Sample records for reservoir pressure reduction

  1. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  2. Pressure effect on dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  3. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  4. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure.

    PubMed

    Sridharan, Sarup S; Burrowes, Lindsay M; Bouwmeester, J Christopher; Wang, Jiun-Jr; Shrive, Nigel G; Tyberg, John V

    2012-05-01

    Our "reservoir-wave approach" to arterial hemodynamics holds that measured arterial pressure should be considered to be the sum of a volume-related pressure (i.e., reservoir pressure, P(reservoir)) and a wave-related pressure (P(excess)). Because some have questioned whether P(reservoir) (and, by extension, P(excess)) is a real component of measured physiological pressure, it was important to demonstrate that P(reservoir) is implicit in Westerhof's classical electrical and hydraulic models of the 3-element Windkessel. To test the validity of our P(reservoir) determinations, we studied a freeware simulation of the electrical model and a benchtop recreation of the hydraulic model, respectively, measuring the voltage and the pressure distal to the proximal resistance. These measurements were then compared with P(reservoir), as calculated from physiological data. Thus, the first objective of this study was to demonstrate that respective voltage and pressure changes could be measured that were similar to calculated physiological values of P(reservoir). The second objective was to confirm previous predictions with respect to the specific effects of systematically altering proximal resistance, distal resistance, and capacitance. The results of this study validate P(reservoir) and, thus, the reservoir-wave approach.

  5. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions... pressure or brake-pipe pressure reduction during an automatic brake application shall be at a rate not less...

  6. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions... pressure or brake-pipe pressure reduction during an automatic brake application shall be at a rate not less...

  7. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  8. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  9. A dimension reduction method for flood compensation operation of multi-reservoir system

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  10. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  11. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE PAGES

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; ...

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach, dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may bemore » used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  12. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  13. Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922

  14. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  15. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    NASA Astrophysics Data System (ADS)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  16. INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING AT THE OILOSTATIC RESERVOIR AND PRESSURIZING TANKS. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  17. An analytical model for pressure of volume fractured tight oil reservoir with horizontal well

    NASA Astrophysics Data System (ADS)

    Feng, Qihong; Dou, Kaiwen; Zhang, Xianmin; Xing, Xiangdong; Xia, Tian

    2017-05-01

    The property of tight oil reservoir is worse than common reservoir that we usually seen before, the porosity and permeability is low, the diffusion is very complex. Therefore, the ordinary depletion method is useless here. The volume fracture breaks through the conventional EOR mechanism, which set the target by amplifying the contact area of fracture and reservoir so as to improving the production of every single well. In order to forecast the production effectively, we use the traditional dual-porosity model, build an analytical model for production of volume fractured tight oil reservoir with horizontal well, and get the analytical solution in Laplace domain. Then we construct the log-log plot of dimensionless pressure and time by stiffest conversion. After that, we discuss the influential factors of pressure. Several factors like cross flow, skin factors and threshold pressure gradient was analyzed in the article. This model provides a useful method for tight oil production forecast and it has certain guiding significance for the production capacity prediction and dynamic analysis.

  18. Using pressure transient analysis to improve well performance and optimize field development in compartmentalized shelf margin deltaic reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, K.L.; Crawford, G.E.; Mills, W.H.

    1996-12-31

    BP Exploration`s Gulf of Mexico group developed procedures to conduct effective well tests on conventional production wells and employed them during the development drilling phase of the Mississippi Canyon 109 (MC109) field. Bottomhole pressure data were recorded during the initial few weeks of production. Typically, a 48 hour pressure buildup survey (surface shut-in) was obtained near the end of data acquisition. Data from these tests were analyzed for completion efficiency, reservoir flow capacity, reservoir heterogeneities, and drainage area. Initially wells were gravel packed for sand control, until buildup interpretations indicated skins greater than 20. Frac packing technology was then employed,more » and an immediate improvement was observed with skins dropping into the teens. Over a period of time frac packs were optimized using the test derived skins as a metric. Analysis of pressure data also played an important role in identifying reservoir compartmentalization. The two major reservoir horizons at MC 109 are interpreted as shelf margin deltas. However, each of these has distinctly different compartmentalization issues. The continuous character of the G Sand made it easier to define the depositional system and investigate reservoir compartmentalization issues using a combination of well log, 3D seismic, static pressure trends, and fluid information. In the more distal deltaic reservoirs of the J Sand however, complications with seismic amplitudes and a less reliable tie between wireline and seismic data required the use of pressure transient analysis to efficiently exploit the reservoir.« less

  19. Influence of Reservoirs on Pressure Driven Gas Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Shterev, K. S.; Stefanov, S. K.

    2011-11-01

    Rapidly emerging micro-electro-mechanical devices create new potential microfluidic applications. A simulation of an internal and external gas flows with accurate boundary conditions for these devices is important for their design. In this paper we study influence of reservoirs used at the microchannel inlet and outlet on the characteristics of the gas flow in the microchannel. The problem is solved by using finite volume method SIMPLE-TS (continuum approach), which is validated using Direct Simulation Monte Carlo (molecular approach). We investigate two cases: a microchannels with reservoirs and without reservoirs. We compare the microchannels with different aspect ratios A = Lch/Hch = 10,15,20,30,40 and 50, where Lch is the channel length, Hch is the channel height. Comparisons of results obtained by using continuum approach for pressure driven flow in a microchannel with and without reservoirs at the channel ends are presented.

  20. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  1. Significance of the antireflux valve for upper urinary tract pressure. An experimental study in patients with urinary diversion via a continent ileal reservoir.

    PubMed

    Berglund, B; Brevinge, H; Akerlund, S; Kock, N G

    1992-01-01

    When bladder substitution is required, a low pressure receptacle and an antireflux valve with low resistance to flow is essential for preservation of the upper urinary tract. The aim of this study was to evaluate whether these criteria are attained in the continent ileal reservoir used for urinary diversion. The investigations were performed in six patients more than one year after supravesical urinary diversion via a continent ileal reservoir. The pressure was recorded simultaneously both in the afferent loop and in the reservoir during filling of the reservoir. There was a slow parallel increase in the basal pressure in the reservoir and the afferent loop. Pressure waves appeared sometimes simultaneously and sometimes in only one compartment at a time. Only during short periods of time did the pressure exceed 25 cm of water. The frequency of pressure waves increased with increased filling of the reservoir. The "total pressure" was larger in the reservoir than in the afferent loop. It is the antireflux valve which prevents pressure rises in the reservoir from being conveyed to the upper urinary tract. The resistance to urinary flow was moderate.

  2. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ∼100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and

  3. Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang

    2017-12-01

    This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren-Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin

  4. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  5. Intraocular pressure reduction and regulation system

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Burnett, J. E.; Felder, S. F.; Mcgannon, W. J.

    1979-01-01

    An intraocular pressure reduction and regulation system is described and data are presented covering performance in: (1) reducing intraocular pressure to a preselected value, (2) maintaining a set minimum intraocular pressure, and (3) reducing the dynamic increases in intraocular pressure resulting from external loads applied to the eye.

  6. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    NASA Astrophysics Data System (ADS)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  7. 12 min/week of high-intensity interval training reduces aortic reservoir pressure in individuals with metabolic syndrome: a randomized trial.

    PubMed

    Ramos, Joyce S; Dalleck, Lance C; Ramos, Maximiano V; Borrani, Fabio; Roberts, Llion; Gomersall, Sjaan; Beetham, Kassia S; Dias, Katrin A; Keating, Shelley E; Fassett, Robert G; Sharman, James E; Coombes, Jeff S

    2016-10-01

    Decreased aortic reservoir function leads to a rise in aortic reservoir pressure that is an independent predictor of cardiovascular events. Although there is evidence that high-intensity interval training (HIIT) would be useful to improve aortic reservoir pressure, the optimal dose of high-intensity exercise to improve aortic reservoir function has yet to be investigated. Therefore, this study compared the effect of different volumes of HIIT and moderate-intensity continuous training (MICT) on aortic reservoir pressure in participants with the metabolic syndrome (MetS). Fifty individuals with MetS were randomized into one of the following 16-week training programs: MICT [n = 17, 30 min at 60-70% peak heart rate (HRpeak), five times/week]; 4 × 4-min high-intensity interval training (4HIIT) (n = 15, 4 × 4 min bouts at 85-95% HRpeak, interspersed with 3 min of active recovery at 50-70% HRpeak, three times/week); and 1 × 4-min high-intensity interval training (1HIIT) (n = 18, 1 × 4 min bout at 85-95% HRpeak, three times/week). Aortic reservoir pressure was calculated from radial applanation tonometry. Although not statistically significant, there was a trend for a small-to-medium group × time interaction effect on aortic reservoir pressure, indicating a positive adaptation following 1HIIT compared with 4HIIT and MICT [F (2,46) = 2.9, P = 0.07, η = 0.06]. This is supported by our within-group analysis wherein only 1HIIT significantly decreased aortic reservoir pressure from pre to postintervention (pre-post: 1HIIT 33 ± 16 to 31 ± 13, P = 0.03; MICT 29 ± 9-28 ± 8, P = 0.78; 4HIIT 28 ± 10-30 ± 9 mmHg, P = 0.10). Three sessions of 4 min of high-intensity exercise per week (12 min/week) was sufficient to improve aortic reservoir pressure, and thus may be a time-efficient exercise modality for reducing cardiovascular risk in individuals with MetS.

  8. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the

  9. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  10. Isotopic insights into microbial sulfur cycling in oil reservoirs

    PubMed Central

    Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094

  11. Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation

    DOE Data Explorer

    Fu, Pengcheng; Carrigan, Charles R.

    2012-01-01

    Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.

  12. Hydromechanics of Reservoir Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Dura-Gomez, Inmaculada

    Data from five reservoirs were analyzed to investigate the various factors and possible pore pressure thresholds associated with Reservoir Induced Seismicity (RIS). Data was obtained from the following reservoirs: Koyna and Warna Reservoirs in India, Itoiz Reservoir in the western Pyrenees, Spain, and Jocassee and Monticello Reservoirs in South Carolina, U.S.A. Koyna Reservoir is one out of four reservoirs in the world where M≥6.0 induced earthquakes have occurred, whereas Warna Reservoir accounts for one out of ten cases with 5.0≤M≤5.9 induced earthquakes. Induced seismicity in the Koyna-Warna region is associated with annual filling cycles in the two reservoirs, large water level changes (30 to 45 m) and the presence of regional scale fractures. The Koyna-Warna case includes 19 M≥5.0 earthquakes at non-repeating hypocenters. The calculation of excess pore pressures associated with these earthquakes suggests values >300 kPa or >600 kPa, before or after 1993 respectively. The need for larger pore pressures from 1993 suggests that M≥5 earthquakes were induced on stronger faults in the region. The exceedance of the previous water level maxima (stress memory) is the most important, although not determining factor in inducing these M≥5.0 earthquakes. Itoiz Reservoir is one of twenty nine reservoirs with 4.0≤M≤4.9 induced earthquakes. The analysis of the RIS associated with the Itoiz Reservoir impoundment, between January 2004 and the end of 2008, shows that that pore pressures diffuse away from Itoiz Reservoir through the carbonate megabreccia systems of the Early to Middle Eocene Hecho Group, and a series of near-vertical thrust faults above the gently dipping Gavarnie thrust. Excess diffused pore pressures destabilize saturated critically stressed seismogenic fractures where RIS takes place. In particular, M≥3.0 earthquakes in the region are associated with excess pore pressures of the order of 100 to 200 kPa. Jocassee and Monticello Reservoirs in

  13. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  14. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    NASA Astrophysics Data System (ADS)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  15. Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst; Trautwein, Ute; Legarth, Björn; Zimmermann, Günter

    2006-10-01

    The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.

  16. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  17. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  18. Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography

    USGS Publications Warehouse

    Gunasekera, R.C.; Foulger, G.R.; Julian, B.R.

    2003-01-01

    Intensive geothermal exploitation at The Geysers geothermal area, California, induces myriads of small-magnitude earthquakes that are monitored by a dense, permanent, local seismometer network. Using this network, tomographic inversions were performed for the three-dimensional Vp and Vp/Vs structure of the reservoir for April 1991, February 1993, December 1994, October 1996, and August 1998. The extensive low-Vp/Vs anomaly that occupies the reservoir grew in strength from a maximum of 9% to a maximum of 13.4% during the 7-year study period. This is attributed to depletion of pore liquid water in the reservoir and replacement with steam. This decreases Vp by increasing compressibility, and increases Vs because of reduction in pore pressure and the drying of argillaceous minerals, e.g., illite, which increase the shear modulus. These effects serendipitously combine to lower Vp/Vs, resulting in a strong overall effect that provides a convenient tool for monitoring reservoir depletion. Variations in the Vp and Vs fields indicate that water depletion is the dominant process in the central part of the exploited reservoir, and pressure reduction and mineral drying in the northwest and southeast parts of the reservoir. The rate at which the Vp/Vs anomaly grew in strength in the period 1991-1998 suggests most of the original anomaly was caused by exploitation. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective geothermal reservoir depletion monitoring tool and can potentially provide information about depletion in parts of the reservoir that have not been drilled.

  19. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanks, Catherine

    then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat fluid properties published in the original reports. This comparison allowed estimation of the ‘lost’ light hydrocarbon fractions. An Umiat 'dead' oil sample then could be physically created by adding the lost light ends to the weatherized Umiat dead oil sample. This recreated sample was recombined with solution gas to create a 'pseudo-live' Umiat oil sample which was then used for experimental PVT and phase behavior studies to determine fluid properties over the range of reservoir pressures and temperatures. The phase behavior of the ‘pseudo-live’ oil was also simulated using the Peng- Robinson equations of state (EOS). The EOS model was tuned with measured experimental data to accurately simulate the differential liberation tests in order to obtain the necessary data for reservoir simulation studies, including bubble point pressure and oil viscosity. The bubble point pressure of the reconstructed Umiat oil is 345 psi, suggesting that maintenance of reservoir pressures above that pressure will be important for the any proposed production technique. A major part of predicting how the Umiat reservoir will perform is determining the relative permeability of oil in the presence of ice. Early in the project, UAF work on samples of the Umiat reservoir indicated that there is a significant reduction in the relatively permeability of oil in the presence of ice. However, it was not clear as to why this reduction occurred or where the ice resided. To explore this further, additional experimental and theoretical work was conducted. Core flood experiments were performed on two clean Berea sandstone cores under permafrost conditions to determine the relative permeability to oil (kro) over a temperature range of 23ºC to - 10ºC and for a range of connate water salinities. Both cores showed maximum reduction in relative permeability to oil when saturated with deionized water

  20. Effect of non-linear fluid pressure diffusion on modeling induced seismicity during reservoir stimulation

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.

    2012-04-01

    Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure

  1. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  2. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  3. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure or vacuum below 70 percent of that indicated by the air or vacuum gauge immediately before the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked...

  4. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs

  5. Numerical analysis of inertance pulse tube cryocooler with a modified reservoir

    NASA Astrophysics Data System (ADS)

    Abraham, Derick; Damu, C.; Kuzhiveli, Biju T.

    2017-12-01

    Pulse tube cryocoolers are used for cooling applications, where very high reliability is required as in space applications. These cryocoolers require a buffer volume depending on the temperature to be maintained and cooling load. A miniature single stage coaxial Inertance Pulse Tube Cryocooler is proposed which operates at 80 K to provide a cooling effect of at least 2 W. In this paper a pulse tube cryocooler, with modified reservoir is suggested, where the reverse fluctuation in compressor case is used instead of a steady pressure in the reservoir to bring about the desired phase shift between the pressure and the mass flow rate in the cold heat exchanger. Therefore, the large reservoir of the cryocooler is replaced by the crank volume of the hermetically sealed linear compressor, and hence the cryocooler is simplified and compact in size. The components of the cryocooler consist of a connecting tube, aftercooler, regenerator, cold heat exchanger, flow straightener, pulse tube, warm heat exchanger, inertance tube and the modified reservoir along with the losses were designed and analyzed. Each part of the cryocooler was analysed using SAGE v11 and verified with ANSYS Fluent. The simulation results clearly show that there is 50% reduction in the reservoir volume for the modified Inertance pulse tube cryocooler.

  6. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less

  7. What's shaking?: Understanding creep and induced seismicity in depleting sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Spiers, Christopher

    2015-04-01

    Subsurface exploitation of the Earth's natural resources, such as oil, gas and groundwater, removes the natural system from its chemical and physical equilibrium. With global energy and water demand increasing rapidly, while availability diminishes, densely populated areas are becoming increasingly targeted for exploitation. Indeed, the impact of our geo-resources needs on the environment has already become noticeable. Deep groundwater pumping has led to significant surface subsidence in urban areas such as Venice and Bangkok. Hydrocarbons production has also led to subsidence and seismicity in offshore (e.g. Ekofisk, Norway) and onshore hydrocarbon fields (e.g. Groningen, the Netherlands). Fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased or show other time-lag effects in relation to changes in production rates. One of the main hypotheses advanced to explain this is time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the vertical rock overburden pressure. The operative deformation mechanisms may include grain-scale brittle fracturing and thermally-activated mass transfer processes (e.g. pressure solution). Unfortunately, these mechanisms are poorly known and poorly quantified. As a first step to better describe creep in sedimentary granular aggregates, we have derived a universal, simple model for intergranular pressure solution (IPS) within an ordered pack of spherical grains. This universal model is able to predict the conditions under which each of the respective pressure solution serial processes, i.e. diffusion, precipitation or dissolution, is dominant. In essence, this creates a generic deformation mechanism map for IPS in any granular material. We have used

  8. Intracranial Pressure-Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir.

    PubMed

    Antes, Sebastian; Stadie, Axel; Müller, Simon; Linsler, Stefan; Breuskin, David; Oertel, Joachim

    2018-01-01

    Telemetric intracranial pressure (ICP) monitoring seems to be a promising therapy-supporting option in shunt-treated patients. Benefits become obvious when headaches are unspecific and clinical symptoms cannot be related to possible overdrainage or underdrainage. In this study, we evaluated a new telemetric device to individually adjust shunt valves according to ICP measurements. Between December 2015 and November 2016, 25 patients with suspected suboptimal shunt valve settings underwent insertion of a telemetric ICP sensor (Sensor Reservoir; Christoph Miethke, Potsdam, Germany). Over a 1-year period, a total of 183 telemetric ICP measurements and 85 shunt valve adjustments were carried out. Retrospective statistic analyses focused on valve adjustments, ICP values, and clinical outcomes. ICP-guided valve adjustments positively changed the clinical state in 18 out of 25 patients. Clinical improvement over time was associated with significant changes of the valve settings and ICP values. Interestingly, a therapeutically normalized ICP profile was not automatically associated with clinical improvement. The Sensor Reservoir is an important and valuable tool for shunt-treated patients suffering from drainage-related problems. The possibility to simultaneously recognize and solve shunt problems represents the decisive advantage. Nevertheless, measurements with the Sensor Reservoir did not allow for the determination of default valve settings or universal target ICP values. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal

  10. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  11. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    NASA Astrophysics Data System (ADS)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  12. Study on the influencing factors of natural energy development in carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Zhenjie

    2018-06-01

    In depletion mining, the crude oil is produced by using the edge water and bottom water of reservoirs as well as the reservoir itself and the elastic properties of reservoirs and irreducible water. Depletion mining has the following three advantages: (1) full use of natural energy; (2) can save investment; (3) stratum adaptability. Since depleted mining is mined at the cost of a substantial reduction in pressure, reservoir stress sensitivity is not so strong and natural energy development can be chosen when the saturation pressure is large. In the case of carbonate reservoirs, the cumulative oil production increases with the increase of permeability to karst caves. However, when the permeability of karst caves is more than 100 x 10-3µm-2, the final cumulative oil production changes little. (4) For the carbonate reservoir, as the fracture permeability increases, the cumulative oil production increases and the development time greatly decreases. However, when the permeability of the karst cave is greater than 1000 x 10-3µm-2, although the oil production rate is very large, but the final cumulative oil change is small. (5) For the carbonate reservoir, it can be seen from the calculation results that as the coupling coefficient increases, the oil production in the whole area increases, indicating that the coupling effect between the fracture and the karst cave will be better and the oil recovery will be improved

  13. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  14. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  15. Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2012-01-31

    This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.

  16. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  17. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  18. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inch above the maximum working air pressure fixed by the chief mechanical officer of the carrier... reservoir of air under pressure to be used for operating those power controls. The reservoir shall be provided with means to automatically prevent the loss of pressure in the event of a failure of main air...

  19. Implications of Sub-Hydrostatic Pressures in the Bravo Dome Natural CO2 Reservoir for the Long-Term Security of Geological Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.; Larson, T.

    2014-12-01

    The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account

  20. SGLT2 inhibitors: their potential reduction in blood pressure.

    PubMed

    Maliha, George; Townsend, Raymond R

    2015-01-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitors represent a promising treatment option for diabetes and its common comorbidity, hypertension. Emerging data suggests that the SGLT2 inhibitors provide a meaningful reduction in blood pressure, although the precise mechanism of the blood pressure drop remains incompletely elucidated. Based on current data, the blood pressure reduction is partially due to a combination of diuresis, nephron remodeling, reduction in arterial stiffness, and weight loss. While current trials are underway focusing on cardiovascular endpoints, the SGLT2 inhibitors present a novel treatment modality for diabetes and its associated hypertension as well as an opportunity to elucidate the pathophysiology of hypertension in diabetes. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  2. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  3. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, Mitchell; Bradford, Jacob; Moore, Joseph

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the

  4. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  5. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  6. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  7. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  8. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  9. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  10. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  11. Simulation of naturally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, A.M.

    1983-11-01

    A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks aremore » gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.« less

  12. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  13. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE PAGES

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; ...

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  14. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  15. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  16. Veins in Paleo-reservoir as a Natural Indication of Coupled Changes in Pore Pressure and Stress, Salt Wash Graben of SE Utah, USA

    NASA Astrophysics Data System (ADS)

    Gwon, S.; Edwards, P.; Kim, Y. S.

    2015-12-01

    Hydrofracturing associated with elevated fluid pressure coupled with changes in stress has been crucial in enhancing the production and recovery of hydrocarbons. Furthermore, it is also an important issue to access the efficiency and stability of long-term CO2 geologic storage reservoirs. Veins are mineral-filled extension fractures developed along the plane of σ1-σ2 and perpendicular to σ3, and the fluid pressure must exceed σ3applied to the plane when the vein opens. Therefore, vein is a well-known natural analogue for fluid migration in a paleo-reservoir. In the Salt Wash Graben of SE Utah, CO2-charged vein systems hosted in the bleached Entrada Formation are well developed and examined to understand the conditions of fluid pressure and stress during the injections of CO2-charged fluid. Based on color and relative cross-cutting relationship in the field, veins are subdivided into two sets; sub-vertical black mineral-rich veins and orthogonal calcite veins that have previously been described as 'grid-lock fractures'. The vein distribution and fluid leakage along through-going fractures in mechanic units allow us to determine the stress regime and driving stress condition through 3D-Mohr circle reconstruction. The results of this statistical analysis for the veins show that the orthogonal veins indicate a 'stress transition' with maximum principal stress direction changing from vertical to NNW-SSE sub-horizontal which coincides with the current regional stress regime. The possible causes of the stress transition can be considered. The process of repeated sealing, reactivation and localization of veins within the bleached zone is a natural indication of a coupled change in pore pressure and stress in the reservoir. Thus, an understanding of the effect of stress changes due to the volumetric injection of CO2 in the subsurface as well as a knowledge of how pre-existing fractures affect fluid flow with respect to elevated pore pressures in layered rocks are

  17. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation

  18. An alternative to reduction of surface pressure to sea level

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.

    1982-01-01

    The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.

  19. Integrated reservoir characterization and flow simulation for well targeting and reservoir management, Iagifu-Hedinia field, Southern Highlands Province, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.

    Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less

  20. Viscosity of komatiite liquid at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  1. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  2. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... appropriately safe environment. (d) Each aluminum main reservoir before being placed in use and at intervals... working pressure fixed by the chief mechanical officer. The test date, place, and pressure shall be... be subjected to a hydrostatic pressure of at least 25 percent more than the maximum working pressure...

  3. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport.

    PubMed

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-04-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces.

  4. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    PubMed Central

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  5. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    NASA Astrophysics Data System (ADS)

    Islam, Nayyer

    corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a "new" reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the "gas cap" and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required

  6. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  7. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells

  8. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  9. Downhole pressure sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  10. Assessing the effects of microbial metabolism and metabolities on reservoir pore structure

    USGS Publications Warehouse

    Udegbunam, E.O.; Adkins, J.P.; Knapp, R.M.; McInerney, M.J.; Tanner, R.S.

    1991-01-01

    The effect of microbial treatment on pore structure of sandstone and carbonatereservoirs was determined. Understanding how different bacterial strains and their metabolic bioproducts affect reservoir pore structure will permit the prudent application of microorganisms for enhanced oil recovery. The microbial strains tested included Clostridium acetobutylicum, a polymer-producing Bacillus strain, and an unidentified halophilic anaerobe that mainly produced acids and gases. Electrical conductivity, absolute permeability, porosity and centrifuge capillary pressure were used to examine rock pore structures. Modifications of the pore structure observed in the laboratory cores included pore enlargement due to acid dissolution of carbonates and poare throat reduction due to biomass plugging. This paper shows that careful selection of microbes based on proper understanding of the reservoir petrophysical characteristics is necessary for applications of microbially enhanced oil recovery. These methods and results can be useful to field operators and laboratory researchers involved in design and screening of reservoirs for MEOR. The methods are also applicable in evaluation of formation damage caused by drilling, injection or completion fluids or stimulation caused by acids.

  11. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  12. Estimating the impacts of reservoir elevation changes on kokanee emergence in flaming Gorge Reservoir, Wyoming-Utah

    USGS Publications Warehouse

    Modde, T.; Jeric, R.J.; Hubert, W.A.; Gipson, R.D.

    1997-01-01

    Flaming Gorge Reservoir, like many western North American reservoirs, is managed to release water during the winter months to allow for water storage associated with melting snow and rain during spring. Decreases in reservoir elevation during winter can cause mortalities of kokanee Oncorhynchus nerka spawned along the shoreline the previous fall. This study compared data on depth distribution of embryos and depth-adjusted survival to estimate the relative survival of emergent kokanee at different depths and the effect of winter drawdown on the proportion of deposited eggs that survive to emergence. Estimates of decreases in kokanee survival to emergence were 8.3% and 38.1% for reservoir elevation reductions of 1.0 m and 5.0 m, respectively.

  13. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  14. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  15. Nonlinear Fluid Migration Patterns in Fractured Reservoirs due to Stress-Pressure Coupling induced Changes in Reservoir Permeabilities

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Geiger, S.; Main, I. G.

    2011-12-01

    Sustainable storage of carbon dioxide (CO2) requires a thorough understanding of injection induced pressure build-up and its effects on the storage formation's integrity, since it determines the cap rock's sealing properties as well as the total storable amount of carbon dioxide. Fractures are abundant in the subsurface and difficult to detect due to their subseismic characteristic. If present in the cap during injection, they can be primary pathways for CO2 leakage. The North Sea is considered as Europe's most important carbon dioxide storage area. However, almost all of the potential storage formations have been exposed to post-glacial lithospheric flexure, possibly causing the generation of new fracture networks in the overburden whilst rebounding. Drawing upon, fast carbon dioxide uprise can be facilitated due to opening of fractures caused by changes in the stress field over time. The overall effective permeability, and hence possible leakage rates, of a fractured storage formation is highly sensitive to the fracture aperture which itself depends on the far field and in situ stress field. For this reason, our in-house general purpose reservoir simulator Complex System Modeling Platform (CSMP++) has been expanded, which is particularly designed to simulate multiphase flow on fractured porous media. It combines finite element (FE) and finite volume (FV) methods on mixed-dimensional hybrid-element meshes. The unstructured FE-FV based scheme allows us to model complex geological structures, such as fractures, at great detail. The simulator uses a compositional model for NaCl-H2O-CO2-systems for compressible fluids for computing thermophysical properties as a function of formation pressure and temperature. A fixed stress-split sequential procedure is being used to calculate coupled fluid flow and geomechanics. Numerical proof of concept studies will be presented showing the impact of fracture opening and closure on fluid migration patterns due to coupled stress-pressure

  16. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    PubMed

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  17. Self-Calibrating Pressure Transducer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  18. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.

