Science.gov

Sample records for reshocked two-dimensional richtmyer-meshkov

  1. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability

    SciTech Connect

    Latini, M; Schilling, O; Don, W

    2006-03-16

    Finite-difference weighted essentially non-oscillatory (WENO) simulations of the reshocked two-dimensional single-mode Richtmyer-Meshkov instability using third-, fifth- and ninth-order spatial flux reconstruction and uniform spatial grid resolutions corresponding to 128, 256 and 512 points per initial perturbation wavelength are presented. The dependence of the density, vorticity, simulated density Schlieren and baroclinic production fields, mixing layer width, circulation deposition, mixing profiles, chemical products and mixing fractions, energy spectra, statistics, probability distribution functions, effective turbulent kinetic energy and enstrophy production/dissipation rates, numerical Reynolds numbers, and effective numerical viscosity on the order and resolution is comprehensively investigated to long evolution times. The results are interpreted using the computed implicit numerical diffusion arising from the truncation errors in the characteristic projection-based WENO method. It is quantitatively shown that simulations with higher order and higher resolution have lower numerical dissipation. The sensitivity of the quantities considered to the order and resolution is further amplified following reshock, when the energy deposition on the evolving interface by the second shock-interface interaction induces the formation of small-scale structures. Simulations using lower orders of reconstruction and on coarser grids preserve large-scale structures and flow symmetry to late times, while simulations using higher orders of reconstruction and on finer grids exhibit fragmentation of the structures, symmetry breaking and increased mixing. The investigation demonstrates that similar flow features are qualitatively and quantitatively captured by either approximately doubling the order or the resolution. Additionally, the computational scaling shows that increasing the order is more advantageous than doubling the resolution for the complex shock-driven hydrodynamic

  2. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability

    SciTech Connect

    Latini, M; Schilling, O; Don, W S

    2006-06-12

    Weighted essentially non-oscillatory (WENO) simulations of the reshocked two-dimensional single-mode Richtmyer-Meshkov instability using third-, fifth- and ninth-order spatial flux reconstruction and uniform grid resolutions corresponding to 128, 256 and 512 points per initial perturbation wavelength are presented. The dependence of the density, vorticity, simulated density Schlieren and baroclinic production fields, mixing layer width, circulation deposition, mixing profiles, production and mixing fractions, energy spectra, statistics, probability distribution functions, numerical turbulent kinetic energy and enstrophy production/dissipation rates, numerical Reynolds numbers, and numerical viscosity on the order and resolution is investigated to long evolution times. The results are interpreted using the implicit numerical dissipation in the characteristic projection-based, finite-difference WENO method. It is shown that higher order higher resolution simulations have lower numerical dissipation. The sensitivity of the quantities considered to the order and resolution is further amplified following reshock, when the energy deposition by the second shock-interface interaction induces the formation of small-scale structures. Lower-order lower-resolution simulations preserve large-scale structures and flow symmetry to late times, while higher-order higher-resolution simulations exhibit fragmentation of the structures, symmetry breaking and increased mixing. Similar flow features are qualitatively and quantitatively captured by either approximately doubling the order or the resolution. Additionally, the computational scaling shows that increasing the order is more advantageous than increasing the resolution for the flow considered here. The present investigation suggests that the ninth-order WENO method is well-suited for the simulation and analysis of complex multi-scale flows and mixing generated by shock-induced hydrodynamic instabilities.

  3. Investigation of the Richtmyer-Meshkov instability under re-shock conditions

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Sadot, O.; Formoza, A.; Malamud, G.; Elbaz, Y.; Levin, L. A.; Ben-Dor, G.; Shvarts, D.

    2008-12-01

    A systematic study has been made of the growth of the turbulent mixing zone (TMZ) after a re-shock in the framework of the Richtmyer-Meshkov instability where the initial shock is from the light fluid to the heavy one. The growth rate of the TMZ after the re-shock was found to be independent of its amplitude during the re-shock and to depend directly on the strength of the re-shock.

  4. Richtmyer-Meshkov instability on a low atwood number interface after reshock.

    SciTech Connect

    Weber, Chris

    2009-09-01

    The Richtmyer-Meshkov instability after reshock is investigated in shock tube experiments at the Wisconsin Shock Tube Laboratory using planar laser imaging and a new high speed interface tracking technique. The interface is a 50-50% volume fraction mixture of helium and argon stratified over pure argon. This interface has an Atwood number of 0.29 and near single mode, two-dimensional, standing wave perturbation with an average amplitude of 0.35 cm and a wavelength of 19.4 cm. The incident shock wave of Mach number 1.92 accelerates the interface before it is reshocked by a reflected Mach 1.70 shock wave. The amplitude growth after reshock is reported for variations in this initial amplitude, and several amplitude growth rate models are compared to the experimental growth rate after reshock. A new growth model is introduced, based on a model of circulation deposition calculated from one-dimensional gas dynamics parameters. This model is shown to compare well with the amplitude growth rate after reshock and the circulation over a half-wavelength of the interface after the first shock wave and after reshock.

  5. Richtmyer-Meshkov instability in dilute gas-particle mixtures with re-shock

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2013-11-01

    The Richtmyer-Meshkov instability (RMI) is investigated in a dilute gas-particle mixture using three-dimensional numerical simulations. This work extends an earlier two-dimensional study [S. Ukai, K. Balakrishnan, and S. Menon, "On Richtmyer-Meshkov instability in dilute gas-particle mixtures," Phys. Fluids 22, 104103 (2010)] to a larger parameter space consisting of variations in the mass loading and the particle size as well as considering both single-mode and multi-mode interface initializations. In addition, the effect of the presence of particles on re-shock RMI is also investigated. Single-phase numerical predictions of the mixing layer growth-rate are shown to compare well to both experimental and theoretical results. In a dilute gas-particle mixture, the initial growth-rate of RMI shows similar trends compared to previous work; however, the current numerical predictions show that there is an observable increase, not previously predicted, in the growth of the mixing layer at higher mass loadings. For the range of cases considered, an increase as much as 56% is observed. This increase is attributed to additional vorticity production in the mixing layer resulting from inter-phase momentum coupling. Moreover, the presence of particles introduces a continuous drag on the gas-phase resulting in a delay in the time at which re-shock occurs. This delay, which is observed to be as much as 6%, is largest for higher initial mass loadings and smaller particle radii and has a corresponding effect on both the growth-rate of the mixing-layer after re-shock and the final width of the mixing layer. A new semi-analytical correlation is developed and verified against the numerical data to predict the re-shocked RMI growth-rate in dilute gas-particle flows. The correlation shows that the re-shock RMI growth-rate is linearly proportional to the velocity jump at re-shock, the molecular mixing fraction, and the multi-phase Atwood number. Depending on the initial mass loading and

  6. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.

    PubMed

    Schilling, Oleg; Latini, Marco; Don, Wai Sun

    2007-08-01

    The ninth-order weighted essentially nonoscillatory (WENO) shock-capturing method is used to investigate the physics of reshock and mixing in two-dimensional single-mode Richtmyer-Meshkov instability to late times. The initial conditions and computational domain were adapted from the Mach 1.21 air (acetone)/ SF6 shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]: the growth of the bubble and spike amplitudes from fifth- and ninth-order WENO simulations of this experiment were compared to the predictions of linear and nonlinear amplitude growth models, and were shown to be in very good agreement with the experimental data prior to reshock by Latini, Schilling, and Don [Phys. Fluids 19, 024104 (2007)]. In the present investigation, the density, vorticity, baroclinic vorticity production, and simulated density Schlieren fields are first presented to qualitatively describe the reshock process. The baroclinic circulation deposition on the interface is shown to agree with the predictions of the Samtaney-Zabusky model and with linear instability theory. The time evolution of the positive and negative circulation on the interface is considered before and after reshock: it is shown that the magnitudes of the circulations are equal before as well as after reshock, until the interaction of the reflected rarefaction with the layer induces flow symmetry breaking and different evolutions of the magnitude of the positive and negative circulation. The post-reshock mixing layer growth is shown to be in generally good agreement with three models predicting linear growth for a short time following reshock. Next, a comprehensive investigation of local and global mixing properties as a function of time is performed. The distribution and amount of mixed fluid along the shock propagation direction is characterized using averaged mole fraction profiles, a fast kinetic reaction model, and mixing fractions. The modal distribution of energy in the mixing layer is

  7. Self-Similar evolution of Richtmyer-Meshkov instability under re-shock conditions

    NASA Astrophysics Data System (ADS)

    Malamud, Guy; Leinov, Eli; Formoza, Asi; Sadot, Oren; Levin, Arie; Ben-Dor, Gabi; Elbaz, Yonatan; Shvarts, Dov

    2011-10-01

    The Richtmyer-Meshkov (RM) instability is of critical importance in inertial confinement fusion (ICF) and astrophysics. In the present work a systematic study has been made of the growth of the turbulent mixing zone (TMZ) under re-shock conditions. In this study, shock-tube experiments were done by Leinov et al. changing the re-shock arrival time, by varying the shock-tube end wall distance, as well as the shock Mach number. Using 3D direct numerical simulations as well as 3D bubble-competition model, for various initial 3D conditions, it was found that the best agreement with the experimental results is achieved when the TMZ evolution is dominated by the self-similar behavior of the bubble size and amplitude distributions. The TMZ power law at the first and second shock was deducted from the experimental and numerical data and compared with the results of the bubble competition model.

  8. Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.

    2008-11-01

    We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.

  9. Large-eddy simulation and multiscale modelling of a Richtmyer Meshkov instability with reshock

    NASA Astrophysics Data System (ADS)

    Hill, D. J.; Pantano, C.; Pullin, D. I.

    2006-06-01

    Large-eddy simulations of the Richtmyer Meshkov instability with reshock are pre- sented and the results are compared with experiments. Several configurations of shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been simulated to match previous experiments and good agreement is found in the growth rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in this study allows for subgrid continuation modelling, where statistics of the unresolved scales of the flow are estimated. In particular, this multiscale modelling allows the anisotropy of the flow to be extended to the dissipation scale, eta, and estimates to be formed for the subgrid probability density function of the mixture fraction of air/SF6 based on the subgrid variance, including the effect of Schmidt number.

  10. Investigating shock-driven Richtmyer-Meshkov ripple evolution before and after re-shock

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Huntington, C. M.; MacLaren, S. A.; Raman, K. S.; Baumann, T.; Benedetti, L. R.; Doane, D. M.; Islam, T. S.; Felker, S.; Holder, J. P.; Seugling, R. M.; Wang, P.; Zhou, Y. K.; Doss, F. W.; Flippo, K. A.; Perry, T. S.

    2015-11-01

    Late-time Rayleigh-Taylor/Richtmyer-Meshkov(RM) ripple growth in an opposing-shock geometry is investigated using x-ray area backlit imaging of a shock-tube with indirectly driven shocks. The shocks are driven from opposing sides of the tube. The ablator layer on one side has pre-imposed ripples in the form of a sine wave with two amplitudes and a single wavelength. This ablator includes an opaque tracer layer that is used to track the perturbed interface as it is driven into a lower density foam. The ablator on the opposing side of the tube is flat, and is used to launch the shock that re-shocks the rippled interface. A large-area backlighter and gated x-ray radiography is used to capture images at different times during the RM instability growth. Here, first measurements obtained with this experimental platform at the NIF, including the optimization of the platform are presented. The RM ripple evolution before and after re-shock, including a possible loss of initial conditions are, also discussed. The data that informs the codes is compared to simulation results Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-674941.

  11. Large-eddy simulation of Richtmyer-Meshkov instability with re-shock

    NASA Astrophysics Data System (ADS)

    Hill, D. J.; Pullin, D. I.; Deiterding, R.

    2004-11-01

    We present results from large-eddy simulations (LES) of Richtmyer-Meshkov instability in a rectangular three-dimensional channel with re-shock following shock reflection off an end wall. Simulation parameters were tailored to match the experimental conditions of Vetter and Sturtevant (1995). The LES used the stretched-vortex (SV) subgrid-scale (SGS) model (Misra and Pullin 1997). The numerical method is a hybrid scheme, consisting of WENO in regions containing shock waves matched to a tuned centered-difference stencil in regions of smooth flow where the SGS model is activated. The LES shows the initial interface growth produced by the first shock-interface interaction followed by transition to a turbulent mixing layer after reshock. The SV model allows multi-scale modeling through the self-consistent calculation of the subgrid portions of the velocity spectra. This is done in a plane through the center of the mixing layer for both the in-plane (homogeneous) and out-of-plane (inhomogeneous) velocity components. These spectra extend to the viscous regime and mesh well with the corresponding resolved-scale spectra.

  12. Numerical simulations of the two-dimensional multimode Richtmyer-Meshkov instability

    SciTech Connect

    Thornber, B.; Zhou, Y.

    2015-03-15

    The two-dimensional Richtmyer-Meshkov instability occurs as shock waves pass through a perturbed material interface, triggering transition to an inhomogeneous turbulence variable density flow. This paper presents a series of large-eddy-simulations of the two dimensional turbulent RM instability and compares the results to the fully three dimensional simulations. There are two aims for this paper, the first is to explore what numerical resolution is required for a statistically converged solution for a two dimensional inhomogeneous flow field. The second aim is to elucidate the key differences in flow physics between the two dimensional and three dimensional Richtmyer-Meshkov instabilities, particularly their asymptotic self-similar regime. Convergence is achieved using 64 independent realisations and grid resolutions up to 4096{sup 2} in the plane. It is shown that for narrowband cases the growth rate θ = 0.48 which is substantially higher than the three-dimensional equivalent. Mix measures are consistently lower compared to three-dimensional, and the kinetic energy distribution is homogeneous at late time. The broadband case has a similar initial growth rate as the three-dimensional case, with a marginally lower θ = 0.63. Mix is similar in magnitude, but is reducing at late time. The spectra in both cases exhibit the dual-cascade expected from two-dimensional turbulence.

  13. Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock

    NASA Astrophysics Data System (ADS)

    Wang, T.; Bai, J. S.; Li, P.; Wang, B.; Du, L.; Tao, G.

    2016-06-01

    The multi-mode Richtmyer-Meshkov instability under reshock and the induced turbulent mixing are numerically investigated by using our parallel large-eddy simulation code MVFT (multi-viscous-flow and turbulence), in which the third-order Godonov scheme is used based on the finite volume method. The one-dimensional wave diagram of wave-interface interaction is presented. The turbulent mixing zone (TMZ) width is in good agreement with experiments. The TMZ width grows in time as a power law before reshock and an exponential law after reshock. The time scaling laws of statistics show the evolution of TMZ has a statistics similarity behavior. The turbulent kinetic energy and dissipation rate, whether they are the resolved-scales or subgrid-scales, all decay with time as a power law before reshock and an exponential law after reshock, so does the enstrophy. The modal analysis shows that the evolution of TMZ is still dominated by the initial perturbation modes during a long time after the first shock. The kinetic energy and enstrophy spectra are amplified extremely by the reshock. After reshock, the energy spectrum moves toward the low wave numbers, which illustrates that larger and larger spatial structures develop in the TMZ. It is also shown that the global spectra exhibit a k-3 scaling law after the reshock and a k-3.5 scaling law at the very late times in three-dimension.

  14. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock

    SciTech Connect

    Latini, M; Schilling, O

    2005-04-27

    The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when perturbations on an interface separating gases with different properties grow following the passage of a shock. This instability is typically studied in shock tube experiments, and constitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations and models for the instability growth and evolution have also been used to further elucidate the physics of the Richtmyer-Meshkov instability. In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme (as implemented in the HOPE code [68]) is applied to simulate the single-mode Richtmyer-Meshkov instability with reshock in two spatial dimensions. The initial conditions and computational domain for the simulations are modeled after the Collins and Jacobs [29] single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment. The following boundary conditions are used: (1) periodic in the spanwise direction corresponding to the cross section of the test section; (2) outflow at the entrance of the test section in the streamwise direction, and; (3) reflecting at the end wall of the test section in the streamwise direction. The present investigation has three principal motivations: (1) to provide additional validation of the HOPE code against available experimental data; (2) to provide numerical simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with reshock, and; (3) to systematically investigate the dependence of mixing properties on both the order of WENO reconstruction and on the spatial resolution. The present study constitutes the first comprehensive application of the high-resolution WENO method to the Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing.

  15. Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Orlicz, G. C.; Prestridge, K. P.; Balakumar, B. J.

    2012-03-01

    We present an experimental study on the dependence of initial condition parameters, namely, the amplitude δ and wavenumber κ (κ = 2π/λ, where λ is the wavelength) of perturbations, on turbulence and mixing in shock-accelerated Richtmyer-Meshkov (R-M) unstable fluid layers. A single mode, membrane-free varicose heavy gas curtain (air-SF6-air) at a shock Mach number M = 1.2 was used in our experiments. The density (concentration) and velocity fields for this initial configuration were measured using planar laser -induced fluorescence (PLIF) and particle image velocimetry (PIV). In order to understand the effects of multi-mode initial conditions on shock-accelerated mixing, the evolving fluid interface formed during the incident shock (M = 1.2) was shocked again by a reflected shock wave at various times using a movable wall, thus enabling us to change both δ and κ simultaneously. A dimensionless length-scale defined as η = κδ is proposed to parametrically link the initial condition dependence to late-time mixing. It was observed experimentally that high wavenumber (short wavelength) modes enhance the mixing and transition to turbulence in these flows. Statistics such as power spectral density, density self-correlation, turbulent kinetic energy, and the rms of velocity fluctuations were measured using simultaneous PLIF-PIV to quantify the amount of mixing for varying values of η. The results indicate a dependence of initial condition parameters on mixing at late times. The results of this study present an opportunity to predict and "design" late-time turbulent mixing that has applications in inertial confinement fusion and general fluid mixing processes.

  16. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions

    SciTech Connect

    Latini, M; Schilling, O; Don, W

    2006-05-15

    The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn [Phys. Fluids 9, 1106 (1997)] nonlinear Pade model is shown to be in best overall agreement with the simulation amplitudes before reshock. The sensitivity of the amplitude growth model predictions to the initial growth rate from linear instability theory, the post-shock Atwood number and amplitude, and the velocity jump due to the passage of the shock through the interface is also investigated numerically. In Part II [Phys. Fluids (2006)], a comprehensive investigation of mixing induced by the reshocked single-mode Richtmyer-Meshkov instability is

  17. TWO-DIMENSIONAL NUMERICAL STUDY FOR RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV INSTABILITIES IN RELATIVISTIC JETS

    SciTech Connect

    Matsumoto, Jin; Masada, Youhei

    2013-07-20

    We study the stability of a non-rotating single-component jet using two-dimensional special relativistic hydrodynamic simulations. By assuming translational invariance along the jet axis, we exclude the destabilization effect by Kelvin-Helmholtz mode. The nonlinear evolution of the transverse structure of the jet with a normal jet velocity is highlighted. An intriguing finding in our study is that Rayleigh-Taylor and Richtmyer-Meshkov type instabilities can destroy cylindrical jet configuration as a result of spontaneously induced radial oscillating motion. This is powered by in situ energy conversion between the thermal and bulk kinetic energies. The effective inertia ratio of the jet to the surrounding medium {eta} determines a threshold for the onset of instabilities. The condition {eta} < 1 should be satisfied for the transverse structure of the jet being persisted.

