Science.gov

Sample records for reservoir pressure reduction

  1. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation...; Locomotives § 236.554 Rate of pressure reduction; equalizing reservoir or brake pipe. The equalizing-reservoir pressure or brake-pipe pressure reduction during an automatic brake application shall be at a rate not...

  2. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Rate of pressure reduction; equalizing reservoir or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation...; Locomotives § 236.554 Rate of pressure reduction; equalizing reservoir or brake pipe. The...

  3. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Rate of pressure reduction; equalizing reservoir or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation...; Locomotives § 236.554 Rate of pressure reduction; equalizing reservoir or brake pipe. The...

  4. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Rate of pressure reduction; equalizing reservoir or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation...; Locomotives § 236.554 Rate of pressure reduction; equalizing reservoir or brake pipe. The...

  5. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Rate of pressure reduction; equalizing reservoir or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation...; Locomotives § 236.554 Rate of pressure reduction; equalizing reservoir or brake pipe. The...

  6. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  7. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  8. Perchlorate reduction by microbes inhabiting oil reservoirs

    NASA Astrophysics Data System (ADS)

    Liebensteiner, Martin; Stams, Alfons; Lomans, Bart

    2014-05-01

    Microbial perchlorate and chlorate reduction is a unique type of anaerobic respiration as during reduction of (per)chlorate chlorite is formed, which is then split into chloride and molecular oxygen. In recent years it was demonstrated that (per)chlorate-reducing bacteria may employ oxygenase-dependent pathways for the degradation of aromatic and aliphatic hydrocarbons. These findings suggested that (per)chlorate may be used as oxygen-releasing compound in anoxic environments that contain hydrocarbons, such as polluted soil sites and oil reservoirs. We started to study perchlorate reduction by microbes possibly inhabiting oil reservoirs. One of the organisms studied was Archaeoglobus fulgidus. This extremely thermophilic archaeon is known as a major contributor to souring in hot oil reservoirs. A. fulgidus turned out to be able to use perchlorate as terminal electron acceptor for growth with lactate (Liebensteiner et al 2013). Genome based physiological experiments indicated that A. fulgidus possesses a novel perchlorate reduction pathway. Perchlorate is first reduced to chlorite, but chlorite is not split into chloride and molecular oxygen as occurs in bacteria. Rather, chlorite reacts chemically with sulfide, forming oxidized sulfur compounds, which are reduced to sulfide in the electron transport chain by the archaeon. The dependence of perchlorate reduction on sulfur compounds could be shown. The implications of our findings as novel strategy for microbiological enhanced oil recovery and for souring mitigation are discussed. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM and Lomans BP (2013) Archaeal (per)chlorate reduction at high temperature, a matter of abiotic-biotic reactions. Science 340: 85-87

  9. Pressure behavior of laterally composite reservoirs

    SciTech Connect

    Kuchuk, F.J.; Habashy, T.

    1997-03-01

    This paper presents a new general method for solving the pressure diffusion equation in laterally composite reservoirs, where rock and fluid properties may change laterally as a function of y in the x-y plane. Composite systems can be encountered as a result of many different types of depositional and tectonic processes. For example, meandering point bar reservoirs or reservoirs with edgewater encroachment are examples of such systems. The new solution method presented is based on the reflection-transmission concept of electromagnetics to solve fluid-flow problems in 3D nonhomogeneous reservoirs, where heterogeneity is in only one (y) direction. A general Green`s function for a point source in 3D laterally composite systems is developed by using the reflection-transmission method. The solutions in the Laplace transform domain are then developed from the Green`s function for the pressure behavior of specific composite reservoirs. The solution method can also be applied to many different types of wells, such as vertical, fractured, and horizontal in composite reservoirs. The pressure behavior of a few well-known laterally composite systems are investigated. It is shown that a network of partially communicating faults and fractures in porous medium can be modeled as composite systems. It is also shown that the existing solutions for a partially communicating fault are not valid when the fault permeability is substantially larger than the formation permeability. The derivative plots are presented for selected faulted, fractured, channel, and composite reservoirs as diagnostic tools for well-test interpretation. It is also shown that if the composite system`s permeability varies moderately in the x or y direction, it exhibits a homogeneous system behavior. However, it does not yield the system`s average permeability. Furthermore, the composite systems with distributed low-permeability zones behave as if the system has many two no-flow boundaries.

  10. Phosphorus load reduction goals for Feitsui Reservoir Watershed, Taiwan.

    PubMed

    Chou, Wen-Shang; Lee, Tsu-Chuan; Lin, Jen-Yang; Yu, Shaw L

    2007-08-01

    The present paper describes an effort for developing the total maximum daily load (TMDL) for phosphorus and a load reduction strategy for the Feitsui Reservoir in Northern Taiwan. BASINS model was employed to estimate watershed pollutant loads from nonpoint sources (NPS) in the Feitsui Reservoir watershed. The BASINS model was calibrated using field data collected during a 2-year sampling period and then used to compute watershed pollutant loadings into the Feitsui Reservoir. The simulated results indicate that the average annual total phosphorus (TP) loading into the reservoir is 18,910 kg/year, which consists of non-point source loading of 16,003 kg/year, and point source loading of 2,907 kg/year. The Vollenweider mass balance model was used next to determine the degree of eutrophication under current pollutant loading and the load reduction needed to keep the reservoir from being eutrophic. It was estimated that Feitsui Reservoir can becoming of the oligotrophic state if the average annual TP loading is reduced by 37% or more. The results provide the basis on which an integrated control action plan for both point and nonpoint sources of pollution in the watershed can be developed. PMID:17171261

  11. Intraocular pressure reduction and regulation system

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Burnett, J. E.; Felder, S. F.; Mcgannon, W. J.

    1979-01-01

    An intraocular pressure reduction and regulation system is described and data are presented covering performance in: (1) reducing intraocular pressure to a preselected value, (2) maintaining a set minimum intraocular pressure, and (3) reducing the dynamic increases in intraocular pressure resulting from external loads applied to the eye.

  12. Intraocular pressure reduction and regulation

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Mcgannon, W. J.

    1979-01-01

    System designed to reduce intraocular pressure hydraulically to any level desired by physician over set time and in controlled manner has number of uses in ophthalmology. Device may be most immediately useful in treatment of glaucoma.

  13. Anisotropic permeabilities evolution of reservoir rocks under pressure

    NASA Astrophysics Data System (ADS)

    Jeremie, D.; Nicolas, G.; Alexandre, D.; Olga, V.

    2006-12-01

    The aim of our study is to measure, to model and to forecast the evolutions of porosity and permeability under anisotropic stresses representative of hydrocarbon reservoir conditions. Reservoir field exploitation induces a decrease of the pore pressure, hence modifying the effective stress-state at the reservoir scale. To optimize production and recovery rates of the reservoir it is of fundamental interest to understand all the physical and mechanical evolutions of the host-rock and their influence on transport properties. In the case of weakly consolidated reservoirs the variations of stresses are modest, yet they can induce significant porosity and permeability changes due to their high compressibility. In the case of deeply buried and consolidated reservoirs the stress variations might be pronounced enough to influence flow properties as well. Because of reservoir boundaries conditions, the fluid pressure drop influences essentially the vertical stress. The recovery rate is a function of horizontal permeability. In order to understand how the anisotropic stress-states induced during production may influence the transport properties experiments must be designed to measure simultaneously both horizontal and vertical permeabilities under deviatoric stresses. For this purpose we developed a specific triaxial cell operating in conditions representative of the field conditions. Preliminary results obtained with low permeability sandstones allowed a coupled observation of deformation and directional permeability evolution. Because of complex geometrical conditions the results required numerical interpretations. A finite-element inversion of our data allowed the determination of the complete permeability tensor. In addition the study aims on the identification of the microphysical mechanics that induce the pore scale microstructural evolution, which is ultimately responsible of the permeability decrease. For this purpose we used synthetic hot-pressed calcite

  14. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  15. Pressure behavior of horizontal wells in multilayer reservoirs with crossflow

    SciTech Connect

    Kuchuk, F.J.; Habashy, T.

    1996-03-01

    New analytic solutions for horizontal wells with wellbore storage and skin in layered reservoirs with cross flow are presented. These layered systems can be bounded by two horizontal impermeable boundary planes at the top and the bottom, or either one of the boundary planes can have a constant pressure (the system either has a gas cap or an active aquifer), while the other is maintained as a no-flow boundary. The new solutions are derived by utilizing the reflection and transmission concept of electromagnetics to solve fluid flow problems in three dimensional layered reservoirs, where nonhomogeneity is in only one direction. The solution technique is sufficiently general that it may be applied to a wide variety of fluid flow and well testing problems involving single-phase flow. The solutions are applied to a number of layered-reservoir examples. It is shown that a gas cap or aquifer should automatically not be treated as a constant-pressure boundary. It is also shown that estimation of layer parameters from conventional well tests is difficult. A field example is presented for the use of the new solutions for the interpretation of a buildup test from a horizontal well in a multilayer reservoir, where the layers are separated sporadically by low permeability zones. The Horner method is also used to interpret the field test; however, Horner does not work well for layered systems with horizontal wells.

  16. Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs

    SciTech Connect

    de Swaan, A.

    1986-01-01

    A formulation of pressure transients in terms of the intrinsic, or core, properties of the two media that compose the fractured reservoir, establishes the influence of these properties, and reciprocally, their corroboration from - the pressure-time relationship observed in well tests and interference tests. The following reservoir characteristics are analyzed: the area of fractures transverse to flow; the dimensions, shape and properties of rectangular parallelepiped matrix-rock blocks; and a permeability reduction in the blocks surface. A restatement of the so-called pseudo-steady state inter-media flow gives to parameters alfa and lambda in the theory of a previous study the physical meaning they lacked, and allows a direct determination of the blocks minimum dimension.

  17. An evaluation of pore pressure diffusion into a shale overburden and sideburden induced by production-related changes in reservoir fluid pressure

    NASA Astrophysics Data System (ADS)

    Ricard, Ludovic P.; MacBeth, Colin; HajNasser, Yesser; Schutjens, Peter

    2012-06-01

    It is commonplace in the simulation of reservoir fluid flow induced by hydrocarbon production to regard shales as barriers to flow. Whilst this appears correct for fluid exchange, this is not the case for the fluid pressure component of this process. Indeed, the authors observe that pore pressure reduction due to reservoir depletion can propagate significant distances into the shale overburden or sideburden over the production time scale. Shales may deplete their pore pressures by more than 10% of that experienced in the reservoir sand for distances of tens of metres to kilometres into the shale, depending on the production history, duration and the specific shale properties. An important factor controlling these results is heterogeneity of the shale sediments, and the pressure diffusion process can be considerably enhanced by the presence of silt laminations and streaks. These results suggest a possible risk to drillers when advancing towards the top of a depleting reservoir or when drilling a well alongside an already depleted reservoir. Our analyses conclude that pore pressure diffusion should be considered as a factor in geomechanical and fluid flow reservoir modelling, and in mud weight determination during infill drilling.

  18. Steam Pressure Reduction, Opportunities, and Issues

    SciTech Connect

    Berry, Jan; Griffin, Mr. Bob; Wright, Anthony L

    2006-01-01

    Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

  19. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  20. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  1. Partial pressure of CO2 and CO2 emission in a monsoon-driven hydroelectric reservoir (Danjiangkou Reservoir), China

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Zhang, Q. F.

    2013-06-01

    Hydroelectric reservoirs have been under sampled to establish them as sources or sinks of the atmospheric carbon dioxide (CO2). Such poor coverage is well known for subtropic, particularly monsoon driven reservoirs in China. Our study presented the spatiotemporal changes of the carbonate system and CO2 flux in a hydroelectric reservoir (Dangjiankou Reservoir) locating in a subtropical monsoon climate region. Our 21 filed surveys conducted during 2004-2011 revealed significantly spatial and monthly variations of surface water partial pressure of CO2 (pCO2) in the Reservoir. pCO2, showing higher concentrations in the wet and warm seasons, averaged 595 ± 545 µatm (ranging from 53-3751 µatm) in the reservoir surface, while substantially higher pCO2 (1132 ± 1220 µatm) was observed in the river downstream the dam. A clear pCO2 drawdown in the reservoir as water flows demonstrated a significantly descending order of Dan Reservoir > site close to dam > Han Reservoir. This spatial contrast can also be seen in the distributions of dissolved inorganic carbon and total alkalinity. Pronounced seasonality in pCO2 was controlled by seasonal monsoon rainfall, while photosynthetic CO2 uptake dominated spatial patterns and dry-month variability of pCO2. We further related pCO2 to water chemical properties and indicated that pCO2 had strong positive correlations with Si, TP and DOC, negative correlations with DO saturation, TN and Chl a, while weak correlations with other variables including biogenic elements. CO2 flux from the Reservoir surface showed a bottom average of 9 mmol m-2 d-2 in comparison with other hydroelectric reservoir in China. River downstream the dam had quite high flux of CO2 (119 mmol m-2 d-2), which was intermediate between temperate rivers and compared to global rivers' average. This means that water releasing from reservoir would be an important channel for atmospheric CO2 sources. The annual CO2 emission from the Danjiangkou Reservoir was estimated to be

  2. Analysis and reduction of well failures in diatomite reservoirs

    SciTech Connect

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and to develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.

  3. Effects of steam-liquid counterflow on pressure transient data from two-phase geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Ripperda, M.

    1987-06-01

    Numerical studies are performed to investigate the effects localized feedzones on the pressure transients in two-phase reservoirs. It is shown that gravity effects can significantly affect the pressure transients, because of the large difference in the density of liquid water and vapor. Production from such systems enhances steam/liquid water counterflow and expands the vapor-dominated zone at the top of the reservoir. Subcooled liquid regions develop in the center of the reservoir due to gravity drainage of cooler liquid water. The vapor zone will act as a constant pressure boundary and help stabilize the decline in the system. It is shown that the pressure transients at observation wells depend greatly on the location (depth) of the major feedzone; if this is not accounted for, large errors in deduced reservoir properties will result. At shallow observation points pressures may actually increase as a result of enhanced steam upflow due to production at a deep feedzone. 12 refs., 17 figs.

  4. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  5. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N.; Querin, M.E.; Williams, L.L.

    1992-02-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  6. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  7. Transient pressure behavior for a horizontal well with multiple finite-conductivity fractures in tight reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing; Wang, Haitao; Zhang, Liehui

    2015-08-01

    Horizontal drilling and multi-stage hydraulic fracturing have been common and efficient practices in exploitation of tight reservoirs. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. Most current models proposed for fractured horizontal wells in tight reservoirs do not incorporate either reservoir permeability loss during the production, which is believed to be non-ignorable or finite conductivity of hydraulic fractures. A coupling model for a multi-fractured horizontal well (MFHW) in tight reservoirs is presented in this article, in which finite conductivity of hydraulic fractures and stress-dependant reservoir permeability are taken into account simultaneously. A semi-analytical solution is obtained in the Laplace domain by using source function theory, Laplace transformation, perturbation technique, discretization of fractures, and superposition principle. Analysis of transient pressure responses indicates that several characteristic flow periods of fractured horizontal wells in tight reservoirs can be identified, including linear flow in fracture, bi-linear flow, linear flow in reservoir, pseudo-radial flow around fractures, and pseudo-radial flow around the horizontal wellbore and fractures. Parametric analysis shows that fracture conductivity, fracture spacing, fracture length, permeability modulus, and skin effect can significantly influence the transient pressure responses of fractured horizontal wells in tight reservoirs. The model presented in this article can be applied to obtain important parameters pertinent to reservoir or fractures by type curve matching, and it can also provide useful information for optimizing fracture parameters. Finally, the model presented in this article can also be easily extended to dual-porosity cases.

  8. Identifying diagnostics for reservoir structure and CO2 plume migration from multilevel pressure measurements

    NASA Astrophysics Data System (ADS)

    Strandli, Christin W.; Benson, Sally M.

    2013-06-01

    Important to large-scale implementation of Carbon Capture and Sequestration is the ability to monitor the carbon dioxide (CO2) that has been injected underground. The focus of this study is to understand how flow processes during CO2 injection impact the pressure observed at a nearby monitoring well. In particular, we are interested in how the reservoir structure (layering and anisotropy) and CO2 plume migration influence the pressure transients at different depths. For a multilayered geologic model, four basic combinations of homogeneity/heterogeneity and isotropy/anisotropy conditions are examined. Numerical simulations using TOUGH2 show different CO2 plume migration and large pressure buildups in the storage reservoir and the seal for each scenario. Pressure buildups normalized to the pressure buildup at the depth of injection are diagnostic of the approximate height of the CO2 plume and provide information on the reservoir structure. Vertical pressure gradients normalized to the initial hydrostatic pressure gradient are diagnostic of reservoir structure soon after the start of injection. Over time, they provide information on the height of the CO2 plume. The diagnostic features in the pressure response are evident long before the CO2 arrives at the monitoring well and can be attributed to buoyancy induced and gravity segregated aqueous flows caused by the advancing CO2 plume. The identified diagnostics will aid in the ultimate goal, which is to develop a monitoring technique based on multilevel pressure measurements.

  9. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  10. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    SciTech Connect

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.

  11. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE PAGESBeta

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore » directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  12. HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE

    SciTech Connect

    Goyal, K. P.; Narasimhan, T. N.

    1981-12-01

    A two-dimensional mathematical model of a fault controlled geothermal reservoir has been developed. Heated lighter water, rising in the fault, is assumed to charge a reservoir which, in turn, is overlain by a thin impermeable, thermally conducting cap rock. The mass flow rate or the pressure associated with the charging process at the fault inlet is unknown and can only be estimated. Thus, in this paper, the pressure in the fault at the bottom of the reservoir is assumed to be prescribed. Quasi-analytic solutions for the velocity, pressure, and temperature are obtained in the fault-reservoir system for a high Rayleigh number flow. In this approximation, the upwelling fluid does not cool off appreciably until it reaches the cold upper boundary of the reservoir and encounters conductive heat loss. This thermal boundary layer, which is thin at the top of the fault, grows outward laterally and occupies the full thickness of the aquifer far away from the fault. The mathematical model is based on the flow of liquid water in a saturated porous medium. The solution techniques involve the combination of perturbation methods, boundary layer theory and numerical methods. The analysis of this generic model can be applied to liquid dominated geothermal systems where the thickness of the impermeable caprock is very small compared to the depth of the reservoir.

  13. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  14. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson; Deanna Combs; Dhiraj Dembla

    2004-06-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, it will be necessary to request

  15. Age-related changes in reservoir and excess components of central aortic pressure in asymptomatic adults.

    PubMed

    Bia, Daniel; Cymberknop, Leandro; Zócalo, Yanina; Farro, Ignacio; Torrado, Juan; Farro, Federico; Pessana, Franco; Armentano, Ricardo L

    2011-01-01

    Study of humans aging has presented difficulties in separating the aging process from concomitant disease and/or in defining normality and abnormality during its development. In accordance with this, aging associates structural and functional changes evidenced in variations in vascular parameters witch suffer alterations during atherosclerosis and have been proposed as early markers of the disease. The absence of adequate tools to differentiate the expected (normal) vascular changes due to aging from those related with a vascular disease is not a minor issue. For an individual, an early diagnosis of a vascular disease should be as important as the diagnosis of a healthy vascular aging. Recent studies have proposed that the capacitive or reservoir function of the aorta and large elastic arteries plays a major role in determining the pulse wave morphology. The arterial pressure waveform can be explained in terms of a reservoir pressure, related to the arterial system compliance, and an "excess" or wave-related pressure, associated with the traveling waves. The aim of this study was to evaluate, by means of a mathematical approach, age-related changes in measured, reservoir and excess central aortic pressure in order to determine if age-related changes are concentrated in particular decades of life. Central aortic pressure waveform was non-invasively obtained in healthy subjects (age range: 20-69 years old). Age-related profiles in measured, reservoir and excess pressure were calculated. PMID:22255816

  16. Reservoir hydraulic properties from oscillating pore pressure method

    NASA Astrophysics Data System (ADS)

    Hasanov, A.; Batzle, M. L.

    2014-12-01

    We use the oscillatory pore pressure method for simultaneous measurements of rock transport properties, such as intrinsic permeability and specific storage capacity. The pore pressure pulsing method has been described by several researchers; however we examine the relationship between a rock's transport properties and dynamic pressure parameters, such as amplitude and frequency. We confirm that the oscillating pore pressure method accurately measures permeability; however storage capacity values suffer from measurement uncertainties. We further developed a novel method to infer the permeabilities from frequency-dependent data. Permeabilities are calculated by non-linear least-squares fitting of the pressure attenuation and phase data, measured on three rock samples at various confining pressures and oscillating pore pressure frequencies. Permeabilities estimated for three tested specimen were in close agreement with steady-state values. Storage capacities, however, exhibit significant absolute errors. Frequency dependence of derived values were furtherexplored, and an apparent increase in permeability has been noticed. These observations do not necessarily indicate a dispersion effect of the absolute permeability of the rock sample. We explain this effect by the deviation in phase shifts, caused by non-Darcy or radial flow. Permeabilities still can be inverted with high accuracy from the frequency-dependent amplitude ratio data, as well as lower frequency limit of phase data by nonlinear least-squares fitting of the theoretical permeability curve. Our future work includes measuring lower permeability rocks, such as tight gas sandstones and shales. We also plan to expand the working frequency range by utilizing pore pressure intensifier as a source of pressure oscillations.

  17. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Stephen C. Ruppel

    2006-02-01

    The field operator, Goldrus Producing Company, has been unable to secure funding needed to continue the field demonstration phase of the project. Accordingly, we have temporarily halted all project activities until necessary funding is obtained. Goldrus felt confident that funds could be acquired by third quarter 2005 at which time it would have been necessary to request a project extension to complete the originally designed study. A project extension was granted but it appears Goldrus will have difficulty securing funds. We Bureau of Economic Geology are investigating a new approach on how to fulfill our initial objectives of promoting high-pressure air injection of Ellenburger reservoirs.

  18. Alternative method to Mariotte reservoir system for maintaining constant hydraulic pressure

    USGS Publications Warehouse

    Thamir, Falah

    1991-01-01

    Several problems with the Mariotte reservoir system were discovered when it was used to apply a constant water pressure as a boundary condition for a prolonged period. The constant-pressure boundary condition is required for some laboratory experiments to study water flow through porous media. The observed problems were caused by temperature and barometric-pressure fluctuations while the flow rates were very small and caused erroneous water flow-rate measurements. An alternative method was developed and used where the water pressure is controlled by regulating its level by using water-level sensing electrodes. The new method eliminated the effects of temperature and barometric-pressure fluctuations and maintained an acceptable accuracy of the estimated water flow rate without compromising the advantages of the Mariotte reservoir.

  19. Analysis of horizontal well pressure behaviour in fractured low permeability reservoirs with consideration of the threshold pressure gradient

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Wu, Feng; Zhang, Bo-Ning; Liu, Qi-Guo

    2013-06-01

    This paper presents a mathematical model for the analysis of the transient pressure behaviour of a horizontal well in naturally fractured low permeability reservoirs, which takes the threshold pressure gradient (TPG) into consideration. Then, the solution of this model is obtained by using the method of Laplace transform and Fourier cosine transform, and the type curves are plotted by the Stehfest numerical inversion method. Pressure behaviour is analysed by examining the pressure drawdown curves, the derivative plots and the effect of the characteristic parameters. The typical pressure response of this reservoir is presented by the following five flow regimes: (1) wellbore storage and transition flow; (2) early radial flow in the vertical plane; (3) line flow in the horizontal plane; (4) matrix-fracture system transition flow; and (5) later pseudo-radial flow affected by the TPG. At the end, a field application manifests the correctness of the solutions derived in this paper, and the results have both theoretical and practical significance in predicting the production behaviour of carbonate reservoirs and evaluating fluid flow and transport in such a formation.

  20. An alternative to reduction of surface pressure to sea level

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.

    1982-01-01

    The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.

  1. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olson

    2005-01-01

    The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and his thesis was reported on in the last semi-annual report. We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, we requested and received an extension of the project to September 30, 2005. We are confident that Goldrus will obtain the necessary funding to continue and that we can complete the project by the end of the extension data. We strongly believe that the results of

  2. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  3. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    SciTech Connect

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-12-10

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.

  4. Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 2. Pressure and stress

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Mijić, A.; Ennis-King, J.; Paterson, L.

    2014-11-01

    In this work semi-analytical solutions for saturation, temperature, pressure and in situ reservoir stress are found for immiscible nonisothermal injection into a radial porous medium. A model for advection-dominated, nonisothermal, two-phase flow from a previous work is used to estimate the reservoir pressure and stress that result from injection of cold CO2. Flow is assumed to be one-dimensional and purely advective, while temperature has radial advection in the reservoir and transverse diffusion into the surrounding media. A simplified thermal solution is developed to allow for easier analysis of the reservoir stress. Two pressure models are presented, one which requires numerical integration of the pressure in the two-phase region, and one which is fully analytical, but simplifies the pressure profile. Two models are used to calculate reservoir stress, one which uses the full pressure and temperature profiles and must be numerically integrated, and one which uses the simplified models and has a closed-form analytical solution. The resulting radial and tangential (hoop) stress profiles in the reservoir are compared and it is shown that the simplified model is adequate for estimating the reservoir stresses. The impact of outer boundary conditions on reservoir pressure and stresses is also explored.

  5. Equation of state density models for hydrocarbons in ultradeep reservoirs at extreme temperature and pressure conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Bamgbade, Babatunde A.; Burgess, Ward A.; Tapriyal, Deepak; Baled, Hseen O.; Enick, Robert M.; McHugh, Mark A.

    2013-10-01

    The necessity of exploring ultradeep reservoirs requires the accurate prediction of hydrocarbon density data at extreme temperatures and pressures. In this study, three equations of state (EoS) models, Peng-Robinson (PR), high-temperature high-pressure volume-translated PR (HTHP VT-PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) EoS are used to predict the density data for hydrocarbons in ultradeep reservoirs at temperatures to 523 K and pressures to 275 MPa. The calculated values are compared with experimental data. The results show that the HTHP VT-PR EoS and PC-SAFT EoS always perform better than the regular PR EoS for all the investigated hydrocarbons.

  6. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes.

    PubMed

    Goslan, Emma H; Gurses, Filiz; Banks, Jenny; Parsons, Simon A

    2006-11-01

    A comparison of four treatment technologies for reduction of natural organic matter (NOM) in a reservoir water was made. The work presented here is a laboratory based evaluation of NOM treatment by UV-C photolysis, UV/H(2)O(2), Fenton's reagent (FR) and photo-Fenton's reagent (PFR). The work investigated ways of reducing the organic load on water treatment works (WTWs) with a view to treating 'in-reservoir' or 'in-pipe' before the water reaches the WTW. The efficiency of each process in terms of NOM removal was determined by measuring UV absorbance at 254 nm (UV(254)) and dissolved organic carbon (DOC). In terms of DOC reduction PFR was the most effective (88% removal after 1 min) however there were interferences when measuring UV(254) which was reduced to a lesser extent (31% after 1 min). In the literature, pH 3 is reported to be the optimal pH for oxidation with FR but here the reduction of UV(254) and DOC was found to be insensitive to pH in the range 3-7. The treatment that was identified as the most effective in terms of NOM reduction and cost effectiveness was PFR. PMID:16765416

  7. An assessment of the Tongonan geothermal reservoir, Philippines, at high-pressure operating conditions

    SciTech Connect

    Sarmiento, Z.F.; Aquino, B.G.; Aunzo, Z.P.; Rodis, N.O.; Saw, V.S.

    1993-10-01

    An evaluation of the Tongonan geothermal reservoir was conducted to improve the power recovery through reservoir and process optimization. The performance of the existing production wells was reviewed and the response of the field based on the anticipated production levels was simulated at various operating conditions. The results indicate that the Tongonan geothermal reservoir can be exploited at a high pressure operating condition with substantial improvement in the field capacity. The authors calculate that the Upper Mahiao and the Malitbog sectors of the Tongonan field are capable of generating 395 MWe at 1.0 MPa abs., on top of the existing 112.5 MWe plant, compared with 275 MWe if the field is operated at 0.6 MPa abs. The total capacity for the proposed Leyte A 640 MWe expansion can be generated from these sectors with the additional power to be tapped from Mahanagdong and Alto Peak sectors.

  8. Gas filtration from an underground reservoir at a large initial pressure gradient

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, T. P.; Lutsenko, N. A.; Levin, V. A.

    2015-09-01

    Gas filtration from an underground reservoir through a layer of a porous medium due to an instantaneous increase in the gas pressure in the reservoir is studied. The problem is considered in a one-dimensional formulation in the general case where the temperatures of the gas and the porous medium are different and unstable, and in the case of a high specific heat of the solid phase and a high interfacial heat-transfer rate. The dynamics of the gas flow at the inlet and outlet of the underground reservoir is analyzed, the time of unloading of the system is estimated as a function of the permeability of the porous medium. It is shown that, depending on the properties of the porous layer, two characteristic gas flow regimes are possible: a fast discharge regime and a slow regime which is determined mainly by barodiffusion.

  9. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    SciTech Connect

    Courtney, Daniel G. Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  10. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    NASA Astrophysics Data System (ADS)

    Courtney, Daniel G.; Shea, Herbert

    2015-09-01

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  11. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  12. Compaction bands in high temperature/pressure diagenetically altered unconventional shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Veveakis, M.; Poulet, T.

    2014-12-01

    Unconventional energy and mineral resources are typically trapped in a low porosity/permeability environment and are difficult to produce. An extreme end-member is the shale gas reservoir in the Cooper Basin (Australia) that is located at 3500-4000 m depth and ambient temperature conditions around 200oC. Shales of lacustrine origin (with high clay content) are diagenetically altered. Diagenesis involves fluid release mineral reactions of the general type Asolid ↔ Bsolid +Cfluid and switches on suddenly in the diagenetic window between 100-200oC. Diagenetic reactions can involve concentrations of smectite, aqueous silica compound, illite, potassium ions, aqueous silica, quartz, feldspar, kerogen, water and gas . In classical petroleum engineering such interlayer water/gas release reactions are considered to cause cementation and significantly reduce porosity and permeability. Yet in contradiction to the expected permeability reduction gas is successfully being produced. We propose that the success is based on the ductile equivalent of classical compaction bands in solid mechanics. The difference being that that the rate of the volumetric compaction is controlled by the diagenetic reactions. Ductile compaction bands are forming high porosity fluid channels rather than low porosity crushed grains in the solid mechanical equivalent. We show that this new type of volumetric instability appears in rate-dependent heterogenous materials as Cnoidal waves. These are nonlinear and exact periodic stationary waves, well known in the shallow water theory of fluid mechanics. Their distance is a direct function of the hydromechanical diffusivities. These instabilities only emerge in low permeability environment where the fluid diffusivity is about an order of magnitude lower than the mechanical loading. The instabilities are expected to be of the type as shown in the image below. The image shows a CT-scan of a laboratory experiment kindly provided by Papamichos (pers

  13. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected

  14. Prospecting and developing carbonate reservoirs under excessive pressures in fields of preCaspian depression taken as an example

    SciTech Connect

    Leonard, R.; Perepelichenko, V.; Shilin, A.

    1996-08-01

    All large sub-salt hydrocarbon fields of the PreCaspian depression are connected with carbonate reservoirs and are characterized by abnormally high reservoir pressures of different origin. Exploratory drilling in fields under excessive pressures is very much complicated. To reduce the probability of disastrous absorptions and blowouts there has been developed special drilling-in technology with constant bottom-hole pressure control. To avoid fractures healing, to provide hydrocarbon phase state control, and to achieve maximum oil recovery there has been worked out a new technology of oil field development. According to this technology oil should be recovered first from the lower peripheral parts of the pool. This technology (taking into account the abnormally high reservoir pressures) provides gradual decreasing of reservoir pressure in the process of field development.

  15. Nonlinear Fluid Migration Patterns in Fractured Reservoirs due to Stress-Pressure Coupling induced Changes in Reservoir Permeabilities

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Geiger, S.; Main, I. G.

    2011-12-01

    Sustainable storage of carbon dioxide (CO2) requires a thorough understanding of injection induced pressure build-up and its effects on the storage formation's integrity, since it determines the cap rock's sealing properties as well as the total storable amount of carbon dioxide. Fractures are abundant in the subsurface and difficult to detect due to their subseismic characteristic. If present in the cap during injection, they can be primary pathways for CO2 leakage. The North Sea is considered as Europe's most important carbon dioxide storage area. However, almost all of the potential storage formations have been exposed to post-glacial lithospheric flexure, possibly causing the generation of new fracture networks in the overburden whilst rebounding. Drawing upon, fast carbon dioxide uprise can be facilitated due to opening of fractures caused by changes in the stress field over time. The overall effective permeability, and hence possible leakage rates, of a fractured storage formation is highly sensitive to the fracture aperture which itself depends on the far field and in situ stress field. For this reason, our in-house general purpose reservoir simulator Complex System Modeling Platform (CSMP++) has been expanded, which is particularly designed to simulate multiphase flow on fractured porous media. It combines finite element (FE) and finite volume (FV) methods on mixed-dimensional hybrid-element meshes. The unstructured FE-FV based scheme allows us to model complex geological structures, such as fractures, at great detail. The simulator uses a compositional model for NaCl-H2O-CO2-systems for compressible fluids for computing thermophysical properties as a function of formation pressure and temperature. A fixed stress-split sequential procedure is being used to calculate coupled fluid flow and geomechanics. Numerical proof of concept studies will be presented showing the impact of fracture opening and closure on fluid migration patterns due to coupled stress-pressure

  16. Evolution of pore fluid pressures in a stimulated geothermal reservoir inferred from earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Deichmann, N.

    2014-12-01

    We developed an inversion method to estimate the evolution of pore fluid pressure fields from earthquake focal mechanism solutions based on the Bayesian statistical inference and Akaike's Bayesian information criterion (ABIC). This method's application to induced seismicity in the Basel enhanced geothermal system in Switzerland shows the evolution of pore fluid pressures in response to fluid injection experiments. For a few days following the initiation of the fluid injection, overpressurized fluids are concentrated around the borehole and then anisotropically propagate within the reservoir until the bleed-off time. Then, the pore fluid pressure in the vicinity of the borehole drastically decreases, and overpressurized fluids become isolated in a few major fluid pockets. The pore fluid pressure in these pockets gradually decreases with time. The pore fluid pressure in the reservoir is less than the minimum principal stress at each depth, indicating that the hydraulic fracturing did not occur during stimulation. This suggests that seismic events may play an important role to promote the development of permeable channels, particularly southeast of the borehole where the largest seismic event (ML 3.4) occurred. This is not directly related to a drastic decrease in fault strength at the hypocenter, but rather the positive feedback between permeability enhancement and poro-elastic and stress transfer loading from slipping interfaces. These processes likely contribute to this event's nucleation.

  17. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    NASA Astrophysics Data System (ADS)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two

  18. Using pressure transient analysis to improve well performance and optimize field development in compartmentalized shelf margin deltaic reservoirs

    SciTech Connect

    Badgett, K.L.; Crawford, G.E.; Mills, W.H.

    1996-12-31

    BP Exploration`s Gulf of Mexico group developed procedures to conduct effective well tests on conventional production wells and employed them during the development drilling phase of the Mississippi Canyon 109 (MC109) field. Bottomhole pressure data were recorded during the initial few weeks of production. Typically, a 48 hour pressure buildup survey (surface shut-in) was obtained near the end of data acquisition. Data from these tests were analyzed for completion efficiency, reservoir flow capacity, reservoir heterogeneities, and drainage area. Initially wells were gravel packed for sand control, until buildup interpretations indicated skins greater than 20. Frac packing technology was then employed, and an immediate improvement was observed with skins dropping into the teens. Over a period of time frac packs were optimized using the test derived skins as a metric. Analysis of pressure data also played an important role in identifying reservoir compartmentalization. The two major reservoir horizons at MC 109 are interpreted as shelf margin deltas. However, each of these has distinctly different compartmentalization issues. The continuous character of the G Sand made it easier to define the depositional system and investigate reservoir compartmentalization issues using a combination of well log, 3D seismic, static pressure trends, and fluid information. In the more distal deltaic reservoirs of the J Sand however, complications with seismic amplitudes and a less reliable tie between wireline and seismic data required the use of pressure transient analysis to efficiently exploit the reservoir.

  19. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  20. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  1. Reservoir Modeling for Production Management

    SciTech Connect

    Brown, Donald W.

    1989-03-21

    For both petroleum and geothermal resources, many of the reservoirs are fracture dominated--rather than matrix-permeability controlled. For such reservoirs, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (i.e., pre-existing fractures) is critical to the efficient exploitation of the resource through proper pressure management. Our experience and that reported by others indicates that a reduction in the reservoir pressure sometimes leads to an overall reduction in production rate due to the ''pinching off'' of the joint network, rather than the anticipated increase in production rate. This effect occurs not just in the vicinity of the wellbore, where proppants are sometimes employed, but throughout much of the reservoir region. This follows from the fact that under certain circumstances, the decline in fracture permeability (or conductivity) with decreasing reservoir pressure exceeds the far-field reservoir ''drainage'' flow rate increase due to the increased pressure gradient. Further, a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs or reinjection procedures for geothermal reservoirs.

  2. Reduction of CO2 using a Rhenium Bipyridine Complex Containing Ancillary BODIPY Redox Reservoirs

    SciTech Connect

    Teesdale, Justin; Pistner, Allen; Yapp, Glenn P. A.; Ma, Yingzhong; Lutterman, Daniel A; Rosenthal, Joel

    2014-01-01

    The reduction of carbon dioxide to chemical fuels such as carbon monoxide is an important challenge in the field of renewable energy conversion. Given the thermodynamic stability of carbon dioxide, it is difficult to efficiently activate this substrate in a selective fashion and the development of new electrocatalysts for CO2 reduction is of prime importance. To this end, we have prepared and studied a new fac-ReI(CO)3 complex supported by a bipyridine ligand containing ancillary BODIPY moieties ([Re(BB2)(CO)3Cl]). Voltammetry experiments revealed that this system displays a rich redox chemistry under N2, as [Re(BB2)(CO)3Cl] can be reduced by up to four electrons at modest potentials. These redox events have been characterized as the ReI/0 couple, and three ligand based reductions two of which are localized on the BODIPY units. The ability of the BB2 ligand to serve as a noninnocent redox reservoir is manifest in an enhanced electrocatalysis with CO2 as compared to an unsubstituted Re-bipyridine complex lacking BODIPY units ([Re(bpy)(CO)3Cl]). The second order rate constant for reduction of CO2 by [Re(BB2)(CO)3Cl] was measured to be k = 3400 M 1s 1 at an applied potential of 2.0 V versus SCE, which is roughly three times greater than the corresponding unsubstituted Re-bipyridine homologue. Photophysical and photochemical studies were also carried out to determine if [Re(BB2)(CO)3Cl] was a competent platform for CO2 reduction using visible light. These experiments showed that this complex supports unusual excited state dynamics that are not typically observed for fac- ReI(CO)3 complexes.

  3. Hornblende phenocrysts record a pressure gradient in and contamination of the Taylor Creek Rhyolite magma reservoir

    SciTech Connect

    Jones, C.; Wittke, J. ); Duffield, W. ); Davis, A. )

    1993-04-01

    The Taylor Creek Rhyolite of southwestern New Mexico comprises 20 coeval porphyritic lava domes erupted from a large vertically zoned reservoir of silicic magma. The rhyolite is high-silica, subalkaline, and is nearly constant in major-element composition. Trace elements and [sup 87]Sr/[sup 86]Sr[sub i] (0.705 to 0.713) define vertical zoning that records a downward-decreasing imprint of minor (<1 wt%) partial assimilation of Proterozoic roof rocks. Consistent with the major-element homogeneity, electron-microprobe analyses of hornblende phenocrysts show little or no measurable variation in principal constituents. The hornblende is edenite whose mean composition and standard deviation of 110 analyses are SiO[sub 2], 44.66 [+-] 0.64; TiO[sub g], 1.27 [+-] 0.13; Al[sub 2]O[sub 3], 6.80 [+-] 0.31; FeO, 21.00 [+-] 1.60; MnO, 1.19 [+-] 0.16; MgO, 9.94 [+-] 1.09; CaO, 10.51 [+-] 0.22; Na[sub 2]O, 2.22 [+-] 0.13; K[sup 2]O, 0.98 [+-] 0.08; F, 2.04 [+-] 0.35; Cl, 0.20 [+-] 0.03. Except for FeO, MnO, and MgO, compositional variations are non systematic and mostly within analytical uncertainty. FeO and Mno exhibit strong negative correlation with MgO. Individual hornblende crystals are zoned to relatively MgO-rich and FeO-MnO-poor rims, opposite what might be expected if the Taylor Creek Rhyolite magma reservoir evolved chemically isolated from its surroundings. Hornblende with rims richest in MgO occurs in domes fed from the uppermost part of the reservoir. Calculated pressures based on Al in hornblende range from 1.6 to 2.0 kb, [+-] 0.5 kb. Though the range of calculated P is encompassed within the uncertainty, the lowest hornblende pressure is for a dome fed from, or near, the top of the reservoir, whereas the chemically defined vertical zoning.

  4. Gas-cap effects in pressure-transient response of naturally fractured reservoirs

    SciTech Connect

    Al-Bemani, A.S.; Ershaghi, I.

    1997-03-01

    During the primary production life of an oil reservoir, segregation of oil and gas within the fissures before reaching the producing wells could create a secondary gas cap if no original gas cap were present, or will join the expanding original gas-cap gas. This paper presents a theoretical framework of gas-cap effects in naturally fractured reservoirs. General pressure solutions are derived for both pseudosteady-state and unsteady-state matrix-fracture interporosity flow. Deviation from the fracture or fracture-matrix response occurs as the gas-cap effect is felt. Anomalous slope changes during the transition period depend entirely on the contrast between the fracture anisotropy parameter, {lambda}{sub l}, and matrix-fracture interporosity parameter, {lambda}, and between the total gas-cap storage capacitance (1 {minus} {omega}{sub 1}) and oil-zone matrix storage (1 {minus} {omega}). A composite double-porosity response is observed for {omega}{sub 1} {le} {omega}{sub 1c} and 1.0 {le} {lambda}{sub 1}/{lambda} {le} 1,000. A triple-porosity response is observed for {omega}{sub 1} {ge} {omega}{sub k} and 140 < {omega}{lambda}{sub 1}/{lambda} < 1.0E05.

  5. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  6. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  7. Thermodynamic Constraints on Sulfate Reduction and Methanogenesis in a Coalbed Methane Reservoir

    NASA Astrophysics Data System (ADS)

    Kirk, M. F.; Marquart, K. A.; Wilson, B. H.; Flynn, T. M.; Vinson, D. S.