    PubMed

    Segers, Patrick; Taelman, Liesbeth; Degroote, Joris; Bols, Joris; Vierendeels, Jan

    2015-03-01

    The reservoir-wave paradigm considers aortic pressure as the superposition of a 'reservoir pressure', directly related to changes in reservoir volume, and an 'excess' component ascribed to wave dynamics. The change in reservoir pressure is assumed to be proportional to the difference between aortic inflow and outflow (i.e. aortic volume changes), an assumption that is virtually impossible to validate in vivo. The aim of this study is therefore to apply the reservoir-wave paradigm to aortic pressure and flow waves obtained from three-dimensional fluid-structure interaction simulations in a model of a normal aorta, aortic coarctation (narrowed descending aorta) and stented coarctation (stiff segment in descending aorta). We found no unequivocal relation between the intraaortic volume and the reservoir pressure for any of the simulated cases. When plotted in a pressure-volume diagram, hysteresis loops are found that are looped in a clockwise way indicating that the reservoir pressure is lower than the pressure associated with the change in volume. The reservoir-wave analysis leads to very high excess pressures, especially for the coarctation models, but to surprisingly little changes of the reservoir component despite the impediment of the buffer capacity of the aorta. With the observation that reservoir pressure is not related to the volume in the aortic reservoir in systole, an intrinsic assumption in the wave-reservoir concept is invalidated and, consequently, also the assumption that the excess pressure is the component of pressure that can be attributed to wave travel and reflection.

  19. Improving the result of forcasting using reservoir and surface network simulation

    NASA Astrophysics Data System (ADS)

    Hendri, R. S.; Winarta, J.

    2018-01-01

    This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.

  20. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    NASA Astrophysics Data System (ADS)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  1. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  2. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  3. Microbial Life in an Underground Gas Storage Reservoir

    NASA Astrophysics Data System (ADS)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  4. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  5. Comparison of CO2 trapping in highly heterogeneous reservoirs with Brooks-Corey and van Genuchten capillary pressure curves

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David

    2015-04-01

    Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources

  6. Study on cyclic injection gas override in condensate gas reservoir

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu

    2018-02-01

    Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.

  7. Reduction of CO2 using a Rhenium Bipyridine Complex Containing Ancillary BODIPY Redox Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teesdale, Justin; Pistner, Allen; Yapp, Glenn P. A.

    2014-01-01

    The reduction of carbon dioxide to chemical fuels such as carbon monoxide is an important challenge in the field of renewable energy conversion. Given the thermodynamic stability of carbon dioxide, it is difficult to efficiently activate this substrate in a selective fashion and the development of new electrocatalysts for CO2 reduction is of prime importance. To this end, we have prepared and studied a new fac-ReI(CO)3 complex supported by a bipyridine ligand containing ancillary BODIPY moieties ([Re(BB2)(CO)3Cl]). Voltammetry experiments revealed that this system displays a rich redox chemistry under N2, as [Re(BB2)(CO)3Cl] can be reduced by up to four electronsmore » at modest potentials. These redox events have been characterized as the ReI/0 couple, and three ligand based reductions two of which are localized on the BODIPY units. The ability of the BB2 ligand to serve as a noninnocent redox reservoir is manifest in an enhanced electrocatalysis with CO2 as compared to an unsubstituted Re-bipyridine complex lacking BODIPY units ([Re(bpy)(CO)3Cl]). The second order rate constant for reduction of CO2 by [Re(BB2)(CO)3Cl] was measured to be k = 3400 M 1s 1 at an applied potential of 2.0 V versus SCE, which is roughly three times greater than the corresponding unsubstituted Re-bipyridine homologue. Photophysical and photochemical studies were also carried out to determine if [Re(BB2)(CO)3Cl] was a competent platform for CO2 reduction using visible light. These experiments showed that this complex supports unusual excited state dynamics that are not typically observed for fac- ReI(CO)3 complexes.« less

  8. Effect of the Reservoir Volume on the Discharge Pressures in the Injection System of the N.A.C.A. Spray Photography Equipment

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1932-01-01

    Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.

  9. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  10. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  11. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  12. Compaction bands in high temperature/pressure diagenetically altered unconventional shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Veveakis, M.; Poulet, T.

    2014-12-01

    Unconventional energy and mineral resources are typically trapped in a low porosity/permeability environment and are difficult to produce. An extreme end-member is the shale gas reservoir in the Cooper Basin (Australia) that is located at 3500-4000 m depth and ambient temperature conditions around 200oC. Shales of lacustrine origin (with high clay content) are diagenetically altered. Diagenesis involves fluid release mineral reactions of the general type Asolid ↔ Bsolid +Cfluid and switches on suddenly in the diagenetic window between 100-200oC. Diagenetic reactions can involve concentrations of smectite, aqueous silica compound, illite, potassium ions, aqueous silica, quartz, feldspar, kerogen, water and gas . In classical petroleum engineering such interlayer water/gas release reactions are considered to cause cementation and significantly reduce porosity and permeability. Yet in contradiction to the expected permeability reduction gas is successfully being produced. We propose that the success is based on the ductile equivalent of classical compaction bands in solid mechanics. The difference being that that the rate of the volumetric compaction is controlled by the diagenetic reactions. Ductile compaction bands are forming high porosity fluid channels rather than low porosity crushed grains in the solid mechanical equivalent. We show that this new type of volumetric instability appears in rate-dependent heterogenous materials as Cnoidal waves. These are nonlinear and exact periodic stationary waves, well known in the shallow water theory of fluid mechanics. Their distance is a direct function of the hydromechanical diffusivities. These instabilities only emerge in low permeability environment where the fluid diffusivity is about an order of magnitude lower than the mechanical loading. The instabilities are expected to be of the type as shown in the image below. The image shows a CT-scan of a laboratory experiment kindly provided by Papamichos (pers

  13. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.

  14. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis.

    PubMed

    Sundström, Johan; Arima, Hisatomi; Jackson, Rod; Turnbull, Fiona; Rahimi, Kazem; Chalmers, John; Woodward, Mark; Neal, Bruce

    2015-02-03

    Effects of blood pressure reduction in persons with grade 1 hypertension are unclear. To investigate whether pharmacologic blood pressure reduction prevents cardiovascular events and deaths in persons with grade 1 hypertension. Trials included in the BPLTTC (Blood Pressure Lowering Treatment Trialists' Collaboration) and trials identified from a previous review and electronic database searches. Patients without cardiovascular disease with blood pressures in the grade 1 hypertension range (140 to 159/90 to 99 mm Hg) who were randomly assigned to an active (antihypertensive drug or more intensive regimen) or control (placebo or less intensive regimen) blood pressure-lowering regimen. Individual-patient data from BPLTTC trials and aggregate data from other trials were extracted. Risk of bias was assessed for all trials. Individual-patient data involved 10 comparisons from trials where most patients had diabetes, and aggregate data involved 3 comparisons from trials of patients without diabetes. The average blood pressure reduction was about 3.6/2.4 mm Hg. Over 5 years, odds ratios were 0.86 (95% CI, 0.74 to 1.01) for total cardiovascular events, 0.72 (CI, 0.55 to 0.94) for strokes, 0.91 (CI, 0.74 to 1.12) for coronary events, 0.80 (CI, 0.57 to 1.12) for heart failure, 0.75 (CI, 0.57 to 0.98) for cardiovascular deaths, and 0.78 (CI, 0.67 to 0.92) for total deaths. Results were similar in secondary analyses. Withdrawal from treatment due to adverse effects was more common in the active groups. Blood pressure reductions and numbers of events were small. Blood pressure-lowering therapy is likely to prevent stroke and death in patients with uncomplicated grade 1 hypertension. Swedish Heart-Lung Foundation, Swedish Research Council, Australian Research Council, and National Health and Medical Research Council of Australia.

  15. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    NASA Astrophysics Data System (ADS)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  16. Reduction of the incidence of pressure sores by an education program on nursing care.

    PubMed

    Srisupan, Vijitr; Senaratana, Wilawan; Picheansatian, Wilawan; Chittreecheur, Jittaporn; Watanakool, Malinee; Chaisri, Pratin; Singhakumfu, Laddawan; Tribuddharat, Chanwit; Danchaivijitr, Somwang

    2005-12-01

    To determine whether an education and campaign program would reduce the incidence of pressure sores. The study was performed in a 1,400-bed teaching hospital in Thailand with a total number of 697patients from 47 wards for a point prevalence study; 1,201 and 1,268 patients from 12 wards to determine whether reduction of pressure sore occurrence would be obtained by an education program. The point prevalence of pressure sores was 10.8%. The significant risk factors were age older than 60 years, fecal incontinence, and history of diarrhea. The occurrence of pressure sores was significantly reduced after the educational program from 9.91% to 5. 76%. The education on patient care aiming at reduction of the occurrence of pressure sores could be adopted nation-wide in order to reduce the morbidity, mortality and expenses. The education program was effective in reducing the incidence of pressure sores.

  17. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow

  18. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  19. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  20. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  1. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  2. Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts.

    PubMed Central

    Figueredo, V M; Brandes, R; Weiner, M W; Massie, B M; Camacho, S A

    1992-01-01

    Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions. PMID:1430205

  3. The nonlinear oil-water two-phase flow behavior for a horizontal well in triple media carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tao, Zhengwu; Chen, Liang; Ma, Xin

    2017-10-01

    Carbonate reservoir is one of the important reservoirs in the world. Because of the characteristics of carbonate reservoir, horizontal well has become a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A mathematical model for a oil-water two-phase flow horizontal well in triple media carbonate reservoir by conceptualizing vugs as spherical shapes are presented in this article. A semi-analytical solution is obtained in the Laplace domain using source function theory, Laplace transformation, and superposition principle. Analysis of transient pressure responses indicates that seven characteristic flow periods of horizontal well in triple media carbonate reservoir can be identified. Parametric analysis shows that water saturation of matrix, vug and fracture system, horizontal section length, and horizontal well position can significantly influence the transient pressure responses of horizontal well in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir by type curve matching.

  4. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  5. Computer simulation of reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout

    USGS Publications Warehouse

    Hsieh, Paul

    2010-01-01

    This report describes the application of a computer model to simulate reservoir depletion and oil flow from the Macondo well following the Deepwater Horizon blowout. Reservoir and fluid data used for model development are based on (1) information released in BP's investigation report of the incident, (2) information provided by BP personnel during meetings in Houston, Texas, and (3) calibration by history matching to shut-in pressures measured in the capping stack during the Well Integrity Test. The model is able to closely match the measured shut-in pressures. In the simulation of the 86-day period from the blowout to shut in, the simulated reservoir pressure at the well face declines from the initial reservoir pressure of 11,850 pounds per square inch (psi) to 9,400 psi. After shut in, the simulated reservoir pressure recovers to a final value of 10,300 psi. The pressure does not recover back to the initial pressure owing to reservoir depletion caused by 86 days of oil discharge. The simulated oil flow rate declines from 63,600 stock tank barrels per day just after the Deepwater Horizon blowout to 52,600 stock tank barrels per day just prior to shut in. The simulated total volume of oil discharged is 4.92 million stock tank barrels. The overall uncertainty in the simulated flow rates and total volume of oil discharged is estimated to be + or - 10 percent.

  6. Monitoring compaction and compressibility changes in offshore chalk reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, G.; Hardy, R.; Eltvik, P.

    1994-03-01

    Some of the North Sea's largest and most important oil fields are in chalk reservoirs. In these fields, it is important to measure reservoir compaction and compressibility because compaction can result in platform subsidence. Also, compaction drive is a main drive mechanism in these fields, so an accurate reserves estimate cannot be made without first measuring compressibility. Estimating compaction and reserves is difficult because compressibility changes throughout field life. Installing of accurate, permanent downhole pressure gauges on offshore chalk fields makes it possible to use a new method to monitor compressibility -- measurement of reservoir pressure changes caused by themore » tide. This tidal-monitoring technique is an in-situ method that can greatly increase compressibility information. It can be used to estimate compressibility and to measure compressibility variation over time. This paper concentrates on application of the tidal-monitoring technique to North Sea chalk reservoirs. However, the method is applicable for any tidal offshore area and can be applied whenever necessary to monitor in-situ rock compressibility. One such application would be if platform subsidence was expected.« less

  7. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  8. Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs.

    PubMed

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies' 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making.

  9. Projecting the Impact of Regional Land-Use Change and Water Management Policies on Lake Water Quality: An Application to Periurban Lakes and Reservoirs

    PubMed Central

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies’ 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making. PMID:23991066

  10. Forefoot plantar pressure reduction of off-the-shelf rocker bottom provisional footwear.

    PubMed

    Kavros, Steven J; Van Straaten, Meegan G; Coleman Wood, Krista A; Kaufman, Kenton R

    2011-08-01

    Increased plantar pressures have been shown to be a risk factor in ulceration of the neuropathic foot. Prescriptive footwear is a common medical treatment, yet evidence regarding the efficacy of these prescriptions is underdeveloped. The purpose of this study is to determine the off-loading properties of four provisional shoes; a rocker sole compared to a flat sole shoe with and without the addition of a 1.25 cm plastizote insert. Fifteen subjects with peripheral neuropathy and a normal longitudinal arch were recruited to compare four types of provisional (post-operative) footwear. Plantar surface foot pressures were measured while wearing a rocker sole shoe or a flat stiff sole shoe. Both shoes were worn with and without a 1.25 cm plastizote insert. Peak plantar pressures were recorded for the hallux, metatarsal heads (1-5), midfoot, and heel. The rocker sole shoe with plastizote had the best off-loading properties. While wearing this footwear, mean peak plantar pressure was 2.8 kg/cm(2) (range: 1.7 to 4.5 kg/cm(2), 50% mean reduction from flat sole shoe without plastizote) and 1.9 kg/cm(2) (range: 0.7 to 3.6 kg/cm(2), 35% mean reduction) at the five metatarsal heads and hallux, respectively. For patients with a normal longitudinal arch and forefeet, either at risk of developing an ulcer or are healing a forefoot ulcer, a provisional shoe with a rocker sole and plastizote insole provides plantar pressure reduction of the forefoot. However, when results were analyzed for the subjects individually the amount of off-loading varied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Potential Biomarker Peptides Associated with Acute Alcohol-Induced Reduction of Blood Pressure

    PubMed Central

    Wakabayashi, Ichiro; Marumo, Mikio; Nonaka, Daisuke; Shimomura, Tomoko; Eguchi, Ryoji; Lee, Lyang-Ja; Tanaka, Kenji; Hatake, Katsuhiko

    2016-01-01

    The purpose of this study was to explore the peptides that are related to acute reduction of blood pressure after alcohol drinking. Venous blood was collected from male healthy volunteers before and after drinking white wine (3 ml/kg weight) containing 13% of ethanol. Peptidome analysis for serum samples was performed using a new target plate, BLOTCHIP®. Alcohol caused significant decreases in systolic and diastolic blood pressure levels at 45 min. The peptidome analysis showed that the levels of three peptides of m/z 1467, 2380 and 2662 changed significantly after drinking. The m/z 1467 and 2662 peptides were identified to be fragments of fibrinogen alpha chain, and the m/z 2380 peptide was identified to be a fragment of complement C4. The intensities of the m/z 2380 and m/z 1467 peptides before drinking were associated with % decreases in systolic and diastolic blood pressure levels at 45 min after drinking compared with the levels before drinking, while there were no significant correlations between the intensity of the m/z 2662 peptide and % decreases in systolic and diastolic blood pressure levels after drinking. The m/z 1467 and 2380 peptides are suggested to be markers for acute reduction of blood pressure after drinking alcohol. PMID:26815288

  12. WATER LEVEL DRAWDOWN TRIGGERS SYSTEM-WIDE BUBBLE RELEASE FROM RESERVOIR SEDIMENTS

    EPA Science Inventory

    Reservoirs are an important anthropogenic source of methane and ebullition is a key pathway by which methane stored in reservoir sediments can be released to the atmosphere. Changes in hydrostatic pressure during periods of falling water levels can trigger bubbling events, sugge...

  13. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  14. Reservoir Sedimentation: Impact, Extent, and Mitigation

    NASA Astrophysics Data System (ADS)

    Hadley, Richard F.

    Storage reservoirs play an important role in water resources development throughout the world. The one problem with reservoirs that is universal is the continual reduction in usable capacity caused by siltation. This book reviews the world picture of erosion and sediment yield, the large variations that exist, and the physical phenomena related to reservoir siltation. The book is in the Technical Paper series of The World Bank (Technical Paper 71) and is not a formal publication. Rather, it is intended to be circulated to encourage discussion and comment and to communicate results quickly. The book is reproduced from typescript, but this does not detract from the value of the contents as a useful text for hydrologrsts, engineers, and soil conservationists in developing countries.

  15. Water-balance simulations of runoff and reservoir storage for the Upper Helmand watershed and Kajakai Reservoir, central Afghanistan

    USGS Publications Warehouse

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  16. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed

    PubMed Central

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor. PMID:26588241

  17. Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed.

    PubMed

    Alshboul, Zeyad; Lorke, Andreas

    2015-01-01

    We have analyzed monthly hydrological, meteorological and water quality data from three irrigation and drinking water reservoirs in the lower Jordan River basin and estimated the atmospheric emission rates of CO2. The data were collected between 2006 and 2013 and show that the reservoirs, which differ in size and age, were net sources of CO2. The estimated surface fluxes were comparable in magnitude to those reported for hydroelectric reservoirs in the tropical and sub-tropical zones. Highest emission rates were observed for a newly established reservoir, which was initially filled during the sampling period. In the two older reservoirs, CO2 partial pressures and fluxes were significantly decreasing during the observation period, which could be related to simultaneously occurring temporal trends in water residence time and chemical composition of the water. The results indicate a strong influence of water and reservoir management (e.g. water consumption) on CO2 emission rates, which is affected by the increasing anthropogenic pressure on the limited water resources in the study area. The low wind speed and relatively high pH favored chemical enhancement of the CO2 gas exchange at the reservoir surfaces, which caused on average a four-fold enhancement of the fluxes. A sensitivity analysis indicates that the uncertainty of the estimated fluxes is, besides pH, mainly affected by the poorly resolved wind speed and resulting uncertainty of the chemical enhancement factor.

  18. The Supraglottic Effect of a Reduction in Expiratory Mask Pressure During Continuous Positive Airway Pressure

    PubMed Central

    Masdeu, Maria J.; Patel, Amit V.; Seelall, Vijay; Rapoport, David M.; Ayappa, Indu

    2012-01-01

    supraglottic effect of a reduction in expiratory mask pressure during continuous positive airway pressure. SLEEP 2012;35(2):263-272. PMID:22294817

  19. Seismic Reservoir Characterization for Assessment of CO2 EOR at the Mississippian Reservoir in South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.

    2017-12-01

    The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.

  20. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  1. Reduction of ventricular size after shunting for normal pressure hydrocephalus related to CSF dynamics before shunting.

    PubMed Central

    Tans, J T; Poortvliet, D C

    1988-01-01

    Reduction of ventricular size was determined by repeated computed tomography in 30 adult patients shunted for normal pressure hydrocephalus (NPH) and related to the pressure-volume index (PVI) and resistance to outflow of cerebrospinal fluid (Rcsf) measured before shunting. Rapid and marked reduction of ventricular size (n = 10) was associated with a significantly lower PVI than slow and moderate to marked (n = 13) or minimal to mild reduction (n = 7). Otherwise no relationship could be found between the reduction of ventricular size and PVI or Rcsf. It is concluded that both rate and magnitude of reduction of ventricular size after shunting for NPH are extremely variable. High brain elasticity seems to be the best predictor of rapid and marked reduction. PMID:3379425

  2. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  3. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    NASA Astrophysics Data System (ADS)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well

  4. Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.

    PubMed

    Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D

    2017-10-15

    Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants

  5. On the possible fault activation induced by UGS in depleted reservoirs

    NASA Astrophysics Data System (ADS)

    Feronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro; Tosattto, Omar

    2014-05-01

    Underground gas storage (UGS) represents an increasingly used approach to cope with the growing energy demand and occurs in many countries worldwide. Gas is injected in previously depleted deep reservoirs during summer when consumption is limited and removed in cold season mainly for heating. As a major consequence the pore pressure p within a UGS reservoir fluctuates yearly between a maximum close to the value pi prior to the field development and a minimum usually larger than the lowest pressure experienced by the reservoir at the end of its production life. The high frequency pressure fluctuations generally confine the pressure change volume to the reservoir volume without significantly involving the aquifers hydraulically connected to the hydrocarbon field (lateral and/or bottom waterdrive). The risk of UGS-induced seismicity is therefore restricted to those cases where existing faults cross or bound the reservoir. The possible risk of anthropogenic seismicity due to UGS operations is preliminary investigated by an advanced Finite Element (FE) - Interface Element (IE) 3-D elasto-plastic geomechanical model in a representative 1500 m deep reservoir bounded by a regional sealing fault and compartimentalized by an internal non-sealing thrust. Gas storage/production is ongoing with p ranging between pi in October/November and 60%pi in April/May. The yearly pressure fluctuation is assumed to be on the order of 50 bar. The overall geomechanical response of the porous medium has been calibrated by reproducing the vertical and horizontal cyclic displacements measured above the reservoir by advanced persistent scatterer interferometry. The FE-IE model shows that the stress variations remain basically confined within the gas field and negligibly propagate within the caprock and the waterdrive. Based on the Mohr-Coulomb failure criterion, IEs allow for the prediction of the fault activated area A, located at the reservoir depth as expected, and slip displacement d. A

  6. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    PubMed

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  7. Gas network model allows full reservoir coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Methnani, M.M.

    The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solutionmore » method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.« less

  8. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  9. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  10. HPHT reservoir evolution: a case study from Jade and Judy fields, Central Graben, UK North Sea

    NASA Astrophysics Data System (ADS)

    di Primio, Rolando; Neumann, Volkmar

    2008-09-01

    3D basin modelling of a study area in Quadrant 30, UK North Sea was performed in order to elucidate the burial, thermal, pressure and hydrocarbon generation, migration and accumulation history in the Jurassic and Triassic high pressure high temperature sequences. Calibration data, including reservoir temperatures, pressures, petroleum compositional data, vitrinite reflectance profiles and published fluid inclusion data were used to constrain model predictions. The comparison of different pressure generating processes indicated that only when gas generation is taken into account as a pressure generating mechanism, both the predicted present day as well as palaeo-pressure evolution matches the available calibration data. Compositional modelling of hydrocarbon generation, migration and accumulation also reproduced present and palaeo bulk fluid properties such as the reservoir fluid gas to oil ratios. The reconstruction of the filling histories of both reservoirs indicates that both were first charged around 100 Ma ago and contained initially a two-phase system in which gas dominated volumetrically. Upon burial reservoir fluid composition evolved to higher GORs and became undersaturated as a function of increasing pore pressure up to the present day situation. Our results indicate that gas compositions must be taken into account when calculating the volumetric effect of gas generation on overpressure.

  11. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  12. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  13. A pulse tube cryocooler with a cold reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  14. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production

    NASA Astrophysics Data System (ADS)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven

    2013-04-01

    differences between gaseous and dissolved methane (Zimmer et al., 2011). Gas hydrate is formed using a confined pressure of 12-15 MPa and a fluid pressure of 8-11 MPa with a set temperature of 275 K. The duration of the formation process depends on the required hydrate saturation and is usually in a range of several weeks. The subsequent decomposition experiments aiming at testing innovative production scenarios such as the application of a borehole tool for thermal stimulation of hydrate via catalytic oxidation of methane within an autothermal catalytic reactor (Schicks et al. 2011). Furthermore, experiments on hydrate decomposition via pressure reduction are performed to mimic realistic scenarios such as found during the production test in Mallik (Yasuda and Dallimore, 2007). In the near future it is planned to scale up existing results on CH4-CO2 exchange efficiency (e.g. Strauch and Schicks, 2012) by feeding CO2 to the hydrate reservoir. All experiments are due to the gain of high-resolution spatial and temporal data predestined as a base for numerical modeling. References Schicks, J. M., Spangenberg, E., Giese, R., Steinhauer, B., Klump, J., Luzi, M., 2011. Energies, 4, 1, 151-172. Zimmer, M., Erzinger, J., Kujawa, C., 2011. Int. J. of Greenhouse Gas Control, 5, 4, 995-1001. Yasuda, M., Dallimore, S. J., 2007. Jpn. Assoc. Pet. Technol., 72, 603-607. Beeskow-Strauch, B., Schicks, J.M., 2012. Energies, 5, 420-437.

  15. Reservoir Identification: Parameter Characterization or Feature Classification

    NASA Astrophysics Data System (ADS)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  16. Gas/oil capillary pressure at chalk at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, K.R.; Whitson, C.H.

    1995-09-01

    Accurate capillary pressure curves are essential for studying the recovery of oil by gas injection in naturally fractured chalk reservoirs. A simple and fast method to determine high-pressure drainage capillary pressure curves has been developed. The effect of gas/oil interfacial tension (IFT) on the capillary pressure of chalk cores has been determined for a methane/n-pentane system. Measurements on a 5-md outcrop chalk core were made at pressures of 70, 105, and 130 bar, with corresponding IFT`s of 6.3, 3.2, and 1.5 mN/m. The results were both accurate and reproducible. The measured capillary pressure curves were not a linear function ofmore » IFT when compared with low-pressure centrifuge data. Measured capillary pressures were considerably lower than IFT-scaled centrifuge data. It appears that the deviation starts at an IFT of about 5 mN/m. According to the results of this study, the recovery of oil by gravity drainage in naturally fractured chalk reservoirs may be significantly underestimated if standard laboratory capillary pressure curves are scaled by IFT only. However, general conclusions cannot be made on the basis on only this series of experiments on one chalk core.« less

  17. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Building more realistic reservoir optimization models using data mining - A case study of Shelbyville Reservoir

    NASA Astrophysics Data System (ADS)

    Hejazi, Mohamad I.; Cai, Ximing

    2011-06-01

    In this paper, we promote a novel approach to develop reservoir operation routines by learning from historical hydrologic information and reservoir operations. The proposed framework involves a knowledge discovery step to learn the real drivers of reservoir decision making and to subsequently build a more realistic (enhanced) model formulation using stochastic dynamic programming (SDP). The enhanced SDP model is compared to two classic SDP formulations using Lake Shelbyville, a reservoir on the Kaskaskia River in Illinois, as a case study. From a data mining procedure with monthly data, the past month's inflow ( Qt-1 ), current month's inflow ( Qt), past month's release ( Rt-1 ), and past month's Palmer drought severity index ( PDSIt-1 ) are identified as important state variables in the enhanced SDP model for Shelbyville Reservoir. When compared to a weekly enhanced SDP model of the same case study, a different set of state variables and constraints are extracted. Thus different time scales for the model require different information. We demonstrate that adding additional state variables improves the solution by shifting the Pareto front as expected while using new constraints and the correct objective function can significantly reduce the difference between derived policies and historical practices. The study indicates that the monthly enhanced SDP model resembles historical records more closely and yet provides lower expected average annual costs than either of the two classic formulations (25.4% and 4.5% reductions, respectively). The weekly enhanced SDP model is compared to the monthly enhanced SDP, and it shows that acquiring the correct temporal scale is crucial to model reservoir operation for particular objectives.

  19. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  20. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastouret, Alan; Gooijer, Frans; Overton, Bob

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fibermore » cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  1. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  2. Geochemical analysis of reservoir continuity and connectivity, Arab-D and Hanifa Reservoirs, Abqaiq Field, Saudia Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, A.A.; Grover, G.; Hwang, R.

    1995-08-01

    Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less

  3. Intensive versus conventional blood pressure monitoring in a general practice population. The Blood Pressure Reduction in Danish General Practice trial: a randomized controlled parallel group trial.

    PubMed

    Klarskov, Pia; Bang, Lia E; Schultz-Larsen, Peter; Gregers Petersen, Hans; Benee Olsen, David; Berg, Ronan M G; Abrahamsen, Henrik; Wiinberg, Niels

    2018-01-17

    To compare the effect of a conventional to an intensive blood pressure monitoring regimen on blood pressure in hypertensive patients in the general practice setting. Randomized controlled parallel group trial with 12-month follow-up. One hundred and ten general practices in all regions of Denmark. One thousand forty-eight patients with essential hypertension. Conventional blood pressure monitoring ('usual group') continued usual ad hoc blood pressure monitoring by office blood pressure measurements, while intensive blood pressure monitoring ('intensive group') supplemented this with frequent home blood pressure monitoring and 24-hour ambulatory blood pressure monitoring. Mean day- and night-time systolic and diastolic 24-hour ambulatory blood pressure. Change in systolic and diastolic office blood pressure and change in cardiovascular risk profile. Of the patients, 515 (49%) were allocated to the usual group, and 533 (51%) to the intensive group. The reductions in day- and night-time 24-hour ambulatory blood pressure were similar (usual group: 4.6 ± 13.5/2.8 ± 82 mmHg; intensive group: 5.6 ± 13.0/3.5 ± 8.2 mmHg; P = 0.27/P = 0.20). Cardiovascular risk scores were reduced in both groups at follow-up, but more so in the intensive than in the usual group (P = 0.02). An intensive blood pressure monitoring strategy led to a similar blood pressure reduction to conventional monitoring. However, the intensive strategy appeared to improve patients' cardiovascular risk profile through other effects than a reduction of blood pressure. Clinical Trials NCT00244660. © The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Design and life-cycle considerations for unconventional-reservoir wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studiesmore » for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.« less

  5. Modeling of reservoir compaction and surface subsidence at South Belridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, K.S.; Chan, C.K.; Prats, M.

