death in acute myeloid leukemia (AML). The apoptosis blocking activity of Mcl-1 is inhibited by BH3-only protein Noxa. We found that dihydroartemisinin (DHA) and its derivative X-11 are potent apoptosis inducers in AML cells and act through a Noxa-mediate pathway; X-11 is four-fold more active than DHA. DHA and X-11-induced apoptosis is associated with induction of Noxa; apoptosis is blocked by silencing Noxa. DHA and X-11 induce Noxa expression by upregulating the transcription factor FOXO3a in a reactive oxygen species-mediated pathway. Interfering with the integrity of the endoperoxide moiety of DHA and X-11, as well as chelating intracellular iron with deferoxamine, diminish apoptosis and Noxa induction. AML cells expressing Bcl-xL, or with overexpression of Bcl-2, have decreased sensitivity to DHA and X-11-induced apoptosis which could be overcome by addition of Bcl-2/Bcl-xL inhibitor ABT-737. DHA and X-11 represent a new group of AML cells-apoptosis inducing compounds which work through Noxa up-regulation utilizing the specific endoperoxide moiety and intracellular iron. PMID:25714024

  18. Modelling equilibrium shoreline response: application across multiple sites and minimum data collection requirements

    NASA Astrophysics Data System (ADS)

    Splinter, K.; Davidson, M. A.; Turner, I. L.

    2012-12-01

    The ability to predict shoreline variability and trends for a range of potential future climate scenarios is of increasing interest to coastal scientists. Here we introduce a new shoreline equilibrium model driven by cross-shore processes via changes in non-dimensional fall velocity (i.e., sediment characteristics and wave steepness) and offshore wave power (Davidson et al., submitted). The equilibrium shoreline position is modeled based on a weighted time-average of past non-dimensional fall velocity following the work of Wright et al. (1985). When the prevailing wave conditions are steeper than the time varying equilibrium, the shoreline erodes as sand is expected to move offshore and form a breaker bar. Conversely, when waves are flatter, sand moves onshore and the shoreline builds seawards. The model is applied at a number of sites within Australia and the US to quantify model skill, and to examine free parameter sensitivity and generic transferability between differing sites. Further testing using real-world and synthetic data sets is used to determine the minimum data requirements for calibration of the model, providing useful guidance to future coastline monitoring program requirements. Model hindcasts at six locations within Australia indicate this simple cross-shore equilibrium shoreline model is capable of reproducing multi-year shoreline variability with significant skill. Shoreline variance explained by the model (currently driven only by cross-shore processes) is between 40% (downdrift of an Artificial surfing reef on an exposed open coast) to 66% percent (on a central location of a storm-driven embayed beach, Fig. 1).Hindcast results for the Narrabeen embayment at alongshore locations y=2200m (a), 2600m (b) and 3200m (c). R 2 ranged from 0.57 (y=2600m) to 0.66 (y=3200m). The thickness of the data curve (grey) indicates the potential measurement error.

  19. Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients

    PubMed Central

    Sriram, Prema; Wang, Chenyu; Yiannikas, Con; Garrick, Raymond; Barnett, Michael; Parratt, John; Graham, Stuart L.; Arvind, Hemamalini; Klistorner, Alexander

    2014-01-01

    Purpose Loss of retinal ganglion cells in in non-optic neuritis eyes of Multiple Sclerosis patients (MS-NON) has recently been demonstrated. However, the pathological basis of this loss at present is not clear. Therefore, the aim of the current study was to investigate associations of clinical (high and low contrast visual acuity) and electrophysiological (electroretinogram and multifocal Visual Evoked Potentials) measures of the visual pathway with neuronal and axonal loss of RGC in order to better understand the nature of this loss. Methods Sixty-two patients with relapsing remitting multiple sclerosis with no previous history of optic neuritis in at least one eye were enrolled. All patients underwent a detailed ophthalmological examination in addition to low contrast visual acuity, Optical Coherence Tomography, full field electroretinogram (ERG) and multifocal visual evoked potentials (mfVEP). Results There was significant reduction of ganglion cell layer thickness, and total and temporal retinal nerve fibre layer (RNFL) thickness (p<0.0001, 0.002 and 0.0002 respectively). Multifocal VEP also demonstrated significant amplitude reduction and latency delay (p<0.0001 for both). Ganglion cell layer thickness, total and temporal RNFL thickness inversely correlated with mfVEP latency (r?=??0.48, p<0.0001 respectively; r?=??0.53, p<0.0001 and r?=??0.59, p<0.0001 respectively). Ganglion cell layer thickness, total and temporal RNFL thickness also inversely correlated with the photopic b-wave latency (r?=??0.35, p?=?0.01; r?=??0.33, p?=?0.025; r?=??0.36, p?=?0.008 respectively). Multivariate linear regression model demonstrated that while both factors were significantly associated with RGC axonal and neuronal loss, the estimated predictive power of the posterior visual pathway damage was considerably larger compare to retinal dysfunction. Conclusion The results of our study demonstrated significant association of RGC axonal and neuronal loss in NON-eyes of MS patients with both retinal dysfunction and post-chiasmal damage of the visual pathway. PMID:25166273

  20. Cooperation between Shh and IGF-I in Promoting Myogenic Proliferation and Differentiation via the MAPK/ERK and PI3K/Akt Pathways Requires Smo Activity

    PubMed Central

    Madhala-Levy, D; Williams, VC; Hughes, SM; Reshef, R; O, Halevy

    2012-01-01

    Sonic hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and IGF-I was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh’s effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smomut (MCre;Smoflox/flox) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I’s effect on Smocont cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smomut cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that p-Tyr proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts. PMID:21618536

  1. Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways

    PubMed Central

    Gruber, Andreas J.; Grandy, William A.; Balwierz, Piotr J.; Dimitrova, Yoana A.; Pachkov, Mikhail; Ciaudo, Constance; van Nimwegen, Erik; Zavolan, Mihaela

    2014-01-01

    The findings that microRNAs (miRNAs) are essential for early development in many species and that embryonic miRNAs can reprogram somatic cells into induced pluripotent stem cells suggest that these miRNAs act directly on transcriptional and chromatin regulators of pluripotency. To elucidate the transcription regulatory networks immediately downstream of embryonic miRNAs, we extended the motif activity response analysis approach that infers the regulatory impact of both transcription factors (TFs) and miRNAs from genome-wide expression states. Applying this approach to multiple experimental data sets generated from mouse embryonic stem cells (ESCs) that did or did not express miRNAs of the ESC-specific miR-290-295 cluster, we identified multiple TFs that are direct miRNA targets, some of which are known to be active during cell differentiation. Our results provide new insights into the transcription regulatory network downstream of ESC-specific miRNAs, indicating that these miRNAs act on cell cycle and chromatin regulators at several levels and downregulate TFs that are involved in the innate immune response. PMID:25030899

  2. Multiple Facets of Arabidopsis Seedling Development Require ?Indole-3-Butyric Acid–Derived Auxin[W

    PubMed Central

    Strader, Lucia C.; Wheeler, Dorthea L.; Christensen, Sarah E.; Berens, John C.; Cohen, Jerry D.; Rampey, Rebekah A.; Bartel, Bonnie

    2011-01-01

    Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal ?-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels. PMID:21406624

  3. Multiple pathways carry signals from short-wavelength-sensitive (‘blue’) cones to the middle temporal area of the macaque

    PubMed Central

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT. PMID:23070701

  4. Deregulation of energetic metabolism in the clear cell renal cell carcinoma: A multiple pathway analysis based on microarray profiling.

    PubMed

    Soltysova, Andrea; Breza, Jan; Takacova, Martina; Feruszova, Jana; Hudecova, Sona; Novotna, Barbora; Rozborilova, Eva; Pastorekova, Silvia; Kadasi, Ludevit; Krizanova, Olga

    2015-07-01

    Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. In order to better understand the biology of ccRCC, we accomplished the gene profiling of fresh tissue specimens from 11 patients with the renal tumors (9 ccRCCs, 1 oncocytoma and 1 renal B-lymphoma), in which the tumor-related data were compared to the paired healthy kidney tissues from the same patients. All ccRCCs exhibited a considerably elevated transcription of the gene coding for carbonic anhydrase IX (CAIX). Moreover, the ccRCC tumors consistently displayed increased expression of genes encoding the glycolytic pathway enzymes, e.g. hexokinase II (HK2) and lactate dehydrogenase A (LDHA) and a decreased expression of genes for the mitochondrial electron transport chain components, indicating an overall reprogramming of the energetic metabolism in this tumor type. This appears to be accompanied by altered expression of the genes of the pH regulating machinery, including ion and lactate transporters. Immunohistochemical staining of tumor tissue sections confirmed the increased expression of CAIX, HK2 and LDHA in ccRCC, validating the microarray data and supporting their potential as the energetic metabolism-related biomarkers of the ccRCC. PMID:25998032

  5. The Twin-Arginine Translocation Pathway of Mycobacterium smegmatis Is Functional and Required for the Export of Mycobacterial ?-Lactamases

    PubMed Central

    McDonough, Justin A.; Hacker, Kari E.; Flores, Anthony R.; Pavelka, Martin S.; Braunstein, Miriam

    2005-01-01

    The twin-arginine translocation (Tat) pathway exports folded proteins across the bacterial cytoplasmic membrane and is responsible for the proper extracytoplasmic localization of proteins involved in a variety of cellular functions, including pathogenesis. The Mycobacterium tuberculosis and Mycobacterium smegmatis genomes contain open reading frames with homology to components of the Tat export system (TatABC) as well as potential Tat-exported proteins possessing N-terminal signal sequences with the characteristic twin-arginine motif. Due to the importance of exported virulence factors in the pathogenesis of M. tuberculosis and the limited understanding of mycobacterial protein export systems, we sought to determine the functional nature of the Tat export pathway in mycobacteria. Here we describe phenotypic analyses of ?tatA and ?tatC deletion mutants of M. smegmatis, which demonstrated that tatA and tatC encode components of a functional Tat system capable of exporting characteristic Tat substrates. Both mutants displayed a growth defect on agar medium and hypersensitivity to sodium dodecyl sulfate. The mutants were also defective in the export of active ?-lactamases of M. smegmatis (BlaS) and M. tuberculosis (BlaC), both of which possess twin-arginine signal sequences. The Tat-dependent nature of BlaC was further revealed by mutation of the twin-arginine motif. Finally, we demonstrated that replacement of the native signal sequence of BlaC with the predicted Tat signal sequences of M. tuberculosis phospholipase C proteins (PlcA and PlcB) resulted in the Tat-dependent export of an enzymatically active ?BlaC. Thus, ?BlaC can be used as a genetic reporter for Tat-dependent export in mycobacteria. PMID:16267291

  6. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  7. Massed training induced intermediate term operant memory in Aplysia requires protein synthesis and multiple persistent kinase cascades

    PubMed Central

    Michel, Maximilian; Green, Charity L.; Gardner, Jacob S.; Organ, Chelsea L.; Lyons, Lisa C.

    2012-01-01

    The Aplysia feeding system with its high degree of plasticity and well-characterized neuronal circuitry is well-suited for investigations of memory formation. We used an operant paradigm, learning that food is inedible (LFI), to investigate the signaling pathways underlying intermediate-term memory (ITM) in Aplysia. During a single massed training session, the animal associates a specific seaweed with the failure to swallow generating short (30 min) and long-term (24 h) memory. We investigated whether the same training protocol induced the formation of ITM. We found that massed LFI training resulted in temporally distinct protein synthesis dependent memory evident four to six hours after training. Through in vivo experiments, we determined that the formation of ITM required protein kinase A, protein kinase C and MAPK. Moreover, the maintenance of ITM required PKA, PKM Apl III and MAPK as inhibition of any of these kinases after training or before testing blocked the expression of memory. In contrast, additional experiments determined that the maintenance of LTM appeared independent of PKM Apl III. Using western blotting, we found that sustained MAPK phosphorylation was dependent upon protein synthesis, but not PKA or PKC activity. Thus, massed training induced intermediate-term operant memory requires protein synthesis as well as persistent or sustained kinase signaling for PKA, PKC and MAPK. While short, intermediate and long-term memory are induced by the same training protocol, considerable differences exist in both the combination and timing of signaling cascades that induce the formation and maintenance of these temporally distinct memories. PMID:22457504

  8. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster.

    PubMed

    Choi, Seung-Hoon; Lee, Gyunghee; Monahan, Pamela; Park, Jae H

    2008-03-10

    Although most invertebrate neuropeptide-encoding genes display distinct expression patterns in the central nervous system (CNS), the molecular mechanisms underlying spatial regulation of the neuropeptide genes are largely unknown. Expression of the neuropeptide Corazonin (Crz) is limited to only 24 neurons in the larval CNS of Drosophila melanogaster, and these neurons have been categorized into three groups, namely, DL, DM, and vCrz. To identify cis-regulatory elements that control transcription of Crz in each neuronal group, reporter gene expression patterns driven by various 5' flanking sequences of Crz were analyzed to assess their promoter activities in the CNS. We show that the 504-bp 5' upstream sequence is the shortest promoter directing reporter activities in all Crz neurons. Further dissection of this sequence revealed two important regions responsible for group specificity: -504::-419 for DM expression and -380::-241 for DL and vCrz expression. The latter region is further subdivided into three sites (proximal, center, and distal), in which any combinations of the two are sufficient for DL expression, whereas both proximal and distal sites are required for vCrz expression. Interestingly, the TATA box does not play a role in Crz transcription in most neurons. We also show that a 434-bp 5' upstream sequence of the D. virilis Crz gene, when introduced into the D. melanogaster genome, drives reporter expression in the DL and vCrz neurons, suggesting that regulatory mechanisms for Crz expression in at least two such neuronal groups are conserved between the two species. PMID:18181151

  9. ATF1 Phosphorylation by the ERK MAPK Pathway Is Required for Epidermal Growth Factor-induced c-jun Expression

    Microsoft Academic Search

    Pankaj Gupta; Ron Prywes

    2002-01-01

    Epidermal growth factor induction of c-jun expres- sion requires ATF1 and MEF2 sites in the c-jun pro- moter. We find that activation of the c-jun promoter through the ATF1 site requires phosphorylation of ATF1 at serine 63. A serine 63 to alanine mutation of ATF1 acts to block epidermal growth factor (EGF) induction of a transfected c-jun gene. ATF1 can

  10. Caveolin-1 is required for TGF- ? -induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17

    PubMed Central

    Moreno-Càceres, J; Caja, L; Mainez, J; Mayoral, R; Martín-Sanz, P; Moreno-Vicente, R; del Pozo, M Á; Dooley, S; Egea, G; Fabregat, I

    2014-01-01

    Transforming growth factor-beta (TGF-?) plays a dual role in hepatocytes, inducing both pro- and anti-apoptotic responses, whose balance decides cell fate. Survival signals are mediated by the epidermal growth factor receptor (EGFR) pathway, which is activated by TGF-? in these cells. Caveolin-1 (Cav1) is a structural protein of caveolae linked to TGF-? receptors trafficking and signaling. Previous results have indicated that in hepatocytes, Cav1 is required for TGF-?-induced anti-apoptotic signals, but the molecular mechanism is not fully understood yet. In this work, we show that immortalized Cav1?/? hepatocytes were more sensitive to the pro-apoptotic effects induced by TGF-?, showing a higher activation of caspase-3, higher decrease in cell viability and prolonged increase through time of intracellular reactive oxygen species (ROS). These results were coincident with attenuation of TGF-?-induced survival signals in Cav1?/? hepatocytes, such as AKT and ERK1/2 phosphorylation and NF?-B activation. Transactivation of the EGFR pathway by TGF-? was impaired in Cav1?/? hepatocytes, which correlated with lack of activation of TACE/ADAM17, the metalloprotease responsible for the shedding of EGFR ligands. Reconstitution of Cav1 in Cav1?/? hepatocytes rescued wild-type phenotype features, both in terms of EGFR transactivation and TACE/ADAM17 activation. TACE/ADAM17 was localized in detergent-resistant membrane (DRM) fractions in Cav1+/+ cells, which was not the case in Cav1?/? cells. Disorganization of lipid rafts after treatment with cholesterol-binding agents caused loss of TACE/ADAM17 activation after TGF-? treatment. In conclusion, in hepatocytes, Cav1 is required for TGF-?-mediated activation of the metalloprotease TACE/ADAM17 that is responsible for shedding of EGFR ligands and activation of the EGFR pathway, which counteracts the TGF-? pro-apoptotic effects. Therefore, Cav1 contributes to the pro-tumorigenic effects of TGF-? in liver cancer cells. PMID:25032849

  11. Differential requirements for CTL generation by novel immunostimulants: APC tropism, use of the TAP-independent processing pathway, and dependency on CD80/CD86 costimulation.

    PubMed

    Sheikh, Nadeem A; Attard, George S; van Rooijen, Nico; Rajananthanan, Palasingam; Hariharan, Kandasamy; Yang, Ya-Wun; Morrow, W John W

    2003-09-01

    A major drawback of subunit vaccines is their inability to generate cytolytic T lymphocytes (CTL), a deficit attributed to segregation of the class I and class II antigen-processing pathways. We sought to understand processes involved in CTL induction by three proprietary adjuvants: Tomatine, PROVAX, and a synthesized glycolipid (Glc-N-(8/16), Glycolipid). We used in vivo models to investigate antigen uptake, macrophage involvement, TAP-independent processing, and costimulatory molecule dependencies. Glycolipid required splenic and lymph node macrophages, whereas Tomatine generated CTL independently of either macrophage population. In contrast, PROVAX showed partial macrophage requirements. Immunized TAP knockout mice revealed that ovalbumin (OVA)-Tomatine and OVA-PROVAX, but not OVA-Glycolipid, generate class I-peptide complexes. All three immunostimulants also elicited CD86-dependent TH1 cytokine responses. PMID:12922111

  12. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum.