    2014-12-01

    In this study we consider how commercial natural gas production could affect sulfate reduction and methanogenesis in coal-bearing sediments of the Cherokee Basin, Kansas, USA. Controls on the activity of these two groups of microbes are important to understand because their activity and interactions may influence methane formation and retention in unconventional reservoirs. During November 2013, we collected water and gas samples from 16 commercial gas wells for geochemical and microbiological analysis. Results indicate that methane in the coalbeds formed biologically and that both methanogens and sulfate reducers are present. Gas samples consisted almost entirely of methane (C1/(C2+C3) = 2638 on avg.) and the δD and δ13C of methane averaged -222‰ VSMOW and -61‰ VPDB, respectively. Archaeal sequences in our samples were nearly all classified within groups of methanogens (avg. 91%) and cultivable methanogens were present in all water samples. On average, 6% of the bacterial sequences from our samples were classified in groups of sulfate reducers and sulfate available to support their activity ranged up to 110 μM in concentration. Any interaction that occurs between these groups may be influenced by the energetics of their metabolic reactions. Thermodynamic calculations show that methanogens hold an energy advantage over sulfate reducers if dissolved methane concentrations are low. Under current conditions, methanogens see between 12 and 16 kJ mol-1 more usable free energy than sulfate reducers, if we assume a minimal methane concentration (1 μM). However, usable energy for methanogens would equal that available to sulfate reducers at methane concentrations ranging between 144 and 831 μM, well below saturation levels. Production activities that hold methane concentration below these levels, therefore, would help maintain an energy advantage for methanogens. In contrast, if production activities cause sulfate concentrations to increase, sulfate reducers would

  8. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells

  9. Effect of Salinity on Effective CO2 Permeability in Reservoir Rock Determined by Pressure Transient Methods: an Experimental Study on Hawkesbury Sandstone

    NASA Astrophysics Data System (ADS)

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2015-09-01

    The determination of effective carbon dioxide (CO2) permeability in reservoir rock and its variation is of great interest in the process of CO2 sequestration in deep saline aquifers, as CO2 sequestration-induced permeability alternations appear to create major problems during the CO2 injection process. The main objective of this study is to investigate the effect of salinity on the effective CO2 permeability of reservoir rock under different injection pressures. A series of high-pressure tri-axial experiments was, therefore, performed to investigate the effect of salinity on effective CO2 permeability in Hawkesbury sandstone under various brine concentrations. The selected brine concentrations were 0, 10, 20, and 30 % sodium chloride (NaCl) by weight and the experiments were conducted for a range of CO2 injection pressures (2, 4, 6, 8, 10, and 12 MPa) at a constant confinement of 20 MPa and a temperature of 35 °C, respectively. According to the results, the degree of salinity of the aquifer's pore fluid plays a vital role in the effective CO2 permeability variation which occurs with CO2 injection, and the effective permeability decreases with increasing salinity in the range of 0-30 % of NaCl. Interestingly, in dry reservoir rock samples, the phase transition of the injection of CO2 from gas to super-critical condition caused a sudden reduction of CO2 permeability, related to the slip flow effect which occurs in gas CO2. Transfer into vapor or super-critical CO2 causes this slip flow to be largely reduced, reducing the reservoir permeability for CO2 movement in dry reservoir rock samples. However, this behavior was not observed for water- and brine-saturated samples, and an increasing trend of effective CO2 permeability was observed with increasing injection pressure. A detailed chemical analysis was then conducted to understand the physical phenomenon causing the salinity effect on effective CO2 permeability using scanning electron microscopy analyses. Such

  10. Subsurface monitoring of reservoir pressure, temperature, relative humidity, and water content at the CAES Field Experiment, Pittsfield, Illinois: system design

    SciTech Connect

    Hostetler, D.D.; Childs, S.W.; Phillips, S.J.

    1983-03-01

    This subsurface-instrumentation design has been developed for the first Compressed Air Energy Storage (CAES) field experiment to be performed in porous media. Energy storage will be accomplished by alternating the injection and withdrawal of compressed air in a confined sandstone aquifer near Pittsfield, Illinois. The overall experiment objective is to characterize the reservoir's geochemical and thermohydraulic response to imposed CAES conditions. Specific experiment objectives require monitoring: air-bubble development; thermal development; cyclic pressure response; reservoir dehydration; and water coning. Supporting these objectives, four parameters will be continuously monitored at depth in the reservoir. They are: temperature; pressure; pore-air relative humidity; and pore-water content. Reservoir temperatures and pressures will range to maximum values approaching 200/sup 0/C and 300 psi, respectively. Both pore-air relative humidity and pore-water content will range from approx. 0 to 100%. This report discusses: instrumentation design; sensor and sensor system calibration; field installation and testing; and instrument-system operation. No comprehensive off-the-shelf instrument package exists to adequately monitor CAES reservoir parameters at depth. The best available sensors were selected and adapted for use under expected ranges of reservoir conditions. The instrumentation design criteria required: suitable sensor accuracy; continuous monitoring capability; redundancy; maximum sensor integrity; contingency planning; and minimum cost-information ratio. Three wells will be instrumented: the injection/withdrawal (I/W) well and the two instrument wells. Sensors will be deployed by wireline suspension in both open and backfilled (with sand) wellbores. The sensors deployed in the I/W well will be retrievable; the instrument-well sensors will not.

  11. By how much does dietary salt reduction lower blood pressure? III--Analysis of data from trials of salt reduction.

    PubMed Central

    Law, M R; Frost, C D; Wald, N J

    1991-01-01

    OBJECTIVE--To determine whether the reduction in blood pressure achieved in trials of dietary salt reduction is quantitatively consistent with estimates derived from blood pressure and sodium intake in different populations, and, if so, to estimate the impact of reducing dietary salt on mortality from stroke and ischaemic heart disease. DESIGN--Analysis of the results of 68 crossover trials and 10 randomised controlled trials of dietary salt reduction. MAIN OUTCOME MEASURE--Comparison of observed reductions in systolic blood pressure for each trial with predicted values calculated from between population analysis. RESULTS--In the 45 trials in which salt reduction lasted four weeks or less the observed reductions in blood pressure were less than those predicted, with the difference between observed and predicted reductions being greatest in the trials of shortest duration. In the 33 trials lasting five weeks or longer the predicted reductions in individual trials closely matched a wide range of observed reductions. This applied for all age groups and for people with both high and normal levels of blood pressure. In people aged 50-59 years a reduction in daily sodium intake of 50 mmol (about 3 g of salt), attainable by moderate dietary salt reduction would, after a few weeks, lower systolic blood pressure by an average of 5 mm Hg, and by 7 mm Hg in those with high blood pressure (170 mm Hg); diastolic blood pressure would be lowered by about half as much. It is estimated that such a reduction in salt intake by a whole Western population would reduce the incidence of stroke by 22% and of ischaemic heart disease by 16% [corrected]. CONCLUSIONS--The results from the trials support the estimates from the observational data in the accompanying two papers. The effect of universal moderate dietary salt reduction on mortality from stroke and ischaemic heart disease would be substantial--larger, indeed, than could be achieved by fully implementing recommended policy for

  12. Cocoa Flavanol Cardiovascular Effects Beyond Blood Pressure Reduction.

    PubMed

    Jumar, Agnes; Schmieder, Roland E

    2016-04-01

    The protective cardiovascular (CV) effect of cocoa flavanol has been a target of many recent clinical prospective and retrospective investigations. Epidemiological data in different patient cohorts revealed an association between higher intake of flavanol-rich foods and decreased incidence of CV events, especially stroke and myocardial infarction. Cocoa flavanol has been shown to reduce systolic (2.8 mm Hg) and diastolic (2.2 mm Hg) office blood pressure (BP). Greater BP reduction has been found in hypertensive patients and people younger than 50 years. Cocoa flavanol intake exerts beneficial effects on pathophysiologic mechanisms of hypertension-related organ damage, such as improved endothelial function, anti-inflammatory potency, inhibition of platelet activation, and increased vasodilatory capacity. Recent clinical trials have focused on establishing a potential link between epidemiology and pathophysiology of flavanol and identified possible mechanisms for prevention of end-organ damage in patients at CV risk. This review summarizes the available data on the antihypertensive effects of cocoa flavanol beyond BP-BP lowering lowering effects, accentuates subgroup-specific protective actions of cocoa according to patients' different CV risk profile, and outlines potential cocoa flavanol-associated clinical implications. PMID:26514936

  13. Reduction of particulate carryover from a pressurized fluidized bed

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.

  14. Permeability of naturally fractured reservoirs

    SciTech Connect

    Teufel, L.W. )

    1991-03-01

    Hydraulic fracture stress data collected from carbonate and clastic reservoirs show that the minimum horizontal in situ stress decreases with reservoir depletion and pore pressure drawdown. The reduction in minimum horizontal stress is, in part, a poro-elastic effect that is linear with pore pressure drawdown and can be approximated by an unlaxial compaction model. The observed change in horizontal stress is equal to 40% to 80% of the net change in pore pressure. This type of stress behavior has important implications for reservoir management of naturally fractured reservoirs, because conductivity of fractures is highly stress sensitive. Laboratory studies clearly demonstrate that with increasing effective normal stress fracture apertures close and conductivity decreases. Accordingly, in sharp contrast to the standard procedure, predictions of changes in fracture permeability during reservoir depletion should not be made simply as a function of pore pressure drawdown, but more importantly should be based on how the effective in situ stresses change during drawdown and the orientation of natural fractures relative to the in situ stress field. The increase in the effective overburden stress will be the largest and equal to the magnitude of the pore pressure decline because the overburden stress is constant and does not change with drawdown. However, the increase in the effective minimum horizontal stress will be much smaller. Accordingly, for a reservoir with several sets of fractures with similar morphology, the reduction in fracture conductivity during drawdown will be greatest for horizontal fractures and least for vertical fractures aligned with the maximum horizontal stress direction.

  15. Associations and clinical relevance of aortic-brachial artery stiffness mismatch, aortic reservoir function, and central pressure augmentation

    PubMed Central

    Schultz, Martin G.; Hughes, Alun D.; Davies, Justin E.; Sharman, James E.

    2015-01-01

    Central augmentation pressure (AP) and index (AIx) predict cardiovascular events and mortality, but underlying physiological mechanisms remain disputed. While traditionally believed to relate to wave reflections arising from proximal arterial impedance (and stiffness) mismatching, recent evidence suggests aortic reservoir function may be a more dominant contributor to AP and AIx. Our aim was therefore to determine relationships among aortic-brachial stiffness mismatching, AP, AIx, aortic reservoir function, and end-organ disease. Aortic (aPWV) and brachial (bPWV) pulse wave velocity were measured in 359 individuals (aged 61 ± 9, 49% male). Central AP, AIx, and aortic reservoir indexes were derived from radial tonometry. Participants were stratified by positive (bPWV > aPWV), negligible (bPWV ≈ aPWV), or negative stiffness mismatch (bPWV < aPWV). Left-ventricular mass index (LVMI) was measured by two-dimensional-echocardiography. Central AP and AIx were higher with negative stiffness mismatch vs. negligible or positive stiffness mismatch (11 ± 6 vs. 10 ± 6 vs. 8 ± 6 mmHg, P < 0.001 and 24 ± 10 vs. 24 ± 11 vs. 21 ± 13%, P = 0.042). Stiffness mismatch (bPWV -aPWV) was negatively associated with AP (r = −0.18, P = 0.001) but not AIx (r = −0.06, P = 0.27). Aortic reservoir pressure strongly correlated to AP (r = 0.81, P < 0.001) and AIx (r = 0.62, P < 0.001) independent of age, sex, heart rate, mean arterial pressure, and height (standardized β = 0.61 and 0.12, P ≤ 0.001). Aortic reservoir pressure independently predicted abnormal LVMI (β = 0.13, P = 0.024). Positive aortic-brachial stiffness mismatch does not result in higher AP or AIx. Aortic reservoir function, rather than discrete wave reflection from proximal arterial stiffness mismatching, provides a better model description of AP and AIx and also has clinical relevance as evidenced by an independent association of aortic reservoir pressure with LVMI. PMID:26276816

  16. Associations and clinical relevance of aortic-brachial artery stiffness mismatch, aortic reservoir function, and central pressure augmentation.

    PubMed

    Schultz, Martin G; Hughes, Alun D; Davies, Justin E; Sharman, James E

    2015-10-01

    Central augmentation pressure (AP) and index (AIx) predict cardiovascular events and mortality, but underlying physiological mechanisms remain disputed. While traditionally believed to relate to wave reflections arising from proximal arterial impedance (and stiffness) mismatching, recent evidence suggests aortic reservoir function may be a more dominant contributor to AP and AIx. Our aim was therefore to determine relationships among aortic-brachial stiffness mismatching, AP, AIx, aortic reservoir function, and end-organ disease. Aortic (aPWV) and brachial (bPWV) pulse wave velocity were measured in 359 individuals (aged 61 ± 9, 49% male). Central AP, AIx, and aortic reservoir indexes were derived from radial tonometry. Participants were stratified by positive (bPWV > aPWV), negligible (bPWV ≈ aPWV), or negative stiffness mismatch (bPWV < aPWV). Left-ventricular mass index (LVMI) was measured by two-dimensional-echocardiography. Central AP and AIx were higher with negative stiffness mismatch vs. negligible or positive stiffness mismatch (11 ± 6 vs. 10 ± 6 vs. 8 ± 6 mmHg, P < 0.001 and 24 ± 10 vs. 24 ± 11 vs. 21 ± 13%, P = 0.042). Stiffness mismatch (bPWV-aPWV) was negatively associated with AP (r = -0.18, P = 0.001) but not AIx (r = -0.06, P = 0.27). Aortic reservoir pressure strongly correlated to AP (r = 0.81, P < 0.001) and AIx (r = 0.62, P < 0.001) independent of age, sex, heart rate, mean arterial pressure, and height (standardized β = 0.61 and 0.12, P ≤ 0.001). Aortic reservoir pressure independently predicted abnormal LVMI (β = 0.13, P = 0.024). Positive aortic-brachial stiffness mismatch does not result in higher AP or AIx. Aortic reservoir function, rather than discrete wave reflection from proximal arterial stiffness mismatching, provides a better model description of AP and AIx and also has clinical relevance as evidenced by an independent association of aortic reservoir pressure with LVMI. PMID:26276816

  17. Effects of pressure drawdown and recovery on the Cerro Prieto beta reservoir in the CP-III area

    SciTech Connect

    Truesdell, A.H.; Lippmann, M.J.

    1998-02-01

    The production characteristics of wells in the northwestern Cerro Prieto III area changed greatly when the Cp-III power plant went on line in 1986. Fluid extraction in the field more than doubled and reservoir-wide boiling started immediately, greatly increasing the enthalpy of produced fluids. Some well fluids showed a decrease in chloride due to adiabatic steam condensation in the well and separator, and others were enriched in chloride due to boiling. As reservoir drawdown increased, entrance of cooler and more dilute groundwaters into the reservoir became evident (i.e., condensation stopped, and there was a decrease in enthalpy and chloride in produced fluids). Although some groundwater inflow was from the leaky western margin of the reservoir, the majority is in the northeast, inferred to be local and downward, possibly through more permeable zones associated with the normal fault H. This natural recharge and some reinjection have slowed and possibly reversed pressure drawdown throughout CP-III. Enthalpy has decreased and liquid saturation has increased as the steam-rich zone in the upper part of the reservoir has either disappeared or become thinner.

  18. Spatial distribution and reduction of PCDD/PCDF toxic equivalents along three shallow lowland reservoirs.

    PubMed

    Urbaniak, M; Kiedrzyńska, E; Zieliński, M; Tołoczko, W; Zalewski, M

    2014-03-01

    Reservoirs situated along a river continuum are ecosystems where rates of transfer of suspended matter and associated micropollutants are reduced due to sedimentation, accumulation, and biological and physical transformation processes. Among the micropollutants, PCDDs and PCDFs are substances that are highly toxic and carcinogenic for humans and animals. They are emitted and dispersed in the environment throughout the whole catchment area and may accumulate in aquatic and terrestrial food chains, creating a risk for human health. A wealth of data exists indicating the increase in the concentrations of pollutants along a river continuum. A comparative analysis of total, individual, and TEQ PCDD/PCDF concentrations in large lowland, shallow reservoirs located in different catchments ("I"-industrial/urban/agricultural, "U"-urban/agricultural, and "A"-agricultural/rural) showed decreases of the TEQ concentrations in bottom sediments along a gradient from the middle sections to the dam walls. Moreover, penta-, hexa-, and heptachlorinated CDD/CDF congeners were reduced from 28.8 up to 93.6 % in all three types of reservoirs. A further analysis of water samples from the inlets and outlets of the "A" reservoir confirmed this tendency. PMID:24337994

  19. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  20. Nutrient concentrations and fluxes in the upper catchment of the Miyun Reservoir, China, and potential nutrient reduction strategies.

    PubMed

    Jiao, Jian; Du, Pengfei; Lang, Cong

    2015-03-01

    The Miyun Reservoir is Beijing's main drinking water source. Increased nutrient levels in the reservoir have resulted in an increased risk of harmful algal blooms. One hundred ten water samples were collected at a range of spatial scales in the upper catchment of the Miyun Reservoir and were analyzed for total nitrogen (TN), nitrate (NO3 (-)-N), ammonium (NH4 (+)-N), total phosphorus (TP), and the potassium permanganate index (CODMn). Empirical equations were developed from relationships between nutrient concentrations and the main controls on nutrient, and were used to identify parts of the catchment that should be targeted with nutrient load reduction measures. Cropland was the main source of sediment for the streams, and much of the phosphorus was associated with sediment. The annual mean TP concentrations were closely correlated with both the annual mean suspended sediment concentrations and the ratio of the cropland area to the total basin area. There was a linear relationship between the annual mean TN concentration and the population density in the basins. Soil conservation may play an important role in reducing TP concentrations in the upper reaches of the Chao and Bai Rivers. It may be useful to (1) construct natural riparian buffers and vegetated buffers along croplands close to the watercourses, (2) implement management strategies to reduce nitrogen (N) fertilizer applications, and (3) construct additional wetlands to reduce nutrient loads in the study area. PMID:25673273

  1. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  2. Physical Mechanisms of Failure, Ultralow Partial Pressure Lubrication, and the Reservoir Effect in MEMS

    NASA Astrophysics Data System (ADS)

    Hook, David Adam

    measurements relating to microsystem contact conditions experiments must be conducted on actual microdevices. In the work presented here I have used microelectromechanical system (MEMS) tribometers to measure the friction and adhesive forces of SAM coated surfaces over the coarse of many sliding cycles as well as normal contacting cycles. It is shown that robustly adhered monolayer coatings degrade extremely rapidly and there is a direct correlation between the respective energies dissipated both in sliding and normal contacting cycles and the time it takes for the layers to degrade. Also it is shown that devices fail in two main modes: one where wear of the devices in the form of dislocation of polysilicon grains leads to a low/adhesion high wear regime and another where high adhesive forces are developed and the devices fail with little to no wear. In the studies of ultra low partial pressure lubrication of devices a clear correlation between lubricant mobility to device lubrication is observed even in the presence of a vapor, which should in principle be able to replenish removed lubricant in between sliding cycles. We show that ultralow partial pressures nominally corresponding to submonolayer coverages of ethanol and pentanol show a distinct decrease in coefficient of friction and lubricate MEMS microcontacts however this is only loosely correlated to their effectiveness as lubricants. Pentanol was only shown to lubricate at the point at which it becomes mobile on the surface where as ethanol is mobile at all times and lubricates effectively at very low partial pressures. Trifluoroethanol is not mobile at any portion of its isotherm and does not effectively lubricate the contacts. We also show the ability of the surrounding SAM to act as a lubricant reservoir when vapors of ethanol are removed. The correlation of lubricant mobility to lubrication can be used to predict the effectiveness to new lubricants as well as allow for the tailoring of lubricants to specific

  3. [Secondary prevention of stroke through arterial blood pressure reduction].

    PubMed

    Mancia, G; Grassi, G

    1997-07-01

    Large scale observational studies have conclusively demonstrated that systolic and diastolic blood pressure values are linearly related to the incidence of cerebrovascular diseases and that high blood pressure is an important risk factor for both primary and secondary development of stroke. Interventional studies have shown that blood pressure lowering by antihypertensive treatment reduces the incidence of stroke in hypertensive patients without a history of previous stroke. Whether this is the case also for the secondary prevention of cerebral ischemic attacks has not been unequivocally shown, however. The PROGRESS ("Perindopril Protection Against Recurrent Stroke Study") study has been designed and is under way to collect information on this important issue of the antihypertensive treatment, its purpose being to evaluate the blood pressure lowering effects with an ACE-inhibitor on recurrent stroke in an overall population of 6000 patients with a positive history of previous cerebral ischemic attacks or stroke. PMID:9340173

  4. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the

  5. Pore Pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale.

    NASA Astrophysics Data System (ADS)

    Aliouane, Leila; Ouadfeul, Sid-Ali; Boudella, Amar

    2015-04-01

    The main goal of the proposed idea is to use the artificial intelligence such as the neural network and fuzzy logic to predict the pore pressure in shale gas reservoirs. Pore pressure is a very important parameter that will be used or estimation of effective stress. This last is used to resolve well-bore stability problems, failure plan identification from Mohr-Coulomb circle and sweet spots identification. Many models have been proposed to estimate the pore pressure from well-logs data; we can cite for example the equivalent depth model, the horizontal model for undercompaction called the Eaton's model…etc. All these models require a continuous measurement of the slowness of the primary wave, some thing that is not easy during well-logs data acquisition in shale gas formtions. Here, we suggest the use the fuzzy logic and the multilayer perceptron neural network to predict the pore pressure in two horizontal wells drilled in the lower Barnett shale formation. The first horizontal well is used for the training of the fuzzy set and the multilayer perecptron, the input is the natural gamma ray, the neutron porosity, the slowness of the compression and shear wave, however the desired output is the estimated pore pressure using Eaton's model. Data of another horizontal well are used for generalization. Obtained results clearly show the power of the fuzzy logic system than the multilayer perceptron neural network machine to predict the pore pressure in shale gas reservoirs. Keywords: artificial intelligence, fuzzy logic, pore pressure, multilayer perecptron, Barnett shale.

  6. PRESSURE DROP REDUCTION BY ELECTRICAL ENHANCEMENT OF FABRIC FILTRATION

    EPA Science Inventory

    The paper discusses economic studies of electrostatic augmentation of fabric filtration (ESFF) that indicate that the reduced rate of pressure drop rise can lead to lower capital and operating costs. (ESFF has been evaluated in the laboratory and at various pilot scales over the ...

  7. Field-wide Pressure Response of Three Mid-Cenozoic Sandstone Reservoirs to Fluid Production: a Reverse Analog to Carbon Storage

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Jordan, P. D.; Chehal, S.; Gonzales, G.; goodell, J. A.; Wilson, J.

    2013-12-01

    Potential carbon storage reservoirs exist in mature oilfields of the southern San Joaquin Valley, California. Data regarding fluid extraction and injection and reservoir pressure exist for the three main oil reservoirs with carbon storage potential: the Monterey (Stevens sandstone member), Vedder and Temblor formations. The pressure response of these reservoirs to fluid volume changes over time provides information regarding how carbon storage may affect the pressure gradients in the adjacent saline aquifers outside the fields where less data exist. This project may provide a template for analysis of other potential carbon storage reservoirs that are contiguous with oilfields. A field-scale version of the productivity index (PI, defined as the average net fluid production rate divided by the average pressure drop over the time period) was calculated for fields with substantial production from depths suitable for carbon storage. The PI determines the reservoir's pressure response to fluid production and is related to the effective CO2 storage capacity. The variance of the 2005 pressure values within each reservoir provides a measure of reservoir continuity. The highest PI values (113,000 and 88,410 m3/yr/MPa) are in the Vedder Formation. The lowest PI values occur in the Temblor Formation and range from 3734 to 16,460 m3/yr/MPa. This indicates the Vedder reservoirs have more pressure support from the aquifer beyond the field than do the Temblor reservoirs. The pressure variance of 3.2 MPa within the Vedder Formation in the Greeley Field is the lowest. The greatest variance (8.5 MPa) occurs within the Temblor Formation in the Carneros unit of the Railroad Gap field. This indicates greater uniformity in the Vedder and more compartmentalization of the Temblor. Pressure response in the Stevens is more varied within the two fields examined in this study: North and South Coles Levee. In North Coles Levee, water injection was employed throughout the field resulting in a

  8. An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme.

    PubMed

    Schneider, Camille R; Shafaat, Hannah S

    2016-08-01

    The development of an artificial metalloenzyme for CO2 reduction is described. The small-molecule catalyst [Ni(II)(cyclam)](2+) has been incorporated within azurin. Selectivity for CO generation over H(+) reduction is enhanced within the protein environment, while the azurin active site metal impacts the electrochemical overpotential and photocatalytic activity. The enhanced catalysis observed for copper azurin suggests an important role for intramolecular electron transfer, analogous to native CO2 reducing enzymes. PMID:27406946

  9. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.

    PubMed

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N H

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 10(4) s(-1) at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  10. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  11. Expanding the range for predicting critical flow rates of gas wells producing from normally pressured waterdrive reservoirs

    SciTech Connect

    Upchurch, E.R. )

    1989-08-01

    The critical flow rate of a gas well is the minimum flow rate required to prevent accumulation of liquids in the tubing. Theoretical models currently available for estimating critical flow rates are restricted to wells with water/gas ratios less than 150bbl/MMcf (0.84 X 10/sup -3/ m/sup 3//m/sup 3/). For wells producing at higher water/gas ratios from normally pressured waterdrive reservoirs, a method of estimating critical flow rates is derived through use of an empirical multiphase-flow correlation.

  12. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing

  13. Multifunctional Low Pressure Turbine for Core Noise Reduction, Improved Efficiency, and NOx Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Shyam, Vikram; Rigby, David; Acosta, Waldo

    2013-01-01

    Determining the feasibility of the induced synthetic jet is key, and is still TBD. center dot Available LPT vane volume is sufficient for tens of resonators per span-wise hole spacing, so physically feasible. center dot Determination of acoustic attenuation requires accurate model of vane, resonator locations, flow field and incident waves. (TBD) center dot Determination of NOx reduction is also TBD.

  14. Evolution of Permeability and Induced Seismicity during Reservoir Stimulation; Role of Fluid Pressure and Thermal Transients on Reactivated Fractured Networks

    NASA Astrophysics Data System (ADS)

    Izadi, G.; Elsworth, D.

    2012-12-01

    We utilize a continuum model of reservoir behavior subject to coupled THMC (thermal, hydraulic, mechanical and chemical) processes to explore the evolution of stimulation-induced seismicity and of permeability in EGS reservoirs. Our continuum model is capable of accommodating changes in effective stresses that result due to the evolving spatial variations in fluid pressure as well as thermal stress and chemical effects. Discrete penny-shaped fractures (~10-1200m) are seeded within the reservoir volume at prescribed (faults) and random (fractures) orientations and with a Gaussian distribution of lengths and location. Failure is calculated from a continuum model using a Coulomb criterion for friction. Energy release magnitude is utilized to obtain the magnitude-moment relation for induced seismicity by location and with time. This model is applied to a single injector (stimulation) to the proposed Newberry EGS field (USA). We stimulate the reservoir in four zones of differing fracture network properties B, C, D and E (shallow to deep) and at four different depths of 2000, 2500, 2750 and 3000 m. The same network of large fractures (density of 0.003 m-1 and spacing 300 m) is applied in all zones and supplemented by more closely spaced fractures with densities of 0.5 m-1 in the shallow zone B, 0.9 m-1 in the intermediate zones C and D and 0.26 m-1 in the deepest zone E. We show that permeability enhancement is modulated by hydraulic, thermal, and chemical (THMC) processes and that permeability increases by an order of magnitude during stimulation at each depth. For the widely spaced fracture networks, the increase in permeability reaches a smaller radius from the injection point and permeability evolution is slower with time compared to the behavior of the closely spaced fracture network. For seismic events that develop with the stimulation, event magnitude (MS) varies in the range -2 to +1.9 and the largest event size (~1.9) corresponds to the largest fractures (~1200m

  15. Influence of pressure on the kinetics of synthetic llmenite reduction in hydrogen

    NASA Astrophysics Data System (ADS)

    de Vries, M. L.; Grey, I. E.

    2006-04-01

    In-situ thermogravimetric measurements were used in the hydrogen reduction of poly-granular synthetic ilmenite discs at temperatures in the range 823 to 1173 K and at pressures in the range 1.2 to 13 atm. A symmetrical beam microbalance was used, coupled with twin reactors and twin furnaces, to minimize buoyancy and drag effects. Stable operation was achieved at high gas flow rates where gas film transport effects were negligible. Polishing the ilmenite discs prior to reduction eliminated the formation of dense surface metallic iron films that can impede gas diffusion into the discs. Macroscopically, the reduction reaction proceeded topochemically and a shrinking core reaction model was found to be appropriate to predict conversion-time relationships. It was necessary to allow for water vapor adsorption onto the reacting interface in order to model the effect of pressure on the reduction kinetics. The observed reduction rate increased sharply with pressure up to approximately 3 atm and then approached a plateau with further pressure increase. The porosity in the reduced ilmenite samples was very fine, with pore diameters of typically 0.05 to 0.3 µm. Intragrain gas pressure buildup in the fine pores due to the influence of Knudsen diffusion was incorporated into the modeling of the kinetic data.

  16. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect. PMID:26387360

  17. Comparison of CO2 trapping in highly heterogeneous reservoirs with Brooks-Corey and van Genuchten capillary pressure curves

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David

    2015-04-01

    Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources

  18. Comparison of reduction in foodborne viral surrogates by high pressure homogenization.

    PubMed

    D'Souza, Doris H; Su, Xiaowei; Harte, Federico

    2011-11-01

    With the increasing global spread of human noroviral infections and the emergence of highly virulent noroviral strains, novel inactivation methods are needed to control foodborne outbreaks. High pressure homogenization (HPH) is a novel method that can be applied for foodborne virus reduction in fluids being continuously processed. Our objective in the present study was to compare the titer reduction by HPH between feline calicivirus strain F9 (FCV-F9) and murine norovirus 1 (MNV-1) as surrogates for human noroviruses, and MS2 (single-stranded F-RNA coliphage) and somatic coliphage φX174 (single-stranded DNA) as indicators of fecal contamination. Duplicate experiments with each virus in phosphate-buffered saline were carried out with homogenization pressures of 0, 100, 200, 250, and 300 MPa, with exposure temperatures of 24, 46, 63, 70, and 75°C, respectively, for <2 s. FCV-F9 was found highly susceptible to HPH treatment pressures of 300 MPa, with a reduction of >4.95 log PFU/ml. Lower pressures of 250, 200, and 100 MPa resulted in reductions of 1.61, 0.60, and 0.18 log PFU/ml of FCV-F9, respectively, while MNV-1 was not reduced at these lower pressures. Coliphage φX174 showed no significant reduction at 300 MPa or lower homogenization pressures in comparison with MS2, which did show 3.3-log PFU/ml reduction at 300 MPa. Future studies using juices for industrial application of HPH to determine microbial inactivation with simultaneous retention of sensory and nutritional value of foods are needed. PMID:22054183

  19. Thermal conductivity reduction of crystalline silicon by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Harish, Sivasankaran; Tabara, Mitsuru; Ikoma, Yoshifumi; Horita, Zenji; Takata, Yasuyuki; Cahill, David G.; Kohno, Masamichi

    2014-06-01

    We report a dramatic and irreversible reduction in the lattice thermal conductivity of bulk crystalline silicon when subjected to intense plastic strain under a pressure of 24 GPa using high-pressure torsion (HPT). Thermal conductivity of the HPT-processed samples were measured using picosecond time domain thermoreflectance. Thermal conductivity measurements show that the HPT-processed samples have a lattice thermal conductivity reduction by a factor of approximately 20 (from intrinsic single crystalline value of 142 Wm-1 K-1 to approximately 7.6 Wm-1 K-1). Thermal conductivity reduction in HPT-processed silicon is attributed to the formation of nanograin boundaries and metastable Si-III/XII phases which act as phonon scattering sites, and because of a large density of lattice defects introduced by HPT processing. Annealing the samples at 873 K increases the thermal conductivity due to the reduction in the density of secondary phases and lattice defects.

  20. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account

  1. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  2. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    SciTech Connect

    Pastouret, Alan; Gooijer, Frans; Overton, Bob; Jonker, Jan; Curley, Jim; Constantine, Walter; Waterman, Kendall Miller

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  3. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs

  4. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency. PMID:23553033

  5. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    SciTech Connect

    Spinler, E.A.; Baldwin, B.A.

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  6. Underwater plasma-MIG arc welding: Shielding technique and pressure reduction by a centrifugal pump

    SciTech Connect

    Creutz, M.; Mewes, D.; Bartzsch, J.; Draugelates, U.

    1995-12-31

    In comparison to hyperbaric underwater welding in diving chambers, wet welding techniques promise higher flexibility and lower costs. One technique for creating a local dry and pressure reduced welding zone is the use of a centrifugal pump. Results of experimental investigations in combination with a plasma-MIG arc welding system are presented in this paper. Special importance is attached to the local pressure reduction in view of the fact that low pressure, i.e. a high pressure difference between surrounding water and dry welding area, is a good condition for welding but is difficult to be obtained with other shielding systems than pressure chambers. Plasma-MIG welding has been done under water with a good result on the weld quality. Values of the hardness of the joint and the appearance of the weld structure are nearly comparable to atmospheric welds.

  7. Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures.

    PubMed

    Wu, W F; Wang, F P; Li, J H; Yang, X W; Xiao, X; Pan, Y X

    2013-11-01

    In this study, iron reduction and concomitant biomineralization of a deep-sea iron reducing bacterium (IRB), Shewanella piezotolerans WP3, were systematically examined at different hydrostatic pressures (0.1, 5, 20, and 50 MPa). Our results indicate that bacterial iron reduction and induced biomineralization are influenced by hydrostatic pressure. Specifically, the iron reduction rate and extent consistently decreases with the increase in hydrostatic pressure. By extrapolation, the iron reduction rate should drop to zero by ~68 MPa, which suggests a possible shut-off of enzymatic iron reduction of WP3 at this pressure. Nano-sized superparamagnetic magnetite minerals are formed under all the experimental pressures; nevertheless, even as magnetite production decreases, the crystallinity and grain size of magnetite minerals increase at higher pressure. These results imply that IRB may play an important role in iron reduction, biomineralization, and biogeochemical cycling in deep-sea environments. PMID:24102974

  8. Numerical modelling of pore pressure variations due to time varying loads using a hybrid technique: the case of the Itoiz reservoir (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Luzón, Francisco; García-Jerez, Antonio; Santoyo, Miguel A.; Sánchez-Sesma, Francisco J.

    2010-01-01

    In this work, we present a hybrid technique to estimate the pore pressure variations at the neighbourhood of dams due to time varying water loads in their reservoirs. When considering flow boundary conditions, the solution of the equations of the problem can be obtained as the superposition of (1) the part computed from a homogeneous diffusion equation with the Dirichlet boundary condition (this is due to the pore pressure diffusion) and (2) the solution of an initial value problem in an inhomogeneous diffusion equation in which the inhomogeneous term is related with the stress variations due to the water loads (the solution due to the compression in the medium). Here, two different techniques are joined to calculate each one of these partial solutions: the pore pressure diffusion term is obtained by using the Green's function of the problem, whereas the second contribution due to stress time changes is computed with a finite difference method. This hybrid technique has been used to compute the pore pressure variations produced by the initial impounding of the Itoiz reservoir, northern Spain. The possible relation between the reservoir and a close seismic series occurred on 2004 September, 8 months after the beginning of its impounding, is investigated. We pay special attention to the pore pressure changes at the hypocentre location of the main shock (with magnitude Mw = 4.5), and also evaluate the change of the Coulomb Failure Stress (ΔCFS) produced by the water loads in the reservoir over the fault responsible of this main shock, obtaining a maximum change of 0.5 kPa in the best of the cases. Accordingly, it seems that the role of the impounding of the reservoir to the main shock was marginal, and that the main load on the origin of the triggered seismicity could well be related to the regional state of stresses of the Pyrenees range and adjacent zones.

  9. Effects of Hydrostatic Pressure on the Drag Reduction of Submerged Aerogel-Particle Coatings

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed; Vahedi Tafreshi, Hooman; Samaha, Mohamed A.

    2012-11-01

    Hydrophobic aerogel particles with different average diameters are randomly deposited onto metallic substrates with a thin adhesive coating to achieve a combination of hydrophobicity and surface roughness. The resulting surfaces show different degrees of superhydrophobicity and are used to study the effects of elevated pressure on the drag reduction and the degree of hydrophobicity (sustainability) of such surfaces when used for underwater applications. We also developed an image-thresholding technique to estimate the gas area fraction of the coating. The results indicate that there exists a new parameter, the terminal pressure, beyond which the surface undergoes a global transition from the Cassie state to the Wenzel state, and therefore can no longer generate drag reduction. This terminal pressure differs from the previously identified critical pressure. The latter is the pressure above which the surface starts the transition process at some location, but not necessarily at other spots due to the heterogeneity of the surface. For the particle coatings used herein, the terminal pressures are measured to range from 100 to 600 kPa, indicating that such coatings could potentially be used for deep underwater applications.

  10. The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction

    NASA Astrophysics Data System (ADS)

    Picard, Aude; Testemale, Denis; Hazemann, Jean-Louis; Daniel, Isabelle

    2012-07-01

    The impact of deep-subsurface pressure conditions on microbial activity is still poorly constrained. In particular it is unknown how pressure of deep environments affects microbial transformations of iron. We investigated the effects of high hydrostatic pressure (HHP) on the rate and the extent of bacterial dissimilatory iron reduction (DIR). We employed a novel experimental setup that enables in situ monitoring of Fe oxidation state and speciation in bacterial cultures in an optimized HHP incubation system using X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The iron-reducing bacterium Shewanella oneidensis MR-1 was incubated at 30 °C with Fe(III) citrate and tryptone at pressures between 0.1 and 100 MPa. For pressures up to 70 MPa strain MR-1 (108 cells ml-1) was able to reduce all 5 mM Fe(III) provided. Above 70 MPa, the final amount of Fe(III) that MR-1 could reduce decreased linearly and DIR was estimated to stop at 109 ± 7 MPa. The decrease in the reduction yield was correlated with the dramatic decrease in survival (as determined by CFU counts) above 70 MPa. The initial rate of DIR increased with pressure up to 40 MPa, then decreased to reach zero at about 110 MPa. Increased rates of DIR activity and relatively high growth rates for pressures below 40 MPa would potentially ensure the maintenance of MR-1 in most of deep subsurface environments where moderate pressures occur, i.e. deep-sea environments. This study not only provides the first in situ quantitative results for microbial iron metabolism under HHP conditions but also sets the stage for future investigations of deep-sea pressure-adapted iron reducers. Moreover it demonstrates for the first time that XANES at the Fe K-edge is a powerful probe for in vivo monitoring of iron transformations in living microbial cultures.

  11. Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

    SciTech Connect

    Jordan, Preston; Doughty, Christine

    2008-11-01

    The density and viscosity of supercritical CO{sub 2} are sensitive to pressure and temperature (PT) while the viscosity of brine is sensitive primarily to temperature. Oil field PT data in the vicinity of WESTCARB's Phase III injection pilot test site in the southern San Joaquin Valley, California, show a range of PT values, indicating either PT uncertainty or variability. Numerical simulation results across the range of likely PT indicate brine viscosity variation causes virtually no difference in plume evolution and final size, but CO{sub 2} density variation causes a large difference. Relative ultimate plume size is almost directly proportional to the relative difference in brine and CO{sub 2} density (buoyancy flow). The majority of the difference in plume size occurs during and shortly after the cessation of injection.

  12. Pressure-vessel-damage fluence reduction by low-leakage fuel management. [PWR

    SciTech Connect

    Cokinos, D.; Aronson, A.L.; Carew, J.F.; Kohut, P.; Todosow, M.; Lois, L.

    1983-01-01

    As a result of neutron-induced radiation damage to the pressure vessel and of an increased concern that in a PWR transient the pressure vessel may be subjected to pressurized thermal shock (PTS), detailed analyses have been undertaken to determine the levels of neutron fluence accumulation at the pressure vessels of selected PWR's. In addition, various methods intended to limit vessel damage by reducing the vessel fluence have been investigated. This paper presents results of the fluence analysis and the evaluation of the low-leakage fuel management fluence reduction method. The calculations were performed with DOT-3.5 in an octant of the core/shield/vessel configuration using a 120 x 43 (r, theta) mesh structure.

  13. Operation of a Pressurized System for Continuous Reduction of CO2

    SciTech Connect

    Eric J. Dufek; Tedd E. Lister; Simon Stone; Michael E. McIlwain

    2012-09-01

    A Ag-based pressurized electrochemical system equipped for continuous reduction of CO2 is presented. At elevated pressures the quantity of CO which can be generated is 5 times that observed at ambient pressure with faradaic efficiencies as high as 92% observed at 350 mA cm-2. For operation at 225 mA cm-2 and 60 degrees C the cell voltage at 18.5 atm was 0.4 V below that observed at ambient pressure. Increasing the temperature further to 90 degrees C led to a cell voltage below 3 V (18.5 atm and 90 degrees C), which equates to an electrical efficiency of 50%.

  14. Microbubble skin friction reduction on an axisymmetric body under the influence of applied axial pressure gradients

    NASA Astrophysics Data System (ADS)

    Clark, H.; Deutsch, S.

    1991-12-01

    The influence of both a favorable and an adverse applied axial pressure gradient on microbubble-induced skin friction reduction was examined. An 87 mm diameter, 632 mm long model equipped with a 273 mm long cylindrical force balance was employed. Experiments were carried out in a 305 mm diameter water tunnel, at free-stream speeds of 4.6, 7.6, 10.7, 13.7, and 16.8 m/sec. Air was injected at rates as high as 12×10-3 m3/sec. Measurement of the static pressure along the body with gas injection demonstrated that gas injection did not alter the pressure gradient and that the flow remained axisymmetric. Reductions in skin friction for the zero pressure gradient case agreed well with the earlier results of Deutsch and Castano [Phys. Fluids 29, 3590 (1986)]. The adverse-gradient-induced separation of the boundary layer for speeds at and above 7.6 m/sec, for air injection rates in excess of 5.0×10-3 m3/sec. The favorable gradient strongly inhibited the drag reduction mechanism [47].

  15. Prediction of pressure drawdown in gas reservoirs using a semi-analytical solution of the non-linear gas flow equation

    SciTech Connect

    Mattar, L.; Adegbesan, L.O.

    1980-01-01

    The differential equation for flow of gases in a porous medium is nonlinear and cannot be solved by strictly analytical methods. Previous studies in the literature have obtained analytical solutions to this equation by linearlization (i.e., treating viscosity and compressibilty as constant). In this study, the solution for nonlinear gas flow equation is obtained using the semianalytical technique developed by Kale and Mattar which solves the nonlinear equation by the method of perturbation. Results obtained, for prediction of pressure drawdown in gas reservoirs, indicate that the solution of the linearlized form of the equation is valid for both low and high permeability reservoirs.

  16. Effect of the Reservoir Volume on the Discharge Pressures in the Injection System of the N.A.C.A. Spray Photography Equipment

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1932-01-01

    Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.

  17. Sustained intraocular pressure reduction throughout the day with travoprost ophthalmic solution 0.004%

    PubMed Central

    Dubiner, Harvey B; Noecker, Robert

    2012-01-01

    Background The purpose of this study was to characterize intraocular pressure (IOP) reduction throughout the day with travoprost ophthalmic solution 0.004% dosed once daily in the evening. Methods The results of seven published, randomized clinical trials including at least one arm in which travoprost 0.004% was dosed once daily in the evening were integrated. Means (and standard deviations) of mean baseline and on-treatment IOP, as well as mean IOP reduction and mean percent IOP reduction at 0800, 1000, and 1600 hours at weeks 2 and 12 were calculated. Results From a mean baseline IOP ranging from 25.0 to 27.2 mmHg, mean IOP on treatment ranged from 17.4 to 18.8 mmHg across all visits and time points. Mean IOP reductions from baseline ranged from 7.6 to 8.4 mmHg across visits and time points, representing a mean IOP reduction of 30%. Results of the safety analysis were consistent with the results from the individual studies for travoprost ophthalmic solution 0.004%, with ocular hyperemia being the most common side effect. Conclusion Travoprost 0.004% dosed once daily in the evening provides sustained IOP reduction throughout the 24-hour dosing interval in subjects with ocular hypertension or open-angle glaucoma. No reduction of IOP-lowering efficacy was observed at the 1600-hour time point which approached the end of the dosing interval. PMID:22536047

  18. Potential Biomarker Peptides Associated with Acute Alcohol-Induced Reduction of Blood Pressure

    PubMed Central

    Wakabayashi, Ichiro; Marumo, Mikio; Nonaka, Daisuke; Shimomura, Tomoko; Eguchi, Ryoji; Lee, Lyang-Ja; Tanaka, Kenji; Hatake, Katsuhiko

    2016-01-01

    The purpose of this study was to explore the peptides that are related to acute reduction of blood pressure after alcohol drinking. Venous blood was collected from male healthy volunteers before and after drinking white wine (3 ml/kg weight) containing 13% of ethanol. Peptidome analysis for serum samples was performed using a new target plate, BLOTCHIP®. Alcohol caused significant decreases in systolic and diastolic blood pressure levels at 45 min. The peptidome analysis showed that the levels of three peptides of m/z 1467, 2380 and 2662 changed significantly after drinking. The m/z 1467 and 2662 peptides were identified to be fragments of fibrinogen alpha chain, and the m/z 2380 peptide was identified to be a fragment of complement C4. The intensities of the m/z 2380 and m/z 1467 peptides before drinking were associated with % decreases in systolic and diastolic blood pressure levels at 45 min after drinking compared with the levels before drinking, while there were no significant correlations between the intensity of the m/z 2662 peptide and % decreases in systolic and diastolic blood pressure levels after drinking. The m/z 1467 and 2380 peptides are suggested to be markers for acute reduction of blood pressure after drinking alcohol. PMID:26815288

  19. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China

    PubMed Central

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  20. Quantifying the Reduction Intensity of Handaxes with 3D Technology: A Pilot Study on Handaxes in the Danjiangkou Reservoir Region, Central China.