  18. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock

    SciTech Connect

    Schilling, O; Latini, M

    2004-10-06

    The Richtmyer-Meshkov instability is a fundamental fluid instability that occurs when perturbations on an interface separating gases with different properties grow following the passage of a shock. This instability is typically studied in shock tube experiments, and constitutes a fundamental example of a complex hydrodynamic flow. Numerical simulations and models for the instability growth and evolution have also been used to further understand the physics of the Richtmyer-Meshkov instability. In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme (as implemented in the HOPE code [57]) is applied to simulate the single-mode Richtmyer-Meshkov instability with reshock in two spatial dimensions. The initial conditions and computational domain for the simulations are modeled after the Collins and Jacobs [23] single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment. The following boundary conditions are used: (1) periodic in the spanwise direction corresponding to the cross-section of the test section; (2) outflow at the entrance of the test section in the streamwise direction, and; (3) reflecting at the end wall of the test section in the streamwise direction. The present investigation has three principal motivations: (1) to provide additional validation of the HOPE code against available experimental data; (2) to provide numerical simulation data for detailed analysis of mixing induced by the Richtmyer-Meshkov instability with reshock, and; (3) to systematically investigate the dependence of mixing properties on both the order of WENO reconstruction and spatial resolution. The present study constitutes the first comprehensive application of the high-resolution WENO method to the Richtmyer-Meshkov instability with reshock, as well as analysis of the resulting mixing. First, analytical, semi-analytical, and

  19. Multi-component Reynolds-averaged Navier-Stokes simulations of Richtmyer-Meshkov instability and mixing induced by reshock at different times

    NASA Astrophysics Data System (ADS)

    Morán-López, J. T.; Schilling, O.

    2014-05-01

    Turbulent mixing generated by shock-driven acceleration of a perturbed interface is simulated using a new multi-component Reynolds-averaged Navier-Stokes (RANS) model closed with a two-equation - model. The model is implemented in a hydrodynamics code using a third-order weighted essentially non-oscillatory finite-difference method for the advection terms and a second-order central difference method for the gradients in the source and diffusion terms. In the present reshocked Richtmyer-Meshkov instability and mixing study, an incident shock with Mach number is generated in air and progresses into a sulfur hexafluoride test section. The time evolution of the predicted mixing layer widths corresponding to six shock tube test section lengths are compared with experimental measurements and three-dimensional multi-mode numerical simulations. The mixing layer widths are also compared with the analytical self-similar power-law solution of the simplified model equations prior to reshock. A set of model coefficients and initial conditions specific to these six experiments is established, for which the widths before and after reshock agree very well with experimental and numerical simulation data. A second set of general coefficients that accommodates a broader range of incident shock Mach numbers, Atwood numbers, and test section lengths is also established by incorporating additional experimental data for , , and with and with and previous RANS modeling. Terms in the budgets of the turbulent kinetic energy and dissipation rate equations are examined to evaluate the relative importance of turbulence production, dissipation and diffusion mechanisms during mixing. Convergence results for the mixing layer widths, mean fields, and turbulent fields under grid refinement are presented for each of the cases.

  20. Startup process in Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Lombardini, Manuel; Pullin, D. I.

    2007-11-01

    A simple analytical model is presented for the initial growth of the planar Richtmyer-Meshkov instability in the case of a reflected shock. The model captures the main features of the interfacial perturbation growth before the asymptotic linear regime is attained, over a wide range of incident shock Mach number and Atwood ratio. The problem is formulated in the general framework of the compressible Euler equations for ideal gases, and consists of solving the initial-value problem describing a shock impacting a slightly sinusoidally perturbed density interface. The equations are linearized about a base flow corresponding to the 1D Riemann problem of the shock interaction with an unperturbed interface. An appropriate scaling, similar to the Rayleigh-Jansen method, is then used to construct a perturbation expansion about the basic state. Linearized boundary conditions are applied at both reflected and transmitted perturbed shocks and at the contact interface. The zeroth order of the expansion is retained and leads to an explicit expression for the growth of the interface perturbation. Results are compared with computations obtained from two-dimensional, highly-resolved numerical simulations of the Richtmyer-Meshkov instability.

  1. Extended model for Richtmyer-Meshkov mix

    SciTech Connect

    Mikaelian, K O

    2009-11-18

    We examine four Richtmyer-Meshkov (RM) experiments on shock-generated turbulent mix and find them to be in good agreement with our earlier simple model in which the growth rate h of the mixing layer following a shock or reshock is constant and given by 2{alpha}A{Delta}v, independent of initial conditions h{sub 0}. Here A is the Atwood number ({rho}{sub B}-{rho}{sub A})/({rho}{sub B} + {rho}{sub A}), {rho}{sub A,B} are the densities of the two fluids, {Delta}V is the jump in velocity induced by the shock or reshock, and {alpha} is the constant measured in Rayleigh-Taylor (RT) experiments: {alpha}{sup bubble} {approx} 0.05-0.07, {alpha}{sup spike} {approx} (1.8-2.5){alpha}{sup bubble} for A {approx} 0.7-1.0. In the extended model the growth rate beings to day after a time t*, when h = h*, slowing down from h = h{sub 0} + 2{alpha}A{Delta}vt to h {approx} t{sup {theta}} behavior, with {theta}{sup bubble} {approx} 0.25 and {theta}{sup spike} {approx} 0.36 for A {approx} 0.7. They ascribe this change-over to loss of memory of the direction of the shock or reshock, signaling transition from highly directional to isotropic turbulence. In the simplest extension of the model h*/h{sub 0} is independent of {Delta}v and depends only on A. They find that h*/h{sub 0} {approx} 2.5-3.5 for A {approx} 0.7-1.0.

  2. A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Johnsen, Eric

    2013-04-01

    The evolution of high-speed initially laminar multicomponent flows into a turbulent multi-material mixing entity, e.g., in the Richtmyer-Meshkov instability, poses significant challenges for high-fidelity numerical simulations. Although high-order shock- and interface-capturing schemes represent such flows well at early times, the excessive numerical dissipation thereby introduced and the resulting computational cost prevent the resolution of small-scale features. Furthermore, unless special care is taken, shock-capturing schemes generate spurious pressure oscillations at material interfaces where the specific heats ratio varies. To remedy these problems, a solution-adaptive high-order central/shock-capturing finite difference scheme is presented for efficient computations of compressible multi-material flows, including turbulence. A new discontinuity sensor discriminates between smooth and discontinuous regions. The appropriate split form of (energy preserving) central schemes is derived for flows of smoothly varying specific heats ratio, such that spurious pressure oscillations are prevented. High-order accurate weighted essentially non-oscillatory (WENO) schemes are applied only at discontinuities; the standard approach is followed for shocks and contacts, but material discontinuities are treated by interpolating the primitive variables. The hybrid nature of the method allows for efficient and accurate computations of shocks and broadband motions, and is shown to prevent pressure oscillations for varying specific heats ratios. The method is assessed through one-dimensional problems with shocks, sharp interfaces and smooth distributions of specific heats ratio, and the two-dimensional single-mode inviscid and viscous Richtmyer-Meshkov instability with re-shock.

  3. Scaling the Incompressible Richtmyer-Meshkov Instability

    SciTech Connect

    Cotrell, D; Cook, A

    2007-01-09

    We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The relation is tested using both numerical simulations and experimental data. We obtain collapse of growth rates for a wide range of initial conditions by using vorticity and velocity scales associated with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth rates yields a fairly universal model for the mixing layer thickness versus time.

  4. Experimental investigation of the Richtmyer-Meshkov instability.

    SciTech Connect

    Weber, Christopher R.

    2011-09-01

    The Richtmyer-Meshkov instability (RMI) is experimentally investigated using several different initial conditions and with a range of diagnostics. First, a broadband initial condition is created using a shear layer between helium+acetone and argon. The post-shocked turbulent mixing is investigated using planar laser induced fluorescence (PLIF). The signature of turbulent mixing is present in the appearance of an inertial range in the mole fraction energy spectrum and the isotropy of the late-time dissipation structures. The distribution of the mole fraction values does not appear to transition to a homogeneous mixture, and it is possible that this effect may be slow to develop for the RMI. Second, the influence of the RMI on the kinetic energy spectrum is investigated using particle image velocimetry (PIV). The influence of the perturbation is visible relatively far from the interface when compared to the energy spectrum of an initially flat interface. Closer to the perturbation, an increase in the energy spectrum with time is observed and is possibly due to a cascade of energy from the large length scales of the perturbation. Finally, the single mode perturbation growth rate is measured after reshock using a new high speed imaging technique. This technique produced highly time-resolved interface position measurements. Simultaneous measurements at the spike and bubble location are used to compute a perturbation growth rate history. The growth rates from several experiments are compared to a new reshock growth rate model.

  5. Suppression of the Richtmyer-Meshkov Instability in the Presence of a Magnetic Field

    SciTech Connect

    Ravi Samtaney

    2003-03-21

    We present numerical evidence from two dimensional simulations that the growth of the Richtmyer-Meshkov instability is suppressed in the presence of a magnetic field. A bifurcation occurs during the refraction of the incident shock on the density interface which transports baroclinically generated vorticity away from the interface to a pair of slow or intermediate magnetosonic shocks. Consequently, the density interface is devoid of vorticity and its growth and associated mixing is completely suppressed.

  6. Indirect-drive ablative Richtmyer Meshkov node scaling

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Baker, K. L.; Clark, D. S.; Goncharov, V. N.; Hammel, B. A.; Ho, D. D.; Hurricane, O. A.; Lindl, J. D.; Loomis, E. N.; Masse, L.; Mauche, C.; Milovich, J. L.; Peterson, J. L.; Smalyuk, V. A.; Yi, S. A.; Velikovich, A. L.; Weber, C.

    2016-05-01

    The ablation front Rayleigh Taylor hydroinstability growth dispersion curve for indirect-drive implosions has been shown to be dependent on the Richtmyer Meshkov growth during the first shock transit phase. In this paper, a simplified treatment of the first shock ablative Richtmyer-Meshkov (ARM) growth dispersion curve is used to extract differences in ablation front perturbation growth behavior as function of foot pulse shape and ablator material for comparing the merits of various ICF design option.

  7. DSMC Studies of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.

    2014-11-01

    A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Energy dynamics in the Richtmyer-Meshkov instability induced turbulent mixing flow

    NASA Astrophysics Data System (ADS)

    Xiao, Zuoli; Liu, Han

    2014-11-01

    The Richtmyer-Meshkov instability (RMI) induced turbulent mixing flow in a shock tube is numerically investigated by using direct numerical simulation based on an effective in-house high-order turbulence solver (HOTS). The energy transfer and transport characteristics are studied both before and after re-shock. The celebrated Kolmogorov -5/3 spectrum can be observed in a long inertial subrange during the development of the turbulent mixing zone (TMZ). Insight is taken into the underlying mechanism by evaluating the energy-budget equations. A posteriori analysis of the influence of subgrid scales on resolved motions also gives a consistent picture of energy transfer in the RMI-induced turbulent mixing. Moreover, the kinetic energy cascade in the TMZ is discussed by using Favre filtering approach in physical space. A nonlinear vortex-stretching model for the subgrid-scale stress serves to explain the underlying mechanism of the energy cascade in the RMI-induced turbulence.

  9. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    DOE PAGESBeta

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

    2015-08-14

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that theremore » is a universal behavior, consistent with previous work in this field that RMI growth follows.« less

  10. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    SciTech Connect

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

    2015-08-14

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.

  11. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J.

    2015-08-01

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. Consistent with previous work in this field, the DSMC simulations indicate that RMI growth follows a universal behavior.

  12. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability.

    SciTech Connect

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

    2015-08-14

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.

  13. Turbulent non - premixed flames driven by the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Varshochi, Hilda; Attal, Nitesh; Ramaprabhu, Praveen

    2015-11-01

    We report on Direct Numerical Simulations of shock-induced mixing between fuel (H2) and Oxidizer (O2) streams separated by a sharp interface and driven by the Richtmyer-Meshkov instability (RMI). The resulting non-premixed flame is dominated by vigorous mixing that is a consequence of deposition of baroclinic vorticity at the interface. Such RMI-driven flames, when properly controlled, could play a decisive role in improving the performance of supersonic combustors such as scramjets. While the majority of past research efforts in this area have focused on the shock-bubble flame interaction, our configuration is fundamentally different and involves a planar shock interacting with a planar interface. This allows for the placement of well-defined, precisely controlled initial perturbations on the planar surface. Furthermore, the interface is statistically homogenous in all directions perpendicular to shock traverse, thus rendering the problem amenable to reduced-order 1D modeling of planar-averaged quantities. From detailed, high-resolution DNS, we describe flow and flame characteristics of a repeatedly reshocked turbulent RMI flame. We observe that with each reshock event, fresh deposition of vorticity on the already nonlinear interface greatly enhances mixing and combustion.

  14. Numerical Simulation of Multi-Material Mixing in an Inclined Interface Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Subramaniam, Akshay; Lele, Sanjiva

    2015-11-01

    The Richtmyer-Meshkov instability arises when a shock wave interacts with an interface separating two fluids. In this work, high fidelity simulations of shock induced multi-material mixing between N2 and CO2 in a shock tube are performed for a Mach 1.55 shock interacting with a planar material interface that is inclined with respect to the shock propagation direction. In the current configuration, unlike the classical perturbed flat interface case, the evolution of the interface is non-linear from early time onwards. Our previous simulations of this problem at multiple spatial resolutions have shown that very small 3D perturbations have a large effect on vortex breakdown mechanisms and hence fine scale turbulence. We propose a comparison of our simulations to the experiments performed at the Georgia Tech Shock Tube and Advanced Mixing Laboratory (STAML). Results before and after reshock of the interface will be shown. Results from simulations of a second case with a more complex initial interface will also be presented. Simulations shown are conducted with an extended version of the Miranda solver developed by Cook et al. (2007) which combines high-order compact finite differences with localized non-linear artificial properties for shock and interface capturing. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois.

  15. Experimental Study of the Richtmyer-Meshkov Instability on a Coupled Multimode and Inclined Interface Perturbation

    NASA Astrophysics Data System (ADS)

    Reilly, David; Creel, Skylar; McFarland, Jacob; Mitruka, Jatin; McDonald, Christopher; Ranjan, Devesh

    2013-11-01

    The inclined shock tube in the Texas A&M Shock Tube and Advanced Mixing Laboratory was used to study the effect of small amplitude, long wavelength multimode perturbations imposed on the inclined interface initial condition of the Richtmyer-Meshkov instability. The inclined interface is essentially a long wavelength, extremely large amplitude perturbation. Images of the shocked flow-field were captured with the angle of the shock tube with respect to the horizontal at 60° (η/ λ = √{ 3}/6). The modal content of the initial conditions was determined by taking the Fourier decomposition of the interface. This work is a proof of concept for creating a coupled multimode and inclined interface. Work that is currently underway will investigate the effect of these initial conditions on intermediate and late-time mixing as well as the transition to turbulence before reshock by using qualitative comparisons of Mie scattering images, mixing width measurements, and circulation from Particle Image Velocimetry (PIV). This research was funded by the Air Force Office of Scientific Research Young Investigator Research Program (AFOSR-YIP) grant.

  16. Experimental study of initial condition dependence on mixing in Richtmyer-Meshkov instabilities

    SciTech Connect

    Balasubramanian, Sridhar; Prestridge, Katherine P; Orlicz, Gregory C; Balasubramaniam, Balakumar J

    2010-11-18

    Recent work has shown that buoyancy-driven turbulence can be affected at late time by initial conditions, thus presenting an opportunity to predict and design late-time turbulent mixing, with transformative impact on our understanding and prediction of Inertial Confinement Fusion and general fluid mixing processes. In this communication, we report results on the initial condition parameters, amplitude ({delta}) and wavelength ({lambda}) of perturbation, that impact the material mixing and transition to turbulence in shock-driven Richtmyer-Meshkov instability. Experiments were conducted using a stable, membrane-free, heavy gas varicose curtain (air-SF{sub 6}-air) at shock Mach number, Ma = 1.2. The velocity and density field of our initial conditions was quantified using Particle Image Velocimetry (PIV) and Planar-Laser Induced Fluorescence (PLIF) respectively. Quantitative measurements on the temporal and spatial evolution of developing structures after first shock and subsequent re-shock at different times obtained using PLlF aid us in understating the importance of the initial conditions on transition to turbulence and mixing.

  17. Linearized analysis of Richtmyer-Meshkov flow for elastic materials

    NASA Astrophysics Data System (ADS)

    Plohr, Jeeyeon N.; Plohr, Bradley J.

    2005-08-01

    We present a study of Richtmyer Meshkov flow for elastic materials. This flow, in which a material interface is struck by a shock wave, was originally investigated for gases, where growth of perturbations of the interface is observed. Here we consider two elastic materials in frictionless contact. The governing system of equations comprises conservation laws supplemented by constitutive equations. To analyse it, we linearize the equations around a one-dimensional background solution under the assumption that the perturbation is small. The background problem defines a Riemann problem that is solved numerically; its solution contains transmitted and reflected shock waves in the longitudinal modes. The linearized Rankine Hugoniot condition provides the interface conditions at the longitudinal and shear waves; the frictionless material interface conditions are also linearized. The resulting equations, a linear system of partial differential equations, is solved numerically using a finite-difference method supplemented by front tracking. In verifying the numerical code, we reproduce growth of the interface in the gas case. For the elastic case, in contrast, we find that the material interface remains bounded: the non-zero shear stiffness stabilizes the flow. In particular, the linear theory remains valid at late time. Moreover, we identify the principal mechanism for the stability of Richtmyer Meshkov flow for elastic materials: the vorticity deposited on the material interface during shock passage is propagated away by the shear waves, whereas for gas dynamics it stays on the interface.

  18. An Experimental Study of Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, Jeffrey W.; Niederhaus, Charles E.

    1996-01-01

    Richtmyer-Meshkov (RM) instability occurs when a planar interface separating two fluids of different density is impulsively accelerated In the direction of its normal. It is one of the most fundamental of fluid instabilities and is of importance in fields ranging from astrophysics to materials processing. Because RM instability experiments are normally carried out in shock tubes, where the generation of a sharp well controlled interface between gases is difficult, there is a scarcity of good experimental results. The experiments presented here utilize a novel technique which circumvents many of the experimental difficulties that have previously limited the study of RM instability. In this system, the instability is generated by bouncing a thin rectangular tank containing two liquids off of a fixed spring. Results obtained from these experiments yield particularly well visualized images of the nonlinear development of the instability. However, because the run time in these experiments is limited, new experiments capable of achieving longer run times are planned.

  19. Reynolds Number Effects on the Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Vitaliy, Krivets; Collins, Brett; Jacobs, Jeffrey

    2002-01-01

    This presentation compares the results of two very different experimental studies of Richtmyer-Meshkov instability: shock tube experiments in which an air/SF6 interface is accelerated by a weak shock wave; and incompressible experiments in which a box containing two different density miscible liquids is impulsively accelerated by bouncing it off of a fixed coil spring. Both experiments are initiated with sinusoidal initial perturbations. The interface perturbation initially remains sinusoidal as it grows in amplitude, but eventually the interfacial vorticity concentrates into points, forming a row of line vortices of alternating sign. The Reynolds number based on vortex circulation ranges from 1,000 to 45,000 in these experiments. It is found that viscous effects have a large, quantifiable effect on the evolution of the individual vortices. The effects of viscosity on the overall perturbation amplitude, however, are small and will be compared to theory.

  20. Richtmyer-Meshkov Instability of a Membraneless, Sinusoidal Gas Interface

    NASA Astrophysics Data System (ADS)

    Motl, Bradley

    2005-11-01

    Results are presented from a series of shock tube experiments studying the Richtmyer-Meshkov instability (RMI) for the case of a 2-D single mode gas interface. The membraneless interface is formed by the head-on flow of nitrogen, seeded with acetone, and sulfur-hexafluoride which creates a stagnation surface. A sinusoidal interface is created by oscillating two rectangular pistons that are initially flush with the shock tube walls. The RMI is studied for varying incident shock strengths (1.3 <=M <= 4) by imaging the interface with planar laser-induced fluorescence, once immediately before shock arrival and at two different post-shock times. The experimental images and the growth rates of non-dimensionalized geometrical features are compared to numerical simulations using the Raptor code (LLNL) which takes advantage of the Piecewise Linear Method (PLM) with Adaptive Mesh Refinement (AMR) to solve the Navier-Stokes equations.