    PubMed

    Timpner, Christian; Braus-Stromeyer, Susanna A; Tran, Van Tuan; Braus, Gerhard H

    2013-11-01

    The plant-pathogenic fungus Verticillium longisporum is a causal agent of early senescence and ripening in cruciferous crops like Brassica napus. Verticillium wilts have become serious agricultural threats in recent decades. Verticillium species infect host plants through the roots and colonize xylem vessels of the host plant. The xylem fluid provides an environment with limited carbon sources and unbalanced amino acid supply, which requires V. longisporum to induce the cross-pathway control of amino acid biosynthesis. RNA-mediated gene silencing reduced the expression of the two CPC1 isogenes (VlCPC1-1 and VlCPC1-2) of the allodiploid V. longisporum up to 85%. VlCPC1 encodes the conserved transcription factor of the cross-pathway control. The silenced mutants were highly sensitive to amino-acid starvation, and the infected plants showed significantly fewer symptoms such as stunting or early senescence in oilseed rape plant infection assays. Consistently, deletion of single CPC1 of the haploid V. dahliae resulted in strains that are sensitive to amino-acid starvation and cause strongly reduced symptoms in the plant-host tomato (Solanum lycopersicum). The allodiploid V. longisporum and the haploid V. dahliae are the first phytopathogenic fungi that were shown to require CPC1 for infection and colonization of their respective host plants, oilseed rape and tomato. PMID:23883358

  13. UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma.

    PubMed

    Dong, Haiyan; Yang, Xiang; Xie, Jingjing; Xiang, Liping; Li, Yuanfang; Ou, Minrui; Chi, Ting; Liu, Zhenhua; Yu, Suhong; Gao, Yu; Chen, Jianzhong; Shao, Jingwei; Jia, Lee

    2015-01-15

    Targeting cancer cell glucose metabolism is a promising strategy for cancer therapy. In past approaches to cancer drug discovery, ursolic acid (UA) has been chemically modified to improve its antitumor activities and bioavailability. Here, a novel ursolic acid (UA) derivative UP12 was developed via computer-aided drug design to explore potent anti-cancer agents and to examine possible mechanisms. The structural docking analyses suggested that UP12 could bind to the active sites of glucokinase (GK), glucose transporter 1 (GLUT1) and ATPase, which are the main enzymes involved in cancer glucose metabolism. We further investigated the synergistic effect between UP12 and glycolysis inhibitor 2-deoxy-d-glucose (2-DG) in inhibiting glucose metabolism of cancer cells. The pharmacological results showed that the combination enhanced depletion of intracellular ATP and decrease in lactate production, and pushed more cancer cells arrested in the S and G2/M cycle phases. The combination selectively down-regulated the expression of Bcl-2 and HKII proteins, up-regulated the expression of Bax and p53, and collectively resulted in enhanced apoptosis related to caspase-3, -8, and -9 activities, in addition to inhibition on the cell mitochondrial membrane potential. The animal studies further demonstrated that the combination exhibited significant antitumor activity without obvious toxicity. In summary, UP12 can interfere cancer cell metabolism pathway and further enhance the therapeutic effects of 2-DG likely through synergistic suppression of cancer cell glucose metabolism, making UP12 a likely new candidate for anti-cancer drug development. PMID:25522955

  14. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling

    PubMed Central

    Godman, Cassandra A.; Joshi, Rashmi; Tierney, Brendan R.; Greenspan, Emily; Rasmussen, Theodore P.; Wang, Hsin-wei; Shin, Dong-Guk; Rosenberg, Daniel W.; Giardina, Charles

    2008-01-01

    Histone deacetylase 3 (HDAC3) is over-expressed in approximately half of all colon adenocarcinomas. We took an RNAi approach to determine how HDAC3 influenced chromatin modifications and the expression of growth regulatory genes in colon cancer cells. A survey of histone modifications revealed that HDAC3 knockdown in SW480 cells significantly increased histone H4-K12 acetylation, a modification present during chromatin assembly that has been implicated in imprinting. This modification was found to be most prominent in proliferating cells in the intestinal crypt and in APCMin tumors, but was less pronounced in the tumors that over-express HDAC3. Gene expression profiling of SW480 revealed that HDAC3 shRNA impacted the expression of genes in the Wnt and vitamin D signaling pathways. The impact of HDAC3 on Wnt signaling was complex, with both positive and negative effects observed. However, long-term knockdown of HDAC3 suppressed ?-catenin translocation from the plasma membrane to the nucleus, and increased expression of Wnt inhibitors TLE1, TLE4 and SMO. HDAC3 knockdown also enhanced expression of the TLE1 and TLE4 repressors in HT-29 and HCT116 cells. HDAC3 shRNA enhanced expression of the vitamin D receptor in SW480 and HCT116 cells, and rendered SW480 cells sensitive to 1,25-dihydroxyvitamin D3. We propose that HDAC3 over-expression alters the epigenetic programming of colon cancer cells to impact intracellular Wnt signaling and their sensitivity to external growth regulation by vitamin D. PMID:18769117

  15. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules. PMID:19460850

  16. Common genetic variation in multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary heart disease.

    PubMed

    Peloso, Gina M; Demissie, Serkalem; Collins, Dorothea; Mirel, Daniel B; Gabriel, Stacey B; Cupples, L Adrienne; Robins, Sander J; Schaefer, Ernst J; Brousseau, Margaret E

    2010-12-01

    A low level of HDL-C is the most common plasma lipid abnormality observed in men with established coronary heart disease (CHD). To identify allelic variants associated with susceptibility to low HDL-C and CHD, we examined 60 candidate genes with key roles in HDL metabolism, insulin resistance, and inflammation using samples from the Veterans Affairs HDL Intervention Trial (VA-HIT; cases, n = 699) and the Framingham Offspring Study (FOS; controls, n = 705). VA-HIT was designed to examine the benefits of HDL-raising with gemfibrozil in men with low HDL-C (?40 mg/dl) and established CHD. After adjustment for multiple testing within each gene, single-nucleotide polymorphisms (SNP) significantly associated with case status were identified in the genes encoding LIPC (rs4775065, P < 0.0001); CETP (rs5882, P = 0.0002); RXRA (rs11185660, P = 0.0021); ABCA1 (rs2249891, P = 0.0126); ABCC6 (rs150468, P = 0.0206; rs212077, P = 0.0443); CUBN (rs7893395, P = 0.0246); APOA2 (rs3813627, P = 0.0324); SELP (rs732314, P = 0.0376); and APOC4 (rs10413089, P = 0.0425). Included among the novel findings of this study are the identification of susceptibility alleles for low HDL-C/CHD risk in the genes encoding CUBN and RXRA, and the observation that genetic variation in SELP may influence CHD risk through its effects on HDL. PMID:20855565

  17. Panobinostat synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing ROS and modulating mevalonate and p38-MAPK pathways

    PubMed Central

    Bruzzese, F; Pucci, B; Milone, M R; Ciardiello, C; Franco, R; Chianese, M I; Rocco, M; Di Gennaro, E; Leone, A; Luciano, A; Arra, C; Santini, D; Caraglia, M; Budillon, A

    2013-01-01

    Patients with advanced prostate cancer (PCa) and multiple myeloma (MM) have limited long-term responses to available therapies. The histone deacetylase inhibitor panobinostat has shown significant preclinical and clinical anticancer activity in both hematological and solid malignancies and is currently in phase III trials for relapsed MM. Bisphosphonates (BPs), such as zoledronic acid (ZOL), inhibit osteoclast-mediated bone resorption and are indicated for the treatment of bone metastasis. BPs, including ZOL, have also shown anticancer activity in several preclinical and clinical studies. In the present report, we found a potent synergistic antiproliferative effect of panobinostat/ZOL treatment in three PCa and three MM cell lines as well as in a PCa ZOL-resistant subline, independently of p53/KRAS status, androgen dependency, or the schedule of administration. The synergistic effect was also observed in an anchorage-independent agar assay in both ZOL-sensitive and ZOL-resistant cells and was confirmed in vivo in a PCa xenograft model. The co-administration of the antioxidant N-acetyl-L-cysteine blocked the increased reactive oxygen species generation and apoptosis observed in the combination setting compared with control or single-agent treatments, suggesting that oxidative injury plays a functional role in the synergism. Proapoptotic synergy was also partially antagonized by the addition of geranyl-geraniol, which bypasses the inhibition of farnesylpyrophosphate synthase by ZOL in the mevalonate pathway, supporting the involvement of this pathway in the synergy. Finally, at the molecular level, the inhibition of basal and ZOL-induced activation of p38-MAPK by panobinostat in sensitive and ZOL-resistant cells and in tumor xenografts could explain, at least in part, the observed synergism. PMID:24157872

  18. MULTIPLE PROTEIN KINASE PATHWAYS MEDIATE AMPLIFIED IL-6 RELEASE BY HUMAN LUNG FIBROBLASTS CO-EXPOSED TO NICKEL AND TLR-2 AGONIST, MALP-2

    PubMed Central

    Gao, Fei; Brant, Kelly A.; Ward, Rachel M.; Cattley, Richard T.; Barchowsky, Aaron; Fabisiak, James P.

    2010-01-01

    Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO4 was obvious after 8 h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all lead to rapid and transient phosphorylations of ERK1/2 and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1? and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK1/2, p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1? protein, however, COX-2 expression and, more markedly PGE2 production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK1/2, p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1? to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE2. PMID:20600219

  19. In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2.

    PubMed

    Dhamgaye, Sanjiveeni; Devaux, Frederic; Manoharlal, Raman; Vandeputte, Patrick; Shah, Abdul Haseeb; Singh, Ashutosh; Blugeon, Corinne; Sanglard, Dominique; Prasad, Rajendra

    2012-01-01

    In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC(50)], 100 ng ml(-1)) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis. PMID:22006003

  20. Meiotic Cohesin SMC1? Provides Prophase I Centromeric Cohesion and Is Required for Multiple Synapsis-Associated Functions

    PubMed Central

    Biswas, Uddipta; Wetzker, Cornelia; Lange, Julian; Christodoulou, Eleni G.; Seifert, Michael; Beyer, Andreas; Jessberger, Rolf

    2013-01-01

    Cohesin subunit SMC1? is specific and essential for meiosis. Previous studies showed functions of SMC1? in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1? in SCC and synapsis and processes related to these two processes. Here we show that SMC1? substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1?. Besides supporting synapsis of autosomes, SMC1? is also required for synapsis and silencing of sex chromosomes. In absence of SMC1?, the silencing factor ?H2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1? is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1??/? spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1? alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1? have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I. PMID:24385917

  1. Gibberellic acid nitrite stimulates germination of two species of light-requiring seeds via the nitric oxide pathway.

    PubMed

    Jovanovi?, Vladan; Giba, Zlatko; Djokovi?, Dejan; Milosavljevi?, Slobodan; Grubisi?, Dragoljub; Konjevi?, Radomir

    2005-06-01

    We used two species of light-requiring seeds, Paulownia tomentosa, which have absolute light requirement (no germination in darkness), and Stellaria media seeds, which germinate in darkness to a certain extent because of presence of preformed active phytochrome, to obtain results strongly suggesting that gibberellic acid nitrite stimulates seed germination via its capability as a functional NO donor. Exogenous application of gibberellic acid nitrite stimulates gibberellin-insensitive Stellaria media seed germination in darkness as do a wide variety of NO donors. Pure gibberellic acid could replace the light requirement of P. tomentosa seeds, thus enabling them to germinate in darkness. Gibberellic acid nitrite did not have this effect. A stimulative effect from gibberellic acid nitrite could be detected only after exposure of these seeds to short, 10 min, pulse of red light. Taken together, these results suggest that gibberellic activity of gibberellic acid nitrite is lost after nitrosation but, regarding to the presence of -O-NO moiety in the molecule, gibberellic acid nitrite shares stimulative properties in seed germination with other compounds with NO-releasing properties. PMID:16154981

  2. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae

    SciTech Connect

    Saparbaev, M.; Prakash, L.; Prakash, S. [Univ. of Texas Medical Branch, Galveston, TX (United States)

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3-A mutation has an effect on recombination similar to that of the rad1{Delta} and rad10{Delta} mutations. The msh2{Delta} mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAM-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process. 59 refs., 2 figs., 7 tabs.

  3. Bovine Ephemeral Fever Virus Uses a Clathrin-Mediated and Dynamin 2-Dependent Endocytosis Pathway That Requires Rab5 and Rab7 as Well as Microtubules

    PubMed Central

    Cheng, Ching Y.; Shih, Wing L.; Huang, Wei R.; Chi, Pei I.; Wu, Ming H.

    2012-01-01

    The specific cell pathways involved in bovine ephemeral fever virus (BEFV) cell entry have not been determined. In this work, colocalization of the M protein of BEFV with clathrin or dynamin 2 was observed under a fluorescence microscope. To better understand BEFV entry, we carried out internalization studies with a fluorescently labeled BEFV by using a lipophilic dye, 3,30-dilinoleyloxacarbocyanine perchlorate (DiO), further suggesting that BEFV uses a clathrin-mediated endocytosis pathway. Our results suggest that clathrin-mediated and dynamin 2-dependent endocytosis is an important avenue of BEFV entry. Suppression of Rab5 or Rab7a through the use of a Rab5 dominant negative mutant and Rab7a short hairpin RNA (shRNA) demonstrated that BEFV requires both early and late endosomes for endocytosis and subsequent infection in MDBK and Vero cells. Treatment of BEFV-infected cells with nocodazole significantly decreased the M protein synthesis and viral yield, indicating that microtubules play an important role in BEFV productive infection, likely by mediating trafficking of BEFV-containing endosomes. Furthermore, BEFV infection was strongly blocked by different inhibitors of endosomal acidification, suggesting that virus enters host cells by clathrin-mediated and dynamin 2-dependent endocytosis in a pH-dependent manner. PMID:23055561

  4. The fungal ?-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate

    PubMed Central

    Fazius, Felicitas; Shelest, Ekaterina; Gebhardt, Peter; Brock, Matthias

    2012-01-01

    Fungi produce ?-aminoadipate, a precursor for penicillin and lysine via the ?-aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis. PMID:23106124

  5. Identification of SIN pathway targets reveals mechanisms of crosstalk between NDR kinase pathways

    PubMed Central

    Gupta, Sneha; Mana-Capelli, Sebastian; McLean, Janel R.; Chen, Chun-Ti; Ray, Samriddha; Gould, Kathleen L.; McCollum, Dannel

    2013-01-01

    Summary The Septum Initiation Network (SIN) regulates multiple functions during late mitosis to ensure successful completion of cytokinesis in S. pombe. One mechanism by which the SIN promotes cytokinesis is by inhibiting a competing polarity pathway called the MOR [1], which is required for initiation of polarized growth following completion of cytokinesis [2]. Mutual antagonism between the two NDR kinase pathways, SIN and MOR, is required to coordinate cytoskeletal rearrangements during the mitosis-interphase transition. To determine how the SIN regulates the MOR pathway, we developed a proteomics approach that allowed us to identify multiple substrates of the SIN effector kinase, Sid2, including the MOR pathway components Nak1 kinase and an associated protein Sog2. We show that Sid2 phosphorylation of Nak1 causes removal of Nak1 from the SPBs, which may both relieve Nak1 inhibition of the SIN, and block MOR signaling by preventing interaction of Nak1 with the scaffold protein Mor2. Because the SIN and MOR are conserved in mammalian cells (Hippo and Ndr1/2 pathways respectively), this work may provide important insight into how the activities of these essential pathways are coordinated. PMID:23394829

  6. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae

    SciTech Connect

    Ivanov, E.L.; Sugawara, N.; Haber, J.E. [Brandeis Univ., Waltham, MA (United States)] [and others

    1996-03-01

    HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching. 43 refs., 8 figs., 3 tabs.

  7. PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/?-catenin/BCL-9 signaling pathway.

    PubMed

    Xu, Yonghui; Yang, Zesong; Yuan, Haiting; Li, Zhen; Li, Ying; Liu, Qiong; Chen, Jianbin

    2015-08-01

    The tumor suppressor protocadherin-10 (PCDH10) gene is important in cell proliferation, survival, apoptosis and migration. Inactivation of PCDH10 by promoter methylation is a frequent pathogenetic event in multiple myeloma (MM). The Wnt/?-catenin pathway is known to be involved in the cell growth of various types of cancer, including MM. However, the relationship between PCDH10 and Wnt signaling in MM remains unclear. In this study, we found that PCDH10 deficiency highly enhanced MM cell proliferation, Wnt signaling and the expression of BCL-9, an essential coactivator of Wnt transcriptional activity that is correlated with cell growth, survival and drug resistance. Restoration of PCDH10 suppressed nuclear localization of ?-catenin, the activity of LEF/TCF, the expression of BCL-9 and AKT, whereas the expression of GSK3? was increased. The antagonistic effect of PCDH10 was associated with G1?phase blockage. Collectively, PCDH10 antagonized MM cell proliferation via the downregulation of Wnt/?-catenin/BCL-9 signaling, whereas PCDH10 repressed the expression of AKT to promote the expression of GSK3? and then to restrain the activation of ?-catenin. Thus, the results offer a novel preclinical rationale in order to explore PCDH10 as an effective and selective therapeutic strategy to eradicate MM cells. PMID:26081897

  8. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Fromm, Larry

    2014-02-01

    Muscle spindles are sensory receptors composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of sensory neuron axons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. The transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming intrafusal fibers. We have previously shown that, in cultured muscle cells, NRG1 signaling activates the Egr3 gene through SRF and CREB, which bind to a composite regulatory element, and that NRG1 signaling targets SRF by stimulating nuclear translocation of SRF coactivators myocardin-related transcription factor (MRTF)-A and MRTF-B and targets CREB by phosphorylation. The current studies examined signaling relays that might function in the NRG1 pathway upstream of SRF and CREB. We found that transcriptional induction of Egr3 in response to NRG1 requires the MAP kinase Erk1/2, which acts upstream of CREB to induce its phosphorylation. MRTFs are targeted by the Rho-actin pathway, yet in the absence of Rho-actin signaling, even though MRTFs fail to be translocated to the nucleus, NRG1 induces Egr3 transcription. In mouse muscle in vivo, activation of Erk1/2 is enhanced selectively where muscle spindles are located. These results suggest that Erk1/2 acts in intrafusal fibers of muscle spindles to induce transcription of Egr3 and that Egr3 induction occurs independently of MRTFs and involves Erk1/2 acting on other transcriptional regulatory targets that interact with the SRF-CREB regulatory element. PMID:24272970

  9. Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons.

    PubMed

    Vérièpe, Julie; Fossouo, Lucresse; Parker, J Alex

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease thought to employ cell non-autonomous mechanisms where neuronal injury engages immune responses to influence disease progression. Here we show that the expression of mutant proteins causative for ALS in Caenorhabditis elegans motor neurons induces an innate immune response via TIR-1/Sarm1. Loss of function mutations in tir-1, associated downstream kinases, and the transcription factor atf-7 all suppress motor neuron degeneration. The neurosecretory proteins UNC-13 and UNC-31 are required for induction of the immune response as well as the degeneration of motor neurons. The human orthologue of UNC-13, UNC13A, has been identified as a genetic modifier of survival in ALS, and we provide functional evidence of UNC-13/UNC13A in regulating motor neuron degeneration. We propose that the innate immune system reacts to the presence of mutant proteins as a contagion, recruiting a pathogen resistance response that is ultimately harmful and drives progressive neurodegeneration. PMID:26059317

  10. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase.

    PubMed

    Saïd-Sadier, Najwane; Padilla, Eduardo; Langsley, Gordon; Ojcius, David M

    2010-01-01

    Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1beta release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K(+) efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1beta expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1beta. Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1beta; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine. PMID:20368800

  11. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    NASA Astrophysics Data System (ADS)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  12. Acute Cardiac Rejection Requires Directly Cytotoxic CD4 T cells: A Parallel Pathway between Fas and Perforin1

    PubMed Central

    Grazia, Todd J.; Plenter, Robert J.; Weber, Sarah M.; Lepper, Helen M.; Victorino, Francisco; Zamora, Martin R.; Pietra, Biagio A.; Gill, Ronald G.

