Science.gov

Sample records for resistance protein lrp

  1. Detection of the Mr 110,000 lung resistance-related protein LRP/MVP with monoclonal antibodies.

    PubMed

    Schroeijers, A B; Scheffer, G L; Reurs, A W; Pijnenborg, A C; Abbondanza, C; Wiemer, E A; Scheper, R J

    2001-11-01

    The Mr 110,000 lung resistance-related protein (LRP), also termed the major vault protein (MVP), constitutes >70% of subcellular ribonucleoprotein particles called vaults. Overexpression of LRP/MVP and vaults has been linked directly to MDR in cancer cells. Clinically, LRP/MVP expression can be of value to predict response to chemotherapy and prognosis. Monoclonal antibodies (MAbs) against LRP/MVP have played a critical role in determining the relevance of this protein in clinical drug resistance. We compared the applicability of the previously described MAbs LRP-56, LMR-5, LRP, 1027, 1032, and newly isolated MAbs MVP-9, MVP-16, MVP-18, and MVP-37 for the immunodetection of LRP/MVP by immunoblotting analysis and by immunocyto- and histochemistry. The availability of a broader panel of reagents for the specific and sensitive immunodetection of LRP/MVP should greatly facilitate biological and clinical studies of vault-related MDR. PMID:11668191

  2. Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs.

    PubMed

    Izquierdo, M A; Scheffer, G L; Flens, M J; Shoemaker, R H; Rome, L H; Scheper, R J

    1996-01-01

    Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cells lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor for in vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs. PMID:8862006

  3. Expression of lung resistance-related protein, LRP, and multidrug resistance-related protein, MRP1, in normal human lung cells in long-term cultures.

    PubMed

    Lehmann, Thomas; Torky, Abdel-Rahman Wageeh; Stehfest, Ekkehard; Hofmann, Stefan; Foth, Heidi

    2005-10-01

    Transport processes form part of the body's defense mechanism, and they determine the intracellular levels of many endogenous and exogenous compounds. The multidrug resistance-related protein MRP1 and the lung resistance-related protein LRP are associated with drug resistance against chemotherapeutics; they protect cells against toxic compounds. There is much experimental evidence to suggest that both of these transporter proteins serve important physiological functions. The expression of LRP and MRP1 was studied in normal human bronchial epithelial cells (NHBEC) and peripheral lung cells (PLC) obtained from explant cultures from morphologically-normal human lung tissue taken from patients with lung cancer. LRP (mRNA and protein) was detected in the cells of the bronchi as well as the peripheral lung with low (a factor of 2.6) inter-individual variation in the first generation. No significant alterations were noted for LRP within three-to-four generations in the same patient. LRP expression was not substantially different between cultures from different topographic regions of the human lung. MRP1 protein and MRP1 mRNA could also be detected in all of the NHBEC and PLC cultures studied, but with substantially higher (a factor of 7.7) intra-individual variation in the first generation than for LRP. MRP expression was the same for bronchial cells and PLC when the material was obtained from both sites. The level of mRNA for MRP1 was, in general, less stable than that for LRP. In multigeneration explant cultures, the levels of LRP mRNA and protein and MRP1 protein did not fluctuate greatly, but the level of MRP1 mRNA dropped to about 25% of the reference value within four generations (after about 8-10 weeks of culture). In one case, NHBEC subpassages were followed over a period of 20 weeks. In this system MRP mRNA levels increased by more than threefold, while levels of MRP1 protein and LRP mRNA and protein were expressed at almost constant rates. PMID:15986202

  4. Increased expression of multidrug resistance related proteins Pgp, MRP1, and LRP/MVP occurs early in colorectal carcinogenesis.