  1. Large-Eddy Simulation of the Three-Dimensional Experiment on Richtmyer-Meshkov Instability Induced Turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Jingsong

    A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave-mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue's investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.

  2. Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Attal, N.; Ramaprabhu, P.

    2015-07-01

    We report on high-resolution, numerical simulations of a single-mode, chemically reacting, Richtmyer-Meshkov (RM) instability, at different interface thicknesses. The gases on either side of the diffuse interface were Hydrogen (H and Oxygen (O, with a pre-shock Atwood number of 0.5. An incident shock with a Mach number of 1.2 is allowed to traverse from the light (H to the heavy (O medium in the 2D numerical shock tube. The simulations were performed using the astrophysical FLASH code developed at the University of Chicago, with extensive modifications implemented by the authors to describe detailed H-O chemistry, temperature-dependent specific heats, and multi-species equation of state. The interface thickness was systematically varied in the simulations to study the effect of the total mass of fuel burnt and heat added on the hydrodynamic instability growth rates. In the absence of an incident shock, burning results in the formation of so-called combustion waves, which spontaneously trigger RM and Rayleigh-Taylor like instability growth of the interface. We are able to obtain the resulting growth rates of an imposed sinusoidal perturbation, and compare them with the predictions of an impulsive model, with simple modifications to account for the finite thickness of the interface, density changes due to heat addition, and compression of the material line due to the combustion wave. When additionally an incident shock is present, we observe complex interactions between the shock and the aforementioned combustion waves, resulting in significant non-planar distortions of each. When the unstable interface is subjected to a reshock, significant mixing enhancement is observed, accompanied by a dramatic increase in combustion product formation, and combustion efficiency.

  3. Perturbation theory and numerical modelling of weakly and moderately nonlinear incompressible Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.

    2014-10-01

    A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.

  4. Richtmyer-Meshkov mixing: Modeling and simulation of experiments

    NASA Astrophysics Data System (ADS)

    Denissen, Nicholas; Kurien, Susan

    2015-11-01

    Hydrodynamic instabilities that result from the interaction of a shock-wave with a perturbed interface are known as Richtmyer-Meshkov instabilities (RMI). RMI is important in a wide variety of applications including Inertial Confinement Fusion. Recent experiments at Los Alamos National Laboratory (LANL) have focused on careful measurement of initial conditions and repeated statistical measurements of the instability growth and transition to turbulence. This talk will discuss ongoing efforts to model these experiments using weakly non-linear theoretical models, one dimensional Reynolds-Averaged Navier-Stokes models and three-dimensional Implicit Large Eddy Simulations (ILES). Analysis of the experimental data supplies the initial condition for the theoretical model and the ILES calculations. The effect of different initial conditions and mesh resolutions will be examined in light of interest in international collaboration on an RMI test problem. Comparison of the different models to experimental data will be presented. All calculations are performed in the arbitrary Lagrangian/Eulerian (ALE) code FLAG, developed at LANL. The ALE framework allows us to assess the effects of numerical diffusion on RMI computations by varying the remap strategy.

  5. Turbulent mixing induced by Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Jacobs, Jeffrey; Krivets, Vitaliy; Morgan, Robert; Sewell, Everest

    2015-06-01

    A vertical shock tube is used for experiments on the Richtmyer-Meshkov instability. A membrane-less interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the driven section. An air/SF6 gas combination is used and an M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations are generated by harmonically oscillating the gases either horizontally to produce standing internal waves having sinusoidal shape, or vertically, using two loudspeakers mounted in the shock tube wall, to produce Faraday resonance resulting in more random short wavelength perturbations. Planar Mie scattering is used to visualize the flow using a laser sheet to illuminate smoke particles seeded in the air. Image sequences are captured using high-speed video cameras. New experiments are presented in which the full three-dimensional initial perturbation is recorded immediately prior to shock interaction using a galvanometer to sweep the laser sheet across the test section, producing a volumetric image of the initial perturbation. Comparisons are made between experimental measurements and numerical simulations.

  6. Measurements of the turbulent development of Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Krivets, Vitaliy; Sewell, Everest; Xu, Qian; Jacobs, Jeffrey

    2015-11-01

    A vertical shock tube is used for experiments on the Richtmyer-Meshkov instability in which a membrane-less interface is formed by opposed gas flows where the light and heavy gases enter the shock tube from the top and from the bottom of the driven section. An air/SF6 gas combination is used and an M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations are generated by harmonically oscillating the gases vertically, using two loudspeakers mounted in the shock tube walls, to produce Faraday resonance resulting in a random short wavelength perturbation. Planar Mie scattering is used to visualize the flow using a laser sheet to illuminate smoke particles seeded in one of the two gases. In addition, particle image velocimetry is used to obtain velocity measurements in which both gases are seeded. Image sequences are captured using high-speed video cameras. New experiments are presented quantifying the growth of the integral mixing layer width in addition to the molecular mixing evolution produced by the instability.

  7. Turbulent mixing measurements in the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Weber, Christopher; Haehn, Nicholas; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2012-07-01

    The Richtmyer-Meshkov instability is experimentally investigated in a vertical shock tube using a new type of broadband initial condition imposed on an interface between a helium-acetone mixture and argon (A = 0.7). The initial condition is created by first setting up a gravitationally stable stagnation plane between the gases and then injecting the same two gases horizontally at the interface to create a shear layer. The perturbations along the shear layer create a statistically repeatable broadband initial condition. The interface is accelerated by a M = 1.6 planar shock wave, and the development of the ensuing turbulent mixing layer is investigated using planar laser induced fluorescence. By the latest experimental time, 2.1 ms after shock acceleration, the layer is shown to be fully turbulent, surpassing both turbulent transition criteria based on the Reynolds number and shear layer scale. Mixing structures are nearly isotropic by the latest time, as seen by the probability density function of gradient angles within the mixing layer. The scalar variance energy spectrum suggests a k-5/3 inertial range by the latest time and an exponential region at higher wavenumbers.

  8. Comparative Study of the Predictions of Four-Equation Reynolds-Averaged Navier-Stokes Models Applied to Richtmyer-Meshkov Instability-Induced Mixing

    NASA Astrophysics Data System (ADS)

    Schilling, Oleg

    2012-11-01

    A multicomponent, weighted essentially nonoscillatory implementation of several four-equation K- ɛ and K- L based Reynolds-averaged Navier-Stokes models is used to simulate reshocked Richtmyer-Meshkov turbulent mixing at various Mach and Atwood numbers. One class of models is based on mechanical turbulence coupled to scalar variance and its dissipation rate, and the other is based on mechanical turbulence coupled to mass flux and the density-specific volume correlation. The predicted evolution of the mixing layer, molecular mixing and other quantities obtained from these models are systematically intercompared, as well as compared to experimental shock tube data. The relative advantages and disadvantages of the various models are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Cabot, William H.; Thornber, Ben

    2016-05-01

    Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixed mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.

  10. Energy transfer in the Richtmyer-Meshkov instability.

    PubMed

    Thornber, Ben; Zhou, Ye

    2012-11-01

    The variable-density spectral kinetic energy budget for the Richtmyer-Meshkov-induced turbulent mixing layer is presented using results from a 512{3} implicit large eddy simulation. The budget is presented at several time instants and as a function of the inhomogeneous direction as the layer transitions from the initial impulse through to self-similarity. There are clear parallels in the development of the mixing layer with a previous analysis for the Rayleigh-Taylor instability. In the core of the layer, the quadratic terms are largely negative in the energy-containing scales. The transfer spectra are clearly asymmetric, where the majority of the activity occurrs on the spike side. The quadratic and pressure components are of opposite sign and almost cancel each other out in the spikes. The dilatational terms are negligible in comparison to the difference between the quadratic and pressure transfer. A notable result is that vortex rings are identified as the key source of alternating fields of negative and positive energy transfer within the mixing layer. This helps explain similar observations noted in direct numerical simulations of Rayleigh-Taylor instability. Finally, the spectral numerical dissipation for this scheme is computed for the self-similar layer. This demonstrated that the effects of numerical dissipation are small compared to the other terms at low wave numbers, whereas at higher wave numbers where modes become significantly underresolved the numerical dissipation is approximately twice the nonlinear transfer term and behaves in approximate analogy to an effective spectral eddy viscosity. PMID:23214871

  11. Large-eddy simulations of Richtmyer Meshkov instability in a converging geometry

    SciTech Connect

    Lombardini, Manuel; Deiterding, Ralf

    2010-01-01

    The Richtmyer-Meshkov instability (RMI) refers to the baroclinic generation of vorticity at a perturbed density interface when impacted by a shock wave. It is often thought of as the impulsive limit of the Rayleigh-Taylor instability. While the RMI has been widely covered in planar geometries, the present simulations investigate the mixing of materials resulting from the interaction of an imploding cylindrical shock wave with a concentric interface, perturbed in both axial and azimuthal directions, which separates outside air from SF{sub 6} (initially 5 times denser) confined in a 90{sup o} wedge. Two incident shocks of Mach numbers M{sub i} = 1.3 and 2.0 at initial impact are tested. These canonical simulations support recent work on understanding the compressible turbulent mixing in converging geometries relevant to both inertial confinement fusion and core-collapse supernova dynamics. Initial irregularities in the density interface form the misalignment between density and pressure gradients required to initiate a first RMI. A second RMI occurs after the initial shock has converged down the wedge, reflected off the axis and reshocks the distorted interface. Reshock interactions of decreasing intensity follow successively. Due to the converging geometry, the accelerated or decelerated motion of the interface also generates Rayleigh-Taylor instabilities. Secondary Kelvin-Helmholtz instabilities develop along the sides of the interpenetrating fingering structures. The energetic reshock produces a large dynamical range of turbulent scales, requiring the utilization of large-eddy simulation (LES). We employed the stretched-vortex subgrid-scale model of turbulent and scalar transport based on an explicit structural modeling of small-scale dynamics. The imploding nature of the flow is particularly suitable for the use of adaptive mesh refinement (AMR) provided by the parallel block-structured AMR framework AMROC. The Favre-filtered Navier-Stokes equations are solved on

  12. Three-dimensional multimode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at all density ratios

    NASA Astrophysics Data System (ADS)

    Kartoon, D.; Oron, D.; Arazi, L.; Shvarts, D.

    2003-07-01

    The three-dimensional (3D) turbulent mixing zone (TMZ) evolution under Rayleigh Taylor and Richtmyer Meshkov conditions was studied using two approaches. First, an extensive numerical study was made, investigating the growth of a random 3D perturbation in a wide range of density ratios. Following that, a new 3D statistical model was developed, similar to the previously developed two-dimensional (2D) statistical model, assuming binary interactions between bubbles that are growing at a 3D asymptotic velocity. Confirmation of the theoretical model was gained by detailed comparison of the bubble size distribution to the numerical simulations, enabled by a new analysis scheme that was applied to the 3D simulations. In addition, the results for the growth rate of the 3D bubble front obtained from the theoretical model show very good agreement with both the experimental and the 3D simulation results. A simple 3D drag buoyancy model is also presented and compared with the results of the simulations and the experiments with good agreement. Its extension to the spike-front evolution, made by assuming the spikes' motion is governed by the single-mode evolution determined by the dominant bubbles, is in good agreement with the experiments and the 3D simulations. The good agreement between the 3D theoretical models, the 3D numerical simulations, and the experimental results, together with the clear differences between the 2D and the 3D results, suggest that the discrepancies between the experiments and the previously developed models are due to geometrical effects.

  13. Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries

    NASA Astrophysics Data System (ADS)

    López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.

    2015-03-01

    We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required

  14. An experimental investigation of Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay

    In this study, the interaction of a shock wave with an interface between two gases is studied experimentally. The basic mechanism for the initial growth of perturbations on the interface is the baroclinic generation of vorticity which results from the misalignment of the pressure gradient in the shock and the density gradient at the interface. The growth of perturbations soon enters into a nonlinear regime with the appearance of bubbles of light fluid rising into heavy fluid and spikes of heavy fluid falling into light fluid. In the nonlinear regime, interaction between various scales and the appearance of other instabilities, such as Kelvin-Helmholtz instability, along the boundaries of the spikes occur, which results in the breakup of the interface. These processes lead to a turbulent mixing zone (TMZ) which grows with time. The main focus of this study is to understand the growth of TMZ with time in a cylindrical geometry with square cross section and for the first time study the effect of area convergence in a conical geometry on its growth rate. The present set of experiments is done in the GALCIT 17 in. shock tube with air and SF6 as light and heavy gases. The growth of the TMZ is studied in a straight test section for single-mode initial perturbation consisting of two different wavelength and amplitude combinations at incident shock Mach number of MS = 1.55. The multimode initial perturbation growth at late times is studied in a conical geometry to study the effect of area convergence at incident Mach numbers of MS = 1.55 and 1.39. The results are compared with the experiments of Vetter [74] which were done in the same shock tube with a straight test section with no area convergence and at the same Mach number. In the study of the Richtmyer-Meshkov (RM) instability of single-scale perturbations on air/SF6 interface in a straight test section, the initially sinusoidal interface is formed by a polymeric membrane of thickness 1.5 mum and the flow visualization

  15. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels

  16. Planar Richtmyer-Meshkov instabilities and transition to turbulence

    SciTech Connect

    Grinstein, Fernando F; Gowardhan, Akshay; Ristorcelli, Ray

    2011-01-21

    Extensive recent work has demonstrated that predictive under-resolved simulations of the velocity fields in turbulent flows are possible without resorting to explicit subgrid models. When using a class of physics-capturing high-resolution finite-volume numerical algorithms. This strategy is denoted implicit large eddy simulation (ILES, MILES). The performance of ILES in the substantially more difficult problem of under-resolved material mixing driven by under-resolved velocity fields and initial conditions (ICs) is a focus of the present work. Progress is presented in analyzing the effects of IC combined spectral content and thickness parametrizations. In the large eddy simulation (LES). the large energy containing structures are resolved, the smaller, presumably more isotropic, structures are filtered out, and effects of subgrid scales (SGS) are modeled. ILES effectively addresses the seemingly insurmountable issues posed to LES by under-resolution. by relying on the use of SGS modeling and filtering provided implicitly by a class of physics capturing numerics; extensive verification and validation in areas of engineering. geophysics. and astrophysics has been reported. In many areas of interest such as. inertial confinement fusion. understanding the collapse of the outer cores of supernovas. and supersonic combustion engines, vorticity is introduced at material interfaces by the impulsive loading of shock waves. and turbulence is generated via Richtmyer-Meshkov instabilities (RMI). Given that ILES is based on locally-adaptive, non-oscillatory. finite-volume methods it is naturally suited to emulate shock physics. The unique combination of shock and turbulence emulation capabilities supports direct use of ILES as an effective simulation anzatz for RMI. Here, we further test this approach using a particular strategy based on a nominally-inviscid, Schmidt number {approx} 1, simulation model that uses the LANL RAGE code to investigate planar RMI. Issues of initial

  17. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids

  18. New Perspectives on Turbulent Mixing Induced by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    SciTech Connect

    Zhou, Y; Remington, B A; Glendinning, S G; Dimits, A; Buckingham, A C; Robey, H F; Cook, A W; Clark, T T; Zimmerman, G; Burke, E W; Peyser, T A; Cabot, W; Eliason, D

    2002-10-30

    Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial confinement fusion (ICF) capsule implosions, and macroscopic flows on fluid dynamics facilities such as shock tubes. We have developed a quantitative description of turbulence from the onset to the asymptotic end-state. Our treatment, based on a combined approach of theory, direct numerical simulation (DNS), and experimental data analysis, has broad generality. We will report two key areas in our progress. First, we have developed a robust, easy to apply criteria for the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be they from supernova explosions or ICF experiments, should be turbulent or not. Second, we inspect the structure, scaling and spectra of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities induced flows.

  19. Richtmyer-Meshkov instability of a stratified fluid in transverse magnetic field

    SciTech Connect

    Cao Jintao; Ren Haijun; Li Ding; Wu Zhengwei

    2009-06-15

    In the present work, the Richtmyer-Meshkov instability is examined in an N-layer stratified fluid which is impulsively accelerated and immersed in a homogeneous transverse magnetic field. By solving the initial value problem and the second-order linear differential perturbation equation, the expressions of interface amplitudes are analytically obtained. Two special cases N=2 and N=3 are discussed, and it is found that the Richtmyer-Meshkov instability is suppressed by the transverse magnetic field. It is also shown for the N=3 case, when a transverse magnetic field is present, that the interfaces oscillate with a high frequency and the oscillations repeat themselves periodically with a low frequency.

  20. Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Castilla, R.

    2009-04-01

    Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.

  1. Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave

    SciTech Connect

    BP Puranik; JG Oakley; MH Anderson; R Bonaazza

    2003-11-12

    OAK-B135 An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M=3.08) while its shape is still sinusoidal and before the Kelvin-Helmhotz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability.

  2. Richtmyer-Meshkov instability of shocked gaseous interfaces

    SciTech Connect

    Benjamin, R.F. ); Besnard, D.; Haas, J.F. )

    1991-01-01

    The instability of shocked and reshocked perturbed interface between gases of different densities is analyzed by comparing flow visualization from 2D and 3D shock-tube experiments with 2D numerical simulations and theory. The shadowgraphs and calculations show similar large scales of mixing by fluid interpenetration induced by the Richtmyer-Meshkhov instability. In 2D, experimental instability growth following acceleration by the initial shock is less than calculated by linear theory or simulated. The 3D experiments are approximately simulated by 2D calculations with an increased initial amplitude of the interface. The kinetic energy of the interpenetrating velocity field from the simulations are also compared to a theoretical estimate derived from the linear theory. 2 refs., 10 figs.

  3. On the short-wave nature of Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Belotserkovskaya, M. S.; Belotserkovskii, O. M.; Denisenko, V. V.; Eriklintsev, I. V.; Kozlov, S. A.; Oparina, E. I.; Troshkin, O. V.

    2016-06-01

    In the case of a variable period (wavelength) of a perturbed interface, the instability and stability of Richtmyer-Meshkov vortices in perfect gas and incompressible perfect fluid, respectively, are investigated numerically and analytically. Taking into account available experiments, the instability of the interface between the argon and xenon in the case of a relatively small period is modeled. An estimate of the magnitude of the critical period is given. The nonlinear (for arbitrary initial conditions) stability of the corresponding steady-state vortex flow of perfect fluid in a strip (vertical periodic channel) in the case of a fairly large period is shown.

  4. Investigation of the Richtmyer-Meshkov instability in complex geometries using vortex methods

    NASA Astrophysics Data System (ADS)

    Latini, Marco; Meiron, Daniel; Dimotakis, Paul

    2004-11-01

    The generalized vortex method of Baker, Meiron and Orszag (1982) is applied to study the evolution of the classical single-mode Richtmyer-Meshkov instability and the instability generated by an oblique shock passing through a perturbed material interface. The initial vorticity deposited by the shock on the interface is modeled exactly using the asymptotic formulae of Zabusky and Samtaney (1994). The mixing layer width, bubble and spike velocities computed from the vortex method are compared with analytical models and with results from high-resolution Weighted Essentially Non-Oscillatory (WENO) simulations. Supported by the Caltech ASCI-Alliance Program.

  5. The late time structure of high density contrast, single mode Richtmyer-Meshkov flow

    NASA Astrophysics Data System (ADS)

    Williams, R. J. R.

    2016-07-01

    We study the late time flow structure of Richtmyer-Meshkov instability. Recent numerical work [F. J. Cherne et al. "On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum," J. Appl. Phys. 118, 185901 (2015)] has suggested a self-similar collapse of the development of this instability at late times, independent of the initial surface profile. Using the form of collapse suggested, we derive an analytic expression for the mass-velocity relation in the spikes, and a global theory for the late time flow structure. We compare these results with fluid dynamical simulation.