    PubMed

    Li, Hao; Kuman, Kathleen; Li, Chaorong

    2015-01-01

    This paper presents an approach to analyzing the reduction intensity of handaxes with the aid of 3D scanning technology. Two quantitative reduction indices, the Scar Density Index (SDI) and the Flaked Area Index (FAI), are applied to handaxes from the third terrace of the Danjiangkou Reservoir Region (DRR), central China, dated to the Middle Pleistocene. The results show that most of the DRR handaxes in this sample show moderate reduction, which also reflects a least-effort reduction strategy and a generally short use-life for these tools. Detailed examination of the DRR handaxes by sector reveals that the tips generally show the most reduction, while the bases show the least shaping, with cortex often preserved on the base to facilitate handling. While western Acheulean assemblages in this regard are variable, there are many examples of handaxes of varying age with trimming of the bases. We also found no significant differences in the levels of reduction between the two main raw materials, quartz phyllite and trachyte. However, the type of blank used (large flakes versus cobbles) and the type of shaping (bifacial, partly bifacial and unifacial) do play a significant role in the reduction intensity of the DRR handaxes. Finally, a small number of handaxes from the younger (the early Late Pleistocene) second terrace of the DRR was compared with those from the third terrace. The results indicate that there is no technological change in the reduction intensity through time in these two DRR terraces. PMID:26331954

  1. Treating hypertensive emergencies. Controlled reduction of blood pressure and protection of target organs.

    PubMed

    Prisant, L M; Carr, A A; Hawkins, D W

    1993-02-01

    Diastolic blood pressure of 120 mm Hg or more is often cited as identifying a hypertensive crisis. However, the absolute level of blood pressure may not be as important as the rate of increase. One important feature that distinguishes hypertensive emergency from hypertensive "urgency" is the ongoing vascular damage that occurs with hypertensive emergency. When this is present, therapy should be initiated as soon as possible. The initial goal is to reduce mean arterial pressure about 15% to 25% within the first 48 hours. Overzealous or uncontrolled reduction in blood pressure may result in coma, stroke, myocardial infarction, acute renal failure, or death. Thus, a drug with titratable dosing (eg, intravenous nitroprusside sodium [Nipride, Nitropress]) is preferred in most situations. Patients with hypertensive urgency do not have evidence of vascular damage. Usually, they are asymptomatic, have no retinal lesions, and have a marked elevation in diastolic blood pressure. Hypertensive urgency does not require immediate normalization of blood pressure, but initiation of therapy and careful follow-up are critical. PMID:8433961

  2. Thermal conductivity reduction of crystalline silicon by high-pressure torsion

    PubMed Central

    2014-01-01

    We report a dramatic and irreversible reduction in the lattice thermal conductivity of bulk crystalline silicon when subjected to intense plastic strain under a pressure of 24 GPa using high-pressure torsion (HPT). Thermal conductivity of the HPT-processed samples were measured using picosecond time domain thermoreflectance. Thermal conductivity measurements show that the HPT-processed samples have a lattice thermal conductivity reduction by a factor of approximately 20 (from intrinsic single crystalline value of 142 Wm−1 K−1 to approximately 7.6 Wm−1 K−1). Thermal conductivity reduction in HPT-processed silicon is attributed to the formation of nanograin boundaries and metastable Si-III/XII phases which act as phonon scattering sites, and because of a large density of lattice defects introduced by HPT processing. Annealing the samples at 873 K increases the thermal conductivity due to the reduction in the density of secondary phases and lattice defects. PMID:25024687

  3. Aortic pressure reduction redistributes transmural blood flow in dog left ventricle

    SciTech Connect

    Smolich, J.J.; Weissberg, P.L.; Broughton, A.; Korner, P.I. )

    1988-02-01

    The authors studied the effect of graded aortic blood pressure reduction on left ventricular (LV) blood flow in anesthetized, autonomically blocked, open-chest dogs at constant heart rate and mean left atrial pressure. Aortic diastolic pressure (ADP) was lowered from rest to 90, 75, and 60 mmHg with an arteriovenous fistula. Global and regional LV blood flow was measured with radioactive microspheres. Mean LV blood flow fell stepwise from 145 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at rest to 116 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at ADP of 60 mmHg, whereas the endocardial-to-epicardial flow ratio decreased from 1.20 to 084. The transmural redistribution of LV blood flow was not accompanied by increases in LV oxygen extraction, depression of LV contractility, LV dilatation or LV electrical dysfunction and also occurred in the presence of considerable coronary vasodilator flow reserve. Electrical evidence of subendocardial ischemia appeared at ADP of 32 mmHg and an endocardial-to-epicardial flow ratio of 0.41 in a subgroup of animals. They conclude that the redistribution of LV flow during moderate aortic pressure reduction was an appropriate physiological adjustment to uneven transmural alterations in regional LV wall stress and that it preceded a more pronounced redistribution evident with myocardial ischemia.

  4. Drag-Reduction Effectiveness of Riblet Films in Adverse Pressure Gradients

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Sotiropoulos, Fotis

    2013-11-01

    Riblet films are micro-grooved structures that are widely known to passively reduce skin friction. Past studies have almost solely focused on riblet performance in channel-flows. However, possible applications of riblets include wind turbine blades, gas turbine blades, and other complex bodies that are exposed to non-zero pressure gradient flows--specifically adverse pressure gradients. We use high-resolution large eddy simulations of turbulent flow over three-dimensional riblets under an adverse pressure gradient. We analyze the computed results to quantify drag reduction effectiveness for different riblet shapes and to examine pertinent turbulent structures to gain a fundamental understanding of riblet performance. Supported by the DOE Wind Energy Consortium

  5. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    PubMed

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-01

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. PMID:26976226

  6. Comparison of foot orthoses made by podiatrists, pedorthists and orthotists regarding plantar pressure reduction in The Netherlands

    PubMed Central

    Guldemond, Nick A; Leffers, Pieter; Schaper, Nicolaas C; Sanders, Antal P; Nieman, Fred HM; Walenkamp, Geert HIM

    2005-01-01

    Background There is a need for evidence of clinical effectiveness of foot orthosis therapy. This study evaluated the effect of foot orthoses made by ten podiatrists, ten pedorthists and eleven orthotists on plantar pressure and walking convenience for three patients with metatarsalgia. Aims were to assess differences and variability between and within the disciplines. The relationship between the importance of pressure reduction and the effect on peak pressure was also evaluated. Methods Each therapist examined all three patients and was asked to rate the 'importance of pressure reduction' through a visual analogue scale. The orthoses were evaluated twice in two sessions while the patient walked on a treadmill. Plantar pressures were recorded with an in-sole measuring system. Patients scored walking convenience per orthosis. The effects of the orthoses on peak pressure reduction were calculated for the whole plantar surface of the forefoot and six regions: big toe and metatarsal one to five. Results Within each discipline there was an extensive variation in construction of the orthoses and achieved peak pressure reductions. Pedorthists and orthotists achieved greater maximal peak pressure reductions calculated over the whole forefoot than podiatrists: 960, 1020 and 750 kPa, respectively (p < .001). This was also true for the effect in the regions with the highest baseline peak pressures and walking convenience rated by patients A and B. There was a weak relationship between the 'importance of pressure reduction' and the achieved pressure reduction for orthotists, but no relationship for podiatrists and pedorthotists. Conclusion The large variation for various aspects of foot orthoses therapy raises questions about a consistent use of concepts for pressures management within the professional groups. PMID:16368005

  7. Reduction in Cerebral Oxygenation After Prolonged Exercise in Hypoxia is Related to Changes in Blood Pressure.

    PubMed

    Horiuchi, Masahiro; Dobashi, Shohei; Kiuchi, Masataka; Endo, Junko; Koyama, Katsuhiro; Subudhi, Andrew W

    2016-01-01

    We investigated the relation between blood pressure and cerebral oxygenation (COX) immediately after exercise in ten healthy males. Subjects completed an exercise and recovery protocol while breathing either 21% (normoxia) or 14.1% (hypoxia) O2 in a randomized order. Each exercise session included four sets of cycling (30 min/set, 15 min rest) at 50% of altitude-adjusted peak oxygen uptake, followed by 60 min of recovery. After exercise, mean arterial pressure (MAP; 87±1 vs. 84±1 mmHg, average values across the recovery period) and COX (68±1% vs. 58±1%) were lower in hypoxia compared to normoxia (P<0.001). Changes in MAP and COX were correlated during the recovery period in hypoxia (r=0.568, P<0.001) but not during normoxia (r=0.028, not significant). These results demonstrate that reductions in blood pressure following exercise in hypoxia are (1) more pronounced than in normoxia, and (2) associated with reductions in COX. Together, these results suggest an impairment in cerebral autoregulation as COX followed changes in MAP more passively in hypoxia than in normoxia. These findings could help explain the increased risk for postexercise syncope at high altitude. PMID:26782200

  8. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction

    NASA Technical Reports Server (NTRS)

    Rovner, Aleksandr; Smith, Rebecca; Greenberg, Neil L.; Tuzcu, E. Murat; Smedira, Nicholas; Lever, Harry M.; Thomas, James D.; Garcia, Mario J.

    2003-01-01

    We sought to validate measurement of intraventricular pressure gradients (IVPG) and analyze their change in patients with hypertrophic obstructive cardiomyopathy (HOCM) after ethanol septal reduction (ESR). Quantitative analysis of color M-mode Doppler (CMM) images may be used to estimate diastolic IVPG noninvasively. Noninvasive IVPG measurement was validated in 10 patients undergoing surgical myectomy. Echocardiograms were then analyzed in 19 patients at baseline and after ESR. Pulsed Doppler data through the mitral valve and pulmonary venous flow were obtained. CMM was used to obtain the flow propagation velocity (Vp) and to calculate IVPG off-line. Left atrial pressure was estimated with the use of previously validated Doppler equations. Data were compared before and after ESR. CMM-derived IVPG correlated well with invasive measurements obtained before and after surgical myectomy [r = 0.8, P < 0.01, Delta(CMM - invasive IVPG) = 0.09 +/- 0.45 mmHg]. ESR resulted in a decrease of resting LVOT systolic gradient from 62 +/- 10 to 29 +/- 5 mmHg (P < 0.001). There was a significant increase in the Vp and IVPG (from 48 +/- 5to 74 +/- 7 cm/s and from 1.5 +/- 0.2 to 2.6 +/- 0.3 mmHg, respectively, P < 0.001 for both). Estimated left atrial pressure decreased from 16.2 +/- 1.1 to 11.5 +/- 0.9 mmHg (P < 0.001). The increase in IVPG correlated with the reduction in the LVOT gradient (r = 0.6, P < 0.01). Reduction of LVOT obstruction after ESR is associated with an improvement in diastolic suction force. Noninvasive measurements of IVPG may be used as an indicator of diastolic function improvement in HOCM.

  9. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  10. Blood pressure reduction by CCl/sub 4/ in the spontaneously hypertensive rat

    SciTech Connect

    Loyke, H.F.

    1988-07-01

    It has been established that the spontaneously hypertensive rat (SHR) presents an experimental model whose pathogenesis resembles that of essential hypertension in man. A great advantage of this model is that the entire life history of this disease is compressed within a time frame of two years. Many antihypertensive agents have been found effective in reducing blood pressure in SHR animals. Carbon tetrachloride (CCl/sub 4/) treatment has resulted in blood pressure reduction and subsequent elevation after discontinuing treatment in Grollman renal hypertensive rats and in endocrine hypertensive rats. The purpose of this study was to determine whether hypertension in the spontaneously hypertensive rat (SHR), could be modified by CCl/sub 4/ treatment and to evaluate its effects on kidney and liver tissue.

  11. Stress Reduction Programs in Patients with Elevated Blood Pressure: A Systematic Review and Meta-analysis

    PubMed Central

    Rainforth, Maxwell V.; Schneider, Robert H.; Nidich, Sanford I.; Gaylord-King, Carolyn; Salerno, John W.; Anderson, James W.

    2007-01-01

    Substantial evidence indicates that psychosocial stress contributes to hypertension and cardiovascular disease (CVD). Previous meta-analyses of stress reduction and high blood pressure (BP) were outdated and/or methodologically limited. Therefore, we conducted an updated systematic review of the published literature and identified 107 studies on stress reduction and BP. Seventeen trials with 23 treatment comparisons and 960 participants with elevated BP met criteria for well-designed randomized controlled trials and were replicated within intervention categories. Meta-analysis was used to calculate BP changes for biofeedback, −0.8/−2.0 mm Hg (P = NS); relaxation-assisted biofeedback, +4.3/+2.4 mm Hg (P = NS); progressive muscle relaxation, −1.9/−1.4 mm Hg (P = NS); stress management training, −2.3/−1.3 mm (P = NS); and the Transcendental Meditation program, −5.0/−2.8 mm Hg (P = 0.002/0.02). Available evidence indicates that among stress reduction approaches, the Transcendental Meditation program is associated with significant reductions in BP. Related data suggest improvements in other CVD risk factors and clinical outcomes. PMID:18350109

  12. Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts.

    PubMed Central

    Figueredo, V M; Brandes, R; Weiner, M W; Massie, B M; Camacho, S A

    1992-01-01

    Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions. PMID:1430205

  13. Reduction of the bulk modulus at high pressure in CrN.

    PubMed

    Rivadulla, Francisco; Bañobre-López, Manuel; Quintela, Camilo X; Piñeiro, Alberto; Pardo, Victor; Baldomir, Daniel; López-Quintela, Manuel Arturo; Rivas, José; Ramos, Carlos A; Salva, Horacio; Zhou, Jian-Shi; Goodenough, John B

    2009-12-01

    Nitride coatings are increasingly demanded in the cutting- and machining-tool industry owing to their hardness, thermal stability and resistance to corrosion. These properties derive from strongly covalent bonds; understanding the bonding is a requirement for the design of superhard materials with improved capabilities. Here, we report a pressure-induced cubic-to-orthorhombic transition at approximately 1 GPa in CrN. High-pressure X-ray diffraction and ab initio calculations show an unexpected reduction of the bulk modulus, K0, of about 25% in the high-pressure (lower volume) phase. Our combined theoretical and experimental approach shows that this effect is the result of a large exchange striction due to the approach of the localized Cr:t3 electrons to becoming molecular-orbital electrons in Cr-Cr bonds. The softening of CrN under pressure is a manifestation of a strong competition between different types of chemical bond that are found at a crossover from a localized to a molecular-orbital electronic transition. PMID:19855384

  14. Reduction in Mitral Regurgitation During Therapy Guided by Measured Filling Pressures in the ESCAPE Trial

    PubMed Central

    Palardy, Maryse; Stevenson, Lynne W.; Tasissa, Gudaye; Hamilton, Michele A.; Bourge, Robert C.; DiSalvo, Thomas G.; Elkayam, Uri; Hill, James A.; Reimold, Sharon C.

    2009-01-01

    Background Dynamic mitral regurgitation (MR) contributes to decompensation in chronic dilated heart failure. Reduction of MR was the primary physiologic endpoint in the ESCAPE trial, which compared acute therapy guided by JVP, edema, and weight (CLIN) to therapy guided additionally by pulmonary artery catheters (PAC) toward pulmonary wedge pressure ≤15 and right atrial pressure ≤8 mmHg. Methods and Results Patients were randomized to PAC or CLIN during hospitalization with chronic HF and mean LVEF 20%, and at least 1 symptom and 1 sign of congestion. MR and mitral flow patterns, measured blinded to therapy and timepoint, were available at baseline and discharge in 133 patients, and at 3 months in 104 patients. Changes in MR and related transmitral flow patterns were compared between PAC and CLIN patients. Jugular venous pressure, edema, and weights decreased similarly during therapy in the hospital for both groups. In PAC but not in CLIN patients, MR jet area, MR/LAA ratio, and E velocity were each significantly reduced and deceleration time increased by discharge. By 3 months, patients had clinical evidence of increased JVP, edema, and weight since discharge, reaching significance in the PAC arm, and the change in MR was no longer different between the 2 groups, although the change in E velocity remained greater in PAC patients. Conclusions During hospitalization, therapy guided by PAC to reduce left-sided pressures improved MR and related filling patterns more than therapy guided clinically by evidence of systemic venous congestion. This early reduction did not translate into improved outcomes out of the hospital, where volume status reverted toward baseline. PMID:19808338

  15. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  16. The influence of a rapid drawdown and prolonged dewatering on angling pressure, catch and harvest in a Nebraska reservoir

    USGS Publications Warehouse

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2015-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  17. Evolution of pore-fluid pressure during folding and basin contraction in overpressured reservoirs assessed by combined fracture analysis and calcite twinning paleopiezometry

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; Bellahsen, Nicolas; Amrouch, Khalid; Daniel, Jean-Marc

    2014-05-01

    Reconstructing the evolution of paleofluid (over)pressure in sedimentary basins during deformation is a challenging problem, especially when no hydrocarbon-bearing fluid inclusions are available to provide barometric constraints on the fluid system. This contribution reports the application to a natural case (the Bighorn Basin) of recent methodological advance to access fluid (over)pressure level prevailing in strata during sub-seismic fracture development. The fluid pressure evolution in the Mississippian-Permian Madison-Phosphoria carbonate reservoir is tentatively reconstructed from the early Sevier Layer Parallel Shortening to the Laramide folding in two basement-cored folds: the Sheep Mountain Anticline and the Rattlesnake Mountain Anticline, located on both edges of the Bighorn Basin. This reconstruction is based on a combination of stress inversion of fault slip data, calcite twins paleopiezometry and rock mechanics. Results point out that supra-hydrostatic pressure values prevail in the carbonate reservoir during most of its whole Sevier-Laramide history, and a coeval evolution between fluid overpressure and differential stress build-up is also emphasized. In each fold, a maximum value of 30-35 MPa for overpressure (i.e. above hydrostatic value) is recorded, just before Laramide folding, while minimum values of 0 MPa or 7 MPa are recorded during Sevier foreland flexure/forebulge and Laramide folding, respectively. After normalization to the same depth for both folds of differential stress magnitudes obtained from calcite twins paleopiezometry, the reconstructed values for the two folds can be compared and this comparison provides an image of the evolution fluid pressure levels at the basin scale. Until folding, the evolution of the fluid overpressure during deformation can be interpreted as reflecting large-scale fluid migrations in a laterally connected reservoir. The drop of fluid overpressure recorded in both folds during folding illustrates the

  18. High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points

    SciTech Connect

    Winoto, Winoto; Radosz, Maciej; Tan, Sugata; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

  19. Reply to ‘Comment on “The analysis of horizontal well pressure behavior in fractured low permeability reservoirs with consideration of the threshold pressure gradient”’

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long

    2014-06-01

    In his recent comment on our previously published paper (Zhao et al 2013 J. Geophys. Eng. 10 035014), which outlined a mathematical model for the analysis of the pressure behavior of a horizontal well in naturally fractured low permeability reservoirs with a TPG (Lu 2014 J. Geophys. Eng. 11 038001) suggested that there were several errors in it. We thank the author for his careful review, and here we address his concerns.

  20. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  1. Clinically meaningful blood pressure reductions with low intensity isometric handgrip exercise. A randomized trial.

    PubMed

    Hess, N Cl; Carlson, D J; Inder, J D; Jesulola, E; McFarlane, J R; Smart, N A

    2016-07-18

    There exists no examination of what is the minimum anti-hypertensive threshold intensity for isometric exercise training. Twenty two normotensive participants were randomly assigned to training intensities at either 5 % or 10 % of their maximal contraction. Twenty participants completed the study. Clinical meaningful, but not statistically significant, reductions in systolic blood pressure were observed in both 5 % and 10 % groups -4.04 mm Hg (95 % CI -8.67 to +0.59, p=0.08) and -5.62 mm Hg (95 % CI -11.5 to +0.29, p=0.06) respectively after 6 weeks training. No diastolic blood pressure reductions were observed in either 5 % -0.97 mm Hg (95 % CI -2.56 to +0.62, p=0.20) or 10 % MVC +1.8 mm Hg (95 % CI -1.29 to +4.89, p=0.22) groups respectively after training. In those unable to complete isometric exercise at the traditional 30 % intensity, our results suggest there is no difference between 5 and 10 % groups and based on the principle of regression to the mean, this could mean both interventions induce a similar placebo-effect. PMID:27070747

  2. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    NASA Astrophysics Data System (ADS)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  3. Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance

    PubMed Central

    Lucas, Rebekah A. I.; Ganio, Matthew S.; Pearson, James; Crandall, Craig G.

    2016-01-01

    The contribution of sweating to heat stress-induced reductions in haemorrhagic tolerance is not known. This study tested the hypothesis that fluid loss due to sweating contributes to reductions in simulated haemorrhagic tolerance in conditions of heat stress. Eight subjects (35 ± 8 years old; 77 ± 5 kg) underwent a normothermic time control and two heat stress trials (randomized). The two heat stress trials were as follows: (i) with slow intravenous infusion of lactated Ringer solution sufficient to offset sweat loss (IV trial); or (ii) without intravenous infusion (dehydration; DEH trial). Haemorrhage was simulated via progressive lower-body negative pressure (LBNP) to presyncope after core body (intestinal) temperature was raised by ~1.5°C using a water-perfused suit or a normothermic time control period. The LBNP tolerance was quantified via a cumulative stress index. Middle cerebral artery blood velocity (transcranial Doppler) and mean blood pressure (Finometer®) were measured continuously. Relative changes in plasma volume were calculated from haematocrit and haemoglobin. Increases in core body temperature and sweat loss (~1.6% body mass deficit) were similar (P > 0.05) between heat stress trials. Slow intravenous infusion (1.2 ± 0.3 litres) prevented heat-induced reductions in plasma volume (IV trial, −0.6 ± 6.1%; and DEH trial, −6.6 ± 5.1%; P = 0.01). Intravenous infusion improved LBNP tolerance (632 ± 64 mmHg min) by ~20% when compared with the DEH trial (407 ± 117 mmHg min; P = 0.01), yet tolerance remained 44% lower in the IV trial relative to the time control normothermic trial (1138 ± 183 mmHg min; P < 0.01). These data indicate that although sweat-induced dehydration impairs simulated haemorrhagic tolerance, this impairment is secondary to the negative impact of heat stress itself. PMID:22872657

  4. Veins in Paleo-reservoir as a Natural Indication of Coupled Changes in Pore Pressure and Stress, Salt Wash Graben of SE Utah, USA

    NASA Astrophysics Data System (ADS)

    Gwon, S.; Edwards, P.; Kim, Y. S.

    2015-12-01

    Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are

  5. Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag; Jamtveit, Bjorn

    2016-02-01

    The Ekofisk field, Norwegian North sea,is an example of compacting chalk reservoir with considerable subsequent seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. Here we present a different approach, we use a new creep model based on microscopic mechanisms with no fitting parameters to predict strain rate at core scale and at reservoir scale. The model is able to reproduce creep experiments and the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.

  6. Blood Pressure Reduction, Decreased Diffusion on MRI, and Outcomes After Intracerebral Hemorrhage

    PubMed Central

    Garg, Rajeev K; Liebling, Storm M; Maas, Matthew B; Nemeth, Alexander J; Russell, Eric J; Naidech, Andrew M

    2011-01-01

    Background Decreased diffusion (DD) consistent with acute ischemia may be detected on MRI after acute intracerebral hemorrhage (ICH), but its risk factors and impact on functional outcomes are not well defined. We tested the hypotheses that DD after ICH is related to acute blood pressure (BP) reduction and lower hemoglobin (HGB) and presages worse functional outcomes. Methods Patients who underwent MRI were prospectively evaluated for DD by certified neuroradiologists blinded to outcomes. HGB and BP data were obtained via electronic queries. Outcomes were obtained at 14 days and 3 months with the modified Rankin Scale (mRS), a functional scale scored from 0 (no symptoms) to 6 (dead). We used logistic regression for dependence or death (mRS 4 to 6). Results DD distinct from the hematoma was found on MRI in 36 of 95 patients (38%). DD was associated with greater BP reductions from baseline, and a higher risk of dependence or death at 3 months (OR 4.8, 95% CI 1.7 – 13.9, P=0.004) after correction for ICH Score (1.8 per point, 95%CI 1.2–3.1, P=0.01). Lower HGB was associated with worse ICH score, larger hematoma volume and worse outcomes, but not DD. Conclusions DD is common after ICH, associated with greater acute BP reductions, and associated with disability and death at 3 months in multivariate analysis. The potential benefits of acute BP reduction to reduce hematoma growth may be limited by DD. The prevention and treatment of cerebral ischemia manifested as DD is a potential method to improve outcomes. PMID:21980211

  7. Weight and blood pressure reduction among participants engaged in a cancer awareness and prevention program

    PubMed Central

    Carter, Vivian L.; Dawkins, Norma L.; Howard, Barbara

    2015-01-01

    Objectives African–Americans consume a diet high in fat, salt and sugar; such dietary habits increase the risks of cancer and other chronic diseases. The objective of this study was to engage rural communities in a nutrition and physical activity behavior modification program to promote cancer awareness and risk reduction. Methods Focus group discussions were conducted to generate information for the development of a nutrition and physical activity program. African Americans (N = 62) from two rural counties (Bullock and Macon) in Alabama participated in a year-long intervention program in 2012 and 2013. Weight loss and blood pressure were evaluated to measure the impact of the intervention. Results Themes emerged for the focus group discussions were: nutrition, health, family, environment, and resource access. In Macon County participants lost weight irrespective of the exercise regimen, with those involved in floor exercise losing the most weight (− 22.4 lbs, or − 11.18% change), while in Bullock county walking was most effective in weight loss (6.1 lbs or − 3.40% change) p < 0.05. Systolic and diastolic pressure decreased from 5.3 to 10.5 mm Hg; − 2.0 to − 6.4 mm Hg, respectively, for Bullock county, except for the walking group. In Macon County, both systolic and diastolic pressure % change ranged from − 8.94 to 12.66 and − 5.34 to 12.66 mm Hg respectively, irrespective of physical activity respectively. Conclusion In this study, changes in weight lost and blood pressure were observed among individuals engaged in a nutrition education and physical activity program. PMID:26601053

  8. Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lin, G.; Bao, J.; Hou, Z.; Fang, Y.; Ren, H.

    2013-12-01

    A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on pressure build-up and ground surface displacement and therefore risks of induced seismicity during CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the migration of injected CO2 and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 12 other parameters describing hydrogeological properties of subsurface formations, including porosity, permeability, entry pressure, pore-size index, Young's modulus, and Poisson's ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 13 input parameters. For the investigated two-dimensional cases, reservoir porosity, permeability, and injection rate were found to be among the most signifi cant factors affecting the geomechanical responses to the CO2 injection, such as injection pressure and ground surface uplift. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations.

  9. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.

    PubMed

    Wang, Shibo; Tokunaga, Tetsu K

    2015-06-16

    In geologic carbon sequestration, capillary pressure (Pc)-saturation (Sw) relations are needed to predict reservoir processes. Capillarity and its hysteresis have been extensively studied in oil-water and gas-water systems, but few measurements have been reported for supercritical (sc) CO2-water. Here, Pc-Sw relations of scCO2 displacing brine (drainage), and brine rewetting (imbibition) were studied to understand CO2 transport and trapping behavior under reservoir conditions. Hysteretic drainage and imbibition Pc-Sw curves were measured in limestone sands at 45 °C under elevated pressures (8.5 and 12.0 MPa) for scCO2-brine, and in limestone and dolomite sands at 23 °C (0.1 MPa) for air-brine using a new computer programmed porous plate apparatus. scCO2-brine drainage and imbibition curves shifted to lower Pc relative to predictions based on interfacial tension, and therefore deviated from capillary scaling predictions for hydrophilic interactions. Fitting universal scaled drainage and imbibition curves show that wettability alteration resulted from scCO2 exposure over the course of months-long experiments. Residual trapping of the nonwetting phases was determined at Pc = 0 during imbibition. Amounts of trapped scCO2 were significantly larger than for those for air, and increased with pressure (depth), initial scCO2 saturation, and time. These results have important implications for scCO2 distribution, trapping, and leakage potential. PMID:25945400

  10. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  11. Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Worden, Richard H.; Cai, Chunfang

    2015-09-01

    Thermochemical sulfate reduction (TSR), the reaction of petroleum with anhydrite in reservoirs resulting in the growth of calcite and the accumulation of H2S, has been documented in the Feixianguan Formation dolomite reservoir in the Sichuan Basin, China. Fluid inclusion salinity and homogenization temperature data have shown that TSR results in a decrease in salinity from a pre-TSR value of 25 wt.% down to 5 wt.% as a result of water created as a byproduct of progressive TSR. We have studied the isotopic character of the water that resulted from TSR in the Feixianguan Formation by analyzing the oxygen isotopes of TSR calcite and determining the oxygen isotopes of the water in equilibrium with the TSR calcite at the temperatures determined by aqueous fluid inclusion analysis. We have compared these TSR-waters to water that would have been in equilibrium with the bulk rock, also at the temperatures determined by aqueous fluid inclusion analysis. We have found that the TSR-waters are relatively depleted in oxygen isotopes (by up to 8‰ compared to what would be expected at equilibrium between the bulk rock and water) since this type of water was specifically derived from anhydrite. The generation of relatively large volumes of low salinity, low δ18O water associated with advanced TSR in the Feixianguan Formation has also been reported in the Permian Khuff Formation in Abu Dhabi and from sour Devonian fields in the Western Canada Basin. This suggests that TSR-derived water may be a common phenomenon, the effects of which on mesogenetic secondary porosity and reservoir quality have previously been underappreciated.

  12. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo.

    PubMed

    Tuomela, Annika; Liu, Peng; Puranen, Jooseppi; Rönkkö, Seppo; Laaksonen, Timo; Kalesnykas, Giedrius; Oksala, Olli; Ilkka, Jukka; Laru, Johanna; Järvinen, Kristiina; Hirvonen, Jouni; Peltonen, Leena

    2014-06-01

    Nanocrystal-based drug delivery systems provide important tools for ocular formulation development, especially when considering poorly soluble drugs. The objective of the study was to formulate ophthalmic, intraocular pressure (IOP) reducing, nanocrystal suspensions from a poorly soluble drug, brinzolamide (BRA), using a rapid wet milling technique, and to investigate their IOP reducing effect in vivo. Different stabilizers for the nanocrystals were screened (hydroxypropyl methylcellulose (HPMC), poloxamer F127 and F68, polysorbate 80) and HPMC was found to be the only successful stabilizer. In order to investigate both the effect of an added absorption enhancer (polysorbate 80) and the impact of the free drug in the nanocrystal suspension, formulations in phosphate buffered saline (PBS) at pH 7.4 and pH 4.5 were prepared. Particle size, polydispersity (PI), solid state (DSC), morphology (SEM) as well as dissolution behavior and the uniformity of the formulations were characterized. There was rapid dissolution of BRA (in PBS pH 7.4) from all the nanocrystal formulations; after 1 min 100% of the drug was fully dissolved. The effect was significantly pronounced at pH 4.5, where the dissolved fraction of drug was the highest. The cytotoxicity of nanocrystal formulations to human corneal epithelial cell (HCE-T) viability was tested. The effects of the nanocrystal formulations and the commercial product on the cell viability were comparable. The intraocular pressure (IOP) lowering effect was investigated in vivo using a modern rat ocular hypertensive model and elevated IOP reduction was seen in vivo with all the formulations. Notably, the reduction achieved in experimentally elevated IOP was comparable to that obtained with a marketed product. In conclusion, various BRA nanocrystal formulations, which all showed advantageous dissolution and absorption behavior, were successfully formulated. PMID:24680962

  13. Development of Alternative Reductant Application in Pressurized Water Reactor Primary Systems

    NASA Astrophysics Data System (ADS)

    Domae, Masafumi; Kawamura, Hirotaka; Ohira, Taku

    In primary coolant of pressurized water reactors, high concentration dissolved hydrogen (DH) has been added, to prevent generation of oxidizing species through radiolysis of the coolant. Recently, number of ageing plants is increasing and utilities are concerned about primary water stress corrosion cracking (PWSCC). Some researchers consider that occurrence of PWSCC and crack propagation rate are affected by the DH concentration. The authors consider that one of possible mitigation methods toward PWSCC is use of alternative reductant in place of hydrogen. Because from the radiation chemical aspect aliphatic alcohols are typical scavengers of the oxidizing radical generated through the radiolysis of water, they are promising candidates of the alternative reductant. In the present work, possible alternatives of hydrogen were screened, and methanol was selected as the best candidate. Corrosion tests of type 304 stainless steels were carried out in high temperature water at 320°C without irradiation under two conditions: (1) DH 1.5 ppm (part per million) and (2) methanol 2.9 ppm. Electrochemical corrosion potential of the stainless steel specimens was measured during the immersion tests. After the immersion tests for 1500 h, surface morphology of the stainless steel specimens was observed by scanning probe microscope. Major component of the oxide film formed on the stainless steel specimens was analyzed by X-ray diffraction. From comparison of the test results, it is concluded that addition of 2.9 ppm methanol has almost the same effect on corrosion environment as DH 1.5 ppm addition.

  14. Reduction of nitric oxide by ammonia at atmospheric pressures over platinum polycrystalline foils as model catalysts

    SciTech Connect

    Katona, T.; Guczi, L.; Somorjai, G.A.

    1991-12-01

    The reduction of nitric oxide with ammonia was studied using batch-mode and flow-mode measurements in partial pressure ranges of 70-660 Pa (0.5-5 Torr) on polycrystalline platinum foils over the temperature range of 373-633 K. The reaction products observed were nitrogen, nitrous oxide, and water. Unimolecular decompositions of NO or NH{sub 3} were not detectable under these conditions, up to 773 K. The reduction of nitric oxide with ammonia occurred in the temperature range of 548-633 K. The Arrhenius curve of the reaction showed a break in the 563-603 K range, which was slightly dependent on the reactant concentrations. In this temperature range the reaction became oscillatory. The activation energies were 102 kJ/mol in the low-temperature and 212 kJ/mol in the high-temperature ranges, respectively. The product distribution was different in the two temperature regions; in the low-temperature range the n{sub 2}/N{sub 2}O ratio was close to 1, while in the high-temperature regime N{sub 2} formation was dominant, and the previously formed N{sub 2}O was consumed as well.

  15. Reservoir management applications to oil reservoirs

    SciTech Connect

    Martin, F.D.; Ouenes, A.; Weiss, W.W.; Chawathe, A.

    1996-02-01

    Winnipegosis and Red River oil production in the Bainville North Field in Roosevelt County, Montana began in 1979. The Red River is at 12,500 ft and one well is completed in the Nisku formation at 10,200 ft. This well produced 125,000 bbl from the Nisku during its first 41 months. Since operating conditions inhibit dual completions and Nisku wells cost $900,000, the need for a Nisku development plan is apparent. The size of the reservoir and optimum well density are the key unknowns. Recognizing the need for additional Nisku data, a 5000 acre 3-D seismic survey was processed and the results used to map the top of the Nisku. The reservoir thickness, porosity, and water saturation were known from the openhole logs at eight well locations on an average of 320 acres spacing. The thickness of the thin pay limited the seismic information to areal extent of reservoir depth. Static reservoir pressure from drillstem test was available at two wells. Additional reservoir pressure data in the form of transient tests were available at two wells. Under Los Alamos National Laboratory Basic Ordering Agreement 9-XU3-0402J-1, the New Mexico Petroleum Recovery Research Center (PRRC) characterized the Nisku to develop a reservoir management plan. Nance Petroleum provided all available field and laboratory data for characterizing the Nisku formation. Due to sparse well coverage, and the lack of producing wells, the PRRC had to develop a new reservoir description approach to reach an acceptable characterization of the entire reservoir. This new approach relies on the simultaneous use of 3-D seismic and reservoir simulation to estimate key reservoir properties.

  16. Petroleum reservoir data for testing simulation models

    SciTech Connect

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  17. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga

    2011-12-01

    Worldwide energy demand has driven long-term efforts towards developing a clean, hydrogen-based energy economy. Polymer electrolyte membrane fuel cells (PEMFC) are low emissions and high efficiency devices that utilize the power of hydrogen and are a key enabling technology for the hydrogen economy. Carbon supported platinum-black is the state-of the art catalyst for oxygen reduction in a PEMFC because it can withstand the acidic environment. However, the high cost and low abundance of this precious metal has limited large-scale commercialization of PEMFCs. Current efforts focus on developing alternative inexpensive, non-noble metal-based catalysts for oxygen reduction with performance comparable to conventional platinum based electrocatalysts. In this work, inexpensive metal-nitrogen-carbon (MNC) catalysts have been synthesized by pyrolyzing transition metal and nitrogen precursors together with high surface area carbon materials in a closed, constant-volume quartz tube. High pressure generated due to nitrogen precursor evaporation lead to increased surface nitrogen content in the catalysts post-pyrolysis. Electrochemical oxygen reduction activity of MNC catalysts was analyzed using half-cell Rotating Ring Disc Electrode (RRDE) studies. The effect of nitrogen precursor morphology on the generation of active sites has been explored in detail. By increasing the Nitrogen/Carbon ratio of the nitrogen precursor, the accessible active site density increased by reducing carbon deposition in the pores of the carbon support during pyrolysis. The most active catalysts were obtained using melamine, having a N/C ratio of 2. Single PEMFC measurements employing MNC catalysts as cathodes indicated kinetic current density as high as 15 A cm-3 at 0.8 ViR-free and over 100 h of stable current at 0.5 V were observed. Effects of carbon free ammonia generating solid nitrogen precursors such as urea and ammonium carbamate were also studied. These precursors etched the carbon support

  18. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  19. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D

  20. Numerical investigation of a coupled moving boundary model of radial flow in low-permeable stress-sensitive reservoir with threshold pressure gradient

    NASA Astrophysics Data System (ADS)

    Wen-Chao, Liu; Yue-Wu, Liu; Cong-Cong, Niu; Guo-Feng, Han; Yi-Zhao, Wan

    2016-02-01

    The threshold pressure gradient and formation stress-sensitive effect as the two prominent physical phenomena in the development of a low-permeable reservoir are both considered here for building a new coupled moving boundary model of radial flow in porous medium. Moreover, the wellbore storage and skin effect are both incorporated into the inner boundary conditions in the model. It is known that the new coupled moving boundary model has strong nonlinearity. A coordinate transformation based fully implicit finite difference method is adopted to obtain its numerical solutions. The involved coordinate transformation can equivalently transform the dynamic flow region for the moving boundary model into a fixed region as a unit circle, which is very convenient for the model computation by the finite difference method on fixed spatial grids. By comparing the numerical solution obtained from other different numerical method in the existing literature, its validity can be verified. Eventually, the effects of permeability modulus, threshold pressure gradient, wellbore storage coefficient, and skin factor on the transient wellbore pressure, the derivative, and the formation pressure distribution are analyzed respectively. Project supported by the National Natural Science Foundation of China (Grant No. 51404232), the China Postdoctoral Science Foundation (Grant No. 2014M561074), and the National Science and Technology Major Project, China (Grant No. 2011ZX05038003).

  1. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect

    Louis M. Castanier; William E. Brigham

    1998-03-31

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  2. Fimasartan for independent reduction of blood pressure variability in mild-to-moderate hypertension

    PubMed Central

    Shin, Mi-Seung; Kang, Dae Ryong; Kim, Changsoo; Cho, Eun Joo; Sung, Ki-Chul; Kang, Seok-Min; Kim, Dong-Soo; Joo, Seung Jae; Lee, Seung Hwan; Hwang, Kyung-Kuk; Park, Jeong Bae

    2016-01-01

    Background The angiotensin receptor antagonist fimasartan lowered blood pressure (BP) in a previous large population study. The purpose of this study was to evaluate whether fimasartan treatment for 3 months affects clinical and home BP variability in addition to reducing BP. Methods The study enrolled 1,396 patients (mean age 56.2±10.0 years; males 53.6%) with mild-to-moderate hypertension who had a complete set of home BP measurements (morning and evening) and metabolic risk evaluation. During the 3 months of study, fimasartan alone was used to control BP at a daily dose of 30–120 mg. Clinical and home BP measurements were performed before and after the 3-month treatment. BP variability included beat-to-beat variability (clinical) and day-to-day variability (home). Results Fimasartan reduced BP after 3 months of treatment. The average reduction of clinical systolic BP (c-SBP) was 15.08±18.36 mmHg (P<0.0001), and the average reduction of morning home SBP (m-SBP) was 11.49±19.33 mmHg (P<0.0001). Beat-to-beat variability as standard deviation (SD) of c-SBP was reduced from 4.56±3.22 to 4.24±3.11 mmHg (P=0.0026). Day-to-day variability as SD of m-SBP was reduced from 7.92±6.74 to 6.95±4.97 mmHg (P<0.0001). Multiple regression analysis revealed an independent association between the change in the SD of c-SBP and the change in c-SBP (P=0.0268) and, similarly, between the change in the SD of m-SBP and the change in m-SBP (P=0.0258), after adjusting for age, sex, body mass index, and change in mean BP. Conclusion This study indicated that 3 months of fimasartan treatment reduced day-to-day BP variability independent of BP reduction in patients with hypertension. PMID:27217724

  3. A multistrategic approach in the development of sourdough bread targeted towards blood pressure reduction.

    PubMed

    Peñas, E; Diana, M; Frias, J; Quílez, J; Martínez-Villaluenga, C

    2015-03-01

    Rising prevalence of hypertension is pushing food industry towards the development of innovative food products with antihypertensive effects. The aim was to study the effect of reduced sodium content and 21% addition of wholemeal wheat sourdough (produced by Lactobacillus brevis CECT 8183 and protease) on proximate composition, γ-aminobutyric acid (GABA) and peptide content of wheat bread. Angiotensin converting enzyme I (ACE) inhibitory and antioxidant activities were also evaluated. Sodium replacement by potassium salt did not affect chemical composition and biological activities of bread. In contrast, GABA and peptides <3 kDa contents in sourdough bread (SDB) were 7 and 3 times higher, respectively, than the observed in control. ACE inhibitory and antioxidant activities of the peptide fraction < 3 kDa from SDB was 1.7 and 2.6-3.0 times higher than control. Therefore, the combination of reduced sodium content with enriched concentrations of bioactive compounds in bread making may provide interesting perspectives for development of innovative breads towards blood pressure reduction. PMID:25638256

  4. The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages.

    PubMed

    O'Flynn, C C; Cruz-Romero, M C; Troy, D J; Mullen, A M; Kerry, J P

    2014-01-01

    This study investigated effects of high pressure (HP) treatment of pork meat at 150 or 300 MPa for 5 min before manufacturing sausages on the reduction of phosphate levels and compared to sausages manufactured with untreated pork meat (control sausages). Improvement in perceived saltiness, juiciness and overall flavour was observed in sausages manufactured using HP-treated meat at 150 MPa and 0% phosphate, compared to control sausages. Sausages manufactured using meat HP-treated at 150 MPa and 0.25% phosphate (P<0.05) improved hardness of sausages. HP-treated meat at 300 MPa and 0% phosphate decreased juiciness and adhesiveness, while at 0.25% phosphate, adversely affected emulsion stability and sensory attributes. HP treatment did not affect significantly the lightness of the sausages; however, elimination of phosphate reduced (P<0.05) the yellowness, while HP treatment at 150 MPa with 0.25 or 0.5% phosphate increased (P<0.05) redness. HP reatment at 150 MPa has potential for reducing phosphate levels in sausages without significant changes in their functionality and improved acceptability. PMID:24056406

  5. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil

    PubMed Central

    Terés, S.; Barceló-Coblijn, G.; Benet, M.; Álvarez, R.; Bressani, R.; Halver, J. E.; Escribá, P. V.