    PubMed Central

    Meijer, G A; Schroeijers, A B; Flens, M J; Meuwissen, S G; van der Valk, P; Baak, J P; Scheper, R J

    1999-01-01

    AIM: To analyse the expression of multidrug resistance (MDR) related proteins at different steps in colorectal carcinogenesis. METHODS: The presence of three MDR related proteins (Pgp, MRP1, and LRP/MVP) was studied by means of immunohistochemistry in normal, adenomatous, and malignant colorectal epithelium. Formaldehyde fixed, paraffin embedded tissue sections of 17 samples of colorectal tissue were used (normal mucosa, n = 4; adjacent mucosa, n = 5; adenoma, n = 5; carcinoma, n = 3). RESULTS: For all three proteins, expression was found in the surface epithelium and the upper parts of the crypts in normal colon. In the adenomas, staining was seen along the complete length of the crypts. In the carcinomas analysed, all epithelium showed positive staining. Mucosa adjacent to either carcinoma or adenoma showed staining patterns mostly resembling those of normal mucosa, but sometimes some extension of staining was seen along the crypt. CONCLUSIONS: These proteins already show increased expression in the adenoma stage. In the absence of adequate mucin production in adenomas, MDR related proteins could be an important factor in protecting the epithelium against further environmentally induced genetic damage. This could be one of the reasons why only about 5% of colorectal adenomas will actually progress to carcinomas. Images PMID:10562814

  5. Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas.

    PubMed

    Koomägi, R; Mattern, J; Volm, M

    1999-01-01

    Several studies have documented that induction of the glucose-related protein (GRP78) is associated with the development of drug-resistance to antitumor drugs. However, nothing has been reported concerning GRP78 in human lung tumors and its relationship to several resistance proteins and angiogenesis. Therefore, this study analyzed the expression of GRP78 in a series of 62 consecutive lung cancer patients and examined whether or not a relationship exists between GRP78, several resistance proteins and microvessel density (MVD). Secondary, it evaluated the relationship of GRP78, LRP56 and GST-pi in cancer cell lines under hypoxic conditions and in sensitive and resistant cell lines. We determined that a relationship exists between GRP78 and the resistance proteins P170, LRP56 and GST-pi in human lung cancer. Furthermore, we observed an up-regulation of GRP78 in the resistant cell lines LUTC-ML54, OAW-Dox and OAW-Tax, but not in sensitive cell lines. Abnormal vascularization of malignant tumors is associated with the development of hypoxic regions. In hypoxic regions, several proteins, including drug resistance proteins, are expressed in greater quantities. Our study detected an inverse correlation between GRP78 and MVD. Carcinomas with low MVD exhibited a higher expression of GRP78. Furthermore, protein expression of GRP78, GST-pi and LRP56 increased in the cell lines A-549, RPMI-2650 and SC-MES-1 under hypoxic conditions. These observations suggest that hypoxia, tumor vascularization and the simultaneous expression of many resistance-related proteins, including GRP78, may play an important role in drug response and therapeutic effectiveness. PMID:10628396

  6. The low density lipoprotein receptor-related protein (LRP) 1 and its function in lung diseases.

    PubMed

    Wujak, L; Markart, P; Wygrecka, M

    2016-07-01

    The low density lipoprotein receptor-related protein (LRP) 1 is a ubiquitously expressed, versatile cell surface transmembrane receptor involved in embryonic development and adult tissue homeostasis. LRP1 binds and endocytoses a broad spectrum of over 40 ligands identified thus far, including lipoproteins, extracellular matrix proteins, proteases and protease/inhibitor complexes and growth factors. Interactions with other membrane receptors and intracellular adaptors/scaffolding proteins allow LRP1 to modulate cell migration, survival, proliferation and (trans) differentiation. Because LRP1 displays a wide-range of interactions and activities, its expression and function is temporally and spatially tightly controlled. It is not, therefore, surprising that deregulation of LRP1 production and/or activity is observed in several diseases. In this review, we will systematically examine the evidence for the role of LRP1 in human pathologies placing special emphasis on LRP1-mediated pathogenesis of the lung. PMID:26926950

  7. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages

    PubMed Central

    Lillis, Anna P.; Muratoglu, Selen Catania; Au, Dianaly T.; Migliorini, Mary; Lee, Mi-Jeong; Fried, Susan K.; Mikhailenko, Irina; Strickland, Dudley K.