    2009-01-01

    Background CD4 T cells can suffice as effector cells to mediate primary acute cardiac allograft rejection. While CD4 T cells can readily kill appropriate target cells in vitro, the corresponding role of such cytolytic activity for mediating allograft rejection in vivo is unknown. Therefore, we determined whether the cytolytic effector molecules perforin and/or FasL (CD95L) were necessary for CD4 T cell-mediated rejection in vivo. Methods Wild type C3H(H-2k) or Fas (CD95)-deficient C3Hlpr (H-2k) hearts were transplanted into immune-deficient C57B6rag?/? (H-2b) mice. Recipients then were reconstituted with naïve purified CD4 T cells from either wild-type, perforin (pfp)-deficient, or FasL (gld)-deficient T cell donors. Results In vitro, alloreactive CD4 T cells were competent to lyse donor MHC class II+ target cells, largely by a Fas-dependent mechanism. In vivo, the individual disruption of either donor Fas expression (lpr) or CD4 T cell-derived perforin had no signifcant impact on acute rejection. However, FasL-deficient (gld) CD4 T cells demonstrated delayed allograft rejection. Importantly, the simultaneous removal of both donor Fas expression and CD4 T cell perforin completely abrograted acute rejection, despite the persistence of CD4 T cells within the graft. Conclusions Results demonstrate that the direct rejection of cardiac allografts by CD4 effector T cells requires the alternative contribution of graft Fas expression and T cell perforin expression. To our knowledge, this is the first demonstration that cytolytic activity by CD4 T cells can play an obligate role for primary acute allograft rejection in vivo. PMID:20061916

  13. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.

    PubMed

    2015-02-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders. PMID:25599223

  14. Holo-APP and G-protein-mediated signaling are required for sAPP?-induced activation of the Akt survival pathway

    PubMed Central

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPP? (soluble APP?), which is generated by cleavage of APP by ?-secretase along the non-amyloidogenic pathway. Recombinant sAPP? protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPP?-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPP? and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPP?. Interestingly, sAPP?-dependent Akt induction was unaffected in neurons of APP-?CT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPP?-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in antagonizing neurotoxic stress: they suggest that cell surface APP mediates sAPP?-induced neuroprotection via G-protein-coupled activation of the Akt pathway. PMID:25165877

  15. Holo-APP and G-protein-mediated signaling are required for sAPP?-induced activation of the Akt survival pathway.

    PubMed

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPP? (soluble APP?), which is generated by cleavage of APP by ?-secretase along the non-amyloidogenic pathway. Recombinant sAPP? protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPP?-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPP? and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPP?. Interestingly, sAPP?-dependent Akt induction was unaffected in neurons of APP-?CT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPP?-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in antagonizing neurotoxic stress: they suggest that cell surface APP mediates sAPP?-induced neuroprotection via G-protein-coupled activation of the Akt pathway. PMID:25165877

  16. Transmembrane-Bound IL-15-Promoted Epithelial-Mesenchymal Transition in Renal Cancer Cells Requires the Src-Dependent Akt/GSK-3?/?-Catenin Pathway.

    PubMed

    Yuan, Huaqin; Meng, Xiaoxin; Guo, Wenjie; Cai, Peifen; Li, Wanshuai; Li, Qian; Wang, Weicheng; Sun, Yang; Xu, Qiang; Gu, Yanhong

    2015-05-01

    Intrarenal interleukin-15 (IL-15) plays a major role controlling epithelial survival and polarization both in physiological and pathologic conditions. Herein, we confirmed that human renal cell carcinomas (RCCs) express a membrane-bound IL-15 isoform displaying an unusual molecular weight of 27 kDa. Its stimulation with soluble IL-15 receptor ? chain (s-IL-15R?) triggers epithelial-mesenchymal transition (EMT) process as shown by the down-regulation of E-cadherin and zona occludens 1 and the up-regulation of vimentin and N-cadherin and promotes the migratory and invasive properties of RCC. S-IL-15R? treatment triggered the Src/PI3K/Akt/GSK-3? pathway and promoted ?-catenin nuclei translocation. Deactivation of this pathway by using Src-specific inhibitor PP2, PI3K inhibitor LY294002, and AKT inhibitor MK2206 hampered ?-catenin nuclei translocation and suppressed EMT, migration, and invasion of RCC. S-IL-15R? treatment also enhanced Src-dependent phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (Erk1/2). FAK knockdown significantly decreased the migration and invasion of RCC, which suggest that Src-FAK signaling was involved in s-IL-15R?-favored migration and invasion of RCC. At the same time, inhibitors of Erk1/2 also significantly decreased the migration and invasion of RCC but could not reverse s-IL-15R?-induced EMT. Taken together, our results reveal that Src-dependent PI3K/Akt/GSK3b/?-catenin pathway is required for s-IL-15Ra-dependent induction of EMT in RCC, while Src-FAK and Src-Erk1/2 signaling were involved in s-IL-15R?-promoted migration and invasion properties of RCC. Our study provides a better understanding of IL-15 signaling in RCC tumor progression, which may lead to novel targeted therapies and provide some suggestions when using IL-15 in clinic. PMID:26025664

  17. Transmembrane-Bound IL-15–Promoted Epithelial-Mesenchymal Transition in Renal Cancer Cells Requires the Src-Dependent Akt/GSK-3?/?-Catenin Pathway12

    PubMed Central

    Yuan, Huaqin; Meng, Xiaoxin; Guo, Wenjie; Cai, Peifen; Li, Wanshuai; Li, Qian; Wang, Weicheng; Sun, Yang; Xu, Qiang; Gu, Yanhong

    2015-01-01

    Intrarenal interleukin-15 (IL-15) plays a major role controlling epithelial survival and polarization both in physiological and pathologic conditions. Herein, we confirmed that human renal cell carcinomas (RCCs) express a membrane-bound IL-15 isoform displaying an unusual molecular weight of 27 kDa. Its stimulation with soluble IL-15 receptor ? chain (s-IL-15R?) triggers epithelial-mesenchymal transition (EMT) process as shown by the down-regulation of E-cadherin and zona occludens 1 and the up-regulation of vimentin and N-cadherin and promotes the migratory and invasive properties of RCC. S-IL-15R? treatment triggered the Src/PI3K/Akt/GSK-3? pathway and promoted ?-catenin nuclei translocation. Deactivation of this pathway by using Src-specific inhibitor PP2, PI3K inhibitor LY294002, and AKT inhibitor MK2206 hampered ?-catenin nuclei translocation and suppressed EMT, migration, and invasion of RCC. S-IL-15R? treatment also enhanced Src-dependent phosphorylation of focal adhesion kinase (FAK) and extracellular signal–regulated kinase (Erk1/2). FAK knockdown significantly decreased the migration and invasion of RCC, which suggest that Src-FAK signaling was involved in s-IL-15R?–favored migration and invasion of RCC. At the same time, inhibitors of Erk1/2 also significantly decreased the migration and invasion of RCC but could not reverse s-IL-15R?–induced EMT. Taken together, our results reveal that Src-dependent PI3K/Akt/GSK3b/?-catenin pathway is required for s-IL-15Ra–dependent induction of EMT in RCC, while Src-FAK and Src-Erk1/2 signaling were involved in s-IL-15R?–promoted migration and invasion properties of RCC. Our study provides a better understanding of IL-15 signaling in RCC tumor progression, which may lead to novel targeted therapies and provide some suggestions when using IL-15 in clinic. PMID:26025664

  18. MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana

    PubMed Central

    Froger, Nicole; Chelysheva, Liudmila; Horlow, Christine; Vrielynck, Nathalie; Mercier, Raphaël

    2013-01-01

    Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails. PMID:23300481

  19. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway.

    PubMed

    Lee, Jong Hyun; Kim, Chulwon; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-05-01

    Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is frequently observed in multiple myeloma (MM) cancer and can upregulate the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. The effect of farnesol (FOH) on STAT3 activation, associated protein kinases, its regulated gene products, cellular proliferation, and apoptosis was examined. The in vivo effect of FOH on the growth of human MM xenograft tumors alone and in combination with bortezomib (Bor) in athymic nu/nu female mice was also investigated. We found that FOH suppressed both constitutive and inducible STAT3 activation at Tyr705 in MM cells. The suppression of STAT3 was mediated through the inhibition of activation of upstream JAK1, JAK2, and c-Src kinases. Also, treatment with the protein tyrosine phosphatase (PTP) inhibitor, pervanadate treatment reversed the FOH-induced down-regulation of STAT3, possibly indicating the involvement of a PTP. Indeed, we found that FOH treatment induces the increased expression of SHP-2 protein and knockdown of the SHP-2 gene by small interfering RNA suppressed the ability of FOH to inhibit STAT3 activation. FOH inhibited proliferation and significantly potentiated the apoptotic effects of bortezomib (Bor) in U266 cells. When administered intraperitoneally, FOH enhanced Bor-induced growth suppression of human MM xenograft tumors in athymic nu/nu female mice. Our results suggest that FOH is a novel blocker of STAT3 signaling pathway and exerts both anti-proliferative and apoptotic activities in MM in vitro and in vivo. PMID:25697480

  20. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1? in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways

    PubMed Central

    Huh, Jeong-Eun; Koh, Pil-Seong; Seo, Byung-Kwan; Park, Yeon-Chul; Baek, Yong-Hyun; Lee, Jae-Dong; Park, Dong-Suk

    2014-01-01

    Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1?-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1? (IL-1?). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-?, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box) containing gene 9 (SOX9), type 2?1 collagen (Col2?1), cartilage link protein, and aggrecan. In IL-1?-stimulated MSCs, mangiferin significantly reversed the production of TGF-?, BMP-2, BMP-4, SOX9, Col2?1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1?-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2?1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways. PMID:25216336

  1. Multiple lesions in receptor tyrosine kinase pathway determine glioblastoma response to pan-ERBB inhibitor PF-00299804 and PI3K/mTOR dual inhibitor PF-05212384

    PubMed Central

    Zhu, Yanni; Shah, Khalid

    2014-01-01

    A novel pan ERBB inhibitor PF-00299804 (dacomitinib) is currently in phase II clinical trials in glioblastoma multiforme (GBM) patients; however its pre-clinical efficacy in GBMs has not been tested. In this study, we evaluated the efficacy of dacomitinib alone or in combination with PI3K/mTOR dual inhibitor PF-05212384 in GBM and assessed the mechanisms of resistance and the molecular determinants of response. A panel of established and patient derived primary GBM lines that present different molecular profiles and also the GBM lines engineered to express EGFRvIII mutant or PTEN were treated with either dacomitinib, PF-05212384, or combination and assessed for their viability and changes in EGFR/PI3K/mTOR signaling. We show that dacomitinib significantly reduced phosphorylated EGFR in all the GBM lines but did not show a dose-dependent response on cell viability in a majority of the lines tested. Multiple lesions in the receptor tyrosine kinases (RTKs) pathway including PTEN mutation, co-activation of RTKs, and EGFRvIII mutation resulted in unaltered active status of PI3K/mTOR in the GBM lines even in the presence of EGFR inhibition. Blocking PI3K/mTOR dramatically inhibited cell proliferation in most GBM lines and enhanced dacomitinib induction of apoptosis in a GBM line that has both EGFR amplification and EGFR-independent PI3K activation. These data suggest molecular profiling of EGFR/PI3K/PTEN status to select GBM patients for EGFR or/and PI3K/mTOR targeted therapies. PMID:24658109

  2. Multiple lesions in receptor tyrosine kinase pathway determine glioblastoma response to pan-ERBB inhibitor PF-00299804 and PI3K/mTOR dual inhibitor PF-05212384.

    PubMed

    Zhu, Yanni; Shah, Khalid

    2014-06-01

    A novel pan ERBB inhibitor PF-00299804 (dacomitinib) is currently in phase II clinical trials in glioblastoma multiforme (GBM) patients; however its pre-clinical efficacy in GBMs has not been tested. In this study, we evaluated the efficacy of dacomitinib alone or in combination with PI3K/mTOR dual inhibitor PF-05212384 in GBM and assessed the mechanisms of resistance and the molecular determinants of response. A panel of established and patient derived primary GBM lines that present different molecular profiles and also the GBM lines engineered to express EGFRvIII mutant or PTEN were treated with either dacomitinib, PF-05212384, or combination and assessed for their viability and changes in EGFR/PI3K/mTOR signaling. We show that dacomitinib significantly reduced phosphorylated EGFR in all the GBM lines but did not show a dose-dependent response on cell viability in a majority of the lines tested. Multiple lesions in the receptor tyrosine kinases (RTKs) pathway including PTEN mutation, co-activation of RTKs, and EGFRvIII mutation resulted in unaltered active status of PI3K/mTOR in the GBM lines even in the presence of EGFR inhibition. Blocking PI3K/mTOR dramatically inhibited cell proliferation in most GBM lines and enhanced dacomitinib induction of apoptosis in a GBM line that has both EGFR amplification and EGFR-independent PI3K activation. These data suggest molecular profiling of EGFR/PI3K/PTEN status to select GBM patients for EGFR or/and PI3K/mTOR targeted therapies. PMID:24658109

  3. Transient Requirement of the PrrA-PrrB Two-Component System for Early Intracellular Multiplication of Mycobacterium tuberculosis

    PubMed Central

    Ewann, Fanny; Jackson, Mary; Pethe, Kevin; Cooper, Andrea; Mielcarek, Nathalie; Ensergueix, Danielle; Gicquel, Brigitte; Locht, Camille; Supply, Philip

    2002-01-01

    Adaptive regulation of gene expression in response to environmental changes is a general property of bacterial pathogens. By screening an ordered transposon mutagenesis library of Mycobacterium tuberculosis, we have identified three mutants containing a transposon in the coding sequence or in the 5? regions of genes coding for two-component signal transduction systems (trcS, regX3, prrA). The intracellular multiplication capacity of the three mutants was investigated in mouse bone marrow-derived macrophages. Only the prrA mutant showed a defect in intracellular growth during the early phase of infection, and this defect was fully reverted when the mutant was complemented with prrA-prrB wild-type copies. The mutant phenotype was transient, as after 1 week this strain recovered full growth capacity to reach levels similar to that of the wild type at day 9. Moreover, a transient induction of prrA promoter activity was observed during the initial phase of macrophage infection, as shown by a prrA promoter-gfp fusion in M. bovis BCG infecting the mouse macrophages. The concordant transience of the prrA mutant phenotype and prrA promoter activity indicates that the PrrA-PrrB two-component system is involved in the environmental adaptation of M. tuberculosis, specifically in an early phase of the intracellular growth, and that, similar to other facultative intracellular parasites, M. tuberculosis can use genes temporarily required at different stages in the course of macrophage infection. PMID:11953357

  4. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    NASA Astrophysics Data System (ADS)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.

  5. Exploring Drug Targets in Isoprenoid Biosynthetic Pathway for Plasmodium falciparum

    PubMed Central

    Qidwai, Tabish; Khan, Mohd Y.; Sharma, Bechan

    2014-01-01

    Emergence of rapid drug resistance to existing antimalarial drugs in Plasmodium falciparum has created the need for prediction of novel targets as well as leads derived from original molecules with improved activity against a validated drug target. The malaria parasite has a plant plastid-like apicoplast. To overcome the problem of falciparum malaria, the metabolic pathways in parasite apicoplast have been used as antimalarial drug targets. Among several pathways in apicoplast, isoprenoid biosynthesis is one of the important pathways for parasite as its multiplication in human erythrocytes requires isoprenoids. Therefore targeting this pathway and exploring leads with improved activity is a highly attractive approach. This report has explored progress towards the study of proteins and inhibitors of isoprenoid biosynthesis pathway. For more comprehensive analysis, antimalarial drug-protein interaction has been covered. PMID:24864210

  6. DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival

    E-print Network

    Peterson, Timothy R.

    The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates ...

  7. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors

    PubMed Central

    Marotta, Lauren L.C.; Almendro, Vanessa; Marusyk, Andriy; Shipitsin, Michail; Schemme, Janina; Walker, Sarah R.; Bloushtain-Qimron, Noga; Kim, Jessica J.; Choudhury, Sibgat A.; Maruyama, Reo; Wu, Zhenhua; Gönen, Mithat; Mulvey, Laura A.; Bessarabova, Marina O.; Huh, Sung Jin; Silver, Serena J.; Kim, So Young; Park, So Yeon; Lee, Hee Eun; Anderson, Karen S.; Richardson, Andrea L.; Nikolskaya, Tatiana; Nikolsky, Yuri; Liu, X. Shirley; Root, David E.; Hahn, William C.; Frank, David A.; Polyak, Kornelia

    2011-01-01

    Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24– cells that have stem cell-like characteristics, and CD44–CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24– human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24– breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies. PMID:21633165

  8. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/?-catenin pathway during brain angiogenesis

    PubMed Central

    Vanhollebeke, Benoit; Stone, Oliver A; Bostaille, Naguissa; Cho, Chris; Zhou, Yulian; Maquet, Emilie; Gauquier, Anne; Cabochette, Pauline; Fukuhara, Shigetomo; Mochizuki, Naoki; Nathans, Jeremy; Stainier, Didier YR

    2015-01-01

    Despite the critical role of endothelial Wnt/?-catenin signaling during central nervous system (CNS) vascularization, how endothelial cells sense and respond to specific Wnt ligands and what aspects of the multistep process of intra-cerebral blood vessel morphogenesis are controlled by these angiogenic signals remain poorly understood. We addressed these questions at single-cell resolution in zebrafish embryos. We identify the GPI-anchored MMP inhibitor Reck and the adhesion GPCR Gpr124 as integral components of a Wnt7a/Wnt7b-specific signaling complex required for brain angiogenesis and dorsal root ganglia neurogenesis. We further show that this atypical Wnt/?-catenin signaling pathway selectively controls endothelial tip cell function and hence, that mosaic restoration of single wild-type tip cells in Wnt/?-catenin-deficient perineural vessels is sufficient to initiate the formation of CNS vessels. Our results identify molecular determinants of ligand specificity of Wnt/?-catenin signaling and provide evidence for organ-specific control of vascular invasion through tight modulation of tip cell function. DOI: http://dx.doi.org/10.7554/eLife.06489.001 PMID:26051822

  9. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/?-catenin pathway during brain angiogenesis.