    2008-01-01

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as α-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (≈70–80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (HII phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA. PMID:18772370

  6. Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Tero, Ryugo; Yamashita, Ryuma; Yusa, Kota; Takikawa, Hirofumi

    2016-03-01

    Plasma medicine is an emerging research field in which various applications of electrical discharge, especially in the form of nonequilibrium plasma at atmospheric pressure, are examined, for example, the application of plasma to biological targets for various purposes such as selective killing of tumor cells and blood stanching. We have focused on the behavior of an artificial cell membrane system at the solid-liquid interface. To evaluate the lateral lipid mobility, we measured the diffusion coefficient of the supported lipid bilayer (SLB) composed of dioleoylphosphatidylcholine with fluorescence recovery after photobleaching by confocal laser scanning microscopy. It was found that the diffusion coefficient was decreased by plasma irradiation and that the diffusion coefficient decreasing rate proceeded with increasing plasma power. We investigated the effects of stimulation with an equilibrium chemical, H2O2, on the SLB and confirmed that the diffusion coefficient did not change at least up to a H2O2 concentration of 5 mM. These results indicate that transient active species generated by plasma play critical roles in the reduction in SLB fluidity. The effects of the two generated major oxidized lipid species, hydroxyl- or hydroperoxy-phosphatidylcholine (PC) and acyl-chain-truncated PCs terminated with aldehyde or carboxyl group, on lateral lipid mobility are discussed.

  7. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    PubMed Central

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  8. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    PubMed

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  9. Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration

    SciTech Connect

    Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

    2013-10-01

    A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Young’s modulus, and Poisson’s ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations.

  10. Electrocatalytic H2 Evolution by Supramolecular Ru(II)-Rh(III)-Ru(II) Complexes: Importance of Ligands as Electron Reservoirs and Speciation upon Reduction.

    PubMed

    Manbeck, Gerald F; Canterbury, Theodore; Zhou, Rongwei; King, Skye; Nam, Geewoo; Brewer, Karen J

    2015-08-17

    The supramolecular water reduction photocatalysts [{(Ph2phen)2Ru(dpp)}2RhX2](PF6)5 (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp =2,3-bis(2-pyridyl)pyrazine X = Cl, Br) are efficient electrocatalysts for the reduction of CF3SO3H, CF3CO2H, and CH3CO2H to H2 in DMF or DMF/H2O mixtures. The onset of catalytic current occurs at -0.82 V versus Ag/AgCl for CF3SO3H, -0.90 V for CF3CO2H, and -1.1 V for CH3CO2H with overpotentials of 0.61, 0.45, and 0.10 V, respectively. In each case, catalysis is triggered by the first dpp ligand reduction implicating the dpp as an electron reservoir in catalysis. A new species with Epc ∼ -0.75 V was observed in the presence of stoichiometric amounts of strong acid, and its identity is proposed as the Rh(H)(III/II) redox couple. H2 was produced in 72-85% Faradaic yields and 95-116 turnovers after 2 h and 435 turnovers after 10 h of bulk electrolysis. The identities of Rh(I) species upon reduction have been studied. In contrast to the expected dissociation of halides in the Rh(I) state, the halide loss depends on solvent and water content. In dry CH3CN, in which Cl(-) is poorly solvated, a [Ru] complex dissociates and [(Ph2phen)2Ru(dpp)Rh(I)Cl2](+) and [(Ph2phen)2Ru(dpp)](2+) are formed. In contrast, for X = Br(-), the major product of reduction is the intact trimetallic Rh(I) complex [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+). Chloride loss in CH3CN is facilitated by addition of 3 M H2O. In DMF, the reduced species is [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+) regardless of X = Cl(-) or Br(-). PMID:26247428

  11. Evolution of the Cerro Prieto reservoirs under exploitation

    SciTech Connect

    Truesdell, A.H.; Lippmann, M.J.; Puente, H.G.

    1997-07-01

    The Cerro Prieto Geothermal field of Baja California (Mexico) has been under commercial production to generate electricity since 1973. Over the years, the large amount of Geothermal fluids extracted (at present about 12,000 tons per hour) to supply steam to the power plants has resulted in a reduction of pressures, changes in reservoir processes, and increased flow of cooler groundwater into the geothermal system. The groundwater recharging the reservoir moves horizontally through permeable layers, as well as vertically through permeable fault zones. In addition, the supply of deep hot waters has continued unabated, and perhaps has increased as reservoir pressure decreased. Since 1989, this natural fluid recharge has been supplemented by injection which presently amounts to about 20% of the fluid produced. Changes in the chemical and physical characteristics of the reservoir fluids due to the drop in pressures and the inflow of cooler groundwaters and injectate have been detected on the basis of wellhead data. These changes point to reservoir processes like local boiling, phase segregation, steam condensation, mixing and dilution. Finally, the study identified areas where fluids are entering the reservoir, as well as indicated their source (i.e. natural Groundwater recharge versus injectate) and established the controlling geologic structures.

  12. Seal assessment and estimated storage capacities of a targeted CO2 reservoir based on new displacement pressures in SW Wyoming, U.S.A.

    NASA Astrophysics Data System (ADS)

    Spaeth, Lynsey; Campbell-Stone, Erin; Lynds, Ranie; Frost, Carol; McLaughlin, J. Fred

    2013-04-01

    single wetting phase at elevated pressures and temperatures, resulting in an interfacial tension of 0 milliNewton/meter. Under these conditions the pore throat radius of sealing units is assumed to be the principle inhibitor to flow through the seal. Experimental data indicate pore throat radii range from 39.2 to 113.5 nanometers in the confining system, and preliminary column height calculations indicate that, depending on the size of the plume, reservoir thickness will most likely be the limiting factor to the amount of CO2 that can be sequestered rather than the column height.

  13. Reinjection into geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  14. Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration

    SciTech Connect

    Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

    2013-08-12

    A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Young’s modulus, and Poisson’s ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. The injection pressure and ground surface displacement are often monitored for injection well safety, and are believed can partially reflect the risk of fault reactivation and seismicity. Based on the reduced order model and response surface, the input parameters can be screened for control the risk of induced seismicity. The uncertainty of the subsurface structure properties cause the numerical simulation based on a single or a few samples does not accurately estimate the geomechanical response in the actual injection site. Probability of risk can be used to evaluate and predict the risk of injection when there are great uncertainty in the subsurface properties and operation

  15. Reservoir geochemistry: A link between reservoir geology and engineering?

    SciTech Connect

    Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N.; Corbett, P.W.M.; Ementon, N.

    1997-02-01

    Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  16. Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses

    PubMed Central

    Johnson, Blair D.; van Helmond, Noud; Curry, Timothy B.; van Buskirk, Camille M.; Convertino, Victor A.

    2014-01-01

    The purpose of this study was to compare hemodynamic and blood analyte responses to reduced central venous pressure (CVP) and pulse pressure (PP) elicited during graded lower body negative pressure (LBNP) to those observed during graded blood loss (BL) in conscious humans. We hypothesized that the stimulus-response relationships of CVP and PP to hemodynamic responses during LBNP would mimic those observed during BL. We assessed CVP, PP, heart rate, mean arterial pressure (MAP), and other hemodynamic markers in 12 men during LBNP and BL. Blood samples were obtained for analysis of catecholamines, hematocrit, hemoglobin, arginine vasopressin, and blood gases. LBNP consisted of 5-min stages at 0, 15, 30, and 45 mmHg of suction. BL consisted of 5 min at baseline and following three stages of 333 ml of hemorrhage (1,000 ml total). Individual r2 values and linear regression slopes were calculated to determine whether the stimulus (CVP and PP)-hemodynamic response trajectories were similar between protocols. The CVP-MAP trajectory was the only CVP-response slope that was statistically different during LBNP compared with BL (0.93 ± 0.27 vs. 0.13 ± 0.26; P = 0.037). The PP-heart rate trajectory was the only PP-response slope that was statistically different during LBNP compared with BL (−1.85 ± 0.45 vs. −0.46 ± 0.27; P = 0.024). Norepinephrine, hematocrit, and hemoglobin were all lower at termination in the BL protocol compared with LBNP (P < 0.05). Consistent with our hypothesis, LBNP mimics the hemodynamic stimulus-response trajectories observed during BL across a significant range of CVP in humans. PMID:24876357

  17. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and

  18. Experimental Investigation on the Influence of High Pressure and High Temperature on the Mechanical Properties of Deep Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Mishra, Brijes; Heasley, Keith A.

    2015-11-01

    Deep and ultra-deep resources extraction has resulted in the challenge of drilling into high-pressure, high-temperature (HPHT) environments. Drilling challenges at such extreme conditions prompted NETL to develop a specialized ultra-deep drilling simulator (UDS) for investigating drill behavior in such conditions. Using the UDS apparatus, complex laboratory tests were performed on Carthage marble (Warsaw limestone) and Crab Orchard sandstone, which represent the rocks in the basins of the Tuscaloosa trend in southern Louisiana and the Arbuckle play in Oklahoma and North Texas. Additionally, numerical models of the UDS were developed for performing parametric analyses that would be impossible with the UDS alone. Subsequently, it was found that the input properties for these two rock types at such extreme pressure and temperature conditions were unavailable. Therefore, a suite of unconfined compressive strength, indirect tensile strength, and triaxial compression tests ( σ 1 > σ 2 = σ 3) were performed on Carthage marble and Crab Orchard sandstone for investigating their behavior in HPHT environments. The HPHT experiments were performed at confining pressures ranging from atmospheric to 200 MPa, and with temperatures ranging from 25 to 180 °C. The influences of confining pressure and temperature on the mechanical properties of two rocks were investigated.

  19. Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions

    PubMed Central

    Picard, Aude; Testemale, Denis; Wagenknecht, Laura; Hazael, Rachael; Daniel, Isabelle

    2015-01-01

    Microorganisms influence biogeochemical cycles from the surface down to the depths of the continental rocks and oceanic basaltic crust. Due to the poor recovery of microbial isolates from the deep subsurface, the influence of physical environmental parameters, such as pressure and temperature, on the physiology and metabolic potential of subsurface inhabitants is not well constrained. We evaluated Fe(III) reduction rates (FeRRs) and viability, measured as colony-forming ability, of the deep-sea piezophilic bacterium Shewanella profunda LT13a over a range of pressures (0–125 MPa) and temperatures (4–37∘C) that included the in situ habitat of the bacterium isolated from deep-sea sediments at 4500 m depth below sea level. S. profunda LT13a was active at all temperatures investigated and at pressures up to 120 MPa at 30∘C, suggesting that it is well adapted to deep-sea and deep sedimentary environments. Average initial cellular FeRRs only slightly decreased with increasing pressure until activity stopped, suggesting that the respiratory chain was not immediately affected upon the application of pressure. We hypothesize that, as pressure increases, the increased energy demand for cell maintenance is not fulfilled, thus leading to a decrease in viability. This study opens up perspectives about energy requirements of cells in the deep subsurface. PMID:25653646

  20. Iron reduction by the deep-sea bacterium Shewanella profunda LT13a under subsurface pressure and temperature conditions.

    PubMed

    Picard, Aude; Testemale, Denis; Wagenknecht, Laura; Hazael, Rachael; Daniel, Isabelle

    2014-01-01

    Microorganisms influence biogeochemical cycles from the surface down to the depths of the continental rocks and oceanic basaltic crust. Due to the poor recovery of microbial isolates from the deep subsurface, the influence of physical environmental parameters, such as pressure and temperature, on the physiology and metabolic potential of subsurface inhabitants is not well constrained. We evaluated Fe(III) reduction rates (FeRRs) and viability, measured as colony-forming ability, of the deep-sea piezophilic bacterium Shewanella profunda LT13a over a range of pressures (0-125 MPa) and temperatures (4-37∘C) that included the in situ habitat of the bacterium isolated from deep-sea sediments at 4500 m depth below sea level. S. profunda LT13a was active at all temperatures investigated and at pressures up to 120 MPa at 30∘C, suggesting that it is well adapted to deep-sea and deep sedimentary environments. Average initial cellular FeRRs only slightly decreased with increasing pressure until activity stopped, suggesting that the respiratory chain was not immediately affected upon the application of pressure. We hypothesize that, as pressure increases, the increased energy demand for cell maintenance is not fulfilled, thus leading to a decrease in viability. This study opens up perspectives about energy requirements of cells in the deep subsurface. PMID:25653646

  1. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high hydrostatic pressure pasteurization.

    PubMed

    Moerman, F; Mertens, B; Demey, L; Huyghebaert, A

    2001-10-01

    People have a growing preference for fresh, healthy, palatable and nutritious meals and drinks. However, as food deterioration is a constant threat along the entire food chain, food preservation remains as necessary now as in the past. High pressure processing is one of the emerging technologies being studied as an alternative to the classical pasteurization and sterilization treatments of food. Samples of fried minced pork meat were inoculated with strains of Streptococcus faecalis and with sporulating microorganisms like Bacillus subtilis and stearothermophilus. The samples were subjected to several combined temperature-high pressure treatments predicted by the mathematical model applied in Response Surface Methodology. Using the "Box-Behnken" concept, the number of tests for a whole area of pressure-temperature-time-combinations (pressure variation: 50-400 MPa, temperature variation 20-80°C, time variation 1-60 min) could be limited to 15. In the center point of the model, the experimental combination was performed in triple to estimate the experimental variance. All the tests were executed in a randomized order to exclude the disturbing effect of environmental factors. Microbial analysis revealed for each microorganism an important reduction in total plate count, demonstrating a superior pressure resistance of the sporulating microorganisms in comparison with the most pressure resistant vegetative species Streptococcus faecalis. The effect of the medium composition could be neglected, showing little protective effect of, e.g. the fat fraction as seen in heat preservation techniques. PMID:22062669

  2. Cavitation in hydraulic fluids. I - Inception in shear flow. II - Delay time for stepwise reduction in pressure

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.

    1980-09-01

    A novel concentric-cylinder test apparatus was used to study the onset of cavitation in hydraulic fluids with allowance for the effects of shear. The fluids tested were base oils and include four types of paraffinic mineral oils and two types of naphthenic oils. In addition, the delay time of gaseous cavitation in seven types of hydraulic fluids and tap water was measured for a stepwise reduction in pressure from atmospheric pressure to given pressure. The longest delay time for the incipient cavitation is obtained for water-glycol fluids, and the second longest for tap water. Petroleum-based hydraulic fluids and the phosphate ester have almost the same delay times, which are slightly longer than for the base oil.

  3. Isotopic insights into microbial sulfur cycling in oil reservoirs

    PubMed Central

    Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094

  4. Blunted reduction of pulse pressure during nighttime is associated with left ventricular hypertrophy in elderly hypertensive patients.

    PubMed

    Iida, Takashi; Kohno, Isao; Fujioka, Daisuke; Ichigi, Yoshihide; Kawabata, Ken-ichi; Obata, Jun-ei; Osada, Mitsuru; Takano, Hajime; Umetani, Ken; Kugiyama, Kiyotaka

    2004-08-01

    Increased pulse pressure (PP) is recognized as a risk factor for cardiovascular disease, especially in elderly patients. However, blood pressure (BP) is known to have a circadian variation. Therefore, this study asked whether or not PP has a circadian variation and, if so, whether a circadian variation of PP has clinical importance. Ambulatory BP monitoring (every 30 min for 48 h) was performed in 255 patients with untreated essential hypertension (24 to 82 years old; mean: 52+/-12 years). Left ventricular mass index (LVMI) was estimated from M-mode echocardiography. PP was decreased during nighttime (10+/-11% reduction from daytime PP). Multivariate linear regression analysis showed that, among four variables-the degree of nighttime PP reduction, daytime PP, 48-h systolic BP, and nondipper hypertension-the degree of nighttime PP reduction had the strongest (inverse) correlation with LVMI in a subgroup of elderly patients (> or =60 years old, n =67) (standardized regression coefficient=-0.32, p =0.02), whereas this association was not significant in the whole patient population unclassified by age. Furthermore, a blunted reduction of nighttime PP in combination with nondipper hypertension was an incremental risk for increase in LVMI in the elderly patients. In conclusion, PP is reduced during nighttime, but the degree of reduction varies among patients. The blunted reduction of nighttime PP is a risk for left ventricular hypertrophy, an established predictor of hypertension-induced cardiovascular events, and it may thus play a role in cardiovascular complications, especially in elderly patients with nondipper hypertension. PMID:15492477

  5. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  6. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  7. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  8. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  9. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  10. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  11. Mechanism of reservoir testing

    SciTech Connect

    Bodvarsson, Gunnar

    1987-01-01

    In evaluating geothermal resources we are primarily interested in data on the distribution of temperature and fluid conductivity within the reservoir, the total volume of the productive formations, recharge characteristics and chemical quality of the thermal fluids. While geophysical exploration by surface methods may furnish some data on the temperature field and give indications as to the reservoir volume, they furnish practically no information on the fluid conductivity and production characteristics. Such information will generally have to be obtained by tests performed within the reservoir, primarily by production tests on sufficiently deep wells. Reservoir testing is therefore one of the most important tasks in a general exploration program. In principal, reservoir testing has much in common with conventional geophysical exploration. Although the physical fields applied are to some extent different, they face the same type of selection between controlled and natural drives, forward and inverse problem setting, etc. The basic philosophy (Bodvarsson, 1966) is quite similar. In the present paper, they discuss some fundamentals of the theory of reservoir testing where the fluid conductivity field is the primary target. The emphasis is on local and global aspects of the forward approach to the case of liquid saturated (dominated) Darcy type formations. Both controlled and natural driving pressure or strain fields are to be considered and particular emphasis is placed on the situation resulting from the effects of a free liquid surface at the top of the reservoir.

  12. Selective Heart Rate Reduction With Ivabradine Increases Central Blood Pressure in Stable Coronary Artery Disease.

    PubMed

    Rimoldi, Stefano F; Messerli, Franz H; Cerny, David; Gloekler, Steffen; Traupe, Tobias; Laurent, Stéphane; Seiler, Christian

    2016-06-01

    Heart rate (HR) lowering by β-blockade was shown to be beneficial after myocardial infarction. In contrast, HR lowering with ivabradine was found to confer no benefits in 2 prospective randomized trials in patients with coronary artery disease. We hypothesized that this inefficacy could be in part related to ivabradine's effect on central (aortic) pressure. Our study included 46 patients with chronic stable coronary artery disease who were randomly allocated to placebo (n=23) or ivabradine (n=23) in a single-blinded fashion for 6 months. Concomitant baseline medication was continued unchanged throughout the study except for β-blockers, which were stopped during the study period. Central blood pressure and stroke volume were measured directly by left heart catheterization at baseline and after 6 months. For the determination of resting HR at baseline and at follow-up, 24-hour ECG monitoring was performed. Patients on ivabradine showed an increase of 11 mm Hg in central systolic pressure from 129±22 mm Hg to 140±26 mm Hg (P=0.02) and in stroke volume by 86±21.8 to 107.2±30.0 mL (P=0.002). In the placebo group, central systolic pressure and stroke volume remained unchanged. Estimates of myocardial oxygen consumption (HR×systolic pressure and time-tension index) remained unchanged with ivabradine.The decrease in HR from baseline to follow-up correlated with the concomitant increase in central systolic pressure (r=-0.41, P=0.009) and in stroke volume (r=-0.61, P<0.001). In conclusion, the decrease in HR with ivabradine was associated with an increase in central systolic pressure, which may have antagonized possible benefits of HR lowering in coronary artery disease patients. CLINICAL TRIALSURL: http://www.clinicaltrials.gov. Unique identifier NCT01039389. PMID:27091900

  13. Reduction of pressure in postcapillary venules induced by EPI-fluorescent illumination of FITC-dextrans

    SciTech Connect

    Bekker, A.Y.; Ritter, A.B.; Duran, W.N.

    1987-01-01

    Blue light (488nm) irradiation of intravenously injected fluorescein isothiocyanate (FITC)-Dextrans induces platelet aggregation in microvessels. The build-up of the aggregates in the microvessel lumen results in a change in microcirculatory hemodynamics. We found that lumenal pressure falls to approximately 75% of the control pressure within the first 10 seconds following the onset of irradiation. The damage, however, is not permanent and pressure returns to control level after the illumination of the microcirculatory field is discontinued. This effect can lead to erroneous conclusions in studies of microcirculatory hemodynamics and macromolecular permselectivity in preparations in which intravital fluorescence microscopy is employed. Short time irradiation (1 min. or less) of the microcirculatory field is recommended as a means of minimizing the deleterious effects of blue light irradiation.

  14. Long-Lasting Reduction of Blood Pressure by Electroacupuncture in Patients with Hypertension: Randomized Controlled Trial

    PubMed Central

    Li, Peng; Cheng, Ling; Liu, Dongmei; Painovich, Jeannette; Vinjamury, Sivarama; Longhurst, John C.

    2015-01-01

    Abstract Background: Acupuncture at specific acupoints has experimentally been found to reduce chronically elevated blood pressure. Objective: To examine effectiveness of electroacupuncture (EA) at select acupoints to reduce systolic blood pressure (SBP) and diastolic blood pressures (DBP) in hypertensive patients. Design: Two-arm parallel study. Patients: Sixty-five hypertensive patients not receiving medication were assigned randomly to one of the two acupuncture intervention (33 versus 32 patients). Intervention: Patients were assessed with 24-hour ambulatory blood pressure monitoring. They were treated with 30-minutes of EA at PC 5-6+ST 36-37 or LI 6-7+GB 37-39 once weekly for 8 weeks. Four acupuncturists provided single-blinded treatment. Main outcome measures: Primary outcomes measuring effectiveness of EA were peak and average SBP and DBP. Secondary outcomes examined underlying mechanisms of acupuncture with plasma norepinephrine, renin, and aldosterone before and after 8 weeks of treatment. Outcomes were obtained by double-blinded evaluation. Results: After 8 weeks, 33 patients treated with EA at PC 5-6+ST 36-37 had decreased peak and average SBP and DBP, compared with 32 patients treated with EA at LI 6-7+GB 37-39 control acupoints. Changes in blood pressures significantly differed between the two patient groups. In 14 patients, a long-lasting blood pressure–lowering acupuncture effect was observed for an additional 4 weeks of EA at PC 5-6+ST 36-37. After treatment, the plasma concentration of norepinephrine, which was initially elevated, was decreased by 41%; likewise, renin was decreased by 67% and aldosterone by 22%. Conclusions: EA at select acupoints reduces blood pressure. Sympathetic and renin-aldosterone systems were likely related to the long-lasting EA actions. PMID:26392838

  15. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  16. High and Ultrahigh pressure peridotites: fossil reservoirs of subduction zone processes and deep crust-mantle wedge interaction

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco

    2010-05-01

    The large-scale mass transfer allied with subduction recycles surface volatiles and crustal materials into the mantle, to affect its composition and rheology. Most geological processes related to subduction thus originate from an interplay between subducting plates and overlying lithospheric and asthenospheric mantle. Much information on phase relations during subduction has been provided by experiments and by studies of natural high- (HP) and ultrahigh-pressure (UHP) rocks and fluids. In contrast, knowledge on supra-subduction mantle wedges is much less. Here, the interaction between slab fluids and mantle rocks at variable subduction depths is discussed considering two case-studies: the UHP garnet websterites from Bardane (Western Gneiss Region, Norway) and the HP garnet peridotites from the Ulten Zone (Eastern Alps). The Bardane websterites derive from cold Archean subcontinental mantle involved in Scandian subduction to UHP. Subduction metamorphism was promoted by slab fluid infiltration in the overlying mantle up to P of 6.5 - 7 GPa (c.a. 200 km depth), as witnessed by micro-diamond-bearing inclusions and by crystallization of majoritic garnet in veins. The Ulten peridotites are slices of Variscan mantle wedge which experienced infiltration of metasomatic subduction fluids. These favoured transformation of spinel-peridotites into garnet + amphibole + dolomite peridotites at P < 3GPa. Formation of metasomatized garnet peridotite mylonites suggest channelled influx of subduction fluids. The high XMg and the incompatible element-enriched composition of subduction minerals in Bardane indicate that previously depleted websterites were refertilized by COH subduction fluids. Comparison with the Ulten garnet + amphibole + dolomite peridotites outlines relevant similarity in the metasomatic fingerprints and in the COH fluid phase involved. This calls for concomitant subduction of the continental crust, to provide carbon and incompatible element-enriched fluids. For

  17. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  18. Impact of Stress Reduction Interventions on Hostility and Ambulatory Systolic Blood Pressure in African American Adolescents

    ERIC Educational Resources Information Center

    Wright, Lynda Brown; Gregoski, Mathew J.; Tingen, Martha S.; Barnes, Vernon A.; Treiber, Frank A.

    2011-01-01

    This study examined the impact of breathing awareness meditation (BAM), life skills (LS) training, and health education (HE) interventions on self-reported hostility and 24-hour ambulatory blood pressure (ABP) in 121 African American (AA) ninth graders at increased risk for development of essential hypertension. They were randomly assigned to BAM,…

  19. Effect of high pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure processing (HPP) on the survival of a five-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a post-packaging intervention. QF was made using pasteurized, homogenized milk, was starter-free and was not pressed...

  20. Reservoirs 3 carbonates

    SciTech Connect

    Beaumont, E.A.; Foster, N.H.

    1988-01-01

    This book covers the topics of Carbonates; Carbonate depositional environments and Carbonate diagenesis. Included are the following papers: pore geometry of carbonate rocks as revealed by pore casts and capillary pressure; a review of carbonate reservoirs; the chemistry of dolomitization and dolomite precipitation.

  1. Study of Pyridine-Mediated Electrochemical Reduction of CO2 to Methanol at High CO2 Pressure.

    PubMed

    Rybchenko, Sergey I; Touhami, Dalila; Wadhawan, Jay D; Haywood, Stephanie K

    2016-07-01

    The recently proposed highly efficient route of pyridine-catalyzed CO2 reduction to methanol was explored on platinum electrodes at high CO2 pressure. At 55 bar (5.5 MPa) of CO2 , the bulk electrolysis in both potentiostatic and galvanostatic regimes resulted in methanol production with Faradaic yields of up to 10 % for the first 5-10 C cm(-2) of charge passed. For longer electrolysis, the methanol concentration failed to increase proportionally and was limited to sub-ppm levels irrespective of biasing conditions and pyridine concentration. This limitation cannot be removed by electrode reactivation and/or pre-electrolysis and appears to be an inherent feature of the reduction process. In agreement with bulk electrolysis findings, the CV analysis supported by simulation indicated that hydrogen evolution is still the dominant electrode reaction in pyridine-containing electrolyte solution, even with an excess CO2 concentration in the solution. No prominent contribution from either a direct or coupled CO2 reduction was found. The results obtained suggest that the reduction of CO2 to methanol is a transient process that is largely decoupled from the electrode charge transfer. PMID:27253886

  2. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    PubMed

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. PMID:26015450

  3. Research on oil recovery mechanisms in heavy oil reservoirs

    SciTech Connect

    Brigham, W.E.; Aziz, K.; Ramey, H.J. Jr.

    1991-01-01

    The goal of the Stanford University Petroleum Research Institute is to conduct research directed toward increasing the recovery of heavy oils. Presently, SUPRI is working in five main directions: Assess the influence of different reservoir conditions (temperature and pressure) on the absolute and relative permeability to oil and water and on capillary pressure; evaluate the effect of different reservoir parameters on the in-situ combustion process. This project includes the study of the kinetics of the reactions; investigate the mechanisms of the process using commercially available surfactants for reduction of gravity override and channeling of steam; investigate and improve techniques of formation evaluation such as tracer tests and pressure transient tests; and provide technical support for design and monitoring of DOE sponsored or industry initiated field projects.

  4. Stepping Up the Pressure: Arousal Can Be Associated with a Reduction in Male Aggression

    PubMed Central

    Ward, Andrew; Mann, Traci; Westling, Erika H.; Creswell, J. David; Ebert, Jeffrey P.; Wallaert, Matthew

    2009-01-01

    The attentional myopia model of behavioral control (Mann & Ward, 2007) was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. PMID:18561301

  5. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

    PubMed Central

    Norsk, Peter; Asmar, Ali; Damgaard, Morten; Christensen, Niels Juel

    2015-01-01

    Acute weightlessness in space induces a fluid shift leading to central volume expansion. Simultaneously, blood pressure is either unchanged or decreased slightly. Whether these effects persist for months in space is unclear. Twenty-four hour ambulatory brachial arterial pressures were automatically recorded at 1–2 h intervals with portable equipment in eight male astronauts: once before launch, once between 85 and 192 days in space on the International Space Station and, finally, once at least 2 months after flight. During the same 24 h, cardiac output (rebreathing method) was measured two to five times (on the ground seated), and venous blood was sampled once (also seated on the ground) for determination of plasma catecholamine concentrations. The 24 h average systolic, diastolic and mean arterial pressures (mean ± se) in space were reduced by 8 ± 2 mmHg (P = 0.01; ANOVA), 9 ± 2 mmHg (P < 0.001) and 10 ± 3 mmHg (P = 0.006), respectively. The nightly blood pressure dip of 8 ± 3 mmHg (P = 0.015) was maintained. Cardiac stroke volume and output increased by 35 ± 10% and 41 ± 9% (P < 0.001); heart rate and catecholamine concentrations were unchanged; and systemic vascular resistance was reduced by 39 ± 4% (P < 0.001). The increase in cardiac stroke volume and output is more than previously observed during short duration flights and might be a precipitator for some of the vision problems encountered by the astronauts. The spaceflight vasodilatation mechanism needs to be explored further. PMID:25774397

  6. Lens Position Parameters as Predictors of Intraocular Pressure Reduction After Cataract Surgery in Nonglaucomatous Patients With Open Angles

    PubMed Central

    Hsu, Chi-Hsin; Kakigi, Caitlin L.; Lin, Shuai-Chun; Wang, Yuan-Hung; Porco, Travis; Lin, Shan C.

    2015-01-01

    Purpose To evaluate the relationship between lens position parameters and intraocular pressure (IOP) reduction after cataract surgery in nonglaucomatous eyes with open angles. Methods The main outcome of the prospective study was percentage of IOP change, which was calculated using the preoperative IOP and the IOP 4 months after cataract surgery in nonglaucomatous eyes with open angles. Lens position (LP), defined as anterior chamber depth (ACD) + 1/2 lens thickness (LT), was assessed preoperatively using parameters from optical biometry. Preoperative IOP, central corneal thickness, ACD, LT, axial length (AXL), and the ratio of preoperative IOP to ACD (PD ratio) were also evaluated as potential predictors of percentage of IOP change. The predictive values of the parameters we found to be associated with the primary outcome were compared. Results Four months after cataract surgery, the average IOP reduction was 2.03 ± 2.42 mm Hg, a 12.74% reduction from the preoperative mean of 14.5 ± 3.05 mm Hg. Lens position was correlated with IOP reduction percentage after adjusting for confounders (P = 0.002). Higher preoperative IOP, shallower ACD, shorter AXL, and thicker LT were significantly associated with percentage of IOP decrease. Although not statistically significant, LP was a better predictor of percentage of IOP change compared to PD ratio, preoperative IOP, and ACD. Conclusions The percentage of IOP reduction after cataract surgery in nonglaucomatous eyes with open angles is greater in more anteriorly positioned lenses. Lens position, which is convenient to compute by basic ocular biometric data, is an accessible predictor with considerable predictive value for postoperative IOP change. PMID:26650901

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  8. Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion

    SciTech Connect

    Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang; Engel, David W.; Fang, Yilin; Eslinger, Paul W.

    2014-04-01

    This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.

  9. Ambulatory blood pressure reduction following high-intensity interval exercise performed in water or dryland condition.

    PubMed

    Sosner, Philippe; Gayda, Mathieu; Dupuy, Olivier; Garzon, Mauricio; Lemasson, Christopher; Gremeaux, Vincent; Lalongé, Julie; Gonzales, Mariel; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Bosquet, Laurent

    2016-05-01

    We aimed to compare blood pressure (BP) responses following moderate-intensity continuous exercise (MICE), high-intensity interval exercise (HIIE) in dry land or HIIE in immersed condition, using 24-hour ambulatory BP monitoring. Forty-two individuals (65 ± 7 years, 52% men) with a baseline BP ≥ 130/85 mm Hg (systolic/diastolic blood pressures [SBP/DBP]) were randomly assigned to perform one of the three following exercises on a stationary cycle: MICE (24 minutes at 50% peak power output) or HIIE in dry land (two sets of 10 minutes with phases of 15 seconds 100% peak power output interspersed by 15 seconds of passive recovery) or HIIE in up-to-the-chest immersed condition. While MICE modified none of the 24-hour average hemodynamic variables, dryland HIIE induced a 24-hour BP decrease (SBP: -3.6 ± 5.7/DBP: -2.8 ± 3.0 mm Hg, P < .05) and, to a much greater extent, immersed HIIE (SBP: -6.8 ± 9.5/DBP: -3.0 ± 4.5 mm Hg, P < .05). The one condition that modified 24-hour pulse-wave velocity was immersed HIIE (-0.21 ± 0.30 m/s, P < .05). PMID:27026570

  10. Efficacy of combined cataract extraction and endoscopic cyclophotocoagulation for the reduction of intraocular pressure and medication burden

    PubMed Central

    Roberts, Sammie J.; Mulvahill, Matthew; SooHoo, Jeffrey R.; Pantcheva, Mina B.; Kahook, Malik Y.; Seibold, Leonard K.

    2016-01-01

    AIM To report on the efficacy of combined endoscopic cyclophotocoagulation (ECP) and phacoemulsification cataract extraction (PCE) with intraocular lens placement for reduction of intraocular pressure (IOP) and medication burden in glaucoma. METHODS A retrospective case review of 91 eyes (73 patients) with glaucoma and cataract that underwent combined PCE/ECP surgery was performed. Baseline demographic and ocular characteristics were recorded, as well as intraocular pressure, number of glaucoma medications, and visual acuity postoperatively with 12-month follow-up. Treatment failure was defined as less than 20% reduction in IOP from baseline on two consecutive visits (at 1, 3, 6, or 12mo postoperatively), IOP ≥21 mm Hg or ≤5 mm Hg on two consecutive visits, or additional glaucoma surgery performed within 12mo after PCE/ECP. RESULTS Overall, mean medicated IOP was reduced from 16.65 mm Hg at baseline to 13.38 mm Hg at 12mo (P<0.0001). Mean number of glaucoma medications was reduced from 1.88 medications at baseline to 1.48 medications at 12mo (P=0.0003). At 3mo postoperatively, the success rate was 73.6% (95%CI: 63.3, 81.5), 57.1% at 6mo (95% CI: 46.3, 66.6), and 49.7% at 12mo (95%CI: 38.9, 59.6). Patient demographic characteristics were not associated with treatment success. The only ocular characteristic associated with treatment success was a higher baseline IOP. CONCLUSION Combined PCE/ECP surgery is an effective surgical option for the reduction of IOP and medication burden in glaucoma patients. Patients with higher baseline IOP levels are most likely to benefit from this procedure. PMID:27275423

  11. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    NASA Astrophysics Data System (ADS)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  12. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  13. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp.

    PubMed

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  14. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    PubMed Central

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  15. Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco.

    PubMed

    Tomasula, P M; Renye, J A; Van Hekken, D L; Tunick, M H; Kwoczak, R; Toht, M; Leggett, L N; Luchansky, J B; Porto-Fett, A C S; Phillips, J G

    2014-03-01

    The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥ 15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of

  16. Carbonate petroleum reservoirs

    SciTech Connect

    Roehl, P.O.; Choquette, P.W.

    1985-01-01

    This book presents papers on the geology of petroleum deposits. Topics considered include diagenesis, porosity, dolomite reservoirs, deposition, reservoir rock, reefs, morphology, fracture-controlled production, Cenozoic reservoirs, Mesozoic reservoirs, and Paleozoic reservoirs.

  17. Coarsened Exact Matching of Phaco-Trabectome to Trabectome in Phakic Patients: Lack of Additional Pressure Reduction from Phacoemulsification

    PubMed Central

    Parikh, Hardik A.; Bussel, Igor I.; Schuman, Joel S.; Brown, Eric N.; Loewen, Nils A.

    2016-01-01

    Purpose To compare intraocular pressure (IOP) after trabectome-mediated ab interno trabeculectomy surgery in phakic patients (T) and trabectome with same session phacoemulsification (PT) using Coarsened Exact Matching. Although phacoemulsification is associated with IOP reduction when performed on its own, it is not known how much it contributes in PT. Methods Subjects were divided into phakic T and PT. Exclusion criteria were follow-up for <12 months and additional glaucoma surgery. Demographics were compared by the Mann-Whitney U test and chi-squared test for continuous and categorical variables, respectively. Multiple imputation was utilized to avoid eliminating data with missing values. Groups were then matched using Coarsened Exact Matching based on age, race, type of glaucoma, baseline IOP, and number of preoperative glaucoma medications. Univariate linear regression was used to examine IOP reduction after surgery; those variables that were statistically significant were included in the final multivariate regression model. Results A total of 753 cases were included (T: 255, PT: 498). When all variables except for age were kept constant, there was an additional IOP reduction of 0.05±0.01 mmHg conferred for every yearly increment in age. Every 1 mmHg increase in baseline IOP correlated to an additional IOP reduction of 0.80±0.02 mmHg. Phacoemulsification was not found to be a statistically significant contributor to IOP when comparing T and PT (p≥0.05). T had a 21% IOP reduction to 15.9±3.5 mmHg (p<0.01) while PT had an 18% reduction to 15.5±3.6 mmHg (p<0.01). Number of medications decreased (p<0.01) in both groups from 2.4±1.2 to 1.9±1.3 and from 2.3±1.1 to 1.7±1.3, respectively. Conclusion Phacoemulsification does not make a significant contribution to postoperative IOP or number of medications when combined with trabectome surgery in phakic patients. PMID:26895293

  18. Beyond blood pressure: new paradigms in sodium intake reduction and health outcomes.

    PubMed

    King, Janet C; Reimers, Kristin J

    2014-09-01

    Since 1980, when inaugural national dietary guidance was to “avoid too much sodium,” recommendations have evolved to the 2010 Dietary Guidelines for Americans’ quantified guidance of 2300 and 1500 mg/d [USDA and U.S. Department of Health and Human Services. Dietary guidelines for Americans, 1st (http://www.cnpp.usda.gov/DGAs1980Guidelines.htm) and 7th (http://www.health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf) eds.]. Too much sodium remains a valid concern, but are current targets too low for optimal health? New research moves beyond sodium’s effect on the surrogate marker of blood pressure to examine the relation between sodium intake and cardiovascular morbidity and mortality. Results show that sodium intakes both less than and greater than ∼3000–5000 mg/d increase the risk of negative health outcomes. Additionally, newly compiled sodium intake data across populations show a uniformity that suggests that intake is physiologically set. Perhaps not coincidentally, the observed intakes fall within the range related to lowest risk. These findings are highly relevant to current efforts to achieve low sodium intakes across populations, because the data suggest that the efforts will be unsuccessful for healthy people and may cause harm to vulnerable populations. Remaining mindful of risks associated with both excessive and inadequate intakes is imperative with all nutrients, and sodium is no exception. Avoiding too much, and too little, sodium may be the best advice for Americans. PMID:25469390

  19. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Evans, T.E.; Fenstermacher, M. E.; Unterberg, E. A.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Frerichs, H.; Groth, M.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Mordijck, S.; Moyer, R.A.; Osborne, T. H.; Reiter, D.; Samm, U.; Schaffer, M. J.; Unterberg, B.; West, W. P.

    2009-01-01

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p(e) in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q(95) resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p(e) reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q(95) resonant character of type-I edge localized mode suppression by RMPs.

  20. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Frerichs, H.; Lehnen, M.; Reiter, D.; Samm, U.; Unterberg, B.; Evans, T. E.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Leonard, A. W.; Osborne, T. H.; Schaffer, M. J.; West, W. P.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Unterberg, E. A.; Jakubowski, M. W.; Mordijck, S.

    2009-10-16

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p{sub e} in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q{sub 95} resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p{sub e} reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q{sub 95} resonant character of type-I edge localized mode suppression by RMPs.

  1. Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications.

    PubMed

    Lee, Seung Whan; Mattevi, Cecilia; Chhowalla, Manish; Sankaran, R Mohan

    2012-03-15

    Reduction of graphene oxide (GO) at low temperature and atmospheric pressure via plasma-assisted chemistry is demonstrated. Hydrogen gas is continuously dissociated in a microplasma to generate atomic hydrogen, which flows from the remote plasma to thin films of GO deposited on a substrate. Direct interaction with ions and other energetic species is avoided to mitigate ion-induced sputter removal or damage. The residual oxygen content and structure of the GO films after plasma treatment is systematically characterized at different temperatures and correlated to the conductivity of the films. For example, at 150 °C, we find that the plasma-reduced GO contains less than 12.5% oxygen and exhibits a sheet resistance of 4.77 × 10(4) Ω/sq, as compared with thermal reduction alone, which results in 22.9% oxygen and a sheet resistance of 2.14 × 10(6) Ω/sq. Overall, the effective removal of oxygen functional groups by atomic hydrogen enables large-scale applications of GO as flexible conductors to be realized. PMID:26286289

  2. The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages.

    PubMed

    O'Flynn, Claire C; Cruz-Romero, Malco C; Troy, Declan; Mullen, Anne M; Kerry, Joe P

    2014-03-01

    This study investigated the effects of high pressure (HP) treatment of pork meat before manufacturing sausages with reduced salt levels and compared them to sausages manufactured with untreated meat (control sausages). A 2×5 factorial design was set up incorporating two pressure levels (0 or 150 MPa) and five salt levels (0.5, 1.0, 1.5, 2.0 and 2.5%). Most quality attributes were affected when salt levels were reduced below 1.5%. Fat loss (FL) was (P<0.05) affected by salt level; samples with <1.5% salt had the highest FL. HP treatment increased emulsion stability and reduced cook loss (CL) compared to control sausages. Increased CL was observed when salt was reduced below 2.0%. Salt reduction below 1.5% adversely affected colour, sensory and texture attributes. Independent of salt, HP treatment affected adversely juiciness and cohesiveness while adhesiveness was improved. Overall, there is potential to manufacture sausages maintaining organoleptic and functional properties traditionally associated with sausages using HP treated meat. PMID:24334049

  3. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population

    PubMed Central

    Perera, Shamira A; Ting, Daniel SW; Nongpiur, Monisha E; Chew, Paul T; Aquino, Maria Cecilia D; Sng, Chelvin CA; Ho, Sue-Wei; Aung, Tin

    2016-01-01

    Purpose To investigate the efficacy and safety of a punctum plug-based sustained drug release system for a prostaglandin analog, travoprost (OTX-TP), for intraocular pressure (IOP) reduction in an Asian population. Methods This is an initial feasibility, prospective, single-arm study involving 26 eyes and a bioresorbable punctum plug containing OTX-TP. An OTX-TP was placed in the vertical portion of the superior or inferior canaliculus of patients with primary open-angle glaucoma or ocular hypertension. The main outcome measure was the IOP-lowering efficacy of OTX-TP at 3 (8 am) and 10, 20, and 30 days (8 am, 10 am, and 4 pm), compared to baseline. Results A total of 26 OTX-TP were inserted for 17 subjects. The mean (standard deviation) age was 57.2 (13.8) years. At 10 days, all plugs were still present, and the IOP reduction from baseline was 6.2 (23%), 5.4 (21%), and 7.5 mmHg (28%) at 8 am, 10 am, and 4 pm, respectively. At 10 days, the mean IOP (standard error of mean) was 21.2 (1.2), 20.4 (0.8), and 19.7 (1.0) at 8 am, 10 am, and 4 pm, respectively, showing no discernible IOP trend during the course of the day. At 30 days, plug retention had declined to 42%, and the overall IOP reduction had decreased to 16%. Conclusion The sustained-release OTX-TP is able to reduce IOP by 24% (day 10) and 15.6% (day 30), respectively. It is a potentially well-tolerable ocular hypotensive for glaucoma patients with a history of poor compliance. PMID:27175058

  4. Association of biometric factors with anterior chamber angle widening and intraocular pressure reduction after uneventful phacoemulsification for cataract

    PubMed Central

    Huang, Guofu; Gonzalez, Eduardo; Lee, Roland; Chen, Yi-Chun; He, Mingguang; Lin, Shan C.