  6. A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Ding, Juchun; Wang, Minghu; Zhai, Zhigang; Si, Ting

    2015-09-01

    A novel semi-annular shock tube is realized by combining the advantageous features of two types of existing facilities for generating cylindrically converging shock waves. A high-speed schlieren photography is used to acquire the variation of shock positions versus the time and the evolution of a single-mode gaseous interface subjected to the cylindrical shock. The first experimental results indicate that the semi-annular configuration brings great convenience for interface formation and flow visualization, and the new facility has great potential for cylindrically converging Richtmyer-Meshkov instability studies.

  7. Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov mixing experiments at Nova

    SciTech Connect

    Budil, K.S.; Remington, B.A.; Weber, S.V.; Farley, D.R.; Murray, S.; Peyser, T.A.

    1997-09-15

    The evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in the nonlinear regime of growth was investigated in indirect-drive experiments on the Nova laser. The RT experiments investigated the evolution of both single- and multimode perturbations at an embedded interface, isolated from the effects of ablation. This ``classical`` geometry allows short wavelength ({lambda} {approximately} 10-20 {micro}m) perturbations to grow strongly, in marked contrast to prior results at an ablation front. The RM experiments studied singly- and doubly-shocked perturbed interfaces in both face-on and side-on geometries. (U)

  8. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    SciTech Connect

    Dell, Z.; Abarzhi, S. I. E-mail: sabarji@andrew.cmu.edu; Stellingwerf, R. F.

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  9. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, L.; Jha, P.

    2012-05-01

    Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.

  10. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Riccardo Bonazza; Mark Anderson; Leslie Smith

    2004-01-14

    Some of the major difficulties encountered in the effort to achieve nuclear fusion by means of inertial confinement arise from the unstable behavior of the interface between the shell material and the nuclear fuel which develops upon implosion of the shell by direct or indirect laser drive. The fluid flows that develop (termed the Rayleigh-Taylor (RT) and the Richtmyer-Meshkov (RM) instabilities) cause the gassified shell material to mix with the nuclear fuel, causing a reduction in energy yield or no ignition altogether. The present research program addresses the Rayleigh-Taylor and the Richtmyer-Meshkov instabilities with extensive laboratory and computational experiments. In the past year, three new activities have been initiated: a new shock tube experiment, involving the impulsive acceleration of a test gas-filled soap bubble, diagnosed with planar Mie scattering or planar induced fluorescence; a Rayleigh-Taylor experiment based on the use of a magnetorheological (MR) fluid to fix the initial shape of the interface between the MR fluid and water; and a series of computer calculations using the Raptor code (made available by Lawrence Livermore National Laboratory) to design and simulate the shock tube experiments.

  11. Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets

    NASA Astrophysics Data System (ADS)

    Marocchino, Alberto; Atzeni, Stefano; Schiavi, Angelo

    2010-11-01

    The Richtmyer-Meshkov instability (RMI) at the ablation front of laser-irradiated planar targets is investigated by two-dimensional numerical hydrodynamics simulations. The linear evolution of perturbations seeded either by surface roughness or target inhomogeneity is studied for perturbation wavelengths in the range 10≤λ≤400 μm and laser intensity 4×1012≤I≤4×1014 W/cm2 (with laser wavelength λlaser=0.35 μm). Thin and thick cryogenic deuterium or deuterium-tritium (DT) planar targets are considered. For targets irradiated at constant intensity, it is found that perturbations with wavelength below a given threshold perform damped oscillations, while perturbations above such a threshold are unstable and oscillate with growing amplitude. This is qualitatively in agreement with theoretical predictions by Goncharov et al. [Phys. Plasmas 13, 012702 (2006)], according to which ablation related processes stabilize perturbations with kDc≫1, where Dc is the distance between the ablation front and critical density for laser propagation. For kDc<1 a weakly growing Landau-Darrieus instability (LDI) is instead excited. The stability threshold increases substantially with laser intensity, given the dependence of Dc on laser intensity I (roughly Dc∝I, according to the present simulations). Direct-drive laser fusion targets are irradiated by time-shaped pulses, with a low intensity initial foot. In this case, perturbations with wavelengths below some threshold (about 10 μm, for typical ignition-class all-DT targets) are damped after an initial growth. In a thin target, initial perturbations, either damped or amplified by RMI and LDI, seed the subsequent Rayleigh-Taylor instability. Finally, it is shown that RMI growth of fusion targets can be reduced by using laser pulses including an initial adiabat-shaping picket (originally proposed to reduce the growth of Rayleigh-Taylor instability).

  12. Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer-Meshkov instabilities

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Guan, Ben; Zhai, Zhigang; Si, Ting

    2016-02-01

    The Richtmyer-Meshkov instability (RMI) of single-mode air-SF6 interfaces is studied numerically and the emphasis is placed on the effect of the principal curvature on the early evolution of the shocked interface. Two three-dimensional initial interfaces with opposite (3 D -) and identical (3D+) principal curvatures and a traditional two-dimensional interface (2D) are considered. The weighted essentially nonoscillatory scheme and the Level-Set method combined with the real ghost fluid method are adopted. For comparison, perturbations on the initial interfaces with the same wavelength and amplitude in the symmetry plane are employed. The numerical results confirm the experimental finding that the growth rate of perturbations in the symmetry plane at the linear stage in the 3 D - case is much smaller than that in the 2D and 3D+ cases. The difference among them can be ascribed to the different pressure and vorticity distributions associated with the principal curvatures of the initial interface. On the one hand, the high-pressure zones in the vicinity of the deformed interface are significantly different for three cases especially in the very beginning. The shock convergence and divergence at the interface are more severe in the 3D+ case than those in the 2D case, while the wave pattern in the 3 D - case is more complex. On the other hand, the baroclinic vorticity distribution plays a leading role in the interface deformation of the 3D RMI after the passage of the planar shock. The accumulated vorticity changes the movement of the deformed interface and makes the local growth of perturbations different among three cases.

  13. Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer-Meshkov instabilities.

    PubMed

    Luo, Xisheng; Guan, Ben; Zhai, Zhigang; Si, Ting

    2016-02-01

    The Richtmyer-Meshkov instability (RMI) of single-mode air-SF(6) interfaces is studied numerically and the emphasis is placed on the effect of the principal curvature on the early evolution of the shocked interface. Two three-dimensional initial interfaces with opposite (3D-) and identical (3D+) principal curvatures and a traditional two-dimensional interface (2D) are considered. The weighted essentially nonoscillatory scheme and the Level-Set method combined with the real ghost fluid method are adopted. For comparison, perturbations on the initial interfaces with the same wavelength and amplitude in the symmetry plane are employed. The numerical results confirm the experimental finding that the growth rate of perturbations in the symmetry plane at the linear stage in the 3D- case is much smaller than that in the 2D and 3D+ cases. The difference among them can be ascribed to the different pressure and vorticity distributions associated with the principal curvatures of the initial interface. On the one hand, the high-pressure zones in the vicinity of the deformed interface are significantly different for three cases especially in the very beginning. The shock convergence and divergence at the interface are more severe in the 3D+ case than those in the 2D case, while the wave pattern in the 3D- case is more complex. On the other hand, the baroclinic vorticity distribution plays a leading role in the interface deformation of the 3D RMI after the passage of the planar shock. The accumulated vorticity changes the movement of the deformed interface and makes the local growth of perturbations different among three cases. PMID:26986416

  14. On the possibility of studying the converging Richtmyer-Meshkov instability in a conventional shock tube

    NASA Astrophysics Data System (ADS)

    Biamino, L.; Jourdan, G.; Mariani, C.; Houas, L.; Vandenboomgaerde, M.; Souffland, D.

    2015-02-01

    We propose to experimentally study, in cylindrical geometry, the interaction of an initially perturbed cylindrical gaseous interface with a converging shock wave. This interaction is commonly referred as the Richtmyer-Meshkov instability (RMI) which, in the present case, is in a cylindrical geometry. In order to achieve this goal, we use a conventional shock tube which is adapted to this geometry through a specifically designed convergent test section. Here, the first results are presented for an incident planar shock wave of Mach number 1.15 propagating through an adequately elliptical interface. It curves into a cylindrical transmitted shock wave and then accelerates a second sinusoidally perturbed /air interface. From analyzing schlieren photos and pressure histories, we validate this original approach and exhibit the great potential of this experimental method for studying the RMI induced by focusing shock waves.

  15. New Type of the Interface Evolution in the Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Herrmann, M.

    2003-01-01

    We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.

  16. A vortex model for Richtmyer-Meshkov instability accounting for finite Atwood number

    NASA Astrophysics Data System (ADS)

    Likhachev, Oleg A.; Jacobs, Jeffrey W.

    2005-03-01

    The vortex model developed by Jacobs and Sheeley ["Experimental study of incompressible Richtmyer-Meshkov instability," Phys. Fluids 8, 405 (1996)] is essentially a solution to the governing equations for the case of a uniform density fluid. Thus, this model strictly speaking only applies to the case of vanishing small Atwood number. A modification to this model for small to finite Atwood number is proposed in which the vortex row utilized is perturbed such that the vortex spacing is smaller across the spikes and larger across the bubbles, a fact readily observed in experimental images. It is shown that this modification more effectively captures the behavior of experimental amplitude measurements, especially when compared with separate bubble and spike data. In addition, it is shown that this modification will cause the amplitude to deviate from the logarithmic result given by the heuristic models at late time.

  17. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Riccardo Bonazza, Mark Anderson, Jason Oakley

    2006-11-03

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  18. RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA

    SciTech Connect

    Inoue, Tsuyoshi

    2012-11-20

    The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.

  19. Numerical simulations of the Single-mode, Doubly-shocked Richtmyer-Meshkov (RM) Instability

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen

    2014-11-01

    We describe results from numerical simulations of a single-mode, doubly-shocked material interface between gases of different densities. The time interval between the shocks was varied to observe interfacial growth due to Richtmyer-Meshkov Instability initialized with different amplitudes. The simulations were performed with low and high density ratio fluids (A = 0.15 and A = -0.99), where the latter case is relevant to ejecta formation. We compare the growth rates from our simulations after the first and second shocks with linear, nonlinear and ejecta models. In the heavy to light configuration (A = -0.99), we observe two consecutive phase inversions following each shock. We have also investigated the effect of variations in the initial interface perturbation to include sine, chevron, sawtooth, and square-wave form, and find our results to be of relevance to machined target experiments.

  20. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Bonazza, Riccardo; Anderson, Mark; Smith, Leslie

    2005-02-09

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  1. Nonlinear evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Dimonte, G

    1998-11-01

    Scaled experiments on the nonlinear evolution of the Rayleigh- Taylor (RT) and Richtmyer-Meshkov (RM) instabilities are described under a variety, of conditions that occur in nature. At high Reynolds number, the mixing layer grows self-similarly - {alpha}{sub i}Agt{sup 2} for a constant acceleration (g), and as a power law t{sup {theta}{sub i}} for impulsive accelerations U{delta}(t) at low and high Mach numbers. The growth coefficients {alpha}{sub i} and {theta}{sub i} exponents are measured over a comprehensive range of Atwood numbers A. The RT instability is also investigated with Non- Newtonian materials which are independently characterized. A critical wavelength and amplitude for instability is observed associated with the shear modulus and tensile yield of the material. The results are applicable from supernova explosions to geophysical flows subject to these hydrodynamic instabilities.

  2. Computational Study of the Richtmyer-Meshkov Instability for a He-SF6 Interface

    NASA Astrophysics Data System (ADS)

    Weber, Christopher; Haehn, Nicholas; Motl, Bradley; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2007-11-01

    Computational simulations of the Richtmyer-Meshkov (RM) instability are performed using the 2D Eulerian AMR code Raptor (LLNL) for a perturbed gas interface of helium over sulfur-hexafluoride. The interfacial modal content of the initial conditions for these simulations are directly obtained from the recent experiments carried out at the University of Wisconsin Shock Tube Laboratory. In the simulation, performed at a resolution of 128 grid points per wavelength, the interface is accelerated by a planar shock wave of varying strength (1.1 < M < 2). These very high Atwood number (A=0.95) interfaces result in asymmetrical bubble/sphere growth in the early stages of the RM instability development and a near pinch-off of the heavy fluid located at the spike tip in the very late stages. The computed solutions are compared to experimental results and several analytic models.

  3. Experimental Study of the Richtmyer-Meshkov Instability for a He -- SF6 Interface

    NASA Astrophysics Data System (ADS)

    Motl, Bradley; Ranjan, Devesh; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo

    2007-11-01

    Results are presented from a series of experiments studying the Richtmyer-Meshkov (RM) instability for the case of a perturbed gas interface at the Wisconsin Shock Tube Laboratory. A membraneless interface is formed by the head-on flow of helium and sulfur-hexafluoride (seeded with smoke) which creates a stagnation surface. A sinusoidal interface is created at the gas stagnation plane in the test section by oscillating pistons that are initially flush with the shock tube walls. Flow visualization for the initial condition and post-shock images is carried out using Mie scattering from a planar laser sheet. The RM instability is studied for varying incident shock wave strengths (1.1 <=M <= 2), and results are reported in the form of experimental images and perturbation growth rates which are compared to several analytic models.

  4. An experimental platform for generating Richtmyer-Meshkov instabilities on Z.

    SciTech Connect

    Harding, Eric; Martin, Matthew

    2013-04-01

    The Richtmyer-Meshkov (RM) instability results when a shock wave crosses a rippled interface between two different materials. The shock deposited vorticity causes the ripples to grow into long spikes. Ultimately this process encourages mixing in many warm dense matter and plasma flows of interest. However, generating pure RM instabilities from initially solid targets is difficult because longlived, steady shocks are required. As a result only a few relevant experiments exist, and current theoretical understanding is limited. Here we propose using a flyer-plate driven target to generate RM instabilities with the Z machine. The target consists of a Be impact layer with sinusoidal perturbations and is followed by a low-density carbon foam. Simulation results show that the RM instability grows for 60 ns before release waves reach the perturbation. This long drive time makes Z uniquely suited for generating the high-quality data that is needed by the community.

  5. Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Billiotte, M.; Houas, L.

    1996-06-01

    An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.

  6. Influence of the Richtmyer-Meshkov instability on the kinetic energy spectrum.

    SciTech Connect

    Weber, Christopher R.

    2010-09-01

    The fluctuating kinetic energy spectrum in the region near the Richtmyer-Meshkov instability (RMI) is experimentally investigated using particle image velocimetry (PIV). The velocity field is measured at a high spatial resolution in the light gas to observe the effects of turbulence production and dissipation. It is found that the RMI acts as a source of turbulence production near the unstable interface, where energy is transferred from the scales of the perturbation to smaller scales until dissipation. The interface also has an effect on the kinetic energy spectrum farther away by means of the distorted reflected shock wave. The energy spectrum far from the interface initially has a higher energy content than that of similar experiments with a flat interface. These differences are quick to disappear as dissipation dominates the flow far from the interface.

  7. The Design of Useful Mix Characterization Experiments for the LLNL Reshock Platform

    NASA Astrophysics Data System (ADS)

    Islam, Tanim

    2015-11-01

    The NIF Re-shock platform has been extensively engineered to minimize boundary effects and polluting shocks. It is capable of comprehensively and reproducibly exploring a large parameter space important in mix experiments: strength and timing of shocks and reshocks; the amplitude and wavelength of Richtmyer-Meshkov-unstable interfaces; the Atwood number of these mixing layers; and using a technique developed with experiments at the Omega laser, the simultaneous visualization of spike and bubble fronts. In this work, I explore multimodal and roughened surface designed, and combinations of light and heavy materials, that may illuminate our understanding of mix in plasmas.

  8. Accelerated inhomogeneous (e.g. Richtmyer-Meshkov) flows: A-dot at intermediate times, vortex-accelerated vortex deposition and turbulence

    NASA Astrophysics Data System (ADS)

    Zabusky, Norman; Peng, Gaozhu; Zhang, Shuang

    2004-11-01

    We review our recent contributions [1,2,3,4] in the light of their omission in recent publications [5,6,7,8]. Included is the VAVD process ( also called: secondary baroclinic circulation generation) which yields more positive and negative circulation through intermediate times than the original shock-accelerated vortex deposition (SAVD). VAVD is due to the acceleration provided by the rolled up vortex from SAVD and more important, the strongly increased density gradients of the multiphase front, also caused by the roll-up process . In addition we quantify : the effect of the initial thickness of the interfacial transition layer; the approach to constant a-dot at intermediate-to-late times; the ubiquity of vortex projectiles and transition to turbulence. Refs: 1.Zabusky, N.J., Kotelnikov, A.D., Gulak, Y. & Peng, G. Amplitude growth rate of a Richtmyer-Meshkov unstable two-dimensional interface to intermediate times. J. Fluid Mechanics, 475, p. 147-162,2003. 2.N. J. Zabusky, S. Gupta and Y. Gulak. Localization and spreading of contact discontinuity layers in simulations of compressible dissipationless flows. J. Comput. Phys. 188 (2) (2003) 347-363, 2003. 3.G. Peng, N. J. Zabusky & S. Zhang. Vortex-accelerated secondary baroclinic vorticity deposition and late intermediate time dynamics of a two-dimensional RM interface. Phys. Fluids 15 (12), 3730-3744, 2003. 4. S. Zhang, N. J. Zabusky, G. Peng & S. Gupta. Shock Gaseous Cylinder Interactions: Dynamically validated initial conditions provide excellent agreement between experiments and Navier-Stokes simulations to late-intermediate time. Phys.Fluids 16(5), 1203-1216, 2004. 5.P. Vorobieff , N.-G. Mohamed, C. Tomkins, C. Goodenough, M. Marr-Lyon, and R. F. Benjamin Scaling evolution in shock-induced transition to turbulence PHYS REV. E 68, 065301.2003. 6.C. Matsuoka, K. Nishihara and Y. Fukuda,. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. PHYS. REV. E 67, 036301 2003!& erratum 7.K. Nishihara

  9. Effect of initial conditions and Mach number on the Richtmyer-Meshkov instability in ICF like conditions

    NASA Astrophysics Data System (ADS)

    Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James

    2015-11-01

    The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.

  10. Nonlinear motion of non-uniform current-vortex sheets in MHD Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Matsuoka, Chihiro; Nishihara, Katsunobu; Sano, Takayoshi

    2013-10-01

    When a supernova explosion occurs, materials that composed the star scatter in a high speed with a strong shock wave. These scattered materials, called ``supernova remnants'' (SNR), expand into the space and finally become a source in order to create new solar systems. It is known that SNR have a strong magnetic field compared to the surrounding interstellar medium; however, there exist few models to explain this extraordinary magnetic amplification mechanism in SNR. Here, we consider the Richtmyer-Meshkov instability in magnetohydrodynamic flows (MHD-RMI) and construct a model in order to describe the magnetic amplification in SNR. Due to the existence of the density jump, the tangential component of the magnetic field between the interface is different; therefore, the interface in MHD-RMI becomes a (non-uniform) current-vortex sheet. In this study, we investigate motion of this current-vortex sheet using the vortex blob method. We show that the current induced on a vortex sheet leads to a strong amplification of the magnetic field when the Lorenz force term is sufficiently small, and present various interfacial profiles depending on the magnitude of the Atwood number and Lorenz force. This work was supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science.

  11. Linear Stability Analysis of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cyindrical Geometry

    NASA Astrophysics Data System (ADS)

    Bakhsh, Abeer; Samtaney, Ravi

    2015-11-01

    Numerical simulations and analysis in Cartesian slab geometry for nonlinear ideal magnetohydrodynamics (MHD) indicate that the Richtmyer-Meshkov instability (RMI) is suppressed in the presence of a magnetic field. An analytical solution of incompressible 2-D MHD RMI of an impulsively accelerated interface was investigated by Wheatley et al. (Phys. Rev. Lett. 2005; J. Fluid Mech. 2005) who found that, for a finite magnetic field, although the initial growth rate of the interface is unaffected by the presence of magnetic field, the late-time amplitude of the interface asymptotes to a constant value. In the framework of incompressible MHD, we examine analytically the behavior of an impulsively accelerated interface separating conducting fluids of different densities in cylindrical geometry. We investigate the stability properties of such a system and study the influence of the magnetic field on the growth rate of the interface. In converging cylindrical geometry, the RMI is followed by a Rayleigh-Taylor (RT) phase. Our analysis does not account for the RT phase of the instability but is valid for the duration of the RMI phase. We compare results of the incompressible analysis with linear compressible MHD simulations. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/2162-01.