    PubMed

    Vanhollebeke, Benoit; Stone, Oliver A; Bostaille, Naguissa; Cho, Chris; Zhou, Yulian; Maquet, Emilie; Gauquier, Anne; Cabochette, Pauline; Fukuhara, Shigetomo; Mochizuki, Naoki; Nathans, Jeremy; Stainier, Didier Yr

    2015-01-01

    Despite the critical role of endothelial Wnt/?-catenin signaling during central nervous system (CNS) vascularization, how endothelial cells sense and respond to specific Wnt ligands and what aspects of the multistep process of intra-cerebral blood vessel morphogenesis are controlled by these angiogenic signals remain poorly understood. We addressed these questions at single-cell resolution in zebrafish embryos. We identify the GPI-anchored MMP inhibitor Reck and the adhesion GPCR Gpr124 as integral components of a Wnt7a/Wnt7b-specific signaling complex required for brain angiogenesis and dorsal root ganglia neurogenesis. We further show that this atypical Wnt/?-catenin signaling pathway selectively controls endothelial tip cell function and hence, that mosaic restoration of single wild-type tip cells in Wnt/?-catenin-deficient perineural vessels is sufficient to initiate the formation of CNS vessels. Our results identify molecular determinants of ligand specificity of Wnt/?-catenin signaling and provide evidence for organ-specific control of vascular invasion through tight modulation of tip cell function. PMID:26051822

  10. Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR.

    PubMed

    Yang, Xiaoling; Wang, Wengong; Fan, Jinshui; Lal, Ashish; Yang, Dongmei; Cheng, Heping; Gorospe, Myriam

    2004-11-19

    Treatment with the stress agent prostaglandin A2 (PGA2) induces expression of the cyclin-dependent kinase inhibitor p21. Here, we present evidence that p21 expression increases through PGA2-triggered stabilization of the p21 mRNA and further show that these events require the mitogen-activated protein (MAP) kinase ERK. Binding experiments using either endogenous p21 mRNA or in vitro-labeled p21 transcripts revealed a specific PGA2-dependent association of the p21 mRNA with the RNA-binding protein HuR. Interestingly, although inhibition of the ERK pathway did not prevent the PGA2-triggered increase in cytoplasmic HuR, it did impair the formation of endogenous and in vitro [HuR-p21 mRNA] complexes and further prevented the PGA2-mediated stabilization of the p21 mRNA, suggesting that ERK-mediated events were required for binding HuR to the p21 mRNA and preventing its decay. RNA interference-based knockdown of HuR abundance further served to demonstrate the contribution of HuR-mediated p21 mRNA stabilization toward enhancing p21 expression after PGA2 treatment. Collectively, our results indicate that PGA2 stabilizes the p21 mRNA through an ERK-independent increase in cytoplasmic HuR levels and an ERK-dependent association of HuR with the p21 mRNA. PMID:15371446

  11. Induction of cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 cells by Dillenia suffruticosa root extract via multiple signalling pathways

    PubMed Central

    2014-01-01

    Background Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells. Methods Dillenia suffruticosa root was extracted by sequential solvent extraction. The anti-proliferative activity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using inverted light microscope and Annexin-V/PI-flow cytometry analysis. Cell cycle analysis and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry. MCF-7 cells were co-treated with antioxidants ?-tocopherol and ascorbic acid to evaluate whether the cell death was mainly due to oxidative stress. GeXP-based multiplex system was employed to investigate the expression of apoptotic, growth and survival genes in MCF-7 cells. Western blot analysis was performed to confirm the expression of the genes. Results DCM-DS was cytotoxic to the MCF-7 cells in a time-and dose-dependent manner. The IC50 values of DCM-DS at 24, 48 and 72 hours were 20.3?±?2.8, 17.8?±?1.5 and 15.5?±?0.5 ?g/mL, respectively. Cell cycle analysis revealed that DCM-DS induced G0/G1 and G2/M phase cell cycle arrest in MCF-7 cells at low concentration (12.5 and 25 ?g/mL) and high concentration (50 ?g/mL), respectively. Although Annexin-V/PI-flow cytometry analysis has confirmed that DCM-DS induced apoptosis in MCF-7 cells, the distinct characteristics of apoptosis such as membrane blebbing, chromatin condensation, nuclear fragmentation and formation of apoptotic bodies were not observed under microscope. DCM-DS induced formation of ROS in MCF-7 cells. Nevertheless, co-treatment with antioxidants did not attenuate the cell death at low concentration of DCM-DS. The pro-apoptotic gene JNK was up-regulated whereby anti-apoptotic genes AKT1 and ERK1/2 were down-regulated in a dose-dependent manner. Western blot analysis has confirmed that DCM-DS significantly up-regulated the expression of pro-apoptotic JNK1, pJNK and down-regulated anti-apoptotic AKT1, ERK1 in MCF-7 cells. Conclusion DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via multiple signalling pathways. It shows the potential of DCM-DS to be developed to target the cancer cells with mutant caspase-3. PMID:24947113

  12. Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders.

    PubMed

    Glinskii, Anna B; Ma, Jun; Ma, Shuang; Grant, Denise; Lim, Chang-Uk; Sell, Stewart; Glinsky, Gennadi V

    2009-12-01

    Meta-analysis of genomic coordinates of SNP variations identified in genome-wide association studies (GWAS) of up to 712,253 samples (comprising 221,158 disease cases, 322,862 controls, and 168,233 case/control subjects of obesity GWAS) reveals that 39% of SNPs associated with 22 common human disorders are located within intergenic regions. Chromatin-state maps based on H3K4me3-H3K36me3 signatures show that many intergenic disease-linked SNPs are located within the boundaries of the K4-K36 domains, suggesting that SNP-harboring genomic regions are transcribed. Here we report identification of 13 trans-regulatory RNAs (transRNAs) 100 to 200 nucleotides in length containing intergenic SNP sequences associated with Crohn's disease, rheumatoid arthritis, type 1 diabetes, vitiligo, hypertension and multiple types of epithelial malignancies (prostate, breast, ovarian and colorectal cancers). We demonstrate that NALP1 loci intergenic SNP sequence, rs2670660, is expressed in human cells and may contribute to clinical manifestations of autoimmune and autoimflammatory phenotypes by generating distinct allelic variants of transRNAs. Stable expression of allele-specific sense and anti-sense variants of transRNAs markedly alters cellular behavior, affect cell cycle progression, and interfere with monocyte/macrophage transdifferentiation. On a molecular level, forced expression of allele-specific sense and anti-sense variants of transRNAs asserts allele-specific genome-wide effects on abundance of hundreds microRNAs and mRNAs. Using lentiviral gene transfer, microarray and Q-RT-PCR technologies, we identify rs2670660 allele-specific gene expression signatures (GES) which appear useful for detecting the activated states of innate immunity/inflammasome pathways in approximately 700 clinical samples from 185 control subjects and 350 patients diagnosed with nine common human disorders, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, Huntington disease, autism, Alzheimer disease, obesity, prostate and breast cancers. Microarray analysis of clinical samples demonstrates that rs2670660 allele-specific GES are engaged in patients' peripheral blood mononuclear cells (PBMC) which encounter pathological conditions in coherent tissues of a human body during immune surveillance and homeostasis monitoring. These data indicate that expression of transRNAs encoded by specific intergenic sequences can trigger activation of innate immunity/inflammasome pathways and contribute to clinical development of autoinflammatory and autoimmune syndromes. Documented in this work single-base substitution-driven molecular and biological antagonisms of intergenic SNP-containing transRNAs suggest a guiding mechanism of selection and retention of phenotype-compatible intergenic variations during evolution. According to this model, random genetic variations which generate transRNAs asserting antagonistic phenotype-altering effects compared to ancestral alleles will be selected and retained as SNP variants. PMID:19923886

  13. mitochondrial pathway for biosynthesis of lipid mediators

    PubMed Central

    Tyurina, Yulia Y.; Poloyac, Samuel M.; Tyurin, Vladimir A.; Kapralov, Alexander A.; Jiang, Jianfei; Anthonymuthu, Tamil Selvan; Kapralova, Valentina I.; Vikulina, Anna S.; Jung, Mi-Yeon; Epperly, Michael W.; Mohammadyani, Dariush; Klein-Seetharaman, Judith; Jackson, Travis C.; Kochanek, Patrick M.; Pitt, Bruce R.; Greenberger, Joel S.; Vladimirov, Yury A.; Bay?r, Hülya; Kagan, Valerian E.

    2014-01-01

    The central role of mitochondria in metabolic pathways and in cell death mechanisms requires sophisticated signaling systems. Essential in this signaling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin, are oxidized by the intermembrane space hemoprotein, cytochrome c. We show that an assortment of oxygenated cardiolipin species undergoes phospholipase A2-catalyzed hydrolysis thus generating multiple oxygenated fatty acids, including well known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway including oxidation of polyunsaturated cardiolipins and accumulation of their hydrolysis products – oxygenated linoleic, arachidonic acids and monolyso-cardiolipins – is activated in vivo after acute tissue injury. PMID:24848241

  14. The outcomes of pathway database computations depend on pathway ontology

    PubMed Central

    Green, M. L.; Karp, P. D.

    2006-01-01

    Different biological notions of pathways are used in different pathway databases. Those pathway ontologies significantly impact pathway computations. Computational users of pathway databases will obtain different results depending on the pathway ontology used by the databases they employ, and different pathway ontologies are preferable for different end uses. We explore differences in pathway ontologies by comparing the BioCyc and KEGG ontologies. The BioCyc ontology defines a pathway as a conserved, atomic module of the metabolic network of a single organism, i.e. often regulated as a unit, whose boundaries are defined at high-connectivity stable metabolites. KEGG pathways are on average 4.2 times larger than BioCyc pathways, and combine multiple biological processes from different organisms to produce a substrate-centered reaction mosaic. We compared KEGG and BioCyc pathways using genome context methods, which determine the functional relatedness of pairs of genes. For each method we employed, a pair of genes randomly selected from a BioCyc pathway is more likely to be related by that method than is a pair of genes randomly selected from a KEGG pathway, supporting the conclusion that the BioCyc pathway conceptualization is closer to a single conserved biological process than is that of KEGG. PMID:16893953

  15. Genomic pathways database and biological data management.

    PubMed

    Ozsoyoglu, Z M; Ozsoyoglu, G; Nadeau, J

    2006-08-01

    In this paper, we discuss the properties of biological data and challenges it poses for data management, and argue that, in order to meet the data management requirements for 'digital biology', careful integration of the existing technologies and the development of new data management techniques for biological data are needed. Based on this premise, we present PathCase: Case Pathways Database System. PathCase is an integrated set of software tools for modelling, storing, analysing, visualizing and querying biological pathways data at different levels of genetic, molecular, biochemical and organismal detail. The novel features of the system include: (i) genomic information integrated with other biological data and presented starting from pathways; (ii) design for biologists who are possibly unfamiliar with genomics, but whose research is essential for annotating gene and genome sequences with biological functions; (iii) database design, implementation and graphical tools which enable users to visualize pathways data in multiple abstraction levels and to pose exploratory queries; (iv) a wide range of different types of queries including, 'path' and 'neighbourhood queries' and graphical visualization of query outputs; and (v) an implementation that allows for web (XML)-based dissemination of query outputs (i.e. pathways data in BIOPAX format) to researchers in the community, giving them control on the use of pathways data. PMID:16887001

  16. An algorithm for complete enumeration of the mechanisms of supraventricular tachycardias that use multiple atrioventricular, AV nodal, and/or Mahaim pathways.

    PubMed

    Widman, L E; Tong, D A

    1995-08-01

    The EINTHOVEN system is a model-based expert system that interprets the cardiac rhythm from the electrocardiogram. It simulates the expected behavior of realistic semi-quantitative cardiac models constructed by heuristic rules to generate interpretations that include both text descriptions and event-by-event causal explanations in the form of ladder diagrams. The simulation has been limited by an inability to predict all possible behaviors of hearts with more than one reentrant circuit. We now describe an algorithm that overcomes this limitation. Its output has been validated by an independent possibility-tree analysis. Timing and storage measurements are presented for models with up to three slow atrioventricular nodal pathways, four atrioventricular pathways, and a single atriofascicular (Mahaim) pathway. This is the first report in the literature of an algorithm that enumerates all possible mechanisms for reentrant supraventricular tachycardias that use atrioventricular, atrioventricular nodal, and/or atriofascicular pathways in humans. PMID:7581629

  17. Deciphering chemotaxis pathways using cross species comparisons

    PubMed Central

    2010-01-01

    Background Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Escherichia coli utilises a single sensory pathway, but little is known about signalling pathways in species with more complex systems. Results To investigate whether chemotaxis pathways in other bacteria follow the E. coli paradigm, we analysed 206 species encoding at least 1 homologue of each of the 5 core chemotaxis proteins (CheA, CheB, CheR, CheW and CheY). 61 species encode more than one of all of these 5 proteins, suggesting they have multiple chemotaxis pathways. Operon information is not available for most bacteria, so we developed a novel statistical approach to cluster che genes into putative operons. Using operon-based models, we reconstructed putative chemotaxis pathways for all 206 species. We show that cheA-cheW and cheR-cheB have strong preferences to occur in the same operon as two-gene blocks, which may reflect a functional requirement for co-transcription. However, other che genes, most notably cheY, are more dispersed on the genome. Comparison of our operons with shuffled equivalents demonstrates that specific patterns of genomic location may be a determining factor for the observed in vivo chemotaxis pathways. We then examined the chemotaxis pathways of Rhodobacter sphaeroides. Here, the PpfA protein is known to be critical for correct partitioning of proteins in the cytoplasmically-localised pathway. We found ppfA in che operons of many species, suggesting that partitioning of cytoplasmic Che protein clusters is common. We also examined the apparently non-typical chemotaxis components, CheA3, CheA4 and CheY6. We found that though variants of CheA proteins are rare, the CheY6 variant may be a common type of CheY, with a significantly disordered C-terminal region which may be functionally significant. Conclusions We find that many bacterial species potentially have multiple chemotaxis pathways, with grouping of che genes into operons likely to be a major factor in keeping signalling pathways distinct. Gene order is highly conserved with cheA-cheW and cheR-cheB blocks, perhaps reflecting functional linkage. CheY behaves differently to other Che proteins, both in its genomic location and its putative protein interactions, which should be considered when modelling chemotaxis pathways. PMID:20064255

  18. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: Evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum

    PubMed Central

    Stümpel, Frank; Burcelin, Rémy; Jungermann, Kurt; Thorens, Bernard

    2001-01-01

    Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2?/? intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [14C]glucose proceeded with the same kinetics in control and GLUT2?/? intestine, [14C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2?/? intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes. PMID:11562503

  19. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum.

    PubMed

    Stümpel, F; Burcelin, R; Jungermann, K; Thorens, B

    2001-09-25

    Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes. PMID:11562503

  20. Extended Pausing by Humans on Multiple Fixed-Ratio Schedules with Varied Reinforcer Magnitude and Response Requirements

    ERIC Educational Resources Information Center

    Williams, Dean C.; Saunders, Kathryn J.; Perone, Michael

    2011-01-01

    We conducted three experiments to reproduce and extend Perone and Courtney's (1992) study of pausing at the beginning of fixed-ratio schedules. In a multiple schedule with unequal amounts of food across two components, they found that pigeons paused longest in the component associated with the smaller amount of food (the lean component), but only…

  1. The fission yeast sts5+ gene is required for maintenance of growth polarity and functionally interacts with protein kinase C and an osmosensing MAP-kinase pathway.

    PubMed

    Toda, T; Niwa, H; Nemoto, T; Dhut, S; Eddison, M; Matsusaka, T; Yanagida, M; Hirata, D

    1996-09-01

    Cell morphogenesis is a fundamental phenomenon that involves understanding a number of biological processes including the developmental program, polarity and cell division. Fission yeast sts5 mutant cells are round rather than cylindrical with cortical actin randomly dispersed. Genetic analyses demonstrate that the sts5+ gene is required for maintenance of cell shape during interphase when the cell normally exhibits polarised growth. The sts5 mutant is not defective in cell wall integrity. Deletion of ppe1+, which encodes a type 2A-like protein phosphatase, shows similar phenotypes to the sts5 mutant and these two mutations are synthetically lethal. Multicopy plasmids containing either the protein kinase C-like gene pck1+ or the protein tyrosine phosphatase pyp1+, an inhibitor of an osmosensing Sty1/Spc1 MAP-kinase, are capable of suppressing the sts5 mutation. Consistent with this, we have found that the wis1 mutation, which is defective in a MAP-kinase kinase of the pathway, suppresses the sts5 mutation. The predicted sts5+ gene product exhibits sequence similarity to two yeast proteins, Dis3 and Ssd1 and a nematode protein, F46E8.6, where the former two yeast proteins have been shown to be involved in cell cycle control and cell morphogenesis. The sts5+ gene is not essential for cell viability, but is absolutely required for polarised growth as the gene disruption showed the same phenotypes as those of the original mutants. Overexpression of the sts5+ gene resulted in altered cell morphology and, cortical actin in these overproducing cells was also abnormal, fainter and often dispersed. Anti-Sts5 antibody specifically detected a 130 kDa protein by western blotting. A green fluorescent protein-Sts5 fusion protein localised in the cytoplasm with a discrete punctate pattern, suggesting that the Sts5 protein is a component of a novel structure. These results have indicated that the Sts5 protein is a crucial determinant of polarised growth and that it functionally interacts with the serine/threonine phosphatase, protein kinase C, and an osmosensing MAP-kinase to maintain cell morphology. PMID:8886983

  2. BIOSYNTHETIC PATHWAYS: Biosynthesis Meets Bioinformatics

    NSDL National Science Digital Library

    David E. Cane (Brown University; Department of Chemistry)

    2000-02-04

    Access to the article is free, however registration and sign-in are required. In his Perspective, Cane discusses the increasing importance of the study of biosynthetic pathways in the discovery of biochemical reactions and pathways. Two recent papers (Rohdich et al. and Khaleeli et al.) highlight the increasing role of molecular biology and genomics in the study of biosynthetic pathways.

  3. Multiple genes of mevalonate and non-mevalonate pathways contribute to high aconites content in an endangered medicinal herb, Aconitum heterophyllum Wall.