    2011-01-01

    PURPOSE To evaluate anterior chamber biometric factors associated with the degree of angle widening and intraocular pressure (IOP) reduction after phacoemulsification. SETTING University of California, San Francisco, California, USA. DESIGN Case series. METHODS Anterior chamber parameters obtained by anterior segment coherence tomography were compared preoperatively and 3 months postoperatively. Measurements included the angle opening distance 500 μm anterior to the scleral spur (AOD500), trabecular–iris space area 500 μm from the scleral spur (TISA500), iris curvature (I-Curv), anterior chamber angle (ACA), trabecular–iris space area, anterior chamber volume, anterior chamber width, and lens vault (LV). RESULTS The study enrolled 73 eyes. The mean patient age was 77.45 years ± 7.84 (SD); 65.75% of patients were women. From preoperatively to 3 months postoperatively, the mean AOD500 increased significantly (0.254 ± 0.105 to 0.433 ± 0.108 mm) and the mean IOP decreased significantly (14.97 ± 3.35 to 12.62 ± 3.37 mm Hg) (P < .001). The reduction in IOP was correlated with the increase in AOD500 (r = 0.240, P = .041) and preoperative LV (r = 0.235, P = .045). After adjusting for related factors, AOD500 widening was positively correlated with LV (β = 0.458, P = .044) and I-Curv (β = 0.235, P = .043) and negatively correlated with preoperative TISA500 (β = −0.269, P = .025) and ACA (β = −0.919, P = .027). CONCLUSIONS Surgically induced AOD widening was significantly correlated with anterior chamber biometric factors. Preoperative LV appears to be a significant factor in angle widening and IOP reduction after phacoemulsification. PMID:22055073

  5. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  6. Computation of time-dependent subsurface pore pressure variations and stresses due to time varying water loads at the Itoiz reservoir (Northern Spain), and their relation with near seismicity

    NASA Astrophysics Data System (ADS)

    Luzón, F.; García-Jerez, A.; Santoyo, M. A.

    2009-04-01

    In this work we study the seismicity produced near the newly constructed Itoiz reservoir in the western Pyrenees (northern Spain). We computed the evolution of the stress changes in the subsoil due to the time water load distribution and relate it with the main seismicity occurred after the beginning of impoundment in 2004. We also computed the pore pressure variations produced around Itoiz dam using a hybrid technique which take into account the time varying water loads in the reservoir. In this methodology, two different techniques are joined to calculate each one of the partial solutions evolved: the pore pressure diffusion term is obtained by using the Green functions of the problem, whereas the second term due to stress time changes is computed with a Finite Difference Method (FDM). We pay special attention to the pore pressure changes at the hypocenter location of the mainshock (with magnitude mb = 4.6) occurred on September 2004, 8 months after the beginning of its impounding. After this, we compute the coseismic and postseismic stress changes produced by the main events of the seismic series and study its influence on the triggering of the aftershocks by means of the Coulomb Failure Stress criterion (ΔCFS). Results show that at the time of occurrence of the main earthquake the pore pressure change was of about 1000 Pa at the hypocenter. However, the pore pressure variation exceeded 1000 Pa at other earlier times and at many different positions near Itoiz dam without the occurrence of earlier earthquakes. Thus, the origin of the September 18, 2004 earthquake (mb = 4.6) can be explained when considering the pore pressure perturbation at a pre-existent fault in the hypocenter location with more aptitude to fail than other sites, together with the assumption of regional pre-existing stress field. At last we found, a large positive influence over most of the aftershocks of the seismic series due to the stress changes produced by the largest events.

  7. Kinetics of reduction of aqueous hexaammineruthenium(III) ion at Pt and Au microelectrodes: electrolyte, temperature, and pressure effects.

    PubMed

    Vijaikanth, Vijendran; Li, Guangchun; Swaddle, Thomas W

    2013-03-01

    Rate constants kel obtained by impedance spectroscopy for the reduction of Ru(NH3)6(3+) at polycrystalline Pt and Au ultramicroelectrodes depend strongly on the identity and concentration of the anion present in the order CF3SO3(-) < Cl(-) < ClO4(-), but not on the cation of the supporting electrolyte (Na(+), K(+), H(+)). For Cl(-) as the sole anion present, kel is directly proportional to the total [Cl(-)], such that kel would be zero if Cl(-) were hypothetically absent, indicating that Cl(-) is directly involved in mediation of the Ru(NH3)6(3+/2+) electron transfer. For CF3SO3(-) as the sole counterion, the dependence of kel on the total [CF3SO3(-)] is not linear, possibly because blocking of the available electrode surface becomes dominant at high triflate concentrations. Volumes of activation ΔVel(⧧) for reduction of Ru(NH3)6(3+) at an electrode in presence of Cl(-) or CF3SO3(-) are much more negative than predictions based on theory (Swaddle, T. W. Chem. Rev.2005, 105, 2573) that has been successful with other electron transfer reactions but which does not take into account the involvement of the anions in the activation process. The strongly negative ΔVel(⧧) values probably reflect solvation increases peculiar to activation processes of Ru(III/II) am(m)ine complexes, possibly together with promotion of desorption of surface-blocking Cl(-) or CF3SO3(-) from electrodes by applied pressure. Frumkin corrections for Ru(NH3)6(3+) within the diffuse double layer would make ΔVel(⧧) even more negative than is observed, although the corrections would be small. The strongly negative ΔVel(⧧) values are inconsistent with reduction of Ru(NH3)6(3+) in direct contact with the metallic electrode surface, which would entail substantial dehydration of both the electrode and Ru(NH3)6(3+). Reduction of Ru(NH3)6(3+) can be regarded as taking place in hard contact with adsorbed water at the outer Helmholtz plane. PMID:23421865

  8. Water aerobics is followed by short-time and immediate systolic blood pressure reduction in overweight and obese hypertensive women.

    PubMed

    Cunha, Raphael Martins; Arsa, Gisela; Neves, Eduardo Borba; Lopes, Lorena Curado; Santana, Fabio; Noleto, Marcelo Vasconcelos; Rolim, Thais I; Lehnen, Alexandre Machado

    2016-07-01

    One exercise training session such as walking, running, and resistance can lead to a decrease in blood pressure in normotensive and hypertensive individuals, but few studies have investigated the effects of exercise training in an aquatic environment for overweight and obese hypertensive individuals. We aimed to assess the acute effects of a water aerobics session on blood pressure changes in pharmacologically treated overweight and obese hypertensive women. A randomized crossover study was carried out with 18 hypertensive women, 10 of them were overweight (54.4 ± 7.9 years; body mass index: 27.8 ± 1.7 kg/m(2)) and eight obese (56.4 ± 6.6 years; body mass index: 33.0 ± 2.0 kg/m(2)). The water aerobics exercise session consisted of a 45-minute training at the intensity of 70%-75% of maximum heart rate adjusted for the aquatic environment. The control group did not enter the pool and did not perform any exercise. We measured systolic blood pressure (SBP) and diastolic blood pressure (DBP) before, immediately after, and every 10 minutes up to 30 minutes after the aerobic exercise or control session. Overall (n = 18), DBP did not change after the water aerobic exercise and control session, and SBP decreased at 10 and 20 minutes postexercise compared to the control session. Among overweight women, SBP decreased at 10 and 20 minutes postexercise. In contrast, among obese women, SBP decreased only at 10 minutes postexercise. SBP variation was -2.68 mm Hg in overweight and -1.24 mm Hg in obese women. In conclusion, the water aerobics session leads to a reduction in SBP, but not in DBP, during 10 and 20 minutes postexercise recovery. Thus, it may be safely prescribed to overweight and obese women. PMID:27245928

  9. Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography

    USGS Publications Warehouse

    Gunasekera, R.C.; Foulger, G.R.; Julian, B.R.

    2003-01-01

    Intensive geothermal exploitation at The Geysers geothermal area, California, induces myriads of small-magnitude earthquakes that are monitored by a dense, permanent, local seismometer network. Using this network, tomographic inversions were performed for the three-dimensional Vp and Vp/Vs structure of the reservoir for April 1991, February 1993, December 1994, October 1996, and August 1998. The extensive low-Vp/Vs anomaly that occupies the reservoir grew in strength from a maximum of 9% to a maximum of 13.4% during the 7-year study period. This is attributed to depletion of pore liquid water in the reservoir and replacement with steam. This decreases Vp by increasing compressibility, and increases Vs because of reduction in pore pressure and the drying of argillaceous minerals, e.g., illite, which increase the shear modulus. These effects serendipitously combine to lower Vp/Vs, resulting in a strong overall effect that provides a convenient tool for monitoring reservoir depletion. Variations in the Vp and Vs fields indicate that water depletion is the dominant process in the central part of the exploited reservoir, and pressure reduction and mineral drying in the northwest and southeast parts of the reservoir. The rate at which the Vp/Vs anomaly grew in strength in the period 1991-1998 suggests most of the original anomaly was caused by exploitation. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective geothermal reservoir depletion monitoring tool and can potentially provide information about depletion in parts of the reservoir that have not been drilled.

  10. An experimental study of relative permeability hysteresis, capillary trapping characteristics, and capillary pressure of CO2/brine systems at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Austin Suthanthiraraj, Pearlson Prashanth

    We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as

  11. APFBC repowering could help meet Kyoto Protocol CO{sub 2} reduction goals[Advanced Pressurized Fluidized Bed Combustion

    SciTech Connect

    Weinstein, R.E.; Tonnemacher, G.C.

    1999-07-01

    The Clinton Administration signed the 1997 Kyoto Protocol agreement that would limit US greenhouse gas emissions, of which carbon dioxide (CO{sub 2}) is the most significant. While the Kyoto Protocol has not yet been submitted to the Senate for ratification, in the past, there have been few proposed environmental actions that had continued and wide-spread attention of the press and environmental activists that did not eventually lead to regulation. Since the Kyoto Protocol might lead to future regulation, its implications need investigation by the power industry. Limiting CO{sub 2} emissions affects the ability of the US to generate reliable, low cost electricity, and has tremendous potential impact on electric generating companies with a significant investment in coal-fired generation, and on their customers. This paper explores the implications of reducing coal plant CO{sub 2} by various amounts. The amount of reduction for the US that is proposed in the Kyoto Protocol is huge. The Kyoto Protocol would commit the US to reduce its CO{sub 2} emissions to 7% below 1990 levels. Since 1990, there has been significant growth in US population and the US economy driving carbon emissions 34% higher by year 2010. That means CO{sub 2} would have to be reduced by 30.9%, which is extremely difficult to accomplish. The paper tells why. There are, however, coal-based technologies that should be available in time to make significant reductions in coal-plant CO{sub 2} emissions. Th paper focuses on one plant repowering method that can reduce CO{sub 2} per kWh by 25%, advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology, based on results from a recent APFBC repowering concept evaluation of the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. The replacement of the existing 50-year base of power generating units needed to meet proposed Kyoto Protocol CO{sub 2} reduction commitments would be a massive undertaking. It is

  12. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  13. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  14. Increase in stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1993-01-01

    A new technique based on the insertion of a converging section in the driven tube is described which is capable of producing substantial increases in both reservoir pressure and enthalpy. A 1D inviscid full kinetics code is used to study a number of different locations and shapes for the converging driven tube section. For driven tube diameter reductions of factors of 2 and 3, the reservoir pressure is found to increase by factors of 2.1 and 3.2, respectively, and the enthalpy is found to simultaneously increase by factors of 1.5 and 2.1, respectively.

  15. Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench

    PubMed Central

    Vossmeyer, Antje; Deusner, Christian; Kato, Chiaki; Inagaki, Fumio; Ferdelman, Timothy G.

    2012-01-01

    The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.2 MPa. Samples without methane amendment stored at in situ pressure retained higher levels of sulfate reducing activity than samples stored at 0.1 MPa. Piezophilic SR showed distinct substrate specificity after hydrogen and acetate addition. SR activity in samples stored under methanic conditions was one order of magnitude higher than in non-amended samples. Methanic samples stored under low hydrostatic pressure exhibited no increased SR activity at high pressure even with the amendment of methane. These new insights into the effects of pressure on substrate specific sulfate reducing activity in anaerobic environmental samples indicate that hydrostatic pressure must be considered to be a relevant parameter in ecological studies of anaerobic deep-sea microbial processes and long-term storage of environmental samples. PMID:22822404

  16. Reservoir Technology

    SciTech Connect

    Renner, J.L.

    1992-03-24

    The reservoir technology program supports the utilization of geothermal resources through development and verification of new earth science technologies for: exploration, fluid production and injection; and prediction of reservoir lifetimes. A two-fold strategy of conducting DOE-sponsored research to meet higher-risk, longer-term needs and cost-shared research with industry in areas of greatest current need is utilized to maximize the benefit of the program to the geothermal industry. The program uses a coordinated, multi-disciplinary approach to investigating and solving reservoir problems facing the industry. Research at The Geysers geothermal field has received major emphasis in the past three years. Recent progress in that work will be reviewed in detail by The Geysers operators, federal, state and local regulators and other interested parties during a meeting in Santa Rosa on May 5 and 6, 1992. Hence the papers by Lipman, Bodvarsson et al., Wannamaker, et al., Horne, and Shook in this proceedings volume emphasize non-Geysers research in the program.

  17. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    SciTech Connect

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  18. Comparison study of intraocular pressure reduction efficacy and safety between latanoprost and tafluprost in Japanese with normal-tension glaucoma

    PubMed Central

    Ikeda, Yoko; Mori, Kazuhiko; Tada, Kaori; Ueno, Morio; Kinoshita, Shigeru; Sotozono, Chie

    2016-01-01

    Purpose To evaluate and compare the intraocular pressure (IOP) reduction efficacy and safety between the ophthalmic solutions 0.005% latanoprost (Lat) and 0.0015% tafluprost (Taf) in Japanese patients with normal-tension glaucoma (NTG). Methods In this randomized nonmasked study, we prospectively enrolled 30 Japanese NTG patients who had used Lat monotherapy for more than 4 weeks, and randomly divided them into the following two groups: 1) Lat-to-Taf group (LT group) and 2) Taf-to-Lat group (TL group). At the beginning of the study, both groups were switched from initial Lat to Lat or Taf for 12 weeks, and then switched over to the other drug (crossover) for 12 additional weeks. At 0, 4, 12, 16, and 24 weeks, we evaluated each patient’s IOP, conjunctival injection, and corneal epitheliopathy score, and at 0, 12, and 24 weeks, we evaluated their eyelash changes and pigmentation of the eyelids and irises. Results The mean IOP of the LT group (15 eyes) was 10.5, 10.6, and 11.1 mmHg, at 0, 12, and 24 weeks, respectively, whereas that of the TL group (15 eyes) was 11.7, 11.1, and 10.5 mmHg at 0, 12, and 24 weeks, respectively. No significant differences were found between the two groups and in the intragroup comparisons. Moreover, no significant differences were found between Lat and Taf in regard to the conjunctival injection score and corneal epitheliopathy score. Eyelash changes and eyelid and iris pigmentation were similar in both groups. Conclusion The findings of this study show that Lat and Taf have equivalent efficacy and safety in Japanese patients with NTG. PMID:27601879

  19. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  20. Dissimilar properties within a carbonate-reservoir's small fault zone, and their impact on the pressurization and leakage associated with CO2 injection

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-02-01

    This paper focuses on a small fault zone (too small to be detected by geophysical imaging) affecting a carbonate reservoir composed of porous and low-porosity layers. In a gallery located at 250 m depth, the hydraulic properties of a 20 m thick section of the reservoir affected by the studied fault are characterized by structural measurements and hydraulic injection into boreholes. We conducted electrical tomographies before and after an 18 hour-long injection, to image the fluid flow through the fault zone. Our main finding is that the damage zone displays contrasting permeability values (up to two orders of magnitude) inherited from the differential alteration of the intact rock layers. To characterize the impact of these hydraulic-property variations on the fluid flow, we carried out numerical simulations of water and supercritical CO2 injections, using the TOUGH2 code. Two damage-zone models were compared, with heterogeneous (Model 1) and homogeneous (Model 2) hydraulic properties. In Model 1, injected fluids cannot escape through the fault zone; they generate a high fluid overpressure, located in the damage-zone layers having the highest permeability and storativity. In Model 2, fluids can easily migrate; the overpressure is lower and located in the host rock along the fault zone.

  1. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  2. Self-Calibrating Pressure Transducer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  3. Gas reaction in the Cerro Prieto reservoir

    SciTech Connect

    Nehring, N.L.; Valette-Silver, J.N.

    1982-08-10

    Gases in an undisturbed geothermal reservoir should be in equilibrium with the surrounding rock and water. Production of fluid at rapid rates may cause physical changes in the reservoir that are reflected as changes in gas composition. At Cerro Prieto production has lowered the reservoir pressure enough in places to induce boiling in the aquifer, leading to high enthalpy, low production and eventual drawndown of cold water into the reservoir. These changes are reflected in gas compositions. Differences, in gas composition between well and surface samples reflect changing equilibrium in temperature-dependent chemical reactions and a mixture of gases dissolved in groundwater.

  4. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method. PMID:25833146

  5. Imaging thin-bed reservoirs with 3-D seismic

    SciTech Connect

    Hardage, B.A.

    1996-12-01

    This article explains how a 3-D seismic data volume, a vertical seismic profile (VSP), electric well logs and reservoir pressure data can be used to image closely stacked thin-bed reservoirs. This interpretation focuses on the Oligocene Frio reservoir in South Texas which has multiple thin-beds spanning a vertical interval of about 3,000 ft.

  6. Quantitative Discomanometry: Correlation of Intradiscal Pressure Values to Pain Reduction in Patients With Intervertebral Disc Herniation Treated With Percutaneous, Minimally Invasive, Image-Guided Techniques

    SciTech Connect

    Filippiadis, Dimitrios K. Mazioti, A. Papakonstantinou, O. Brountzos, E.; Gouliamos, A.; Kelekis, N. Kelekis, A.

    2012-10-15

    Purpose: To illustrate quantitative discomanometry's (QD) diagnostic efficacy and predictive value in discogenic-pain evaluation in a prospective study correlating intradiscal pressure values with pain reduction after percutaneous image-guided technique (i.e., percutaneous decompression, PD). Materials and Methods: During the last 3 years, 36 patients [21 male and 15 female (mean age 36 {+-} 5.8 years)] with intervertebral disc hernia underwent QD before PD. Under absolute sterilization and fluoroscopy, a mixture of contrast medium and normal saline (3:1 ratio) was injected. A discmonitor performed a constant rate injection and recorded pressure and volume values, thus producing the relative pressure-volume curve. PD was then performed. Pain reduction and improved mobility were recorded at 3, 12, and 24 months after PD using clinical evaluation and a numeric visual scale (NVS; 0 to 10 units). Results: Mean pain values of 7.5 {+-} 1.9 (range 4 to 8) NVS units were recorded before PD; these decreased to 2.9 {+-} 2.44 at 3 months, 1.0 {+-} 1.9 at 12 months, and 1.0 {+-} 1.9 NVS units at 24 months after PD. Recorded correlations (pressure, volume, significant pain-reduction values) with bilateral statistical significance included a maximum injected volume of 2.4 ml (p = 0.045), P{sub o} < 14 psi [initial pressure required to inject 0.1 ml of the mixture inside the disc (p = 0.05)], P{sub max} {<=} 65 psi [greatest pressure value on the curve (p = 0.018)], and P{sub max} - P{sub o} {<=} 47 psi (p = 0.038). Patients meeting these pressure or volume cut-off points, either independently or as a total, had significant pain reduction (>4 NVS units) after PD. No complications were noted. Conclusions: QD is an efficient technique that may have predictive value for discogenic pain evaluation. It might serve as a useful tool for patient selection for intervertebral disc therapies.

  7. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal

  8. Innovative techniques for the description of reservoir heterogeneity using tracers

    SciTech Connect

    Pope, G.; Sepehrnoori, K.

    1991-09-01

    The objective of this research is to develop an advanced, innovative technique for the description of reservoir heterogeneity. This proposed method consists of using tracers in single-well backflow tests. The general idea is to make use of fluid drift in the reservoir either due to naturally occurring pressure gradients in the reservoir, or by deliberately imposed pressure gradients using adjacent injection and production wells in the same reservoir. The analytical tool that will be used to design and interpret these tests is a compositional reservoir simulator with special features added and tested specifically for this purpose. 2 refs., 5 figs.

  9. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    reservoir modeling becomes more pronounced. SRM is developed using the state of the art in neural computing and fuzzy pattern recognition to address the ever growing need in the oil and gas industry to perform accurate, but high speed simulation and modeling. Unlike conventional geo-statistical approaches (response surfaces, proxy models …) that require hundreds of simulation runs for development, SRM is developed only with a few (from 10 to 30 runs) simulation runs. SRM can be developed regularly (as new versions of the full field model become available) off-line and can be put online for real-time processing to guide important decisions. SRM has proven its value in the field. An SRM was developed for a giant oil field in the Middle East. The model included about one million grid blocks with more than 165 horizontal wells and took ten hours for a single run on 12 parallel CPUs. Using only 10 simulation runs, an SRM was developed that was able to accurately mimic the behavior of the reservoir simulation model. Performing a comprehensive reservoir analysis that included making millions of SRM runs, wells in the field were divided into five clusters. It was predicted that wells in cluster one & two are best candidates for rate relaxation with minimal, long term water production while wells in clusters four and five are susceptive to high water cuts. Two and a half years and 20 wells later, rate relaxation results from the field proved that all the predictions made by the SRM analysis were correct. While incremental oil production increased in all wells (wells in clusters 1 produced the most followed by wells in cluster 2, 3 …) the percent change in average monthly water cut for wells in each cluster clearly demonstrated the analytic power of SRM. As it was correctly predicted, wells in clusters 1 and 2 actually experience a reduction in water cut while a substantial increase in water cut was observed in wells classified into clusters 4 and 5. Performing these analyses

  10. A kinetic pressure effect on the experimental abiotic reduction of aqueous CO2 to methane from 1 to 3.5 kbar at 300 °C

    NASA Astrophysics Data System (ADS)

    Lazar, Codi; Cody, George D.; Davis, Jeffrey M.

    2015-02-01

    Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 °C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-μL solutions of 70-mmolal 13C-labeled formic acid (H13COOH) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in 13CH4 yields. The pressure effect could be quantified the log-linear slope, Δlog[13CH4]/ΔP (log mmolal per kbar). The mean slope was 0.66 ± 0.05 (±1s.e.), indicating that 13CH4 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [13CH4] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e.g., in cool forearcs or other settings with a steep geothermal

  11. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex

    NASA Astrophysics Data System (ADS)

    King, Hubert E.; Walters, Clifford C.; Horn, William C.; Zimmer, Mindy; Heines, Maureen M.; Lamberti, William A.; Kliewer, Christine; Pottorf, Robert J.; Macleod, Gordon

    2014-06-01

    Sulfur isotopes of solid bitumen and associated pyrite from the Madison Limestone in the Big Piney-La Barge production complex were measured using a Secondary Ion Mass Spectrometry (SIMS) method. The solid bitumens, a product of thermochemical sulfate reduction, yielded δ34S values of +18.9 ± 3.9 that are consistent with inferred values for native Mississippian sulfate. In contrast, coarse and fine grain pyrite grains were found to be 34S depleted, with values similar to that of the produced H2S (δ34S ∼ +10‰). We interpret these results to indicate that two different sources of sulfate were involved with TSR within the Madison Limestone-autochthonous anhydrite, which is now completely replaced with calcite, and Permian age sulfate dissolved in the aquifer. While checking for inclusions within the bitumen that could lead to erroneous measurement, we found the bitumen possesses a ∼5 μm rim and internal “worm-like” features enriched in organic sulfur. We hypothesize that the rim is the result of back reaction of the late forming H2S with the solid bitumen and that the <1 μm diameter wormy features may result from liquid-liquid immiscibility occurring at the high temperatures of formation.

  12. 08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine

    SciTech Connect

    Kass, Michael D; Domingo, Norberto; Storey, John Morse; Lewis Sr, Samuel Arthur

    2008-01-01

    The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

  13. 1982 THERMAL SHALLOW RESERVOIR TESTING

    SciTech Connect

    Mogen, P.; Pittinger, L.; Magers, M.

    1985-01-22

    An extensive study of the Thermal Shallow Reservoir at The Geysers was performed in 1982 to improve our understanding of the source and flow patterns of steam in the shallow anomaly and how they relate to the Thermal 4 blowout. This project included gathering and analyzing pressure transient, enthalpy, tracer and chemical data and developing a reservoir model that was consistent with this data. Following the pressure transient testing and analysis, a convection-plume with lateral-flow model was proposed. Subsequent analysis of enthalpy, tracer and chemical data corroborated this model. The high flowrate wells--Thermal 4, Thermal 10, Thermal 11 and Magma 1--produce from the high-pressure, high-permeability upflow zone. The source of this upflow is a limited fracture system connecting the shallow anomaly with the underlying main reservoir. The outlying low-pressure, low-permeability wells are supplied by lateral flow of steam from the central area. The pressure gradient from the core to the periphery is caused by condensation in the flanks.

  14. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  15. A model for earthquakes near Palisades Reservoir, southeast Idaho

    USGS Publications Warehouse

    Schleicher, David

    1975-01-01

    The Palisades Reservoir seems to be triggering earthquakes: epicenters are concentrated near the reservoir, and quakes are concentrated in spring, when the reservoir level is highest or is rising most rapidly, and in fall, when the level is lowest. Both spring and fall quakes appear to be triggered by minor local stresses superposed on regional tectonic stresses; faulting is postulated to occur when the effective normal stress across a fault is decreased by a local increase in pore-fluid pressure. The spring quakes tend to occur when the reservoir level suddenly rises: increased pore pressure pushes apart the walls of the graben flooded by the reservoir, thus decreasing the effective normal stress across faults in the graben. The fall quakes tend to occur when the reservoir level is lowest: water that gradually infiltrated poorly permeable (fault-gouge?) zones during high reservoir stands is then under anomalously high pressure, which decreases the effective normal stress across faults in the poorly permeable zones.

  16. Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO2

    NASA Astrophysics Data System (ADS)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2014-11-01

    X-ray microtomography was used to image the shape and size of residual ganglia of supercritical CO2 at resolutions of 3.5 and 2 μm and at representative subsurface conditions of temperature and pressure. The capillary pressure for each ganglion was found by measuring the curvature of the CO2-brine interface, while the pore structure was parameterized using distance maps of the pore space. The formation of the residual clusters by snap-off was examined by comparing the ganglion capillary pressure to local pore topography. The capillary pressure was found to be inversely proportional to the radius of the largest restriction (throat) surrounding the ganglion, which validates the imbibition mechanisms used in pore-network modeling. The potential mobilization of residual ganglia was assessed using a reformulation of both the capillary (Ncmacro) and Bond numbers (Nbmacro), rigorously based on a balance of pore-scale forces, with the majority of ganglia remobilized at Ncmacro around 1. Buoyancy forces were found to be small in this system (Nbmacro << 1), meaning the gravitational remobilization of CO2 after residual trapping would be extremely difficult.

  17. Reservoir response to tidal and barometric effects

    SciTech Connect

    Hanson, J.M.

    1980-05-29

    Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

  18. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations. PMID:18529171

  19. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGESBeta

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  20. Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength.

    PubMed

    Werner, Daniel; Hashimoto, Shuichi

    2013-01-29

    The laser-induced size reduction of aqueous noble metal nanoparticles has been the subject of intensive research, because of the mechanistic interest in the light-nanoparticle interactions and its potential application to size control. The photothermal evaporation hypothesis has gained solid support. However, the polydispersity of the final products is considered as an inherent drawback of the method. It is likely that the polydispersity arises from the uncontrolled heat dissipation caused by vapor bubble formation in the ambient atmosphere. To overcome this problem, we applied high pressures of 30-100 MPa. The particle size was regulated by adjusting three parameters: the pressure, laser intensity, and excitation wavelength. For example, starting from a colloidal solution of 100 nm diameter gold nanoparticles, highly monodisperse (±3-5%) spheres with various diameters ranging from 90 to 30 nm were fabricated by tuning the laser intensity at 100 MPa, using an excitation wavelength of 532 nm. Further size reduction of the diameter to 20 nm was achieved by reducing the pressure and switching the excitation wavelength to 355 nm. It was found that the application of high pressures led to the heat loss-controlled size-reduction of the gold nanoparticles. More complicated results were obtained for 100 nm silver nanoparticles, possibly because of the different size-dependent light-absorbing nature of these particles. Based on our extensive experimental studies, a detailed picture was developed for the nanosecond laser-induced fabrication of gold and silver nanoparticles, leading to unprecedented size control. PMID:23259708

  1. Numerical Simulation of Subsurface Transport and Groundwater Impacts from Hydraulic Fracturing of Tight/Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Reagan, M. T.; Moridis, G. J.; Keen, N. D.

    2014-12-01

    The use of reservoir stimulation techniques, such as hydraulic fracturing, has grown tremendously over the last decade, and concerns have arisen that reservoir stimulation creates environmental threats through the creation of permeable pathways that could connect the stimulated reservoir to shallower groundwater aquifers. This study investigates, by numerical simulation, gas and water transport between a deeper tight-gas reservoir and a shallower overlying groundwater aquifer following hydraulic fracturing operations, assuming that the formation of a connecting pathway has already occurred. We focus on two general transport scenarios: 1) communication between the reservoir and aquifer via a connecting fracture or fault and 2) communication via a deteriorated, preexisting nearby well. The simulations explore a range of permeabilities and geometries over time scales, and evaluate the mechanisms and factors that could lead to the escape of gas or reservoir fluid and the contamination of groundwater resources. We also examine the effects of overpressured reservoirs, and explore long-term transport processes as part of a continuing study. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Gas production from the reservoir via a horizontal well is likely to mitigate release through the reduction of available free gas and the lowering of reservoir pressure. We also find that fractured tight-gas reservoirs are unlikely to act as a continuing source of large volumes of migrating gas, and incidents of gas escape are likely to be limited in duration and scope. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  2. Impact of injection on reservoir performance in the NCPA steam field at The Geysers

    SciTech Connect

    Enedy, S.L.; Smith, J.L.; Yarter, R.E.; Jones, S.M.; Cavote, P.E.

    1993-01-28

    A managed injection program implemented by the NCPA in The Southeast Geysers reservoir continues to positively impact reservoir performance. Injection effects are determined by the application of geochemical and geophysical techniques to track the movement of injectate. This information, when integrated with reservoir pressure, flowrate, and thermodynamic data, is used to quantify the overall performance and efficiency of the injection program. Data analysis indicates that injected water is boiling near the injection wells, without deeper migration, and is recovered as superheated steam from nearby production wells. Injection derived steam (IDS) currently accounts for 25 to 35 percent of total production in the NCPA steamfield. Most importantly, 80 to 100% of the injectate is flashing and being recovered as steam. The amount of IDS has increased since 1988 due to both a change in injection strategy and a drying out of the reservoir. However, significant areas of the reservoir still remain relatively unaffected by injection because of the limited amount of injectate presently available. That the reservoir has been positively impacted in the injection areas is evidenced by a decrease in the rate of pressure decline from 1989 through 1992. Correspondingly, there has been a reduction in the rate of steam flow decline in the areas' production wells. Conversely, little evidence of reservoir cooling or thermal breakthrough is shown even in areas where IDS accounts for 80 percent or more of production. Finally, since injection water is a relatively low-gas source of steam, noncondensible gas concentrations have been reduced in some steam wells located within the injection dominated areas.

  3. Reduction of Mean Arterial Pressure and Proteinuria by the Effect of ACEIs (Lisinopril) in Kurdish Hypertensive Patients in Hawler City

    PubMed Central

    A.I., Muslih

    2012-01-01

    The angiotensin converting enzyme inhibitors (ACEIs) are a group of pharmaceuticals that are used primarily in treatment of hypertension and congestive heart failure, in some cases as the drugs of first choice. The renin-angiotensin system is activated in response to hypotension, decreased sodium concentration in the distal tubule, decreased blood volume and in renal sympathetic nerve stimulation. This study examines the effects of angiotensin converting enzyme inhibitor (Lisinopril) on blood pressure (BP) 131±2.4 and proteinuria 0.198±0.005 in Kurd hypertensive patients, mean arterial blood pressure and proteinuria excretion were measured weekly along the period of 12 weeks. Lisinopril significantly reduced mean arterial blood pressure, and attenuated proteinuria level in patients subjected to this study in lisinopril 10mg dose dependent manner (p<0.05, n=24). In conclusion, lisinopril is of beneficial of renoprotection and in lowering BP PMID:22980373

  4. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    PubMed

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  5. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect

    PubMed Central

    Celotto, A.C.; Ferreira, L.G.; Capellini, V.K.; Albuquerque, A.A.S.; Rodrigues, A.J.; Evora, P.R.B.

    2015-01-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  6. Reduction of aneurysm pressure and wall stress after endovascular repair of abdominal aortic aneurysm in a canine model.

    PubMed

    Marston, W A; Criado, E; Baird, C A; Keagy, B A

    1996-03-01

    A canine model was designed to evaluate the changes in abdominal aortic aneurysm (AAA) pressure and wall stress after endovascular repair. Eight canines underwent laparotomy and creation of an AAA. The aneurysm was then excluded with a transluminally placed endovascular graft (TPEG) inserted through the right femoral artery and deployed across the AAA to exclude the infrarenal aortic branches from aortic perfusion. Blood pressure and flow data were recorded for 6 hours. The AAA blood pressure decreased from 135 +/- 9.3 mm Hg before exclusion to 45 +/- 17.6 mm Hg at 10 minutes after exclusion (p < 0.001). At 6 hours, AAA blood pressure had declined further to 26 +/- 12.5 mm Hg. Blood flow in the excluded iliac artery decreased from a baseline of 242 +/- 58 ml/min to 41 +/- 29 ml/min 10 minutes after TPEG placement (p < 0.001). At 6 hours, flow was reduced to 12 +/- 3.5 ml/min (p < 0.05 compared with that at 10 minutes). Aortic wall stress was significantly reduced by TPEG placement but was only slightly lower than baseline aortic wall stress before AAA creation. The lumbar arteries were patent with retrograde flow in all cases and were found to be the major contributors to postexclusion aneurysm pressure. Endovascular AAA exclusion results in an immediate decrease in blood pressure and wall stress within the excluded aneurysm, but the aneurysm remains perfused by retrograde flow through the lumbar arteries, which resulted in near-baseline levels of aneurysm wall stress in this canine model. Embolization of patient lumbar vessels at prosthesis placement may further reduce the risk of late rupture. PMID:8733869

  7. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes: Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps)

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Van Roermund, Herman L. M.; Pettke, Thomas

    2010-11-01

    The garnet websterites from Bardane (Western Gneiss Region, Norway) derive from cold Archean subcontinental lithosphere involved in Scandian continental subduction to ultrahigh-pressures. Subduction zone metamorphism was promoted by slab fluid infiltration into the cold overlying mantle wedge. The earliest subduction transformation (M3-1) consists of garnet/clinopyroxene exsolution from old pre-subduction orthopyroxene. This stage was likely coeval with fluid input and formation of phlogopite and dolomite rods in the exsolution structures. Magnesite formation after dolomite and entrapment of fluid-related diamond-bearing polyphase inclusions in corona structures around the exsolved orthopyroxenes point to pressure increase to 4.5 GPa (M3-2). Peak pressures of 6.5-7 GPa (c.a. 200 km depth) are witnessed by crystallization of majoritic garnet (M3-3), mostly in veins cutting all the above microstructures. When such veins infiltrate the corona domains, formation of majoritic garnet in coronas is enhanced. This multistage evolution thus envisages episodic fluid influx, favouring rock recrystallization and formation of microdiamond-bearing inclusions and of majoritic garnet veins. These mantle rocks thus record fluid circulation along grain boundaries and microfractures down to 200 km depth in subduction environments. The Ulten Zone peridotites are slices of Variscan mantle wedge. Infiltration of metasomatic subduction fluids favoured transition from spinel-facies to garnet + amphibole ± dolomite parageneses at pressures below 3 GPa. Formation of metasomatized garnet-bearing peridotite mylonites suggest channelled influx of subduction fluids. The incompatible element-enriched signature of all subduction minerals in Bardane indicate that previously depleted websterites have been refertilized by COH subduction fluids. Comparison with the Ulten Zone garnet + amphibole ± dolomite peridotites outlines striking similarities in the metasomatic style and in the COH fluid phase

  8. Do we need more than just powerful blood pressure reductions? New paradigms in end-organ protection.

    PubMed

    Galzerano, Domenico; Capogrosso, Cristina; Di Michele, Sara; Bobbio, Emanuele; Paparello, Paola; Gaudio, Carlo

    2010-01-01

    Antihypertensive therapy can lower the risk of cardiovascular morbidity and mortality. Yet, partly because of inadequate dosing, wrong pharmacological choices, and poor patient adherence, hypertension control remains suboptimal in the majority of hypertensive patients. Achieving greater blood pressure control requires a multifaceted approach that raises awareness of hypertension, uses effective therapies, and improves adherence. Particular classes of antihypertensive therapy have beneficial actions beyond blood pressure and studies have evaluated differences in cardiovascular protection among classes. The LIFE and HOPE studies showed between-class differences that may be due to effects other than blood pressure-lowering. In the ONTARGET study, telmisartan and ramipril provided similar cardiovascular protection but adherence was higher with telmisartan, which was better tolerated. This difference in compliance is likely to be important for long-term therapy. The selection of an agent for cardiovascular protection should depend on an appreciation of its composite properties, including any beneficial effects on tolerability and increased patient adherence, as these are likely to be advantageous for the long-term management of hypertension. This review examines the evidence that the effects beyond blood pressure provided by some antihypertensive agents can also lower the risk of cardiovascular, cerebrovascular, and renal events in patients with hypertension. PMID:20730064

  9. Do we need more than just powerful blood pressure reductions? New paradigms in end-organ protection

    PubMed Central

    Galzerano, Domenico; Capogrosso, Cristina; Di Michele, Sara; Bobbio, Emanuele; Paparello, Paola; Gaudio, Carlo

    2010-01-01

    Antihypertensive therapy can lower the risk of cardiovascular morbidity and mortality. Yet, partly because of inadequate dosing, wrong pharmacological choices, and poor patient adherence, hypertension control remains suboptimal in the majority of hypertensive patients. Achieving greater blood pressure control requires a multifaceted approach that raises awareness of hypertension, uses effective therapies, and improves adherence. Particular classes of antihypertensive therapy have beneficial actions beyond blood pressure and studies have evaluated differences in cardiovascular protection among classes. The LIFE and HOPE studies showed between-class differences that may be due to effects other than blood pressure-lowering. In the ONTARGET study, telmisartan and ramipril provided similar cardiovascular protection but adherence was higher with telmisartan, which was better tolerated. This difference in compliance is likely to be important for long-term therapy. The selection of an agent for cardiovascular protection should depend on an appreciation of its composite properties, including any beneficial effects on tolerability and increased patient adherence, as these are likely to be advantageous for the long-term management of hypertension. This review examines the evidence that the effects beyond blood pressure provided by some antihypertensive agents can also lower the risk of cardiovascular, cerebrovascular, and renal events in patients with hypertension. PMID:20730064

  10. Characterization of Reservoir Heterogeneity from Surface Deformation

    NASA Astrophysics Data System (ADS)

    Maharramov, M.; Zoback, M. D.

    2015-12-01

    In our earlier work we resolved complex evolution of pressure fronts in a heavyoil reservoir undergoing cyclic steam stimulation. Our method was based onsolving a regularized inverse problem for inverting the pore pressure changefrom surface displacements. In this work we extend our method to recoversharp contrasts in induced reservoir pressure that may be due to permeabilitybarriers or hydraulically conductive faults. We demonstrate our method byinverting the pressure change from uplift observations for a synthetic modelof a heterogeneous reservoir undergoing fluid injection. Using the theory ofconstrained optimization, we invert values and locations of sharp pressurecontrasts from noisy measurements of surface deformation, and estimate thelocation of an impermeable boundary between reservoir compartments. In our synthetic model, two highly permeable reservoir compartmentsseparated by a nearly impermeable barrier (first panel) undergo fluid injec-tion. We simulate pressure evolution within the reservoir (second panel) andmodel surface deformation induced by the subsurface pressure change (thirdpanel), adding measurement noise to the result. We invert the noisy sur-face uplift measurements by solving a constrained optimization problem withTikhonov regularization (fourth panel). The result achieves a good inversionquality in areas of finite pressure change but provides only a rough estimatefor the barrier location. However, applying our new inversion technique with atotal-variation regularization that favors sharp model contrasts while penalizingoscillations, we achieve a more accurate approximation of the permeabilitybarrier as a level set of the inverted pressure field (fifth panel). Our new method provides a potentially useful tool for locating sharpsubsurface pressure contrasts from surface uplift observations. The methodcan be used in a variety of applications for identifying subsurface permeabil-ity heterogeneities (such as seals and hydraulically conductive

  11. A general formulation for compositional reservoir simulation

    SciTech Connect

    Rodriguez, F.; Guzman, J.; Galindo-Nava, A.

    1994-12-31

    In this paper the authors present a general formulation to solve the non-linear difference equations that arise in compositional reservoir simulation. The general approach here presented is based on newton`s method and provides a systematic approach to generate several formulations to solve the compositional problem, each possessing a different degree of implicitness and stability characteristics. The Fully-Implicit method is at the higher end of the implicitness spectrum while the IMPECS method, implicit in pressure-explicit in composition and saturation, is at the lower end. They show that all methods may be obtained as particular cases of the fully-implicit method. Regarding the matrix problem, all methods have a similar matrix structure; the composition of the Jacobian matrix is however unique in each case, being in some instances amenable to reductions for optimal solution of the matrix problem. Based on this, a different approach to derive IMPECS type methods is proposed; in this case, the whole set of 2nc + 6 equations, that apply in each gridblock, is reduced to a single pressure equation through matrix reduction operations; this provides a more stable numerical scheme, compared to other published IMPCS methods, in which the subset of thermodynamic equilibrium equations is arbitrarily decoupled form the set of gridblock equations to perform such reduction. The authors discuss how the general formulation here presented can be used to formulate and construct an adaptive-implicit compositional simulators. They also present results on the numerical performance of FI, IMPSEC and IMPECS methods on some test problems.

  12. Observation of reduction of radiation-pressure-induced rotational anti-spring effect on a 23 mg mirror in a Fabry–Perot cavity

    NASA Astrophysics Data System (ADS)

    Enomoto, Yutaro; Nagano, Koji; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-07-01

    Although quantum radiation pressure noise could limit the sensitivity of the second-generation gravitational wave detectors, it has not been observed in a broad frequency band and its reduction methods have not been proven yet. A promising way to observe quantum radiation pressure noise is to store high power light in an optical cavity with a tiny mirror. However, anti-spring torque caused by radiation pressure of the light acting on the tiny mirror could make the system unstable, and it is generally difficult to attach actuators to the tiny mirror for stabilization. Hence a new method to overcome this anti-spring torque has been developed. In the new method, the other mirror of the cavity is controlled so that the position of the resonant light at the tiny mirror is fixed to decrease the anti-spring torque and stabilize angular motion of the tiny mirror. With the new method, it was successfully observed that the anti-spring torque caused by radiation pressure was suppressed in the present experiment with a 23 mg mirror, where resonant frequency of angular motion of the tiny mirror increased towards the mechanical resonant frequency.

  13. Twin reservoir heat transfer circuit

    SciTech Connect

    Urch, J.F.

    1986-09-23

    This patent describes a heat transfer means comprising circuitry defining a closed flow path for working fluid; a primary circuit forming part of the path and having two ends at one of which the working fluid is at a high pressure and at the other of which the working fluid is at a low pressure. The circuitry defines a fluid supply reservoir and a fluid collection reservoir disposed respectively at the two ends; ejector means in the primary circuit; a drive fluid inlet, and exhaust outlet and a suction inlet provided on the ejector means. Also included are a branch circuit bridging a section of the primary circuit and an outlet end of the branch circuit connected to the suction inlet of the ejector means.

  14. Reduction of mosquito biting-pressure: spatial repellents or mosquito traps? A field comparison of seven commercially available products in Israel.