    2015-01-01

    Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. PMID:26061292

  8. LRP6 acts as a scaffold protein in cardiac gap junction assembly.

    PubMed

    Li, Jun; Li, Changming; Liang, Dandan; Lv, Fei; Yuan, Tianyou; The, Erlinda; Ma, Xiue; Wu, Yahan; Zhen, Lixiao; Xie, Duanyang; Wang, Shiyi; Liu, Yuan; Huang, Jian; Shi, Jingyi; Liu, Yi; Shi, Dan; Xu, Liang; Lin, Li; Peng, Luying; Cui, Jianmin; Zhu, Weidong; Chen, Yi-Han

    2016-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking. PMID:27250245

  9. LRP6 acts as a scaffold protein in cardiac gap junction assembly

    PubMed Central

    Li, Jun; Li, Changming; Liang, Dandan; Lv, Fei; Yuan, Tianyou; The, Erlinda; Ma, Xiue; Wu, Yahan; Zhen, Lixiao; Xie, Duanyang; Wang, Shiyi; Liu, Yuan; Huang, Jian; Shi, Jingyi; Liu, Yi; Shi, Dan; Xu, Liang; Lin, Li; Peng, Luying; Cui, Jianmin; Zhu, Weidong; Chen, Yi-Han

    2016-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking. PMID:27250245

  10. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies

    PubMed Central

    Ettenberg, Seth A.; Charlat, Olga; Daley, Michael P.; Liu, Shanming; Vincent, Karen J.; Stuart, Darrin D.; Schuller, Alwin G.; Yuan, Jing; Ospina, Beatriz; Green, John; Yu, Qunyan; Walsh, Renee; Schmitz, Rita; Heine, Holger; Bilic, Sanela; Ostrom, Lance; Mosher, Rebecca; Hartlepp, K. Felix; Zhu, Zhenping; Fawell, Stephen; Yao, Yung-Mae; Stover, David; Finan, Peter M.; Porter, Jeffery A.; Sellers, William R.; Klagge, Ingo M.; Cong, Feng

    2010-01-01

    Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer. PMID:20713706

  11. Antisense RNA Controls LRP1 Sense Transcript Expression Through Interaction With a Chromatin-Associated Protein, HMGB2

    PubMed Central

    Yamanaka, Yasunari; Faghihi, Mohammad Ali; Magistri, Marco; Alvarez-Garcia, Oscar; Lotz, Martin; Wahlestedt, Claes

    2015-01-01

    SUMMARY Long non-coding RNAs (lncRNAs) including natural antisense transcripts (NATs) are expressed more extensively than previously anticipated, and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here we identify a NAT of Low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to High mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein, and increase Lrp1 expression by enhancing Hmgb2 activity. qRT-PCR analysis of Alzheimer’s disease brain samples and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a new regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion. PMID:25937287

  12. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation.

    PubMed

    El Asmar, Zeina; Terrand, Jérome; Jenty, Marion; Host, Lionel; Mlih, Mohamed; Zerr, Aurélie; Justiniano, Hélène; Matz, Rachel L; Boudier, Christian; Scholler, Estelle; Garnier, Jean-Marie; Bertaccini, Diego; Thiersé, Danièle; Schaeffer, Christine; Van Dorsselaer, Alain; Herz, Joachim; Bruban, Véronique; Boucher, Philippe

    2016-03-01

    The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases. PMID:26792864

  13. ABCB1, ABCC1, and LRP gene expressions are altered by LDL, HDL, and serum deprivation in a human doxorubicin-resistant uterine sarcoma cell line.

    PubMed

    Celestino, Andréa Turbuck; Levy, Débora; Maria Ruiz, Jorge Luis; Bydlowski, Sérgio Paulo