    PubMed

    Malhotra, Nikhil; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder Singh

    2014-12-01

    Aconitum heterophyllum Wall, popularly known as Atis or Patis, is an important medicinal herb of North-Western and Eastern Himalayas. No information exists on molecular aspects of aconites biosynthesis, including atisine- the major chemical constituent of A. heterophyllum. Atisine content ranged from 0.14% to 0.37% and total alkaloids (aconites) from 0.20% to 2.49% among 14 accessions of A. heterophyllum. Two accessions contained the highest atisine content with 0.30% and 0.37% as well as the highest alkaloids content with 2.22% and 2.49%, respectively. No atisine was detected in leaves and shoots of A. heterophyllum, thereby, suggesting that the biosynthesis and accumulation of aconite alkaloids occur mainly in roots. Quantitative expression analysis of 15 genes of MVA/MEP pathways in roots versus shoots, differing for atisine content (0-2.2 folds) showed 11-100 folds increase in transcript amounts of 4 genes of MVA pathway; HMGS, HMGR, PMK, IPPI, and 4 genes of MEP pathway; DXPS, ISPD, HDS, GDPS, respectively. The overall expression of 8 genes decreased to 5-12 folds after comparative expression analysis between roots of high (0.37%) versus low (0.14%) atisine content accessions, but their relative transcript amounts remained higher in high content accessions, thereby implying their role in atisine biosynthesis and accumulation. PCA analysis revealed a positive correlation between MVA/MEP pathways genes and alkaloids content. The current study provides first report wherein partial sequences of 15 genes of MVA/MEP pathways have been cloned and studied for their possible role in aconites biosynthesis. The outcome of study has potential applications in the genetic improvement of A. heterophyllum. PMID:25239552

  4. Chilling requirement, cold hardiness and fruiting characteristics of a "Draper" X "Jewel" population planted at multiple sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mapping population of 105 individuals has been generated between the southern highbush ‘Jewel’ and the northern highbush ‘Draper’, to produce a genetic linkage map and search for QTL associated with chilling requirement, cold tolerance and fruiting characteristics. ‘Draper’ is adapted to plant h...

  5. Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin.

    PubMed

    Hwang, William W; Madhani, Hiten D

    2009-08-01

    In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis of genetic interactions, we report here a novel requirement for the ubiquitination of histone H2B by the Bre1 ubiquitin ligase in the cell cycle-dependent release of Cdc14 from nucleolar chromatin when the MEN is inactivated. This function for H2B ubiquitination is mediated by its activation of histone H3 methylation on lysines 4 and 79 (meH3K4 and meH3K79) but, surprisingly, is not dependent on the histone deacetylase (HDAC) Sir2, which associates with Cdc14 on nucleolar chromatin as part of the RENT complex. We also observed a defect in Cdc14 release in cells lacking H3 lysine 36 methylation (meH3K36) and in cells lacking an HDAC recruited by this modification. These histone modifications represent previously unappreciated factors required for the accessibility to and/or action on nucleolar chromatin of FEAR network components. The nonredundant role for these modifications in this context contrasts with the notion of a highly combinatorial code by which histone marks act to control biological processes. PMID:19662160

  6. Nonredundant Requirement for Multiple Histone Modifications for the Early Anaphase Release of the Mitotic Exit Regulator Cdc14 from Nucleolar Chromatin

    PubMed Central

    Hwang, William W.; Madhani, Hiten D.

    2009-01-01

    In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis of genetic interactions, we report here a novel requirement for the ubiquitination of histone H2B by the Bre1 ubiquitin ligase in the cell cycle–dependent release of Cdc14 from nucleolar chromatin when the MEN is inactivated. This function for H2B ubiquitination is mediated by its activation of histone H3 methylation on lysines 4 and 79 (meH3K4 and meH3K79) but, surprisingly, is not dependent on the histone deacetylase (HDAC) Sir2, which associates with Cdc14 on nucleolar chromatin as part of the RENT complex. We also observed a defect in Cdc14 release in cells lacking H3 lysine 36 methylation (meH3K36) and in cells lacking an HDAC recruited by this modification. These histone modifications represent previously unappreciated factors required for the accessibility to and/or action on nucleolar chromatin of FEAR network components. The nonredundant role for these modifications in this context contrasts with the notion of a highly combinatorial code by which histone marks act to control biological processes. PMID:19662160

  7. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography–mass spectrometry

    Microsoft Academic Search

    Bing Luo; Karsten Groenke; Ralf Takors; Christian Wandrey; Marco Oldiges

    2007-01-01

    A highly selective and sensitive method for identification and quantification of intracellular metabolites involved in central carbon metabolism (including glycolysis, pentose phosphate pathway and tricarboxylic acid cycle) by means of liquid chromatography–tandem quadrupole mass spectrometry (LC–MS\\/MS) was developed. The volatile ion pair modifier tributylammonium acetate (TBAA) was employed in the mobile phase for simultaneously separation of 29 negatively charged compounds

  8. Convergence in reflex pathways from multiple cutaneous nerves innervating the foot depends upon the number of rhythmically active limbs during locomotion.

    PubMed

    Nakajima, Tsuyoshi; Mezzarane, Rinaldo A; Hundza, Sandra R; Komiyama, Tomoyoshi; Zehr, E Paul

    2014-01-01

    Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles. PMID:25170606

  9. Pancreatic Glucagon-Like Peptide1 Receptor Couples to Multiple G Proteins and Activates Mitogen-Activated Protein Kinase Pathways in Chinese Hamster Ovary Cells

    Microsoft Academic Search

    CHAHRZAD MONTROSE-RAFIZADEH; PAVEL AVDONIN; MICHAEL J. GARANT; BUEL D. RODGERS; SUTAPA KOLE; HUAN YANG; MICHAEL A. LEVINE; WILLIAM SCHWINDINGER; MICHEL BERNIER

    1999-01-01

    Chinese hamster ovary (CHO) cells stably expressing the human insulin receptor and the rat glucagon-like peptide-1 (GLP-1) receptor (CHO\\/GLPR) were used to study the functional coupling of the GLP-1 receptor with G proteins and to examine the regulation of the mito- gen-activated protein (MAP) kinase signaling pathway by GLP-1. We showed that ligand activation of GLP-1 receptor led to increased

  10. Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance

    PubMed Central

    Miao, Weiguo; Song, Congfeng; Wang, Yu; Ren, Yonghong; Wang, Jinsheng

    2010-01-01

    The transcriptome profile in leaves and roots of the transgenic cotton line T-34 expressing hpa1Xoo from Xanthomonas oryzae pv. oryzae was analysed using a customized 12k cotton cDNA microarray. A total of 530 cDNA transcripts involved in 34 pathways were differentially expressed in the transgenic line T-34, in which 123 differentially expressed genes were related to the cotton defence responses including the hypersensitive reaction, defence responses associated with the recognition of pathogen-derived elicitors, and defence signalling pathways mediated by salicylic acid, jasmonic acid, ethylene, auxin, abscicic acid, and Ca2+. Furthermore, transcripts encoding various leucine-rich protein kinases and mitogen-activated protein kinases were up-regulated in the transgenic line T-34 and expression of transcripts related to the energy producing and consuming pathway was also increased, which suggested that the enhanced metabolism related to the host defence response in the transgenic line T-34 imposed an increased energy demand on the transgenic plant. PMID:20667962

  11. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway

    PubMed Central

    Deng, Q; Yu, X; Xiao, L; Hu, Z; Luo, X; Tao, Y; Yang, L; Liu, X; Chen, H; Ding, Z; Feng, T; Tang, Y; Weng, X; Gao, J; Yi, W; Bode, A M; Dong, Z; Liu, J; Cao, Y

    2013-01-01

    Many natural compounds derived from plants or microbes show promising potential for anticancer treatment, but few have been found to target energy-relevant regulators. In this study, we report that neoalbaconol (NA), a novel small-molecular compound isolated from the fungus, Albatrellus confluens, could target 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibit its downstream phosphoinositide-3 kinase (PI3-K)/Akt-hexokinase 2 (HK2) pathway, which eventually resulted in energy depletion. By targeting PDK1, NA reduced the consumption of glucose and ATP generation, activated autophagy and caused apoptotic and necroptotic death of cancer cells through independent pathway. Necroptosis was remarkably induced, which was confirmed by several necroptosis-specific markers: the activation of autophagy, presence of necrotic morphology, increase of receptor-interacting protein 1 (RIP1)/RIP3 colocalization and interaction and rescued by necroptosis inhibitor necrostatin-1. The possibility that Akt overexpression reversed the NA-induced energy crisis confirmed the importance of the PDK1-Akt-energy pathway in NA-mediated cell death. Moreover, NA shows the capability to inhibit PI3-K/Akt signaling and suppress tumor growth in the nasopharyngeal carcinoma (NPC) nude mouse model. These results supported the feasibility of NA in anticancer treatments. PMID:24052072

  12. Requirements for Activity of the Yeast Mitotic Recombination Hotspot Hot1: RNA Polymerase I and Multiple Cis-Acting Sequences

    PubMed Central

    Huang, G. S.; Keil, R. L.

    1995-01-01

    When inserted at novel locations in the yeast genome, the Saccharomyces cerevisiae recombination hotspot HOT1 stimulates mitotic exchange in adjacent sequences. HOT1 is derived from the rDNA repeat unit, and the sequences required for the recombination-stimulatory activity closely correspond to the rDNA transcription enhancer and initiation site, suggesting there is an association between high levels of RNA polymerase I transcription and increased recombination. To directly test whether RNA polymerase I is essential for HOT1 activity, a subunit of RNA polymerase I was deleted in a strain in which rRNA is transcribed by RNA polymerase II. HOT1 is completely inactive in this strain. Deletion analysis and site-directed mutagenesis were used to further define the sequences within the rDNA enhancer required for HOT1 activity. These studies show that the enhancer contains at least four distinct regions that are required for hotspot activity. In most cases mutations in these regions also decrease transcription from this element, further confirming the association of recombination and transcription. PMID:8582631

  13. Pathways with PathWhiz

    PubMed Central

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  14. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    SciTech Connect

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  15. NOVEL SYSTEM FOR THE SEQUENTIAL, DIRECTIONAL CLONING OF MULTIPLE DNA SEQUENCES AND ITS USE IN METABOLIC ENGINEERING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic engineering of biosynthetic pathways may require the cloning and expression of multiple genes. Often this is technically challenging due to the limited number of available restriction sites and selectable markers. Furthermore, directional ligation of multiple DNA sequences into vectors i...

  16. Secretory Pathway of Trypanosomatid Parasites

    PubMed Central

    McConville, Malcolm J.; Mullin, Kylie A.; Ilgoutz, Steven C.; Teasdale, Rohan D.

    2002-01-01

    The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs. PMID:11875130

  17. ERECTA is required for protection against heat-stress in the AS1 \\/ AS2 pathway to regulate adaxial–abaxial leaf polarity in Arabidopsis

    Microsoft Academic Search

    Yiping Qi; Yue Sun; Lin Xu; Yuquan Xu; Hai Huang

    2004-01-01

    In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 ( AS1) and ASYMMETRIC LEAVES2 ( AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1\\/ AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied

  18. Integrity of the Early Secretory Pathway Promotes, but Is Not Required for, Severe Acute Respiratory Syndrome Coronavirus RNA Synthesis and Virus-Induced Remodeling of Endoplasmic Reticulum Membranes? †

    PubMed Central

    Knoops, Kèvin; Swett-Tapia, Cindy; van den Worm, Sjoerd H. E.; te Velthuis, Aartjan J. W.; Koster, Abraham J.; Mommaas, A. Mieke; Snijder, Eric J.; Kikkert, Marjolein

    2010-01-01

    To accommodate its RNA synthesis in the infected cell, severe acute respiratory syndrome coronavirus (SARS-CoV) induces a cytoplasmic reticulovesicular network (RVN) that is derived from endoplasmic reticulum (ER) membranes. We set out to investigate how the early secretory pathway interacts with the RVN and the viral replication/transcription complex (RTC) that is anchored to it. When the secretory pathway was disrupted by brefeldin A (BFA) treatment at the start of infection, RVN formation and viral RTC activity were not blocked and continued up to 11 h postinfection, although RNA synthesis was reduced by ca. 80%. In vitro RTC assays, using membrane fractions from infected cells, demonstrated that BFA does not directly interfere with the activity of the viral RNA-synthesizing enzymes. Confocal microscopy studies showed that early secretory pathway components are not associated with SARS-CoV-induced replication sites, although our studies revealed that infection induces a remarkable redistribution of the translocon subunit Sec61?. Ultrastructural studies, including electron tomography, revealed that the formation of the RVN and all its previously documented features can occur in the presence of BFA, despite differences in the volume and morphology of the network. We therefore conclude that early secretory pathway proteins do not play a direct role in RVN morphogenesis or the functionality of the SARS-CoV RTC. The BFA-induced disruption of ER integrity and functionality probably affects the overall quality of the membrane scaffold that is needed to support the viral RTC and/or the availability of specific host factors, which in turn compromises viral RNA synthesis. PMID:19889777

  19. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish

    PubMed Central

    Covassin, L. D.; Villefranc, J. A.; Kacergis, M. C.; Weinstein, B. M.; Lawson, N. D.

    2006-01-01

    Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development. PMID:16617120

  20. Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly.

    PubMed

    Mayerle, Megan; Woodson, Sarah A

    2013-04-01

    Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5' domain of the 16S rRNA. In vitro, transformation of initial S4-rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4-rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein-RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4-RNA interactions guide rRNA folding and impact late steps of 30S assembly. PMID:23431409

  1. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system

    PubMed Central

    Kuzin, Alexander; Kundu, Mukta; Brody, Thomas; Odenwald, Ward F.

    2007-01-01

    The mRNA encoding the Drosophila Zn-finger transcription factor Nerfin-1, required for CNS axon pathfinding events, is subject to post-transcriptional silencing. Although nerfin-1 mRNA is expressed in many neural precursor cells including all early delaminating CNS neuroblasts, the encoded Nerfin-1 protein is detected only in the nuclei of neural precursors that divide just once to generate neurons and then only transiently in nascent neurons. Using a nerfin-1 promoter controlled reporter transgene, replacement of the nerfin-1 3’ UTR with the viral SV-40 3’ UTR releases the neuroblast translational block and prolongs reporter protein expression in neurons. Comparative genomics analysis reveals that the nerfin-1 mRNA 3’ UTR contains multiple highly conserved sequence blocks that either harbor and/or overlap 21 predicted binding sites for 18 different microRNAs. To determine the functional significance of these microRNA-binding sites and less conserved microRNA target sites, we have studied their ability to block or limit the expression of reporter protein in nerfin-1 expressing cells during embryonic development. Our results indicate that no single microRNA is sufficient to fully inhibit protein expression but rather multiple microRNAs that target different binding sites are required to block ectopic protein expression in neural precursor cells and temporally restrict expression in neurons. Taken together, these results suggest that multiple microRNAs play a cooperative role in the post-transcriptional regulation of nerfin-1 mRNA, and the high degree of microRNA-binding site evolutionary conservation indicates that all members of the Drosophila genus employ a similar strategy to regulate the onset and extinction dynamics of Nerfin-1 expression. PMID:17714701

  2. Requirement for phosphoinositide 3-OH kinase in growth hormone signalling to the mitogen-activated protein kinase and p70s6k pathways.

    PubMed Central

    Kilgour, E; Gout, I; Anderson, N G

    1996-01-01

    Pituitary growth hormone (GH) co-ordinately stimulates three distinct signalling pathways in 3T3-F442A preadipocytes, the STAT (signal transducer and activator of transcription) pathway, the mitogen-activated protein (MAP) kinase cascade and p70s6k. The mechanisms linking the GH receptor to these signals have not been fully identified. In this study we have examined the role of phosphoinositide 3-OH kinase (PI 3-kinase). Pretreatment of cells with wortmannin, a specific inhibitor of PI 3-kinase, prevented the activation of p70s6k and partially inhibited the activation of p42 and p44 MAP kinases by GH. In contrast, wortmannin failed to appreciably affect the GH-stimulated tyrosyl phosphorylation of JAK-2 or STAT-1. GH transiently increased the activity of PI 3-kinase recovered in antiphosphotyrosine immunoprecipitates. In addition, several tyrosyl-phosphorylated proteins were specifically adsorbed from lysates of cells exposed to GH by a glutathione S-transferase fusion protein containing the 85 kDa regulatory subunit of PI 3-kinase. GH also induced an increase in the PI 3-kinase activity associated with both JAK-2 and insulin receptor substrate-1 (IRS-1) immunoprecipitates. These results establish PI 3-kinase as an important mediator of GH signalling to the MAP kinase and p70s6k pathways and suggest that PI 3-kinase is activated by a mechanism involving JAK-2 and IRS-1. PMID:8615823

  3. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair.

    PubMed Central

    Schürer, K Anke; Rudolph, Christian; Ulrich, Helle D; Kramer, Wilfried

    2004-01-01

    The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass. PMID:15126389

  4. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes

    PubMed Central

    Nolan, Katherine M.; Barrett, Kathy; Lu, Yu; Hu, Kang-Quan; Vincent, Sylvie; Settleman, Jeffrey

    1998-01-01

    The Rac and Cdc42 GTPases share several regulators and effectors, yet perform distinct biological functions. The factors determining such specificity in vivo have not been identified. In a mutational screen in Drosophila to identify Rac-specific signaling components, we isolated 11 alleles of myoblast city (mbc). mbc mutant embryos exhibit defects in dorsal closure, myogenesis, and neural development. DOCK180, the mammalian homolog of Mbc, associates with Rac, but not Cdc42, in a nucleotide-independent manner. These results suggest that Mbc is a specific upstream regulator of Rac activity that mediates several morphogenetic processes in Drosophila embryogenesis. PMID:9808621

  5. Pathway Regulation of p63, a Director of Epithelial Cell Fate

    PubMed Central

    Yoh, Kathryn; Prywes, Ron

    2015-01-01

    The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate. PMID:25972840

  6. A study of impact of Asian dusts and their transport pathways to Hong Kong using multiple AERONET data, trajectory, and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wong, Man Sing; Nichol, Janet Elizabeth; Lee, Kwon Ho

    2010-10-01

    Hong Kong, a commercial and financial city located in south-east China has suffered serious air pollution for the last decade due largely to rapid urban and industrial expansion of the cities of mainland China. However, the potential sources and pathways of aerosols transported to Hong Kong have not been well researched due to the lack of air quality monitoring stations in southern China. Here, an integrated method combining the AErosol RObotic NETwork (AERONET) data, trajectory and Potential Source Contribution Function (PSCF) modeling is used to identify the potential transport pathways and contribution of sources from four characteristic aerosol types. Four characteristic aerosol types were defined using a total of 730 AERONET data measurements between 2005 and 2008. They are coastal urban, polluted urban, dust (likely to be long distance desert dust), and heavy pollution. Results show that the sources of polluted urban and heavy pollution are associated with industrial emissions in southern China, whereas coastal urban aerosols have been affected both from natural marine aerosol and emissions. The PSCF map of dust shows a wide range of pathways followed by east- and south-eastwards trajectories from northwest China to Hong Kong. Although the contribution from dust sources is small compared to the anthropogenic aerosols, a serious recent dust outbreak has been observed in Hong Kong with an elevation of the Air Pollution Index to 500, compared with 50-100 on normal days. Therefore, the combined use of clustered AERONET data, trajectory and the PSCF models can help to resolve the longstanding issue about source regions and characteristics of pollutants carried to Hong Kong.