    1995-08-01

    Finite-element models of depletion-induced reservoir compaction and surface subsidence have been calibrated with observed subsidence, locations of surface fissures, and regions of subsurface casing damage at South Belridge and used predictively for the evaluation of alternative reservoir-development plans. Pressure maintenance through diatomite waterflooding appears to be a beneficial means of minimizing additional subsidence and fissuring as well as reducing axial-compressive-type casing damage.

  6. Pressure ramp programmer; IMBLMS Phase B4 Additional Tasks: Task 3.0 pressure ramp programmer

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Reinhardt, C. G.

    1972-01-01

    A pressure ramp programmer model was designed, fabricated and tested. This model, in conjunction with an automatic blood pressure monitor, automatically controls the pressure in the blood pressure monitor arterial cuff. The cuff pressurization cycle is designed to maximize accuracy and repeatability of blood pressure measurements. The key feature of this automatic cycle is rapid blood pressure cuff bleed down from an initial setting until systolic (diastolic) pressure is encountered followed by a short repressurization and slow bleed, long enough to permit accurate systolic (diastolic) pressure determination. The system includes a pressure reservoir which bleeds the cuff through a precision needle valve; a solenoid valve which permits rapid pressurization from the reservoir; and a pressure sensor which provides information for bleed rate and set point controls. Korotkoff sound signals from a microphone in the blood pressure cuff (not part of the system) provide decision information to the digital control system. The system completed a series of engineering tests using simulated Korotkoff sound inputs. The system performed successfully in all cases and was stable over an extended period of time.

  7. Performance prediction using geostatistics and window reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite.more » Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.« less

  8. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  9. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    reservoir modeling becomes more pronounced. SRM is developed using the state of the art in neural computing and fuzzy pattern recognition to address the ever growing need in the oil and gas industry to perform accurate, but high speed simulation and modeling. Unlike conventional geo-statistical approaches (response surfaces, proxy models …) that require hundreds of simulation runs for development, SRM is developed only with a few (from 10 to 30 runs) simulation runs. SRM can be developed regularly (as new versions of the full field model become available) off-line and can be put online for real-time processing to guide important decisions. SRM has proven its value in the field. An SRM was developed for a giant oil field in the Middle East. The model included about one million grid blocks with more than 165 horizontal wells and took ten hours for a single run on 12 parallel CPUs. Using only 10 simulation runs, an SRM was developed that was able to accurately mimic the behavior of the reservoir simulation model. Performing a comprehensive reservoir analysis that included making millions of SRM runs, wells in the field were divided into five clusters. It was predicted that wells in cluster one & two are best candidates for rate relaxation with minimal, long term water production while wells in clusters four and five are susceptive to high water cuts. Two and a half years and 20 wells later, rate relaxation results from the field proved that all the predictions made by the SRM analysis were correct. While incremental oil production increased in all wells (wells in clusters 1 produced the most followed by wells in cluster 2, 3 …) the percent change in average monthly water cut for wells in each cluster clearly demonstrated the analytic power of SRM. As it was correctly predicted, wells in clusters 1 and 2 actually experience a reduction in water cut while a substantial increase in water cut was observed in wells classified into clusters 4 and 5. Performing these analyses

  10. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    NASA Astrophysics Data System (ADS)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  11. Modelling mechanical behaviour of limestone under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Carvalho Coelho, Lúcia; Soares, Antonio Claudio; Ebecken, Nelson Francisco F.; Drummond Alves, José Luis; Landau, Luiz

    2006-12-01

    High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright

  12. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  13. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  14. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  15. Seismically active volume not a good indicator of the stimulated reservoir: evidence from Paralana

    NASA Astrophysics Data System (ADS)

    Riffault, J.; Dempsey, D. E.; Karra, S.; Archer, R.

    2017-12-01

    Hydraulic stimulation is routinely carried out in EGS projects in order to engineer the geothermal reservoir, triggering large amounts of seismicity. There is broad consensus that hydroshearing, the shear failure of existing fractures caused by pore pressure increasing above a critical value, is the mechanism primarily responsible for the seismicity. It is also often assumed to be the primary mechanism behind permeability enhancement and thus reservoir creation, although several other physical processes, such as thermal and chemical effects, and tensile failure, can also contribute. An extension of this assumption is that the seismically active volume reflects the extent of the stimulated reservoir. This may not always be the case. Hydraulic stimulation aims to improve injectivity, which we define as the ratio of injection rate to wellhead pressure. During the Paralana-2 EGS stimulation, undertaken in South Australia in 2011, injectivity increased linearly over time, implying permeability enhancement. Concurrently, 4754 micro-earthquakes were detected and located. We have spatially averaged hypocentre positions in order to image the spatio-temporally evolving seismicity cloud and its main features. Using an established correlation from a previous EGS experiment, we use hypocentre density as a proxy measure of pore pressure increase. Knowing then how pressure and injectivity evolve over time, we develop an inversion procedure based on reservoir simulation to infer how permeability has evolved around the well. Our results indicate that, although there is significant permeability enhancement close to the wellbore, this is largely uncoupled from the seismically active volume that extends much further away. In other words, for the Paralana stimulation, the seismicity cloud is a poor indicator of the stimulated reservoir volume. It further implies that hydroshearing itself is not the main cause of permeability enhancement at Paralana. Our study suggests that past

  16. Stability of a penny-shaped geothermal reservoir in the earth's crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Sekine, H.

    1982-06-01

    The theoretical analysis of a penny-shaped geothermal reservoir in the earth's crust subject to linear tectonic stress gradients has been made on the basis of the three dimensional theory of elasticity. The condition for stability of a reservoir requires K/sub 1/ < K /SUB c/ , where K/sub 1/ and K /SUB c/ are, respectively, the stress intensity factor for the opening mode and the fracture toughness of the surrounding rock. From this condition the upper critical pressure being necessary for the reservoir stability is obtained and is shown graphically.

  17. Reservoir management in a hydrodynamic environment, Iagifu-Hedinia area, Southern Highlands, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.I.; Langston, M.V.; Fitzmorris, R.E.

    Northwest to southeast regional scale flow in the Toro Sandstone parallels the Papuan Fold and Thrust Belt for a distance of 115 km, passing through Iagifu/Hedinia oil field along the way. This has had a profound effect on oil distribution in the Toro there, having swept the northwest side free of movable oil. A structurally controlled flow restriction causes a local, rapid drop in hydraulic potential, tilting local oil/water contacts up to six degrees and causing the three sandstone members of the Toro to locally behave as separate reservoirs, each with its own hydrocarbon/water contact. Reservoir simulations of Iagifu/Hedinia whichmore » include a flowing aquifer are able to match observed production history. Without a flowing aquifer, simulation predicts greater and earlier water production, and a greater pressure drop in the oil leg than has been observed. Reservoir modeling using a flowing aquifer has allowed downhole, structural targeting of later infill wells to be much closer to the OWC than would otherwise have been thought prudent, and has raised questions as to the potential effectiveness of a downdip water injection scheme. Production results from a small satellite field upstream of the main Iagifu/Hedinia field have shown a sudden increase in water production and reservoir pressure after a long period of pressure decline and no water production. This behavior appears to be due to an influx of higher hydraulic potential from a separate reservoir sand, the influx being brought about by pressure draw down during production and consequent breakdown of fault seal.« less

  18. Analogue modelling of caprock failure and sediment mobilisation due to pore fluid overpressure in shallow reservoirs

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; May, Franz

    2017-04-01

    Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The

  19. Force reduction induced by unidirectional transversal muscle loading is independent of local pressure.

    PubMed

    Siebert, Tobias; Rode, Christian; Till, Olaf; Stutzig, Norman; Blickhan, Reinhard

    2016-05-03

    Transversal unidirectional compression applied to muscles via external loading affects muscle contraction dynamics in the longitudinal direction. A recent study reported decreasing longitudinal muscle forces with increasing transversal load applied with a constant contact area (i.e., leading to a simultaneous increase in local pressure). To shed light on these results, we examine whether the decrease in longitudinal force depends on the load, the local pressure, or both. To this end, we perform isometric experiments on rat M. gastrocnemius medialis without and with transversal loading (i) changing the local pressure from 1.1-3.2Ncm(-2) (n=9) at a constant transversal load (1.62N) and (ii) increasing the transversal load (1.15-3.45N) at a constant local pressure of 2.3Ncm(-2) (n=7). While we did not note changes in the decrease in longitudinal muscle force in the first experiment, the second experiment resulted in an almost-linear reduction of longitudinal force between 7.5±0.6% and 14.1±1.7%. We conclude that the observed longitudinal force reduction is not induced by local effects such as malfunction of single muscle compartments, but that similar internal stress conditions and myofilament configurations occur when the local pressure changes given a constant load. The decreased longitudinal force may be explained by increased internal pressure and a deformed myofilament lattice that is likely associated with the decomposition of cross-bridge forces on the one hand and the inhibition of cross-bridges on the other hand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play

    NASA Astrophysics Data System (ADS)

    Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing

    2018-01-01

    Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or

  1. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE PAGES

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    2017-05-02

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  2. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  3. Three-Dimensional Modeling of the Reactive Transport of CO2 and Its Impact on Geomechanical Properties of Reservoir Rocks and Seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This article develops a novel multiscale modeling approach to analyze CO2 reservoirs using Pacific Northwest National Laboratory’s STOMP-CO2-R code that is interfaced with the ABAQUS® finite element package. The STOMP-CO2-R/ABAQUS® sequentially coupled simulator accounts for the reactive transport of CO2 causing mineral composition changes that modify the geomechanical properties of reservoir rocks and seals. Formation rocks’ elastic properties that vary during CO2 injection and govern the poroelastic behavior of rocks are modeled by an Eshelby-Mori-Tanka approach (EMTA) implemented in ABAQUS® via user-subroutines. The computational tool incorporates the change in rock permeability due to both geochemistry and geomechanics. A three-dimensional (3D)more » STOMP-CO2-R model for a model CO2 reservoir containing a vertical fault is built to analyze a formation containing a realistic geochemical reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D ABAQUS® model that maps the above STOMP-CO2-R model is built for the analysis using STOMP-CO2-R/ABAQUS®. The results show that the changes in volume fraction of minerals include dissolution of anorthite, precipitation of calcite and kaolinite, with little change in the albite volume fraction. After a long period of CO2 injection the mineralogical and geomechanical changes significantly reduced the permeability and elastic modulus of the reservoir (between the base and caprock) in front of the fault leading to a reduction of the pressure margin to fracture at and beyond the injection location. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that directly affect the rock stiffness, stress and strain distributions as well as the pressure margin to fracture.« less

  4. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this

  5. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  6. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  7. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  8. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  9. Discussion of case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azari, M.; Wooden, W.

    The authors found Warpinski et al.'s paper (Case Study of a Stimulation Experiment in Fluvial, Tight-Sandstone Gas Reservoir. Nov. 1990 SPE Production Engineering, Pages 403-10) to be very thorough and informative. That paper considered geological, logging, completion, and pressure-transient data to produce a comprehensive formation evaluation of a fluvial, tight-sandstone gas reservoir. The purpose of this paper is to present the author's view on the peculiar pressure-transient responses shown.

  10. The Potosi Reservoir Model 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortiummore » in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability

  11. Limnological study with reference to fish culture of Bothali (Mendha) reservoir, district - Gadchiroli (India).

    PubMed

    Tijare, Rajendra V

    2012-04-01

    Limnological study with reference to fish culture was carried out at Bothali (Mendha) reservoir, district Gadchiroli, India. Water samples from different sampling locations were collected and processed for physico-chemical analysis. The physico-chemical analysis revealed that the reservoir is favourable for fish culture as the phosphate content in water is moderate in amount. This reservoir can produce a good yield of fishes. Though the reservoir is presently exploited and is under pisciculture, a better treatment of the reservoir such as prevention of entry of organic matter, reduction of phosphate ion concentration to certain extent is necessary to obtain a maximum fish yield.

  12. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    NASA Astrophysics Data System (ADS)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  13. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  14. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  15. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  16. Anatomy of a lower Mississippian oil reservoir, West Virginia, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.; Hohn, M.E.; McDowell, R.

    1993-09-01

    Several lines of evidence indicate that the oil reservoir in Granny Creek field is compartmentalized due to internal heterogeneities: an analysis of initial open flows vs. year completed and well location; mapping of initial open flows and cumulative production; and the nonuniform behavior of injection pressures and rates in waterflood patterns. The Big Injun sandstones includes an upper, coarse-grained, fluvial channel facies, and a lower, fine-grained, distributary mouthbar facies. The bar facies is the main reservoir, and can be subdivided into crest, distal, and proximal subfacies. Low original porosity and permeability in the poorly sorted channel facies was reduced furthermore » by quartz cementation. In contrast, chlorite coatings restricted quartz cementation and preserved porosity and permeability in the proximal bar subfacies. Small, low-amplitude folds plunge northeastward on the flank of the main syncline in which the fields is located. These minor structural highs seem to match areas of high initial open flows and cumulative production. High production also occurs where the distal and marine-influenced, proximal mouth-bar subfacies pinch out against at least a few feet of the relatively impremeable channel facies. Lower production is associated with (1) thin areas of proximal mouth-bar subfacies; (2) a change from marine to fluvial dominance of the bar facies, which is accompanied by a reduction in porosity and permeability; and (3) loss of the less permeable channel facies above the porous reservoir sandstone, due to downcutting by regional erosion that produced a post-Big Injun unconformity.« less

  17. The time-lapse AVO difference inversion for changes in reservoir parameters

    NASA Astrophysics Data System (ADS)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  18. Association of Cryptosporidium with bovine faecal particles and implications for risk reduction by settling within water supply reservoirs.

    PubMed

    Brookes, Justin D; Davies, Cheryl M; Hipsey, Matthew R; Antenucci, Jason P

    2006-03-01

    Artificial cow pats were seeded with Cryptosporidium oocysts and subjected to a simulated rainfall event. The runoff from the faecal pat was collected and different particle size fractions were collected within settling columns by exploiting the size-dependent settling velocities. Particle size and Cryptosporidium concentration distribution at 10 cm below the surface was measured at regular intervals over 24 h. Initially a large proportion of the total volume of particles belonged to the larger size classes (> 17 microm). However, throughout the course of the experiment, there was a sequential loss of the larger size classes from the sampling depth and a predominance of smaller particles (< 17 microm). The Cryptosporidium concentration at 10 cm depth did not change throughout the experiment. In the second experiment samples were taken from different depths within the settling column. Initially 26% of particles were in the size range 124-492 microm. However, as these large particles settled there was an enrichment at 30 cm after one hour (36.5-49.3%). There was a concomitant enrichment of smaller particles near the surface after 1 h and 24 h. For Pat 1 there was no difference in Cryptosporidium concentration with depth after 1 h and 24 h. In Pat 2 there was a difference in concentration between the surface and 30 cm after 24 h. However, this could be explained by the settling velocity of a single oocyst. The results suggested that oocysts are not associated with large particles, but exist in faecal runoff as single oocysts and hence have a low (0.1 m(d-1)) settling velocity. The implications of this low settling velocity on Cryptosporidium risk reduction within water supply reservoirs was investigated through the application of a three-dimensional model of oocyst fate and transport to a moderately sized reservoir (26 GL). The model indicated that the role of settling on oocyst concentration reduction within the water column is between one and three orders of

  19. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    NASA Astrophysics Data System (ADS)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  20. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction

    NASA Astrophysics Data System (ADS)

    Solem, Susanne; Evje, Steinar

    2017-02-01

    This paper deals with the relaxation limit of a two-phase compressible gas-liquid model which contains a pressure-dependent well-reservoir interaction term of the form q (P_r - P) where q>0 is the rate of the pressure-dependent influx/efflux of gas, P is the (unknown) wellbore pressure, and P_r is the (known) surrounding reservoir pressure. The model can be used to study gas-kick flow scenarios relevant for various wellbore operations. One extreme case is when the wellbore pressure P is largely dictated by the surrounding reservoir pressure P_r. Formally, this model is obtained by deriving the limiting system as the relaxation parameter q in the full model tends to infinity. The main purpose of this work is to understand to what extent this case can be represented by a well-defined mathematical model for a fixed global time T>0. Well-posedness of the full model has been obtained in Evje (SIAM J Math Anal 45(2):518-546, 2013). However, as the estimates for the full model are dependent on the relaxation parameter q, new estimates must be obtained for the equilibrium model to ensure existence of solutions. By means of appropriate a priori assumptions and some restrictions on the model parameters, necessary estimates (low order and higher order) are obtained. These estimates that depend on the global time T together with smallness assumptions on the initial data are then used to obtain existence of solutions in suitable Sobolev spaces.

  1. Accessing ultrahigh-pressure, quasi-isentropic states of mattera)

    NASA Astrophysics Data System (ADS)

    Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.

    2005-05-01

    A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.

  2. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  3. Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Prévost, Jean H.; Sukumar, N.

    2016-01-01

    Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

  4. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    PubMed

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  6. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    PubMed

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  7. Factors Governing the Germination of Sulfate-Reducing Desulfotomaculum Endospores Involved in Oil Reservoir Souring.

    NASA Astrophysics Data System (ADS)

    Sherry, A.; Bell, E.; Cueto, G.; Suarez-Suarez, A.; Pilloni, G.; Hubert, C. R.

    2015-12-01

    Reservoir souring is caused by the activity of sulfate-reducing microorganisms (SRM) in subsurface oil reservoirs, and is often induced by seawater injection during secondary oil recovery. Souring can potentially contribute to corrosion of infrastructure, health and safety hazards to the workforce, and reduction in value by increasing refining costs associated with producing the oil resource. Souring causes annual losses in the billions of dollars to the oil industry. Endospore-forming SRM, such as Desulfotomaculum spp., are often suspected culprits in reservoir souring. Endospores can survive unfavourable conditions for long periods, yet remain poised to germinate and become active if conditions become more favourable. Factors governing endospore germination are poorly understood, but are thought to include availability of nutrients, possibly metabolic by products of other anaerobic bioprocesses, and/or variations in temperature. Most research has focused on aerobic Bacillus spp., with very few studies dedicated to spore germination among anaerobes (order Clostridiales) including the sulfate-reducing Desulfotomaculum found in anoxic subsurface petroleum reservoirs. For Desulfotomaculum spores in deep hot oil reservoirs, cold seawater introduction during secondary oil recovery may create thermal viability zones for sulfate reduction near the injection wellbore. To evaluate these processes, sulfate-containing microcosms were prepared with different marine sediments as a source of spores, and amended with organic substrates in the presence or absence of oil. Incubation at 80°C for six days was followed by a down-shift in temperature to 60°C to mimic cold seawater injection into a hot reservoir. Souring did not occur at 80°C, but commenced within hours at 60°C. Microcosms were monitored for sulfate reduction and organic acids in combination with next generation sequencing of 16S rRNA genes (Ion Torrent, Illumina MiSeq). Through a combination of high

  8. Hydraulic properties of siliciclastic geothermal reservoir rocks under triaxial stress conditions, a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Gholizadeh Doonechaly, Nima; Bruhn, David

    2017-04-01

    Cretaceous Sandstone bodies in the subsurface of western Netherlands are already used for heating some of the greenhouses in that area. The reservoirs used are typically at depths between 1500 and 3000m, with temperatures generally <100 ˚C. For higher temperature applications deeper reservoirs are required. However, deeper reservoirs are subjected to higher effective pressures due to more overburden, which can lead to more compacted rocks, and thereby reduced permeability. We assess the effects of effective pressure on Triassic Buntsandstein, a formation targeted to act as a deep geothermal reservoir in the western Netherlands. Rock samples are acquired from laterally equivalent quarries and prepared for permeability measurements within a tri-axial apparatus. To determine anisotropy, cores are drilled both perpendicular and parallel to bedding. Experiments are conducted by maintaining hydrostatic confining pressure, stepwise increasing up to 700 bar (if still permeable enough for accurate measurements) and a pore pressure of 25 bar. At each step the permeability is assessed by imposing a number of constant flow rates and continuous measurement of the pore pressure difference between up and downstream reservoirs. Throughout the experiment the sample strain is measured in radial and axial directions, such that elastic constants can be determined and micromechanical mechanisms may be observed. In addition to measurements on in-tact rock samples, we also assess the effect of induced fracturing on permeability by similar measurements. First, rock samples are fractured within the tri-axial cell with normal jacketing to evaluate the stress conditions of failure. Secondly, the experiment is repeated using relatively strong jackets which remain sealing after sample failure, allowing for permeability measurements. Preliminary results show that an increase of confining pressure leads to a decrease of permeability by three orders of magnitude, from 1e-13 to 1e-16 m2

  9. Architecture Controls on Reservoir Performance of Zubair Formation, Rumaila and West Qurna Oilfields in the Southern Iraq

    NASA Astrophysics Data System (ADS)

    Al-Ziayyir, Haitham; Hodgetts, David

    2015-04-01

    The main reservoir in Rumaila /West Qurna oilfields is the Zubair Formation of Hautervian and Barremian age. This silicilastic formation extends over the regions of central and southern Iraq. This study attempts to improve the understanding of the architectural elements and their control on fluid flow paths within the Zubair Formation. A significant source of uncertainty in the zubair formation is the control on hydrodynamic pressure distribution. The reasons for pressure variation in the Zubair are not well understood. This work aims to reduce this uncertainty by providing a more detailed knowledge of reservoir architecture, distribution of barriers and baffles, and reservoir compartmentalization. To characterize the stratigraphic architecture of the Zubair formation,high resolution reservoir models that incorporate dynamic and static data were built. Facies modelling is accomplished by means of stochastic modelling techniques.The work is based on a large data set collected from the Rumaila oilfields. These data, comprising conventional logs of varying vintages, NMR logs, cores from six wells, and pressure data, were used for performing geological and petrophysical analyses.Flow simulation studies have also been applied to examine the impact of architecture on recovery. Understanding of geology and reservoir performance can be greatly improved by using an efficient, quick and viable integrated analysis, interpretation, and modelling.

  10. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model fitted well to the field measurements. Furthermore, this analysis indicates that the benthic mineralizations are the dominant processes involved in the nutrients release. This is the first implementation of a biogeochemical model applied to a highly productive reservoir in the TMVB in order to estimate nutrients release from sediments. It could be used for scenarios of reduction of eutrophication in the reservoir. This study provides a good example of the behavior of a small tropical reservoir under intense human pressure and it will help stakeholders to adopt appropriate strategies for the management of turbid tropical reservoirs.

  11. Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toma, P.R.; Vargas, E.; Kuru, E.

    Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less

  12. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  13. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The highmore » permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.« less

  14. Blood pressure reduction and antihypertensive medication use in the losartan intervention for endpoint reduction in hypertension (LIFE) study in patients with hypertension and left ventricular hypertrophy.

    PubMed

    Devereux, Richard B; de Faire, Ulf; Fyhrquist, Frej; Harris, Katherine E; Ibsen, Hans; Kjeldsen, Sverre E; Lederballe-Pedersen, Ole; Lindholm, Lars H; Nieminen, Markku S; Omvik, Per; Oparil, Suzanne; Wedel, Hans; Hille, Darcy A; Dahlöf, Björn

    2007-02-01

    To compare blood pressure response and antihypertensive medication use visit-by-visit from baseline in patients receiving losartan-based or atenolol-based therapy in the LIFE study. LIFE was a randomized, double-blind trial comparing losartan-based and atenolol-based treatment regimens on the primary composite endpoint of death, myocardial infarction (MI), or stroke in 9193 patients aged 55-80 years with hypertension and left ventricular hypertrophy. Systolic and diastolic, pulse, and mean arterial pressures, blood pressure responder rates, distribution of open-label antihypertensive agents utilized, and the proportion of patients on randomized treatment were determined for each group at each clinic visit over a follow-up period of at least 4 years. Overall blood pressure reductions were comparable in the losartan-based and atenolol-based treatment groups. The mean reductions in sitting trough systolic and diastolic blood pressures from baseline to the end of follow-up (or last visit before a primary endpoint event) were 30.2/16.6 mmHg in the losartan group and 29.1/16.8 mmHg in the atenolol group. The time-averaged difference in overall mean arterial pressure was similar between groups. The proportion of patients on individual dose combinations varied visit by visit but was generally comparable between groups. During the entire study, 56% (2579/4605) of losartan-treated patients received at least one dose of the combination of losartan 100 mg plus hydrochlorothiazide 12.5 mg and 51% of atenolol-treated patients received 100 mg of atenolol plus hydrochlorothiazide 12.5 mg at some time during the study. Differences in blood pressure or distribution of add-on medications between treatment groups were not evident in the LIFE trial and, thus, cannot account for the observed outcome difference in the primary endpoint of risk reduction of the composite of cardiovascular death, stroke and MI favoring losartan.

  15. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  16. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  17. The History of Nontraditional or Ectopic Placement of Reservoirs in Prosthetic Urology.

    PubMed

    Perito, Paul; Wilson, Steven

    2016-04-01

    Reservoir placement during implantation of prosthetic urology devices has been problematic throughout the history of the surgical treatment of erectile dysfunction and urinary incontinence. We thought it would be interesting to review the history of reservoir placement leading up to current surgical techniques. To provide an overview of the past and present techniques for reservoir placement and discuss the evolutionary process leading to safe and effective placement of prosthetic reservoirs. We reviewed data pertaining to inflatable penile prosthesis (IPP) reservoirs and pressure-regulating balloons (PRB) in a chronological fashion, spanning 25 years. Main outcomes included a historical review of techniques for IPP reservoir and PRB placement leading to the subsequent incremental improvements in safety and efficacy when performing penile implants and artificial urinary sphincters. Prosthetic urologic reservoirs have traditionally been placed in the retropubic space. Over the years, urologists have attempted use of alternative spaces including peritoneal, epigastric, "ectopic," posterior to transversalis, and high submuscular. Current advances in prosthetic urologic reservoir placement allow safe and effective abdominal wall placement of reservoirs. These novel approaches appear to be so effective that urologists may now be able to cease using the traditional retropubic space for reservoir placement, even in the case of virgin pelves. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials.

    PubMed

    Binia, Aristea; Jaeger, Jonathan; Hu, Youyou; Singh, Anurag; Zimmermann, Diane

    2015-08-01

    To evaluate the efficacy of daily potassium intake on decreasing blood pressure in non-medicated normotensive or hypertensive patients, and to determine the relationship between potassium intake, sodium-to-potassium ratio and reduction in blood pressure. Mixed-effect meta-analyses and meta-regression models. Medline and the references of previous meta-analyses. Randomized controlled trials with potassium supplementation, with blood pressure as the primary outcome, in non-medicated patients. Fifteen randomized controlled trials of potassium supplementation in patients without antihypertensive medication were selected for the meta-analyses (917 patients). Potassium supplementation resulted in reduction of SBP by 4.7 mmHg [95% confidence interval (CI) 2.4-7.0] and DBP by 3.5 mmHg (95% CI 1.3-5.7) in all patients. The effect was found to be greater in hypertensive patients, with a reduction of SBP by 6.8 mmHg (95% CI 4.3-9.3) and DBP by 4.6 mmHg (95% CI 1.8-7.5). Meta-regression analysis showed that both increased daily potassium excretion and decreased sodium-to-potassium ratio were associated with blood pressure reduction (P < 0.05). Increased total daily potassium urinary excretion from 60 to 100 mmol/day and decrease of sodium-to-potassium ratio were shown to be necessary to explain the estimated effect. Potassium supplementation is associated with reduction of blood pressure in patients who are not on antihypertensive medication, and the effect is significant in hypertensive patients. The reduction in blood pressure significantly correlates with decreased daily urinary sodium-to-potassium ratio and increased urinary potassium. Patients with elevated blood pressure may benefit from increased potassium intake along with controlled or decreased sodium intake.