    2015-02-20

    Multidrug resistance (MDR) is the major cause of cancer treatment failure. The ATP-binding cassette-B1 (ABCB1) transporter, also known as MDR1 or P-glycoprotein, is thought to promote the efflux of drugs from cells. MDR is also associated with the multidrug resistance-associated protein 1 (ABCC1) and the lung resistance-related protein (LRP), a human major vault protein. Moreover, MDR has a complex relationship with lipids. The ABCB1 has been reported to modulate cellular cholesterol homeostasis. Conversely, cholesterol has been reported to modulate multidrug transporters. However, results reported to date are contradictory and confusing. The aim of this study was to investigate whether LDL, HDL, and serum deprivation could influence ABCB1, ABCC1, and LRP expression in a human doxorubicin-resistant uterine sarcoma cell line. ABCB1 and ABCC1 expression increased after 24 h of serum deprivation, and expression returned to basal levels after 72 h. LDL, depending on concentration, increased ABCB1, ABCC1, and LRP expression. ABCB1 expression increased at low HDL, and decreased at high HDL concentrations. We demonstrated that serum deprivation and lipoproteins, particularly LDL, modulated ABCB1 expression and, to a lesser extent, ABCC1 expression. This finding may link the phenomena of drug transport, cholesterol metabolism and cancer. PMID:25603048

  14. Expression of low density lipoprotein receptor-related protein 4 (Lrp4) gene in the mouse germ cells.

    PubMed

    Yamaguchi, Yasuka L; Tanaka, Satomi S; Kasa, Miyuki; Yasuda, Kunio; Tam, Patrick P L; Matsui, Yasuhisa

    2006-08-01

    The low density lipoprotein receptor-related protein 4 gene (Lrp4) was identified by subtractive screening of cDNAs of the migratory primordial germ cells (PGCs) of E8.5-9.5 embryo and E3.5 blastocysts. Lrp4 is expressed in PGCs in the hindgut and the dorsal mesentery of E9.5 embryos, and in germ cells in the genital ridges of male and female E10.5-13.5 embryos. Lrp4 is also expressed in spermatogonia of the neonatal and adult testes and in the immature oocytes and follicular cells of the adult ovary. The absence of Lrp4 expression in the blastocyst, embryonic stem cells and embryonic germ cells suggests the Lrp4 is a molecular marker that distinguishes the germ cells from embryo-derived pluripotent stem cells. PMID:16434236

  15. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression

    PubMed Central

    Zhang, Wendian; Zhou, Hechao; Yu, Ying; Li, Jingjing; Li, Haiwen; Jiang, Danxian; Chen, Zihong; Yang, Donghong; Xu, Zumin; Yu, Zhonghua

    2016-01-01

    Cisplatin resistance is a main clinical problem of lung cancer therapy. Gambogic acid (GA) could prohibit the proliferation of a variety of human cancer cells. However, the effects of GA on cisplatin-resistant lung cancer are still unclear. The objective of the present study was to find out the antitumor effects of GA on cisplatin-resistant human lung cancer A549/DDP cells and further explore its underlying mechanisms. Cell Counting Kit-8 assay was used to observe the impacts of GA and/or cisplatin on the proliferation of lung cancer cells; flow cytometry was used to detect the effects of GA on cell cycle and apoptosis; Western blot was used to examine the effects of GA on the expression of lung resistance protein (LRP) and multidrug resistance-associated protein 2 (MRP2) protein in A549/DDP cells. Our results showed that GA dose- and time-dependently prohibited the proliferation and induced significant cell apoptosis in A549 and A549/DDP cells. GA also induced G0/G1 arrest in both A549/DDP and A549 cells. Moreover, GA upregulated protein expression level of cleaved caspase-3 and Bax and downregulated protein expression level of pro-caspase-9 and Bcl-2 in time- and dose-dependent way in A549/DDP cells. GA combined with cisplatin enhanced the cells apoptotic rate and reduced the cisplatin resistance index in A549/DDP cells. In addition, GA reduced the MRP2 and LRP protein expression level in A549/DDP cells. GA inhibits the proliferation, induces cell cycle arrest and apoptosis in A549/DDP cells. Combination of GA with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. PMID:27330316

  16. Expression of P-gp, MRP, LRP, GST-π and TopoIIα and intrinsic resistance in human lung cancer cell lines.

    PubMed

    Wang, Jiarui; Zhang, Jinhui; Zhang, Lichuan; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Kong, Ying; Xiao, Gary Guishan; Wang, Qi