  7. Pseudomonas aeruginosa Ceftolozane-Tazobactam Resistance Development Requires Multiple Mutations Leading to Overexpression and Structural Modification of AmpC

    PubMed Central

    Cabot, Gabriel; Bruchmann, Sebastian; Mulet, Xavier; Zamorano, Laura; Moyà, Bartolomé; Juan, Carlos; Haussler, Susanne

    2014-01-01

    We compared the dynamics and mechanisms of resistance development to ceftazidime, meropenem, ciprofloxacin, and ceftolozane-tazobactam in wild-type (PAO1) and mutator (PAOMS, ?mutS) P. aeruginosa. The strains were incubated for 24 h with 0.5 to 64× MICs of each antibiotic in triplicate experiments. The tubes from the highest antibiotic concentration showing growth were reinoculated in fresh medium containing concentrations up to 64× MIC for 7 consecutive days. The susceptibility profiles and resistance mechanisms were assessed in two isolated colonies from each step, antibiotic, and strain. Ceftolozane-tazobactam-resistant mutants were further characterized by whole-genome analysis through RNA sequencing (RNA-seq). The development of high-level resistance was fastest for ceftazidime, followed by meropenem and ciprofloxacin. None of the mutants selected with these antibiotics showed cross-resistance to ceftolozane-tazobactam. On the other hand, ceftolozane-tazobactam resistance development was much slower, and high-level resistance was observed for the mutator strain only. PAO1 derivatives that were moderately resistant (MICs, 4 to 8 ?g/ml) to ceftolozane-tazobactam showed only 2 to 4 mutations, which determined global pleiotropic effects associated with a severe fitness cost. High-level-resistant (MICs, 32 to 128 ?g/ml) PAOMS derivatives showed 45 to 53 mutations. Major changes in the global gene expression profiles were detected in all mutants, but only PAOMS mutants showed ampC overexpression, which was caused by dacB or ampR mutations. Moreover, all PAOMS mutants contained 1 to 4 mutations in the conserved residues of AmpC (F147L, Q157R, G183D, E247K, or V356I). Complementation studies revealed that these mutations greatly increased ceftolozane-tazobactam and ceftazidime MICs but reduced those of piperacillin-tazobactam and imipenem, compared to those in wild-type ampC. Therefore, the development of high-level resistance to ceftolozane-tazobactam appears to occur efficiently only in a P. aeruginosa mutator background, in which multiple mutations lead to overexpression and structural modifications of AmpC. PMID:24637685

  8. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways

    PubMed Central

    Ogawa, Hiroyasu; Kozhemyakina, Elena; Hung, Han-Hwa; Grodzinsky, Alan J.; Lassar, Andrew B.

    2014-01-01

    Lubricin is a secreted proteoglycan encoded by the Prg4 locus that is abundantly expressed by superficial zone articular chondrocytes and has been noted to both be sensitive to mechanical loading and protect against the development of osteoarthritis. In this study, we document that running induces maximal expression of Prg4 in the superficial zone of knee joint articular cartilage in a COX-2-dependent fashion, which correlates with augmented levels of phospho-S133 CREB and increased nuclear localization of CREB-regulated transcriptional coactivators (CRTCs) in this tissue. Furthermore, we found that fluid flow shear stress (FFSS) increases secretion of extracellular PGE2, PTHrP, and ATP (by epiphyseal chondrocytes), which together engage both PKA- and Ca++-regulated signaling pathways that work in combination to promote CREB-dependent induction of Prg4, specifically in superficial zone articular chondrocytes. Because running and FFSS both boost Prg4 expression in a COX-2-dependent fashion, our results suggest that mechanical motion may induce Prg4 expression in the superficial zone of articular cartilage by engaging the same signaling pathways activated in vitro by FFSS that promote CREB-dependent gene expression in this tissue. PMID:24449269

  9. Requirement of ER? and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells.

    PubMed

    Song, Xiulong; Wei, Zhengxi; Shaikh, Zahir A

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ER?, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1-3?M Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ER? with siRNA or use of ER? antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ER?, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. PMID:26006730

  10. mGluR1-mediated excitation of cerebellar GABAergic interneurons requires both G protein-dependent and Src-ERK1/2-dependent signaling pathways.

    PubMed

    Kubota, Hideo; Nagao, Soichi; Obata, Kunihiko; Hirono, Moritoshi

    2014-01-01

    Stimulation of type I metabotropic glutamate receptors (mGluR1/5) in several neuronal types induces slow excitatory responses through activation of transient receptor potential canonical (TRPC) channels. GABAergic cerebellar molecular layer interneurons (MLIs) modulate firing patterns of Purkinje cells (PCs), which play a key role in cerebellar information processing. MLIs express mGluR1, and activation of mGluR1 induces an inward current, but its precise intracellular signaling pathways are unknown. We found that mGluR1 activation facilitated spontaneous firing of mouse cerebellar MLIs through an inward current mediated by TRPC1 channels. This mGluR1-mediated inward current depends on both G protein-dependent and -independent pathways. The nonselective protein tyrosine kinase inhibitors genistein and AG490 as well as the selective extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors PD98059 and SL327 suppressed the mGluR1-mediated current responses. Following G protein blockade, the residual mGluR1-mediated inward current was significantly reduced by the selective Src tyrosine kinase inhibitor PP2. In contrast to cerebellar PCs, GABAB receptor activation in MLIs did not alter the mGluR1-mediated inward current, suggesting that there is no cross-talk between mGluR1 and GABAB receptors in MLIs. Thus, activation of mGluR1 facilitates firing of MLIs through the TRPC1-mediated inward current, which depends on not only G protein-dependent but also Src-ERK1/2-dependent signaling pathways, and consequently depresses the excitability of cerebellar PCs. PMID:25181481

  11. Optical manipulation of Saccharomyces cerevisiae cells reveals that green light protection against UV irradiation is favored by low Ca2+ and requires intact UPR pathway.

    PubMed

    Farcasanu, Ileana C; Mitrica, Radu; Cristache, Ligia; Nicolau, Ioana; Ruta, Lavinia L; Paslaru, Liliana; Comorosan, Sorin

    2013-11-01

    Optical manipulation of Saccharomyces cerevisiae cells with high density green photons conferred protection against the deleterious effects of UV radiation. Combining chemical screening with UV irradiation of yeast cells, it was noted that the high density green photons relied on the presence of intact unfolded protein response (UPR) pathway to exert their protective effect and that the low Ca(2+) conditions boosted the effect. UPR chemical inducers tunicamycin, dithiotreitol and calcium chelators augmented the green light effect in a synergic action against UV-induced damage. Photo-manipulation of cells was a critical factor since the maximum protection was achieved only when cells were pre-exposed to green light. PMID:24056073

  12. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues. Supplement 3

    SciTech Connect

    Not Available

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ``A Prioritization of Generic Safety Issues,`` which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees.

  13. Youth violence. Developmental pathways and prevention challenges.

    PubMed

    Dahlberg, L L; Potter, L B

    2001-01-01

    Youth violence is an important public health problem. During the latter half of the 1980s and early 1990s, the United States witnessed unprecedented levels of violence among the nation's youths. Homicide remains one of the leading causes of death for young people aged 10 to 24 years. This paper reviews the major trends in homicide victimization and perpetration among youths during the past decade, the developmental pathways of delinquent and violent behavior and the context in which these behaviors occur, and some of the challenges associated with disrupting these pathways and preventing violence. Previous research reveals that multiple pathways lead toward violence and delinquency. Predicting which pathway a youth will follow, or if one will be followed at all, depends to some extent on a host of other biological, psychosocial, and environmental factors present as young people transition from early childhood to adolescence to early adulthood. Preventing violence requires a comprehensive approach that takes into account developmental needs, tasks, and supports. PMID:11146255

  14. Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways.

    PubMed

    Beck, Florian; Geiger, Jörg; Gambaryan, Stepan; Veit, Johannes; Vaudel, Marc; Nollau, Peter; Kohlbacher, Oliver; Martens, Lennart; Walter, Ulrich; Sickmann, Albert; Zahedi, René P

    2014-01-30

    One of the most important physiological platelet inhibitors is endothelium-derived prostacyclin which stimulates the platelet cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)-signaling cascade and inhibits virtually all platelet-activating key mechanisms. Using quantitative mass spectrometry, we analyzed time-resolved phosphorylation patterns in human platelets after treatment with iloprost, a stable prostacyclin analog, for 0, 10, 30, and 60 seconds to characterize key mediators of platelet inhibition and activation in 3 independent biological replicates. We quantified over 2700 different phosphorylated peptides of which 360 were significantly regulated upon stimulation. This comprehensive and time-resolved analysis indicates that platelet inhibition is a multipronged process involving different kinases and phosphatases as well as many previously unanticipated proteins and pathways. PMID:24324209

  15. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    PubMed

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (?FgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F.?graminearum. ?FgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (?FgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F.?graminearum. PMID:24237706

  16. Androgen Receptor Requires JunD as a Co-activator to Switch on an Oxidative Stress Generation Pathway in Prostate Cancer Cells

    PubMed Central

    Mehraein-Ghomi, Farideh; Basu, Hirak S.; Church, Dawn R.; Hoffmann, F. Michael; Wilding, George

    2010-01-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human prostate cancer cells. We also recently demonstrated that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyl transferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present co-immunoprecipitation and Gaussia luciferase reconstitution assay data that show JunD forms a complex with androgen-activated AR in situ. Our chromatin immunoprecipitation assay data demonstrate that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate specific target for CaP chemopreventive/chemotherapeutic drug development. PMID:20460526

  17. Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions

    PubMed Central

    Zanchi, Alice; Pallotto, Marta; Giustetto, Maurizio; Chelly, Jamel; Sala, Carlo; Billuart, Pierre

    2010-01-01

    Interleukin-1-Receptor Accessory Protein Like 1 (IL1RAPL1) gene mutations are associated to cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. Functionally IL1RAPL1 belongs to a novel family of Toll/IL-1 Receptors, but its ligand is unknown. In a recent study, we have shown that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major scaffold protein of excitatory post-synaptic density. We demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling JNK (c-Jun terminal Kinase) activity and PSD-95 phosphorylation. Loss of IL1RAPL1 in mouse not only led to a reduction of excitatory synapses but also to specific deficits in hippocampal long-term synaptic plasticity. Here we report that activation of JNK pathway in neurons by Interleukin-1 (IL-1) is mediated by IL1RAPL1. The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism underlying cognitive impairment associated with alterations of the JNK pathway in response to IL-1 and leading to the mislocalization of PSD-95, that subsequently result in abnormal synaptic organization and function. PMID:20714405

  18. Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions.

    PubMed

    Pavlowsky, Alice; Zanchi, Alice; Pallotto, Marta; Giustetto, Maurizio; Chelly, Jamel; Sala, Carlo; Billuart, Pierre

    2010-05-01

    Interleukin-1-Receptor Accessory Protein Like 1 (IL1RAPL1) gene mutations are associated to cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. Functionally IL1RAPL1 belongs to a novel family of Toll/IL-1 Receptors, but its ligand is unknown. In a recent study, we have shown that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major scaffold protein of excitatory post-synaptic density. We demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling JNK (c-Jun terminal Kinase) activity and PSD-95 phosphorylation. Loss of IL1RAPL1 in mouse not only led to a reduction of excitatory synapses but also to specific deficits in hippocampal long-term synaptic plasticity. Here we report that activation of JNK pathway in neurons by Interleukin-1 (IL-1) is mediated by IL1RAPL1. The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism underlying cognitive impairment associated with alterations of the JNK pathway in response to IL-1 and leading to the mislocalization of PSD-95, that subsequently result in abnormal synaptic organization and function. PMID:20714405

  19. IL13 Receptor ?2 Signaling Requires a Scaffold Protein, FAM120A, to Activate the FAK and PI3K Pathways in Colon Cancer Metastasis.

    PubMed

    Bartolomé, Rubén A; García-Palmero, Irene; Torres, Sofía; López-Lucendo, María; Balyasnikova, Irina V; Casal, J Ignacio

    2015-06-15

    IL13 signaling through its receptor IL13R?2 plays a critical role in colon cancer invasion and liver metastasis, but the mechanistic features of this process are obscure. In this study, we identified a scaffold protein, FAM120A (C9ORF10), as a signaling partner in this process. FAM120A was overexpressed in human colon cancer cell lines and 55% of human colon cancer specimens. IL13R?2-FAM120A coimmunoprecipitation experiments revealed further signaling network associations that could regulate the activity of IL13R?2, including FAK, SRC, PI3K, G-protein-coupled receptors, and TRAIL receptors. In addition, FAM120A associated with kinesins and motor proteins involved in cargo movement along microtubules. IL13R?2-triggered activation of the FAK and PI3K/AKT/mTOR pathways was mediated by FAM120A, which also recruited PI3K and functioned as a scaffold protein to enable phosphorylation and activation of PI3K by Src family kinases. FAM120A silencing abolished IL13-induced cell migration, invasion, and survival. Finally, antibody blockade of IL13R?2 or FAM120A silencing precluded liver colonization in nude mice or metastasis. In conclusion, we identified FAM120A in the IL13/IL13R?2 signaling pathway as a key mediator of invasion and liver metastasis in colon cancer. Cancer Res; 75(12); 2434-44. ©2015 AACR. PMID:25896327

  20. Fgfr4 is required for effective muscle regeneration in vivo: Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway

    PubMed Central

    Zhao, Po; Caretti, Giuseppina; Mitchell, Stephanie; McKeehan, Wallace L; Boskey, Adele L.; Pachman, Lauren M.; Sartorelli, Vittorio

    2005-01-01

    Fgfr4 has been shown to be important for appropriate muscle development in chick limb buds, however, Fgfr4 null mice show no phenotype. Here, we show that staged induction of muscle regeneration in Fgfr4 null mice becomes highly abnormal at the time point when Fgfr4 is normally expressed. By 7 days of regeneration, differentiation of myotubes became poorly coordinated and delayed by both histology and embryonic myosin heavy chain staining. By 14 days, much of the muscle was replaced by fat and calcifications. To begin to dissect the molecular pathways involving Fgfr4, we queried the promoter sequences for transcriptional factor binding sites, and tested candidate regulators in a 27 time point regeneration series. The Fgfr4 promoter region contained a Tead protein binding site (M-CAT 5?-CATTCCT-3?), and Tead2 showed induction during regeneration commensurate with Fgfr4 regulation. Co-transfection of Tead2 and Fgfr4 promoter reporter constructs into C2C12 myotubes showed Tead2 to activate Fgfr4, and mutation of the M-CAT motif in the Fgfr4 promoter abolished these effects. Immunostaining for Tead2 showed timed expression in myotube nuclei consistent with the mRNA data. Query of the expression timing and genomic sequences of Tead2 suggested direct regulation by MyoD, and, consistent with this, MyoD directly bound to two strong E-boxes in the first intron of Tead2 by chromatin immunoprecipitation assay. Moreover, co-transfection of MyoD and Tead2 intron reporter constructs into 10T1/2 cells activated reporter activity in a dose dependent manner. This activation was greatly reduced when the two E-boxes were mutated. Our data suggest a novel MyoD-Tead2-Fgfr4 pathway important for effective muscle regeneration. PMID:16267055

  1. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the distribution. The main memory requirement for execution is 2.6 Mb. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution) or on a TK50 tape cartridge. PATHWAYS was developed in 1988. PATHWAYS is a copyrighted work with all copyright vested in NASA. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. BIOGRAF is a trademark of Molecular Simulations, Inc., Sunnyvale, CA.

  2. A Dihydroxy-pentamethoxyflavone from Gardenia obtusifolia Suppresses Proliferation and Promotes Apoptosis of Tumor Cells Through Modulation of Multiple Cell Signaling Pathways

    PubMed Central

    PHROMNOI, KANOKKARN; REUTER, SIMONE; SUNG, BOKYUNG; LIMTRAKUL, PORNNGARM; AGGARWAL, BHARAT B.

    2011-01-01

    We sought to determine the molecular basis for the anticancer activities of 5,3?-dihydroxy-3,6,7,8,4?-pentamethoxyflavone (DH-PMF), isolated from Gardenia obtusifolia traditionally used in Thailand for a variety of ailments. As little as 1 ?M DH-PMF inhibited the proliferation of prostate, colon, kidney, lung, head and neck, pancreas, breast, leukemia, and myeloma cancer cell lines. DH-PMF also suppressed the colony-forming ability of tumor cells, with 50% inhibition occurring at a dose less than 10 nM. DH-PMF induced G2/M and subG1 cell cycle arrest, increased the levels of p21WAF1/CIP1 and p27KIP1, and reduced the expression of cyclin D1, CDC2, and c-MYC. Furthermore, DH-PMF inhibited AKT and glycogen synthase kinase 3 beta (GSK3?) activation, reduced cell survival proteins, and induced apoptosis, as indicated by annexin V staining, TUNEL assay, and activation of caspase-8, -9 and -3. Overall, our results demonstrate that DH-PMF induces suppression of cell proliferation through modulation of AKT-GSK3? pathways and induction of cyclin-dependent kinase (CDK) inhibitors. PMID:20944143

  3. A mitochondrial pathway for biosynthesis of lipid mediators.

    PubMed

    Tyurina, Yulia Y; Poloyac, Samuel M; Tyurin, Vladimir A; Kapralov, Alexander A; Jiang, Jianfei; Anthonymuthu, Tamil Selvan; Kapralova, Valentina I; Vikulina, Anna S; Jung, Mi-Yeon; Epperly, Michael W; Mohammadyani, Dariush; Klein-Seetharaman, Judith; Jackson, Travis C; Kochanek, Patrick M; Pitt, Bruce R; Greenberger, Joel S; Vladimirov, Yury A; Bay?r, Hülya; Kagan, Valerian E

    2014-06-01

    The central role of mitochondria in metabolic pathways and in cell-death mechanisms requires sophisticated signalling systems. Essential in this signalling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin (CL), is oxidized by the intermembrane-space haemoprotein, cytochrome c. We show that a number of oxygenated CL species undergo phospholipase A2-catalysed hydrolysis and thus generate multiple oxygenated fatty acids, including well-known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway, which includes the oxidation of polyunsaturated CLs and accumulation of their hydrolysis products (oxygenated linoleic, arachidonic acids and monolysocardiolipins), is activated in vivo after acute tissue injury. PMID:24848241

  4. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells.