  19. Impact of fluid injection velocity on CO2 saturation and pore pressure in porous sandstone

    NASA Astrophysics Data System (ADS)

    Kitamura, Keigo; Honda, Hiroyuki; Takaki, Shinnosuke; Imasato, Mitsunori; Mitani, Yasuhiro

    2017-04-01

    The elucidation of CO2 behavior in sandstone is an essential issue to understand the fate of injecting CO2 in reservoirs. Injected CO2 invades pore spaces and replaces with resident brine and forms complex two-phase flow with brine. It is considered that this complex CO2 flow arises CO2 saturation (SCO_2)and pore fluid pressure(Pp) and makes various types of CO2 distribution pattern in pore space. The estimation of SCO_2 in the reservoir is one of important task in CCS projects. Fluid pressure (Pp) is also important to estimate the integrity of CO2 reservoir and overlying cap rocks. Generally, elastic waves are used to monitor the changes of SCO_2. Previous experimental and theoretical studies indicated that SCO_2 and Pp are controlled by the fluid velocity (flow rate) of invaded phase. In this study, we conducted the CO2 injection test for Berea sandstone (φ=18.1{%}) under deep CO2 reservoir conditions (confining pressure: 20MPa; temperature: 40 rC). We try to estimate the changes of SCO_2 and Pp with changing CO2 injection rate (FR) from 10 to 5000 μ l/min for Berea sandstone. P-wave velocities (Vp) are also measured during CO2 injection test and used to investigate the relationships between SCO2 and these geophysical parameters. We set three Vp-measurement channels (ch.1, ch2 and ch.3 from the bottom) monitor the CO2 behavior. The result shows step-wise SCO_2 changes with increasing FR from 9 to 25 {%} in low-FR condition (10-500 μ l/min). Vp also shows step wise change from ch1 to ch.3. The lowermost channel (ch.1) indicates that Vp-reduction stops around 4{%} at 10μ m/min condition. However, ch.3 changes slightly from 4{%} at 10 μ l/min to 5{%} at 100 μ l/min. On the other hand, differential Pp (Δ P) dose not shows obvious changes from 10kPa to 30kPa. Over 1000 μ l/min, SCO_2 increases from 35 to 47 {%}. Vp of all channels show slight reductions and Vp-reductions reach constant values as 8{%}, 6{%} and 8{%}, respectively at 5000{}μ l/min. On the other

  20. CO2 plume management in saline reservoir sequestration

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very

  1. The Potosi Reservoir Model 2013c, Property Modeling Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from this project as well as two other separately funded projects: the US DOE-funded Illinois Basin–Decatur Projectmore » (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well #1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. The intention was for 2.2 million tons per annum (2 million tonnes per annum [MTPA]) of CO2 to be injected for 20 years. In the Task Error! Reference source not found., the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010") was re-run using a new injection scenario of 3.5 million tons per annum (3.2 MTPA) for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. The models size was insufficient to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 by 30 mi (48 by 48 km), while

  2. Influence of Capillary Force and Buoyancy on CO2 Migration During CO2 Injection in a Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Wu, H.; Pollyea, R.

    2017-12-01

    Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.

  3. Modeling Permeability Alteration in Diatomite Reservoirs During Steam Drive, SUPRI TR-113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Suniti Kumar; Kovscek, Anthony R.

    1999-08-09

    There is an estimated 10 billion barrels of original oil in place (OOIP) in diatomaceous reservoirs in Kern County, California. These reservoirs have low permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has been found to be an effective way to recover oil from these reservoir. However, steam drive in these reservoirs has its own complications. The rock matrix is primarily silica (SiO2). It is a known fact that silica is soluble in hot water and its solubility varies with temperature and pH. Due to this fact, the rock matrix in diatomite may dissolve into themore » aqueous phase as the temperature at a location increases or it may precipitate from the aqueous phase onto the rock grains as the temperature decreases. Thus, during steam drive silica redistribution will occur in the reservoir along with oil recovery. This silica redistribution causes the permeability and porosity of the reservoir to change. Understanding and quantifying these silica redistribution effects on the reservoir permeability might prove to be a key aspect of designing a steam drive project in these formations.« less

  4. Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter

    NASA Astrophysics Data System (ADS)

    Lorenz, Thomas

    2004-11-01

    A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. [1] This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. [2] In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ˜ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. [3,4] Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter. [5] [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K.T. Lorenz et al., submitted, J. Appl. Phys. (2004). [3] J. McNaney et al., in press, Met. Mat. Trans. 35A (2004). [4] E.M. Bringa et al., to be submitted, Nature (2004). [5] B.A. Remington et al., in press, Met. Mat. Trans. 35A (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore

  5. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    PubMed Central

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  6. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    PubMed

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  7. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  8. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  9. Parallel Numerical Simulations of Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Torres, Pedro; Mangiavacchi, Norberto

    2010-11-01

    The study of the water flow and scalar transport in water reservoirs is important for the determination of the water quality during the initial stages of the reservoir filling and during the life of the reservoir. For this scope, a parallel 2D finite element code for solving the incompressible Navier-Stokes equations coupled with scalar transport was implemented using the message-passing programming model, in order to perform simulations of hidropower water reservoirs in a computer cluster environment. The spatial discretization is based on the MINI element that satisfies the Babuska-Brezzi (BB) condition, which provides sufficient conditions for a stable mixed formulation. All the distributed data structures needed in the different stages of the code, such as preprocessing, solving and post processing, were implemented using the PETSc library. The resulting linear systems for the velocity and the pressure fields were solved using the projection method, implemented by an approximate block LU factorization. In order to increase the parallel performance in the solution of the linear systems, we employ the static condensation method for solving the intermediate velocity at vertex and centroid nodes separately. We compare performance results of the static condensation method with the approach of solving the complete system. In our tests the static condensation method shows better performance for large problems, at the cost of an increased memory usage. Performance results for other intensive parts of the code in a computer cluster are also presented.

  10. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  11. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian J.; Pan, Feng

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperaturemore » and pressure conditions of EGS reservoirs.« less

  12. A reservoir optimization study--El Bunduq Field, Abu Dhabi, Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blashbush, J.L.; Nagai, R.B.; Ogimoto, T.

    El Bunduq reservoir is located in the offshore area of Abu Dhabi and Qatar. The field was shut-in in July 1979 due to production with high gas-oil ratios. Pressure differences of 200-400 psi between the flanks and the central part of the reservoir were still present almost four years after the field was shut-in. A comprehensive reservoir engineering study determined that the reasons for this behavior were the deteriorating qualities of the reservoir rock downstructure and the presence of a tar mat around the field. After the field behavior was history matched, model studies of a representative sector of themore » field indicated that peripheral waterflooding would recover less than 15 percent of the OOIP in a period of 30 years. However, pattern injection recoveries were calculated to be at least twice as high. Several full field alternatives were investigated to optimize the development of the reservoir under a pattern waterflood. This paper summarizes the various studies that led to the acceptance of the idea of pattern development over peripheral injection, as a result of the unique characteristics of this field.« less

  13. Study of polytropic exponent based on high pressure switching expansion reduction

    NASA Astrophysics Data System (ADS)

    Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng

    2011-10-01

    Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).

  14. Treatment of posthemorrhagic hydrocephalus in premature infants with subcutaneous reservoir drainage.

    PubMed

    Yu, Bo; Li, Shasha; Lin, Zhenlang; Zhang, Nu

    2009-01-01

    To investigate the effectiveness of subcutaneous reservoir drainage as a treatment for the different types of posthemorrhagic hydrocephalus in premature infants. 11 premature infants with posthemorrhagic hydrocephalus underwent subcutaneous reservoir embedment surgery, and cerebrospinal fluid (CSF) was drained via the reservoir intermittently for 8 weeks. During the period of drainage, ultrasound and computerized tomography were used to measure ventricle size. CSF examinations were performed routinely to assess the presence of intraventricular hemorrhage (IVH) and/or infection. (1) Five infants were diagnosed as having obstructive hydrocephalus; 2 had nearly normal ventricle sizes with treatment and drainage was stopped after 8 weeks, 2 had nearly normal ventricle sizes after 4 more weeks of drainage, and 1 underwent ventriculoperitoneal shunt (V-P shunt) surgery due to failure of ventricle size reduction. (2) Six infants were diagnosed as having communicating hydrocephalus; 4 had further enlarged ventricle size after 8 weeks and underwent V-P shunt surgery, 1 had treatment aborted at week 8 of drainage, and only 1 had moderate reduction of ventricle size after 8 weeks. (3) None of the 11 infants had progressive IVH and/or intracranial infection during drainage. Subcutaneous reservoir drainage is a suitable and safe treatment for posthemorrhagic hydrocephalus in premature infants. It is more effective for obstructive hydrocephalus than for communicating hydrocephalus. Copyright (c) 2009 S. Karger AG, Basel.

  15. Transient Behavior of Lumped-Constant Systems for Sensing Gas Pressures

    NASA Technical Reports Server (NTRS)

    Delio, Gene J; Schwent, Glennon V; Cesaro, Richard S

    1949-01-01

    The development of theoretical equations describing the behavior of a lumped-constant pressure-sensing system under transient operation Is presented with experimental data that show agreement with the equations. A pressure-sensing system 'consisting of a tube terminating in a reservoir is investigated for the transient relation between a presSure disturbance at the open end of the tube and the pressure response in the reservoir. Design parameters are presented that can be adjusted to achieve a desired performance fran such a system when the system is considered as a transfer member of a control loop.

  16. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  17. Carbon dioxide-water clathrate as a reservoir of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A.; Ingersell, A. P.

    1975-01-01

    It has been suggested that the residual polar caps of Mars contain a resorvoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.

  18. Biological souring and mitigation in oil reservoirs.

    PubMed

    Gieg, Lisa M; Jack, Tom R; Foght, Julia M

    2011-10-01

    Souring in oil field systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be "inoculated" into a reservoir system during oil field development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oil field. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oil field souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oil field operations.

  19. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    PubMed Central

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  20. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    PubMed

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.

  1. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and

  2. Thermal Velocities Arising from Injection in 2-Phase and Superheated Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shook, George Michael

    2001-01-01

    Production from and injection into geothermal reservoirs gives rise to temperature fronts that move through the porous medium. As many as two temperature fronts are observed in 1-D simulations. The first front is related to the saturation temperature of the production pressure. Its velocity can be calculated from the amount of excess heat in the reservoir, defined as the amount of energy above the interface temperature, Ti = Tsat(Pwf). The second temperature front velocity is the same as for single phase liquid conditions.

  3. Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Krevor, Samuel

    2014-05-01

    The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements

  4. Reduction of Orifice-Induced Pressure Errors

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.

    1987-01-01

    Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.

  5. The effect of reservoir geometry, injection and production parameters and permeability structure on induced seismicity

    NASA Astrophysics Data System (ADS)

    Hosseini, S. M.; Goebel, T.; Aminzadeh, F.

    2015-12-01

    The recent increase in injection induced seismicity (IIS) in previously less seismically active regions highlighted a need for better mitigation strategies and physics-based models of induced seismicity. Previous models of pressure diffusion and fluid flow investigated the change in Coulomb stress as a result of induced pore-pressure perturbations (e.g. Zhang et al., 2013; Keranen et al., 2014; Hornbach et al., 2015; Segall and Lu, 2015). Here, we consider the additional effects of permeability structure, operational parameters and reservoir geometry. We numerically investigate the influence of net fluid injection volumes; linear, radial, and spherical reservoir geometry; as well as reservoir size. The latter can have a substantial effect on changes in Coulomb stress and subsequent induced seismicity. We report on results from two series of model runs, which explored pressure changes caused by wastewater disposal and water flooding. We observed that a typical water flooding operation that includes production wells and injectors has a lower probability of inducing seismicity. Our observations are in agreement with assessment by National Research Council report on induced seismicity (2012). We developed a third suite of models that investigate the effect of permeability structure on injection-induced seismicity. We examine two cases of wastewater disposal in proximity to active faults: 1) in Central Illinois Basin and 2) in central California. In both cases, we observed that the size of the reservoir, presence of faults, and permeability contrast relative to the host rock, strongly influences the pressure changes with distance and time. These pressure changes vary widely but can easily lead to fault instability and seismic activity at up to 10 km distance from the injection well. The results of this study may help to select safe injection sites and operational conditions in order to minimize injection induced seismicity hazard.

  6. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Visagie, Elisabeth; Markandu, Nirmala D; Anand, Vidya; Dalton, R Neil; MacGregor, Graham A

    2009-09-01

    A reduction in salt intake lowers blood pressure. However, most previous trials were in whites with few in blacks and Asians. Salt reduction may also reduce other cardiovascular risk factors (eg, urinary albumin excretion, arterial stiffness). However, few well-controlled trials have studied these effects. We carried out a randomized double-blind crossover trial of salt restriction with slow sodium or placebo, each for 6 weeks, in 71 whites, 69 blacks, and 29 Asians with untreated mildly raised blood pressure. From slow sodium to placebo, urinary sodium was reduced from 165+/-58 (+/-SD) to 110+/-49 mmol/24 hours (9.7 to 6.5 g/d salt). With this reduction in salt intake, there was a significant decrease in blood pressure from 146+/-13/91+/-8 to 141+/-12/88+/-9 mm Hg (P<0.001), urinary albumin from 10.2 (IQR: 6.8 to 18.9) to 9.1 (6.6 to 14.0) mg/24 hours (P<0.001), albumin/creatinine ratio from 0.81 (0.47 to 1.43) to 0.66 (0.44 to 1.22) mg/mmol (P<0.001), and carotid-femoral pulse wave velocity from 11.5+/-2.3 to 11.1+/-1.9 m/s (P<0.01). Subgroup analysis showed that the reductions in blood pressure and urinary albumin/creatinine ratio were significant in all groups, and the decrease in pulse wave velocity was significant in blacks only. These results demonstrate that a modest reduction in salt intake, approximately the amount of the current public health recommendations, causes significant falls in blood pressure in all 3 ethnic groups. Furthermore, it reduces urinary albumin and improves large artery compliance. Although both could be attributable to the falls in blood pressure, they may carry additional benefits on reducing cardiovascular disease above that obtained from the blood pressure falls alone.

  7. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin.more » The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  8. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-01-01

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence withinmore » a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.« less

  9. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron

    2002-01-29

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures,more » to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.« less

  10. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green

    2002-10-01

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation ormore » printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  11. Calibration of Seismic Attributes for Reservoir Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne D. Pennington

    2002-09-29

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation ormore » printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we

  12. Noise Reduction of Ocean-Bottom Pressure Data Toward Real-Time Tsunami Forecasting

    NASA Astrophysics Data System (ADS)

    Tsushima, H.; Hino, R.

    2008-12-01

    We discuss a method of noise reduction of ocean-bottom pressure data to be fed into the near-field tsunami forecasting scheme proposed by Tsushima et al. [2008a]. In their scheme, the pressure data is processed in real time as follows: (1) removing ocean tide components by subtracting the sea-level variation computed from a theoretical tide model, (2) applying low-pass digital filter to remove high-frequency fluctuation due to seismic waves, and (3) removing DC-offset and linear-trend component to determine a baseline of relative sea level. However, it turns out this simple method is not always successful in extracting tsunami waveforms from the data, when the observed amplitude is ~1cm. For disaster mitigation, accurate forecasting of small tsunamis is important as well as large tsunamis. Since small tsunami events occur frequently, successful tsunami forecasting of those events are critical to obtain public reliance upon tsunami warnings. As a test case, we applied the data-processing described above to the bottom pressure records containing tsunami with amplitude less than 1 cm which was generated by the 2003 Off-Fukushima earthquake occurring in the Japan Trench subduction zone. The observed pressure variation due to the ocean tide is well explained by the calculated tide signals from NAO99Jb model [Matsumoto et al., 2000]. However, the tide components estimated by BAYTAP-G [Tamura et al., 1991] from the pressure data is more appropriate for predicting and removing the ocean tide signals. In the pressure data after removing the tide variations, there remain pressure fluctuations with frequencies ranging from about 0.1 to 1 mHz and with amplitudes around ~10 cm. These fluctuations distort the estimation of zero-level and linear trend to define relative sea-level variation, which is treated as tsunami waveform in the subsequent analysis. Since the linear trend is estimated from the data prior to the origin time of the earthquake, an artificial linear trend is

  13. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  14. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction

    NASA Technical Reports Server (NTRS)

    Rovner, Aleksandr; Smith, Rebecca; Greenberg, Neil L.; Tuzcu, E. Murat; Smedira, Nicholas; Lever, Harry M.; Thomas, James D.; Garcia, Mario J.

    2003-01-01

    We sought to validate measurement of intraventricular pressure gradients (IVPG) and analyze their change in patients with hypertrophic obstructive cardiomyopathy (HOCM) after ethanol septal reduction (ESR). Quantitative analysis of color M-mode Doppler (CMM) images may be used to estimate diastolic IVPG noninvasively. Noninvasive IVPG measurement was validated in 10 patients undergoing surgical myectomy. Echocardiograms were then analyzed in 19 patients at baseline and after ESR. Pulsed Doppler data through the mitral valve and pulmonary venous flow were obtained. CMM was used to obtain the flow propagation velocity (Vp) and to calculate IVPG off-line. Left atrial pressure was estimated with the use of previously validated Doppler equations. Data were compared before and after ESR. CMM-derived IVPG correlated well with invasive measurements obtained before and after surgical myectomy [r = 0.8, P < 0.01, Delta(CMM - invasive IVPG) = 0.09 +/- 0.45 mmHg]. ESR resulted in a decrease of resting LVOT systolic gradient from 62 +/- 10 to 29 +/- 5 mmHg (P < 0.001). There was a significant increase in the Vp and IVPG (from 48 +/- 5to 74 +/- 7 cm/s and from 1.5 +/- 0.2 to 2.6 +/- 0.3 mmHg, respectively, P < 0.001 for both). Estimated left atrial pressure decreased from 16.2 +/- 1.1 to 11.5 +/- 0.9 mmHg (P < 0.001). The increase in IVPG correlated with the reduction in the LVOT gradient (r = 0.6, P < 0.01). Reduction of LVOT obstruction after ESR is associated with an improvement in diastolic suction force. Noninvasive measurements of IVPG may be used as an indicator of diastolic function improvement in HOCM.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD

  16. In Vitro Evaluation of Evacuated Blood Collection Tubes as a Closed-Suction Surgical Drain Reservoir.

    PubMed

    Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly

    The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.

  17. Modelling of Seismic and Resistivity Responses during the Injection of CO2 in Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Omar, Muhamad Nizarul Idhafi Bin; Almanna Lubis, Luluan; Nur Arif Zanuri, Muhammad; Ghosh, Deva P.; Irawan, Sonny; Regassa Jufar, Shiferaw

    2016-07-01

    Enhanced oil recovery plays vital role in production phase in a producing oil field. Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease and require recovery method so called enhanced oil recovery (EOR) to recover the hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide (CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and pressure differences are established to make sure the technique works in recovering hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 performance by seismic and resistivity model, enabling geoscientists and reservoir engineers to monitor production behaviour as respect to CO2 injection.

  18. [Bio-electrochemical effect on hydrogenotrophic sulfate reduction stimulated by electrical field in the presence of H2 under atmospheric pressure].

    PubMed

    Xu, Hui-Wei; Zhang, Xu; Yang, Shan-Shan; Li, Guang-He

    2009-07-15

    Microbial sulfate reduction rate is limited with H2 as electron donor. In order to improve hydrogenotrophic sulfate reduction under normal atmospheric H2 pressure, a bio-electrochemical system with direct current was designed and performed in this study. Results indicates that sulfate reduction rate (SRR) increases with the augment of current intensity under lower current intensity (I < or = 1.50 mA). When optimum current intensity of 1.50 mA is applied, the SRR is 1.7 to 2.1 times higher than that of the control reactor. The synergistic effect of electrochemistry and microbiology on sulfate reduction varies at different current intensity. Under the condition of I < or = 1.50 mA, the most probable mechanism of SRR increase is that electric or magnetic field stimulates the proliferation of sulfate-reducing bacteria (SRB) and the activity of the enzymes. When I is higher than 1.50 mA, the activity of SRB is inhibited, resulting in lower reduction rate compared with that at lower current. If controlling the cathode potential lower than -0.69 V and H2 partial pressure 1.01 x 10(5) Pa, electro-catalytic sulfate reduction process takes place with H2 as reductant in this bio-electrochemical system. However, the overall reduction rate is still lower than that when I = 1.50 mA is applied, and additionally the energy consumption is much higher. Therefore, electric field of low intensity can enhance hydrogenotrophic sulfate reduction in the presence of H2 under atmospheric pressure.

  19. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    USGS Publications Warehouse

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.

    1998-01-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences

  20. Development of a new control device for stabilizing blood level in reservoir during extracorporeal circulation.

    PubMed

    Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko

    2010-03-01

    We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.

  1. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    NASA Astrophysics Data System (ADS)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  2. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    USGS Publications Warehouse

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    uncontrolled destabilization; (2) gas hydrate test wells must be carefully designed to enable rapid remediation of wellbore blockages that will occur during any cessation in operations; (3) sand production during hydrate production likely can be managed through standard engineering controls; and (4) reservoir heat exchange during depressurization was more favorable than expected—mitigating concerns for near-wellbore freezing and enabling consideration of more aggressive pressure reduction.

  3. Potosi Reservoir Modeling; History and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO₂) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from two projects: the US DOE-funded Illinois Basin–Decatur Project being conducted by the Midwest Geological Sequestrationmore » Consortium in Macon County, Illinois, as well as data from the Illinois – Industrial Carbon Capture and Sequestration (IL-ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well 1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for the Potosi Formation. The intention was for two million tonnes per annum (MTPA) of CO₂ to be injected for 20 years into the Potosi Formation. In 2013, updated reservoir models for the Cambrian Potosi Formation were evaluated. The data included formation tops from mud logs, well logs from the CCS1, VW1, and Verification Well 2 (VW2) wells, structural and stratigraphic formation from a larger 3D seismic survey, and field data from several waste water injection wells for Potosi Formation. The objective is to simulate the injection of CO₂ at a rate 3.5 million tons per annum (3.2 million tonnes per annum [MTPA]) for 30 years 106 million tons (96 MT total) into the Potosi Formation. The Potosi geomodeling efforts have

  4. Complementary and alternative medicine approaches to blood pressure reduction: An evidence-based review.

    PubMed

    Nahas, Richard

    2008-11-01

    ABSTRACTOBJECTIVETo review the evidence supporting complementary and alternative medicine approaches used in the treatment of hypertension.QUALITY OF EVIDENCEMEDLINE and EMBASE were searched from January 1966 to May 2008 combining the key words hypertension or blood pressure with acupuncture, chocolate, cocoa, coenzyme Q10, ubiquinone, melatonin, vitamin D, meditation, and stress reduction. Clinical trials, prospective studies, and relevant references were included.MAIN MESSAGEEvidence from systematic reviews supports the blood pressure-lowering effects of coenzyme Q10, polyphenol-rich dark chocolate, Qigong, slow breathing, and transcendental meditation. Vitamin D deficiency is associated with hypertension and cardiovascular risk; supplementation lowered blood pressure in 2 trials. Acupuncture reduced blood pressure in 3 trials; in 1 of these it was no better than an invasive placebo. Melatonin was effective in 2 small trials, but caution is warranted in patients taking pharmacotherapy.CONCLUSIONSeveral complementary and alternative medicine therapies can be considered as part of an evidence-based approach to the treatment of hypertension. The potential benefit of these interventions warrants further research using cardiovascular outcomes.

  5. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  6. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  7. Three dimensional heat transport modeling in Vossoroca reservoir

    NASA Astrophysics Data System (ADS)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  8. Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag; Jamtveit, Bjorn

    2016-02-01

    The Ekofisk field, Norwegian North sea,is an example of compacting chalk reservoir with considerable subsequent seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. Here we present a different approach, we use a new creep model based on microscopic mechanisms with no fitting parameters to predict strain rate at core scale and at reservoir scale. The model is able to reproduce creep experiments and the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.

  9. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOEpatents

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  10. Climate Change Assessment of Precipitation in Tandula Reservoir System

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  11. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  12. The reservoir-wave approach to characterize pulmonary vascular-right ventricular interactions in humans.

    PubMed

    Ghimire, Anukul; Andersen, Mads J; Burrowes, Lindsay M; Bouwmeester, J Christopher; Grant, Andrew D; Belenkie, Israel; Fine, Nowell M; Borlaug, Barry A; Tyberg, John V

    2016-12-01

    Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies. Copyright © 2016 the American Physiological Society.

  13. Large reservoirs: Chapter 17

    USGS Publications Warehouse

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  14. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    PubMed

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  15. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown

  16. Use of negative-pressure dressings and split-thickness skin grafts following penile shaft reduction and reduction scrotoplasty in the management of penoscrotal elephantiasis.

    PubMed

    Stokes, Tracey H; Follmar, Keith E; Silverstein, Ari D; Weizer, Alon Z; Donatucci, Craig F; Anderson, Everett E; Erdmann, Detlev

    2006-06-01

    From 1988 to 2005, 8 men who presented with penoscrotal elephantiasis underwent penile shaft degloving and reduction scrotoplasty, followed by transplantation of a split-thickness skin graft (STSG) to the penile shaft. The etiology of elephantiasis in these patients included self-injection of viscous fluid and postsurgical obstructive lymphedema. In the 6 most recent cases, negative-pressure dressings were applied over the STSG to promote graft take, and STSG take rate was 100%. The results of our series corroborate those of a previous report, which showed circumferential negative-pressure dressings to be safe and efficacious in bolstering STSGs to the penile shaft. Furthermore, these results suggest that the use of negative-pressure dressings may improve graft take in this patient population.

  17. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  18. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.

    PubMed

    Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E

    2018-02-02

    Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.

  19. Well test mathematical model for fractures network in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  20. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water frontmore » away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.« less

  1. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE PAGES

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben; ...

    2017-11-28

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  2. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  3. Quantification of uncertainty for fluid flow in heterogeneous petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Zhang, Dongxiao

    Detailed description of the heterogeneity of oil/gas reservoirs is needed to make performance predictions of oil/gas recovery. However, only limited measurements at a few locations are usually available. This combination of significant spatial heterogeneity with incomplete information about it leads to uncertainty about the values of reservoir properties and thus, to uncertainty in estimates of production potential. The theory of stochastic processes provides a natural method for evaluating these uncertainties. In this study, we present a stochastic analysis of transient, single phase flow in heterogeneous reservoirs. We derive general equations governing the statistical moments of flow quantities by perturbation expansions. These moments can be used to construct confidence intervals for the flow quantities (e.g., pressure and flow rate). The moment equations are deterministic and can be solved numerically with existing solvers. The proposed moment equation approach has certain advantages over the commonly used Monte Carlo approach.

  4. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. Wemore » confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.« less

  5. Optic nerve head blood flow response to reduced ocular perfusion pressure by alteration of either the blood pressure or intraocular pressure.

    PubMed

    Wang, Lin; Cull, Grant A; Fortune, Brad

    2015-04-01

    To test the hypothesis that blood flow autoregulation in the optic nerve head has less reserve to maintain normal blood flow in the face of blood pressure-induced ocular perfusion pressure decrease than a similar magnitude intraocular pressure-induced ocular perfusion pressure decrease. Twelve normal non-human primates were anesthetized by continuous intravenous infusion of pentobarbital. Optic nerve blood flow was monitored by laser speckle flowgraphy. In the first group of animals (n = 6), the experimental eye intraocular pressure was maintained at 10 mmHg using a saline reservoir connected to the anterior chamber. The blood pressure was gradually reduced by a slow injection of pentobarbital. In the second group (n = 6), the intraocular pressure was slowly increased from 10 mmHg to 50 mmHg by raising the reservoir. In both experimental groups, optic nerve head blood flow was measured continuously. The blood pressure and intraocular pressure were simultaneously recorded in all experiments. The optic nerve head blood flow showed significant difference between the two groups (p = 0.021, repeat measures analysis of variance). It declined significantly more in the blood pressure group compared to the intraocular pressure group when the ocular perfusion pressure was reduced to 35 mmHg (p < 0.045) and below. There was also a significant interaction between blood flow changes and the ocular perfusion pressure treatment (p = 0.004, adjusted Greenhouse & Geisser univariate test), indicating the gradually enlarged blood flow difference between the two groups was due to the ocular perfusion pressure decrease. The results show that optic nerve head blood flow is more susceptible to an ocular perfusion pressure decrease induced by lowering the blood pressure compared with that induced by increasing the intraocular pressure. This blood flow autoregulation capacity vulnerability to low blood pressure may provide experimental evidence related to the

  6. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensormore » packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and

  7. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  8. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  9. The influence of a rapid drawdown and prolonged dewatering on angling pressure, catch and harvest in a Nebraska reservoir

    USGS Publications Warehouse

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2015-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  10. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    NASA Astrophysics Data System (ADS)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  11. Decarboxylase inhibition and blood pressure reduction by alpha-methyl-3,4-dihydroxy-DL-phenylalanine.