    PubMed

    Revay, Edita E; Kline, Daniel L; Xue, Rui-De; Qualls, Whitney A; Bernier, Ulrich R; Kravchenko, Vasiliy D; Ghattas, Nina; Pstygo, Irina; Müller, Günter C

    2013-07-01

    The present study assessed the personal protection efficiency of seven commercially available mosquito control devices (MCD) under field conditions in Israel. Trials were performed in a high biting-pressure area inhabited by large populations of mosquito and biting midge species, using human volunteers as bait in landing catch experiments. Results show that under minimal air-movement, three spatial repellent based products (ThermaCELL(®) Patio Lantern, OFF!(®) PowerPad lamp, and Terminix(®) ALLCLEAR Tabletop Mosquito Repeller) significantly reduced the biting-pressure (t-test - P<0.01) when positioned at short distances from a volunteer (3, 7.5, and 10ft.), with the ThermaCELL unit being most effective (96.1, 89.9, and 76.66% reduction, respectively). No significant differences were seen between the three aforementioned devices at distances of 3 and 7.5ft., while at a distance of 10ft., only the ThermaCELL patio lantern repelled significantly more mosquitoes then the Terminix ALLCLEAR Tabletop Mosquito Repeller (t-test, P<0.05). In contrast, mosquito traps using attracting cues to bait mosquitoes (Dynatrap(®), Vortex(®) Electronic Insect Trap, Blue Rhino(®) SV3100) either significantly increased or had no effect on the biting-pressure at short distances compared with the unprotected control. Trials conducted over large areas showed that only the Blue Rhino trap was able to significantly reduce the biting-pressure (40.1% reduction), but this was only when operating four units at the corners of an intermediate sized area. PMID:23545129

  15. Reduction of sodium intake is a prerequisite for preventing and curing high blood pressure in hypertensive patients - second part: guidelines.

    PubMed

    De Santo, Natale Gaspare

    2014-01-01

    In the last decade many guidelines and report have been published about the optimal restriction of sodium intake for blood pressure control which deserve to be discussed in the medical community at large. The list includes i. the 2005 Dietary Guidelines of the Department of Health and Human Services and US Department of Agriculture; ii. The 2010 Dietary Guidelines for Americans; iii. The 2011 Presidential Statement of American Heart Association; iiii. The 2012 WHO guidelines on sodium intake in adults and children, v. The 2013 Report of the Institute of Medicine of the National Academies of the United States. All of them support the efficacy and feasibility of sodium restriction for blood pressure control. PMID:25549842

  16. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Yi

    solutions and results of a commercial simulator before conducting numerical studies. The numerical studies demonstrate the effect of capillary pressure on VLE, and further on production performance. The significant effect of capillary pressure on VLE leads to the suppression of bubble-point pressure and more light components dissolved in the oil phase. Consequently it is observed that there is smaller gas saturation, larger mole fractions of light components, and faster pressure decreasing at reservoir conditions; meanwhile less gas and more oil are produced at surface. The substantial decrease in reservoir pore pressure results in a large increase of effective stress, which induces the changes of rock properties and influences the production performance. The stress-induced degradation of permeability undermines the production performance, and the geomechanical effect on the permeability of natural fractures is mainly responsible for the undermined production performance. The reduction of pore size due to the geomechanical effect could increase the capillary pressure, which enlarges the influence of capillarity on VLE and further suppresses bubble-point pressure. On the other hand, the effect of capillary pressure on VLE influences the fluid flow and therefore influences the effective stress through the flow-stress coupling process. Thus the interaction between pore confinement and rock compaction can be modeled with MSFLOW_COM, and illustrated through numerical studies. This research provides a three-dimensional numerical tool for accurately modeling porous and fractured tight oil reservoirs. The developed simulator is able to assist scientists and engineers to study and understand the complex multiphase, multi-component fluid flow behaviors in tight oil reservoirs.

  17. Impact of a Glaucoma Severity Index on Results of Trabectome Surgery: Larger Pressure Reduction in More Severe Glaucoma

    PubMed Central

    Loewen, Ralitsa T.; Roy, Pritha; Parikh, Hardik A.; Dang, Yalong; Schuman, Joel S.; Loewen, Nils A.

    2016-01-01

    Purpose To stratify outcomes of trabectome-mediated ab interno trabeculectomy (AIT) by glaucoma severity using a simple and clinically useful glaucoma index. Based on prior data of trabectome after failed trabeculectomy, we hypothesized that more severe glaucoma might have a relatively more reduced facility compared to mild glaucoma and respond with a larger IOP reduction to trabecular meshwork ablation. Methods Patients with primary open angle glaucoma who had undergone AIT without any other same session surgery and without any second eye surgery during the following 12 months were analyzed. Eyes of patients that had less than 12 months follow up or were diagnosed with neovascular glaucoma were excluded. A glaucoma index (GI) was created to capture glaucoma severity based on visual field, number of preoperative medications, and preoperative IOP. Visual field (VF) was separated into 3 categories: mild, moderate, and advanced (assigned 1, 2, and 3 points, respectively). Preoperative number of medications (meds) was divided into 4 categories: ≤1, 2, 3 or ≥4, and assigned with a value of 1 to 4. Baseline IOP (IOP) was divided into 3 categories: <20 mmHg, 20–29 mmHg, and greater than 30 mmHg and assigned with 1 to 3 points. GI was defined as IOP × meds × VF and separated into 4 groups: <6 (Group 1), 6–12 (Group 2), >12–18 (Group 3) and >18 (Group 4). Linear regression was used to determine if there was an association between GI group and IOP reduction after one year or age, gender, race, diagnosis, cup to disc (C/D) ratio, and Shaffer grade. Results Out of 1340 patients, 843 were included in the analysis. The GI group distribution was GI1 = 164, GI2 = 202, GI3 = 260, and GI4 = 216. Mean IOP reduction after one year was 4.0±5.4, 6.4±5.8, 9.0±7.6, 12.0±8.0 mmHg for GI groups 1 to 4, respectively. Linear regression showed that IOP reduction was associated with GI group after adjusting for age, gender, race, diagnosis, cup to disc ratio, and Shaffer grade

  18. Status of Norris Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  19. Reduction Of Chronic Musculoskeletal Pain With Cranial Laser Reflex Technique (CLRT): A Randomized Controlled Trial Using Pressure Algometry

    SciTech Connect

    Wise, Nicholas A. D.C.

    2010-05-31

    Cranial Laser Reflex Technique (CLRT) is a novel method involving a brief low level laser stimulation of specific cranial reflex points to reduce musculoskeletal pain. Objective: The objective of the study was to compare the immediate effects of CLRT with a sham treatment on chronic musculoskeletal pain using pressure algometry in a double-blinded randomized controlled trial. Methods: Fifty-seven (57) volunteers with various musculoskeletal pains gave informed consent and were randomly allocated to either the CLRT treatment or sham group. Painful trigger points and/or tender spinal joints were found in each patient. Using a digital algometer, the pain/pressure threshold (PPT) was determined and a pain rating was given using a numerical pain scale from 0-10. CLRT or a sham treatment was performed with a 50 mW, 840 nm laser, for a maximum of 20 seconds to the each cranial reflex. The initial pressure (PPT) was immediately delivered to the same spot, and the pain rated again. Results: There was a statistically significant difference in pain scores between CLRT and sham groups immediately following treatment. Improvement was reported in 95% of the treatment group, with 59% reporting an improvement of 2 points or greater. The average change in pain scores in the treatment group was 2.6 points (p 0.000) versus negligible change (p= 0.4) for the control group. Conclusion: The results show that CLRT is effective at immediately reducing chronic musculoskeletal pain. Further studies are needed with additional outcome measures to.

  20. Reduction Of Chronic Musculoskeletal Pain With Cranial Laser Reflex Technique (CLRT): A Randomized Controlled Trial Using Pressure Algometry

    NASA Astrophysics Data System (ADS)

    Wise, Nicholas A.

    2010-05-01

    Cranial Laser Reflex Technique (CLRT) is a novel method involving a brief low level laser stimulation of specific cranial reflex points to reduce musculoskeletal pain. Objective: The objective of the study was to compare the immediate effects of CLRT with a sham treatment on chronic musculoskeletal pain using pressure algometry in a double-blinded randomized controlled trial. Methods: Fifty-seven (57) volunteers with various musculoskeletal pains gave informed consent and were randomly allocated to either the CLRT treatment or sham group. Painful trigger points and/or tender spinal joints were found in each patient. Using a digital algometer, the pain/pressure threshold (PPT) was determined and a pain rating was given using a numerical pain scale from 0-10. CLRT or a sham treatment was performed with a 50 mW, 840 nm laser, for a maximum of 20 seconds to the each cranial reflex. The initial pressure (PPT) was immediately delivered to the same spot, and the pain rated again. Results: There was a statistically significant difference in pain scores between CLRT and sham groups immediately following treatment. Improvement was reported in 95% of the treatment group, with 59% reporting an improvement of 2 points or greater. The average change in pain scores in the treatment group was 2.6 points (p = 0.000) versus negligible change (p= 0.4) for the control group. Conclusion: The results show that CLRT is effective at immediately reducing chronic musculoskeletal pain. Further studies are needed with additional outcome measures to.

  1. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  2. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  3. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model fitted well to the field measurements. Furthermore, this analysis indicates that the benthic mineralizations are the dominant processes involved in the nutrients release. This is the first implementation of a biogeochemical model applied to a highly productive reservoir in the TMVB in order to estimate nutrients release from sediments. It could be used for scenarios of reduction of eutrophication in the reservoir. This study provides a good example of the behavior of a small tropical reservoir under intense human pressure and it will help stakeholders to adopt appropriate strategies for the management of turbid tropical reservoirs.

  4. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  5. Kinetic studies of bacterial sulfate reduction in freshwater sediments by high-pressure liquid chromatography and microdistillation.

    PubMed

    Hordijk, K A; Hagenaars, C P; Cappenberg, T E

    1985-02-01

    Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile S only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (D(s) = 0.3 x 10 cm s at 6 degrees C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day) and pool sizes of sulfate at different sediment depths. PMID:16346732

  6. Kinetic Studies of Bacterial Sulfate Reduction in Freshwater Sediments by High-Pressure Liquid Chromatography and Microdistillation

    PubMed Central

    Hordijk, Kees A.; Hagenaars, Charles P. M. M.; Cappenberg, Thomas E.

    1985-01-01

    Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths. PMID:16346732

  7. Reservoir-induced seismicity associated with the Itoiz Reservoir, Spain: a case study

    NASA Astrophysics Data System (ADS)

    Durá-Gómez, Inmaculada; Talwani, Pradeep

    2010-04-01

    Reservoir-induced seismicity was observed in 2004 after the impoundment of the Itoiz Reservoir in the central-western Pyrenees, Spain. Subsequent annual filling cycles were accompanied by large epicentral growth in the northern part of the Jaca-Pamplona basin. Based on the evaluation of the available geohydrologic data, we suggest that the seismicity is associated with the diffusion of increased pore pressures along the carbonate megabreccia systems of the Early to Middle Eocene age Hecho Group. Assuming 1-D pore-pressure diffusion from the Itoiz Reservoir, we estimate that excess pore pressures of ~100-500 kPa are adequate to induce M >= 3.0 earthquakes in this geological terrane. The results of this study have potential applicability in regions where reservoirs are built over karst terranes.

  8. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Reid B. Grigg

    2003-10-31

    The second annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies have been undertaken with the intention to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Many items presented in this report are applicable to other interest areas: e.g. gas injection and production, greenhouse gas sequestration, chemical flooding, reservoir damage, etc. Major areas of studies include reduction of CO{sub 2} mobility to improve conformance, determining and understanding injectivity changes in particular injectivity loses, and modeling process mechanisms determined in the first two areas. Interfacial tension (IFT) between a high-pressure, high-temperature CO{sub 2} and brine/surfactant and foam stability are used to assess and screen surfactant systems. In this work the effects of salinity, pressure, temperature, surfactant concentration, and the presence of oil on IFT and CO{sub 2} foam stability were determined on the surfactant (CD1045{trademark}). Temperature, pressure, and surfactant concentration effected both IFT and foam stability while oil destabilized the foam, but did not destroy it. Calcium lignosulfonate (CLS) can be used as a sacrificial and an enhancing agent. This work indicates that on Berea sandstone CLS concentration, brine salinity, and temperature are dominant affects on both adsorption and desorption and that adsorption is not totally reversible. Additionally, CLS adsorption was tested on five minerals common to oil reservoirs; it was found that CLS concentration, salinity, temperature, and mineral type had significant effects on adsorption. The adsorption density from most to least was: bentonite > kaolinite > dolomite > calcite > silica. This work demonstrates the extent of dissolution and precipitation from co-injection of CO{sub 2} and brine in limestone core

  9. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  10. Reduction of the uncertainty of the PTB vacuum pressure scale by a new large area non-rotating piston gauge

    NASA Astrophysics Data System (ADS)

    Bock, Th; Ahrendt, H.; Jousten, K.

    2009-10-01

    This paper describes the metrological characterization of a new large area piston gauge (FRS5, Furness Rosenberg Standard) installed at the vacuum metrology laboratory of the Physikalisch-Technische Bundesanstalt (PTB). The operational procedure and the uncertainty budget for pressures between 30 Pa and 11 kPa are given. Comparisons between the FRS5 and a mercury manometer, a rotary piston gauge and a force-balanced piston gauge are described. We show that the reproducibility of the calibration values of capacitance diaphragm gauges is enhanced by a factor of 6 compared with a static expansion primary standard (SE2). Improvements of the SE2 performance by reducing the number of expansions and smaller uncertainties of expansion ratios are discussed.

  11. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  12. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    PubMed

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. PMID:27160199

  13. Geomechanical and Numerical Studies of Casing Damages in a Reservoir with Solid Production

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Aadnoy, Bernt; Mohammadnejad, Mojtaba

    2016-04-01

    Casings damage is a usually reported incident during production in many fields. This incident is conventionally induced by compressional, tensional, burst or collapse forces applied to the casing string. Excessive anisotropic and non-uniform stresses, causing shear failure in unconsolidated reservoirs, are one of the main reasons reported for the casing failure. In this paper, geomechanical and finite element numerical analysis was applied to model hydraulic and mechanical interactions between casing, cement sheath and formations in a carbonate reservoir located in Southern of Iran. The geomechanical analysis indicated that significant in situ stresses induced as a result of the fault reactivation and pore pressure reduction due to reservoir depletion could be the potential reasons for the casing damage experienced in this field. To assess this, numerical analysis was carried out to simulate the casing in the presence of existing forces during drilling, completion and production phases. It was found that excessive and non-uniform stresses surrounding the wellbore together with pore pressure reduction caused the formation to loss its strength and fail. This shear failure results in solid production, creation of the cavities and deformation of the casing because of the excessive buckling force. In addition, a new empirical equation for prediction of ultimate strength of the casing was developed according to the parameters introduced by sensitivity analysis.

  14. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  15. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect

    Hanks, Catherine

    2012-12-31

    compared to theoretical Umiat composition derived using the Pedersen method with original Umiat fluid properties published in the original reports. This comparison allowed estimation of the ‘lost’ light hydrocarbon fractions. An Umiat 'dead' oil sample then could be physically created by adding the lost light ends to the weatherized Umiat dead oil sample. This recreated sample was recombined with solution gas to create a 'pseudo-live' Umiat oil sample which was then used for experimental PVT and phase behavior studies to determine fluid properties over the range of reservoir pressures and temperatures. The phase behavior of the ‘pseudo-live’ oil was also simulated using the Peng- Robinson equations of state (EOS). The EOS model was tuned with measured experimental data to accurately simulate the differential liberation tests in order to obtain the necessary data for reservoir simulation studies, including bubble point pressure and oil viscosity. The bubble point pressure of the reconstructed Umiat oil is 345 psi, suggesting that maintenance of reservoir pressures above that pressure will be important for the any proposed production technique. A major part of predicting how the Umiat reservoir will perform is determining the relative permeability of oil in the presence of ice. Early in the project, UAF work on samples of the Umiat reservoir indicated that there is a significant reduction in the relatively permeability of oil in the presence of ice. However, it was not clear as to why this reduction occurred or where the ice resided. To explore this further, additional experimental and theoretical work was conducted. Core flood experiments were performed on two clean Berea sandstone cores under permafrost conditions to determine the relative permeability to oil (kro) over a temperature range of 23ºC to - 10ºC and for a range of connate water salinities. Both cores showed maximum reduction in relative permeability to oil when saturated with deionized water and less

  16. Reduction of intraocular pressure and improvement of vision after cataract surgeries in angle closure glaucoma with concomitant cataract patients

    PubMed Central

    Zhang, Zong-Mei; Niu, Qing; Nie, Yan; Zhang, Jin

    2015-01-01

    Objective: This study is to compare the efficacy of three different cataract surgeries in eyes with angle closure glaucoma (ACG) with concomitant cataract. Methods: A retrospective comparative analysis of 106 ACG patients (112 eyes) with concomitant cataract was conducted between February, 2012 and February, 2014. Clinical outcomes of ACG patients with concomitant cataract underwent phacoemulsification and intraocular lens implantation (group A, n = 34, 36 eyes, angle closure < 180°); combined phacoemulsification, intraocular lens implantation, and goniosynechialysis (group B, n = 43, 45 eyes, angle closure, 180°~270°); and combined phacoemulsification, intraocular lens implantation, and trabeculectomy (group C, n = 29, 31 eyes, angle closure > 270°) were compared during a 6-month follow-up. Results: There were no statistical differences among the 3 groups in pre-operative or post-operative average visual acuity (VA), intraocular pressure (IOP), anterior chamber depth (ACD), and angle opening distance (AOD) (all P > 0.05). Post-operative VA, IOP, ACD, AOD and the degree of angle opening in the 3 groups were all improved as compared with pre-operative levels (all P < 0.05). No statistical difference was detected among the 3 groups in the incidence of complications (χ2 = 0.376, P = 0.829). Conclusion: Phacoemulsification alone, combined phacoemulsification/goniosynechialysis, and combined phacoemulsification/trabeculectomy provide safe, effective, predictable, and stable options of cataract surgery for treatment of ACG with concomitant cataract. PMID:26629184

  17. Quantification of geologic descriptions for reservoir characterization in carbonate reservoirs

    SciTech Connect

    Lucia, F.J.; Vander Stoep, G.W. )

    1990-05-01

    Recognition that a large volume of oil remains in carbonate reservoirs at the end of primary depletion and waterflooding has prompted the reevaluation of the reserve-growth potential of many existing carbonate reservoirs. Types of numerical data required include porosity, absolute permeability, relative permeability, fluid saturation, and capillary pressure, all of which are related to the size and distribution of pore space. Rock fabrics control the size and distribution of pore space and define facies that best characterize carbonate reservoirs. Thus, the link between facies descriptions and numerical engineering data is the relationship between pore-size distribution and present carbonate rock fabric. The most effective way to convert facies descriptions into engineering parameters is by considering three basic rock-fabric categories. The first category is interparticle pore space (both intergranular and intercrystalline pore types) with pore-size distribution controlled primarily by the size and shape of grains or crystals. Grain or crystal size is the key geologic measurement and, along with porosity, provides the basis for converting geologic descriptions into values for permeability, saturation, and capillarity. The second category is separate-vug pore space, such as moldic or intraparticle pore space. Separate-vug pore space adds porosity but little permeability to the reservoir rock. The contribution to saturation and capillarity depends upon the size of the separate-vug pore space. For example, moldic separate vugs will be saturated with oil, whereas microporous grains will be saturated with water. The third category is touching-vug pore space, which is vuggy pore space that is interconnected on a reservoir scale. The engineering parameters for this category are related to three diagenetic and tectonic factors.

  18. Reservoir quality analysis of a mature play: The Brent Group, North Sea

    SciTech Connect

    Wehr, F.L.; Paxton, S.T.; Tenney, C.M. ); Nardin, T.R.; Proett, B.A.; Cayley, G.T. )

    1996-01-01

    A basin-scale, integrated study of reservoir quality controls was undertaken to assess the remaining deep potential of the Brent Group. The study included a regional sequence stratigraphic and facies model incorporating 398 wells, over 32,000 feet of core and 1255 thin sections from the UK and Norwegian sectors of the North Viking Graben. It has been well established that the Brent Group shows an abrupt reduction in permeability at depth related to fibrous illite growth. However, the depth threshold and extent of permeability reduction are not uniform across the basin: in general, the eastern margin of the graben and Tampen Spur are less susceptible to illitization than the East Shetland Basin to the west. These differences arise from the cumulative effects of : (1) regional variations in composition related to facies distribution, with feldspar, mica- and kaolinite-rich shoreface sandstones increasing in relative abundance to the north and west, (2) facies-independent variations in sandstone composition, with sandstones on average 10% more quartzose east of the Viking Graben axis, (3) regional trends in formation pressure. Elevated formation pressures in and adjacent to the Viking Graben have a dramatic, facies-independent effect on reservoir quality, with porosity enhancement of as much as 10% rock volume over normally pressured sandstones to the west. The effects of each of these controls on Brent depth-reservoir quality trends can be quantified due to the size and stability of the database, and their distribution can be mapped from well control. Combining these maps with depth and isopach data from seismic control yields a basin-scale reservoir risking framework for the Brent Group.

  19. Reservoir quality analysis of a mature play: The Brent Group, North Sea

    SciTech Connect

    Wehr, F.L.; Paxton, S.T.; Tenney, C.M.; Nardin, T.R.; Proett, B.A.; Cayley, G.T.

    1996-12-31

    A basin-scale, integrated study of reservoir quality controls was undertaken to assess the remaining deep potential of the Brent Group. The study included a regional sequence stratigraphic and facies model incorporating 398 wells, over 32,000 feet of core and 1255 thin sections from the UK and Norwegian sectors of the North Viking Graben. It has been well established that the Brent Group shows an abrupt reduction in permeability at depth related to fibrous illite growth. However, the depth threshold and extent of permeability reduction are not uniform across the basin: in general, the eastern margin of the graben and Tampen Spur are less susceptible to illitization than the East Shetland Basin to the west. These differences arise from the cumulative effects of : (1) regional variations in composition related to facies distribution, with feldspar, mica- and kaolinite-rich shoreface sandstones increasing in relative abundance to the north and west, (2) facies-independent variations in sandstone composition, with sandstones on average 10% more quartzose east of the Viking Graben axis, (3) regional trends in formation pressure. Elevated formation pressures in and adjacent to the Viking Graben have a dramatic, facies-independent effect on reservoir quality, with porosity enhancement of as much as 10% rock volume over normally pressured sandstones to the west. The effects of each of these controls on Brent depth-reservoir quality trends can be quantified due to the size and stability of the database, and their distribution can be mapped from well control. Combining these maps with depth and isopach data from seismic control yields a basin-scale reservoir risking framework for the Brent Group.

  20. Status of Cherokee Reservoir

    SciTech Connect

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  1. Status of Wheeler Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  2. Culturally-sensitive weight loss program produces significant reduction in weight, blood pressure, and cholesterol in eight weeks.

    PubMed Central

    Ard, J. D.; Rosati, R.; Oddone, E. Z.

    2000-01-01

    Dietary and behavioral needs of special populations are rarely considered in traditional weight loss programs. This study assessed the impact of culturally-sensitive modifications to the Duke University Rice Diet weight loss program for African-American dieters. The study was a randomized modified cross-over study in which volunteers received either early or delayed weight loss intervention. Final outcomes were measured at 8 weeks. At the onset of the study, there were 56 African American participants, however, only 44 (79%) completed the study. The eight-week intervention was a modified 1000-calorie/day version of the Rice Diet. Modifications to the program included decreased cost, culturally-sensitive recipes, addressing attitudes about exercise, and including family members in weight loss efforts. Average weight loss for subjects completing the program was 14.8 pounds (SD = 6.8 pounds). BMI decreased from 37.8 kg/m2 to 35.3 kg/m2 (p < 0.01). Total cholesterol levels decreased from 199.2 mg/dL to 185.4 mg/dL (p < 0.01); systolic and diastolic blood pressure decreased by 4.3 mmHg (p < 0.01) and 2.4 mmHg (p < 0.05), respectively. The control group showed no significant change in any outcome measures. We found that diet programs can be successfully tailored to incorporate the needs of African-Americans. Most importantly, these dietary program changes can lead to significant improvement in clinical parameters. Additional studies are necessary to determine the permanence of these short-term changes. PMID:11152083

  3. Serial Multifocal Electroretinograms during Long-term Elevation and Reduction of Intraocular Pressure in Non-human Primates

    PubMed Central

    Nork, T. Michael; Kim, Charlene B. Y.; Heatley, Gregg A.; Kaufman, Paul L.; Lucarelli, Mark J.; Levin, Leonard A.; Ver Hoeve, James N.

    2010-01-01

    The purpose of this study was to evaluate the relationship between elevations of intraocular pressure (IOP) and the multifocal electroretinogram (mfERG) in non-human primates. Experimental glaucoma was induced in 4 rhesus and 4 cynomolgus monkeys by laser trabecular meshwork destruction (LTD) in one eye. To evaluate the contribution of ganglion cells to mfERG changes, one monkey of each species had previously underwent unilateral optic nerve transection (ONT). After ≥ 44 weeks of elevation, the IOP was reduced by trabeculectomy in 2 non-transected animals. In the intact (non-transected) animals there was an increase in the amplitude of the early mfERG waveforms (N1 and P1) of the first order kernel (K1) throughout the period of IOP elevation in all of the rhesus, but not all of the cynomolgus monkeys. A species difference was also present as a decrease of the second order kernel, first slice (K2.1) in all of the cynomolgus monkeys but only in 1 of the rhesus monkeys (the 1 with the ONT). Similar IOP effects on the mfERG were seen in the ONT animals. Surgical lowering of IOP resulted in a return of the elevated K1 amplitudes to baseline levels. However, the depressed K2.1 RMS in the cynomolgus monkeys did not recover. These results demonstrate species-specific changes in cone-driven retinal function during periods of elevated IOP. These IOP-related effects can occur in the absence of retinal ganglion cells and may be reversible. PMID:20422254

  4. 20th century human pressures drive reductions in deepwater oxygen leading to losses of benthic methane-based food webs

    NASA Astrophysics Data System (ADS)

    Belle, Simon; Millet, Laurent; Verneaux, Valérie; Lami, Andrea; David, Etienne; Murgia, Laurie; Parent, Claire; Musazzi, Simona; Gauthier, Emilie; Bichet, Vincent; Magny, Michel

    2016-04-01

    Freshwater lakes play a key role in the global carbon cycle as sinks (organic carbon sequestration) and sources (greenhouse gas emissions). Understanding the carbon cycle response to environmental changes is becoming a crucial challenge in the context of global warming and the preponderance of human pressures. We reconstructed the long-term (1500 years) evolution of trophic functioning of the benthic food web, based on methanotrophic ancient DNA and chironomid isotope analyses). In addition, human land use is also reconstructed in three different lakes (eastern France, Jura Mountains). Our findings confirm that the benthic food web can be highly dependent on methane-derived carbon (up to 50% of the chironomid biomass) and reveal that the activation of this process can correspond to a natural functioning or be a consequence of anthropic perturbation. The studied lakes also showed a similar temporal evolution over the last century with the disappearance of the profundal aquatic insects (Chironomidae, Diptera), considered as keystone for the whole lake food web (e.g., coupling benthic-pelagic), inducing a potential collapse in the transfer of methane to top consumers. This functional state, also called the dead zone expansion, was caused by the change in human land-use occurring at the beginning of the 20th century. The strong modification of agro-pastoral practices (e.g., fertilization practices, intensive grazing, and sewage effluent) modified the influx of nutrients (by diffuse and/or point-source inputs) and induced a significant increase in the trophic status and organic matter sedimentation to reach unprecedented values. Further studies should be planned to assess dead zone expansion and, according to the regime shift theory, to provide environmental tipping points for sustainable resource management.

  5. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia

    PubMed Central

    Partanen, Ari; Tillander, Matti; Yarmolenko, Pavel S.; Wood, Bradford J.; Dreher, Matthew R.; Köhler, Max O.

    2013-01-01

    Purpose: Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40–45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. Methods: Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4–16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5–41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM43). Results: Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic

  6. Dolomite reservoirs: Porosity evolution and reservoir characteristics

    SciTech Connect

    Sun, S.Q.

    1995-02-01

    Systematic analyses of the published record of dolomite reservoirs worldwide reveal that the majority of hydrocarbon-producing dolomite reservoirs occurs in (1) peritidal-dominated carbonate, (2) subtidal carbonate associated with evaporitic tidal flat/lagoon, (3) subtidal carbonate associated with basinal evaporite, and (4) nonevaporitic carbonate sequence associated with topographic high/unconformity, platform-margin buildup or fault/fracture. Reservoir characteristics vary greatly from one dolomite type to another depending upon the original sediment fabric, the mechanism by which dolomite was formed, and the extent to which early formed dolomite was modified by post-dolomitization diagenetic processes (e.g., karstification, fracturing, and burial corrosion). This paper discusses the origin of dolomite porosity and demonstrates the porosity evolution and reservoir characteristics of different dolomite types.

  7. Low-frequency echo-reduction and insertion-loss measurements from small passive-material samples under ocean environmental temperatures and hydrostatic pressures.

    PubMed

    Piquette, J C; Forsythe, S E

    2001-10-01

    System L is a horizontal tube designed for acoustical testing of underwater materials and devices, and is part of the Low Frequency Facility of the Naval Undersea Warfare Center in Newport, Rhode Island. The tube contains a fill fluid that is composed of a propylene glycol/water mixture. This system is capable of achieving test temperatures in the range of -3 to 40 deg Centigrade, and hydrostatic test pressures in the range 40 to 68,950 kPa. A unidirectional traveling wave can be established within the tube over frequencies of 100 to 1750 Hz. Described here is a technique for measuring the (normal-incidence) echo reduction and insertion loss of small passive-material samples that approximately fill the tube diameter of 38 cm. (Presented also is a waveguide model that corrects the measurements when the sample fills the tube diameter incompletely.) The validity of the system L measurements was established by comparison with measurements acquired in a large acoustic pressure-test vessel using a relatively large panel of a candidate material, a subsample of which was subsequently evaluated in system L. The first step in effecting the comparison was to least-squares fit the data acquired from the large panel to a causal material model. The material model was used to extrapolate the panel measurements into the frequency range of system L. The extrapolations show good agreement with the direct measurements acquired in system L. PMID:11681380

  8. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  9. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  10. Nonlinear filtering in oil/gas reservoir simulation: filter design

    SciTech Connect

    Arnold, E.M.; Voss, D.A.; Mayer, D.W.

    1980-10-01

    In order to provide an additional mode of utility to the USGS reservoir model VARGOW, a nonlinear filter was designed and incorporated into the system. As a result, optimal (in the least squares sense) estimates of reservoir pressure, liquid mass, and gas cap plus free gas mass are obtained from an input of reservoir initial condition estimates and pressure history. These optimal estimates are provided continuously for each time after the initial time, and the input pressure history is allowed to be corrupted by measurement error. Preliminary testing of the VARGOW filter was begun and the results show promise. Synthetic data which could be readily manipulated during testing was used in tracking tests. The results were positive when the initial estimates of the reservoir initial conditions were reasonably close. Further testing is necessary to investigate the filter performance with real reservoir data.

  11. Effect of Group Mindfulness-Based Stress-Reduction Program and Conscious Yoga on Lifestyle, Coping Strategies, and Systolic and Diastolic Blood Pressures in Patients with Hypertension

    PubMed Central

    Nejati, Somayeh; Zahiroddin, Alireza; Afrookhteh, Gita; Rahmani, Soheila; Hoveida, Shahrzad

    2015-01-01

    Background: Healthy lifestyle and ineffective coping strategies are deemed significant variables among patients with hypertension. This study attempted to determine the status of these variables following intervention via the mindfulness-based stress-reduction program (MBSRP) in patients with hypertension. Method: This study was a randomized clinical trial. The study sample, consisting of 30 patients referring to the Hypertension Clinic of Imam Hossein Hospital in 2013, was assigned either to the intervention (recipient of the MBSRP and conscious yoga) or to the control group (recipient of yoga training). The intervention group had 8 training sessions over 8 weeks. Lifestyle and coping strategies as well as blood pressure were measured in the intervention group before intervention and then immediately thereafter and at 2 months' follow-up and were compared to those in the control group at the same time points. Result: The mean age of the patients in the intervention (40% women) and control (53% women) groups was 43.66 ± 5.14 and 43.13 ± 5.04 years, respectively. The results showed that the mean scores of lifestyle (p value < 0.05), emotion-focused coping strategies (p value < 0.001), problem-focused coping strategies (p value < 0.001), diastolic blood pressure (p value < 0.001), and systolic blood pressure (p value < 0.001) were significantly different between the intervention and control groups after the intervention. Conclusion: Applying an intervention based on the MBSRP may further improve the lifestyle and coping strategies of patients with hypertension. PMID:26697087

  12. What's shaking?: Understanding creep and induced seismicity in depleting sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2015-04-01

    Subsurface exploitation of the Earth's natural resources, such as oil, gas and groundwater, removes the natural system from its chemical and physical equilibrium. With global energy and water demand increasing rapidly, while availability diminishes, densely populated areas are becoming increasingly targeted for exploitation. Indeed, the impact of our geo-resources needs on the environment has already become noticeable. Deep groundwater pumping has led to significant surface subsidence in urban areas such as Venice and Bangkok. Hydrocarbons production has also led to subsidence and seismicity in offshore (e.g. Ekofisk, Norway) and onshore hydrocarbon fields (e.g. Groningen, the Netherlands). Fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased or show other time-lag effects in relation to changes in production rates. One of the main hypotheses advanced to explain this is time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the vertical rock overburden pressure. The operative deformation mechanisms may include grain-scale brittle fracturing and thermally-activated mass transfer processes (e.g. pressure solution). Unfortunately, these mechanisms are poorly known and poorly quantified. As a first step to better describe creep in sedimentary granular aggregates, we have derived a universal, simple model for intergranular pressure solution (IPS) within an ordered pack of spherical grains. This universal model is able to predict the conditions under which each of the respective pressure solution serial processes, i.e. diffusion, precipitation or dissolution, is dominant. In essence, this creates a generic deformation mechanism map for IPS in any granular material. We have used

  13. Temperature dependence of hydraulic properties of Upper Rhine Graben rocks at conditions modelling deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hernández Castañeda, Mariela Carolina; Renner, Joerg; Mueller, Thomas

    2016-04-01

    The evolution of reservoir rocks' hydraulic properties critically affects the operation and long term sustainability of geothermal and petroleum reservoirs. Mechanical and chemical effects modify the permeability and the storage capacity of a reservoir, whose time characteristics have remained poorly constrained up to now. The permeability (k) and specific storage capacity (s) of the rocks constituting the geothermal reservoir are important parameters controlling the extent of the space-time characteristics of the pressure drawdown (or buildup at the reinjection site). To study the evolution of permeability and specific storage capacity as a function of pressure, temperature, and time, we performed oscillatory pore pressure tests. Experiments were performed using samples collected at surface outcrops representing the lithological sequence of the Upper Rhine Graben reservoir in southern Germany, i.e. sandstone and limestone, as well as Padang granite, representing a homogeneous, crystalline reservoir rock. Experiments were run at temperatures between 20 and 200 ° C, confining pressures between 20 and 110 MPa, and a fixed fluid pressure of 10 MPa, modeling characteristic conditions of deep geothermal reservoirs. Intact samples of granite, limestone and sandstone yield permeability and specific storage capacity of about 10‑18, 10‑15, and 10‑14 m2, and 10‑10, 10‑11 and 10‑8 Pa‑1, respectively, with modest dependence on temperature and effective pressure. In addition, longitudinally fractured samples were prepared by simple splitting or cutting and grinding. Grinding was performed with sandpaper of different ISO grits designations (P100, P600, and P1200) to systematically vary the surfaces' roughness. Fractures cause an increase in room-temperature permeability up to 3 and 2 orders of magnitudes for samples of granite and limestone, respectively. Their pressure dependence corresponds to a reduction in permeability modulus by about one order of magnitude

  14. An integrated approach to reservoir engineering at Pleasant Bayou Geopressured-Geothermal reservoir

    SciTech Connect

    Shook, G.M.

    1992-12-01

    A numerical model has been developed for the Pleasant Bayou Geothermal-Geopressured reservoir. This reservoir description is the result of integration of a variety of data, including geological and geophysical interpretations, pressure transient test analyses, and well operations. Transient test analyses suggested several enhancements to the geologic description provided by University of Texas Bureau of Economic Geology (BEG), including the presence of an internal fault not previously identified. The transient tests also suggested water influx from an adjacent aquifer during the long-term testing of Pleasant Bayou; comparisons between transient test analyses and the reservoir description from BEG suggests that this fault exhibits pressure-dependent behavior. Below some pressure difference across the fault, it remains a no-flow barrier; above this threshold pressure drop the barrier fails, and fluid moves across the fault. A history match exercise is presented, using the hypothesized {open_quotes}leaky fault.{close_quotes} Successful match of 4 years of production rates and estimates of average reservoir pressure supports the reservoir description developed herein. Sensitivity studies indicate that the degree of communication between the perforated interval and the upper and lower sands in the reservoir (termed {open_quotes}distal volume{close_quotes} by BEG) impact simulation results very little, whereas results are quite sensitive to storage and transport properties of this distal volume. The prediction phase of the study indicates that Pleasant Bayou is capable of producing 20,000 STB/d through 1997, with the final bottomhole pressure approximately 1600 psi above abandonment pressure.

  15. A reduction in the knee adduction moment with medial thrust gait is associated with a medial shift in center of plantar pressure.

    PubMed

    Ferrigno, Christopher; Wimmer, Markus A; Trombley, Robert M; Lundberg, Hannah J; Shakoor, Najia; Thorp, Laura E

    2016-07-01

    The knee adduction moment (KAM) is an established marker of compartmental load distribution across the tibiofemoral joint. Research suggests a link between the magnitude of the KAM and center of plantar pressure (COP) thus alterations in the two may be related. The objective of this study was to investigate whether the COP predictably shifts when the KAM is reduced through a gait adaptation. Twenty healthy adults underwent gait analysis walking with their normal gait pattern and with medial thrust gait, a gait adaptation known to significantly reduce the KAM. Simultaneous COP and 3-D kinetics were acquired to allow for a comparison of the change in COP to the change in the KAM. The COP was quantified by determining a customized medial-lateral pressure index (MLPI) which compares the COP tracing line during the first and second halves of stance to the longitudinal axis of the foot. Linear regressions assessing the association between the changes in KAM and MLPI indicated that 48.3% (p=0.001) of the variation in MLPI during the first half of stance can be explained by the KAM during the same period. A trend was observed between the association between the KAM and MLPI during the second half of stance (R(2)=0.16, p=0.080). Backwards elimination regression analysis was used to explore whether simultaneous consideration of the KAM and other potential confounding factors such as sagittal plane knee moments and speed explained variance in the MLPI during the first half of stance. Only the KAM exhibited explanatory power (β=0.695, p=0.001). During medial thrust gait, a reduction in the KAM was associated with a medial shift in the MLPI, and an increase in the KAM was associated with a lateral shift in the MLPI, especially in the first half of the stance phase. Together, these results demonstrate an inherent link between foot pressure and the KAM during medial thrust gait, and suggest that manipulating foot pressure may be a biomechanical mechanism for an intervention

  16. Recovery of heavy oils from deep reservoirs

    SciTech Connect

    Stoller, H. M.; Fox, R. L.

    1980-01-01

    The objective of Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. Two approaches are being pursued: improving the thermal efficiency of injection string components and the development of downhole steam generators to achieve steam injection. The first approach has seen the testing of commercially available components at a high temperature (650/sup 0/F)/high pressure (2100 psi) simulation facility. Promising components will be tested shortly in a field test conducted by Husky Oil at Lloydminster, Canada. The second approach has seen the prototype development and laboratory testing of low-pressure and high-pressure hydrocarbon-fueled downhole steam generators. Concurrently, a modified high pressure steam generator has undergone extensive laboratory combustion studies and is currently being employed in a field test at Chevron's Kern River field. This field test is examining the effects of simultaneous injection of steam and combustion products on the reservoir and oil recovery. 9 figures.

  17. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  18. Predicting reservoir wettability via well logs

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Fu, Jinhua; Shi, Yujiang; Li, Gaoren; Mao, Zhiqiang

    2016-06-01

    Wettability is an important factor in controlling the distribution of oil and water. However, its evaluation has so far been a difficult problem because no log data can directly indicate it. In this paper, a new method is proposed for quantitatively predicting reservoir wettability via well log analysis. Specifically, based on the J function, diagenetic facies classification and the piecewise power functions, capillary pressure curves are constructed from conventional logs and a nuclear magnetic resonance (NMR) log respectively. Under the influence of wettability, the latter is distorted while the former remains unaffected. Therefore, the ratio of the median radius obtained from the two kinds of capillary pressure curve is calculated to reflect wettability, a quantitative relationship between the ratio and reservoir wettability is then established. According to the low-permeability core sample capillary pressure curve, NMR {{T}2} spectrum and contact angle experimental data from the bottom of the Upper Triassic reservoirs in western Ordos Basin, China, two kinds of constructing capillary pressure curve models and a predictive wettability model are calibrated. The wettability model is verified through the Amott wettability index and saturation exponent from resistivity measurement and their determined wettability levels are comparable, indicating that the proposed model is quite reliable. In addition, the model’s good application effect is exhibited in the field study. Thus, the quantitatively predicting reservoir wettability model proposed in this paper provides an effective tool for formation evaluation, field development and the improvement of oil recovery.

  19. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subject to FMVSS No. 121 on the date of manufacture and all vacuum braked vehicles. Each motor vehicle using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before...

  20. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subject to FMVSS No. 121 on the date of manufacture and all vacuum braked vehicles. Each motor vehicle using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before...

  1. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subject to FMVSS No. 121 on the date of manufacture and all vacuum braked vehicles. Each motor vehicle using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before...

  2. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subject to FMVSS No. 121 on the date of manufacture and all vacuum braked vehicles. Each motor vehicle using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before...

  3. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subject to FMVSS No. 121 on the date of manufacture and all vacuum braked vehicles. Each motor vehicle using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before...

  4. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA )

    1989-08-01

    These are appendices A thru E of the Ahuachapan geothermal field reservoir analysis. The volume contains: mineralogy contours, ionic chlorine and silicon dioxide contours, well summaries, and temperature and pressure effects. (JEF)

  5. Numerical studies of gravity effects in two-phase reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.

    1986-06-01

    Numerical studies are performed to investigate the effects of localized feed zones on the pressure transients in two-phase reservoirs. It is shown that gravity effects can significantly affect the pressure transients, because of the large difference in the density of liquid water and vapor. Pressure transients for shallow and deep feed zones and the resulting fluid flow patterns are discussed.

  6. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  7. Maintained reduction of intraocular pressure by prostaglandin F2 alpha-1-isopropyl ester applied in multiple doses in ocular hypertensive and glaucoma patients.