    PubMed

    Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael; Veillette, André

    2015-01-01

    Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. PMID:25312647

  5. Immune Cell Inhibition by SLAMF7 Is Mediated by a Mechanism Requiring Src Kinases, CD45, and SHIP-1 That Is Defective in Multiple Myeloma Cells

    PubMed Central

    Guo, Huaijian; Cruz-Munoz, Mario-Ernesto; Wu, Ning; Robbins, Michael

    2014-01-01

    Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells. PMID:25312647

  6. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5?M) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1?, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1?, IL-6, IL-8, TNF-?) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-?B, COX-2, STAT-3, iNOS, TNF-?) and angiogenesis (HIF-1?, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. PMID:25448439

  7. Pathways in general surgery

    Microsoft Academic Search

    Nick Carty

    Surgery is an ideal fi eld for the application of care pathways. There is typically a single evaluation and diagnostic episode followed by a defi ned treatment. Where follow-up is required, this usually has a predictable schedule. In contrast, many other medical specialities are concerned with the treatment of diseases, which, by their nature, are less easily defi ned. This

  8. Pterostilbene inhibits colorectal aberrant crypt foci (ACF) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice.

    PubMed

    Chiou, Yi-Siou; Tsai, Mei-Ling; Wang, Ying-Jan; Cheng, An-Chin; Lai, Wei-Ming; Badmaev, Vladimir; Ho, Chi-Tang; Pan, Min-Hsiung

    2010-08-11

    Pterostilbene (PS), a natural dimethylated analogue of resveratrol, is known to have diverse pharmacologic activities including anticancer, anti-inflammation, antioxidant, apoptosis, antiproliferation, and analgesic potential. This paper reports the inhibitory effect of dietary administration of pterostilbene against the formation of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) preneoplastic lesions and adenomas in male ICR mice and delineates its possible molecular mechanisms. ICR mice were given two AOM injections intraperitoneal and continuously fed a 50 or 250 ppm pterostilbene diet for 6 or 23 weeks. It was found that the dietary administration of pterostilbene effectively reduced AOM-induced formation of ACF and adenomas and inhibited the transcriptional activation of iNOS and COX-2 mRNA and proteins in mouse colon stimulated by AOM. Treatment with pterostilbene resulted in the induction of apoptosis in mouse colon. Moreover, administration of pterostilbene for 23 weeks significantly suppressed AOM-induced GSK3beta phosphorylation and Wnt/beta-catenin signaling. It was also found that pterostilbene significantly inhibited AOM-induced expression of VEGF, cyclin D1, and MMPs in mouse colon. Furthermore, pterostilbene markedly inhibited AOM-induced activation of Ras, phosphatidylinositol 3 kinase/Akt, and EGFR signaling pathways. All of these results revealed that pterostilbene is an effective antitumor agent as well as its inhibitory effect through the down-regulation of inflammatory iNOS and COX-2 gene expression and up-regulation of apoptosis in mouse colon, suggesting that pterostilbene is a novel functional agent capable of preventing inflammation-associated colon tumorigenesis. PMID:20681671

  9. A QM/MM Investigation of the Chemical Reaction in Dpo4 Reveals Water-Dependent Pathways and Requirements for Active Site Reorganization

    PubMed Central

    Wang, Yanli; Schlick, Tamar

    2011-01-01

    The nucleotidyl-transfer reaction coupled with the conformational transitions in DNA polymerases is critical for maintaining the fidelity and efficiency of DNA synthesis. We examine here the possible reaction pathways of a Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4), for the correct insertion of dCTP opposite 8-oxoguanine using the quantum mechanics/molecular mechanics (QM/MM) approach, both from a chemistry-competent state and a crystal closed state. The latter examination is important for understanding pre-chemistry barriers to interpret the entire enzyme mechanism, since the crystal closed state is not an ideal state for initiating the chemical reaction. The most favorable reaction path involves initial deprotonation of O3?H via two bridging water molecules to O1A, overcoming an overall potential energy barrier of approximately 20.0 kcal/mol. The proton on O1A-P? then migrates to the ?-phosphate oxygen of the incoming nucleotide as O3? attacks P?, and the P? – O3A bond breaks. The other possible pathway in which the O3?H proton is transferred directly to O1A on P? has an overall energy barrier of 25.0 kcal/mol. In both reaction paths, the rate-limiting step is the initial deprotonation, and the trigonal-bipyramidal configuration for P? occurs during the concerted bond formation (O3?–P?) and breaking (P?–O3A), indicating the associative nature of the chemical reaction. In contrast, the Dpo4/DNA complex with an imperfect active-site geometry corresponding to the crystal state must overcome a much higher activation energy barrier (29.0 kcal/mol) to achieve a tightly organized site due to hindered O3?H deprotonation stemming from larger distances and distorted conformation of the proton acceptors. This significant difference demonstrates that the pre-chemistry reorganization in Dpo4 costs approximately 4.0 to 9.0 kcal/mol depending on the primer terminus environment. Compared to the higher fidelity DNA polymerase ? from the X-family, Dpo4 has a higher chemical reaction barrier (20.0 vs. 15.0 kcal/mol) due to the more solvent-exposed active site. PMID:18785738

  10. UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells.

    PubMed

    An, Jee Young; Kim, Euna; Zakrzewska, Adriana; Yoo, Young Dong; Jang, Jun Min; Han, Dong Hoon; Lee, Min Jae; Seo, Jai Wha; Lee, Yong Jun; Kim, Tae-You; de Rooij, Dirk G; Kim, Bo Yeon; Kwon, Yong Tae

    2012-01-01

    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. PMID:22616001

  11. UBR2 of the N-End Rule Pathway Is Required for Chromosome Stability via Histone Ubiquitylation in Spermatocytes and Somatic Cells

    PubMed Central

    An, Jee Young; Kim, Euna; Zakrzewska, Adriana; Yoo, Young Dong; Jang, Jun Min; Han, Dong Hoon; Lee, Min Jae; Seo, Jai Wha; Lee, Yong Jun; Kim, Tae-You; de Rooij, Dirk G.; Kim, Bo Yeon; Kwon, Yong Tae

    2012-01-01

    The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. PMID:22616001

  12. Examining Hedgehog pathway genes GLI3, SHH, and PTCH1 and the p53 target GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster using fluorescence in situ hybridization uncovers GLIPR1/GLIPR1L1/GLIPR1L2 deletion in 9% of patients with multiple myeloma.

    PubMed

    Tam, Michael; Lin, Pei; Hu, Peter; Lennon, Patrick A

    2010-01-01

    Mutations in genes regulating cell cycle and apoptosis are considered major culprits for the malignant transformation of cancer cells. Aberrant activation of the Hedgehog (HH) signaling pathway which primarily regulates genes involved in cell growth, proliferation, survival and apoptosis has been demonstrated in multiple myeloma. Mutations resulting in defective components of the p53 pathway, which serves a critical role in mediating cellular stress response by triggering DNA repair, cell cycle arrest, senescence and apoptosis, have also been identified. This study focuses on detecting copy number variations for the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster of the p53 pathway and three elements of the HH pathway, SHH, PTCH1 and GLI3 in multiple myeloma (MM) using fluorescence in situ hybridization (FISH). In eighteen samples, there was no evidence of abnormal copy number for PTCH1, GLI3 or SHH. Thus, it is unlikely that copy number variations of these genes are linked to multiple myeloma. However, a deletion of the GLIPR1/GLIPR1L1/ GLIPR1L2 gene cluster, all p53 targets, was found in three of 32 samples (9.4%) indicating that these deleted genes may have significant implications in MM. Further studies should be performed to determine the role of the GLIPR1/GLIPR1L1/GLIPR1L2 gene cluster in the pathogenesis of multiple myeloma. PMID:20978342

  13. Microglia and a Functional Type I IFN Pathway are Required to Counter HSV-1-Driven Brain Lateral Ventricle Enlargement and Encephalitis1

    PubMed Central

    Conrady, Christopher D.; Zheng, Min; van Rooijen, Nico; Drevets, Douglas A.; Royer, Derek; Alleman, Anthony; Carr, Daniel J. J.

    2013-01-01

    HSV-1 is the leading cause of sporadic viral encephalitis with mortality rates approaching 30% despite treatment with the antiviral drug of choice, acyclovir. Permanent neurological deficits are common in patients that survive but the mechanism leading to this pathology is poorly understood impeding clinical advancements in treatment to reduce central nervous system (CNS) morbidity. Using magnetic resonance imaging and type I IFN receptor deficient mouse chimeras, we demonstrate HSV-1 gains access to the murine brain stem and subsequently brain ependymal cells leading to enlargement of the cerebral lateral ventricle and infection of the brain parenchyma. A similar enlargement in the lateral ventricles is found in a subpopulation of herpes simplex encephalitic patients. Associated with encephalitis is an increase in CXCL1 and CXCL10 levels in the cerebral spinal fluid, TNF-? expression in the ependymal region and the influx of neutrophils of encephalitic mouse brains. Reduction in lateral ventricle enlargement using the anti-secretory factor peptide, AF-16, reduces mortality significantly in HSV-1 infected mice without any effect on expression of inflammatory mediators, infiltration of leukocytes, or changes in viral titer. Microglial cells but not infiltrating leukocytes or other resident glial cells or neurons are the principal source of resistance in the CNS during the first 5 days post infection through a TRIF-dependent, type I IFN pathway. Our results implicate lateral ventricle enlargement as a major cause of mortality in mice and speculate such an event transpires in a subpopulation of human herpes simplex virus encephalitic patients. PMID:23382563

  14. Aeromonas spp. can secrete Escherichia coli alkaline phosphatase into the culture supernatant, and its release requires a functional general secretion pathway.

    PubMed

    Wong, K R; Buckley, J T

    1993-09-01

    Aerolysin is a channel-forming protein secreted by Aeromonas hydrophila. To determine if regions of aerolysin could direct the secretion of another protein, portions of aerA were fused to phoA, the Escherichia coli alkaline phosphatase gene and cloned into E. coli, Aeromonas salmonicida, and A. hydrophila. We were surprised to find that secretion of the enzyme by both Aeromonas spp. was independent of the aerolysin segments fused to it. The smallest fusion product contained only the signal sequence and two amino acids of aerolysin. The largest had more than 90% of the aerolysin molecule. The fusion proteins were found in the periplasms of E. coli and A. salmonicida grown in LB medium containing glucose, as well as in the shocked cells. Aerolysin itself was secreted by A. salmonicida under these conditions. In contrast, when A. salmonicida containing any of the fused genes was grown in LB medium without glucose, most of the alkaline phosphatase activity was extracellular, whereas beta-lactamase remained in its normal periplasmic location. Similar results were obtained with A. hydrophila. The change in location of the enzyme in A. salmonicida appeared to be related to the pH of the growth medium. A. salmonicida and A. hydrophila also secreted native E. coli alkaline phosphatase, but A. hydrophila strains with mutations in the general secretion pathway were unable to release the enzyme. We conclude that the Aeromonas secretion system can recognize the E. coli enzyme as an extracellular protein and direct it outside the cell. PMID:7523832

  15. ERK pathway activation is required for amyloid-?(1-40)(-)induced neurotoxicity of THP-1 human monocytes towards SK-N-SH neuroblastoma.

    PubMed

    Yin, Lin-Lin; Li, Wei; Chu, Yan-Qi; Li, Lin

    2011-03-10

    Alzheimer's disease (AD) is characterized by amyloid-? peptide deposition, increased activated microglia, and progressive loss of neurons in the brain. Although A????? can elicit inflammation in microglia, the intracellular signaling events mediating these effects are poorly defined. Here we show that cell-free supernatant from A?????-treated THP-1 monocytes induced cytotoxicity towards neuroblastoma SK-N-SH cells. Exposure of THP-1 monocytes to A????? leads to increased tyrosine phosphorylation and extracellular signaling-regulated kinase (ERK) and increased levels of inflammatory cytokines (IL-1?, IL-8, and TNF-?) in the supernatant of THP-1 monocytes. Pretreatment of THP-1 monocytes with either a protein tyrosine kinase (PTK) inhibitor or an ERK inhibitor protects SK-N-SH cells from the cytotoxic effect of conditional supernatant from A?????-treated THP-1 monocytes. A?????-treated THP-1 monocytes also lead to upregulation of cyclooxygenase-2 and iNOS expression and increased of nitric oxide production. These results suggest that A?????-induced activation of PTK/MEK/ERK pathway in THP-1 monocytes leads to the release of inflammatory factors that are toxic to SK-N-SH cells and might contribute to the onset of AD. PMID:21241676

  16. Establishing a reliable multiple reaction monitoring-based method for the quantification of obesity-associated comorbidities in serum and adipose tissue requires intensive clinical validation.

    PubMed

    Oberbach, Andreas; Schlichting, Nadine; Neuhaus, Jochen; Kullnick, Yvonne; Lehmann, Stefanie; Heinrich, Marco; Dietrich, Arne; Mohr, Friedrich Wilhelm; von Bergen, Martin; Baumann, Sven

    2014-12-01

    Multiple reaction monitoring (MRM)-based mass spectrometric quantification of peptides and their corresponding proteins has been successfully applied for biomarker validation in serum. The option of multiplexing offers the chance to analyze various proteins in parallel, which is especially important in obesity research. Here, biomarkers that reflect multiple comorbidities and allow monitoring of therapy outcomes are required. Besides the suitability of established MRM assays for serum protein quantification, it is also feasible for analysis of tissues secreting the markers of interest. Surprisingly, studies comparing MRM data sets with established methods are rare, and therefore the biological and clinical value of most analytes remains questionable. A MRM method using nano-UPLC-MS/MS for the quantification of obesity related surrogate markers for several comorbidities in serum, plasma, visceral and subcutaneous adipose tissue was established. Proteotypic peptides for complement C3, adiponectin, angiotensinogen, and plasma retinol binding protein (RBP4) were quantified using isotopic dilution analysis and compared to the standard ELISA method. MRM method variabilities were mainly below 10%. The comparison with other MS-based approaches showed a good correlation. However, large differences in absolute quantification for complement C3 and adiponectin were obtained compared to ELISA, while less marked differences were observed for angiotensinogen and RBP4. The verification of MRM in obesity was performed to discriminate first lean and obese phenotype and second to monitor excessive weight loss after gastric bypass surgery in a seven-month follow-up. The presented MRM assay was able to discriminate obese phenotype from lean and monitor weight loss related changes of surrogate markers. However, inclusion of additional biomarkers was necessary to interpret the MRM data on obesity phenotype properly. In summary, the development of disease-related MRMs should include a step of matching the MRM data with clinically approved standard methods and defining reference values in well-sized representative age, gender, and disease-matched cohorts. PMID:25318410

  17. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis.

    PubMed

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-12-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals. PMID:23221598

  18. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma.

    PubMed

    Du, Juan; Liu, Shuyan; He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian

    2015-06-20

    Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma. PMID:25915427

  19. Autographa californica Multiple Nucleopolyhedrovirus orf132 Encodes a Nucleocapsid-Associated Protein Required for Budded-Virus and Multiply Enveloped Occlusion-Derived Virus Production

    PubMed Central

    Yang, Ming; Wang, Shuo; Yue, Xiu-Li

    2014-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132 deletion on the virus and multiple new findings on ac132. PMID:25142609

  20. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis.

    PubMed

    Chen, Ke; He, Honghui; Xie, Yanhong; Zhao, Liling; Zhao, Shaoli; Wan, Xinxing; Yang, Wenjun; Mo, Zhaohui

    2015-01-01

    Multiple symmetric lipomatosis (MSL) is a rare disease characterized by symmetric and abnormal distribution of subcutaneous adipose tissue (SAT); however, the etiology is largely unknown. We report here that miR-125a-3p and miR-483-5p are upregulated in the SAT of MSL patients, promoting adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. TaqMan microRNA (miR) array analysis revealed that 18?miRs were upregulated in the SAT of MSL patients. Transfection of human adipose-derived mesenchymal stem cells (hADSCs) with the individual agomirs of these 18?miRs showed that miR-125a-3p and miR-483-5p significantly promoted adipogenesis. A dual-luciferase assay showed that RhoA and ERK1 were the targets of miR-125a-3p and miR-483-5p, respectively. Moreover, transfection of hADSCs with mimics of miR-125a-3p and miR-483-5p resulted in a pronounced decrease of ERK1/2 phosphorylation in the nucleus; conversely, transfection of hADSCs with inhibitors of miR-125a-3p and miR-483-5p led to a significant increase of ERK1/2 phosphorylation in the nucleus. Most importantly, we found that miR-125a-3p and miR-483-5p promoted de novo adipose tissue formation in nude mice. These results demonstrated that miR-125a-3p and miR-483-5p coordinately promoted adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. Our findings may provide novel strategies for the management and treatment of MSL or obesity. PMID:26148871

  1. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis

    PubMed Central

    Chen, Ke; He, Honghui; Xie, Yanhong; Zhao, Liling; Zhao, Shaoli; Wan, Xinxing; Yang, Wenjun; Mo, Zhaohui

    2015-01-01

    Multiple symmetric lipomatosis (MSL) is a rare disease characterized by symmetric and abnormal distribution of subcutaneous adipose tissue (SAT); however, the etiology is largely unknown. We report here that miR-125a-3p and miR-483-5p are upregulated in the SAT of MSL patients, promoting adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. TaqMan microRNA (miR) array analysis revealed that 18?miRs were upregulated in the SAT of MSL patients. Transfection of human adipose-derived mesenchymal stem cells (hADSCs) with the individual agomirs of these 18?miRs showed that miR-125a-3p and miR-483-5p significantly promoted adipogenesis. A dual-luciferase assay showed that RhoA and ERK1 were the targets of miR-125a-3p and miR-483-5p, respectively. Moreover, transfection of hADSCs with mimics of miR-125a-3p and miR-483-5p resulted in a pronounced decrease of ERK1/2 phosphorylation in the nucleus; conversely, transfection of hADSCs with inhibitors of miR-125a-3p and miR-483-5p led to a significant increase of ERK1/2 phosphorylation in the nucleus. Most importantly, we found that miR-125a-3p and miR-483-5p promoted de novo adipose tissue formation in nude mice. These results demonstrated that miR-125a-3p and miR-483-5p coordinately promoted adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. Our findings may provide novel strategies for the management and treatment of MSL or obesity. PMID:26148871

  2. CELL SIGNALING: Mitochondrial Longevity Pathways

    NSDL National Science Digital Library

    György Hajnóczky (Thomas Jefferson University; Department of Pathology, Anatomy and Cell Biology)

    2007-02-02

    Access to the article is free, however registration and sign-in are required. A cytosolic protein that translocates into the mitochondria may serve as an integration point for signaling pathways that control longevity and cell death.

  3. Nuclear Localization of ?1A?Adrenergic Receptors Is Required for Signaling in Cardiac Myocytes: An “Inside?Out” ?1?AR Signaling Pathway

    PubMed Central

    Wu, Steven C.; Dahl, Erika F.; Wright, Casey D.; Cypher, Andrew L.; Healy, Chastity L.; O'Connell, Timothy D.