  12. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations.

    PubMed

    Tritschler, V K; Zubel, M; Hickel, S; Adams, N A

    2014-12-01

    In this study we present direct numerical simulation results of the Richtmyer-Meshkov instability (RMI) initiated by Ma=1.05,Ma=1.2, and Ma=1.5 shock waves interacting with a perturbed planar interface between air and SF(6). At the lowest shock Mach number the fluids slowly mix due to viscous diffusion, whereas at the highest shock Mach number the mixing zone becomes turbulent. When a minimum critical Taylor microscale Reynolds number is exceeded, an inertial range spectrum emerges, providing further evidence of transition to turbulence. The scales of turbulent motion, i.e., the Kolmogorov length scale, the Taylor microscale, and the integral length, scale are presented. The separation of these scales is found to increase as the Reynolds number is increased. Turbulence statistics, i.e., the probability density functions of the velocity and its longitudinal and transverse derivatives, show a self-similar decay and thus that turbulence evolving from RMI is not fundamentally different from isotropic turbulence, though nominally being only isotropic and homogeneous in the transverse directions. PMID:25615181

  13. Measuring the Ablative Richtmyer-Meshkov Growth of Isolated Defects on Plastic Capsules

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto

    2010-11-01

    To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF using inertially confined plasmas, targets must be designed with high in-flight aspect ratios (IFAR) resulting in low shell stability. Recent simulations and experiments have shown that isolated features on the outer surface of an ignition capsule can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects due to ablative Richtmyer-Meshkov in CH capsules to validate these models. Face- on transmission radiography has been used to measure the evolution of Gaussian bump arrays in plastic targets. Targets were indirectly-driven using Au halfraums to radiation temperatures near 65-75 eV at the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) simultaneous with x-ray backlighting from a saran (Cl) foil. Shock speed measurements were also made to determine drive conditions in the target. The results from these experiments will aid in the design of ignition drive pulses that minimize bump amplitude at the time of shell acceleration.

  14. Experiments on Dynamic Overpressure Stabilization of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2002-11-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the late-time imprint levels in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically and observed experimentally,(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). and in 2-D ORCHID simulations. These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly with an x-ray framing camera through face-on x-ray radiography. Planar plastic targets with variable thickness (20 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses at maximum energy. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. Nonlinearity in the evolution of the preimposed mode, resulting in an enriched spectrum, was observed for initial amplitudes previously believed to develop linearly with time. Upcoming experiments with a high-resolution, streaked imager, will allow for the detailed recording of the evolution of the RM instability and the competing stabilization effect. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  15. Numerical simulation of multi-material mixing in an inclined interface Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Subramaniam, Akshay; Lele, Sanjiva

    2015-06-01

    The Richtmyer-Meshkov instability arises when a shock wave interacts with an interface separating two fluids. In this work, high fidelity simulations of shock induced multi-material mixing between air and SF6 in a shock tube are performed for a Mach 1.5 shock interacting with a planar material interface that is inclined with respect to the shock propagating direction. In the current configuration, unlike in the classical sinusoidal interface case, the evolution of the interface is fully non-linear from early time onwards. The simulations attempt to replicate an experiment conducted at the Texas A&M fluid mixing shock tube facility. Simulations of this problem at multiple spatial resolutions (upto 270 million grid points) have shown that even low order statistics like the net circulation are hard to capture at resolutions where the classical RM cases yield good results. Tight coupling between numerics and flow physics and large range of spatial scales make this a challenging problem to simulate numerically. Simulations shown are conducted with an extended version of the MIRANDA solver developed by Cook et al. (2007) which combines high-order compact finite differences with localized non-linear artificial properties for shock and interface capturing.

  16. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    DOE PAGESBeta

    Mikaelian, Karnig O.

    2016-07-13

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and amore » critical Mach number Mcriticals of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mcriticals. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less

  17. Turbulent Richtmyer-Meshkov instability experiments with strong radiatively driven shocks

    NASA Astrophysics Data System (ADS)

    Dimonte, Guy; Schneider, Marilyn

    1997-12-01

    The Richtmyer-Meshkov instability is investigated in the turbulent regime with strong radiatively driven shocks (Mach >10) on the Nova laser [Phys. Rev. Lett. 70, 1806 (1993)]. The targets are planar with near solid density and Atwood number ˜-0.9. The interfacial perturbations are three dimensional (3-D), random, and nonlinear with a broad scale distribution such that they develop into a turbulent mixing zone (TMZ). The TMZ is diagnosed radiographically using x-ray dopants localized to the center of the target to avoid edge effects. Two different diagnostic configurations yield comparable results. The total width of the TMZ is found to increase in time as H˜tΘ, with Θ˜0.5±0.1. When compared to shock tube data, this result supports the suggestion [Phys. Fluids 8, 614 (1996)] that Θ decreases with Mach number. The data are used to test turbulence models and to determine the effective drag coefficient Cd˜2.6±1.2 for potential flow mix models in the high compression regime.

  18. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Liu, Han; Xiao, Zuoli

    2016-05-01

    The Richtmyer-Meshkov instability (RMI) mixing flow induced by a planar shock wave of Mach 1.6 is investigated using direct numerical simulation method. Interfacial perturbations of different scales between air and sulfur hexafluoride are introduced to study the effect of the initial conditions. Focus is placed on the analysis of the scale-to-scale transfer of kinetic energy in both Fourier and physical spaces. The kinetic energy injected from the perturbation scales is transferred to both larger and smaller scales in an average sense within the inner mixing zone (IMZ) at early times and is mainly passed down into smaller scales at the late stage. The physical-space energy flux due to the subgrid-scale (SGS) stress is studied using a filtering approach in order to shed light on the physical origin of the scale-to-scale kinetic energy transfer. It is found that the pointwise SGS energy flux is highly correlated with the local spike and bubble structures in the IMZ. Moreover, it turns out that the mean SGS energy flux is mainly ascribed to the component in the direction of shock wave propagation. An analysis using the method of conditional averaging manifests that the generation of local SGS energy flux is associated with the property of the surrounding flow induced by quadrupolar or dipolar vortex structures.

  19. Experimental study of Mach number effects on the evolution of Richtmyer-Meshkov instabilities

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, Ricardo; Wilson, Brandon; Craig, Alex; Prestridge, Kathy

    2015-11-01

    The evolution of Richtmyer-Meshkov instabilities from the initial linear growth stages, to the subsequent non-linear interactions and the eventual (sometimes elusive) transition to turbulence, is strongly dependent on a number of factors such as shock strength (Mach number), Atwood number, and the initial structure of the fluid interface. Mach number controls the effective value of the Atwood number after compression, and thus the distribution and total amount of kinetic energy deposited at shock interaction. The initial scale-content in the fluid interface defines how quickly and to what extent growing instabilities interact with each other, ultimately conditioning transition to turbulence. These effects are not entirely independent of each other, and the extent of their relative importance is not well understood. To shed light on this subject, we designed a parameter space consisting of three different Mach numbers (1.1, 1.3, and 1.45) and three different interface configurations of varying scale content. This parameter space is being explored experimentally by means of simultaneous PIV/PLIF measurements on a single air- SF6 interface as it evolves after shock interaction. This talk will focus on the observation of Mach number effects for an early stage of evolution.

  20. An experimental study of the Richtmyer-Meshkov instability in microgravity.

    PubMed

    Niederhaus, Charles E; Jacobs, Jeffrey W

    2004-11-01

    Richtmyer-Meshkov (RM) instability occurs when a planar interface separating two fluids of different density is impulsively accelerated in the direction of its normal. It is one of the most fundamental fluid instabilities and is of importance to the fields of astrophysics and inertial confinement fusion. Because RM instability experiments are normally carried out in shock tubes, where the generation of a sharp, well-controlled interface between gases is difficult, there is a scarcity of good experimental results. The experiments presented here use a novel technique that circumvents many of the experimental difficulties that have previously limited the study of RM instability in shock tubes. In these experiments, the instability is generated incompressibly, by bouncing a rectangular tank containing two liquids off of a fixed spring. These experiments, which utilize PLIF flow visualization, yield time-motion image sequences of the nonlinear development and transition to turbulence of the instability that are of a quality unattainable in shock tube experiments. Measurements obtained from these images, therefore, provide benchmark data for the evaluation of nonlinear models for the late-time growth of the instability. Because the run time in these experiments is limited, new experiments in the NASA Glenn 2.2 second drop tower, capable of achieving longer run times, are currently under way. PMID:15644371

  1. An experimental study of the Richtmyer-Meshkov instability in microgravity

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Jacobs, Jeffrey W.

    2004-01-01

    Richtmyer-Meshkov (RM) instability occurs when a planar interface separating two fluids of different density is impulsively accelerated in the direction of its normal. It is one of the most fundamental fluid instabilities and is of importance to the fields of astrophysics and inertial confinement fusion. Because RM instability experiments are normally carried out in shock tubes, where the generation of a sharp, well-controlled interface between gases is difficult, there is a scarcity of good experimental results. The experiments presented here use a novel technique that circumvents many of the experimental difficulties that have previously limited the study of RM instability in shock tubes. In these experiments, the instability is generated incompressibly, by bouncing a rectangular tank containing two liquids off of a fixed spring. These experiments, which utilize PLIF flow visualization, yield time-motion image sequences of the nonlinear development and transition to turbulence of the instability that are of a quality unattainable in shock tube experiments. Measurements obtained from these images, therefore, provide benchmark data for the evaluation of nonlinear models for the late-time growth of the instability. Because the run time in these experiments is limited, new experiments in the NASA Glenn 2.2 second drop tower, capable of achieving longer run times, are currently under way.

  2. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Turbulent Regime

    NASA Astrophysics Data System (ADS)

    Dimonte, G.

    1998-11-01

    The Rayleigh-Taylor instability (RTI) and its shock driven analog, the Richtmyer-Meshkov instability (RMI), affect a wide variety of important phenomena from sub-terrainian to astrophysical environments. The ``fluids" are equally varied from plasmas and magnetic fields to elastic-plastic solids. In most applications, the instabilities occur with a complex acceleration history and evolve to a highly nonlinear state, making the theoretical description formidable. We will link the fluid and plasma regimes while describing the theoretical issues and basic experiments in different venues to isolate key physics issues. RMI experiments on the Nova laser investigate the affects of compressibility with strong radiatively driven shocks (Mach > 10) in near solid density plasmas of sub-millimeter scale. The growth of single sinusoidal and random 3-D perturbations are measured using backlit radiography. RTI experiments with the Linear Electric Motor (LEM) are conducted with a variety of acceleration (<< 10^4 m/s^2) histories and fluids of 10 cm scale. Turbulent RTI experiments with high Reynolds number liquids show self-similar growth which is characterized with laser induced fluorescence. LEM experiments with an elastic-plastic material (yogurt) exhibit a critical wavelength and amplitude for instability. The experimental results will be compared with linear and nonlinear theories and hydrodynamic simulations.

  3. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bakhsh, A.; Gao, S.; Samtaney, R.; Wheatley, V.

    2016-03-01

    Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability (RMI) is suppressed in ideal magnetohydrodynamics (MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β = /2 p Br 2 ) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.

  4. Nonlinear theory of classical cylindrical Richtmyer-Meshkov instability for arbitrary Atwood numbers

    SciTech Connect

    Liu, Wan Hai; Ping Yu, Chang; Hua Ye, Wen; Feng Wang, Li; Tu He, Xian

    2014-06-15

    A nonlinear theory is developed to describe the cylindrical Richtmyer-Meshkov instability (RMI) of an impulsively accelerated interface between incompressible fluids, which is based on both a technique of Padé approximation and an approach of perturbation expansion directly on the perturbed interface rather than the unperturbed interface. When cylindrical effect vanishes (i.e., in the large initial radius of the interface), our explicit results reproduce those [Q. Zhang and S.-I. Sohn, Phys. Fluids 9, 1106 (1996)] related to the planar RMI. The present prediction in agreement with previous simulations [C. Matsuoka and K. Nishihara, Phys. Rev. E 73, 055304(R) (2006)] leads us to better understand the cylindrical RMI at arbitrary Atwood numbers for the whole nonlinear regime. The asymptotic growth rate of the cylindrical interface finger (bubble or spike) tends to its initial value or zero, depending upon mode number of the initial cylindrical interface and Atwood number. The explicit conditions, directly affecting asymptotic behavior of the cylindrical interface finger, are investigated in this paper. This theory allows a straightforward extension to other nonlinear problems related closely to an instable interface.

  5. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-07-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  6. Observations of the Ablative Richtmyer-Meshkov Effect Relevant to Indirect-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Landen, Otto

    2013-10-01

    Recent simulations and experiments have shown that isolated features on the outer surface of Inertial Confinement Fusion (ICF) ignition capsules can profoundly impact capsule performance by leading to material jetting or mixing into the hotspot. Controlling the growth of these artifacts is complicated due to uncertainties in equation of state (EOS) models used in simulation codes. Here we report on measurements pertaining to the growth and decay of isolated defects due to x-ray ablation Richtmyer-Meshkov in CH capsules in order to validate these models. Face-on transmission radiography was used to measure the evolution of Gaussian bump arrays in plastic targets. Au halfraums heated to radiation temperatures near 70 eV using 15 beams in a 7.5 ns pulse from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) indirectly drove the samples while simultaneous radiographs from Ta and Y backlighter foils were recorded. Shock speed measurements were also made with Omega's Active Shock Break Out (ASBO) diagnostic in conjunction with the x-ray flux recorded by a soft x-ray power diagnostic (DANTE) were used to determine drive conditions in the target. Measurements of 5 micron tall, 17 micron wide bumps show a decrease in bump areal density between 4.5 and 7.5 ns while 33 micron wide bumps saturate near 3 ns consistent with LEOS 5310 and SESAME 7592 simulations.

  7. Ejecta source model based on the nonlinear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Dimonte, Guy; Terrones, Guillermo; Cherne, F. J.; Ramaprabhu, P.

    2013-01-01

    We describe a simple algebraic model for the particulate spray that is ejected from a shocked metal surface based on the nonlinear evolution of the Richtmyer-Meshkov instability (RMI). The RMI is a shock-driven hydrodynamic instability at a material interface in which the dense and tenuous fluids penetrate each other as spikes and bubbles, respectively. In our model, the ejecta areal density is determined by the product of the post-shock metal density and the saturated bubble amplitude, which depends on both the amplitude and wavelength of the initial surface imperfections of the metal. The maximum ejecta velocity is determined by the ever-growing spikes, which are accelerated relative to the RMI growth rate by the spatial harmonics that sharpen them. The model is formulated to fit new hydrodynamics and molecular dynamics simulations of the RMI and validated by existing ejecta experiments over a wide range of material properties, shock strengths, and surface perturbations. The results are also contrasted with existing ejecta source models.

  8. Scale coupling in Richtmyer-Meshkov flows induced by strong shocks

    SciTech Connect

    Stanic, M.; Cassibry, J. T.; Stellingwerf, R. F.; Abarzhi, S. I.

    2012-08-15

    We perform the first systematic study of the nonlinear evolution and scale coupling in Richtmyer-Meshkov (RM) flows induced by strong shocks. The smoothed particle hydrodynamics code (SPHC) is employed to ensure accurate shock capturing, interface tracking and accounting for the dissipation processes. We find that in strong-shock-driven RMI the background motion is supersonic. The amplitude of the initial perturbation strongly influences the flow evolution and the interfacial mixing that can be sub-sonic or supersonic. At late times the flow remains laminar rather than turbulent, and RM bubbles flatten and decelerate. In the fluid bulk, reverse cumulative jets appear and 'hot spots' are formed-local heterogeneous microstructures with temperature substantially higher than that in the ambient. Our numerical simulations agree with the zero-order, linear, weakly nonlinear, and highly nonlinear theoretical analyses as well as with the experiments and suggest that the evolution of RMI is a multi-scale and heterogeneous process with a complicated character of scale coupling.

  9. Novel Feed-through Richtmyer-Meshkov Instability (RMI) Experiment for Characterization of Dynamic Material Response

    NASA Astrophysics Data System (ADS)

    Opie, Saul; Gautam, Sudrishti; Fortin, Elizabeth; Lynch, Jenna; Loomis, Eric; Peralta, Pedro

    Hydrodynamic instabilities occur often in applications where forces act across a bimaterial interface. In Rayleigh-Taylor (RT) instabilities, surface perturbations grow exponentially under opposing pressure and density gradients. In the closely related Richtmyer-Meshkov (RM) instability, the same perturbations grow linearly due to an impulsive acceleration, e.g., a passing shock wave. These effects are often analyzed with linear fluid theory, but it is well known that for materials possessing shear strength the perturbation evolution can be significantly affected. A challenge in modeling these effects is that existing knowledge of the interplay between strength and hydrodynamic instabilities in solids is limited for the loads and strain rates that are typically used to study them. We have developed novel feed-through RM instability experiments that are useful to understand and model this interplay. We will describe the experimental setup and show simulations that agree well with experimental results in two materials, one-phase copper, and iron loaded above and below the alpha-epsilon phase boundary, where modeling used a phase-aware strength model. In copper, the growth of surface perturbations is quite sensitive to strength model parameters, and so is the amplitude of the shock front perturbations. This is also observed in iron, along with an additional sensitivity in the modeling results to the parameters used to describe phase change kinetics. Work supported by Department of Energy (DOE) [Grant Number DE-SC0008683] from the Office of Fusion Energy Science.

  10. High order numerical simulations of the Richtmyer- Meshkov instability in a relativistic fluid

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Dumbser, M.

    2015-07-01

    We study the Richtmyer-Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme combines a finite volume reconstruction in space, a local space-time discontinuous Galerkin predictor method, a high order one-step time update scheme, and a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number A > 0) and for the case in which a heavy fluid penetrates into a lower density one (Atwood number A < 0). We find that for large Lorentz factors γs of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of γs ≈ [1.2, 2]. Moreover, we have also revealed a genuinely relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In particular, in A > 0 models, the tangential velocity has a net magnification effect, while in A < 0 models, the tangential velocity has a net suppression effect.

  11. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect

    Riccardo Bonazza

    2006-03-09

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively (RMI and RTI), adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the ablated shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. Specifically, our work is articulated in three main directions: study of impulsively accelerated spherical gas inhomogeneities; study of impulsively accelerated 2-D interfaces; study of a liquid interface under the action of gravity. The objectives common to all three activities are to learn some physics directly from our experiments and calculations; and to develop a database at previously untested conditions to be used to calibrate and verify some of the computational tools being developed within the RTI/RMI community at the national laboratories and the ASCI centers.

  12. Simulations and model of the nonlinear Richtmyer-Meshkov instability (U)

    SciTech Connect

    Dimonte, Guy

    2009-01-01

    The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two-dimensions (20). The purpose of the simulations is to develop a nonlinear model of the RM instability that is accurate to the regime of inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and initial amplitude kh{sub o} (k {triple_bond} wavenumber) of the perturbation. The FLASH code is first validated by obtaining excellent agreement with RM experiments well into the nonlinear regime. The results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A and kh{sub o} but not for the values characteristic of ICF and ejecta formation. As a result, a new nonlinear model is developed that captures the simulation results consistent with potential flow and for a broader range of A and kh{sub o}.