    PubMed

    OATES, J A; GILLESPIE, L; UDENFRIEND, S; SJOERDSMA, A

    1960-06-24

    alpha-Methyl-3,4-dihydroxy-DLphenylalanine has been found to be an effective inhibitor of aromatic amino acid decarboxylation in man. This was shown by decreased formation of serotonin, tryptamine, and tyramine from the precursor amino acids. Reduction of amine biosynthesis is associated with lowering of blood pressure in hypertensive patients and a transient sedative effect.

  12. Inflow performance relationship for perforated wells producing from solution gas drive reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukarno, P.; Tobing, E.L.

    1995-10-01

    The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed usingmore » two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.« less

  13. Facies-controlled fluid migration patterns and subsequent reservoir collapse by depressurization - the Entrada Sandstone, Utah

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.

    2016-12-01

    The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in

  14. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  15. Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.

    2016-12-01

    Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid

  16. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  17. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less

  18. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  19. Under-Pressured and Avoiding Interaction: How Magmatic Storage Regions Can Deflect Dikes

    NASA Astrophysics Data System (ADS)

    Pansino, S.; Taisne, B.

    2017-12-01

    It has been shown through numerical techniques that ascending dikes can be attracted to a pressurized magma storage region. This is due to the state of stresses around such a region, in which the minimum compressive stress is tangential to reservoir boundary and dikes thereby prefer to propagate radially. We show that the reverse scenario has a reverse effect. A storage region that has under-pressurized, perhaps due to an eruption, rotates the stresses in the crust to deflect dikes away; this inhibits interaction with the reservoir and favors other behaviors like intrusion or monogenetic eruptions. We demonstrate through analogue experiments the ability for a dike to avoid a magmatic reservoir, which depends in part on the internal pressure as well as on the initial dike orientation. We show that dikes have the potential to change orientation, curling and twisting to avoid the pressure sink, or to propagate preferentially at their sides, allowing them to slide away laterally.

  20. Monitoring of artificial water reservoirs in the Southern Brazilian Amazon with remote sensing data

    NASA Astrophysics Data System (ADS)

    Arvor, Damien; Daher, Felipe; Corpetti, Thomas; Laslier, Marianne; Dubreuil, Vincent

    2016-10-01

    The agricultural expansion in the Southern Brazilian Amazon has long been pointed out due to its severe impacts on tropical forests. But the last decade has been marked by a rapid agricultural transition which enabled to reduce pressure on forests through (i) the adoption of intensive agricultural practices and (ii) the diversification of activities. However, we suggest that this new agricultural model implies new pressures on environment and especially on water resources since many artificial water reservoirs have been built to ensure crop irrigation, generate energy, farm fishes, enable access to water for cattle or just for leisure. In this paper, we implemented a method to automatically map artificial water reservoirs based on time series of Landsat images. The method was tested in the county of Sorriso (State of Mato Grosso, Brazil) where we identified 521 water reservoirs by visual inspection on very high resolution images. 68 Landsat-8 images covering 4 scenes in 2015 were pre-classified and a final class (Terrestrial or Aquatic) was determined for each pixel based on a Dempster-Shafer fusion approach. Results confirmed the potential of the methodology to automatically and efficiently detect water reservoirs in the study area (overall accuracy = 0.952 and Kappa index = 0.904) although the methodology underestimates the total area in water bodies because of the spatial resolution of Landsat images. In the case of Sorriso, we mapped 19.4 km2 of the 20.8 km2 of water reservoirs initially delimited by visual interpretation, i.e. we underestimated the area by 5.9%.

  1. Reservoir compaction of the Belridge Diatomite and surface subsidence, south Belridge field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowersox, J.R.; Shore, R.A.

    1990-05-01

    Surface subsidence due to reservoir compaction during production has been observed in many large oil fields. Subsidence is most obvious in coastal and offshore fields where inundation by the sea occurs. Well-known examples are Wilmington field in California and Ekofisk field in the North Sea. In South Belridge field, the Belridge Diatomite member of the late Miocene Reef Ridge Shale has proven prone to compaction during production. The reservoir, a high-porosity, low-permeability, highly compressive rock composed largely of diatomite and mudstone, is about 1,000 ft thick and lies at an average depth of 1,600 ft. Within the Belridge Diatomite, reservoirmore » compaction due to withdrawal of oil and water in Sec. 12, T28S, R20E, MDB and M, was noticed after casing failures in producing wells began occurring and tension cracks, enlarged by hydrocompaction after a heavy rainstorm were observed. Surface subsidence in Sec. 12 has been monitored since April 1987, through the surveying of benchmark monuments. The average annualized subsidence rate during 1987 was {minus}1.86 ft/yr, {minus}0.92 ft/yr during 1988, and {minus}0.65 ft/yr during 1989; the estimated peak subsidence rate reached {minus}7.50 ft/yr in July 1985, after 1.5 yrs of production from the Belridge Diatomite reservoir. Since production from the Belridge Diatomite reservoir commenced in February 1984, the surface of the 160-ac producing area has subsided about 12.5 ft. This equates to an estimated reservoir compaction of 30 ft in the Belridge Diatomite and an average loss of reservoir porosity of 2.4% from 55.2 to 52.8%. Injection of water for reservoir pressure maintenance in the Belridge diatomite began in June 1987, and has been effective in mitigating subsidence to current rates and repressurizing the reservoir to near-initial pressure. An added benefit of water injection has been improved recovery of oil from the Belridge Diatomite by waterflood.« less

  2. High-Resolution Numerical Analysis of the Triggering Mechanism of M L5.7 Aswan Reservoir Earthquake Through Fully Coupled Poroelastic Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Cheng, Huihong; Zhang, Huai; Shi, Yaolin

    2016-05-01

    In 1981, a powerful M L5.7 earthquake occurred 50 km away from the Aswan Reservoir dam. After the statistical analysis on the correlationship between long-term continuous seismicity occurrence and the reservoir water level variation attributed to the impoundment and drainage procedures, researchers believe that this event is a typical reservoir-triggered seismicity (Nature 301(6):14, 1983; Earthquake Activity in the Aswan Region, Egypt. Birkhäuser, Basel, pp. 69-86, 1995), although its triggering mechanism is poorly understood to date. To quantitatively address the triggering mechanism as well as its relationship with the characteristics of local geological settings around the reservoir region, in this paper, a fully coupled three-dimensional poroelastic finite element model of the Aswan reservoir is put forward by taking the consideration of the realistic observation data, for example, the high-resolution topography, water level fluctuation history, flood zone boundary and water depth variation, fault parameters, etc. Meanwhile, the change of Coulomb Failure Stress (ΔCFS) in correspondence to elastic stress and pore pressure variations induced by fluid diffusion is calculated. And the elastic strain energy accumulation in the reservoir region due to the impoundment load is obtained as well. Our primary results indicate that both the pore pressure and the coulomb stress on the seismogenic fault plane gradually increase with the respect of time while the water level rises. The magnitude of ΔCFS at the hypocenter of this major event is around 0.1 MPa, suggesting that the impoundment of the Aswan Reservoir possibly triggered the M L5.7 earthquake. The contribution of the elastic load is less than 3 percent of the total ΔCFS; on the other hand, the dynamic pore pressure change predominantly accounts for the contribution. The accumulative maximum surface deformation beneath the Aswan reservoir is up to 80 cm since its impounding began until the M L5.7 earthquake

  3. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  4. A blood pressure monitor with robust noise reduction system under linear cuff inflation and deflation.

    PubMed

    Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi

    2010-01-01

    We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.

  5. Aortoseptal angle and pressure gradient reduction following balloon valvuloplasty in dogs with severe subaortic stenosis.

    PubMed

    Shen, L; Estrada, A H; Côté, E; Powell, M A; Winter, B; Lamb, K

    2017-04-01

    To determine the relationship between aortoseptal angle (AoSA) and the short- and long-term systolic pressure gradient (PG) reduction following combined cutting and high-pressure balloon valvuloplasty (CB/HPBV) in dogs with severe subaortic stenosis. Retrospective study of 22 client-owned dogs of various breeds with severe subaortic stenosis (mean left ventricular to aortic PG = 143 mmHg; range = 80-322 mmHg) that underwent CB/HPBV. Initial angiographic and left apical and right-sided parasternal long-axis view echocardiographic video loops were used for measuring the angle between the plane of the interventricular septum and the longitudinal axis of the ascending aorta. The PG reduction ratio immediately after CB/HPBV and 6 and 12 months later were compared with AoSA. Weak correlations were observed for all instances of PG reduction ratio and AoSA type. Significantly greater mean differences of PG reduction ratio were observed for angles >160° than for angles <160° at 24 h (>160° mean: 54.45, standard error [SE]: ±3.8; <160° mean: 39.88, SE: ±2.09), 6 months (>160° mean: 57.73, SE: ±10.9; <160° mean: 28.22, SE: ±3.42), and 12 months (>160° mean: 76.11, SE: ±17.5; <160° mean: 27.61, SE: ±6.44; p=0.003). Dogs with AoSA >160° on right-sided parasternal long-axis view echocardiograms responded with a greater PG reduction following CB/HPBV than did dogs with AoSA <160°. This suggests that AoSA is associated with long-term outcomes of CB/HPBV, and measurement could help in the evaluation of dogs that are candidates for CB/HPBV. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  7. Experimental Investigation on the Behavior of Supercritical CO2 during Reservoir Depressurization.

    PubMed

    Li, Rong; Jiang, Peixue; He, Di; Chen, Xue; Xu, Ruina

    2017-08-01

    CO 2 sequestration in saline aquifers is a promising way to address climate change. However, the pressure of the sequestration reservoir may decrease in practice, which induces CO 2 exsolution and expansion in the reservoir. In this study, we conducted a core-scale experimental investigation on the depressurization of CO 2 -containing sandstone using NMR equipment. Three different series of experiments were designed to investigate the influence of the depressurization rate and the initial CO2 states on the dynamics of different trapping mechanisms. The pressure range of the depressurization was from 10.5 to 4.0 MPa, which covered the supercritical and gaseous states of the CO 2 (named as CO 2 (sc) and CO 2 (g), respectively). It was found that when the aqueous phase saturated initially, the exsolution behavior strongly depended on the depressurization rate. When the CO 2 and aqueous phase coexisting initially, the expansion of the CO 2 (sc/g) contributed to the incremental CO 2 saturation in the core only when the CO 2 occurred as residually trapped. It indicates that the reservoir depressurization has the possibility to convert the solubility trapping to the residual trapping phase, and/or convert the residual trapping to mobile CO 2 .

  8. Subject Specific Optimisation of the Stiffness of Footwear Material for Maximum Plantar Pressure Reduction.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Healy, Aoife; Gerth, Peter; Chockalingam, Nachiappan

    2017-08-01

    Current selection of cushioning materials for therapeutic footwear and orthoses is based on empirical and anecdotal evidence. The aim of this investigation is to assess the biomechanical properties of carefully selected cushioning materials and to establish the basis for patient-specific material optimisation. For this purpose, bespoke cushioning materials with qualitatively similar mechanical behaviour but different stiffness were produced. Healthy volunteers were asked to stand and walk on materials with varying stiffness and their capacity for pressure reduction was assessed. Mechanical testing using a surrogate heel model was employed to investigate the effect of loading on optimum stiffness. Results indicated that optimising the stiffness of cushioning materials improved pressure reduction during standing and walking by at least 16 and 19% respectively. Moreover, the optimum stiffness was strongly correlated to body mass (BM) and body mass index (BMI), with stiffer materials needed in the case of people with higher BM or BMI. Mechanical testing confirmed that optimum stiffness increases with the magnitude of compressive loading. For the first time, this study provides quantitative data to support the importance of stiffness optimisation in cushioning materials and sets the basis for methods to inform optimum material selection in the clinic.

  9. On the importance of the heterogeneity assumption in the characterization of reservoir geomechanical properties

    NASA Astrophysics Data System (ADS)

    Zoccarato, C.; Baù, D.; Bottazzi, F.; Ferronato, M.; Gambolati, G.; Mantica, S.; Teatini, P.

    2016-10-01

    The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate the seafloor subsidence due to gas production. The available observations over the hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr production life. The main goal is the calibration of the reservoir compressibility cM, that is, the main geomechanical parameter controlling the surface response. Two conceptual models are considered: in one (i) cM varies only with the depth and the vertical effective stress (heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing faults and thrusts that suggests the idea of a block heterogeneous system with the number of reservoir blocks equal to the number of uncertain parameters. The method applied here relies on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES), which incorporates the information from the bathymetric measurements into the geomechanical model response to infer and reduce the uncertainty of the parameter cM. The outcome from conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However, the maximum settlement still remains underestimated, while the areal extent of the subsidence bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual model (ii) allows to reproduce much better the observations thus removing a clear bias of the model structure. DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven) characterized by large volume and large pressure decline. Conversely, the assimilation of land displacements only partially constrains the prior cM uncertainty in the reservoir blocks marginally contributing to the

  10. Update on Production Chemistry of the Roosevelt Hot Springs Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart; Kirby, Stefan; Allis, Rick

    Analyses of production fluids from the Roosevelt Hot Springs reservoir were acquired from well sampling campaigns in 2015 and 2016. The resulting data have been recalculated to reservoir conditions by correcting for effects of steam loss, and the values are compared to legacy data from earlier reports to quantify changes with time in response to fluid production. The reservoir composition is similar to that at the start of reservoir exploitation, having near neutral pH, total dissolved solids of 7000-10,000 mg/kg, and ionic ratios of Cl/HCO3 ~50-100, Cl/SO4 ~50-100, and Na/K ~4-5. Cation, gas and silica geothermometers indicate a range ofmore » equilibration temperatures between 240 and 300 °C, but quartz-silica values are most closely consistent with measured reservoir temperatures and well enthalpies. The largest change in fluid composition is observed in well 54-3. The fluid has evolved from being fed by a single phase liquid to a twophase mixture of steam and liquid due to pressure draw down. The fluid also shows a 25% increase in reservoir chloride and a ~20° C decrement of cooling related to mixing with injected brine. The other production wells also show increase in chloride and decrease in temperature, but these changes diminish in magnitude with distance from injection well 14-2. Stable isotope compositions indicate that the reservoir water is largely meteoric in origin, having been modified by hydrothermal waterrock interaction. The water has also become progressively enriched in isotopic values in response to steam loss and mixing of injectate. N2-Ar-He and helium isotope ratios indicate a deep magmatic source region that probably supplies the heat for the hydrothermal system, consistent with recent Quaternary volcanism in the Mineral Mountains.« less

  11. Thermal and pressure histories of the Malay Basin, offshore Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, W.I.; Swarbrick, R.E.

    1994-07-01

    The Malay Basin is a Neogene intracratonic basin characterized by high heat flow and rapid sedimentation; moderate to high overpressure is common in deeper reservoirs. Thermal conductivity and temperature data from 55 wells have been used to reassess the areal and vertical heat-flow distribution within the basin. Anomalously high temperatures have been observed in some sandstone intervals above the overpressured reservoir section. A narrow to rather abrupt pressure transition zone could be recognized. All hydrocarbon-filled reservoirs seemed to be associated with high heat flow (i.e., about 90 mW/m[sup 2]). Overpressure in some wells is approaching critical fracture pressure (i.e., 0.85more » psi/ft. pressure gradient) in the region. In the central part of the basin, the overpressured sections are found within the shallower (<2000 m) hydrocarbon-bearing units. Selective studies of the temporal development of the pore pressure indicated that overpressure development is associated with episodes of rapid sedimentation. A preliminary fluid flow model supported by pressure modeling is proposed whereby hot fluids are currently being expelled from deeper overpressured sandstone and mudrocks through a fractured seal induced by overpressure. The latter is caused by relatively rapid burial since late Tertiary times. Hydrocarbon migration may have been aided by this fluid movement.« less

  12. Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.

    2010-04-01

    Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.

  13. Manipulation of intraocular pressure for studying the effects on accommodation.

    PubMed

    He, Lin; Wendt, Mark; Glasser, Adrian

    2012-09-01

    A reliable experimental system in which IOP can be manipulated or a rapid IOP change can be induced while simultaneously and continuously measuring IOP and the ocular accommodative changes would be useful for understanding the physiological effect of intraocular pressure (IOP) on the accommodative mechanism. In this study, an IOP perfusion and recording system was developed and tested using 13 enucleated pig eyes. The vitreous chamber of the pig eyes was cannulated with a needle connected to two fluid reservoirs at different heights. One reservoir was set to achieve one of three baseline pressures of 5.5 mmHg, 13.0 mmHg and 20.5 mmHg. The other reservoir was moved to achieve pressures of 1.5 mmHg, 3.0 mmHg, 4.5 mmHg and 6.0 mmHg higher than the baseline pressure. The height differential between the reservoirs determined the amplitude of IOP changes. Rapid IOP changes were induced by switching the reservoirs with a solenoid pinch-valve. Two needles, one each attached to a pressure transducer were inserted into the anterior chamber and vitreous chamber respectively. Custom developed software was used to measure the anterior chamber pressure and vitreous chamber pressure at 80 Hz. A high-resolution continuous A-scan ultrasound biometer (CUB) was used to dynamically measure changes in ocular biometry including anterior chamber depth (ACD), lens thickness (LT) and vitreous chamber depth (VCD) while the vitreous chamber pressure was manipulated. The changes in ACD, LT and VCD were analyzed as a function of the pressure change. Perfusion-induced axial biometric changes were quantified by the slopes of linear regression relationships. Both anterior chamber pressure and vitreous chamber pressure changed relatively systematically with the induced vitreous chamber pressure changes (anterior chamber: y = 0.863x + 0.030, r(2) = 0.983; vitreous chamber: y = 0.883x + 0.009, r(2) = 0.981). At perfusion pressures of 5.5, 13.0 and 20.5 mmHg, the slopes for ACD

  14. Reservoir characterization of the Clough area, Barnett Shale, Wise County, Texas. Topical report, January-July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, N.C.; Lancaster, D.E.

    1995-07-01

    The objective of this work was to learn more about the reservoir characteristics in the Barnett Shale. Specifically, from an analysis of pressure, production, interference, and fracture treatment data in three Mitchell Energy Corporation Cough area wells, the authors can infer the relationship between the induced hydraulic fractures and the natural fracture system in the reservoir. The authors are learning something about drainage area size, shape, and orientation.

  15. Cavitation-based hydro-fracturing technique for geothermal reservoir stimulation

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2017-02-21

    A rotary shutter valve 500 is used for geothermal reservoir stimulation. The valve 500 includes a pressure chamber 520 for holding a working fluid (F) under pressure. A rotatable shutter 532 is turned with a powering device 544 to periodically align one or more windows 534 with one or more apertures 526 in a bulkhead 524. When aligned, the pressurized working fluid (F) flows through the bulkhead 524 and enters a pulse cavity 522, where it is discharged from the pulse cavity 522 as pressure waves 200. The pressure wave propagation 200 and eventual collapse of the bubbles 202 can be transmitted to a target rock surface 204 either in the form of a shock wave 206, or by micro jets 208, depending on the bubble-surface distance. Once cavitation at the rock face begins, fractures are initiated in the rock to create a network of micro-fissures for enhanced heat transfer.

  16. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    China. The porosity is 2-14%(average 5-10%)and the permeability is less than 1mD. The laboratory test and exploration practice confirmed that the oil content was positively related to physical property. The higher the porosity, the better the oil content will have. (3) Source rock and reservoir are superimposed. From the contact relationship of source rock and reservoir, the reservoir developed in the source rock has the advantage of capturing oil and gas, so the oil saturation can be as high as 70-80%. (4) The increased pressure caused by hydrocarbon generation and the connected fracture are the key factors for tight oil accumulation. The Fuyu tight oil formed underling source rock in Songliao Basin is a good example. The fracture system is the key factor for tight oil accumulation. Considering the strong heterogeneity of terrestrial tight oil reservoir in china, we create hierarchical resource abundance analogy, EUR analogy, cell element volumetric methods to evaluate tight oil resource potential. In order to find exploration "sweet spots", establishing tight oil resource classification evaluation standards are key steps to objectively evaluate tight oil resource distribution. The resource classification evaluation standards are established by the relationship analysis between reservoir properties and oil properties, and the correlation analysis between production, resource abundance, and reservoir thickness. The first-grade tight oil resource, which is recently available and can easily be developed, has following main parameters: the porosity is greater than 8%, thickness is over 10m, resource abundance is above 150,000 tons / km2, and pressure coefficient is greater than 1.3; The second-grade tight oil resource is currently unavailable, but with advanced technology can expected to be developed. The main parameters are as following: the porosity is 5% -8%, thickness is less than 5-10m, resource abundance is 50000-150000 tons / km2, the pressure coefficient is 1.0 to

  17. The irritation potential and reservoir effect of mild soaps.

    PubMed

    Lodén, Marie; Buraczewska, Izabela; Edlund, Fredrik

    2003-08-01

    Identification and reduction of external noxious factors is one key point in the strategy for the treatment and reduction of contact dermatitis. A wide variety of soaps on the market are claimed to be suitable for the use on sensitive skin due to their mildness. The aim of the present study was to illustrate possible differences in the irritation potential of 8 products and to investigate whether surfactant residues may form an irritant reservoir on the skin. The study was double-blind, randomized using healthy human volunteers. The inherent capacity of the products to induce irritation was determined using conventional patch test technique, whereas detection of potential surfactant residues on the skin was done using a methodology developed in the 1960s for detection of the corticosteroid reservoir in the stratum corneum. The method comprised the release of active substance from the stratum corneum reservoir by occlusion of the skin with an aluminium chamber, followed by evaluation of the biological response. In the present study, the soap-treated area was rinsed with water and then occluded. Instrumental measurements of the transepidermal water loss and superficial skin blood flow served as indicators of the injurious effects of the products. The results showed large differences in irritation potential between the products, and some of them demonstrated considerable damaging effect. Moreover, the study proved the presence of barrier-impairing residues on the skin after rinsing with water. Subclinical skin damage can make the skin vulnerable to further irritation and delay recovery of chronic irritant contact dermatitis.

  18. Reservoirs in the United States

    USGS Publications Warehouse

    Thomas, N.O.; Harbeck, G. Earl

    1956-01-01

    Reservoir storage facilities in the United States play an important part in the national economy. Storage facilities have enabled the country to utilize to a much fuller extent one of the most valuable natural resources: water. During recent years the construction of reservoirs has continued at a high rate. This report shows the status of these facilities on January 1, 1954, and describes briefly some of the reasons for growth of reservoir facilities in the United States. Descriptive data are given for reservoirs having a capacity of 5, 000 acre-feet or more and for natural lakes having a usable capacity of 5,000 acre-feet or more. Included are reservoirs and lakes completed as of January 1, 1954, and reservoirs under construction on that date. The total number of such reservoirs and lakes is 1, 300. A descriptive list of reservoirs in the United States was first published by the United States Geological Survey in March 1948. That report, Geological Survey Circular 23, entitled Reservoirs in the United States, included reservoirs completed as of January 1, 1947. Since January 1, 1947, reservoirs representing a total usable capacity of 115,000,000 acre-feet, or an increase of 71 percent, have been constructed or are under construction. Data about these new reservoirs are presented herein, and the data shown for reservoirs constructed before 1947 have been corrected on the basis of the latest available survey to determine reservoir capacity. The total usable capacity of reservoirs and lakes included in this compilation amounts to 278, 120, 000 acre-feet, and the corresponding surface area totals 11, 046, 000 acres.

  19. Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Schechter, D.S.

    The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

  20. Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China

    PubMed Central

    Tao, Wei; Masterlark, Timothy; Ronchin, Erika

    2015-01-01

    Abstract Impoundment of the Zipingpu reservoir (ZR), China, began in September 2005 and was followed 2.7 years later by the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), with its epicenter ~12 km away from the ZR. Based on the poroelastic theory, we employ three‐dimensional finite element models to simulate the evolution of stress and pore pressure due to reservoir impoundment, and its effect on the Coulomb failure stress on the LSF. The results indicate that the reservoir impoundment formed a pore pressure front that slowly propagated through the crust with fluid diffusion. The reservoir loading induced either moderate or no increase of the Coulomb failure stress at the hypocenter prior to the WE. The Coulomb failure stress, however, grew ~9.3–69.1 kPa in the depth range of 1–8 km on the LSF, which may have advanced tectonic loading of the fault system by ~60–450 years. Due to uncertainties of fault geometry and hypocenter location of the WE, it is inconclusive whether impoundment of the ZR directly triggered the WE. However, a small event at the hypocenter could have triggered large rupture elsewhere on fault, where the asperities were weakened by the ZR. The microseismicity around the ZR also showed an expanding pattern from the ZR since its impoundment, likely associated with diffusion of a positive pore pressure pulse. These results suggest a poroelastic triggering effect (even if indirectly) of the WE due to the impoundment of the ZR. PMID:27812436

  1. Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy

    NASA Astrophysics Data System (ADS)

    Teatini, P.; Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Cairo, E.; Marzorati, D.; Colombo, D.; Ferretti, A.; Bagliani, A.; Bottazzi, F.

    2011-06-01

    Underground gas storage (UGS) in depleted hydrocarbon reservoirs is a strategic practice to cope with the growing energy demand and occurs in many places in Europe and North America. In response to summer gas injection and winter gas withdrawal the reservoir expands and contracts essentially elastically as a major consequence of the fluid (gas and water) pore pressure fluctuations. Depending on a number of factors, including the reservoir burial depth, the difference between the largest and the smallest gas pore pressure, and the geomechanical properties of the injected formation and the overburden, the porous medium overlying the reservoir is subject to three-dimensional deformation with the related cyclic motion of the land surface being both vertical and horizontal. We present a methodology to evaluate the environmental impact of underground gas storage and sequestration from the geomechanical perspective, particularly in relation to the ground surface displacements. Long-term records of injected and removed gas volume and fluid pore pressure in the "Lombardia" gas field, northern Italy, are available together with multiyear detection of vertical and horizontal west-east displacement of the land surface above the reservoir by an advanced permanent scatterer interferometric synthetic aperture radar (PSInSAR) analysis. These data have been used to calibrate a 3-D fluid-dynamic model and develop a 3-D transversally isotropic geomechanical model. The latter has been successfully implemented and used to reproduce the vertical and horizontal cyclic displacements, on the range of 8-10 mm and 6-8 mm, respectively, measured between 2003 and 2007 above the reservoir where a UGS program has been underway by Stogit-Eni S.p.A. since 1986 following a 5 year field production life. Because of the great economical interest to increase the working gas volume as much as possible, the model addresses two UGS scenarios where the gas pore overpressure is pushed from the current 103

  2. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach

    NASA Astrophysics Data System (ADS)

    Zaragüeta, Mikel; Acebes, Pablo

    2017-04-01

    Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.

  3. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  4. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  5. Pressure garment design tool to monitor exerted pressures.

    PubMed

    Macintyre, Lisa; Ferguson, Rhona

    2013-09-01

    Pressure garments are used in the treatment of hypertrophic scarring following serious burns. The use of pressure garments is believed to hasten the maturation process, reduce pruritus associated with immature hypertrophic scars and prevent the formation of contractures over flexor joints. Pressure garments are normally made to measure for individual patients from elastic fabrics and are worn continuously for up to 2 years or until scar maturation. There are 2 methods of constructing pressure garments. The most common method, called the Reduction Factor method, involves reducing the patient's circumferential measurements by a certain percentage. The second method uses the Laplace Law to calculate the dimensions of pressure garments based on the circumferential measurements of the patient and the tension profile of the fabric. The Laplace Law method is complicated to utilise manually and no design tool is currently available to aid this process. This paper presents the development and suggested use of 2 new pressure garment design tools that will aid pressure garment design using the Reduction Factor and Laplace Law methods. Both tools calculate the pressure garment dimensions and the mean pressure that will be exerted around the body at each measurement point. Monitoring the pressures exerted by pressure garments and noting the clinical outcome would enable clinicians to build an understanding of the implications of particular pressures on scar outcome, maturation times and patient compliance rates. Once the optimum pressure for particular treatments is known, the Laplace Law method described in this paper can be used to deliver those average pressures to all patients. This paper also presents the results of a small scale audit of measurements taken for the fabrication of pressure garments in two UK hospitals. This audit highlights the wide range of pressures that are exerted using the Reduction Factor method and that manual pattern 'smoothing' can dramatically

  6. Hydro-fractured reservoirs: A study using double-difference location techniques

    NASA Astrophysics Data System (ADS)

    Kahn, Dan Scott

    The mapping of induced seismicity in enhanced geothermal systems presents the best tool available for understanding the resulting hydro-fractured reservoir. In this thesis, two geothermal systems are studied; one in Krafla, Iceland and the other in Basel Switzerland. The purpose of the Krafla survey was to determine the relation between water injection into the fault system and the resulting earthquakes and fluid pressure in the subsurface crack system. The epicenters obtained from analyzing the seismic data gave a set of locations that are aligned along the border of a high resistivity zone ˜2500 meters below the injection well. Further magneto-telluric/seismic-data correlation was seen in the polarity of the cracks through shear wave splitting. The purpose of the Basel project was to examine the creation of a reservoir by the initial stimulation, using an injection well bored to 5000 meters. This stimulation triggered a M3.4 event, extending the normal range of event sizes commonly incurred in hydro-fractured reservoirs. To monitor the seismic activity 6 seismometer sondes were deployed at depths from 317 to 2740 meters below the ground surface. During the seven-day period over 13,000 events were recorded and approximately 3,300 located. These events were first located by single-difference techniques. Subsequently, after calculating their cross-correlation coefficients, clusters of events were relocated using a double-difference algorithm. The event locations support the existence of a narrow reservoir spreading form the injection well. Analysis of the seismic data indicates that the reservoir grew at a uniform rate punctuated by fluctuations which occurred at times of larger events, which were perhaps caused by sudden changes in pressure. The orientation and size of the main fracture plane was found by determining focal mechanisms and locating events that were similar to the M3.4 event. To address the question of whether smaller quakes are simply larger quakes

  7. Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREDRICH,JOANNE T.; DEITRICK,G.L.; ARGUELLO JR.,JOSE G.