    2014-01-01

    Background Recent studies indicate that ?1?adrenergic receptors (?1?ARs) are cardioprotective by preventing cardiac myocyte death and augmenting contractility in heart failure. Although G?protein?coupled receptors are assumed to localize to and signal at the plasma membrane, we previously demonstrated that endogenous ?1?ARs localize to the nuclei in adult cardiac myocytes. However, the functional consequence of this nuclear localization remains unclear. Here, we attempted to reconcile nuclear localization of ?1?ARs with their physiologic function by examining ?1?AR?induced contractility in adult cardiac myocytes. Methods and Results By measuring shortening in unloaded, cultured adult cardiac myocytes, we found that the ?1A?subtype regulated contractility through phosphorylation of cardiac troponin I (cTnI) at the protein kinase C (PKC) site, threonine 144. Reconstitution of an ?1A?subtype nuclear localization mutant in cardiac myocytes lacking ?1?ARs failed to rescue nuclear ?1A?mediated phosphorylation of cTnI and myocyte contractility. Leptomycin B, the nuclear export inhibitor, also blocked ?1A?mediated phosphorylation of cTnI. These data indicate that ?1?AR signaling originates in the nucleus. Consistent with these observations, we localized the ?1A?subtype to the inner nuclear membrane, identified PKC?, ?, and ? in the nucleus, and found that ?1?ARs activate PKC? in nuclei isolated from adult cardiac myocytes. Finally, we found that a PKC? nuclear localization mutant blunted ?1?induced phosphorylation of cTnI. Conclusions Together, our data identify a novel, “inside?out” nuclear ?1A?subtype/PKC?/cTnI?signaling pathway that regulates contractile function in adult cardiac myocytes. Importantly, these data help resolve the discrepancy between nuclear localization of ?1?ARs and ?1?AR?mediated physiologic function. PMID:24772522

  4. Requirement of the Lactobacillus casei MaeKR Two-Component System for l-Malic Acid Utilization via a Malic Enzyme Pathway? †

    PubMed Central

    Landete, José María; García-Haro, Luisa; Blasco, Amalia; Manzanares, Paloma; Berbegal, Carmen; Monedero, Vicente; Zúñiga, Manuel

    2010-01-01

    Lactobacillus casei can metabolize l-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of l-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on l-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for l-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on l-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of l-malic acid and repressed by glucose, whereas TC system expression was induced by l-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5?-TTATT(A/T)AA-3?] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression. PMID:19897756

  5. Distinct T cell receptor signaling pathways drive proliferation and cytokine production in T cells

    PubMed Central

    Guy, Clifford S.; Vignali, Kate M.; Temirov, Jamshid; Bettini, Matthew; Overacre, Abigail E.; Smeltzer, Matthew; Zhang, Hui; Huppa, Johannes B.; Tsai, Yu-Hwai; Lobry, Camille; Xie, Jianming; Dempsey, Peter J.; Crawford, Howard C.; Aifantis, Iannis; Davis, Mark M.; Vignali, Dario A.A.

    2013-01-01

    Summary The physiological basis and mechanistic requirement for the high immunoreceptor tyrosine activation motifs (ITAM) multiplicity of the T cell receptor (TCR)-CD3 complex remains obscure. Here we show that while low TCR-CD3 ITAM multiplicity is sufficient to engage canonical TCR-induced signaling events that lead to cytokine secretion, high TCR-CD3 ITAM multiplicity is required for TCR-driven proliferation. This is dependent on compact immunological synapse formation, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate Notch1 recruitment and activation and ultimately c-Myc-induced proliferation. Analogous mechanistic events are also required to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and co-ordinated by the multiplicity of phosphorylated TCR-CD3 ITAMs. PMID:23377202

  6. Ursolic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in an Orthotopic Nude Mouse Model by Targeting Multiple Cell Signaling Pathways: Chemosensitization with Capecitabine

    PubMed Central

    Prasad, Sahdeo; Yadav, Vivek R.; Sung, Bokyung; Reuter, Simone; Kannappan, Ramaswamy; Deorukhkar, Amit; Diagaradjane, Parmeswaran; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Krishnan, Sunil; Guha, Sushovan; Aggarwal, Bharat B.

    2013-01-01

    Purpose Development of chemoresistance, poor prognosis, and metastasis often renders the current treatments for colorectal cancer (CRC) ineffective. Whether ursolic acid (UA), a component of numerous medicinal plants, either alone or in combination with capecitabine, can inhibit the growth and metastasis of human CRC was investigated. Experimental design The effect of UA on proliferation of colorectal cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by esterase staining, NF-?B activation by DNA binding assay and protein expression by western blot. The effect of UA on the growth and chemosensitization was also examined in orthotopically-implanted CRC in nude mice. Results We found that UA inhibited the proliferation of different colon cancer cell lines. This is correlated with inhibition of constitutive NF-?B activation and downregulation of cell survival (Bcl-xL, Bcl-2, cFLIP, survivin), proliferative (Cyclin D1), and metastatic (MMP-9, VEGF, ICAM-1) proteins. When examined in an orthotopic nude-mice model, UA significantly inhibited tumor volume, ascites formation and distant organ metastasis, and this effect was enhanced with capecitabine. Immunohistochemistry of tumor tissue indicated that UA downregulated biomarkers of proliferation (Ki-67) and microvessel density (CD31). This effect was accompanied by suppression of NF-?B, STAT3, and ?-catenin. In addition, UA suppressed EGFR, and induced p53, and p21 expression. We also observed bioavailability of UA in the serum and tissue of animals. Conclusion Overall our results demonstrate that UA can inhibit the growth and metastasis of CRC and further enhance the therapeutic effects of capecitabine through suppression of multiple biomarkers linked to inflammation, proliferation, invasion, angiogenesis, and metastasis. PMID:22832932

  7. Secretome analysis identifies novel signal Peptide peptidase-like 3 (sppl3) substrates and reveals a role of sppl3 in multiple Golgi glycosylation pathways.

    PubMed

    Kuhn, Peer-Hendrik; Voss, Matthias; Haug-Kröper, Martina; Schröder, Bernd; Schepers, Ute; Bräse, Stefan; Haass, Christian; Lichtenthaler, Stefan F; Fluhrer, Regina

    2015-06-01

    Signal peptide peptidase-like 3 (Sppl3) is a Golgi-resident intramembrane-cleaving protease that is highly conserved among multicellular eukaryotes pointing to pivotal physiological functions in the Golgi network which are only beginning to emerge. Recently, Sppl3 was shown to control protein N-glycosylation, when the key branching enzyme N-acetylglucosaminyltransferase V (GnT-V) and other medial/trans Golgi glycosyltransferases were identified as first physiological Sppl3 substrates. Sppl3-mediated endoproteolysis releases the catalytic ectodomains of these enzymes from their type II membrane anchors. Protein glycosylation is a multistep process involving numerous type II membrane-bound enzymes, but it remains unclear whether only few of them are Sppl3 substrates or whether Sppl3 cleaves many of them and thereby controls protein glycosylation at multiple levels. Therefore, to systematically identify Sppl3 substrates we used Sppl3-deficient and Sppl3-overexpression cell culture models and analyzed them for changes in secreted membrane protein ectodomains using the proteomics "secretome protein enrichment with click sugars (SPECS)" method. SPECS analysis identified numerous additional new Sppl3 candidate glycoprotein substrates, several of which were biochemically validated as Sppl3 substrates. All novel Sppl3 substrates adopt a type II topology. The majority localizes to the Golgi network and is implicated in Golgi functions. Importantly, most of the novel Sppl3 substrates catalyze the modification of N-linked glycans. Others contribute to O-glycan and in particular glycosaminoglycan biosynthesis, suggesting that Sppl3 function is not restricted to N-glycosylation, but also functions in other forms of protein glycosylation. Hence, Sppl3 emerges as a crucial player of Golgi function and the newly identified Sppl3 substrates will be instrumental to investigate the molecular mechanisms underlying the physiological function of Sppl3 in the Golgi network and in vivo. Data are available via ProteomeXchange with identifier PXD001672. PMID:25827571

  8. Evaluation of microbial triglyceride oil purification requirements for the CelTherm process: an efficient biochemical pathway to renewable fuels and chemicals.

    PubMed

    Linnen, Michael; Seames, Wayne; Kubatova, Alena; Menon, Suresh; Alisala, Kashinatham; Hash, Sara

    2014-10-01

    CelTherm is a biochemical process to produce renewable fuels and chemicals from lignocellulosic biomass. The present study's objective was to determine the level of treatment/purity of the microbial triacylglyceride oil (TAG) necessary to facilitate fuel production. After a unique microbe aerobically synthesizes TAG from biomass-derived sugars, the microbes were harvested and dried then crude TAG was chemically extracted from the residual biomass. Some TAGs were further purified to hydrotreating process requirements. Both grades were then noncatalytically cracked into a petroleum-like intermediate characterized by gas chromatography. Experiments were repeated using refined soybean oil for comparison to previous studies. The products from crude microbial TAG cracking were then further refined into a jet fuel product. Fuel tests indicate that this jet fuel corresponds to specifications for JP-8 military turbine fuel. It was thus concluded that the crude microbial TAG is a suitable feedstock with no further purification required, demonstrating CelTherm's commercial potential. PMID:24781206

  9. A Macromolecular Synthesis-Dependent Late Phase of Long-Term Potentiation Requiring cAMP in the Medial Perforant Pathway of Rat Hippocampal Slices

    Microsoft Academic Search

    Peter V. Nguyen; Eric R. Kandel

    1996-01-01

    Memory storage consists of a short-term phase that is inde- pendent of new protein synthesis and a long-term phase that requires the synthesis of new proteins and RNA. A cellular representation of these two phases has been demonstrated recently for long-term potentiation (LTP) in both the Schaffer collateral and the mossy fibers of the hippocampus, a structure widely thought to

  10. Requirement of Phosphatidylinositol 3-Kinase-Dependent Pathway and Src for Gas6-Axl Mitogenic and Survival Activities in NIH 3T3 Fibroblasts

    Microsoft Academic Search

    SANDRO GORUPPI; ELISABETTA RUARO; BRIAN VARNUM; CLAUDIO SCHNEIDER

    1997-01-01

    Gas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires

  11. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 ?M for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel role for H2S in plant priming, and in particular in a fruit crop such as strawberry. PMID:23567865

  12. Two-Electron Transfer Pathways.

    PubMed

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple electrons in condensed-phase redox systems, including multiple-electron redox species, multimetallic/multielectron redox catalysts, and multiexciton excited states. PMID:25583181

  13. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors.

    PubMed

    Zhao, Weina; Cheng, Xudong; Huang, Zongan; Fan, Huajie; Wu, Huilan; Ling, Hong-Qing

    2011-06-01

    Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants. PMID:21511719

  14. Autographa californica Multiple Nucleopolyhedrovirus Ac92 (ORF92, P33) Is Required for Budded Virus Production and Multiply Enveloped Occlusion-Derived Virus Formation?

    PubMed Central

    Wu, Wenbi; Passarelli, A. Lorena

    2010-01-01

    The Autographa californica multiple nucleopolyhedrovirus orf92 (p33), ac92, is one of 31 genes carried in all sequenced baculovirus genomes, thus suggesting an essential function. Ac92 has homology to the family of flavin adenine dinucleotide-linked sulfhydryl oxidases and is related to the ERV/ALR family of sulfhydryl oxidases. The role of ac92 during virus replication is unknown. Ac92 was associated with the envelope of both budded and occlusion-derived virus (ODV). To investigate the role of Ac92 during virus replication, an ac92-knockout bacmid was generated through homologous recombination in Escherichia coli. Titration and plaque assays showed no virus spread in ac92-knockout bacmid DNA-transfected insect cells. Deletion of ac92 did not affect viral DNA replication. However, ac92-knockout bacmid DNA-transfected cells lacked multiply enveloped occlusion-derived nucleocapsids; instead, singly enveloped nucleocapsids were detected. To gain insight into the requirement for sulfhydryl oxidation during virus replication, a virus was constructed in which the Ac92 C155XXC158 amino acids, important for sulfhydryl oxidase activity, were mutated to A155XXA158. The mutant virus exhibited a phenotype similar to that of the knockout virus, suggesting that the C-X-X-C motif was essential for sulfhydryl oxidase activity and responsible for the altered ODV phenotype. PMID:20861245

  15. Virus interactions with human signal transduction pathways.

    PubMed

    Zhao, Zhongming; Xia, Junfeng; Tastan, Oznur; Singh, Irtisha; Kshirsagar, Meghana; Carbonell, Jaime; Klein-Seetharaman, Judith

    2011-01-01

    Viruses depend on their hosts at every stage of their life cycles and must therefore communicate with them via Protein-Protein Interactions (PPIs). To investigate the mechanisms of communication by different viruses, we overlay reported pairwise human-virus PPIs on human signalling pathways. Of 671 pathways obtained from NCI and Reactome databases, 355 are potentially targeted by at least one virus. The majority of pathways are linked to more than one virus. We find evidence supporting the hypothesis that viruses often interact with different proteins depending on the targeted pathway. Pathway analysis indicates overrepresentation of some pathways targeted by viruses. The merged network of the most statistically significant pathways shows several centrally located proteins, which are also hub proteins. Generally, hub proteins are targeted more frequently by viruses. Numerous proteins in virus-targeted pathways are known drug targets, suggesting that these might be exploited as potential new approaches to treatments against multiple viruses. PMID:21330695

  16. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  17. Estradiol acts directly and indirectly on multiple signaling pathways to phosphorylate cAMP-response element binding protein in GnRH neurons.

    PubMed

    Cheong, Rachel Y; Kwakowsky, Andrea; Barad, Zsuzsanna; Porteous, Robert; Herbison, Allan E; Ábrahám, István M

    2012-08-01

    Rapid, nonclassical 17?-estradiol (E2) actions are thought to play an important role in the modulation of neuronal function. The present study addresses the intracellular signaling cascades involved in the rapid E2-induced phosphorylation of cAMP response element binding protein (CREB) in GnRH neurons. Administration of E2 to adult female mice resulted in the activation of ERK1/2 in GnRH neurons within 15 min. In vitro studies using pharmacological antagonists showed that ERK1/2 was essential for E2-induced CREB phosphorylation in GnRH neurons. Upstream to this, protein kinase A and calcium/calmodulin-dependent protein kinase type II, but not protein kinase C, were found to be necessary for E2-induced phosphorylation of ERK1/2. This rapid E2 signaling cascade in GnRH neurons was found to require both direct and indirect E2 actions. E2 failed to phosphorylate ERK1/2 and CREB in GnRH neuron-specific estrogen receptor ? knockout mice in vivo. Equally, however, a cocktail of tetrodotoxin and ?-aminobutyric acid(A)/glutamate receptor antagonists also blocked E2-induced ERK1/2 phosphorylation in GnRH neurons in wild-type mice in vitro. Together, these observations indicate that E2 acts through calcium/calmodulin-dependent protein kinase type II and protein kinase A to rapidly phosphorylate ERK1/2, which then acts to phosphorylate CREB in adult female GnRH neurons. Intriguingly, these effects of E2 are dependent upon both direct ER? mechanisms as well as indirect actions mediated by afferent inputs to GnRH neurons. PMID:22719057

  18. Systems biology of endothelial mechano-activated pathways

    E-print Network

    Koo, Andrew Jia-An

    2013-01-01

    Multiple signaling pathways are employed by endothelial cells to differentially respond to distinct hemodynamic environments and acquire functional phenotypes, including regulation of inflammation, angiogenesis, blood ...

  19. Pathway Analysis

    Cancer.gov

    Projects such as The Cancer Genome Atlas have gathered enormous quantities of data from human tumor samples. Informaticians at the National Lab are looking within such data for insights about the influence of mutant RAS genes on signaling pathways in cancers. On a smaller scale, the RAS Initiative will use numerous experimental platforms to interrogate cell lines expressing mutant RAS genes.

  20. Diversity of G Protein-Coupled Receptor Signaling Pathways to ERK/MAP Kinase

    PubMed Central

    Belcheva, Mariana M.; Coscia, Carmine J.

    2008-01-01

    One of the most intriguing examples of cross talk between signaling systems is the interrelationship between G protein-coupled receptor and growth factor receptor pathways leading to activation of the ERK/MAP kinase phosphorylation cascade. This review focuses on the mechanism of this cross talk, denoting primarily signaling components known to occur in the G protein-coupled receptor branch of the MAP kinase pathways in neural cells. Recent evidence is presented on the existence of a plethora of pathways, due to the multiplicity of G protein-coupled receptors, their differential interaction with heterotrimeric G protein isoforms, various effectors and second messengers. In light of this rich diversity, the review will discuss different points of convergence of G protein-coupled receptor and growth factor receptor pathways that may feature a requirement for growth factor receptor transactivation, receptor internalization and scaffolds to assemble receptor, adaptor and anchoring proteins into multiprotein complexes. PMID:11943881

  1. The Pathway Tools Software in 2009

    Microsoft Academic Search

    Peter D. Karp; Suzanne M. Paley; Markus Krummenacker; Mario Latendresse; Joseph M. Dale; Tom Lee; Pallavi Kaipa; Fred Gilham; Aaron Spaulding; Liviu Popescu; Tomer Altman; Ian Paulsen; Ingrid M. Keseler; Ron Caspi

    2009-01-01

    Abstract Pathway Tools is a production-quality software environment for creating a type of model- organism database (MOD) called a Pathway\\/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network, and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction

  2. An Evaluation of the Implementation of Maternal Obesity Pathways of Care: A Mixed Methods Study with Data Integration

    PubMed Central

    Heslehurst, Nicola; Dinsdale, Sarah; Sedgewick, Gillian; Simpson, Helen; Sen, Seema; Summerbell, Carolyn Dawn; Rankin, Judith

    2015-01-01

    Objectives Maternal obesity has multiple associated risks and requires substantial intervention. This research evaluated the implementation of maternal obesity care pathways from multiple stakeholder perspectives. Study Design A simultaneous mixed methods model with data integration was used. Three component studies were given equal priority. 1: Semi-structured qualitative interviews explored obese pregnant women’s experiences of being on the pathways. 2: A quantitative and qualitative postal survey explored healthcare professionals’ experiences of delivering the pathways. 3: A case note audit quantitatively assessed pathway compliance. Data were integrated using following a thread and convergence coding matrix methods to search for agreement and disagreement between studies. Results Study 1: Four themes were identified: women’s overall (positive and negative) views of the pathways; knowledge and understanding of the pathways; views on clinical and weight management advice and support; and views on the information leaflet. Key results included positive views of receiving additional clinical care, negative experiences of risk communication, and weight management support was considered a priority. Study 2: Healthcare professionals felt the pathways were worthwhile, facilitated good practice, and increased confidence. Training was consistently identified as being required. Healthcare professionals predominantly focussed on women’s response to sensitive obesity communication. Study 3: There was good compliance with antenatal clinical interventions. However, there was poor compliance with public health and postnatal interventions. There were some strong areas of agreement between component studies which can inform future development of the pathways. However, disagreement between studies included a lack of shared priorities between healthcare professionals and women, different perspectives on communication issues, and different perspectives on women’s prioritisation of weight management. Conclusion The differences between healthcare professionals’ and women’s priorities and perspectives are important factors to consider when developing care pathways. Shared perspectives could help facilitate more effective implementation of the pathway interventions that have poor compliance. PMID:26018338

  3. The osmoregulatory pathway represses mating pathway