  13. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    NASA Astrophysics Data System (ADS)

    Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana

    2015-11-01

    We study the effect initial perturbation on the Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. Broad range of shock strengths and density ratios is considered (Mach=3,5,10, and Atwood=0.6,0.8,0.95). The amplitude of initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. We analyze the initial growth-rate of the RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. We find that the initial growth-rate of RMI is a non-monotone function of the amplitude of the initial perturbation. This restrains the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends strongly and the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio. The maximum value of the initial growth-rate increases with the increase of the Atwood number for a fixed Mach number, and decreases with the increase of the Mach number for a fixed Atwood number. We argue that the non-monotonicity of RMI growth-rate is a result of a combination of geometric effect and the effect of secondary shocks. Support of the National Science Foundation is warmly appreciated.

  14. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    NASA Astrophysics Data System (ADS)

    Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana

    2015-11-01

    We study the effect initial perturbation on the Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. Broad range of shock strengths and density ratios is considered (Mach=3,5,10, and Atwood=0.6,0.8,0.95). The amplitude of initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. We analyze the initial growth-rate of the RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. We find that the initial growth-rate of RMI is a non-monotone function of the amplitude of the initial perturbation. This restrains the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends strongly and the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio. The maximum value of the initial growth-rate increases with the increase of the Atwood number for a fixed Mach number, and decreases with the increase of the Mach number for a fixed Atwood number. We argue that the non-monotonicity of RMI growth-rate is a result of a combination of geometric effect and the effect of secondary shocks.

  15. Shock-interface interaction: Current research on the Richtmyer- Meshkov problem

    SciTech Connect

    Rupert, V.

    1991-07-17

    The basis for the study of the evolution of a shocked interface stems from the question of the Rayleigh-Taylor (RT) instability (Taylor 1950). Starting in the late 18th century, the stability of an interface submitted to gravitational forces was investigated for the case in which the density of one of the materials across the interface was negligible compared to the other. Taylor analyzed the case in which the Atwood number (ratio of the difference of the densities to their sum) is less than 1, and the acceleration of the system is constant. He determined that the interface was unstable to small perturbations only if the direction of the acceleration normal to the interface coincides with that of the density gradient. Richtmyer (1960) extended Taylor's analysis to the case of an implusive acceleration. His results implied that the interface would be unstable irrespective of the relative orientation of the velocity impulse and the density gradient. His predictions were verified experimentally by Meshkov (1969), and the Richtmyer-Meshkov (RM) instability became a subject of research in its own right. Experimental, numerical, and theoretical works address this problem. The RM problem has been studied with both the shock-tube and laser experiments. In this paper, only shock-tube work is considered. 48 refs., 6 figs.

  16. VORTEX PARADIGM FOR ACCELERATED INHOMOGENEOUS FLOWS: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov Environments

    NASA Astrophysics Data System (ADS)

    Zabusky, Norman J.

    1999-01-01

    We illustrate how cogent visiometrics can provide peak insights that lead to pathways for discovery through computer simulation. This process includes visualizing, quantifying, and tracking evolving coherent structure morphologies. We use the vortex paradigm (Hawley & Zabusky 1989) to guide, interpret, and model phenomena arising in numerical simulations of accelerated inhomogeneous flows, e.g. Richtmyer-Meshkov shock-interface and shock-bubble environments and Rayleigh-Taylor environments. Much of this work is available on the Internet at the sites of my collaborators, A Kotelnikov, J Ray, and R Samtaney, at our Vizlab URL, http://vizlab.rutgers.edu/vizlab.html.

  17. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.

    2012-10-15

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the 'feedout' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  18. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected

    NASA Astrophysics Data System (ADS)

    Campos, F. Cobos; Wouchuk, J. G.

    2016-05-01

    When a planar shock hits a corrugated contact surface between two fluids, hydrodynamic perturbations are generated in both fluids that result in asymptotic normal and tangential velocity perturbations in the linear stage, the so called Richtmyer-Meshkov instability. In this work, explicit and exact analytical expansions of the asymptotic normal velocity (δ vi∞ ) are presented for the general case in which a shock is reflected back. The expansions are derived from the conservation equations and take into account the whole perturbation history between the transmitted and reflected fronts. The important physical limits of weak and strong shocks and the high/low preshock density ratio at the contact surface are shown. An approximate expression for the normal velocity, valid even for high compression regimes, is given. A comparison with recent experimental data is done. The contact surface ripple growth is studied during the linear phase showing good agreement between theory and experiments done in a wide range of incident shock Mach numbers and preshock density ratios, for the cases in which the initial ripple amplitude is small enough. In particular, it is shown that in the linear asymptotic phase, the contact surface ripple (ψi) grows as ψ∞+δ vi∞t , where ψ∞ is an asymptotic ordinate different from the postshock ripple amplitude at t =0 + . This work is a continuation of the calculations of F. Cobos Campos and J. G. Wouchuk, [Phys. Rev. E 90, 053007 (2014), 10.1103/PhysRevE.90.053007] for a single shock moving into one fluid.

  19. Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Jacobs, Jeffrey W.

    2002-01-01

    The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.

  20. Streaked Imaging of Ablative Richtmyer--Meshkov Growth in ICF Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2003-10-01

    Dynamic overpressure sets the growth rate of the ablative Richtmyer--Meshkov (RM) instability and the seeds for subsequent growth of perturbations due to the Rayleigh--Taylor instability in directly driven ICF targets. It leads to temporal oscillations of the perturbed ablation front, which have been predicted analytically,(V.N. Goncharov, Phys. Rev. Lett. 82), 2091 (1999). observed in 2-D ORCHID hydrodynamic simulations, and measured experimentally.(Y. Aglitskiy et al.), Phys. Plasmas 9, 2264 (2002). These predictions were verified on OMEGA by measuring the perturbation amplitudes and frequencies directly, through face-on x-ray radiography. Experiments with a high-resolution, Ir-coated Kirkpatrick--Baez microscope, coupled to a high-current streak tube, provided a continuous record of the target areal density during shock transit, while it was dominated by the evolution of the RM instability. Planar plastic targets with variable thicknesses (30 to 60 μm) and single-mode (λ = 10 to 30 μm) ripples on the front surface were irradiated with 1.5-ns square UV laser pulses with intensities---ranging from 5 × 10^13 W/cm^2 to 4 × 10^14 W/cm^2. Results clearly indicate a phase reversal in the evolution of the target areal density perturbations, in good agreement with theory and simulation. The predicted dependence of the oscillation period on laser intensity and modulation wavelength was quantified. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  1. Crash simulation of rayleigh-taylor, richtmyer-meshkov, and magnetic rayleigh-taylor instability

    NASA Astrophysics Data System (ADS)

    Chou, Jason Chuan-Chih

    The research discussed in this thesis was motivated by the supernova Rayleigh-Taylor (SNRT) experiments conducted in 2009. Originally designed as laboratory astrophysics experiments relevant to the Rayleigh-Taylor Instability (RTI) at the He-H interface during supernova explosion, these experiments exhibited unusual late-time morphology development, characterized by the lack of mushroom caps and uniform width of the spikes. In response, a "Magnetic Straitjacket" hypothesis was proposed to explain the discrepancy, based on the Biermann Battery mechanism. In order to test this hypothesis, we used the Center for Radiative Shock Hydrodynamics (CRASH) code developed for a sufficiently similar problem and with the necessary capabilities. We validated this alternative usage of the CRASH code with simulations of pure hydrodynamic RTI and Richtmyer-Meshkov Instability (RMI) and identified the suitable combinations of numerical schemes and parameters. For the RTI, we compared the results of simulations to the analytical solution for the early time behavior, examined the late-time morphology, and tested the low-resolution limit for the RTI simulations using CRASH. For the RMI, we modeled Collins and Jacobs' experiment and compared the results of CRASH simulations to the experimental observations as well as to the simulation results of several other code packages. Finally, we modeled the original SNRT experiments with magnetohydrodynamics (MHD) and Biermann battery effect. Unfortunately, the results were inconclusive due to insufficiently resolved simulations, limited by the explicit time integration of the magnetic diffusion. Furthermore, pilot runs with higher resolution indicated that simulations that fully resolve the gradients necessary to calculate the Biermann battery effect may be susceptible to the development of extraneous small-wavelength instabilities. Developments of implicit time integration of the magnetic diffusion and possibly new numerical schemes are

  2. Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime

    SciTech Connect

    Liu, W. H.; He, X. T.; Yu, C. P.

    2012-07-15

    When an incident shock collides with a corrugated interface separating two fluids of different densities, the interface is prone to Richtmyer-Meshkov instability (RMI). Based on the formal perturbation expansion method as well as the potential flow theory, we present a simple method to investigate the cylindrical effects in weakly nonlinear RMI with the transmitted and reflected cylindrical shocks by considering the nonlinear corrections up to fourth order. The cylindrical results associated with the material interface show that the interface expression consists of two parts: the result in the planar system and that from the cylindrical effects. In the limit of the cylindrical radius tending to infinity, the cylindrical results can be reduced to those in the planar system. Our explicit results show that the cylindrical effects exert an inward velocity on the whole perturbed interface, regardless of bubbles or spikes of the interface. On the one hand, outgoing bubbles are constrained and ingoing spikes are accelerated for different Atwood numbers (A) and mode numbers k'. On the other hand, for ingoing bubbles, when |A|k'{sup 3/2} Less-Than-Or-Equivalent-To 1, bubbles are considerably accelerated especially at the small |A| and k'; otherwise, bubbles are decelerated. For outgoing spikes, when |A|k' Greater-Than-Or-Equivalent-To 1, spikes are dramatically accelerated especially at large |A| and k'; otherwise, spikes are decelerated. Furthermore, the cylindrical effects have a significant influence on the amplitudes of the ingoing spike and bubble for large k'. Thus, it should be included in applications where the cylindrical effects play a role, such as inertial confinement fusion ignition target design.

  3. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected.

    PubMed

    Wouchuk, J G; Sano, T

    2015-02-01

    The Richtmyer-Meshkov instability (RMI) develops when a shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure-entropy-vorticity fields generated by the rippled wave fronts are responsible for the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluids density ratio, and compressibilities. It was speculated in the past about the possibility of getting a zero value for the asymptotic normal velocity, a phenomenon that was called "freeze-out" [G. Fraley, Phys. Fluids 29, 376 (1986); K. Mikaelian, Phys. Fluids 6, 356 (1994), A. L. Velikovich et al., Phys. Plasmas 8, 592 (2001)]. In a previous paper, freeze-out was studied for the case when a shock is reflected at the contact surface [J. G. Wouchuk and K. Nishihara, Phys. Rev. E 70, 026305 (2004)]. In this work the freeze-out of the RMI is studied for the case in which a rarefaction is reflected back. Two different regimes are found: nearly equal preshock densities at the interface at any shock intensity, and very large density difference for strong shocks. The contour curves that relate shock Mach number and preshock density ratio are obtained in both regimes for fluids with equal and different compressibilities. An analysis of the temporal evolution of different cases of freeze-out is shown. It is seen that the freeze-out is the result of the interaction between the unstable interface and the rippled wave fronts. As a general and qualitative criterion to look for freeze-out situations, it is seen that a necessary condition for freeze-out is the same orientation for the tangential velocities generated at each side of the contact surface at t=0+. A comparison with the results of previous works is also shown. PMID

  4. Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation

    NASA Astrophysics Data System (ADS)

    Tsiklashvili, Vladimer

    The Richtmyer-Meshkov instability is studied in vertical shock tube experiment. The instability is initiated by the passage of an incident shock wave over an interface between two dissimilar gases. The interface is formed by opposed gas flows in which air and SF6 enter the shock tube from the top and from the bottom of the shock tube driven section. The gases exit the test section through a series of small holes in the test section side walls, leaving behind a flat, diffuse membrane-free interface at that location. Random three-dimensional perturbations are imposed on the interface by oscillating the column of gases in the vertical direction, using two loud speakers mounted in the shock tube wall. The development of the turbulent mixing is observed as a result of the shock-interface interaction. The flow is visualized using planar Mie scattering in which the light from a laser sheet is scattered by smoke particles seeded in one of the experimental gases and image sequences are captured using high-speed CMOS cameras. The primary interest of the study is the determination of the growth rate of the turbulent mixing layer that develops after an impulsive acceleration of the perturbed interface between the two gases (air/SF6) by a weak M=1.2 incident shock wave. Measurements of the mixing layer width following the initial shock interaction show a power law growth h˜ tthetasimilar to the those observed in previous experiments and simulations with theta ≈ 0.40. The experiments reveal that the growth rate of the mixing width significantly varies from one experiment to another. This is attributed to the influence of initial perturbations imposed on the interface. However, better consistency for the mixing layer growth rate is obtained from the mixing generated by the reflected shock wave. A novel approach that is based on mass and linear momentum conservation laws in the moving reference frame leads to a new definition of the spike and bubble mixing layer widths, which

  5. An Experimental Study of the Turbulent Development of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    SciTech Connect

    Jacobs, Jeffrey, W.

    2006-10-30

    The objective of this three-year research program is to study the development of turbulence in Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. Incompressible RT and RM instabilities are studied in an apparatus in which a box containing two unequal density liquids is accelerated on a linear rail system either impulsively (by bouncing it off of a spring) to produce RM instability, or at a constant downward rate (using a weight and pulley system) to produce RT instability. These experiments are distinguished from others in the field in that they are initialized with well defined, measurable initial perturbations and are well visualized utilizing planar laser induced fluorescence imaging. New experiments are proposed aimed at generating fully turbulent RM and RT instabilities and quantifying the turbulent development once fully turbulent flows are achieved. The proposed experiments focus on the development and the subsequent application of techniques to accelerate the production of fully turbulent instabilities and the quantification of the turbulent instabilities once they are achieved. The proposed tasks include: the development of RM and RT experiments utilizing fluid combinations having larger density ratios than those previously used; the development of RM experiments with larger acceleration impulse than that previously used; and the investigation of the multi-mode and three-dimensional instabilities by the development of new techniques for generating short wavelength initial perturbations. Progress towards fulfilling these goals is currently well on track. Recent results have been obtained on experiments that utilize Faraday resonance for the production of a nearly single-mode three-dimensional perturbation with a short enough wavelength to yield a self-similar instability at late-times. Last year we reported that we can reliably generate Faraday internal waves on the interface in our experimental apparatus by oscillating the tank containing the

  6. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    SciTech Connect

    Loomis, Eric; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto; Braun, Dave

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps, divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl Heα - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so

  7. Simultaneous PIV/PLIF measurements of Richtmyer-Meshkov Instabilities from single- and multi-mode perturbed interfaces

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, Ricardo; Wilson, Brandon; Prestridge, Kathy; Extreme Fluids Team

    2013-11-01

    To support validation of RANS and LES codes for single-interface Richtmyer-Meshkov mixing, the Extreme Fluids Team at Los Alamos National Laboratory commissioned a Vertical Shock Tube. This facility has the capability of generating statistically stationary single- and multi-mode spatial perturbations on the fluid interface prior to shock-interface interaction. The present study focuses on comparing the evolution of shock-driven mixing under two different spatial perturbation conditions after interacting with a M = 1.2 shock wave. High resolution simultaneous PIV and PLIF are used for capturing 2D instantaneous realizations of velocity and density at different stages of the evolving interface. Multiple realizations of the flow at each one of these evolution stages are obtained to characterize the flow statistically. Also, a modal analysis via Singular Value Decomposition is performed on the density and velocity fields to elucidate the role of initial flow scales content on the transition to turbulent mixing.

  8. Generation of plane shocks using intense heavy ion beams: Application to Richtmyer-Meshkov instability growth studies

    SciTech Connect

    Tahir, N. A.; Stoehlker, Th.; Shutov, A.; Zharkov, A. P.; Piriz, A. R.

    2011-03-15

    A design of a novel experiment that allows the generation of a well defined, steady, and strong plane shock wave employing an intense uranium ion beam that is incident on a wedge shaped compound target is presented. This technique will open up the possibility of carrying out unique high energy density physics experiments using these shock waves. One such experiment is to study the growth of Richtmyer-Meshkov instability in fluids as well as in solids, both in the linear and nonlinear regimes, as shown by detailed numerical simulations presented in this paper. The ion beam parameters used in this study correspond to those that will be available at the Facility for Antiprotons and Ion Research (FAIR) at Darmstadt.

  9. Simultaneous PIV/PLIF Measurements of Multi-mode Perturbed Initial Conditions of Single-Interface Richtmyer-Meshkov Mixing

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, R.; Wilson, B.; Prestridge, K.

    A Richtmyer-Meshkov Instability (RMI) might occur when a shock wave interacts with the interface between two fluids of different density. An initial perturbation in the interface is an optimal condition for the RMI. This is so because local misalignments between the density gradient across the interface and the pressure gradient of the shock wave induce non-zero baroclinic vorticity that amplifies the initial perturbation. RMI is known to occur in supernovas, collapsing gas bubbles in liquids, supersonic and hypersonic combustion, interacting flame fronts and pressure waves, laser-matter interactions, and inertial confinement fusion (ICF). The effects of RMIinduced mixing are detrimental to energy conversion efficiency in ICF, but can be advantageous in combustion processes.

  10. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    SciTech Connect

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  11. Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths

    NASA Astrophysics Data System (ADS)

    Mikaelian, K. O.

    2015-01-01

    We discuss a model for the evolution of the turbulent mixing width after a shock or a reshock passes through the interface between two fluids of densities and inducing a velocity jump . In this model, the initial growth rate is independent of the surface finish or initial mixing width , but its duration is directly proportional to it: for , and for . Here is the Atwood number and are dimensionless, -dependent parameters measured in past Rayleigh-Taylor experiments, and is a new dimensionless parameter we introduce via . The mixing width and its derivative remain continuous at since and . We evaluate at from air/SF experiments and propose that the transition at signals isotropication of turbulence. We apply this model to the recent experiments of Jacobs et al. (Shock Waves 23:407-413, 2013) on shock and reshock, and discuss briefly the third wave causing an unstable acceleration of the interface. We also consider the experiments of Weber et al. (Phys Fluids 24:074105, 2012) and argue that their smaller growth rates reflect density gradient stabilization.

  12. Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Long, C. C.; Krivets, V. V.; Greenough, J. A.; Jacobs, J. W.

    2009-11-01

    A vertical shock tube is used to perform experiments in which an interface is formed using opposed flows of air and SF6. A three-dimensional single-mode perturbation is created by the periodic vertical motion of the gases within the shock tube. Richtmyer-Meshkov instability is produced by an impulsive acceleration by a weak shock wave (Ms=1.2). Planar laser induced fluorescence produces still images, and planar Mie scattering produces movies of the experiment. A three-dimensional numerical simulation of this experiment utilizing the Eulerian adaptive mesh refinement code, RAPTOR, was also conducted. Good agreement is obtained between experiments and the simulations. However, existing late time models, which have a 1/t dependence, disagree with measurements of the late time instability development. In contrast, both the experiments and simulation suggest a t-0.54 late time dependence for the overall growth rate. Comparisons with individual bubble and spike velocities show the bubbles appear to decay approximately at 1/t and the spikes to decay at a much slower rate of t-0.38.

  13. Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Thornber, B.

    2016-04-01

    Both experiments and computations are naturally constrained by boundary conditions. In fundamental problems such as homogeneous decaying turbulence (HDT) or shock-induced mixing layers, a size constraint naturally limits the growth of the large scales in the problem, modifying the physics observed. This paper explores through Large Eddy Simulation (LES) the integral properties using computations from 1283 to 10243 for HDT and 1283 to 5123 for the Richtmyer-Meshkov instability (RMI). Kinetic energy decay rates in both cases are shown to be relatively insensitive to the domain size until the spectral peak is at the first wave number. The integral length is significantly more sensitive, showing substantial discrepancies once it is greater than 10% of the domain size. However, the key error is shown to be due to a lack of statistical averaging once the integral length is greater than 5% of the box size, thus appearing earlier than the length scale saturation. This highlights that a single computation at modest grid resolution (≤2563) may not reproduce the correct physics and that at this resolution, numericists need to embrace the practice of using multiple independent realisations to reduce the statistical error, as is the norm for the experimentalist. Finally, an update on the physics of HDT and RMI as predicted through LES computations is presented.