    2000-05-01

    Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 yearsmore » of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the

  8. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    NASA Astrophysics Data System (ADS)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  9. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna

    2018-02-01

    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  10. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    PubMed

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2017-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  11. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    PubMed Central

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  12. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less

  13. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    PubMed

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  14. A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.

    2017-12-01

    We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.

  15. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of

  16. A paleolimnological investigation of historical environmental change in East Canyon Reservoir

    NASA Astrophysics Data System (ADS)

    Higby Halseth, Deanna Renee

    East Canyon Reservoir is located 32 km east of Salt Lake City, Utah, and serves as a resource for irrigation, culinary water, and recreation. This research used paleolimnology and historical records to investigate the impacts of multiple stressors, including land clearance, dam construction and enlargement, and climate warming on East Canyon Reservoir. Recently, blue green algal blooms, typically indicative of eutrophication, have been increasing at East Canyon Reservoir despite reductions of nutrients from point sources, so part of the impetus for this study was to understand the forcing mechanisms of these blooms. A multiproxy analysis of three sediment cores retrieved from the reservoir determined changes in nutrient concentrations and sediment composition over time. Percent organics, magnetic susceptibility, and diatom analyses of 210Pb dated cores were compared to measurements of temperature and precipitation as well as records of historical land use, which were determined using remote sensing. Percent organics and magnetic susceptibility showed changes related to dam construction and increased development. Fossil diatom assemblages indicated that East Canyon Reservoir had been eutrophic since origination; however, principal components analyses of the diatom data indicated that the canyon became more P-enriched following dam construction and increased development. Recent increases in Cyclotella diatoms indicate changes related to warming temperatures, and we speculate that this warming is also what is causing blue-green algal blooms to increase.

  17. Modulatory Effect of Inflammation on Blood Pressure Reduction via Therapeutic Lifestyle Change

    PubMed Central

    Milani, Richard V.; Lavie, Carl J.

    2009-01-01

    Purpose: Since inflammatory status, as determined by C-reactive protein (CRP) levels, is correlated with many cardiovascular (CV) disease risk factors and major CV events, we sought to determine if median levels of CRP can modulate blood pressure changes as well as other CV risk factors that are typically improved by therapeutic lifestyle changes with formal cardiac rehabilitation and exercise training (CRET) programs. Methods: We retrospectively evaluated CRP status and standard CV risk factors both before and after formal, phase II CRET programs (12 weeks; 36 educational and exercise sessions) in 635 consecutive patients with coronary artery disease after major CV events. Results: The median CRP level at baseline was 3.2 mg/L (range, 0.2–80.1 mg/L; mean, 5.8±8.4 mg/L). After CRET, both the patients with high and those with low CRP concentrations exhibited statistically significant improvements in most CV risk factors when their CRP levels were divided by median levels. However, systolic, diastolic, and mean arterial blood pressure improved in patients with low CRP levels (each by −4%) but did not change significantly in patients with high CRP levels. In multiple regression models, only young age, low CRP levels, and low body mass index were significant independent predictors of improved mean arterial blood pressure after CRET. Conclusions: In contrast to patients with coronary artery disease and low levels of CRP, patients with high baseline CRP levels did not demonstrate significant reductions in blood pressure after therapeutic lifestyle changes via formal CRET programs. PMID:21603441

  18. Modulatory Effect of Inflammation on Blood Pressure Reduction via Therapeutic Lifestyle Change.

    PubMed

    Milani, Richard V; Lavie, Carl J

    2009-01-01

    Since inflammatory status, as determined by C-reactive protein (CRP) levels, is correlated with many cardiovascular (CV) disease risk factors and major CV events, we sought to determine if median levels of CRP can modulate blood pressure changes as well as other CV risk factors that are typically improved by therapeutic lifestyle changes with formal cardiac rehabilitation and exercise training (CRET) programs. We retrospectively evaluated CRP status and standard CV risk factors both before and after formal, phase II CRET programs (12 weeks; 36 educational and exercise sessions) in 635 consecutive patients with coronary artery disease after major CV events. The median CRP level at baseline was 3.2 mg/L (range, 0.2-80.1 mg/L; mean, 5.8±8.4 mg/L). After CRET, both the patients with high and those with low CRP concentrations exhibited statistically significant improvements in most CV risk factors when their CRP levels were divided by median levels. However, systolic, diastolic, and mean arterial blood pressure improved in patients with low CRP levels (each by -4%) but did not change significantly in patients with high CRP levels. In multiple regression models, only young age, low CRP levels, and low body mass index were significant independent predictors of improved mean arterial blood pressure after CRET. In contrast to patients with coronary artery disease and low levels of CRP, patients with high baseline CRP levels did not demonstrate significant reductions in blood pressure after therapeutic lifestyle changes via formal CRET programs.

  19. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Rogers

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from

  20. Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.

  1. The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh K.

    1985-10-01

    The status of Reservoir Induced Seismicity (RIS) has been reviewed periodically (Rothé, 1968, 1973; Gupta and Rastogi, 1976; Simpson, 1976; Packer et al., 1979). In the present paper, the significant work carried out during the last three years on RIS is reviewed. An earthquake of magnitude 5 {1}/{2} occurred on November 14, 1981 in the vicinity of Aswan Lake, Egypt, 17 years after the filling started in 1964. This event occurred 4 days after the seasonal maximum in the reservoir water level and was followed by a long sequence of aftershocks. Another event of magnitude 4 {1}/{2} occurred in the vicinity of Aswan Lake on August 20, 1982. Results of preliminary investigations indicate that this seismic activity is reservoir induced. Recent analyses of induced seismic events at Nurek Reservoir U.S.S.R., show that the second stage of filling during August to December 1976, increasing the maximum depth from 120 m to 200 m, was accompanied by an intense burst of shallow seismic activity. An outward migration from the centre of the reservoir, possibly associated with diffusion of pore pressure, is revealed by the temporal distribution of earthquake foci. A variety of investigations including the in situ measurement of tectonic stress, pore pressure, permeability, distribution of faults, etc., in addition to monitoring seismicity, have been undertaken in the vicinity of the Monticello Reservoir, South Carolina. The largest reservoir induced earthquake is predicted not to exceed magnitude 5. The Koyna Reservoir, India, continues to be the most outstanding example of RIS. Three earthquakes of magnitude $˜5 occurred in September 1980. Earthquakes of magnitude 4 occur frequently in the vicinity of Koyna, the latest being on February 5, 1983. Events that occurred during the period 1967-1973 have been relocated using better procedures and are found to be much shallower and the epicentres less diffused. Location of 12 earthquakes of Ms ⩾ 4.0, their foreshocks and aftershocks

  2. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  3. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    USGS Publications Warehouse

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 ??C and a 0.1-??C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content. ?? 2008 Elsevier Ltd. All rights reserved.

  4. Sodium thiopental and mean arterial pressure during cardiopulmonary bypass.

    PubMed

    Dabbagh, Ali; Rajaei, Samira; Ahani, Mohammad Reza

    2011-06-01

    Sodium thiopental is known to have a number of cardiovascular effects, but injection into the cardiopulmonary bypass reservoir has not been studied. The effect of sodium thiopental on mean arterial blood pressure during cardiopulmonary bypass was assessed in 150 patients undergoing elective coronary artery bypass grafting. Sodium thiopental 3 mg · kg(-1) was administered via the cardiopulmonary bypass reservoir. Mean arterial pressure was recorded just before drug administration and at 15-sec intervals up to 120 sec afterwards. Compared to the baseline value, mean arterial pressure was significantly higher at 30, 45, 60, and 75 sec after drug administration, and it was significantly lower at 90, 105, and 120 sec. Sodium thiopental, in addition to its effects on myocardial tissue, acts initially as a potent vasopressor, and shortly after, as a potent vasodilator.

  5. Intraocular pressure reduction and regulation

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.; Mcgannon, W. J.

    1979-01-01

    System designed to reduce intraocular pressure hydraulically to any level desired by physician over set time and in controlled manner has number of uses in ophthalmology. Device may be most immediately useful in treatment of glaucoma.

  6. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  7. Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2017-01-01

    A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

  8. Impact of comprehensive cardiovascular risk reduction programme on risk factor clustering associated with elevated blood pressure in an Indian industrial population.

    PubMed

    Jeemon, Panniyammakal; Prabhakaran, Dorairaj; Goenka, Shifalika; Ramakrishnan, Lakshmy; Padmanabhan, Sandosh; Huffman, Mark; Joshi, Prashant; Sivasankaran, Sivasubramonian; Mohan, B V M; Ahmed, F; Ramanathan, Meera; Ahuja, R; Sinha, Nakul; Thankappan, K R; Reddy, K S

    2012-04-01

    Cardiovascular risk factors clustering associated with blood pressure (BP) has not been studied in the Indian population. This study was aimed at assessing the clustering effect of cardiovascular risk factors with suboptimal BP in Indian population as also the impact of risk reduction interventions. Data from 10543 individuals collected in a nation-wide surveillance programme in India were analysed. The burden of risk factors clustering with blood pressure and coronary heart disease (CHD) was assessed. The impact of a risk reduction programmme on risk factors clustering was prospectively studied in a sub-group. Mean age of participants was 40.9 ± 11.0 yr. A significant linear increase in number of risk factors with increasing blood pressure, irrespective of stratifying using different risk factor thresholds was observed. While hypertension occurred in isolation in 2.6 per cent of the total population, co-existence of hypertension and >3 risk factors was observed in 12.3 per cent population. A comprehensive risk reduction programme significantly reduced the mean number of additional risk factors in the intervention population across the blood pressure groups, while it continued to be high in the control arm without interventions (both within group and between group P<0.001). The proportion of 'low risk phenotype' increased from 13.4 to 19.9 per cent in the intervention population and it was decreased from 27.8 to 10.6 per cent in the control population (P<0.001). The proportion of individuals with hypertension and three more risk factors decreased from 10.6 to 4.7 per cent in the intervention arm while it was increased from 13.3 to 17.8 per cent in the control arm (P<0.001). Our findings showed that cardiovascular risk factors clustered together with elevated blood pressure and a risk reduction programme significantly reduced the risk factors burden.

  9. Effects of Sodium Reduction and the DASH Diet in Relation to Baseline Blood Pressure.

    PubMed

    Juraschek, Stephen P; Miller, Edgar R; Weaver, Connie M; Appel, Lawrence J

    2017-12-12

    Both sodium reduction and the DASH (Dietary Approaches to Stop Hypertension) diet, a diet rich in fruits, vegetables, and low-fat dairy products, and reduced in saturated fat and cholesterol, lower blood pressure. The separate and combined effects of these dietary interventions by baseline blood pressure (BP) has not been reported. The authors compared the effects of low versus high sodium, DASH versus control, and both (low sodium-DASH vs. high sodium-control diets) on systolic blood pressure (SBP) by baseline BP. In the DASH-Sodium (Dietary Patterns, Sodium Intake and Blood Pressure) trial, adults with pre- or stage 1 hypertension and not using antihypertensive medications, were randomized to either DASH or a control diet. On either diet, participants were fed each of 3 sodium levels (50, 100, and 150 mmol/day at 2,100 kcal) in random order over 4 weeks separated by 5-day breaks. Strata of baseline SBP were <130, 130 to 139, 140 to 149, and ≥150 mm Hg. Of 412 participants, 57% were women, and 57% were black; mean age was 48 years, and mean SBP/diastolic BP was 135/86 mm Hg. In the context of the control diet, reducing sodium (from high to low) was associated with mean SBP differences of -3.20, -8.56, -8.99, and -7.04 mm Hg across the respective baseline SBP strata listed (p for trend = 0.004). In the context of high sodium, consuming the DASH compared with the control diet was associated with mean SBP differences of -4.5, -4.3, -4.7, and -10.6 mm Hg, respectively (p for trend = 0.66). The combined effects of the low sodium-DASH diet versus the high sodium-control diet on SBP were -5.3, -7.5, -9.7, and -20.8 mm Hg, respectively (p for trend <0.001). The combination of reduced sodium intake and the DASH diet lowered SBP throughout the range of pre- and stage 1 hypertension, with progressively greater reductions at higher levels of baseline SBP. SBP reductions in adults with the highest levels of SBP (≥150 mm Hg) were

  10. A Workflow for Subsurface Pressure Control in Geological CO2 Storage: Optimization of Brine Extraction

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.

    2017-12-01

    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.

  11. Stress reduction programs in patients with elevated blood pressure: a systematic review and meta-analysis.

    PubMed

    Rainforth, Maxwell V; Schneider, Robert H; Nidich, Sanford I; Gaylord-King, Carolyn; Salerno, John W; Anderson, James W

    2007-12-01

    Substantial evidence indicates that psychosocial stress contributes to hypertension and cardiovascular disease (CVD). Previous meta-analyses of stress reduction and high blood pressure (BP) were outdated and/or methodologically limited. Therefore, we conducted an updated systematic review of the published literature and identified 107 studies on stress reduction and BP. Seventeen trials with 23 treatment comparisons and 960 participants with elevated BP met criteria for well-designed randomized controlled trials and were replicated within intervention categories. Meta-analysis was used to calculate BP changes for biofeedback, -0.8/-2.0 mm Hg (P = NS); relaxation-assisted biofeedback, +4.3/+2.4 mm Hg (P = NS); progressive muscle relaxation, -1.9/-1.4 mm Hg (P = NS); stress management training, -2.3/-1.3 mm (P = NS); and the Transcendental Meditation program, -5.0/-2.8 mm Hg (P = 0.002/0.02). Available evidence indicates that among stress reduction approaches, the Transcendental Meditation program is associated with significant reductions in BP. Related data suggest improvements in other CVD risk factors and clinical outcomes.

  12. Stress Reduction Programs in Patients with Elevated Blood Pressure: A Systematic Review and Meta-analysis

    PubMed Central

    Rainforth, Maxwell V.; Schneider, Robert H.; Nidich, Sanford I.; Gaylord-King, Carolyn; Salerno, John W.; Anderson, James W.

    2007-01-01

    Substantial evidence indicates that psychosocial stress contributes to hypertension and cardiovascular disease (CVD). Previous meta-analyses of stress reduction and high blood pressure (BP) were outdated and/or methodologically limited. Therefore, we conducted an updated systematic review of the published literature and identified 107 studies on stress reduction and BP. Seventeen trials with 23 treatment comparisons and 960 participants with elevated BP met criteria for well-designed randomized controlled trials and were replicated within intervention categories. Meta-analysis was used to calculate BP changes for biofeedback, −0.8/−2.0 mm Hg (P = NS); relaxation-assisted biofeedback, +4.3/+2.4 mm Hg (P = NS); progressive muscle relaxation, −1.9/−1.4 mm Hg (P = NS); stress management training, −2.3/−1.3 mm (P = NS); and the Transcendental Meditation program, −5.0/−2.8 mm Hg (P = 0.002/0.02). Available evidence indicates that among stress reduction approaches, the Transcendental Meditation program is associated with significant reductions in BP. Related data suggest improvements in other CVD risk factors and clinical outcomes. PMID:18350109

  13. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  14. Interpreting Reservoir Microseismicity Detected During CO2 Injection at the Aneth Oil Field

    NASA Astrophysics Data System (ADS)

    Rutledge, J. T.

    2009-12-01

    Microseismic monitoring is expected to be a useful tool in CO2 sequestration projects for mapping pressure fronts and detecting fault activation and potential leakage paths. Downhole microseismic monitoring and several other techniques are being tested for their efficacy in tracking movement and containment of CO2 injected at the Aneth oil field located in San Juan County, Utah. The Southwest Regional Partnership on CO2 Sequestration is conducting the monitoring activities in collaboration with Resolute Natural Resources Company, under the support of the U.S. Department of Energy’s National Energy Technology Laboratory. The CO2 injection at Aneth is associated with a field-wide enhanced oil recovery operation following decades of pressure maintenance and oil recovery by water-flood injection. A 60-level geophone string was cemented into a monitoring well equipped with both 3-component and vertical component geophones spanning from 800 to 1700 m depth. The top of the oil reservoir in the study area is at approximately 1730 m depth. Over the first year of monitoring, approximately 3800 microearthquakes have been detected within about 3 km of the geophone string. The Aneth reservoir events are relatively large with magnitudes ranging from approximately -1 to 1. For comparison, reservoir seismicity induced during hydraulic fracturing treatments typically result in events with magnitudes <-1, unless pre-existing faults are pressurized by the treatments. The Aneth events delineate two NW-SE oriented fracture zones located on opposite flanks of the reservoir. Injection activity is fairly uniform over the entire field area, and the microseismicity does not correlate either temporally or spatially with any anomalous changes in injection or production activities near the source locations. Because the activity is fairly isolated and relatively energetic, I speculate that the seismicity may be due to critically stressed structures driven by longer-term production- and

  15. Blood pressure reduction due to hemoglobin glycosylation in type 2 diabetic patients

    PubMed Central

    Cabrales, Pedro; Vázquez, Miguel A Salazar; Vázquez, Beatriz Y Salazar; Rodríguez-Morán, Martha; Intaglietta, Marcos; Guerrero-Romero, Fernando

    2008-01-01

    Objective: To test the hypothesis that glycosylation of hemoglobin constitutes a risk factor for hypertension. Methods: A total of 129 relative uniform diabetic subjects (86 women and 42 men) were enrolled in a cross sectional study. Exclusion criteria included alcohol consumption, smoking, ischemic heart disease, stroke, neoplasia, renal, hepatic, and chronic inflammatory disease. Systolic and diastolic pressures were recorded in subsequent days and mean arterial blood pressure (MAP) was determined. Hemoglobin glycosylation was measured by determining the percentage glycosylated hemoglobin (HbA1c) by means of the automated microparticle enzyme immunoassay test. Results: MAP was found to be independent of the concentration of HbA1c; however, correcting MAP for the variability in hematocrit, to evidence the level of vasoconstriction (or vasodilatation) showed that MAP is negatively correlated with the concentration of HbA1c (p for trend <0.05), when patients treated for hypertension are excluded from the analysis. Patients treated for hypertension showed the opposite trend with increasing MAP as HbA1c increased (p for the difference in trends <0.05). Conclusions: Glycosylation per se appears to lead to blood pressure reduction in type 2 diabetic patients untreated for hypertension. Treatment for hypertension may be associated with a level of endothelial dysfunction that interferes with the antihypertensive effect of HbA1c. PMID:19066010

  16. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Wu, Jingwen; Borthwick, Alistair G L; Duan, Qingyun; Zhang, Xiaoming

    2017-02-01

    The Yellow River is the most hyperconcentrated sediment-laden river in the world. Throughout recorded history, the Lower Yellow River (LYR) experienced many catastrophic flood and drought events. To regulate the LYR, a reservoir was constructed at Xiaolangdi that became operational in the early 2000s. An annual water-sediment regulation scheme (WSRS) was then implemented, aimed at flood control, sediment reduction, regulated water supply, and power generation. This study examines the eco-environmental and socioenvironmental impacts of Xiaolangdi Reservoir. In retrospect, it is found that the reservoir construction phase incurred huge financial cost and required large-scale human resettlement. Subsequent reservoir operations affected the local geological environment, downstream riverbed erosion, evolution of the Yellow River delta, water quality, and aquatic biodiversity. Lessons from the impact assessment of the Xiaolangdi Reservoir are summarized as follows: (1) The construction of large reservoirs is not merely an engineering challenge but must also be viewed in terms of resource exploitation, environmental protection, and social development; (2) long-term systems for monitoring large reservoirs should be established, and decision makers involved at national policy and planning levels must be prepared to react quickly to the changing impact of large reservoirs; and (3) the key to solving sedimentation in the LYR is not Xiaolangdi Reservoir but instead soil conservation in the middle reaches of the Yellow River basin. Proper assessment of the impacts of large reservoirs will help promote development strategies that enhance the long-term sustainability of dam projects.

  17. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R D; Wolery, T J; Hao, Y

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh watermore » to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that

  18. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  19. Transit losses and traveltimes of reservoir releases along the Arkansas River from Pueblo Reservoir to John Martin Reservoir, southeastern Colorado

    USGS Publications Warehouse

    Livingston, Russell K.

    1978-01-01

    The need for accurate information regarding the transit losses and traveltimes associated with releases from Pueblo Reservoir has been stimulated by construction of the U.S. Bureau of Reclamation's Fryingpan-Arkansas Project and a proposed winter-water storage program in Pueblo Reservoir. To meet this need, the U.S. Geological Survey, in cooperation with the Southeastern Colorado Water Conservancy District, studied the Arkansas River from Pueblo Reservoir to John Martin Reservoir, a distance of 142 river miles.The volumes of reservoir releases are decreased or delayed during tran-sit by bank storage, channel storage, and evaporation. Results from a com-puter model, calibrated by a controlled-test release from Pueblo Reservoir, indicate transit losses are greatest for small releases of short duration that are made during periods of low antecedent streamflow. For equivalent releases, transit losses during the winter are about 7 percent less than losses during the summer.Based on available streamflow records, the traveltime of reservoir releases in the study reach ranges from about 1.67 hours per mile at the downstream end of the study reach when antecedent streamflow is 10 cubic feet per second, to about 0.146 hour per mile at the upstream end of the study reach when antecedent streamflow is 3,000 cubic feet per second. Consequently, the traveltime of a release increases as antecedent streamflow diminishes.Management practices that may be used to benefit water users in the study area include selection of the optimum time, rate, and duration of a reservoir release to minimize the transit losses, determination of an accurate traveltime, and diversion at several incremental rates.

  20. THM modelling of hydrothermal circulation in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert

    2014-05-01

    Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation

  1. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  2. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    NASA Astrophysics Data System (ADS)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  3. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    USGS Publications Warehouse

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  4. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.

    1996-11-01

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less

  5. Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.

    1996-12-31

    This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included approximately 200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less

  6. Reservoir Structure and Wastewater-Induced Seismicity at the Val d'Agri Oilfield (Italy) Shown by Three-Dimensional Vp and Vp/Vs Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bagh, S.; De Gori, P.; Valoroso, L.; Pastori, M.; Piccinini, D.; Chiarabba, C.; Anselmi, M.; Buttinelli, M.

    2017-11-01

    Wastewater injection into a high-rate well in the Val d'Agri oilfield, the largest in onshore Europe, has induced swarm microseismicity since the initiation of disposal in 2006. To investigate the reservoir structure and to track seismicity, we performed a high-spatial resolution local earthquake tomography using 1,281 natural and induced earthquakes recorded by local networks. The properties of the carbonate reservoir (rock fracturing, pore fluid pressure) and inherited faults control the occurrence and spatiotemporal distribution of seismicity. A low-Vp, high-Vp/Vs region under the well represents a fluid saturated fault zone ruptured by induced seismicity. High-Vp, high-Vp/Vs bumps match reservoir culminations indicating saturated liquid-bearing zones, whereas a very low Vp, low Vp/Vs anomaly might represent a strongly fractured and depleted zone of the hydrocarbon reservoir characterized by significant fluid withdrawal. The comprehensive picture of the injection-linked seismicity obtained by integrating reservoir-scale tomography, high-precision earthquake locations, and geophysical and injection data suggests that the driving mechanism is the channeling of pore pressure perturbations through a high permeable fault damage zone within the reservoir. The damage zone surrounds a Pliocene reverse fault optimally oriented in the current extensional stress field. The ruptured damage zone measures 2 km along strike and 3 km along dip and is confined between low permeability ductile formations. Injection pressure is the primary parameter controlling seismicity rate. Our study underlines that local earthquake tomography also using wastewater-induced seismicity can give useful insights into the physical mechanism leading to these earthquakes.

  7. Are Geotehrmal Reservoirs Stressed Out?

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  8. The aging of America's reservoirs: In-reservoir and downstream physical changes and habitat implications

    USGS Publications Warehouse

    Juracek, Kyle E.

    2015-01-01

    Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short- and medium-term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir-related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.

  9. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.

    PubMed

    Chen, Chuan; Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-04-01

    Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera ( Paracoccus - Thauera ), Desulfobulbus , and Syntrophomonas - Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 10 7 /ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO 2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO 2 was needed to prevent souring in both

  10. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir

    PubMed Central

    Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-01-01

    ABSTRACT Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both

  11. A simplified technique for continent urinary diversion: an all-stapled colonic reservoir.

    PubMed

    Parra, R O

    1991-12-01

    A simple continent colonic reservoir was constructed in its entirety with the aid of surgical stapling techniques in 17 men and 10 women. In 5 men an orthotopic pouch was created and in the rest a continent stoma was designed. Detubularization of the entire colonic segment assures a low pressure system with disruption of directional peristaltic activity. The ureters are implanted by simply burying them in a mucosal furrow. Operative time required for the creation of the reservoir (excluding time for cystectomy) has ranged between 70 and 140 minutes (mean 95.4 minutes). With a followup of 9 to 60 months (mean 22.8 months) continence has been achieved in all but 1 patient with no ureteral reflux or obstruction. Urodynamically the pouch has achieved a large capacity (mean 750 cc) with low filling pressures (8.1 cm. water) because of technical ease of construction together with a shortened operative time due to the stapling techniques. This form of bladder replacement offers an option for select patients in whom continent urinary diversion is contemplated.

  12. A method for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    NASA Astrophysics Data System (ADS)

    Ai, Xueshan; Dong, Zuo; Mo, Mingzhu

    2017-04-01

    The optimal reservoir operation is in generally a multi-objective problem. In real life, most of the reservoir operation optimization problems involve conflicting objectives, for which there is no single optimal solution which can simultaneously gain an optimal result of all the purposes, but rather a set of well distributed non-inferior solutions or Pareto frontier exists. On the other hand, most of the reservoirs operation rules is to gain greater social and economic benefits at the expense of ecological environment, resulting to the destruction of riverine ecology and reduction of aquatic biodiversity. To overcome these drawbacks, this study developed a multi-objective model for the reservoir operating with the conflicting functions of hydroelectric energy generation, irrigation and ecological protection. To solve the model with the objectives of maximize energy production, maximize the water demand satisfaction rate of irrigation and ecology, we proposed a multi-objective optimization method of variable penalty coefficient (VPC), which was based on integrate dynamic programming (DP) with discrete differential dynamic programming (DDDP), to generate a well distributed non-inferior along the Pareto front by changing the penalties coefficient of different objectives. This method was applied to an existing China reservoir named Donggu, through a course of a year, which is a multi-annual storage reservoir with multiple purposes. The case study results showed a good relationship between any two of the objectives and a good Pareto optimal solutions, which provide a reference for the reservoir decision makers.

  13. Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism.

    PubMed

    Takakuwa, Hiroshi; Shimizu, Kazuaki; Izumiya, Yoshiaki; Kato, Tamayo; Nakaya, Izaya; Yokoyama, Hitoshi; Kobayashi, Ken-ichi; Ise, Takuyuki

    2002-09-01

    The purpose of this study was to elucidate the effects of dietary sodium restriction on diurnal blood pressure (BP) variation in primary aldosteronism. We studied the diurnal variation in the systemic hemodynamic indices and in baroreflex sensitivity (BRS). In 13 subjects with aldosterone-producing adenomas (2 males; mean age, 39+/-2 years), intra-arterial pressure was monitored telemetrically on a normal salt diet (NaCl 10-12 g/day). Non-dippers were defined as those with a nocturnal reduction in systolic BP (SBP) of less than 10% of daytime SBP. Ten subjects showed a non-dipper pattern. Six of these "non-dippers" underwent repetitive hemodynamic studies on the last day of a 1-week low salt diet regimen (NaCl 2-4 g/day). Stroke volume was determined using Wesseling's pulse contour method, calibrated with indocyanine green dilution. BRS was calculated every 30 min as delta pulse interval/delta SBP on spontaneous variations. Nocturnal reduction of SBP was 4.1% on the normal salt diet. With sodium restriction, urinary sodium excretion decreased from 187+/-8 to 46+/-8 mmol/day, and body weight decreased from 57.9+/-2.1 to 56.6+/-1.9 kg. Night-time BP significantly decreased with dietary modification from 154+/-7/88+/-4 to 140+/-6/78+/-4 mmHg, whereas daytime BP was unaltered. With sodium restriction, cardiac index and stroke index decreased throughout the day. No significant difference was seen in either daytime or nighttime BRS between the two diets. We conclude that the non-dipper pattern is common in patients with an aldosterone-producing adenoma on a normal salt intake, and under such conditions, volume expansion appears to play a major role in the impairment of nocturnal BP reduction.