    PubMed

    Camras, C B; Siebold, E C; Lustgarten, J S; Serle, J B; Frisch, S C; Podos, S M; Bito, L Z

    1989-09-01

    In a randomized, double-masked, placebo-controlled study, 0.25 microgram (n = 11) or 0.5 microgram (n = 13) of prostaglandin F2 alpha-1-isopropyl ester (PGF2 alpha-IE) was applied topically twice daily for 8 days to one eye of ocular hypertensive or chronic open-angle glaucoma patients. Compared with contralateral, vehicle-treated eyes, PGF2 alpha-IE significantly (P less than 0.05) reduced intraocular pressure (IOP), beginning 4 hours after the first 0.5-microgram dose and lasting at least 12 hours after the fourteenth dose, with a significant (P less than 0.005) mean reduction of 4 to 6 mmHg maintained throughout the last day of therapy with either dose. A contralateral effect was not observed. Mean tonographic outflow facility was significantly (P less than 0.05) higher in PG-treated compared with vehicle-treated eyes (0.17 +/- 0.02 versus 0.12 +/- 0.01 microliter/minute/mmHg, respectively; +/- standard error of the mean) for the 0.5 microgram dose. Conjunctival hyperemia reached a maximum at 30 to 60 minutes after PGF2 alpha-IE application. Some patients reported mild irritation lasting several minutes after some doses. Visual acuity, accommodative amplitude, pupillary diameter, aqueous humor flare, anterior chamber cellular response, Schirmer's test, pulse rate, and blood pressure were not significantly altered. Our findings show that PGF2 alpha-IE is a potent ocular hypotensive agent and a promising drug for glaucoma therapy. PMID:2780003

  8. Application of a standardised protocol for hepatic venous pressure gradient measurement improves quality of readings and facilitates reduction of variceal bleeding in cirrhotics

    PubMed Central

    Tey, Tze Tong; Gogna, Apoorva; Irani, Farah Gillan; Too, Chow Wei; Lo, Hoau Gong Richard; Tan, Bien Soo; Tay, Kiang Hiong; Lui, Hock Foong; Chang, Pik Eu Jason

    2016-01-01

    INTRODUCTION Hepatic venous pressure gradient (HVPG) measurement is recommended for prognostic and therapeutic indications in centres with adequate resources and expertise. Our study aimed to evaluate the quality of HVPG measurements at our centre before and after introduction of a standardised protocol, and the clinical relevance of the HVPG to variceal bleeding in cirrhotics. METHODS HVPG measurements performed at Singapore General Hospital from 2005–2013 were retrospectively reviewed. Criteria for quality HVPG readings were triplicate readings, absence of negative pressure values and variability of ≤ 2 mmHg. The rate of variceal bleeding was compared in cirrhotics who achieved a HVPG response to pharmacotherapy (reduction of the HVPG to < 12 mmHg or by ≥ 20% of baseline) and those who did not. RESULTS 126 HVPG measurements were performed in 105 patients (mean age 54.7 ± 11.4 years; 55.2% men). 80% had liver cirrhosis and 20% had non-cirrhotic portal hypertension (NCPH). The mean overall HVPG was 13.5 ± 7.2 mmHg, with a significant difference between the cirrhosis and NCPH groups (p < 0.001). The proportion of quality readings significantly improved after the protocol was introduced. HVPG response was achieved in 28 (33.3%, n = 84) cirrhotics. Nine had variceal bleeding over a median follow-up of 29 months. The rate of variceal bleeding was significantly lower in HVPG responders compared to nonresponders (p = 0.025). CONCLUSION The quality of HVPG measurements in our centre improved after the introduction of a standardised protocol. A HVPG response can prognosticate the risk of variceal bleeding in cirrhotics. PMID:26996384

  9. 95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  10. Boone Reservoir bacteriological assessment

    SciTech Connect

    Crouch, H.A.

    1990-03-01

    Since 1984, the bacteriological water quality of Boone Reservoir has improved. The actual reservoir pool consistently meets State bacteriological criteria for fecal coliform. Areas of the reservoir that remain impacted by high fecal coliform densities are the riverine portions upstream from SFHRM 35 on the South Fork Holston arm and WRM 13 on the Watauga River am of the reservoir. Improvements have resulted from a combined effort of water resource agencies, local municipalities, and private citizens. Both TVA and the TDHE have conducted monitoring programs over the last six years to assess the condition of the reservoir. Wastewater treatment facility improvements have been made by the cities of Bristol, Tennessee and Virginia, Bluff City, Elizabethton, and Johnson City to increase treatment efficiency and thereby improve Boone Reservoir water quality. Storm runoff events were correlated with elevated fecal coliform measurements in the Boone River watershed, with the greatest impact observed on the Watauga River arm and in the upper portion of the South Fork Holston River arm of the reservoir. Storm events increased the occurrence of wastewater bypasses from the Elizabethton STP and are primarily responsible for the high fecal coliform counts on the Watauga arm. However, nonpoint sources of pollution including animal waste and effluent from malfunctioning septic tank systems may also have a significant impact on Boone Reservoir water quality.

  11. Geysers reservoir studies

    SciTech Connect

    Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

    1993-04-01

    LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

  12. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  13. [Continent cecal-colonic reservoir. Surgical technique].

    PubMed

    Del Boca, C; Ferrari, C; Zanoni, V; Dieci, G; Grignani, G C; Musci, R

    1990-09-30

    The Authors discuss a recent case report treated with radial cystectomy associated with a secondary urinary derivation using the caecum-colon reservoir. After having reviewed the various surgical procedures involving the urinary derivations, the Authors describe the technique used by them paying particular attention to the positive aspects of having a low filling pressure reservoir controlled by a valid sphincter ileum-caecum valve. Considering the good postoperative result with this method, the Authors regard this procedure as an alternative to other urinary derivation techniques when carried out with correct indications. PMID:2287469

  14. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion. PMID:26509211

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  16. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  17. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (ESTSC)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  18. Transient groundwater observations and modelling at a rockslide in fractured rocks adjacent to a hydropower reservoir (Kaunertal valley, Austria)

    NASA Astrophysics Data System (ADS)

    Strauhal, Thomas; Zangerl, Christian; Loew, Simon; Holzmann, Michael; Perzlmaier, Sebastian

    2015-04-01

    numerical models consider saturated and unsaturated water flow. The reservoir at the slope toe and slope infiltration (precipitation and snowmelt) are defined as constant or transient boundary conditions in various models. Piezometric borehole sensors show a clear communication to the hydropower reservoir with fast response times of less than one day. In comparison to that, recharge from rainfall-events and snowmelt has only a small influence on the groundwater fluctuations. The deformation zones have a minor influence on the pore water pressure. Hydraulic packer tests show that the differences in potential heads between the sliding mass and the bedrock below are small. A lowering of the groundwater level after the construction of an exploring drift is indicated by an borehole where hydraulic packer tests were performed before and after the construction of the drift. All of these observations can be reproduced and explained by the numerical models. The numerical models further suggest a reduction in groundwater fluctuations in the nearby setting of the exploring adit.

  19. Mechanical Testing Development for Reservoir Forgings

    SciTech Connect

    Wenski, E.G.

    2000-05-22

    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  20. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    SciTech Connect

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  1. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    NASA Astrophysics Data System (ADS)

    Islam, Nayyer

    corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a "new" reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the "gas cap" and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required

  2. Respiratory monitoring system based on the nasal pressure technique for the analysis of sleep breathing disorders: Reduction of static and dynamic errors, and comparisons with thermistors and pneumotachographs

    NASA Astrophysics Data System (ADS)

    Alves de Mesquita, Jayme; Lopes de Melo, Pedro

    2004-03-01

    Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the

  3. Potential Mammalian Filovirus Reservoirs

    PubMed Central

    Carroll, Darin S.; Mills, James N.; Johnson, Karl M.

    2004-01-01

    Ebola and Marburg viruses are maintained in unknown reservoir species; spillover into human populations results in occasional human cases or epidemics. We attempted to narrow the list of possibilities regarding the identity of those reservoir species. We made a series of explicit assumptions about the reservoir: it is a mammal; it supports persistent, largely asymptomatic filovirus infections; its range subsumes that of its associated filovirus; it has coevolved with the virus; it is of small body size; and it is not a species that is commensal with humans. Under these assumptions, we developed priority lists of mammal clades that coincide distributionally with filovirus outbreak distributions and compared these lists with those mammal taxa that have been tested for filovirus infection in previous epidemiologic studies. Studying the remainder of these taxa may be a fruitful avenue for pursuing the identity of natural reservoirs of filoviruses. PMID:15663841

  4. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  5. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  6. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  7. Modeling and optimizing a gas-water reservoir: Enhanced recovery with waterflooding

    USGS Publications Warehouse

    Johnson, M.E.; Monash, E.A.; Waterman, M.S.

    1979-01-01

    Accepted practice dictates that waterflooding of gas reservoirs should commence, if ever, only when the reservoir pressure has declined to the minimum production pressure. Analytical proof of this hypothesis has yet to appear in the literature however. This paper considers a model for a gas-water reservoir with a variable production rate and enhanced recovery with waterflooding and, using an initial dynamic programming approach, confirms the above hypothesis. ?? 1979 Plenum Publishing Corporation.

  8. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.

    PubMed

    Cerco, Carl F

    2016-05-01

    The Conowingo Reservoir is situated on the Susquehanna River, immediately upstream of Chesapeake Bay, the largest estuary in the United States. Sedimentation in the reservoir provides an unintended benefit to the bay by preventing sediments, organic matter, and nutrients from entering the bay. The sediment storage capacity of the reservoir is nearly exhausted, however, and the resulting increase in loading of sediments and associated materials is a potential threat to Chesapeake Bay water quality. In response to this threat, the Lower Susquehanna River Watershed Assessment was conducted. The assessment indicates the reservoir is in a state of "dynamic equilibrium" in which sediment loads from the upstream watershed to the reservoir are balanced by sediments leaving the reservoir. Increased sediment loads are not a threat to bay water quality. Increased loads of associated organic matter and nutrients are, however, detrimental. Bottom-water dissolved oxygen declines of 0.1 to 0.2 g m are projected as a result of organic matter oxidation and enhanced eutrophication. The decline is small relative to normal variations but results in violations of standards enforced in a recently enacted total maximum daily load. Enhanced reductions in nutrient loads from the watershed are recommended to offset the decline in water quality caused by diminished retention in the reservoir. The assessment exposed several knowledge gaps that require additional investigation, including the potential for increased loading at flows below the threshold for reservoir scour and the nature and reactivity of organic matter and nutrients scoured from the reservoir bottom. PMID:27136154

  9. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  10. Phosphorous control in a eutrophied reservoir.

    PubMed

    Márquez-Pacheco, H; Hansen, A M; Falcón-Rojas, A

    2013-12-01

    Water in lakes and reservoirs accumulate phosphorous (P) from both internal and external loads. The external P load (EPL) coming from the watershed is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms and anoxic conditions often continue even after EPL have been controlled, being the internal P load (IPL) originating from the sediment the main sources of P. To assess the efficiency of the adsorbent Phoslock (a modified bentonite) in controlling P concentrations in water and immobilize releasable P in sediments, mesocosm trials were carried out in a eutrophied reservoir and a model was described and applied that determines the amount of adsorbent and the application frequency necessary to control P concentrations in a eutrophied reservoir. The mesocosm trials confirm that Phoslock reduced P concentrations to or below the limits that define water in mesotrophic state, in approximately 2 weeks. The modeling results suggest that periodic reapplications of the adsorbent are required, unless EPL is reduced by 36 %, which allows the P concentrations in the water column to be constant. Such reduction in EPL would allow future applications of the adsorbent to be required only for control of IPL. The developed model allows planning remediation actions by determining quantities and frequencies for application of adsorbents for P control in eutrophied lakes and reservoirs. PMID:23589273

  11. Paonia Reservoir Sediment Management

    NASA Astrophysics Data System (ADS)

    Kimbrel, S.; Collins, K.; Williams, C.

    2014-12-01

    Paonia Dam and Reservoir are located on Muddy Creek, a tributary of the North Fork Gunnison River in western Colorado. Since dam closure in 1962, the 2002 survey estimates an annual sedimentation rate of 153,000 m3/y, resulting in a 25% loss of total reservoir capacity. Long before sediment levels completely fill the reservoir, the outlet works have recently plugged with sediment and debris, adversely impacting operations, and emphasizing the urgency of formulating an effective sediment management plan. Starting in 2010-2011, operations were changed to lower the reservoir and flush sediment through the outlet works in early spring before filling the pool for irrigation. Even though the flushing strategy through the long, narrow reservoir (~5 km long and 0.3 km wide) has prevented outlet works plugging, a long term plan is needed to manage inflowing and deposited sediment more efficiently. Reclamation's Sedimentation and River Hydraulics Group is leading an effort to study the past and current sediment issues at Paonia Dam and Reservoir, evaluate feasible sediment management alternatives, and formulate a plan for future operations and monitoring. The study is building on previously collected data and the existing knowledge base to develop a comprehensive, sustainable sediment management plan. The study is being executed in three phases: Phase 1 consisted of an initial site visit to map and sample existing reservoir bottom sediments, a preliminary site evaluation upstream and downstream of the dam, and establishment of time-lapse photo sites and taking initial ground-based photos. Phase 2 includes a bathymetric survey of entire reservoir and 11 km of the river downstream of the dam, continuous suspended sediment monitoring upstream and downstream of the reservoir, and collection of additional core samples of reservoir bottom sediments. Phase 3 involves the evaluation of current and past operations and sediment management practices, evaluate feasible sediment

  12. Estimation of horizontal stress magnitudes in a reservoir using sonic data from a deviated borehole

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash K.; Wendt, Anke S.

    2013-04-01

    Geomechanical analysis of sonic data from a deviated wellbore requires rotation of the formation principal stresses to those referred to the wellbore measurement axes. Sonic data and wellbore stability are influenced by these rotated stresses. Inversion of sonic data for formation stress magnitudes has been performed on a deviated wellbore located in the North Sea. The well azimuth is about 36.5 degrees from the maximum horizontal stress direction and a deviation of 35.2 degrees from the vertical. The logged interval comprised gas/condensate in the upper part, and water in the lower part. Production of the reservoir caused a decrease of pore pressure of up to 13.4 MPa in the gas zone and almost no reduction in the pore pressure in the water zone. The new inversion algorithm estimates the maximum and minimum horizontal stresses using radial profiles of the three shear stiffness moduli in the two axial and cross-sectional planes of a deviated borehole. This algorithm inverts differences in the far-field shear moduli together with the two difference equations obtained from radial profiles of the dipole shear moduli in the two axial planes between near and far radial positions from the borehole surface. Results for estimated horizontal stress magnitudes obtained in the depleted areas of the well showed significant differences from the nearly isotropic stress state before production. Estimates of stress magnitudes after depletion showed a sharp increase in differences among the three principal stresses from 2% before production to a ratio of overburden to minimum horizontal stress in the order of 10% to 20% and maximum to minimum horizontal stresses from 5% to 10%. The redistribution of formation stresses in depleted reservoirs is important for maintaining geomechanical reservoir and wellbore stability and has a considerable impact on reservoir management and subsequent drilling and completion decisions. Acknowledgement Schlumberger gratefully acknowledges the

  13. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource; Final report

    SciTech Connect

    Chen-Min; Less, K.; Miller, M.A.

    1994-01-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of Energy geopressured-geothermal research program. The well was shut in October 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, and (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics shown in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  14. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource. Final report

    SciTech Connect

    Lea, C.M.; Lee, K.; Miller, M.A.

    1993-09-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of energy geopressured-geothermal research program. The well was shut in october 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics show in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  15. Relationship of small bowel motility to ileoanal reservoir function.

    PubMed Central

    Groom, J S; Kamm, M A; Nicholls, R J

    1994-01-01

    Some patients with an ileoanal reservoir have a high defecation frequency, despite a good anatomical result and the absence of pouchitis. This study aimed to determine whether variation in function is related to a difference in small bowel motility proximal to the reservoir and if small bowel motility is propagated into the reservoir. Ambulatory small bowel and reservoir motility was studied for 24 hours in five patients with good function (median bowel frequency 4 per day, range 3-6) and seven subjects with poor function (median bowel frequency 12 per day, range 10-20). Five solid state pressure sensors were positioned in the small bowel and one in the reservoir. During the fasting nocturnal period (2300-0800 h), patients with poor function had a median of 10 (range 5-13) migrating motor complexes (MMC), significantly greater (p = 0.03) than the corresponding median number of 3 (range 2-7) in patients with good function. A total of 120 MMCs were observed in the whole series of 12 patients. Of these only two were propagated from the small bowel into the reservoir. Discrete clustered contractions were not propagated into the reservoir, although prolonged propagated contractions did pass into the reservoir in one patient. Patients with poor function had similar 24 hour stool output and radiological reservoir size to those with good function, but the median maximum tolerated volume on reservoir distension was 290 ml (range 160-450) for patients with poor function compared with 475 ml (range 460-550) for patients with good function (p = 0.005). Small bowel motility proximal to the reservoir bears an important relationship to pouch function and defecation frequency. Propagation of coordinated proximal small intestinal motility into the reservoir is rare. PMID:8174992

  16. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect

    David, F.; Gast, R.; Kraft, T. )

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  17. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Luo, Jian-Xin; Zhang, Bo-Ning

    2014-05-01

    This paper extended the conventional multiple hydraulic fractured horizontal (MFH) well into a composite model to describe the stimulated reservoir volume (SRV) caused by hydraulic fracturing. Employing the Laplace transform, Source function, and Dirac delta function methods, the continuous linear source function for general composite dual-porosity is derived, and the solution of the MFH well in a composite gas reservoir is obtained with the numerical discrete method. Through the Stehfest numerical algorithm and Gauss elimination method, the transient pressure responses for well producing at a constant production rate and the production rate vs. time for constant bottomhole pressure are analyzed. The effects of related parameters such as natural permeability and radial of the SRV region, formation permeability and interporosity coefficient on transient pressure and production performance are analyzed as well. The presented model and obtained results in this paper not only enrich the well testing models of such unconventional reservoir, but also can use to interpret on-site data which have significance on efficient reservoir development.

  18. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  19. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  20. Lakes and reservoirs

    SciTech Connect

    Taub, F.B.

    1984-01-01

    This volume in the Ecosystems of the World series studies lakes and reservoirs. The book opens with a discussion of the ecosystem processes that are common to all lakes and reservoirs and then proceeds to a description of mathematical models of these processes. The chapters concentrate on lakes and reservoirs in different parts of the world, ranging from polar to tropical lakes, and in many of the chapters the effects of human activities such as dam construction, increased nutrient inputs, toxic contaminants and fish introduction, are also considered. The book concludes with a summary of the efforts at lake restoration that are being undertaken in many communities in an attempt to undo the damage that has resulted from some of these activities.

  1. Assessing the effects of microbial metabolism and metabolities on reservoir pore structure

    USGS Publications Warehouse

    Udegbunam, E.O.; Adkins, J.P.; Knapp, R.M.; McInerney, M.J.; Tanner, R.S.

    1991-01-01

    The effect of microbial treatment on pore structure of sandstone and carbonatereservoirs was determined. Understanding how different bacterial strains and their metabolic bioproducts affect reservoir pore structure will permit the prudent application of microorganisms for enhanced oil recovery. The microbial strains tested included Clostridium acetobutylicum, a polymer-producing Bacillus strain, and an unidentified halophilic anaerobe that mainly produced acids and gases. Electrical conductivity, absolute permeability, porosity and centrifuge capillary pressure were used to examine rock pore structures. Modifications of the pore structure observed in the laboratory cores included pore enlargement due to acid dissolution of carbonates and poare throat reduction due to biomass plugging. This paper shows that careful selection of microbes based on proper understanding of the reservoir petrophysical characteristics is necessary for applications of microbially enhanced oil recovery. These methods and results can be useful to field operators and laboratory researchers involved in design and screening of reservoirs for MEOR. The methods are also applicable in evaluation of formation damage caused by drilling, injection or completion fluids or stimulation caused by acids.

  2. Modeling of reservoir compaction and surface subsidence at South Belridge

    SciTech Connect

    Hansen, K.S.; Chan, C.K.; Prats, M.

    1995-08-01

    Finite-element models of depletion-induced reservoir compaction and surface subsidence have been calibrated with observed subsidence, locations of surface fissures, and regions of subsurface casing damage at South Belridge and used predictively for the evaluation of alternative reservoir-development plans. Pressure maintenance through diatomite waterflooding appears to be a beneficial means of minimizing additional subsidence and fissuring as well as reducing axial-compressive-type casing damage.

  3. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  4. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  5. Manicouagin Reservoir of Canada

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recorded by the Space Shuttle Atlantis STS-110 mission, this is a photograph of the ice- covered Manicouagin Reservoir located in the Canadian Shield of Quebec Province in Eastern Canada, partially obscured by low clouds. This reservoir marks the site of an impact crater, 60 miles (100 kilometers) wide, which according to geologists was formed 212 million years ago when a meteorite crashed into this area. Over millions of years, the crater has been worn down by glaciers and other erosional processes. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. Incorporating Uncoupled Stress Effects into FEHM Modeling of HDR Reservoirs

    SciTech Connect

    Birdsell, Stephen A.

    1988-07-01

    Thermal and pressure-induced stress effects are extremely important aspects of modeling HDR reservoirs because these effects will control the transient behavior of reservoir flow impedance, water loss and flow distribution. Uncoupled stress effects will be added to the existing three-dimensional Finite Element Heat and Mass Transfer (FEHM) model (Birdsell, 1988) in order to more realistically simulate HDR reservoirs. Stress effects will be uncoupled in the new model since a fully-coupled code will not be available for some time.

  7. Limnological study with reference to fish culture of Bothali (Mendha) reservoir, district - Gadchiroli (India).

    PubMed

    Tijare, Rajendra V

    2012-04-01

    Limnological study with reference to fish culture was carried out at Bothali (Mendha) reservoir, district Gadchiroli, India. Water samples from different sampling locations were collected and processed for physico-chemical analysis. The physico-chemical analysis revealed that the reservoir is favourable for fish culture as the phosphate content in water is moderate in amount. This reservoir can produce a good yield of fishes. Though the reservoir is presently exploited and is under pisciculture, a better treatment of the reservoir such as prevention of entry of organic matter, reduction of phosphate ion concentration to certain extent is necessary to obtain a maximum fish yield. PMID:24749375

  8. Pressure activated reserve battery

    SciTech Connect

    Garoutte, K.F.

    1989-02-07

    A reserve pressure compensating battery is described comprising at least one reserve cell which contains a mean for storing a pair of cell electrodes and an electrolyte reservoir, separated by a fluid-tight barrier. It also includes a first rupturable seal means for providing a rupturable fluid tight barrier between the cell electrodes and the cell electrolyte reservoir, a second rupturable seal means across an external end of the cell electrolyte reservoir means, a deformable cup means within the electrolyte reservoir which provides a fluid-tight seal, a housing means surrounding the reserve cell and having an opening therein, a third rupturable seal means across the opening in the housing means, a flexible bladder means in the housing means for isolating the third seal means from the second seal means, and an electrically nonconductive fill fluid within the housing means between the bladder means and the second seal means whereby a movement of the bladder means allows an internal pressure of the fill fluid to match an external environmental pressure to minimize pressure resistance to the housing means.

  9. Applying reservoir characterization technology

    SciTech Connect

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  10. Reservoirs III carbonates

    SciTech Connect

    Beaumont, E.A.; Foster, N.H.

    1988-01-01

    This text is part of a three volume set on petroleum and natural gas reservoir rocks. This volume deals with carbonate rocks and their properties as they relate to oil and gas production. Papers deal specifically with depositional environments, diagenesis, and chemical and physical properties of the rock.

  11. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  12. Using surface deformation to image reservoir dynamics

    SciTech Connect

    Vasco, D.W.; Karasaki, K.; Doughty, C.

    2000-02-01

    The inversion of surface deformation data such as tilt, displacement, or strain provides a noninvasive method for monitoring subsurface volume change. Reservoir volume change is related directly to processes such as pressure variations induced by injection and withdrawal. The inversion procedure is illustrated by an application to tiltmeter data from the Hijiori test site in Japan. An inversion of surface tilt data allows one to image flow processes in a fractured granodiorite. Approximately 650 barrels of water, injected 2 km below the surface, produces a peak surface tilt of the order of 0.8 microradians. The authors find that the pattern of volume change in the granodiorite is very asymmetrical, elongated in a north-northwesterly direction, and the maximum volume change is offset by more than 0.7 km to the east of the pumping well. The inversion of a suite of leveling data from the Wilmington oil field in Long Beach, California, images large-scale reservoir volume changes in 12 one- to two-year increments from 1976 to 1996. The influence of various production strategies is seen in the reservoir volume changes. In particular, a steam flood in fault block 2 in the northwest portion of the field produced a sudden decrease in reservoir volume.

  13. Seismic imaging of reservoir flow properties: Time-lapse pressurechanges

    SciTech Connect

    Vasco, Don W.

    2003-04-08

    Time-lapse fluid pressure and saturation estimates are sensitive to reservoir flow properties such as permeability. In fact, given time-lapse estimates of pressure and saturation changes, one may define a linear partial differential equation for permeability variations within the reservoir. The resulting linear inverse problem can be solved quite efficiently using sparse matrix techniques. An application to a set of crosswell saturation and pressure estimates from a CO{sub 2} flood at the Lost Hills field in California demonstrates the utility of this approach. From the crosswell estimates detailed estimates of reservoir permeability are produced. The resulting permeability estimates agree with a permeability log in an adjacent well and are in accordance with water and CO{sub 2} saturation changes in the interwell region.

  14. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.

  15. Dynamic-reservoir lubricating device

    NASA Technical Reports Server (NTRS)

    Ficken, W. H.; Schulien, H. E.

    1968-01-01

    Dynamic-reservoir lubricating device supplies controlled amounts of lubricating oil to ball bearings during operation of the bearings. The dynamic reservoir lubricating device includes a rotating reservoir nut, a hollow cylinder filled with lubricating oil, flow restrictors and a ball bearing retainer.

  16. Stream, Lake, and Reservoir Management.

    PubMed

    Mei, Ying; Chang, Chein-Chi; Dong, Zhanfeng; Wei, Li

    2016-10-01

    This review on stream, lake, and reservoir management covers selected 2015 publications on the focus of the following sections: • Biota • Climate effect • Models • Remediation and restoration • Reservoir operations • Stream, Lake, and Reservoir Management • Water quality. PMID:27620102

  17. Reservoir geochemistry: A link between reservoir geology and engineering?

    SciTech Connect

    Larter, S.R.; Aplin, A.C.; Corbett, P.; Ementon, N.

    1994-12-31

    Geochemistry provides a natural but poorly exploited link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the PVT properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a sub-meter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  18. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    SciTech Connect

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  19. Effects of ice-cap unloading on shallow magmatic reservoirs

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Frehner, Marcel; Lupi, Matteo

    2015-04-01

    One of the effects of global warming is the increase of volcanic activity. Glacial melting has been shown to cause visco-elastic relaxation of the upper mantle, which in turn promotes upwelling of magmas through the crust. To date, the effects of ice-cap melting on shallow (i.e., less than 10 km depth) plumbing systems of volcanoes are still not clear. We investigate the pressure changes due to glacial unloading around a magmatic reservoir by combining laboratory and numerical methods. As a case study we focus on Snæfellsjökull, a volcano in Western Iceland whose ice cap is currently melting 1.25 meters (thickness) per year. Our approach is as follows: we obtain representative rock samples from the field, preform tri-axial deformation tests at relevant pressure and temperature (PT) conditions and feed the results into a numerical model in which the stress fields before and after ice cap removal are compared. A suite of deformation experiments were conducted using a Paterson-type tri-axial deformation apparatus. All experiments were performed at a constant strain rate of 10-5 s-1, while varying the PT conditions. We applied confining pressures between 50 and 150 MPa and temperatures between 200 and 1000 ° C. Between 200 and 800 ° C we observe a localized deformation and a slight decrease of the Young's modulus from 41 to 38 GPa. Experiments at 900 and 1000 ° C exhibit macroscopically ductile behavior and a marked reduction of the Young's modulus down to 4 GPa at 1000 ° C. These results are used to construct a numerical finite-element model in which we approximate the volcanic edifice and basement by a 2D axisymmetric half-space. We first calculate the steady-state temperature field in the volcanic system and assign the laboratory-derived temperature-dependent Young's modulus to every element of the model. Then the pressure in the edifice is calculated for two scenarios: with and without ice cap. The comparison between the two scenarios allows us estimate the

  20. Sixth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.

    1980-12-18

    INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of

  1. Computation of dimensional changes in isotropic cesium-graphite reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, Joe N.; Heffernan, Timothy

    1992-01-01

    Cs-graphite reservoirs have been utilized in many operating thermionic converters and TFEs, in both in-core and out-of-core tests. The vapor pressure of cesium over Cs-intercalated graphite is well documented for unirradiated reservoirs. The vapor pressure after irradiation is the subject of on-going study. Dimensional changes due to both intercalation and to neutron irradiation have been quantified only for highly oriented graphite. This paper describes extrapolation of the data for intercalated oriented graphite, to provide a qualitative description of the response of isotropic graphite to exposure to both cesium and neutrons.

  2. Reservoir studies of the Seltjarnarnes geothermal field, Iceland

    SciTech Connect

    Tulinius, H.; Spencer, A.L.; Bodvarsson, G.S.; Kristmannsdottir, H.; Thorsteinsson, T.; Sveinbjornsdottir, A.E.

    1986-10-01

    The Seltjarnarnes geothermal field in Iceland has been exploited for space heating for the last 16 years. A model of the field has been developed that integrates all available data. The model has been calibrated against the flow rate and pressure decline histories of the wells and the temperature and chemical changes of the produced fluids. This has allowed for the estimation of the permeability and porosity distribution of the system, and the volume of the hot reservoir. Predictions of future reservoir behavior using the model suggest small pressure and temperature changes, but a continuous increase in the salinity of the fluids produced.

  3. Reservoir water loss modeling and measurements at Fenton Hill, New Mexico

    SciTech Connect

    Brown, D.W.

    1989-01-01

    An extensive series of pressurized reservoir water loss experiments are presently being conducted in the deeper Phase II reservoir, at the Laboratory's Fenton Hill site in north-central New Mexico. The objectives of these experiments are: to measure the reservoir water leak-off rate at a number of equilibrium reservoir pressure levels, and as a function of time; and with this pressure- and time-dependent water-loss data, to determine the joint dilation (i.e., mean joint porosity) of the reservoir as a function of pressure up to about 24 MPa (as measured at the surface). The permeability model of Gangi has been used to explain the Phase II reservoir water loss as measured during two reservoir flow tests of 7 and 30 days duration. During the 30-day flow test, the model strongly suggests that the reservoir was actively growing by fracture extension, even at injection pressures as low as 27 MPa, which is confirmed by our seismic observations. 3 refs., 6 figs., 1 tab.

  4. Improved Methodology for Estimating Recovery Factor of Carbonate Reservoirs Using Geological Parameters

    NASA Astrophysics Data System (ADS)

    Park, E.; Lee, M.; Keehm, Y.; Kwon, Y. K.

    2014-12-01

    Carbonate reservoirs are highly complicated and heterogeneous than typical sandstone reservoirs, because of their depositional and diagenetic complexity. Therefore estimating the prospectiveness in an early stage of reservoir development is not an easy task. Typically we use an empirical equation, which calculates recovery factor (RF) for this assessment. Since the equation was created with reservoir parameters (porosity, water saturation, permeability, viscosity, pressure, etc.) from sandstone reservoirs, the applicability to carbonate reservoirs is questionable. We compiled 97 carbonate reservoirs and created a database with reservoir properties, geological information, and production data. First, we applied the existing empirical equation to our data and the results were disappointing: the predicted RF's was far off from actual values and correlation was also poor. We then modified the equation by adding geological parameters, such as play type, reservoir age, reservoir type, porosity type, trap information. The new equation was modelled by determining the coefficient of each parameter using least-square minimizing scheme. The modified equation estimated the recovery factor much better and more reliably. We think that the additional geological information is essential for accurate assessment of carbonate reservoirs in early stage of development, since the carbonate reservoirs show high variability and complexity by depositional and diagenetic changes. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Trade, Industry and Energy of Korea (GP2012-029).

  5. Gas content of Gladys McCall reservoir brine

    SciTech Connect

    Hayden, C.G.; Randolph, P.L.

    1987-05-29

    On October 8, 1983, after the first full day of production from Sand No.8 in the Gladys McCall well, samples of separator gas and separator brine were collected for laboratory P-V-T (pressure, volume, temperature) studies. Recombination of amounts of these samples based upon measured rates at the time of sample collection, and at reservoir temperature (290 F), revealed a bubble point pressure of 9200 psia. This is substantially below the reported reservoir pressure of 12,783 psia. The gas content of the recombined fluids was 30.19 SCF of dry gas/STB of brine. In contrast, laboratory studies indicate that 35.84 SCF of pure methane would dissolve in each STB of 95,000 mg/L sodium chloride brine. These results indicate that the reservoir brine was not saturated with natural gas. By early April, 1987, production of roughly 25 million barrels of brine had reduced calculated flowing bottomhole pressure to about 6600 psia at a brine rate of 22,000 STB/D. If the skin factor(s) were as high as 20, flowing pressure drop across the skin would still be only about 500 psi. Thus, some portion of the reservoir volume was believed to have been drawn down to below the bubble point deduced from the laboratory recombination of separator samples. When the pressure in a geopressured geothermal reservoir is reduced to below the bubble point pressure for solution gas, gas is exsolved from the brine flowing through the pores in the reservoir rock. This exsolved gas is trapped in the reservoir until the fractional gas saturation of pore volume becomes large enough for gas flow to commence through a continuous gas-filled channel. At the same time, the gas/brine ratio becomes smaller and the chemistry of the remaining solution gas changes for the brine from which gas is exsolved. A careful search was made for the changes in gas/brine ratio or solution gas chemistry that would accompany pressure dropping below the bubble point pressure. Changes of about the same magnitude as the scatter in

  6. Status of Blue Ridge Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  7. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    The objective of this research is to evaluate the preliminary feasibility of commercial geothermal projects, from a sedimentary reservoir with low permeability that requires productivity enhancement, using numerical reservoir simulation. The performance of a sedimentary geothermal reservoir is investigated in terms of reservoir hydraulics and thermal evolution. To build a reliable benchmark for simulation study, validation of the numerical reservoir model with respect to an analytical model is presented, and the process to achieve an acceptable match between the numerical and analytical solutions is described. The analytical model used in this study is based on the work of Gringarten (1978), which consists of a conceptual geothermal reservoir, considering an injection and production well doublet in a homogeneous porous media. A commercial thermal reservoir simulator (STARS from Computer Modeling Group, CMG) is used in this work for numerical modeling. In order to reproduce the analytical model results, the numerical simulation model is modified to include the same assumptions of the analytical model. Simulation model parameters that make the numerical results deviate from the analytical solution, such as the grid block size, time step and no-flow boundary are identified and investigated. An analytical tracer test model proposed by Shook (2000) is numerically modeled. This model allows us to predict the time when the temperature of the produced water decreases by capturing a tracer component at production well. Reservoir simulation models with different porosity and permeability distribution are tested to see the effects of reservoir inhomogeneity and anisotropy. In particular, premature thermal breakthrough due to the presence of high permeability streak in a reservoir model is simulated. In an effort to apply the knowledge we obtained from the analytical solutions, the effects of reservoir rock and water properties, as a function of pressure and temperature, are

  8. Reduction of mosquito biting-pressure: spatial repellents or mosquito traps? A field comparison of seven commercially available products in Israel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The personal protection capability of seven commercially available mosquito control devices (MCD) is compared under field conditions in Israel. Trials were performed in a high biting-pressure area inhabited by large populations of mosquito and biting midge species and using human volunteers for lan...

  9. Effects of Low-Fat High-Fibre Diet and Mitratapide on Body Weight Reduction, Blood Pressure and Metabolic Parameters in Obese Dogs

    PubMed Central

    PEÑA, Cristina; SUAREZ, Lourdes; BAUTISTA-CASTAÑO, Inmaculada; JUSTE, M. Candelaria; CARRETÓN, Elena; MONTOYA-ALONSO, José Alberto

    2014-01-01

    ABSTRACT The aim of the present study was to compare the impact on blood pressure and different metabolic parameters of a weight-loss program on obese dogs fed on a low-fat high-fibre diet and treated with and without mitratapide. The study sample consisted of 36 obese dogs, randomly assigned to a control group (n=17), which were fed on a low-fat high-fibre diet, and an intervention group (n=19), fed on the same diet and treated with mitratapide. Variables measured included body condition score, body weight, heart rate, systolic and diastolic blood pressures; total cholesterol, triglycerides and glucose levels; alanine aminotransferase and alkaline phosphatase activity, measured both at baseline (day 0) and at the end of the weight loss program (day 85). All the studied parameters had decreased in both groups at the end of the study; these being diastolic blood pressure, total cholesterol and alanine aminotransferase, significantly lower in dogs treated with mitratapide. The use of mitrapide in addition to low-fat high-fibre diet does not seem to offer any further useful effect in the loss of weight during the treatment of canine obesity. On the other hand, mitratapide seems to present certain beneficial effects on pathologies associated with obesity, these being mainly related to blood pressure, lipids and hepatic parameters. PMID:24920548

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3B: High pressure fuel turbo-pump preburner pump bearing assembly analysis

    NASA Technical Reports Server (NTRS)

    Power, Gloria B.; Violett, Rebeca S.

    1989-01-01

    The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.

  11. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 4: High pressure fuel turbo-pump inlet housing analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.

  12. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  13. Trends in reservoir simulation

    SciTech Connect

    Nolen, J.S.

    1995-06-01

    The future of reservoir simulation is driven by two different and, on the surface, paradoxical trends. On the one hand, the user base is on average becoming less experienced, and on the other, increasingly complex models are being built to honor the advances in reservoir-description technology. The job of the software development community is to create software that satisfies both the ease-of-use needs of the novice and the accuracy needs of the integrated geoscience team. One of the near-term effects of these demands will be to improve the capabilities and quality of the fully integrated geoscience work-station. This will include the need for implementation of industry-wide data standards. Reservoir simulators will need to incorporate increasing amounts of interactivity and built-in expertise. Accuracy of results will be improved by increased use of unstructured grids, including automatic gridding software with dynamic capabilities. Additional research will focus on complex wells, including both in-flow performance and wellbore hydraulics. Finally, grid size will continue to escalate in step with advances in hardware and software. The growth of grid size will be mitigated by substantial efforts in upscaling, but ultimately parallel computing must provide the mechanism for continued growth.

  14. Biological souring and mitigation in oil reservoirs.

    PubMed

    Gieg, Lisa M; Jack, Tom R; Foght, Julia M

    2011-10-01

    Souring in oil field systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be "inoculated" into a reservoir system during oil field development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oil field. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oil field souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oil field operations. PMID:21858492

  15. Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs

    SciTech Connect

    Greg N. Boitnott

    2003-12-14

    Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

  16. Moomba Lower Daralingie Beds (LDB) gas storage project: Reservoir management using a novel numerical simulation technique

    SciTech Connect

    Jamal, F.G.

    1994-12-31

    Engineers managing underground gas storage projects are often faced with challenges involving gas migration, inventory variance, gas quality and inventory-pressures. This paper discusses a unique underground gas storage project where sales gas and ethane are stored in two different but communicating regions of the same reservoir. A commercially available reservoir simulator was used to model the fluid flow behavior in this reservoir, hence, providing a tool for better management and use of the existing gas storage facilities.

  17. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  18. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  19. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  20. 30 CFR 550.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: If you have . . . Then you must conduct . . . (1) A new producing reservoir, A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or... wells to establish an average reservoir pressure. The Regional Supervisor may require that...

  1. Effects of nonlinear reservoir compaction on casing behavior

    SciTech Connect

    Chia, Y.P.; Bradley, D.A.

    1988-08-01

    Depletion of overpressured, undercompacted reservoirs can cause large reservoir pressure drops and sediment compaction, which may result in casing deformation and well failure. To predict soil and casing deformation during depletion, a finite-element model was developed. Nonlinear elastic and plastic behavior of the soils and slippage along the wellbore boundary are major advancements in this study. This axisymmetric model is composed of casing wall, cement column, slippage interface, and sediments from 11,400 to 13,200 ft (3475 to 4025 m) in depth with a radius of 3,400 ft (1035 m). This study features a process of concurrent fluid flow, nonlinear elastic and plastic soil deformation, slippage from the wellbore boundary, and casing deformation. The modeling results show that the decline in near-wellbore reservoir pressure during depletion causes vertical compaction in both the sand reservoirs and the confining shale formations. Slippage next to the wellbore decreases the axial shear load placed on the casing by the sediments. Nonlinear elastic and plastic soils show a greater tendency for casing deformation with depletion than do linear elastic soils. Axial strains in the casing above the yield strain eventually developed as near-wellbore reservoir pressure was allowed to decline to a minimum. Because this effect is quantified, the production rate may be held to a safe maximum so that the operating limits of the casing are not exceeded. Criteria are given to improve both completion design and production rate specification.

  2. Pleasant Bayou Geopressured-Geothermal Reservoir Analysis - January 1991

    SciTech Connect

    Riney, T.D.

    1991-01-01

    Many sedimentary basins contain formations with pore fluids at pressures higher than hydrostatic value; these formations are called geopressured. The pore pressure is generally well in excess of hydrostatic and the fluids vary in scalinity, temperature, and dissolved methane. As part of its program to define the magnitude and recoverability of the geopressured-geothermal energy resource, the US Department of Energy has drilled and tested deep wells in geopressured formations in the Texas-Louisiana Gulf Coast region. Geological information for the Pleasant Bayou geopressured geothermal resource is most extensive among the reservoirs tested. Earlier testing of the DOE well (Pleasant Bayou Well No.2) was conducted in several phases during 1979-1983. Long-term testing was resumed in May 1988 and is currently in progress. This report summarizes the pertinent field and laboratory test data available through December 31, 1990. A numerical reservoir simulator is employed as a tool for synthesizing and integrating the reservoir information, formation rock and fluid properties data from laboratory tests, well data from the earlier testing (1979-1983), and the ongoing long-term production testing (1988-1990) of Pleasant Bayou Well No.2. A reservoir simulation model has been constructed which provides a detailed match to the well test history to date. This model is constructed within a geologic framework described by the Texas Bureau of Economic Geology and relies heavily on the pressure transient data from the 1980 Reservoir Limits Test in conjunction with the 1988-1990 production testing.

  3. [Repeated percutaneous transluminal septal myocardial ablation leads to reduction of left ventricular outflow-tract pressure gradient in hypertrophic obstructive cardiomyopathy: a case report].

    PubMed

    Takeda, Masafumi; Mori, Takao; Ohashi, Yoshitaka; Ichikawa, Shinobu; Terashima, Mitsuyasu; Ejiri, Junya; Awano, Kojiro

    2006-06-01

    A 61-year-old man with hypertrophic obstructive cardiomyopathy was treated twice with percutaneous transluminal septal myocardial ablation (PTSMA). The first procedure improved the left ventricular outflow tract pressure gradient (LVOTG) from 148 to 48 mmHg and the New York Heart Association (NYHA) class from III to II in a week. However, the LVOTG increased to 197 mmHg and the NYHA class worsened to III within 3 months. In spite of medical treatment with beta-blocker, syncope attack occurred suddenly. Repeated PTSMA was performed. Just after the second procedure, the LVOTG did not decrease. However, the LVOTG decreased to 81 mmHg and the NYHA class improved to II with 3 months. The different response of pressure gradient in the acute and chronic phase with repeated PTSMA was interesting. PMID:16800375

  4. Production decline analysis for a multi-fractured horizontal well considering elliptical reservoir stimulated volumes in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Duan, Yonggang; Fang, Quantang; Zhang, Tiantian

    2016-06-01

    Multi-fractured horizontal wells (MFHWs) are an effective technique for developing shale gas reservoirs. After fracturing, stimulated reservoir volumes (SRVs) invariably exist around the wellbore. In this paper, a composite elliptical SRV model for each hydraulic fracturing stage is established, based on micro-seismic events. Both the SRV and the outer regions are assumed as single-porosity media with different formation physical parameters. Based on unstructured perpendicular bisection (PEBI) grids, a mathematical model considering Darcy flow, diffusion and adsorption/desorption in shale gas reservoirs is presented. The numerical solution is obtained by combining the control volume finite element method with the fully implicit method. The model is verified by a simplified model solution. The MFHW Blasingame production decline curves, which consider elliptical SRVs in shale gas reservoirs, are plotted by computer programming. The flow regions can be divided into five flow regimes: early formation linear flow, radial flow in the SRV region, transient flow, pseudo radial flow and boundary dominated flow. Finally, the effect of six related parameters, including the SRV area size, outer region permeability, SRV region permeability, Langmuir pressure, Langmuir volume and diffusion coefficient, are analyzed on type curves. The model presented in this paper can expand our understanding of MFHW production decline behaviors in shale gas reservoirs and can be applied to estimate reservoir properties, the SRV area, and reserves in these types of reservoirs by type curve matching.

  5. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  6. Losartan/hydrochlorothiazide combination therapy surpasses high-dose angiotensin receptor blocker in the reduction of morning home blood pressure in patients with morning hypertension.