  14. Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Ohnishi, N.; Sakawa, Y.; Morita, T.; Tanji, H.; Ide, T.; Nishio, K.; Gregory, C. D.; Waugh, J. N.; Booth, N.; Heathcote, R.; Murphy, C.; Gregori, G.; Smallcombe, J.; Barton, C.; Dizière, A.; Koenig, M.; Woolsey, N.; Matsumoto, Y.; Mizuta, A.; Sugiyama, T.; Matsukiyo, S.; Moritaka, T.; Sano, T.; Takabe, H.

    2016-03-01

    A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors for the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA.

  15. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  16. Richtmyer-Meshkov jet formation from rear target ripples in plastic and plastic/aluminum laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.

    2015-11-01

    We report experimental observations of jets produced from the rear surface of laser targets after a passage of the laser-driven shock wave. As in our previous work, Aglitskiy et al., Phys. Plasmas (2012), the jets are produced via the shaped-charge mechanism, a manifestation of a Richtmyer-Meshkov instability for a particular case of the Atwood number A =-1. The experiments done on the KrF Nike laser facility with laser wavelength 248 nm, a 4 ns pulse, and low-energy drive regime that used only 1 to 3 overlapping Nike beams and generated ablative pressure below 1 Mbar. Our 50 um thick planar targets were rippled on the rear side with wavelength 45 μm and peak-to-valley amplitude 15 μm. The targets were made either of solid plastic or of aluminum with a 10 μm thick plastic ablator attached to avoid the radiation preheat. The jets were extremely well collimated, which made possible our side-on observations with monochromatic x-ray imaging. We saw a regular set of jets, clearly separated along the 500 μm line of sight. Aluminum jets were found to be slightly better collimated than plastic jets. A quasi-spherical late-time expansion of Al jets starting from the tips has not been previously seen in experiments or simulations. Work supported by the US DOE/NNSA.

  17. Validating equation of state models in the ablative Richtmyer-Meshkov regime for indirect-drive inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steve; Sorce, Charles; Landen, Otto

    2011-10-01

    Recent simulations have shown that isolated features on the outer surface of Inertial Confinement Fusion (ICF) ignition capsules can profoundly impact capsule performance by leading to mixing in the hotspot. Controlling the growth of these artifacts is complicated due to uncertainties in equation of state (EOS) models used in simulation codes. Here we report on measurements pertaining to the growth of isolated defects due to ablative Richtmyer-Meshkov in CH capsules in order to validate these models. Face-on transmission radiography was used to measure the evolution of Gaussian bump arrays in plastic targets. Au halfraums heated to radiation temperatures near 70 eV using 15 beams in a 5 ns pulse from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) indirectly drove the samples. Shock speed measurements made with Omega's Active Shock BreakOut (ASBO) diagnostic in conjunction with the x-ray flux recorded by a soft x-ray power diagnostic (DANTE) were used to determine drive conditions in the target. These measurements show that SESAME 7592 is in closer agreement with shock speed and bump growth data compared to LEOS 5310.

  18. Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges

    NASA Astrophysics Data System (ADS)

    Motl, Bradley; Oakley, Jason; Ranjan, Devesh; Weber, Chris; Anderson, Mark; Bonazza, Riccardo

    2009-12-01

    A universal scaling law for the Richtmyer-Meshkov instability is validated with experimental results covering a wide range of density ratios and shock strengths. These results include the first membraneless, gas-phase, interface experiments for A >0.5 and M >1.5. The shock-accelerated, sinusoidal interface experiments are conducted in a vertical shock tube with a large square cross section and cover the experimental parameter space: 0.29

  19. Validation of SPHC and CRASH codes in modeling of linear and non-linear Richtmyer-Meshkov instabilities

    NASA Astrophysics Data System (ADS)

    Stanic, Milos; Cassibry, Jason; Stellingwerf, Robert; Chou, Chuan-Chih; Fryxell, Bruce; Abarzhi, Snezhana

    2011-10-01

    Richtmyer-Meshkov instability (RMI) plays an important role in variety of phenomena in nature and technology and is of special interest in the fields inertial confinement and magneto-inertial fusion. The instability develops when a shock refracts an interface between two fluids with different values of the acoustic impedance, and RMI dynamics is defined primarily by the flow Mach number and the Atwood number for the two fluids. This work was done under the Plasma Liner Experiment (PLX) program, with intentions of verifying whether SPHC and CRASH codes are capable of successful modeling of different modes of RMI that are expected to be seen during the plasma liner implosion. We used SPHC and CRASH codes to mutually evaluate the codes and compared results against the analytical RMI theory. The numerical and theoretical results are in good qualitative and quantitative agreement with one another. Results indicate that at large scales the nonlinear dynamics of RMI is a multi-scale process; at small scale the flow field is heterogeneous and is characterized by appearance of local microscopic structures; the coupling between the scales has a complicated character.

  20. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  1. Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth

    NASA Astrophysics Data System (ADS)

    Loomis, E. N.; Braun, D.; Batha, S. H.; Sorce, C.; Landen, O. L.

    2011-09-01

    Isolated defects on inertial confinement fusion ignition capsules are a concern as defects taller than a few hundred nanometers are calculated to form jets of high-Z material, which enter the main fuel. If this mixing of high-Z material is not controlled, a serious degradation in thermonuclear burn can occur. A path towards controlling the growth of defects on the outer surface of plastic capsules is currently under development, but requires accurate predictions of defect evolution driven by the early time ablative Richtmyer-Meshkov (RM) effect. The chief uncertainty is the Equation of State (EOS) for polystyrene and its effect on ablative RM. We report on measurements of the growth of isolated defects made at the onset of ablative RM oscillations driven by x-ray ablation to differentiate between EOS models used in design calculations. Experiments at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] used on-axis area backlighting radiography and x-ray framing cameras to determine bump areal densities at discrete times. Bumps 12 and 14 μm tall and 33 μm FWHM were found to grow to 2 × their initial areal density by 3 ns after the start of the drive laser pulse. Shock speed measurements established target conditions resulting from the ablation process. The tabular LEOS 5310 [D. Young and E. Corey, J. Appl. Phys. 78, 3748 (1995)] model shows good agreement with measured shock speeds and bump growth whereas the QEOS model [R. More et al., Phys. Fluids 31, 3059 (1988)] over predicts shock speed and under predicts bump growth by 6×. Differences in ablative RM behavior were also found for x-ray ablation compared to laser ablation, which result in an overestimation (or non-existence) of oscillation frequency for x-ray ablation as predicted by theory.

  2. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steven H.; Landen, Otto L.

    2013-11-01

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS) models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps) due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sent a ˜1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM) deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα - 2.76keV) backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  3. Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth

    SciTech Connect

    Loomis, E. N.; Batha, S. H.; Braun, D.; Sorce, C.; Landen, O. L.

    2011-09-15

    Isolated defects on inertial confinement fusion ignition capsules are a concern as defects taller than a few hundred nanometers are calculated to form jets of high-Z material, which enter the main fuel. If this mixing of high-Z material is not controlled, a serious degradation in thermonuclear burn can occur. A path towards controlling the growth of defects on the outer surface of plastic capsules is currently under development, but requires accurate predictions of defect evolution driven by the early time ablative Richtmyer-Meshkov (RM) effect. The chief uncertainty is the Equation of State (EOS) for polystyrene and its effect on ablative RM. We report on measurements of the growth of isolated defects made at the onset of ablative RM oscillations driven by x-ray ablation to differentiate between EOS models used in design calculations. Experiments at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] used on-axis area backlighting radiography and x-ray framing cameras to determine bump areal densities at discrete times. Bumps 12 and 14 {mu}m tall and 33 {mu}m FWHM were found to grow to 2 x their initial areal density by 3 ns after the start of the drive laser pulse. Shock speed measurements established target conditions resulting from the ablation process. The tabular LEOS 5310 [D. Young and E. Corey, J. Appl. Phys. 78, 3748 (1995)] model shows good agreement with measured shock speeds and bump growth whereas the QEOS model [R. More et al., Phys. Fluids 31, 3059 (1988)] over predicts shock speed and under predicts bump growth by 6x. Differences in ablative RM behavior were also found for x-ray ablation compared to laser ablation, which result in an overestimation (or non-existence) of oscillation frequency for x-ray ablation as predicted by theory.

  4. Three dimensional hydrodynamic calculations with adaptive mesh refinement of the evolution of Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry: Multi-mode perturbations

    SciTech Connect

    Klein, R.I. |; Bell, J.; Pember, R.; Kelleher, T.

    1993-04-01

    The authors present results for high resolution hydrodynamic calculations of the growth and development of instabilities in shock driven imploding spherical geometries in both 2D and 3D. They solve the Eulerian equations of hydrodynamics with a high order Godunov approach using local adaptive mesh refinement to study the temporal and spatial development of the turbulent mixing layer resulting from both Richtmyer Meshkov and Rayleigh Taylor instabilities. The use of a high resolution Eulerian discretization with adaptive mesh refinement permits them to study the detailed three-dimensional growth of multi-mode perturbations far into the non-linear regime for converging geometries. They discuss convergence properties of the simulations by calculating global properties of the flow. They discuss the time evolution of the turbulent mixing layer and compare its development to a simple theory for a turbulent mix model in spherical geometry based on Plesset`s equation. Their 3D calculations show that the constant found in the planar incompressible experiments of Read and Young`s may not be universal for converging compressible flow. They show the 3D time trace of transitional onset to a mixing state using the temporal evolution of volume rendered imaging. Their preliminary results suggest that the turbulent mixing layer loses memory of its initial perturbations for classical Richtmyer Meshkov and Rayleigh Taylor instabilities in spherically imploding shells. They discuss the time evolution of mixed volume fraction and the role of vorticity in converging 3D flows in enhancing the growth of a turbulent mixing layer.

  5. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    SciTech Connect

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J.

    2015-08-01

    The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.

  6. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

    DOE PAGESBeta

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J.

    2015-08-01

    The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. Formore » the conditions simulated, diffusion can influence the initial instability growth significantly.« less

  7. Richtmyer-Meshkov instability of a three-dimensional SF_{6}-air interface with a minimum-surface feature.

    PubMed

    Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng

    2016-01-01

    The Richmyer-Meshkov instability of a three-dimensional (3D) SF_{6}-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability. PMID:26871149

  8. Richtmyer-Meshkov instability of a three-dimensional SF6-air interface with a minimum-surface feature

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Guan, Ben; Si, Ting; Zhai, Zhigang; Wang, Xiansheng

    2016-01-01

    The Richmyer-Meshkov instability of a three-dimensional (3D) SF6-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.

  9. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  10. Investigation of the Richtmyer-Meshkov instability

    SciTech Connect

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-12-22

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of three graduate students is in line with the national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.

  11. Investigation of the Richtmyer-Meshkov instability

    SciTech Connect

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2007-03-19

    The present research program is centered on the experimental and numerical study of the hydrodynamics of shock-accelerated spherical density inhomogeneities. These flows are part of a broader category of shock-induced mixing flows that play a critical role in the implosion of D-T pellets in laser-driven ICF experiments. For the past year, our work has consisted of both experimental and numerical activities which were presented at two conferences and resulted in the publication of one journal article and the submission of a second one. The papers from one of the conferences are inlcuded here.

  12. TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION

    SciTech Connect

    Kuranz, C. C.; Drake, R. P.; Harding, E. C.; Grosskopf, M. J.; Robey, H. F.; Remington, B. A.; Edwards, M. J.; Miles, A. R.; Perry, T. S.; Blue, B. E.; Plewa, T.; Hearn, N. C.; Arnett, D.; Leibrandt, D. R.

    2009-05-01

    This paper shows results from experiments diagnosing the development of the Rayleigh-Taylor instability with two-dimensional initial conditions at an embedded, decelerating interface. Experiments are performed at the Omega Laser and use {approx}5 kJ of energy to create a planar blast wave in a dense, plastic layer that is followed by a lower density foam layer. The single-mode interface has a wavelength of 50 {mu}m and amplitude of 2.5 {mu}m. Some targets are supplemented with additional modes. The interface is shocked then decelerated by the foam layer. This initially produces the Richtmyer-Meshkov instability followed and then dominated by Rayleigh-Taylor growth that quickly evolves into the nonlinear regime. The experimental conditions are scaled to be hydrodynamically similar to SN1987A in order to study the instabilities that are believed to occur at the He/H interface during the blast-wave-driven explosion phase of the star. Simulations of the experiment were performed using the FLASH hydrodynamics code.

  13. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  14. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  15. Numerical simulations of the process of multiple shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao

    2016-04-01

    Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.

  16. Numerical simulations of the process of multiple shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao

    2016-08-01

    Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.

  17. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  18. Two-Dimensional IHCP Code

    Energy Science and Technology Software Center (ESTSC)

    1997-11-18

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  19. Reshock and release response of aluminum single crystal

    NASA Astrophysics Data System (ADS)

    Huang, H.; Asay, J. R.

    2007-03-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50μm grain size at shock stresses of 13 and 21GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)].

  20. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  1. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  2. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  3. Behaviour of rippled shocks from ablatively-driven Richtmyer-Meshkov in metals accounting for strength

    NASA Astrophysics Data System (ADS)

    Opie, S.; Gautam, S.; Fortin, E.; Lynch, J.; Peralta, P.; Loomis, E.

    2016-05-01

    While numerous continuum material strength and phase transformation models have been proposed to capture their complex dependences on intensive properties and deformation history, few experimental methods are available to validate these models particularly in the large pressure and strain rate regime typical of strong shock and ramp dynamic loading. In the experiments and simulations we present, a rippled shock is created by laser-ablation of a periodic surface perturbation on a metal target. The strength of the shock can be tuned to access phase transitions in metals such as iron or simply to study high-pressure strength in isomorphic materials such as copper. Simulations, with models calibrated and validated to the experiments, show that the evolution of the amplitude of imprinted perturbations on the back surface by the rippled shock is strongly affected by strength and phase transformation kinetics. Increased strength has a smoothing effect on the perturbed shock front profile resulting in smaller perturbations on the free surface. In iron, faster phase transformations kinetics had a similar effect as increased strength, leading to smoother pressure contours inside the samples and smaller amplitudes of free surface perturbations in our simulations.

  4. Investigations of the Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    SciTech Connect

    Riccardo Bonazza; Mark Anderson; Jason Oakley

    2008-03-14

    The present program is centered on the experimental study of shock-induced interfacial fluid instabilities. Both 2-D (near-sinusoids) and 3-D (spheres) initial conditions are studied in a large, vertical square shock tube facility. The evolution of the interface shape, its distortion, the modal growth rates and the mixing of the fluids at the interface are all objectives of the investigation. In parallel to the experiments, calculations are performed using the Raptor code, on platforms made available by LLNL. These flows are of great relevance to both ICF and stockpile stewardship. The involvement of four graduate students is in line with the national laboratories' interest in the education of scientists and engineers in disciplines and technologies consistent with the labs' missions and activities.

  5. Three dimensional simulations of Richtmyer-Meshkov instabilities in shock-tube experiments

    SciTech Connect

    Gowardhan, Akshay A; Grinstein, Fernando F; Wachtor, Adam J

    2010-01-01

    In the large eddy simulation (LES) approach large-scale energy-containing structures are resolved, smaller (presumably) more isotropic structures are filtered out, and unresolved subgrid effects are modeled. Extensive recent work has demonstrated that predictive simulations of turbulent velocity fields are possible based on subgrid scale modeling implicitly provided by a class of high-resolution finite-volume algorithms. This strategy is called implicit LES. The extension of the approach to the substantially more difficult problem of material mixing IS addressed, and progress in representative shock-driven turbulent mixing studies is reported.

  6. Material Strength Effects on Feedthru of the Ablative Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Peralta, Pedro; Fortin, Elizabeth; Lynch, Jenna

    2015-11-01

    Mitigating hydrodynamic instabilities in Inertial Confinement Fusion (ICF) is of prime importance for producing self-heating and reaching ignition. One possible mitigation strategy involves the use of metal ablators (e.g., Be) that remain solid following passage of the first shock. Finite material strength in these capsules would alter the feedthru characteristics (oscillation frequency and decay rate) of perturbations initially on the outer surface. To study the physics associated with material strength effects on rippled shock oscillations and feedthru, experiments were performed at the Los Alamos Trident laser. These experiments directly measured the surface height amplitude imprinted by the shock ripple at the opposite free surface with 20 nm precision over a timespan of 25 ns using an in-situ diagnostic called Transient Imaging Displacement Interferometry (TIDI). Simulations from the Lawrence Livermore National Lab code HYDRA predicted that the free surface ripple grows about 3 times more without the use of a strength model in Cu for an initial 5 micron amplitude, 50 micron wavelength sinusoid driven to a free surface velocity of 600 m/s. By increasing the perturbation wavelength we slowed the shock oscillation frequency and decay rate to increase the free surface ripple amplitude to roughly half the perturbations initial amplitude. The time dependent imprinted amplitude was considerably less in high strength Fe versus the softer Cu. This research made possible by a grant from the Office of Fusion Energy Sciences - High Energy Density Laboratory Plasmas.

  7. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells

    SciTech Connect

    Mikaelian, K O

    2004-04-15

    We study the linear stability of an arbitrary number N of cylindrical concentric shells undergoing a radial implosion or explosion.We derive the evolution equation for the perturbation {eta}{sub i} at interface i; it is coupled to the two adjacent interfaces via {eta}{sub i{+-}1}. For N=2, where there is only one interface, we verify Bell's conjecture as to the form of the evolution equation for arbitrary {rho}{sub 1} and {rho}{sub 2}, the fluid densities on either side of the interface. We obtain several analytic solutions for the N=2 and 3 cases. We discuss freeze-out, a phenomenon that can occur in all three geometries (planar, cylindrical, or spherical), and ''critical modes'' that are stable for any implosion or explosion history and occur only in cylindrical or spherical geometries. We present numerical simulations of possible gelatin-ring experiments illustrating perturbation feedthrough from one interface to another. We also develop a simple model for the evolution of turbulent mix in cylindrical geometry and define a geometrical factor G as the ratio h{sub cylindrical}/h{sub planar} between cylindrical and planar mixing layers. We find that G is a decreasing function of R/R{sub o}, implying that in our model h{sub cylindrical} evolves faster (slower) than h{sub planar} during an implosion (explosion).

  8. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357

  9. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  10. Two-dimensional separated flows

    NASA Astrophysics Data System (ADS)

    Gersten, K.

    The state of the art of asymptotic theory is discussed with respect to incompressible two-dimensional separated flows. As an example, the flow over an indented flat plate is considered for two cases: a small separation bubble within the lower part of the boundary layer, and the 'catastrophic' separation of the whole boundary layer with a large recirculating eddy. Separation means failure of Prandtl's boundary layer theory, and alternate theories are required. An example of this is shown in the calculation of circulation in the dent according to triple-deck theory. The free-streamline theory approach is used to examine the indented flat plate and the flow past a circular cylinder. Attention is also given to flow control by continuous injection, combined forced and free convection, unsteady laminar flows, and laminar flows.

  11. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  12. Digital Filters for Two-Dimensional Data

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1983-01-01

    Computational efficient filters speed processing of two-dimensional experimental data. Two-dimensional smoothing filter used to attenuate highfrequency noise in two-dimensional numerical data arrays. Filter provides smoothed data values equal to values obtained by fitting surface with secondand third-order terms to 5 by 5 subset of data points centered on points and replacing data at each point by value of surface fitted at point. Especially suited for efficient analysis of two-dimensional experimental data on images.

  13. Two laser-driven mix experiments to study reshock and shear

    NASA Astrophysics Data System (ADS)

    Welser-Sherrill, L.; Fincke, J.; Doss, F.; Loomis, E.; Flippo, K.; Offermann, D.; Keiter, P.; Haines, B.; Grinstein, F.