  14. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.

    2012-12-01

    the in situ treatment, dextran contributes to a maximum porosity reduction of 9.2%, while in the exogenous microbes treatment, the dextran contributes to a maximum of 10.9% porosity reduction. After RTM, the potential geophysical signature of the treatment was evaluated using previously developed experimental rock physics models and realistic forward modeling approaches. Seismic experiments during dextran production performed by Kwan & Ajo-Franklin (2011) were combined with full waveform viscoelastic modeling to yield a predicted attenuation response from the dextran distributions modeled using RTM. The response suggests that crosswell attenuation tomography may be a viable approach for in situ monitoring of the bioclogging process. Modeling the EM response involved the induced polarization (IP) method, where the simulated resistance amplitude and phase changes can be attributed to porosity reduction. Our studies suggest that the IP signals provide a valuable additional indicator. Both geophysical data methods in a joint imaging approach potentially increase the resolution of each geophysical attribute change. Likewise, reactive transport modeling and geophysical monitoring can provide a powerful tool for predicting different bioclogging scenarios in subsurface. The combination may enhance our capabilities of controlling and monitoring the MEHR bioclogging process at reservoir scale.

  15. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  16. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  17. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  18. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Better constraints on the size and volatile content of the Mount St. Helens magma reservoir following the end of the 2004-2008 eruption

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Lisowski, M.; Beeler, N.; Roeloffs, E.

    2008-12-01

    The October 2004-January 2008 eruption of Mount St. Helens produced about 93 million cubic meters dense-rock equivalent (DRE) lava at a continuous rate that decreased monotonically from ~6 m3 s-1 to zero over its duration. From late October 2004 through the end of the eruption, continuous GPS stations around the mountain recorded inward deflation at a rate that dropped monotonically below the noise level by early 2007. The geodetic signal is consistent with a volume change Δ Vc of ~16-25M m3 in an ellipsoidal reservoir of volume Vc centered at ~9-14 km depth beneath the crater. Throughout the eruption we used physically based models to extrapolate trends in lava-dome volume and deflation, and to forecast the duration and final erupted volume, Ve, using assumed or geologically constrained values of Vc, average recharge rate R into the reservoir, and compressibilities of magma (Km = ( 1/ρ m )( ∂ ρ m /∂ p )) and of the reservoir (Kc = ( 1/Vc )( ∂ Vc /∂ p )), where ρ m is magma density and p is pressure). Curves that neglected recharge consistently under-predicted both the final duration and volume, while those that assumed a constant recharge rate predicted indefinite duration and volume. The fact that the eruption ended several months after deflation stopped suggests that the long-term average recharge was close to zero, or at least much less than the average eruption rate. The discrepancy between Ve (93M m3) and Δ VC (16-25M m3) can be accounted for by the elastic relation Ve /Δ Vc = ( 1 + Km /Kc ), with Km = 3 - 4 × 10- 10 Pa-1 calculated for reservoir magma with 1- 1.5% bubbles (constrained from gas studies of the erupted lava), and Kc = 1.1 - 1.5 × 10 - 10 Pa-1. Assuming that the pressure drop dp in the reservoir was only slightly greater than the ~5 MPa increase in pressure at the 2004 vent elevation due to growth of the 220-m-high lava dome, the elastic relation Ve = VC dp( Kc + Km ) suggests that the eruption could have been fed by a reservoir

  20. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  1. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  2. Influence Assessment of Multiple Large-sized Reservoirs on Flooding in the Huai River Watershed, China

    NASA Astrophysics Data System (ADS)

    Wan, X. Y.

    2017-12-01

    The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore

  3. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    Potential CO 2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO 2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to createmore » a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO 2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO 2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.« less

  4. Numerical modeling of the simulated gas hydrate production test at Mallik 2L-38 in the pilot scale pressure reservoir LARS - Applying the "foamy oil" model

    NASA Astrophysics Data System (ADS)

    Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz

    2014-05-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D

  5. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE PAGES

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...

    2017-08-18

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  6. Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-geochemical-Mechanical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.

    This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less

  7. Integrated Reservoir Modeling of CO2-EOR Performance and Storage Potential in the Farnsworth Field Unit, Texas.

    NASA Astrophysics Data System (ADS)

    Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.

    2017-12-01

    We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an

  8. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  9. Upper Cretaceous Shannon Sandstone Reservoirs, Powder River Basin, Wyoming: Evidence for organic acid diagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansley, P.L.; Nuccio, V.F.

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. In shallow reservoirs, detrital grains exhibit minor dissolution, sparse and small overgrowths, and secondary porosity created by dissolution of early calcite cement. However, deeper sandstones are characterized by extensive dissolution of detrital K-feldspar and detrital glauconite grains, and precipitation of abundant, large quartz and feldsparmore » overgrowths. Throughout the Shannon and Steele, dissolution of glauconite and degradation of kerogen were probably aided by clay mineral/organic catalysis, which caused simultaneous reduction of iron and oxidation of kerogen. This process resulted in release of ferrous iron and organic acids and was promoted in the deep reservoirs by higher formation temperatures accounting for more extensive dissolution of aluminosilicate grains. Carbonic acid produced from the dissolution of early calcite cement, decarboxylation of organic matter, and influx of meteoric water after Laramide uplift produced additional dissolution of cements and grains. Dissolution by organic acids and complexing by organic acid anions, however, best explain the intensity of diagenesis and absence of dissolution products in secondary pores and on etched surfaces of framework grains in deep reservoirs.« less

  10. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    NASA Astrophysics Data System (ADS)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    formation of mesoscale convective systems (MCS) in the vicinity of dams/reservoirs that may have explicitly been triggered by their presence. The significance of this finding is that water resources managers need to consider the post-dam impact of water cycle and local climate due to the very reservoir and land use change triggered if efficient water resources management is desired. Future works of the study will include incorporation of the anthropogenic changes that occur as a result of the presence of dams/reservoirs in the forms of irrigation, urbanization and downstream wetland reduction. Similar hypothesis testing procedures will be applied to understand the combined effects of the reservoir size variation and anthropogenic changes in the extreme precipitation patterns.

  11. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  12. Fracture characterization in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten

    2017-04-01

    At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified

  13. All-optical reservoir computing.

    PubMed

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  14. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    NASA Astrophysics Data System (ADS)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  15. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  16. Diurnal variability of CO2 and CH4 emissions from tropical reservoirs

    NASA Astrophysics Data System (ADS)

    Linkhorst, Annika; Reinaldo Paranaíba, José; Barros, Nathan; DelSontro, Tonya; Isidorova, Anastasija; Mendonça, Raquel; Sobek, Sebastian

    2017-04-01

    Reservoirs are important atmospheric sources of carbon dioxide (CO2) and methane (CH4) with CH4 being a greenhouse gas (GHG) at least 28 times more potent than CO2. Reservoir GHG emissions tend to be heterogeneous, however, and thus current emission estimates are likely conservative since they often overlook emission hot spots and hot moments, especially for CH4 ebullition. For CO2, diffusion is the dominant flux pathway, and diurnal patterns in CO2 emissions can largely be linked to photosynthesis. In contrast, ebullition, the release of gases through bubbles that are formed in the sediments and travel through the water column, is a major emission pathway for CH4 in shallow waters. We visually observed a change in quantity and size of bubbles at different times of the day, and therefore conducted a diurnal study in four different Brazilian reservoirs of different size, age, climatic and geographic characteristics. We hypothesized that sub-daily trends in CH4 ebullition occur in Brazilian reservoirs as bubble release depends on physical factors such as turbulence and hydrostatic pressure, which can exhibit sub-daily patterns in large, managed reservoirs. In each reservoir, we performed measurements of CO2 and CH4 fluxes at one location over 24 hours. CH4 ebullition was tracked continuously by an echosounder, and 13 anchored bubble traps per reservoir were sampled every three hours. Further, a custom-built equilibrator monitored dissolved CH4 and CO2 concentrations, and diffusive and total fluxes of CO2 and CH4 were measured using floating chambers in triplicates every 30 minutes during the same period. We observed that CH4 ebullition as well as CH4 and CO2 diffusion peaked during the day, with peak fluxes being up to four times higher than low fluxes. However, the exact timing and magnitude varied for the different sampling events, and could in part be linked to biological and physical properties of the respective reservoir. This study combined different state

  17. 30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... following conditions: If you have . . . Then you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with...

  18. 30 CFR 250.1153 - When must I conduct a static bottomhole pressure survey?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... you must conduct . . . (1) A new producing reservoir A static bottomhole pressure survey within 90 days after the date of first continuous production. (2) A reservoir with three or more producing...

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands,more » high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.« less

  20. Seismic imaging of the oil and geothermal reservoirs using the induced seismicity

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Toksoz, M. N.; Fehler, M.

    2011-12-01

    It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time

  1. Association between postexercise hypotension and long-term training-induced blood pressure reduction: a pilot study.

    PubMed

    Hecksteden, Anne; Grütters, Teresa; Meyer, Tim

    2013-01-01

    The interindividual variability in the efficacy of regular endurance exercise to lower blood pressure is high. Therefore, to optimize training prescriptions, predictors would be desirable. The main hypothesis of the present study was an association between postexercise hypotension after an exhaustive exercise test and chronic blood pressure reductions in response to an endurance training program. Uncontrolled prospective training study. University department. Healthy untrained subjects were recruited by flyers. Inclusion criteria were age 30 to 60 years, body mass index 25 to 35 kg/m(2), untrained status (<1 hour/week regular activity; V[Combining Dot Above]O(2max) < 45 mL·min(-1)·kg(-1)), blood pressure 150/95 mm Hg, nonsmoker; 14 subjects were included, 12 could be analyzed. Walking/running 4 times per week at 60% heart rate reserve for 4 weeks. Difference in blood pressure from the initial resting value to 1 and 24 hours after the initial test (acute) and the resting value before the final test (chronic), respectively. Initial resting systolic blood pressure was 134 ± 18 mm Hg. Values were significantly reduced at all time points thereafter (1 hour: 125 ± 13 mm Hg; 24 hours: 128 ± 12 mm Hg; final: 125 ± 18 mm Hg). Acute and chronic changes correlated significantly (1 hour: P = 0.003; r = 0.77; 24 hours: P = 0.017; r = 0.67). Results for diastolic blood pressure were comparable yet less pronounced. The magnitude of postexercise hypotension is a promising candidate for the prediction of individual blood pressure-related training efficacy. Easily determined, it might be used to improve training prescriptions. However, further studies are needed to assess predictive accuracy.

  2. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    NASA Astrophysics Data System (ADS)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  3. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    PubMed

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  4. Pressure-reduction and preservation in custom-made footwear of patients with diabetes and a history of plantar ulceration.

    PubMed

    Waaijman, R; Arts, M L J; Haspels, R; Busch-Westbroek, T E; Nollet, F; Bus, S A

    2012-12-01

    To assess the value of using in-shoe plantar pressure analysis to improve and preserve the offloading properties of custom-made footwear in patients with diabetes. Dynamic in-shoe plantar pressures were measured in new custom-made footwear of 117 patients with diabetes, neuropathy, and a healed plantar foot ulcer. In 85 of these patients, high peak pressure locations (peak pressure > 200 kPa) were targeted for pressure reduction (goal: > 25% relief or below an absolute level of 200 kPa) by modifying the footwear. After each of a maximum three rounds of modifications, pressures were measured. In a subgroup of 32 patients, pressures were measured and, if needed, footwear was modified at 3-monthly visits for 1 year. Pressures were compared with those measured in 32 control patients who had no footwear modifications based on pressure analysis. At the previous ulcer location and the highest and second highest pressure locations, peak pressures were significantly reduced by 23%, 21% and 15%, respectively, after modification of footwear. These lowered pressures were maintained or further reduced over time and were significantly lower, by 24-28%, compared with pressures in the control group. The offloading capacity of custom-made footwear for high-risk patients can be effectively improved and preserved using in-shoe plantar pressure analysis as guidance tool for footwear modification. This provides a useful approach to obtain better offloading footwear that may reduce the risk for pressure-related diabetic foot ulcers. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  5. On a model simulating lack of hydraulic connection between a man-made reservoir and the volume of poroelastic rock hosting the focus of a post-impoundment earthquake

    NASA Astrophysics Data System (ADS)

    Chander, Ramesh; Tomar, S. K.

    2016-12-01

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of post-impoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made reservoirs. We consider a uniform circular reservoir which rests on the top surface of a no-hydraulic-connection earth model (NHCEM). The model comprises a top elastic (E) layer, an intermediate poroelastic (P) layer, and a bottom elastic half space. The focus of a potential earthquake in the P layer is located directly under the reservoir. The E layer disrupts the hydraulic connection between the reservoir and the focus. Depth of water in the reservoir varies as H ' + hcos( ω t). Expressions for reservoir-induced stresses and pore pressure in different layers of the NHCEM are obtained by solving the boundary-value problem invoking full coupling between mean normal stress and pore pressure in the P layer. As an application of the derived mathematical results, we have examined and found that earthquakes on 60∘ normal faults may occur in the P-layer of a selected NHCEM at epochs of low reservoir level if the reservoir lies mostly in the footwall of the fault. The exercise was motivated by observations of such earthquakes under the man-made Lake Mead after it was impounded.

  6. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  7. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water

  8. High Intracranial Pressure Induced Injury in the Healthy Rat Brain.

    PubMed

    Dai, Xingping; Bragina, Olga; Zhang, Tongsheng; Yang, Yirong; Rao, Gutti R; Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M

    2016-08-01

    We recently showed that increased intracranial pressure to 50 mm Hg in the healthy rat brain results in microvascular shunt flow characterized by tissue hypoxia, edema, and increased blood-brain barrier permeability. We now determined whether increased intracranial pressure results in neuronal injury by Fluoro-Jade stain and whether changes in cerebral blood flow and cerebral metabolic rate for oxygen suggest nonnutritive microvascular shunt flow. Intracranial pressure was elevated by a reservoir of artificial cerebrospinal fluid connected to the cisterna magna. Arterial blood gases, cerebral arterial-venous oxygen content difference, and cerebral blood flow by MRI were measured. Fluoro-Jade stain neurons were counted in histologic sections of the right and left dorsal and lateral cortices and hippocampus. University laboratory. Male Sprague Dawley rats. Arterial pressure support if needed by IV dopamine infusion and base deficit corrected by sodium bicarbonate. Fluoro-Jade stain neurons increased 2.5- and 5.5-fold at intracranial pressures of 30 and 50 mm Hg and cerebral perfusion pressures of 57 ± 4 (mean ± SEM) and 47 ± 6 mm Hg, respectively (p < 0.001) (highest in the right and left cortices). Voxel frequency histograms of cerebral blood flow showed a pattern consistent with microvascular shunt flow by dispersion to higher cerebral blood flow at high intracranial pressure and decreased cerebral metabolic rate for oxygen. High intracranial pressure likely caused neuronal injury because of a transition from normal capillary flow to nonnutritive microvascular shunt flow resulting in tissue hypoxia and edema, and it is manifest by a reduction in the cerebral metabolic rate for oxygen.

  9. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  10. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  11. Enhanced Recovery in Tight Gas Reservoirs using Maxwell-Stefan Equations

    NASA Astrophysics Data System (ADS)

    Santiago, C. J. S.; Kantzas, A.

    2017-12-01

    Due to the steep production decline in unconventional gas reservoirs, enhanced recovery (ER) methods are receiving great attention from the industry. Wet gas or liquid rich reservoirs are the preferred ER candidates due to higher added value from natural gas liquids (NGL) production. ER in these reservoirs has the potential to add reserves by improving desorption and displacement of hydrocarbons through the medium. Nevertheless, analysis of gas transport at length scales of tight reservoirs is complicated because concomitant mechanisms are in place as pressure declines. In addition to viscous and Knudsen diffusion, multicomponent gas modeling includes competitive adsorption and molecular diffusion effects. Most models developed to address these mechanisms involve single component or binary mixtures. In this study, ER by gas injection is investigated in multicomponent (C1, C2, C3 and C4+, CO2 and N2) wet gas reservoirs. The competing effects of Knudsen and molecular diffusion are incorporated by using Maxwell-Stefan equations and the Dusty-Gas approach. This model was selected due to its superior properties on representing the physics of multicomponent gas flow, as demonstrated during the presented model validation. Sensitivity studies to evaluate adsorption, reservoir permeability and gas type effects are performed. The importance of competitive adsorption on production and displacement times is demonstrated. In the absence of adsorption, chromatographic separation is negligible. Production is merely dictated by competing effects between molecular and Knudsen diffusion. Displacement fronts travel rapidly across the medium. When adsorption effects are included, molecules with lower affinity to the adsorption sites will be produced faster. If the injected gas is inert (N2), an increase in heavier fraction composition occurs in the medium. During injection of adsorbing gases (CH4 and CO2), competitive adsorption effects will contribute to improved recovery of heavier

  12. Evaluation of monkey intraocular pressure by rebound tonometer

    PubMed Central

    Yu, Wenhan; Cao, Guiqun; Qiu, Jinghua; Ma, Jia; Li, Ni; Yu, Man; Yan, Naihong; Chen, Lei; Pang, Iok-Hou

    2009-01-01

    Purpose To evaluate the usefulness of the TonoVet™ rebound tonometer in measuring intraocular pressure (IOP) of monkeys. Methods The accuracy of the TonoVet™ rebound tonometer was determined in cannulated eyes of anesthetized rhesus monkeys where IOP was controlled by adjusting the height of a connected perfusate reservoir. To assess the applicability of the equipment through in vivo studies, the diurnal fluctuation of IOP and effects of IOP-lowering compounds were evaluated in monkeys. Results IOP readings generated by the TonoVet™ tonometer correlated very well with the actual pressure in the cannulated monkey eye. The linear correlation had a slope of 0.922±0.014 (mean±SEM, n=4), a y-intercept of 3.04±0.61, and a correlation coefficient of r2=0.97. Using this method, diurnal IOP fluctuation of the rhesus monkey was demonstrated. The tonometer was also able to detect IOP changes induced by pharmacologically active compounds. A single topical ocular instillation (15 μg) of the rho kinase inhibitor, H1152, produced a 5–6 mmHg reduction (p<0.001) in IOP, lasting at least 4 h. In addition, topical administration of Travatan®, a prostaglandin agonist, induced a small transient IOP increase (1.1 mmHg versus vehicle control; p=0.26) at 2 h after treatment followed by a pressure reduction at 23 h (−2.4 mmHg; p<0.05). Multiple daily dosing with the drug produced a persistent IOP-lowering effect. Three consecutive days of Travatan treatment produced ocular hypotension of −2.0 to −2.2 mmHg (p<0.05) the following day. Conclusions The rebound tonometer was easy to use and accurately measured IOP in the rhesus monkey eye. PMID:19898690

  13. Phytoplankton biodiversity changes in a shallow tropical reservoir during the hypertrophication process.

    PubMed

    Crossetti, L O; Bicudo, D C; Bicudo, C E M; Bini, L M

    2008-11-01

    Study aimed at evaluating phytoplankton biodiversity changes in a shallow tropical reservoir during its hypertrophication process. Samplings were carried out monthly during 8 consecutive years (1997-2004) in 5 depths. Conspicuous limnological changes in the reservoir derived from the presence and/or removal of the water hyacinth, characterized 3 different phases. Over the time series, reservoir changed from a typical polymictic eutrophic system to hypertrophic one, leading to a reduction of approximately 70 species (average 37%). Chlorophyceae accounted for the highest species richness (46%) among all algal classes and strictly followed total species richness variation. Internal feedback mechanisms intensification over phase III clearly promoted the sharp decrease in biodiversity. Highest decreases, mainly during springs, occurred simultaneously to the highest Cyanobacteria blooms. Increased turbidity due to heavy phytoplankton blooms suppressed all other algal groups, so that at the end of the present study even Cyanobacteria species richness decreased. Total dissolved phosphorous was included in most of the best selected models used to analyze the temporal patterns in species richness loss. Present data show that biodiversity loss following trophic change was not a single dimension of a single factor but, rather, a template of factors (e.g. light, stability) co-varying in consequence of the larger levels of biomass supported in the reservoir.

  14. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, M.A.; Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone hasmore » formed.« less

  15. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  16. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao

    2016-04-01

    Since the launch of the Three Gorges Dam on the Yangtze River, a distinctive reservoir fluctuation zone has been created and significantly modified by regular dam operations. Sediment redistribution within this artificial landscape differs substantially from that in natural fluvial riparian zones, due to a specific hydrological regime comprising steps of water impoundment with increasing magnitudes and seasonal water level fluctuation holding a range of sediment fluxes. This study reinterpreted post-dam sedimentary dynamics in the reservoir fluctuation zone by stratigraphy determination of a 345-cm long sediment core, and related it to impact of the hydrological regime. Seasonality in absolute grain-size composition of suspended sediment was applied as a methodological basis for stratigraphic differentiation. Sedimentary laminations with relatively higher proportions of sandy fractions were ascribed to sedimentation during the dry season when proximal subsurface bank erosion dominates source contributions, while stratigraphy with a lower proportion of sandy fractions is possibly contributed by sedimentation during the wet season when distal upstream surface erosion prevails. Chronology determination revealed non-linear and high annual sedimentation rates ranging from 21.7 to 152.1cm/yr. Although channel geomorphology may primarily determine the spatial extent of sedimentation, seasonal sedimentary dynamics was predominantly governed by the frequency, magnitude, and duration of flooding. Summer inundation by natural floods with enhanced sediment loads produced from upstream basins induced higher sedimentation rates than water impoundment during the dry season when distal sediment supply was limited. We thus conclude that flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone, though little impact on total sediment retention rate was detected. Ongoing reductions in flow and sediment supply under human disturbance may

  17. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  18. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation

  19. Hydrocarbon reservoirs of Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-01-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less

  20. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  1. New boundary conditions for oil reservoirs with fracture

    NASA Astrophysics Data System (ADS)

    Andriyanova, Elena; Astafev, Vladimir

    2017-06-01

    Based on the fact that most of oil fields are on the late stage of field development, it becomes necessary to produce hard-to-extract oil, which can be obtained only by use of enhance oil recovery methods. For example many low permeable or shale formations can be developed only with application of massive hydraulic fracturing technique. In addition, modern geophysical researches show that mostly oil bearing formations are complicated with tectonic faults of different shape and permeability. These discontinuities exert essential influence on the field development process and on the well performance. For the modeling of fluid flow in the reservoir with some area of different permeability, we should determine the boundary conditions. In this article for the first time the boundary conditions for the problem of fluid filtration in the reservoir with some discontinuity are considered. This discontinuity represents thin but long area, which can be hydraulic fracturing of tectonic fault. The obtained boundary condition equations allow us to take into account pressure difference above and below the section and different values of permeability.

  2. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  3. Quantitative Discomanometry: Correlation of Intradiscal Pressure Values to Pain Reduction in Patients With Intervertebral Disc Herniation Treated With Percutaneous, Minimally Invasive, Image-Guided Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippiadis, Dimitrios K., E-mail: dfilippiadis@yahoo.gr; Mazioti, A., E-mail: argyromazioti@yahoo.gr; Papakonstantinou, O., E-mail: sogofianol@gmail.com

    Purpose: To illustrate quantitative discomanometry's (QD) diagnostic efficacy and predictive value in discogenic-pain evaluation in a prospective study correlating intradiscal pressure values with pain reduction after percutaneous image-guided technique (i.e., percutaneous decompression, PD). Materials and Methods: During the last 3 years, 36 patients [21 male and 15 female (mean age 36 {+-} 5.8 years)] with intervertebral disc hernia underwent QD before PD. Under absolute sterilization and fluoroscopy, a mixture of contrast medium and normal saline (3:1 ratio) was injected. A discmonitor performed a constant rate injection and recorded pressure and volume values, thus producing the relative pressure-volume curve. PD wasmore » then performed. Pain reduction and improved mobility were recorded at 3, 12, and 24 months after PD using clinical evaluation and a numeric visual scale (NVS; 0 to 10 units). Results: Mean pain values of 7.5 {+-} 1.9 (range 4 to 8) NVS units were recorded before PD; these decreased to 2.9 {+-} 2.44 at 3 months, 1.0 {+-} 1.9 at 12 months, and 1.0 {+-} 1.9 NVS units at 24 months after PD. Recorded correlations (pressure, volume, significant pain-reduction values) with bilateral statistical significance included a maximum injected volume of 2.4 ml (p = 0.045), P{sub o} < 14 psi [initial pressure required to inject 0.1 ml of the mixture inside the disc (p = 0.05)], P{sub max} {<=} 65 psi [greatest pressure value on the curve (p = 0.018)], and P{sub max} - P{sub o} {<=} 47 psi (p = 0.038). Patients meeting these pressure or volume cut-off points, either independently or as a total, had significant pain reduction (>4 NVS units) after PD. No complications were noted. Conclusions: QD is an efficient technique that may have predictive value for discogenic pain evaluation. It might serve as a useful tool for patient selection for intervertebral disc therapies.« less

  4. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2011-10-01 2011-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  5. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... 49 Transportation 5 2010-10-01 2010-10-01 false Reservoirs required. 393.50 Section 393.50... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No. 121...

  6. Managing hydroclimatological risk to water supply with option contracts and reservoir index insurance

    NASA Astrophysics Data System (ADS)

    Brown, Casey; Carriquiry, Miguel

    2007-11-01

    This paper explores the performance of a system of economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on stakeholders of shared water supply. The system is composed of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows. The insurance is designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Insurance provides the irregularly needed funds for exercising the water options. The combined option contract - reservoir index insurance system creates risk sharing between sectors that is currently lacking in many shared water situations. Contracts are designed for a shared agriculture - urban water system in Metro Manila, Philippines, using optimization and Monte Carlo analysis. Observed reservoir inflows are used to simulate contract performance. Results indicate the option - insurance design effectively smooths water supply costs of hydrologic variability for both agriculture and urban water.

  7. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  8. Reservoir management cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, M.S.

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  9. How Pore-Fluid Pressure due to Heavy Rainfall Influences Volcanic Eruptions, Example of 1998 and 2008 Eruptions of Cerro Azul (Galapagos)

    NASA Astrophysics Data System (ADS)

    Albino, F.; Amelung, F.; Gregg, P. M.

    2016-12-01

    About 30 worldwide seismic studies have shown a strong correlation between rainfall and earthquakes in the past 22 years (e.g. Costain and Bollinger, 2010). Such correlation has been explained by the phenomenon of hydro-seismicity via pore pressure diffusion: an increase of pore-fluid in the upper crust reduces the normal stress on faults, which can trigger shear failure. Although this pore pressure effect is widely known for earthquakes, this phenomenon and more broadly poro-elasticity process are not widely studied on volcanoes. However, we know from our previous works that tensile failures that open to propagate magma through the surface are also pore pressure dependent. We have demonstrated that an increase of pore pressure largely reduces the overpressure required to rupture the magma reservoir. We have shown that the pore pressure has more influence on reservoir stability than other parameters such as the reservoir depth or the edifice loading. Here, we investigate how small pore-fluid changes due to hydrothermal or aquifer refill during heavy rainfall may perturb the conditions of failure around magma reservoirs and, what is more, if these perturbations are enough to trigger magma intrusions. We quantify the pore pressure effect on magmatic system by combining 1) 1D pore pressure diffusion model to quantify how pore pressure changes from surface to depth after heavy rainfall events and 2) 2D poro-elastic numerical model to provide the evolution of failure conditions of the reservoir as a consequence of these pore pressure changes. Sensitivity analysis is also performed to characterize the influence on our results of the poro-elastic parameters (hydraulic diffusivity, permeability and porosity) and the geometry of the magma reservoir and the aquifer (depth, size, shape). Finally, we apply our methodology to Cerro Azul volcano (Galapagos) where both last eruptions (1998 and 2008) occurred just after heavy rainfall events, without any pre-eruptive inflation. In

  10. 32 CFR 644.4 - Reservoir projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2011-07-01 2011-07-01 false Reservoir projects. 644.4 Section 644.4 National...