    PubMed

    Hanayama, Yoshihisa; Uchida, Haruhito Adam; Nakamura, Yoshio; Makino, Hirofumi

    2012-01-01

    Angiotensin receptor blockers (ARBs) are the first-line antihypertensive agents. In clinical practice, it is often difficult to achieve the recommended blood pressure level by ARBs in their ordinal dosages alone. This study examined the practical efficacy of a combination therapy of ARB with thiazide diuretics for lowering morning home blood pressure (MHBP) in comparison to high-dose ARB therapy in patients with morning hypertension administered an ordinal dosage of ARB. This study was performed in a prospective, randomized, open-labeled and blind-endpoint fashion. Patients were considered to have morning hypertension when their self-measured systolic MHBPs were 135mmHg or higher, irrespective of their diastolic MHBP and office blood pressures (OBPs). Forty-eight outpatients with morning hypertension receiving the ordinal dosage of ARB were given either losartan/hydrochlorothiazide (n = 26) or high-dose ARB (n = 22) in place of their previously prescribed ARB. No change in any medication was permitted during this period. Decreases of both systolic and diastolic MHBP after 3 months of treatment were significantly greater in the losartan/hydrochlorothiazide group than in the high-dose ARB group (p < 0.05, respectively). The ratio of adverse events was somewhat high (23.1% in the losartan/hydrochlorothiazide group, 9.1% in the high-dose ARB group, respectively). However, there were no significant differences in any particular adverse event between groups. This study suggested losartan/hydrochlorothiazide might be superior to high-dose ARB for reducing morning home blood pressure. PMID:23254579

  7. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  8. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  9. Gas condensate reservoir characterisation for CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, A. P.

    2012-04-01

    During oil and gas production hydrocarbon recovery efficiency is significantly increased by injecting miscible CO2 gas in order to displace hydrocarbons towards producing wells. This process of enhanced oil recovery (EOR) might be used for the total CO2 storage after complete hydrocarbon reservoir depletion. This kind of potential storage sites was selected for detailed studies, including generalised development study to investigate the applicability of CO2 for storages. The study is focused on compositional modelling to predict the miscibility pressures. We consider depleted gas condensate field in Kazakhstan as important target for CO2 storage and EOR. This reservoir being depleted below the dew point leads to retrograde condensate formed in the pore system. CO2 injection in the depleted gas condensate reservoirs may allow enhanced gas recovery by reservoir pressurisation and liquid re-vaporisation. In addition a number of geological and petrophysical parameters should satisfy storage requirements. Studied carbonate gas condensate and oil field has strong seal, good petrophysical parameters and already proven successful containment CO2 and sour gas in high pressure and high temperature (HPHT) conditions. The reservoir is isolated Lower Permian and Carboniferous carbonate platform covering an area of about 30 km. The reservoir contains a gas column about 1.5 km thick. Importantly, the strong massive sealing consists of the salt and shale seal. Sour gas that filled in the oil-saturated shale had an active role to form strong sealing. Two-stage hydrocarbon saturation of oil and later gas within the seal frame were accompanied by bitumen precipitation in shales forming a perfect additional seal. Field hydrocarbon production began three decades ago maintaining a strategy in full replacement of gas in order to maintain pressure of the reservoir above the dew point. This was partially due to the sour nature of the gas with CO2 content over 5%. Our models and

  10. Reduction of homocysteine in elderly with heart failure improved vascular function and blood pressure control but did not affect inflammatory activity.

    PubMed

    Andersson, Sven E; Edvinsson, Marie-Louise; Edvinsson, Lars

    2005-11-01

    We have previously shown that hyperhomocysteinaemia is common in elderly heart failure patients, and is associated with endothelial dysfunction, impaired vasodilatory capacity and a low-grade inflammation. In the present study we examined if supplementation with B6, B12 and folate could normalize the hyperhomocysteinaemia and if so, in turn, would improve the associated parameters. This was an open study without placebo control on heart failure patients with plasma homocysteine > 15 microM. Measurements of cutaneous vascular reactivity, blood pressure, inflammatory activity and endothelial function were performed before and after intervention with intra-individual comparisons. The treatment reduced homocysteine to near normal values and enhanced the hyperaemic response to acetylcholine related to the response to heat. The mean arterial blood pressure and pulse rate was reduced. There was no effect on inflammatory activity, plasma levels of von Willebrand factor, subjective health quality or the hyperaemic responses to sodium nitroprusside or local warming. Hyperhomocysteinaemia in heart failure patients is multifactorial in origin. Folate deficiency, inflammatory activity and reduced renal function could be contributing. It is suggested that supplementation with B-vitamins can improve the vasodilatory capacity and reduce the blood pressure but additional studies are required to confirm this. PMID:16236143

  11. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Peigui Yin; Shaochang Wo

    2005-04-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  12. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    SciTech Connect

    Norman R. Morrow

    2004-07-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  13. Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Jason Zhengxin Tong; Peigui Yin; Shaochang Wo

    2006-02-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  14. Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action, and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition

    SciTech Connect

    Norman Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Zhengxin Tong; Evren Unsal; Siluni Wickramathilaka; Shaochang Wo; Peigui Yin

    2008-06-30

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  15. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    SciTech Connect

    Norman R. Morrow

    2004-05-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  16. Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Peigui Yin; Shaochang Wo

    2006-12-08

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  17. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Peigui Yin; Shaochang Wo

    2005-02-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  18. Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Jason Zhengxin Tong; Peigui Yin; Shaochang Wo

    2006-06-08

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  19. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    SciTech Connect

    Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Peigui Yin; Shaochang Wo

    2004-10-01

    -wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

  20. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NASA Astrophysics Data System (ADS)

    Marketos, G.; Spiers, C. J.; Govers, R.

    2016-06-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically on the role of creep of rock salt caprocks in response to production-induced differential stresses. We start by discussing available rock salt creep flow laws. We then present the subsidence evolution above an axisymmetric finite element representation of a generic reservoir that extends over a few kilometers and explore the effects of rock salt flow law choice on the subsidence response. We find that if rock salt creep is linear, as appropriate for steady state flow by pressure solution, the subsidence response to any pressure reduction history contains two distinct components, one that leads to the subsidence bowl becoming narrower and deeper and one that leads to subsidence rebound and becomes dominant at later stages. This subsidence rebound becomes inhibited if rock salt deforms purely through steady state power law creep at low stresses. We also show that an approximate representation of transient creep leads to relatively small differences in subsidence predictions. Most importantly, the results confirm that rock salt flow must be modeled accurately if good subsidence predictions are required. However, in practice, large uncertainties exist in the creep behavior of rock salt, especially at low stresses. These are a consequence of the spatial variability of rock salt physical properties, which is practically impossible to constrain. A conclusion therefore is that modelers can only resort to calculating bounds for the subsidence evolution above producing rock salt-capped reservoirs.

  1. Building more realistic reservoir optimization models using data mining - A case study of Shelbyville Reservoir

    NASA Astrophysics Data System (ADS)

    Hejazi, Mohamad I.; Cai, Ximing

    2011-06-01

    In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month's inflow ( Qt-1 ), current month's inflow ( Qt), past month's release ( Rt-1 ), and past month's Palmer drought severity index ( PDSIt-1 ) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.

  2. Conservation program (EQIP) reduces atrazine in Columbus, OH drinking water supply reservoir

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation dollars applied in the Upper Big Walnut Creek Watershed have achieved a significant reduction in the atrazine levels in Hover Reservoir, a major drinking water source for Columbus, Ohio. During the 1990s, atrazine levels in this reservoir periodically exceeded the health advisory limit ...

  3. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  4. WATER LEVEL DRAWDOWN TRIGGERS SYSTEM-WIDE BUBBLE RELEASE FROM RESERVOIR SEDIMENTS

    EPA Science Inventory

    Reservoirs are an important anthropogenic source of methane and ebullition is a key pathway by which methane stored in reservoir sediments can be released to the atmosphere. Changes in hydrostatic pressure during periods of falling water levels can trigger bubbling events, sugge...

  5. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  6. The characteristics of magma reservoir failure beneath a volcanic edifice

    NASA Astrophysics Data System (ADS)

    Hurwitz, Debra M.; Long, Sylvan M.; Grosfils, Eric B.

    2009-12-01

    Eruptions fed from subsurface reservoirs commonly construct volcanic edifices at the surface, and the growth of an edifice will in turn modify the subsurface stress state that dictates the conditions under which subsequent rupture of the inflating reservoir can occur. We re-examine this problem using axisymmetric finite element models of ellipsoidal reservoirs beneath conical edifices, explicitly incorporating factors (e.g., full gravitational loading conditions, an elastic edifice instead of a surface load, reservoir pressures sufficient to induce tensile rupture) that compromise previous solutions to illustrate why variations in rupture behavior can occur. Relative to half-space model results, the presence of an edifice generally rotates rupture toward the crest of a spherical reservoir, with increasing flank slope (for an edifice of constant volume) and larger edifices (or greater reservoir scaled depths) normally serving to enhance this trend. When non-spherical reservoirs are considered, the presence of an edifice amplifies previously identified half-space failure characteristics, shifting rupture to the crest more rapidly for prolate reservoirs while forcing rupture closer to the midpoint of oblate reservoirs. Rupture is always observed to occur in the σt orientation, and depending on where initial failure occurs rupture favors the initial emplacement of either lateral sills, circumferential intrusions or vertically ascending dikes. Ultimately, integration of our numerical model results with other information, for instance the sequence of intrusion/eruption events observed at a given volcano, can provide useful new insight into how a volcano's subsurface magma plumbing system evolved. We demonstrate this process through application of our model to Summer Coon, a well-studied stratocone on Earth, and Ilithyia Mons, a large conical shield volcano on Venus.

  7. Induced stresses due to fluid extraction from axisymmetric reservoirs

    USGS Publications Warehouse

    Segall, P.

    1992-01-01

    Earthquakes can be induced by fluid extraction, as well as by fluid injection. Segall (1989) proposed that poroelastic stresses are responsible for inducing earthquakes associated with fluid extraction. Here, I present methods for computing poroelastic stress changes due to fluid extraction for general axisymmetric reservoir geometries. The results of Geertsma (1973) for a thin disk reservoir with uniform pressure drop are recovered as a special case. Predicted surface subsidence agrees very well with measured leveling changes over the deep Lacq gas field in southwestern France. The induced stresses are finite if the reservoir pressure changes are continuous. Computed stress changes are on the order of several bars, suggesting that the preexisting stress states in regions of extraction induced seismicity are very close to frictional instability prior to production. ?? 1992 Birkha??user Verlag.

  8. [Human reservoirs of Pneumocystis].

    PubMed

    Wissmann, Gustavo; Morilla, Ruben; Friaza, Vicente; Calderón, Enrique; Varela, Jose M

    2010-01-01

    Pneumocystis jirovecii, the fungal agent that causes Pneumocystis pneumonia (PCP), is known to exclusively infect humans. Molecular studies have enabled detection of this fungus in individuals who have been colonized by P. jirovecii. Such colonization, found in several populations, seems to act as a human reservoir for the fungus. Various studies have reported mutations associated with sulfa resistance in P. jirovecii strains isolated from colonized patients, who can transmit the mutant genotype to PCP-susceptible individuals. The growing interest in P. jirovecii colonization may prompt the design of new prevention and management strategies for PCP. PMID:19403207

  9. Geomechanically Coupled Simulation of Flow in Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.

    2012-12-01

    Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles

  10. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  11. Reservoir management cost-cutting

    SciTech Connect

    Gulati, M.S.

    1996-12-31

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  12. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  13. Mechanistic models of unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Pouyan Lialekol

    Rock physics models are mathematical relations between porosity, composition and elastic properties of a rock. Unlike in conventional silisiclastic rocks where seismic-to-rock properties are predicted successfully by rock physics models, their application in unconventional reservoirs such as shale, hydrate and carbonates is not fully understood. In light of the vast untapped potential of unconventional resources, their exploration will be easier if a suitable rock physics models become available for quantitative interpretation of seismic data. In this thesis generic, rock physics models that were developed for conventional siliciclastic systems have been used to infer rock properties such as porosity, composition, fluid saturation and pore pressure in shale, gas hydrates and carbonates. Results indicate that elastic properties of these rocks including shale and gas hydrates which can be viewed as grain assemblages can be best predicted by Hashin Shtrikman bounds. For rocks with non-spherical pores and a rather unified matrix such as carbonates where grain-to-grain contacts are not very clear, the Kuster and Toksoz model provide a good description of their dry elastic properties.

  14. Characterizing CO2 storage reservoir for above-zone monitoring

    NASA Astrophysics Data System (ADS)

    Zahid, K. M.; Hovorka, S. D.

    2011-12-01

    CO2 enhanced oil recovery (EOR) provides an excellent opportunity for commercial sequestration of anthropogenic CO2. Fluvial, strand plain, and deltaic sandstones of Oligocene and Miocene formations that extend across the Gulf Coast Basin were prolific oil producers for many decades and are also considered to be effective reservoirs for large scale carbon storage. A deep-seated salt dome, faulted anticlinal structure from Gulf coastal region is currently under investigation to develop a monitoring, verification, and accounting (MVA) plan as coordinated with commercial surveillance of an EOR site for injecting large volume (>1 Million ton/year) of CO2. Geophysical logs have been used to characterize the injection zone reservoir and overburden. One novel MVA element in design is above-zone pressure and geochemical monitoring for out-of-zone migration. Initial characterization with wireline logs demonstrates the extent and areal continuity of reservoir sands and geometries of faults that cut the reservoir. To develop the monitoring plan, we focus characterization on several elements: (1) input data for quick-look dynamic model of the extent of CO2 plume and amount and extent of accompanying pressure elevation, (2) characterization of the zones above the top-reservoir seal for above-zone pressure monitoring, and (3) intersection of faults with well-bores in intervals above the top-reservoir seal for thermal monitoring. Other uncertainties addressed during characterization are the upper extent of faults and juxtaposition of layers to assess the potential for cross-fault fluid migration. Such detail characterization will allow realistic assessment of the sensitivity of monitoring techniques such as temperature logging for tracking up-fault fluid migration and pressure change for out-of zone fluid migration. Successful use of such geophysical techniques for MVA based on uniting elements of existing regulatory monitoring expectations with commercial best practices will be

  15. Tracer testing for reservoir description

    SciTech Connect

    Brigham, W.E.; Abbaszadeh-Dehghani, M.

    1987-05-01

    When a reservoir is studied in detail for an EOR project, well-to-well tracers should be used as a tool to help understand the reservoir in a quantitative way. Tracers complement the more traditional reservoir evaluation tools. This paper discusses the concepts underlying tracer testing, the analysis methods used to produce quantitative results, and the meaning of these results in terms of conceptual picture of the reservoir. Some of the limitations of these analysis methods are discussed, along with ongoing research on tracer flow.

  16. A vapor-dominated reservoir exceeding 600{degrees}F at the Geysers, Sonoma County, California

    SciTech Connect

    Walters, M.A.; Sternfeld, J.N.; Haizlip, J.R.; Drenick, A.F.; Combs, Jim

    1988-01-01

    A high-temperature vapor-dominated reservoir underlies a portion of the Northwest Geysers area, Sonoma County, California. The high-temperature reservoir (HTR) is defined by flowing fluid temperatures exceeding 500º F, rock temperatures apparently exceeding 600º F and steam enthalpies of about 1320 BTU/lb. Steam from existing wells drilled in the Northwest Geysers is produced from both a “typical” Geysers reservoir and the HTR. In all cases, the HTR is in the lower portion of the wells and is overlain by a “typical” Geysers reservoir. Depth to the high-temperature reservoir is relatively uniform at about -5900 ft subsea. There are no identified lithologic or mineralogic conditions that separate the HTR from the “typical” reservoir, although the two reservoirs are vertically distinct and can be located in most wells to within about 200 ft by the use of downhole temperature-depth measurements. Gas concentrations in steam from the HTR are higher (6 to 9 wt %) than from the “typical” Geysers reservoir (0.85 to 2.6 wt %). Steam from the HTR is enriched in chloride and the heavy isotopes of water relative to the “typical” reservoir. Available static and dynamic measurements show pressures are subhydrostatic in both reservoirs with no anomalous differences between the two: the HTR pressure being near 520 psia at sea level datum. The small observed differences in pressure between the reservoirs appear to vary along a steam density gradient. It is postulated that the Northwest Geysers area evolved more slowly toward vapor-dominated conditions than other parts of The Geysers field because of its poor connection with the surface. In this paper, a model is presented in which the boundary between the HTR and “typical” reservoir is a thermodynamic feature only, resulting from recent deep venting of a liquid-dominated system in which conduction is still an important component of heat transfer.

  17. 49 CFR 230.72 - Testing main reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas are detected, a hydrostatic test of MAWP shall be applied. (b) Drilling of main reservoirs. (1... = certified working pressure in psi; S = 1/5 of the minimum specified tensile strength of the material in psi... used instead of the hammer test and hydrostatic test required in paragraph (a) of this section....

  18. 49 CFR 230.72 - Testing main reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas are detected, a hydrostatic test of MAWP shall be applied. (b) Drilling of main reservoirs. (1... = certified working pressure in psi; S = 1/5 of the minimum specified tensile strength of the material in psi... used instead of the hammer test and hydrostatic test required in paragraph (a) of this section....

  19. Gas-well production decline in multiwell reservoirs

    SciTech Connect

    Aminian, K.; Ameri, S. ); Stark, J.J. ); Yost, A.B. II )

    1990-12-01

    This paper introduces a pseudosteady-state constant-pressure solution for gas wells. The solution was used to develop a type-curve-based method to history match and predict multiwell gas reservoir production. Good agreements between the predicted and actual gas well production rates were obtained.

  20. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  1. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  2. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  3. New life in old reservoirs - the microbial conversion of oil to methane

    NASA Astrophysics Data System (ADS)

    Gründger, Friederike; Feisthauer, Stefan; Richnow, Hans Hermann; Siegert, Michael; Krüger, Martin

    2010-05-01

    Since almost 20 years it is known from stable isotope studies that large amounts of biogenic methane are formed in oil reservoirs. The investigation of this degradation process and of the underlying biogeochemical controls are of economical and social importance, since even under optimal conditions, not more than 30-40 % of the oil in a reservoir is actually recovered. The conversion of parts of this non-recoverable oil via an appropriate biotechnological treatment into easily recoverable methane would provide an extensive and ecologically sound energy resource. Laboratory mesocosm as well as high pressure autoclave experiments with samples from different geosystems showed high methane production rates after the addition of oils, single hydrocarbons or coals. The variation of parameters, like temperature, pressure or salinity, showed a broad tolerance to environmental conditions. The fingerprinting of the microbial enrichments with DGGE showed a large bacterial diversity while that of Archaea was limited to three to four dominant species. The Q-PCR results showed the presence of high numbers of Archaea and Bacteria. To analyse their function, we measured the abundances of genes indicative of metal reduction (16S rRNA gene for Geobacteraceae), sulphate reduction (sulphate reductase, dsr), and methanogenesis (methyl coenzyme M-reductase, mcrA). The methanogenic consortia will be further characterised to determine enzymatic pathways and the individual role of each partner. Degradation pathways for different compounds will be studied using 13C-labelled substrates and molecular techniques. Our stable isotope data from both, methane produced in our incubations with samples from various ecosystems and field studies, implies a common methanogenic biodegradation mechanism, resulting in consistent patterns of hydrocarbon alteration.

  4. A Constrained Differential Evolution Algorithm for Reservoir Management: Optimal Placement and Control of Wells for Geological Carbon Storage with Uncertainty in Reservoir Properties

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Birkholzer, J. T.; Bianchi, M.

    2014-12-01

    Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in

  5. Development of the Phase I Fenton Hill HDR Reservoir. Part I, Fracture Dimension

    SciTech Connect

    Fisher, Henry N.

    1981-02-24

    Sufficient data now exists to allow a description of the general and probable growth of the Fenton Hill HDR reservoir. The reservoir discussed here is that associated with the original EE-1 to GT-2B connection (Phase I, Segments 2 and 3) and the EE-1 to GT-2B connection after the recementing of the EE-1 casing (Phase I, Segments 4 and 5). Many aspects of the reservoir development are discussed in Refs. 1 through 3. Here the growth and general characteristics of the reservoir are discussed in terms of the general aspects of the pressure transient, tracer, and temperature measurements.

  6. Complete Release of Horizontal Shear Stresses During Geothermal Reservoir Stimulation

    NASA Astrophysics Data System (ADS)

    Schoenball, M.; Gaucher, E.; Wellmann, F.; Kohl, T.

    2013-12-01

    Seismicity can be induced in previously seismically inactive regions by man-made changes of the stress field. Notable stress perturbations are created by injection or withdrawal of fluids such as wastewater, fresh water or hydrocarbons. Over the last decades our knowledge of the physical processes of induced seismicity has improved largely. However, the driving force of seismicity, i.e. the actual perturbation of the stress field in the reservoir during fluid injection, remains largely unknown up to now. Measurements of fluid pressure at the well are not enough to extrapolate the pressure change in the reservoir. Here we study the evolution of the stress field during a massive hydraulic stimulation of a 5 km deep well at the enhanced geothermal system at Soultz-sous-Forêts, France. Fresh water was pumped with rates of 30 to 50 ls-1 for 6 days. Locations of 7215 events with maximum magnitude of MW=2.5 were obtained, for 715 events with MW > 1 focal mechanism solutions were derived. At first we present observations of several peculiar phenomena of the seismicity migration, of fluid flow and earthquake mechanisms following the shut-in of the well, which indicate to yet not understood hydro-mechanical coupling mechanisms in connection with shut-in. In order to analyze the changes of the stress field during and after the stimulation we identify the fracture planes from the two nodal planes by a probability-based method where we incorporate structural geological information gained from well logs and uncertainties of the determination of focal mechanism solutions and independent estimates of the stress field. In principle, this approach is able to incorporate further uncertainties, if available. We then conduct stress inversions resolved in time and depth to study spatio-temporal changes of the stress tensor. Our results show an increasingly perturbed stress state with time with a strong reduction of the horizontal shear stresses in areas of highest seismic activity

  7. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown

  8. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  9. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  10. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect

    Mohan Kelkar

    2003-04-01

    West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.

  11. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    PubMed

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  12. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    SciTech Connect

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  13. Reduction in sodium intake is independently associated with improved blood pressure control in people with chronic kidney disease in primary care.

    PubMed

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; McIntyre, Natasha J; Shardlow, Adam; McIntyre, Christopher W; Taal, Maarten W

    2015-09-28

    Decreasing sodium intake has been associated with improvements in blood pressure (BP) and proteinuria, two important risk factors for CVD and chronic kidney disease (CKD) progression. We aimed to investigate the role of sodium intake by examining the effect of changes in sodium intake over 1 year on BP and proteinuria in people with early stage CKD. From thirty-two general practices, 1607 patients with previous estimated glomerular filtration rate of 59-30 ml/min per 1.73 m² and mean age of 72.9 (sd 9.0) years were recruited. Clinical assessment, urine and serum biochemistry testing were performed at baseline and after 1 year. Sodium intake was estimated from early morning urine specimens using an equation validated for this study population. We found that compared with people who increased their sodium intake from ≤ 100 to >100 mmol/d over 1 year, people who decreased their intake from >100 to ≤ 100 mmol/d evidenced a greater decrease in all BP variables (Δmean arterial pressure (ΔMAP) = -7.44 (SD 10.1) v. -0.23 (SD 10.4) mmHg; P<0.001) as well as in pulse wave velocity (ΔPWV = -0.47 (SD 1.3) v. 0.08 (SD 1.88) m/s; P<0.05). Albuminuria improved only in albuminuric patients who decreased their sodium intake. BP improved in people who maintained low sodium intake at both times and in those with persistent high intake, but the number of anti-hypertensive increased only in the higher sodium intake group, and PWV improved only in participants with lower sodium intake. Decreasing sodium intake was an independent determinant of ΔMAP. Although more evidence is needed, our results support the benefits of reducing and maintaining sodium intake below 100 mmol/d (2.3-2.4 g/d) in people with early stages of CKD. PMID:26243465

  14. Tertiary carbonate reservoirs in Indonesia

    SciTech Connect

    Nayoan, G.A.S.; Arpandi; Siregar, M.

    1981-01-01

    Hydrocarbon production from Tertiary carbonate reservoirs accounted for ca. 10% of daily Indonesian production at the beginning of 1978. Environmentally, the reservoirs appear as parts of reef complexes and high-energy carbonate deposits within basinal areas situated mainly in the back arc of the archipelago. Good porosities of the reservoirs are represented by vugular/moldic and intergranular porosity types. The reservoirs are capable of producing prolific amounts of hydrocarbons: production tests in Salawati-Irian Jaya reaches maximum values of 32,000 bpd, and in Arun-North Sumatra tests recorded 200 MMCF gas/day. Significant hydrocarbon accumulations are related to good reservoir rocks in carbonates deposited as patch reefs, pinnacle reefs, and platform complexes. Exploration efforts expand continuously within carbonate formations which are extensive horizontally as well as vertically in the Tertiary stratigraphic column.

  15. Stochastic thermodynamics with information reservoirs.

    PubMed

    Barato, Andre C; Seifert, Udo

    2014-10-01

    We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1/2. For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1/2. PMID:25375481

  16. Microbial reservoir characterization: An integration of surface geochemistry and developmental geology data

    SciTech Connect

    Hitzman, D.; Tucker, J.; Rountree, B. )

    1996-01-01

    Microbial Reservoir Characterization (MRC) integrates measurements of hydrocarbon microseepage escaping from petroleum reservoirs with developmental geologic and engineering data for an enhanced identification of the subsurface reservoir fabric. Studies from mature producing fields demonstrate MRC technology can monitor subsurface fluid withdrawal patterns with microseepage patterns identified from surface soil samples. Areas of the reservoir in contact with producing wells, by-passed production, and reservoir heterogeneity characteristics can be identified. Microbial ER microseepage links the distribution of hydrocarbon traps with the continuity (compartments) of a reservoir, as well as locates areas prone to higher quality reserves. Upward, buoyancy driven forces controlling hydrocarbon microseepage is altered along pressure pathways streaming to production wells. In these cases, microseepage is essentially shut down and lower concentrations of gases reach the surface environment. Case studies from a variety of basin environments will be presented.

  17. Microbial reservoir characterization: An integration of surface geochemistry and developmental geology data

    SciTech Connect

    Hitzman, D.; Tucker, J.; Rountree, B.

    1996-12-31

    Microbial Reservoir Characterization (MRC) integrates measurements of hydrocarbon microseepage escaping from petroleum reservoirs with developmental geologic and engineering data for an enhanced identification of the subsurface reservoir fabric. Studies from mature producing fields demonstrate MRC technology can monitor subsurface fluid withdrawal patterns with microseepage patterns identified from surface soil samples. Areas of the reservoir in contact with producing wells, by-passed production, and reservoir heterogeneity characteristics can be identified. Microbial ER microseepage links the distribution of hydrocarbon traps with the continuity (compartments) of a reservoir, as well as locates areas prone to higher quality reserves. Upward, buoyancy driven forces controlling hydrocarbon microseepage is altered along pressure pathways streaming to production wells. In these cases, microseepage is essentially shut down and lower concentrations of gases reach the surface environment. Case studies from a variety of basin environments will be presented.

  18. Diagenetic capping of carbonate reservoir facies

    SciTech Connect

    Lighty, R.G.

    1984-04-01

    The diagenetic model proposed involves the effect of submarine cementation on previously lithified carbonates, such as submerged relict shelf-margin buildups (e.g., drowned reefs, ooid shoals) or previously subaerially exposed formations (e.g., dune ridges) that were submerged by later sea level rise. These deposits generally have pronounced topographic relief (visible on seismic), good reservoir geometries, and high internal porosity of either primary or secondary origin. Petrologic studies on examples of both of these situations, a submerged early Holocene barrier reef off Florida and a 175-km (110-m) long submerged Pleistocene eolian ridge in the Bahamas, show that their exposed surface and uppermost facies (0.1 m, or 0.3 ft, below top) are further infilled and cemented, creating an extensively lithified, low porosity/low permeability zone or diagenetic cap rock. Quantitative mineralogic studies of occluding cements reveal an exponential reduction in porosity while moving upward into the seal zone. Submarine cements effectively infill and form a surficial permeability barrier that acts to impede further diagenesis and porosity reduction within underlying potential reservoir facies. To form this diagenetic seal only requires that the original carbonate buildup be resubmerged for some brief period of time prior to subsequent burial by sediments. If buildup accumulation later resumes without intermediate sediment burial, a common stratigraphic situation, the diagenetic seal would represent a disconformity separating two similar facies. The early formation of a diagenetic cap rock lends support to models of early hydrocarbon migration and emplacement. Prediction and recognition of submarine diagenetic seals will aid in exploration and development of obvious buildup reservoirs as well as subtle intraformational traps.

  19. Reservoir Systems in Changing Climate

    NASA Astrophysics Data System (ADS)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  20. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 2: High pressure oxidizer turbo-pump turbine end bearing analysis

    NASA Technical Reports Server (NTRS)

    Sisk, Gregory A.

    1989-01-01

    The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).

  1. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.

    1973-01-01

    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  2. The Potosi Reservoir Model 2013

    SciTech Connect

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  3. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  4. Collapsible sheath fluid reservoirs for flow cytometers

    DOEpatents

    Mark, Graham A.

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  5. Monterey fractured reservoir, Santa Barbara Channel, California

    SciTech Connect

    Belfield, W.C.; Helwig, J.; La Pointe, P.R.; Dahleen, W.K.

    1983-03-01

    The South Elwood field in the Santa Barbara Channel is a faulted anticline with cumulative production of 14.5 million bbl from the Monterey Formation as of September 1, 1982. The distributions of pressure, flow rates, and oil-water contacts and the low average matrix permeability of 0.2 md require a fractured reservoir. Core and outcrop studies show a dominant fracture set characterized by vertical, lithologically controlled fractures oriented across strike, and breccias controlled by lithology and structure. Generally, the fracture intensity is unaffected by structural position or bed curvature but is controlled by lithology and bed thickness. Other varieties of fracturing in the Monterey are related to a protracted history of diagenesis, deformation, and fluid injection. Three types of tar-bearing breccias occur in the Monterey Formation: stratigraphic breccia, coalescent-fracture breccia, and fault-related breccia. Formation of breccias probably involves high pore pressures. Because of their polygenetic origin, breccia masses have diverse orientations paralleling bedding or fracture/fault systems. In conclusions, fracturing and brecciation of the Monterey Formation reflect the interplay between processes of diagenesis, deformation, and fluid dynamics. The most important features of the reservoir in the area of the present study are: (1) vertical fractures oriented normal to the structural trends and inferred to be favorably oriented (to remain open) with respect to the regional minimum horizontal stress; and (2) breccias that are both stratigraphically and structurally controlled and inferred to be related to the interaction of rock stress and fluid dynamics.

  6. Seismic attenuation anisotropy in reservoir sedimentary rocks

    SciTech Connect

    Best, A.I.

    1994-12-31

    Seismic attenuation is a fundamental property of reservoir sedimentary rocks; it is strongly related to reservoir permeability. Knowledge of its variation with lithology, with burial depth, and with wave propagation direction is vital for understanding the attenuation mechanism. Given this information, realistic theoretical models may be constructed for predicting attenuation, and hence permeability, over a wide frequency range. Accurate ultrasonic attenuation measurements were made in the laboratory over a range of effective pressures on sandstone samples with different amounts of humic organic matter. The organic matter formed fine laminations along the bedding planes of the sandstones. The results show that the sandstones are highly attenuating at 5 MPa mainly because of the presence of grain contact microcracks giving rise to squirt flow; at 40 MPa, when most of the microcracks are closed, the clean sandstones are poorly attenuating, but the organic-rich sandstones remain highly attenuating. It is postulated that the compliant organic matter is responsible for causing squirt flow at high and at low pressures. The results also show that the maximum attenuation occurs when the particle motion of the propagating wave is perpendicular to the planes of the organic matter laminations. These results are consistent with the squirt flow theory of Akbar et al (1993) for compressional waves.

  7. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    NASA Astrophysics Data System (ADS)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    Reservoirs located in highly populated and industrialized regions receive discharges of nutrients and pollutants from the watershed that have great potential to impair water quality and threaten aquatic life. The Euiam reservoir is a multiple-purpose water body used for tourism, fishery, and water supply and has been reported as eutrophic since 1990s. The external nutrients loading is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms often continue even after external nutrients loading has been controlled, being benthic nutrient loading the main source of nutrients in the water column. Attempts to quantify benthic nutrients fluxes and their role as a source of nutrients to the water column have produced ambiguous results. Benthic flux is dependent on the upward flow of pore water caused by hydrostatic pressure, molecular diffusion, and mixing of sediment and water. In addition, it is controlled by dissolved oxygen (DO) levels, pH values and temperature in the overlying water. Therefore, linking a benthic flux to a water quality model should give us more insight on the effects of benthic fluxes to better quantify nutrient concentration within an entire reservoir system where physical, chemical, biological properties are variable. To represent temporal and spatial variations in the nutrient concentrations of the reservoir, a three-dimensional time variable model, Generalized Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) was selected. The GLLVHT model is imbedded within the Generalized Environmental Modeling System for Surface waters (GEMSS). The computational grid of the three-dimensional model was developed using the GIS. The horizontal grid is composed of 580 active cells at the surface layer with spacing varies from 54.2 m to 69.8 m. There are 15 vertical layers with uniform thickness of 1.9 m resolution. To calibrate the model, model prediction for

  8. Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses

    SciTech Connect

    Morin, R.H.; Hickman, S.H.; Barton, C.A.; Shapiro, A.M.; Benoit, W.R.; Sass, J.H.

    1998-08-01

    Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

  9. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    PubMed Central

    Guo, Hui; He, Youwei; Li, Lei; Du, Song; Cheng, Shiqing

    2014-01-01

    This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I) wellbore storage section, (II) intermediate flow section (transient section), (III) mid-radial flow section, (IV) crossflow section (from low permeability layer to high permeability layer), and (V) systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR). PMID:25302335

  10. Numerical well testing interpretation model and applications in crossflow double-layer reservoirs by polymer flooding.

    PubMed

    Yu, Haiyang; Guo, Hui; He, Youwei; Xu, Hainan; Li, Lei; Zhang, Tiantian; Xian, Bo; Du, Song; Cheng, Shiqing

    2014-01-01

    This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I) wellbore storage section, (II) intermediate flow section (transient section), (III) mid-radial flow section, (IV) crossflow section (from low permeability layer to high permeability layer), and (V) systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR). PMID:25302335

  11. Simulating Thermal-Hydrologic-Mechanical-Chemical Evolution Surrounding Fluid Injection in a Fractured Porous Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Taron, J.; Min, K.; Elsworth, D.

    2006-12-01

    Computational analysis is conducted on the coupled thermal-hydrologic-mechanical-chemical (THMC) behavior of a stimulated EGS geothermal reservoir. Numerical analyses utilize a newly developed simulator capable of examining THMC processes in fractured porous geologic media. The simulator links the thermal-hydrologic- chemical (THC) computational code TOUGHREACT with the mechanical (M) capability of FLAC3D, where the response of pore fluid pressure to mechanical disturbance is treated as an undrained system and mineral precipitation/dissolution generates porosity and permeability change within each dual-permeability continuum. Non-linear permeability response to thermal-hydrologic-mechanical (THM) mechanisms is accommodated via embryonic mechanical and transport constitutive laws, and is considered to act in union with permeability changes associated with the removal or addition of minerals within the system. This construct is applied to the geometry of an injector-withdrawal doublet within the Coso Geothermal field, where in situ stress conditions, thermal state, and mineralogical composition at 3000m depth are extracted from recorded field data. Initial results for feasible parametric settings show that permeability reduction in the vicinity of a cool (80°C) injection well may be significant, within an order of magnitude, and accompanied by large (MPa) changes in the stress field throughout the reservoir for imposed boundary conditions of constant stress.

  12. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  13. Efficacy and tolerability of mono-compound topical treatments for reduction of intraocular pressure in patients with primary open angle glaucoma or ocular hypertension: an overview of reviews

    PubMed Central

    Daka, Qëndresë; Trkulja, Vladimir

    2014-01-01

    Aim To evaluate the existing evidence on relative efficacy and tolerability of topical mono-compound intraocular pressure (IOP)-lowering drugs in treatment of primary open angle glaucoma (POAG) and ocular hypertension (OHT). Methods In this systematic review of systematic reviews/meta-analyses of randomized controlled trials a thorough and sensitive search of PubMed, Embase and Cochrane Databases was performed. Individual study methodological quality and quality of evidence were assessed using the AMSTAR checklist and the GRADE system, respectively. The relationships between individual drugs were evaluated based on the best available evidence. Results Of the 133 initial non-duplicate records, 16 studies met the inclusion criteria. Five achieved an overall “moderate” (none achieved “high”) quality of evidence and evaluated prostaglandin analogues (PGAs) – latanoprost, travoprost, and bimatoprost; timolol; “other beta-blockers;” carbonic anhydrase inhibitors (CAI) as a group or dorzolamide separately; and brimonidine. “Moderate quality” refers to efficacy and incidence of conjunctival hyperemia. Quality of evidence regarding other tolerability aspects was low. PGAs should be considered equivalent regarding efficacy, but latanoprost was relevantly better tolerated than the other two. Non-PGA compounds did not relevantly differ between each other in either efficacy or safety. Timolol and brimonidine were relevantly less effective than all PGAs. The same was true for CAI vs bimatoprost. Regarding tolerability, timolol was superior to all PGAs and brimonidine and CAI were superior to bimatoprost. Conclusion No high quality evidence on relative efficacy and tolerability of the most commonly used mono-compound IOP-lowering drugs for POAG/OHT exists. Moderate quality evidence indicates latanoprost as a treatment with the most favorable trade-off between benefits and harms. PMID:25358880

  14. Data requirements and acquisition for reservoir characterization

    SciTech Connect

    Jackson, S.; Chang, Ming Ming; Tham, Min.

    1993-03-01

    This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

  15. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  16. Modeling Shear-Enhanced Permeability as the Mechanism for Fluid Flow in Fractured Reservoirs - A Promising Improvement to Predicting Reservoir Production

    NASA Astrophysics Data System (ADS)

    Barton, C.; Moos, D.

    2011-12-01

    An accurate geomechanical reservoir model including constraints on stress magnitudes and orientations, mechanical rock properties, and the orientations and characteristics of natural fractures is essential to understanding reservoir response to stimulation and production in low permeability reservoirs such as crystalline basement geothermal or oil and gas reservoirs. In these low permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks which are in turn controlled by the in situ stresses, the fracture distribution and the hydraulic behavior of the fractures. These hydraulic properties of the fractures, their width, stiffness and strength are often difficult to quantify, leading to large uncertainties in predicted response to stimulation of fractured reservoirs. A well-constrained and calibrated fracture model makes it possible not only to predict reservoir response to stimulation, including the shape and orientation of the stimulated region, but also to predict the required stimulation pressure. Such a model also makes it possible to predict the change in flow properties during production due to depletion, resulting in better predictions of production rate and ultimate recovery. As part of the evaluation process of a compartmentalized fractured basement reservoir, wellbore image and other data were used to develop a 3D geomechanical model of stress and natural fractures through the reservoir volume. Although the results clearly defined the optimal directions in which to drill wells to exploit pre-existing natural fractures, large uncertainties in the models resulted in significant uncertainties in predictions of stimulation response. Because the pre-existing natural fractures were insufficiently permeable and operational constraints precluded the use of hydraulic fracturing to stimulate the reservoir, an innovative approach was taken to determine the extent to which injection at pressures below

  17. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  18. Effect of Shear Slip on Fault Permeability in Shale Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Reece, J. S.; Zoback, M. D.; Kohli, A. H.

    2014-12-01

    Understanding flow along faults and fractures in shales is important for better understanding of hydraulic stimulation in unconventional reservoirs. For example, the re-activation of faults and fractures during hydraulic stimulation appears to be an important process contributing to reservoir permeability. In this study, we examine the effect of shear slip on fault permeability in shale reservoir rocks. We perform shear experiments in a triaxial apparatus on two types of samples: 1) a sample sawcut at 30° to the cylindrical axis and 2) a naturally broken sample. Both samples are from 3481 m (11422 ft) depth within the Haynesville reservoir containing 22 wt.% clay. First, we hydrostatically load the samples to a confining pressure of 15 MPa (2176 psi), followed by triaxial loading in which a constant axial displacement rate of 1 μm/s is applied for increments in axial displacement of initially 0.25 mm and later 1 mm. After each shear increment, we perform measurements of fault permeability at a constant mean pore pressure of 2.1 MPa (300 psi) using the steady state Darcy flow method. Boreholes drilled parallel to the cylindrical axis on either side of the shale sample allow pore fluid to access the fault plane. The coefficient of friction increases with shearing from 0.53 to 0.61 for the sawcut sample and from about 0.60 to 0.74 for the naturally broken sample. The sawcut sample indicates stable sliding behavior whereas small stick-slip events occur in the naturally broken sample. Upon shearing, fault permeability decreases by about 2.5 and 1.5 orders of magnitude within the first mm of shear displacement for the sawcut and naturally broken sample, respectively. Fault permeability of both samples continues to slowly decrease up to a maximum axial displacement of 4 mm and 2 mm, respectively. Laser scanning images before and after shearing show the formation of small striations in the direction of slip for the sawcut sample and the break-off of several grain

  19. Coulomb stress variation produced by reservoir loading and seepage: a case study

    NASA Astrophysics Data System (ADS)

    Chen, J.; Tao, K.; Ning, J.

    2010-12-01

    Reservoir loading and seepage can lead to change of Coulomb stress on nearby fault planes. Sometimes it may trigger big earthquakes. For quantitatively revealing the correlation between reservoir impoundment and seismicity, we conduct numerical simulation of faults’ Coulomb stress change under the reservoir. We compute the Coulomb stress change on faults introduced by the reservoir loading and fluid pressure seepage separately for both simplicity and distinguishing the roles of different mechanisms. The effects of reservoir loading and seepage to faults’ Coulomb stress are mainly related to the locations of faults as well as their geometrical and mechanical properties. The solution of Bousinesq’s problem is for the stress distribution at any point under the reservoir. Based on the elastic theoretical solution for half-infinite space, we calculated shear and normal stress changes on faults by convolution. However the Coulomb stress is fault related. A thrust fault may decrease the Coulomb stress when a reservoir above releasing water, but the effect of a reservoir on a normal fault is opposite. So we did a lot of computations with different computational conditions to get better conclusions. At the same time, we follow Biot’s theory and Rice’s theory and calculate the temporal and spatial pore pressure change as results of reservoir seepage along faults using FEPG finite element method software. After a couple of computations with different coefficient of diffusion, we find that the pore pressure variation strongly depends on the coefficient of water diffusion. When taking both the role of reservoir loading on the pore pressure and the seepage into consideration of pore pressure computation, we find that the pore pressure variation with time is totally different with former understandings. According to the Coulomb failure criterion, we calculated the final Coulomb stress change of a specific fault, in which the shear stress and effective normal stress

  20. Balancing reservoir creation and seismic hazard in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Wiemer, S.; Alcolea, A.

    2014-09-01

    Fracture shear-dilatancy is an essential process for enhancing the permeability of deep geothermal reservoirs, and is usually accompanied by the radiation of seismic waves. However, the hazard and risk perspective of induced seismicity research typically focuses only on the question of how to reduce the occurrence of induced earthquakes. Here we present a quantitative analysis of seismic hazard as a function of the two key factors defining an enhanced geothermal system: The permeability enhancement, and the size of the stimulated reservoir. Our model has two coupled components: (1) a pressure diffusion model and (2) a stochastic seismicity model. Permeability is increased in the source area of each induced earthquake depending on the amount of slip, which is determined by the magnitude. We show that the few largest earthquakes (i.e. 5-10 events with M ≥ 1.5) contribute more than half of the total reservoir stimulation. The results further indicate that planning and controlling of reservoir engineering operations may be compromised by the considerable variability of maximum observed magnitude, reservoir size, the Gutenberg-Richter b-value and Shapiro's seismogenic index (i.e. a measure of seismic reactivity of a reservoir) that arises from the intrinsic stochastic nature of induced seismicity. We also find that injection volume has a large impact on both reservoir size and seismic hazard. Injection rate and injection scheme have a negligible effect. The impact of site-specific parameters on seismicity and reservoir properties is greater than that of the injected volume. In particular, conditions that lead to high b-values-possibly a low differential stress level-have a high impact on seismic hazard, but also reduce the efficiency of the stimulation in terms of permeability enhancement. Under such conditions, target reservoir permeability can still be achieved without reaching an unacceptable level of seismic hazard, if either the initial reservoir permeability is

  1. Projecting the Impact of Regional Land-Use Change and Water Management Policies on Lake Water Quality: An Application to Periurban Lakes and Reservoirs

    PubMed Central

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies’ 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making. PMID:23991066

  2. Potential methane reservoirs beneath Antarctica.

    PubMed

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other