    2013-09-01

    In an effort to better understand mix in Inertial Confinement Fusion (ICF) implosion cores, a series of laser-driven mix experiments has been designed for the University of Rochester's OMEGA laser. Our objective is to perform experiments to investigate the turbulent mixing at material interfaces when subject to multiple shocks and reshocks or high-speed shear. Ultimately, these experiments are providing detailed quantitative measurements to assist in validation efforts for the BHR-2 mix model, which is implemented in the RAGE hydrodynamics code. The Reshock experiment studies the physical process of shocking and reshocking mix layers. Radiographs are recorded to compile a temporal evolution of the mixing layer and its subsequent reshock, compression, and re-growth phases. The Shear experiment investigates shear-driven growth of a mix layer, and radiography captures the time evolution of the development of turbulent mixing due to shear. Simulations of both the Reshock and Shear experiments using RAGE and the BHR-2 mix model demonstrate good agreement with the mix evolution seen in the experimental data, giving confidence that BHR-2 is capable of simulating the behavior of both compressive and shear-driven turbulent flows.

  14. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for…

  15. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  16. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  17. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  18. Electrical contacts to two-dimensional semiconductors.

    PubMed

    Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras

    2015-12-01

    The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides. PMID:26585088

  19. Crossflow in two-dimensional asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Lee, L. P.

    1975-01-01

    An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.

  20. Two-dimensional nanolithography using atom interferometry

    SciTech Connect

    Gangat, A.; Pradhan, P.; Pati, G.; Shahriar, M.S.

    2005-04-01

    We propose a scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave interference. The required quantum control is provided by a {pi}/2-{pi}-{pi}/2 atom interferometer with an integrated atom lens system. The lens system is developed such that it allows simultaneous control over the atomic wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with two-dimensional {sup 87}Rb wave packets through numerical simulations of the scheme in a practical parameter space. Prospects for experimental realizations of the lithography scheme are also discussed.

  1. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  2. Nitrogenated holey two-dimensional structures

    PubMed Central

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-01-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications. PMID:25744355

  3. Nitrogenated holey two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-03-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications.

  4. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  5. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  6. Valley excitons in two-dimensional semiconductors

    DOE PAGESBeta

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  7. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  8. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the

  9. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  10. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  11. Two-Dimensional NMR Lineshape Analysis.

    PubMed

    Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  12. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  13. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  14. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  15. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  16. Two-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Li, Y. H.; Ahmad, I.; McCartney, D. G.; Zhu, Y. Q.; Hu, W. B.

    2006-09-01

    The authors report the synthesis and characterization of two-dimensional (2D) single crystalline nanonetworks consisting of tungsten oxide nanowires with diameters of ca. 20nm. The 2D networks are believed to result from the nanowire growth along the four crystallographic equivalent directions of ⟨110⟩ in the tetragonal WO2.9 structure. These 2D tungsten oxide networks may be potential precursors for creating 2D networks comprising WS2 nanotubes.

  17. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  18. Two-dimensional structured illumination microscopy.

    PubMed

    Schropp, M; Uhl, R

    2014-10-01

    In widefield fluorescence microscopy, images from all but very flat samples suffer from fluorescence emission from layers above or below the focal plane of the objective lens. Structured illumination microscopy provides an elegant approach to eliminate this unwanted image contribution. To this end a line grid is projected onto the sample and phase images are taken at different positions of the line grid. Using suitable algorithms 'quasi-confocal images' can be derived from a given number of such phase-images. Here, we present an alternative structured illumination microscopy approach, which employs two-dimensional patterns instead of a one-dimensional one. While in one-dimensional structured illumination microscopy the patterns are shifted orthogonally to the pattern orientation, in our two-dimensional approach it is shifted at a single, pattern-dependent angle, yet it already achieves an isotropic power spectral density with this unidirectional shift, which otherwise would require a combination of pattern-shift and -rotation. Moreover, our two-dimensional approach also yields a better signal-to-noise ratio in the evaluated image. PMID:25113075

  19. Two-dimensional resonators for local oscillators

    NASA Astrophysics Data System (ADS)

    Huang, K.-c.; Jenkins, A.; Edwards, D.; Dew-Hughes, D.

    1999-11-01

    The expedited globalization of satellite technology has brought about a rapid boost in satellite competition and increased utilization of wireless communications remote data devices. In space communications receivers, there is an expanding demand for higher performance from local oscillators. The determining conditions are high Q values, high circulating power and low amplifier noise figures. In spite of their low insertion loss, conventional one-dimensional high-temperature superconducting (HTS) resonator-feedback oscillators suffer from high peak current densities inside the resonator and thus have a limited power-handling characteristics. To achieve higher-power oscillators, it is possible to introduce a two-dimensional microstrip resonator to balance the internal current distribution. To this end, 3 GHz two-dimensional resonators have been fabricated from TBCCO 2212 thin films deposited by RF sputtering onto 2 cm square LaAlO3 substrates. This paper demonstrates the frequency stabilizer role and the frequency response of the two-dimensional resonator. The considerable improvement for the performance of resonator-feedback oscillators constructed using such HTS resonators will also be presented.

  20. Two-Dimensional Synthetic-Aperture Radiometer

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    2010-01-01

    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate

  1. Transport in two-dimensional paper networks

    PubMed Central

    Fu, Elain; Ramsey, Stephen A.; Kauffman, Peter; Lutz, Barry; Yager, Paul

    2011-01-01

    Two-dimensional paper networks (2DPNs) hold great potential for transcending the capabilities and performance of today's paper-based analytical devices. Specifically, 2DPNs enable sophisticated multi-step chemical processing sequences for sample pretreatment and analysis at a cost and ease-of-use that make them appropriate for use in settings with low resources. A quantitative understanding of flow in paper networks is essential to realizing the potential of these networks. In this report, we provide a framework for understanding flow in simple 2DPNs using experiments, analytical expressions, and computational simulations. PMID:22140373

  2. Couette flow of two-dimensional foams

    NASA Astrophysics Data System (ADS)

    Katgert, G.; Tighe, B. P.; Möbius, M. E.; van Hecke, M.

    2010-06-01

    We experimentally investigate flow of quasi-two-dimensional disordered foams in Couette geometries, both for foams squeezed below a top plate and for freely floating foams (bubble rafts). With the top plate, the flows are strongly localized and rate dependent. For the bubble rafts the flow profiles become essentially rate independent, the local and global rheology do not match, and in particular the foam flows in regions where the stress is below the global yield stress. We attribute this to nonlocal effects and show that the "fluidity" model recently introduced by Goyon et al. (Nature, 454 (2008) 84) captures the essential features of flow both with and without a top plate.

  3. Program For Two-Dimensional Thermoplastic Deformation

    NASA Technical Reports Server (NTRS)

    Orient, George E.

    1993-01-01

    SOLAS contains number of utility programs for use with finite-element simulations. Designed to handle two-dimensional problems of quasi-static thermoplastic deformation. Includes optional postprocessing software, independent of solution codes, generating unified element-by-element list of quantitative results of computation, plus file containing signed equivalent stresses, equivalent strains, and multiaxiality factor parameter. Signs of equivalent quantities expressed either with respect to maximum principal quantities or with respect to directions defined by user. Written in UNIX shell script and FORTRAN 77.

  4. Can Two-Dimensional Boron Superconduct?

    PubMed

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  5. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  6. Pressure of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de

    2016-06-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.

  7. Two dimensional thick center vortex model

    NASA Astrophysics Data System (ADS)

    Rafibakhsh, Shahnoosh; Ahmadi, Alireza

    2016-01-01

    The potential between static color source is calculated in the SU (3) gauge group by introducing a two dimensional vortex flux. To generalize the model, the length of the Wilson loop is equal to R oriented along the x axis, and the vortex flux is considered as a function of x and y. The comparison between the generalized model and the original one shows that the intermediate linear regime is increased significantly and better agreement with Casimir scaling is achieved. Furthermore, the model is applied to calculate the potential between baryons.

  8. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  9. Quasicondensation in Two-Dimensional Fermi Gases.

    PubMed

    Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K

    2015-12-11

    In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613

  10. Fractures in heterogeneous two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Zei, Maria

    2001-05-01

    A two-dimensional triangular lattice with bond disorder is used as a testing ground for fracture behavior in heterogeneous materials in strain-controlled conditions. Simulations are performed with two interaction potentials (harmonic and Lennard-Jones types) and different breaking thresholds. We study the strain range where the fracture progressively develops from the first to the last breakdown. Scaling properties with the lattice size are investigated: no qualitative difference is found between the two interaction potentials. Clustering properties of the broken bonds are also studied by grouping them into disjoint sets of connected bonds. Finally, the role of kinetic energy is analyzed by comparing overdamped with dissipationless dynamics.

  11. Numerical simulations of two-dimensional QED

    SciTech Connect

    Carson, S.R.; Kenway, R.D.

    1986-02-01

    We describe the computer simulation of two-dimensional QED on a 64 x 64 Euclidean space-time lattice using the Susskind lattice fermion action. Theorder parameter for chiral symmetry breaking and the low-lying meson masses are calculated for both the model with two continuum flavours, which arises naturally in this formulation, and the model with one continuum falvour obtained by including a nonsymmetric mass term and setting one fermion mass equal to the cut-off. Results are compared with those obtined using the quenched approximation, and with analytic predictions.

  12. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  13. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  14. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  15. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Construction of the wood frame for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the

  16. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1937-01-01

    Construction of the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a

  17. Two-Dimensional Low-Turbulence Tunnel

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Manometer for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a space

  18. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  19. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  20. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  1. Two-dimensional dipolar nematic colloidal crystals.

    PubMed

    Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I

    2007-11-01

    We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658

  2. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  3. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (ESTSC)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  4. Two-dimensional swimming behavior of bacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin

    Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.

  5. Intrinsic two-dimensional features as textons.

    PubMed

    Barth, E; Zetzsche, C; Rentschler, I

    1998-07-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features. PMID:9656473

  6. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  7. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  8. Atomic Defects in Two Dimensional Materials.

    PubMed

    Rasool, Haider I; Ophus, Colin; Zettl, Alex

    2015-10-14

    Atomic defects in crystalline structures have pronounced affects on their bulk properties. Aberration-corrected transmission electron microscopy has proved to be a powerful characterization tool for understanding the bonding structure of defects in materials. In this article, recent results on the characterization of defect structures in two dimensional materials are discussed. The dynamic behavior of defects in graphene shows the stability of zigzag edges of the material and gives insights into the dislocation motion. Polycrystalline graphene is characterized using advanced electron microscopy techniques, revealing the global crystal structure of the material, as well as atomic-resolution observation of the carbon atom positions between neighboring crystal grains. Studies of hexagonal boron nitride (hBN) are also visited, highlighting the interlayer bonding, which occurs upon defect formation, and characterization of grain boundary structures. Lastly, defect structures in monolayer polycrystalline transition metal dichalcogenides grown by CVD are discussed. PMID:25946075

  9. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  10. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  11. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  12. Implementations of two-dimensional liquid chromatography

    SciTech Connect

    Guiochon, Georges A; Marchetti, Nicola; Mriziq, Khaled S; Shalliker, R. Andrew

    2008-01-01

    Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n{sub c} twice in a row than to generate a peak capacity n{sub c}{sup 2} once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (a) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC{sup x}) and the chromatographic separations in time (LC{sup t}), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC{sup t} x LC{sup t}, LC{sup x} x LC{sup t}, LC{sup t} x LC{sup x}, and LC{sup x} x LC{sup x}. We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC{sup t} x LC{sup t}) are the most actively pursued. We suggest that the combination LC{sup x} x LC{sup t} shows exceptional

  13. Implementations of two-dimensional liquid chromatography.

    PubMed

    Guiochon, Georges; Marchetti, Nicola; Mriziq, Khaled; Shalliker, R Andrew

    2008-05-01

    Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n(c) twice in a row than to generate a peak capacity n(c)(2) once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (alpha) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC(x)) and the chromatographic separations in time (LC(t)), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC(t)xLC(t), LC(x)xLC(t), LC(t)xLC(x), and LC(x)xLC(x). We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC(t)xLC(t)) are the most actively pursued. We suggest that the combination LC(x)xLC(t) shows exceptional promise because it permits the simultaneous second-dimension separations of

  14. Epitaxial Growth of Two-Dimensional Stanene

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth. Ge-based germanene was realized by mechanical exfoliation. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations, or can support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall (QAH) effect. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene. In cooperation with Fengfeng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang.

  15. Two-dimensional cyanates: stabilization through hydrogenation.

    PubMed

    Tsetseris, Leonidas

    2016-06-01

    According to first-principles calculations, it should be possible to grow two-dimensional (2D) forms of copper thio-cyanate (CuSCN) and copper seleno-cyanate (CuSeCN) since their energies are only marginally higher than those of their most stable three-dimensional (3D) wurtzite structures. Here we show using the same theoretical approach that chemisorption reactions of hydrogen molecules with the above-mentioned 2D CuSCN and CuSeCN systems enhance their stability as they decrease the energy difference with respect to the corresponding hydrogenated forms of the wurtzite crystals. Hydrogenation causes a sizeable decrease in the energy band gap by 0.56 eV and 0.65 eV for hydrogenated 2D-CuSCN (CuSCNH2) and 2D-CuSeCN (CuSeCNH2), respectively. Finally, we describe the stability of hydrogen vacancies in CuSCNH2 and CuSeCNH2 and show that the presence of isolated single H vacancies or di-vacancies does not affect significantly the electronic properties of the host systems close to the valence and conduction band edges. PMID:27183226

  16. Turbulent equipartitions in two dimensional drift convection

    SciTech Connect

    Isichenko, M.B.; Yankov, V.V.

    1995-07-25

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits.

  17. An atlas of two-dimensional materials.

    PubMed

    Miró, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454

  18. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  19. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  20. Two-dimensional magnetic colloids under shear.

    PubMed

    Mohorič, Tomaž; Dobnikar, Jure; Horbach, Jürgen

    2016-04-01

    Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear. PMID:26877059

  1. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  2. Two-Dimensional Phononic Crystals: Disorder Matters.

    PubMed

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. PMID:27580163

  3. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  4. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  5. Two-dimensional laser interferometry analysis

    NASA Astrophysics Data System (ADS)

    Mehr, Leo; Concepcion, Ricky; Duggan, Robert; Moore, Hannah; Novick, Asher; Ransohoff, Lauren; Gourdain, Pierre-Alexandre; Hammer, David; Kusse, Bruce

    2013-10-01

    The objective of our research was to create a two-dimensional interferometer which we will use to measure plasma densities at the Cornell Research Beam Accelerator (COBRA). We built two shearing interferometers and mounted them on an optics table. They intercept the probe laser beam which travels directly through the plasma and is captured by a 16-bit CCD camera. In comparing the interferometer images before the shot and during the plasma shot, we observed both lateral and vertical shifts in the interference pattern caused by the change of the refractive index due to the plasma electrons. We developed a computer program using Matlab to map a vector field depicting the shift between the two images. This shift is proportional to the line integral of electron density through the plasma chamber. We show this method provides a reliable way to determine the plasma electron density profile. Additionally, we hope this method can improve upon the diagnostic capabilities and efficiency of data collection used with standard one-dimensional interferometry. Undergraduate.

  6. Internal representation of two-dimensional shape.

    PubMed

    Makioka, S; Inui, T; Yamashita, H

    1996-01-01

    The psychological space of shapes has been studied in many experiments. However, how shapes are represented in the brain has not been a major issue in psychological literature. Here, the characteristics of internal representation and how it was formed have been considered and an attempt has been made to explain the results of experiments in a unified manner. First, the data of similarity of alphabetic characters and random-dot patterns were reexamined. Multivariate analysis suggested that those patterns were represented by the combination of global features. Second, three-layer neural networks were trained to perform categorization or identity transformation of the same sets of patterns as used in psychological experiments, and activation patterns of the hidden units were analyzed. When the network learned categorization of the patterns, its internal representation was not similar to the representation suggested by psychological experiments. But a network which learned identity transformation of the patterns could acquire such an internal representation. The transformation performed by this kind of network is similar to principal-component analysis in that it projects the input image onto a lower-dimensional space. From these results it is proposed that two-dimensional shapes are represented in human brain by a process like principal-component analysis. This idea is compatible with the findings in neurophysiological studies about higher visual areas. PMID:8938008

  7. Parallel Stitching of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Lin, Yuxuan; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing; Department of Electrical Engineering; Computer Science, Massachusetts Institute of Technology Team

    Large scale integration of atomically thin metals (e.g. graphene), semiconductors (e.g. transition metal dichalcogenides (TMDs)), and insulators (e.g. hexagonal boron nitride) is critical for constructing the building blocks for future nanoelectronics and nanophotonics. However, the construction of in-plane heterostructures, especially between two atomic layers with large lattice mismatch, could be extremely difficult due to the strict requirement of spatial precision and the lack of a selective etching method. Here, we developed a general synthesis methodology to achieve both vertical and in-plane ``parallel stitched'' heterostructures between a two-dimensional (2D) and TMD materials, which enables both multifunctional electronic/optoelectronic devices and their large scale integration. This is achieved via selective ``sowing'' of aromatic molecule seeds during the chemical vapor deposition growth. MoS2 is used as a model system to form heterostructures with diverse other 2D materials. Direct and controllable synthesis of large-scale parallel stitched graphene-MoS2 heterostructures was further investigated. Unique nanometer overlapped junctions were obtained at the parallel stitched interface, which are highly desirable both as metal-semiconductor contact and functional devices/systems, such as for use in logical integrated circuits (ICs) and broadband photodetectors.

  8. Redox options in two-dimensional electrophoresis.

    PubMed

    Wait, R; Begum, S; Brambilla, D; Carabelli, A M; Conserva, F; Rocco Guerini, A; Eberini, I; Ballerio, R; Gemeiner, M; Miller, I; Gianazza, E

    2005-05-01

    Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa. PMID:15744479

  9. Two-dimensional Dirac signature of germanene

    SciTech Connect

    Zhang, L.; Bampoulis, P.; Houselt, A. van; Zandvliet, H. J. W.

    2015-09-14

    The structural and electronic properties of germanene coated Ge{sub 2}Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 Å and a buckling of 0.2 Å. The zigzag edges of germanene are reconstructed and display a 4× periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge{sub 2}Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.

  10. Measuring Hugoniot, reshock and release properties of natural snow and simulants

    SciTech Connect

    Furnish, M.D.; Boslough, M.B.

    1996-02-01

    We describe methods for measuring dynamical properties for underdense materials (e.g. snow) over a stress range of roughly 0. 1 - 4 GPa. Particular material properties measured by the present methods include Hugoniot states, reshock states and release paths. The underdense materials may pose three primary experimental difficulties. Snow in particular is perishable; it can melt or sublime during storage, preparation and testing. Many of these materials are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Finally, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. A family of 36 impact tests was conducted on snow and six proposed snow simulants at Sandia, yielding reliable Hugoniot states, somewhat less reliable reshock 3 states, and limited release property information. Natural snow of density {approximately}0.5 gm/cm{sup 3}, a lightweight concrete of density {approximately}0.7 gm/cm{sup 3} and a {open_quotes}snow-matching grout{close_quotes} of density {approximately}0.28 gm/cm 3 were the subjects of the majority of the tests. Hydrocode calculations using CTH were performed to elucidate sensitivities to edge effects as well as to assess the applicability of SESAME 2-state models to these materials. Simulations modeling snow as porous water provided good agreement for Hugoniot stresses to 1 GPa; a porous ice model was preferred for higher Hugoniot stresses. On the other hand, simulations of tests on snow, lightweight concrete and the snow-matching grout based on (respectively) porous ice, tuff and polyethylene showed a too-stiff response. Other methods for characterizing these materials are discussed. Based on the Hugoniot properties, the snow-matching grout appears to be a better snow simulant than does the lightweight concrete.