  11. 32 CFR 644.4 - Reservoir Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects. 8.1Lands for reservoir construction and operation. 8.2Additional lands for correlative purposes... potentials of each reservoir. 8.1Lands for reservoir construction and operation. The fee title will be... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National...

  12. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  13. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  14. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  15. Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Moriya, Hirokazu; Ito, Takatoshi; Asanuma, Hiroshi; Häring, Markus

    2017-04-01

    Understanding the details of pressure migration during hydraulic stimulation is important for the design of an energy extraction system and reservoir management, as well as for the mitigation of hazardous-induced seismicity. Based on microseismic and regional stress information, we estimated the pore pressure increase required to generate shear slip on an existing fracture during stimulation. Spatiotemporal analysis of pore pressure migration revealed that lower pore pressure migrates farther and faster and that higher pore pressure migrates more slowly. These phenomena can be explained by the relationship between fracture permeability and stress state criticality. Subcritical fractures experience shear slip following smaller increases of pore pressure and promote migration of pore pressure because of their enhanced permeability. The difference in migration rates between lower and higher pore pressures suggests that the optimum wellhead pressure is the one that can stimulate relatively permeable fractures, selectively. Its selection optimizes economic benefits and minimizes seismic risk.

  16. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  17. RADIUS OF PRESSURE INFLUENCE OF INJECTION WELLS

    EPA Science Inventory

    It is often necessary, in injection well design, to predict the probable rate of pressure increase in the injection reservoir that would be expected to result from a proposed injection program. Areas of application include oilfield brine injection, waterflooding for secondary oil...

  18. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    In recent years, carbon capture and storage (CCS) has emerged as a key technology for limiting anthropogenic CO2 emissions while allowing the continued utilisation of fossil fuels. The most promising geological storage sites are deep saline aquifers because the capacity, integrity and injection economics are most favourable, and the environmental impact can be minimal. Many rock-fluid chemical reactions are known to occur both during and after CO2 injection in saline aquifers. The importance of rock-fluid reactions in the (CO2 + H2O) system can be understood in terms of their impact on the integrity and stability of both the formation rocks and cap rocks. The chemical interactions between CO2-acidified brines and the reservoir minerals can influence the porosity and permeability of the formations, resulting in changes in the transport processes occurring during CO2 storage. Since carbonate minerals are abundant in sedimentary rocks, one of the requirements to safely implement CO2 storage in saline aquifers is to characterise the reactivity of carbonate minerals in aqueous solutions at reservoir conditions. In this work, we reported measurements of the intrinsic rate of carbonate dissolution in CO2-saturated water under high-temperature high-pressure reservoir conditions extending up to 373 K and 14 MPa. The rate of carbonate dissolution in CO2-free HCl(aq) was also measured at ambient pressure at temperatures up to 353 K. Various pure minerals and reservoir rocks were investigated in this study, including single-crystals of calcite and magnesite, and samples of dolomite, chalks and sandstones. A specially-designed batch reactor system, implementing the rotating disc technique, was used to obtain the intrinsic reaction rate at the solid/liquid interface, free of mass transfer effects. The effective area and mineralogy of the exposed surface was determined by a combination of surface characterisation techniques including XRD, SEM, EDX and optical microscopy. The

  19. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  20. 4D.10: CHANGES IN PWV IN PREVIOUSLY UNTREATED MILD HYPERTENSIVES ARE RELATED TO REDUCTION OF BLOOD PRESSURE BY TREATMENT.

    PubMed

    Rodilla Sala, E; Millasseau, S; Escrivá, M; García, J; Costa, J A; Pascual, J M

    2015-06-01

    Changes in target organ lesions, even beyond reduction of blood pressure, have been shown to have predictive value. Destiffening of arterial damage seems to be possible but the mechanisms are still elusive. We report changes in pulse wave velocity (PWV) after one year of treatment in new diagnosed previously untreated, hypertensive patients. We included in this longitudinal study 356 consecutive, never-treated patients with suspected hypertension. After standard clinical assessment, including ambulatory blood pressure monitoring (ABPM), pulse wave analysis and PWV (Sphygmocor®, AtcorMedical), 231 showed elevated office and/or ambulatory blood pressure (BP) and received monotherapy treatment accordingly. 125 patients who showed to be normotensive, served as control group. Clinical assessment was repeated after a median of 1.1 years in the whole cohort. PWV was adjusted to BP. In the whole group, 179 patients were female (50.3%), mean age was 48.8 ± 12years. The hypertensive diagnosed group tended to be older (50 vs. 46 years, p < 0,001) and had higher PWV even after mean BP adjustment (8.6 ± 2.0 vs. 8.0 ± 1.4 m/s, p < 0.001), higher baseline office, ambulatory and central BP (145/86, 136/86 and 138/87 mmHg vs. 125/75, 120/76 and 120/79, respectively, p < 0,001). After 1 year of treatment, BP was significantly improved only in the hypertensive group (follow-up office, ambulatory and central BP 128/75, 124/78, 121/79 mmHg, pintragroup < 0.001) and remained constant in the control group (126/74, 120/76, 120/80, pintragroup = ns). The reduction of central and peripheral systolic BP in the hypertensive group was of the same magnitude (-17 vs -17 mmHg, p = ns). PWV was significantly reduced in both groups even after BP adjustment, at follow-up they were similar between groups (7.8 vs. 7.7, p = ns). The reduction of adjusted PWV was significantly higher in the hypertensive group (Delta = 0.86 vs. 0,20 m/s, p = 0

  1. The identification of multi-cave combinations in carbonate reservoirs based on sparsity constraint inverse spectral decomposition

    NASA Astrophysics Data System (ADS)

    Li, Qian; Di, Bangrang; Wei, Jianxin; Yuan, Sanyi; Si, Wenpeng

    2016-12-01

    Sparsity constraint inverse spectral decomposition (SCISD) is a time-frequency analysis method based on the convolution model, in which minimizing the l1 norm of the time-frequency spectrum of the seismic signal is adopted as a sparsity constraint term. The SCISD method has higher time-frequency resolution and more concentrated time-frequency distribution than the conventional spectral decomposition methods, such as short-time Fourier transformation (STFT), continuous-wavelet transform (CWT) and S-transform. Due to these good features, the SCISD method has gradually been used in low-frequency anomaly detection, horizon identification and random noise reduction for sandstone and shale reservoirs. However, it has not yet been used in carbonate reservoir prediction. The carbonate fractured-vuggy reservoir is the major hydrocarbon reservoir in the Halahatang area of the Tarim Basin, north-west China. If reasonable predictions for the type of multi-cave combinations are not made, it may lead to an incorrect explanation for seismic responses of the multi-cave combinations. Furthermore, it will result in large errors in reserves estimation of the carbonate reservoir. In this paper, the energy and phase spectra of the SCISD are applied to identify the multi-cave combinations in carbonate reservoirs. The examples of physical model data and real seismic data illustrate that the SCISD method can detect the combination types and the number of caves of multi-cave combinations and can provide a favourable basis for the subsequent reservoir prediction and quantitative estimation of the cave-type carbonate reservoir volume.

  2. Permeability of intact and fractured rocks in Krafla geothermal reservoir, Iceland

    NASA Astrophysics Data System (ADS)

    Eggertsson, Gudjon; Lavallée, Yan; Markusson, Sigurdur

    2016-04-01

    The magmatic-hydrothermal system at Krafla Volcano, North-East Iceland, has been the source of an important geothermal fluids, exploited by Landsvirkjun National Power since 1977 to generate electricity (~60 MW). In the last decade, the energy was extracted from fluids of moderate temperature (200-300°C), but in order to satisfy the demand for sustainable, environmentally-safe energy, Landsvirkjun is aiming to source fluids in the super high-enthalpy hydrothermal system (400°-600°C and <220 bar). In relation to this, IDDP-1 was drilled in 2009. Drilling was terminated at a depth of 2100m when the drill string penetrated rhyolite magma. The rock around this rhyolite magma body shows great potential for production, as its temperatures are very high and it is located at shallow depth. Here, we present the results of mechanical and permeability tests carried out on the main lithologies forming the geothermal reservoir rock. During a field survey in fall 2015, and through information gathered from previous drilling exercises, five main rock types were identified and sampled to carry out this study: that is, basalts (10% to 60% porosity), hyaloclastites (35% to 45% porosity), obsidians (0,25% to 5% porosity), ignimbrites (13% to 18% porosity), and intrusive felsites and microgabbros (10% to 16% porosity). The only rock type not found in outcrops on the surface is the felsite and microgabbros which are thought to be directly above the rhyolite magma (~80m thick). The reason they can be found on the surface is that during the Mývatns-fires, an explosion creating the Víti crater and scattered these rocks around the area. For all these lithologies, the porosity was determined using helium pycnometry. On-going permeability measurements are made using a classic hydrostatic cell. To simulate the stress conditions extant in the hydrothermal field, we performed permeability measurements at a range of confining pressure (1 to 100 MPa), using a pore pressure differential of 0

  3. An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Kitanidis, P. K.

    2013-12-01

    Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.

  4. Plantar Pressure Anomalies After Open Reduction With Internal Fixation of High-Grade Calcaneal Fractures.

    PubMed

    Hetsroni, Iftach; Ben-Sira, David; Nyska, Meir; Ayalon, Moshe

    2014-07-01

    Plantar pressure abnormalities after open reduction with internal fixation (ORIF) of intra-articular calcaneal fractures have been observed previously, but high-grade fractures were not selectively investigated and follow-up times were shorter than 2 years. The purpose of this study was to characterize plantar pressure anomalies in patients with exclusively high-grade calcaneal fractures after ORIF with a minimum 2 years of follow-up, and to test the association between plantar pressure distribution and the clinical outcome. The orthopaedic registry was reviewed to identify patients with isolated high-grade calcaneal fractures (Sanders types III-IV) who were operated on and had a minimum 2 years of follow-up. Sixteen patients were evaluated. Mean age was 47 years and follow-up was between 2 and 6 years. The Pedar-Mobile system was used to measure 3 loading and 3 temporal variables and compare these between the operated and the uninjured limbs. Mean American Orthopaedic Foot and Ankle Society (AOFAS) score was 76 ± 7 at latest follow-up. Bohler's angle was 5 ± 8 degrees before surgery and 25 ± 7 degrees at latest follow-up. Stance was shorter in operated limbs (P = .001). Timing of the peak of pressure was delayed in operated limbs under the hallux and the second toe (P ≤ .03). Peak pressure, force time integral, and pressure time integral were increased under the lateral midfoot (P ≤ .03) and decreased under the second metatarsal (P ≤ .03). Force time integral was decreased under the first metatarsal (P = .02) and under the hallux and the lateral toes (P ≤ .05). Increased loading under the lateral midfoot and decreased loading under the lateral toes were correlated with poorer clinical outcome (r = -.53, P < .05, and r = .63, P < .01, respectively). Side-to-side plantar pressure mismatch persisted at more than 2 years after ORIF of high-grade calcaneal fractures performed via lateral approach, despite improvement of Bohler's angle. This was characterized

  5. Production Characteristics of Oceanic Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2014-12-01

    Oceanic natural gas hydrate (NGH) accumulations form when natural gas is trapped thermodynamically within the gas hydrate stability zone (GHSZ), which extends downward from the seafloor in open ocean depths greater than about 500 metres. As water depths increase, the thickness of the GHSZ thickens, but economic NGH deposits probably occur no deeper than 1 km below the seafloor. Natural gas (mostly methane) appears to emanate mostly from deeper sources and migrates into the GHSZ. The natural gas crystallizes as NGH when the pressure - temperature conditions within the GHSZ are reached and when the chemical condition of dissolved gas concentration in pore water is high enough to favor crystallization. Although NGH can form in both primary and secondary porosity, the principal economic target appears to be turbidite sands on deep continental margins. Because these are very similar to the hosts of more deeply buried conventional gas and oil deposits, industry knows how to explore for them. Recent improvements in a seismic geotechnical approach to NGH identification and valuation have been confirmed by drilling in the northern Gulf of Mexico and allow for widespread exploration for NGH deposits to begin. NGH concentrations occur in the same semi-consolidated sediments in GHSZs worldwide. This provides for a narrow exploration window with low acoustic attenuation. These sediments present the same range of relatively easy drilling conditions and formation pressures that are only slightly greater than at the seafloor and are essentially equalized by water in wellbores. Expensive conventional drilling equipment is not required. NGH is the only hydrocarbon that is stable at its formation pressures and incapable of converting to gas without artificial stimulation. We suggest that specialized, NGH-specific drilling capability will offer opportunities for much less expensive drilling, more complex wellbore layouts that improve reservoir connectivity and in which gas

  6. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  7. Andrew integrated reservoir description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the localmore » reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.« less

  8. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these

  9. Reduction of hip joint reaction force via medio-lateral foot center of pressure manipulation in bilateral hip osteoarthritis patients.

    PubMed

    Solomonow-Avnon, Deborah; Haim, Amir; Levin, Daniel; Elboim-Gabyzon, Michal; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2016-10-01

    Loading/excessive loading of the hip joint has been linked to onset and progression of hip osteoarthritis. Footwear-generated biomechanical manipulation in the frontal plane has been previously shown in a cohort of healthy subjects to cause a specific gait adaption when the foot center of pressure trajectory was shifted medially, which thereby significantly reduced hip joint reaction force. The objective of the present study was to validate these results in a cohort of female bilateral hip osteoarthritis patients. Sixteen patients underwent gait analysis while using a footworn biomechanical device, allowing controlled foot center of pressure manipulation, in three para-sagittal configurations: medial, lateral, and neutral. Hip osteoarthritis patients exhibited similar results to those observed in healthy subjects in that a medial center of pressure led to an increase in inter-maleolar distance while step width (i.e., distance between right and left foot center of pressure) remained constant. This adaptation, which we speculate subjects adopt to maintain base of support, was associated with significantly greater hip abduction, significantly decreased hip adduction moment, and significantly reduced joint reaction force compared to the neutral and lateral configurations. Recommendations for treatment of hip osteoarthritis emphasize reduction of loads on the pathological joint(s) during daily activities and especially in gait. Our results show that a medially deviated center of pressure causes a reduction in hip joint reaction force. The present study does not prove, but rather suggests, clinical significance, and further investigation is required to assess clinical implications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1762-1771, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  11. Practical characterization of eolian reservoirs for development: Nugget Sandstone, Utah—Wyoming thrust belt

    NASA Astrophysics Data System (ADS)

    Lindquist, Sandra J.

    1988-04-01

    poorest reservoir properties. These non-dune facies contain intergranular micritic carbonate and illite precipitates and are most affected by compaction and pressure solution phenomena. Open types of fractures are somewhat more likely in this lower permeability rock. Depositional models incorporating dune morphologies, facies distribution, permeability directionality, and theoretical concepts regarding dune migration through time are useful in delineating correlative intervals most likely to have continuity and potential communication of reservoir properties. Stratigraphic models can be adapted for reservoir simulation studies and also can be utilized in solving structural resolution problems if correlatable vertical sequences and relatively consistent cross-strata orientations exist.

  12. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  13. Forecast Informed Reservoir Operations - An Opportunity to Improve Water Supply Reliability Lake Mendocino Demonstration Project

    NASA Astrophysics Data System (ADS)

    Jasperse, J.; Ralph, F. M.

    2016-12-01

    Forecast Informed Reservoir Operations (FIRO) is a management strategy that is gaining interest in the western United States as a means to improve the performance of reservoirs to provide more reliable water supply for municipal, agricultural, and environmental water needs as well as enhancing the flood protection capacity of reservoirs. Many surface water reservoirs were built decades ago and are operated in accordance with rules that were developed based on the best information at the time of construction. Over time there have been increasing stressors that impact effective reservoir operations including: increasing water demand; providing in-stream flows for habitat of aquatic species; and climate change. Few new reservoirs are being constructed, therefore there is motivation by water managers to more effectively operate existing reservoirs by optimizing operational rules under a decision framework that considers forecasting. The viability of FIRO is being investigated at Lake Mendocino in northern California. This facility is managed for flood protection by the U.S. Army Corps of Engineers (USACE) while the Sonoma County Water Agency (SCWA) is responsible for the management of the water supply pool. Reductions of reservoir inflow due to recent operational license conditions of an upstream hydroelectric facility coupled with highly variable precipitation (due to the significance of atmospheric rivers in the region) has led to difficulties in maintaining reservoir storage to meet stream flows for agricultural and municipal water users and to meet in-stream flow requirements for three salmonid species listed under the Endangered Species Act. The reduced water supply reliability of the reservoir has motivated water managers and scientists from local, state, and federal agencies to investigate whether FIRO could help address this challenge. This effort is led by a Steering Committee comprised of members from SCWA, Scripps-UC San Diego, USACE, NOAA, California

  14. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  15. Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang

    2014-04-01

    This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less

  16. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios weremore » conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the

  17. Seal assessment and estimated storage capacities of a targeted CO2 reservoir based on new displacement pressures in SW Wyoming, U.S.A.

    NASA Astrophysics Data System (ADS)

    Spaeth, Lynsey; Campbell-Stone, Erin; Lynds, Ranie; Frost, Carol; McLaughlin, J. Fred

    2013-04-01

    single wetting phase at elevated pressures and temperatures, resulting in an interfacial tension of 0 milliNewton/meter. Under these conditions the pore throat radius of sealing units is assumed to be the principle inhibitor to flow through the seal. Experimental data indicate pore throat radii range from 39.2 to 113.5 nanometers in the confining system, and preliminary column height calculations indicate that, depending on the size of the plume, reservoir thickness will most likely be the limiting factor to the amount of CO2 that can be sequestered rather than the column height.

  18. Reduction of particulate carryover from a pressurized fluidized bed

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.

  19. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia.

    PubMed

    Estrada-Peña, Agustín; Álvarez-Jarreta, Jorge; Cabezas-Cruz, Alejandro

    2018-04-12

    The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of

  20. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  1. Water resources review: Wheeler Reservoir, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is onemore » in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.« less

  2. Fisheries and Limnological Studies on West Point Reservoir, Alabama-Georgia. Phase IV.

    DTIC Science & Technology

    1984-05-01

    opportunities. In this resepct newly impounded reservoirs provide exceptional fishing, especially for carnivorous species such as the largemough bass...formalin containing rose bengal, a stain selective for tissues . The stain facilitated sorting and removal of the invertebrates from the ’ P remaining debris...notable increases in abundance of aquatic plants during 1979-80. Observations indicated a reduction in the area of coverage of the most abundant aquatic

  3. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippmann, M.J.; Truesdell, A.H.

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins ofmore » the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.« less

  4. 4. International reservoir characterization technical conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energymore » Science and Technology database.« less

  5. Single well productivity prediction of carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Le, Xu

    2018-06-01

    It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.

  6. Pressure enhanced penetration with shaped charge perforators

    DOEpatents

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  7. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs

    PubMed Central

    Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM. PMID:29621295

  8. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.

    PubMed

    Zhang, Fan; Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM.

  9. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of themore » report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).« less

  10. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  11. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  12. Reservoir induced seismicity in the Koyna-Warna region, India: Overview of the recent results and hypotheses

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. O.; Arora, K.; Ponomarev, A. V.; Srinagesh, D.; Smirnov, V. B.; Chadha, R. K.

    2017-07-01

    The state of the art in the geological and geophysical study of the region of Koyna and Warna water reservoirs is reviewed. The probable geodynamical factors of induced seismicity are discussed. The detailed geophysical surveys, satellite geodetic data, and time history of the seismicity in the region reveal a complicated pattern of the structure and recent geodynamics of the region. The existing data suggest that the induced seismicity is here most likely to be caused by the regional (intraplate) stresses driving the displacements along the orthogonal network of the faults whose strength has dropped and continues decreasing due to the reservoir impoundment and operation processes. The evolution of the seismicity which started immediately after the rapid filling of the Koyna reservoir in the region of the dam, then rapidly expanded southwards and eventually became concentrated in the region of the subsequently constructed Warna reservoir shows that seismic events can be initiated by a number of factors whose contributions may vary with time. The key ones among them include reservoir loading and its seasonal variations; water saturation of the faults which guide the propagation of the front of fracture, increased permeability, and, probably, mineral transformations (hydrolysis) under the water level fluctuations in the reservoirs; and displacement of the front of the high pore pressure down to the main source zone of the earthquakes at a depth of 6-8 km. Based on the analysis presented in the paper, we outline the directions of the future research aimed at studying the nature and dynamics of induced seismicity in the region of large water reservoirs.

  13. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  14. Numerical analysis of laser-driven reservoir dynamics for shockless loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Mu; Zhang Hongping; Sun Chengwei

    2011-05-01

    Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of

  15. Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis.

    PubMed

    Sell, Andrew; Fadaei, Hossein; Kim, Myeongsub; Sinton, David

    2013-01-02

    Predicting carbon dioxide (CO(2)) security and capacity in sequestration requires knowledge of CO(2) diffusion into reservoir fluids. In this paper we demonstrate a microfluidic based approach to measuring the mutual diffusion coefficient of carbon dioxide in water and brine. The approach enables formation of fresh CO(2)-liquid interfaces; the resulting diffusion is quantified by imaging fluorescence quenching of a pH-dependent dye, and subsequent analyses. This method was applied to study the effects of site-specific variables--CO(2) pressure and salinity levels--on the diffusion coefficient. In contrast to established, macro-scale pressure-volume-temperature cell methods that require large sample volumes and testing periods of hours/days, this approach requires only microliters of sample, provides results within minutes, and isolates diffusive mass transport from convective effects. The measured diffusion coefficient of CO(2) in water was constant (1.86 [± 0.26] × 10(-9) m(2)/s) over the range of pressures (5-50 bar) tested at 26 °C, in agreement with existing models. The effects of salinity were measured with solutions of 0-5 M NaCl, where the diffusion coefficient varied up to 3 times. These experimental data support existing theory and demonstrate the applicability of this method for reservoir-specific testing.

  16. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  17. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  18. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  19. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  20. Paving the road for hydraulic fracturing in Paleozoic tight gas reservoirs in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alzarouni, Asim

    This study contributes to the ongoing efforts of Abu Dhabi National Oil Company (ADNOC) to improve gas production and supply in view of increasing demand and diminishing conventional gas reservoirs in the region. The conditions of most gas reservoirs with potentially economical volumes of gas in Abu Dhabi are tight abrasive deep sand reservoirs at high temperature and pressures. Thus it inevitably tests the limit of both conventional thinking and technology. Accurate prediction of well performance is a major challenge that arises during planning phase. The primary aim is to determine technical feasibility for the implementation of the hydraulic fracture technology in a new area. The ultimate goal is to make economical production curves possible and pave the road to tap new resource of clean hydrocarbon energy source. The formation targeted in this study is characterized by quartzitic sandstone layers and variably colored shale and siltstones with thin layers of anhydrites. It dates back from late Permian to Carboniferous age. It forms rocks at the lower reservoir permeability ranging from 0.2 to less than 1 millidarcy (mD). When fractured, the expected well flow in Abu Dhabi offshore deep gas wells will be close to similar tight gas reservoir in the region. In other words, gas production can be described as transient initially with high rates and rapidly declining towards a pseudo-steady sustainable flow. The study results estimated fracturing gradient range from 0.85 psi/ft to 0.91 psi/ft. In other words, the technology can be implemented successfully to the expected rating without highly weighted brine. Hence, it would be a remarkable step to conduct the first hydraulic fracturing successfully in Abu Dhabi which can pave the road to tapping on a clean energy resource. The models predicted a remarkable conductivity enhancement and an increase of production between 3 to 4 times after fracturing. Moreover, a sustainable rate above 25 MMSCFD between 6 to 10 years is

  1. Magma Interactions in Rhyolite Reservoirs Caused by Injection of New Rhyolitic Liquid: Results From Analogue Modeling

    NASA Astrophysics Data System (ADS)

    Girard, G.; Stix, J.

    2006-12-01

    which travel through the liquid upper part of the reservoir together with the intruding plume. The particles then travel laterally a short distance and settle towards the mush. These experiments show that injected melt may not be easily distinguished from resident melt due to their similar compositions and mixing processes. However, the remobilization of a basal mush by intruding magma has key implications with regard to crystals in upper layers of magma reservoirs. If the crystals are erupted before settling, they will bear the imprint of strong pressure and temperature changes they have undergone during entrainment by the rising replenishing magma. These entrainment processes may be manifested by dissolution and/or overgrowth features, while the higher pressure at which the crystals first formed will be reflected by a core composition typical of deeper environments.

  2. Estimating Western U.S. Reservoir Sedimentation

    NASA Astrophysics Data System (ADS)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  3. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  4. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Smith, Megan M.; Hao, Yue

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  5. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    PubMed

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pressurized feed-injection spray-forming apparatus

    DOEpatents

    Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  7. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  8. CO2 Driven Mineral Transformations in Fractured Reservoir

    NASA Astrophysics Data System (ADS)

    Schaef, T.

    2015-12-01

    Engineering fracture systems in low permeable formations to increase energy production, accelerate heat extraction, or to enhance injectivity for storing anthropogenic CO2, is a challenging endeavor. To complicate matters, caprocks, essential components of subsurface reservoirs, need to maintain their sealing integrity in this modified subsurface system. Supercritical CO2 (scCO2), a proposed non-aqueous based working fluid, is capable of driving mineral transformations in fracture environments. Water dissolution in scCO2 significantly impacts the reactivity of this fluid, largely due to the development of thin adsorbed H2O films on the surfaces of exposed rocks and minerals. Adsorbed H2O films are geochemically complex microenvironments that host mineral dissolution and precipitation processes that could be tailored to influence overall formation permeability. Furthermore, manipulating the composition of injected CO2 (e.g., moisture content and/or reactive gases such as O2, NOx, or SOx) could stimulate targeted mineral transformations that enhance or sustain reservoir performance. PNNL has developed specialized experimental techniques that can be used to characterize chemical reactions occurring between minerals and pressurized gases. For example, hydration of a natural shale sample (Woodford Shale) has been characterized by an in situ infrared spectroscopic technique as water partitions from the scCO2 onto the shale. Mineral dissolution and carbonate precipitation reactions were tracked by monitoring changes of Si-O and C-O stretching bands, respectively Structural changes indicated expandable clays in the shale such as montmorillonite are intercalated with scCO2, a process not observed with the non-expandable kaolinite component. Extreme scale ab initio molecular dynamics simulations were used in conjunction with model mineral systems to identify the driving force and mechanism of water films. They showed that the film nucleation and formation on minerals is

  9. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  10. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    PubMed

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The

  11. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO 2 Storage Reservoirs

    DOE PAGES

    Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.

    2017-07-25

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks

  12. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO 2 Storage Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks

  13. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  14. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2008-02-01

    A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.

  15. Analysis of induced seismicity in geothermal reservoirs – An overview

    USGS Publications Warehouse

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  16. Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang

    2018-01-01

    Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.

  17. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  18. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  19. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  20. Neurotoxins in a water supply reservoir: An alert to environmental and human health.

    PubMed

    Calado, Sabrina Loise de Morais; Wojciechowski, Juliana; Santos, Gustavo Souza; Magalhães, Valéria Freitas de; Padial, André Andrian; Cestari, Marta Margarete; Silva de Assis, Helena Cristina da

    2017-02-01

    Reservoirs are important source of power generation, recreation, and water supply. Nevertheless, human activities have favored the bloom of toxic cyanobacteria in many reservoirs, which has resulted in environmental, social, and economic problems. This study aims to evaluate the water quality of a reservoir in South Brazil through the analysis of cyanobacteria and cyanotoxins PSTs (Paralytic Shellfish Toxins) and biomarkers of environmental contamination in fish. For this purpose, water samples and fish (Geophagus brasiliensis) (Perciformes: Cichlidae) were collected from September 2013 to May 2014. The fish G. brasiliensis were separated in two groups. The first one "site group" was euthanized after the sampling and their weight and length were measured. The blood, brain, muscle and liver were collected for chemical, biochemical and genetics biomarkers analysis. The second group "depuration group" was submitted to depuration experiment for 40 days in clean water. After that, the same procedures as for the first group were carried out. Cylindrospermopsis raciborskii was the dominant cyanobacteria found in the reservoir, and it showed a density above the recommended limit by Brazilian legislation of 20,000 cells/mL. Results showed that the fish accumulate PSTs in the Reservoir and these were not eliminated after 40 days. The biochemical and genotoxic biomarkers showed a significant difference between "site groups" and "depuration groups", which suggests a recovery of the antioxidant system and a reduction of cellular damage after 40 days in clean water. In conjunction with results reported earlier by others, Alagados Reservoir, in South Brazil, appears to have a persistent contamination of cyanotoxins. Moreover, the mixture of contaminants which may be present in the water body can explain the seasonal differences in fish at the sampled points. Copyright © 2016 Elsevier Ltd. All rights reserved.