    2011-11-01

    This study aimed to determine the relationship between the endogenous levels of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione-s-transferase-π (GST‑π) and topoisomerase IIα (TopoIIα) and intrinsic drug resistance in four human lung cancer cell lines, SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446, of different histological types. The expression of P-gp, MRP, LRP, GST-π and TopoIIα was measured by immunofluorescence, Western blotting and RT-PCR. Drug resistance to cisplatin, doxorubicin and VP-16 was determined using MTT assays. The correlation between expression of the resistance-related proteins and their roles in the resistance to drugs in these cancer cell lines was analyzed. We found that the endogenous levels of P-gp, MRP, LRP, GST-π and TopoIIα in the four cell lines varied. The level of GST-π in the SK-MES-1 cells was the highest, whereas the level of P-gp in the SPCA-1 cells was the lowest. The chemoresistance to cisplatin, doxorubicin and VP-16 in the four cell lines was different. The SPCA-1 cell line was most resistance to cisplatin; SK-MES-1 was most resistance to VP-16; whereas SK-MES-1 was most sensitive to doxorubicin. There was a positive correlation between GST-π expression and resistance to cisplatin, between TopoIIα expression and resistance to VP-16; and a negative correlation was noted between TopoIIα expression and resistance to doxorubicin. In summary, the endogenous expression of P-gp, MRP, LRP, GST-π and TopoIIα was different in the four human lung cancer cell lines of different histological types, and this variance may be associated with the variation in chemosensitivity to cisplatin, doxorubicin and VP-16. Among the related proteins, GST-π may be useful for the prediction of the intrinsic resistance to cisplatin, whereas TopoIIα may be useful to predict resistance to doxorubicin and VP-16 in human lung cancer cell lines. PMID:21805041

  17. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF.

    PubMed

    Loukinova, Elena; Ranganathan, Sripriya; Kuznetsov, Sergey; Gorlatova, Natalia; Migliorini, Mary M; Loukinov, Dmitri; Ulery, Paula G; Mikhailenko, Irina; Lawrence, Daniel A; Strickland, Dudley K

    2002-05-01

    The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor. PMID:11854294

  18. LRP6 Protein Regulates Low Density Lipoprotein (LDL) Receptor-mediated LDL Uptake*

    PubMed Central

    Ye, Zhi-jia; Go, Gwang-Woong; Singh, Rajvir; Liu, Wenzhong; Keramati, Ali Reza; Mani, Arya

    2012-01-01

    Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6R611C mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6WT) and LRP6R611C in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6WT was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6WT forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6R611C. These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels. PMID:22128165

  19. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis

    PubMed Central

    Go, Gwang-woong

    2015-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR) pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention. PMID:26046396

  20. New invMED1 element cis-activates human multidrug-related MDR1 and MVP genes, involving the LRP130 protein.

    PubMed

    Labialle, Stéphane; Dayan, Guila; Gayet, Landry; Rigal, Dominique; Gambrelle, Joël; Baggetto, Loris G

    2004-01-01

    The MDR1 gene is a key component of the cytotoxic defense network and its overexpression results in the multidrug resistance (MDR) phenotype. However, the molecular mechanisms that regulate the MDR1 gene and coordinate multiple MDR-related genes expression are poorly understood. In a previous study, we identified a new 12 bp cis-activating region in the 5'-flanking region of the human MDR1 gene, which we called inverted MED1. In the present study, we characterized the precise binding element, which we named invMED1, and revealed the presence of the LRP130 protein as the nuclear factor. Its binding intensity increases with the endogenous MDR1 geneexpression and with the MDR level of CEM leukemia cells. Interestingly, the LRP130 level did not vary with the chemoresistance level. We observed the involvement of LRP130 in the transcriptional activity of the MDR1 gene promoter, and moreover, in that of the MDR-related, invMED1-containing, MVP gene promoter. We used siRNAs and transcriptional decoys in two unrelated human cancer cell lines to show the role of the invMED1/LRP130 couple in both MDR1 and MVP endogenous genes activities. We showed that invMED1 was localized in the -105/-100 and -148/-143 regions of the MDR1 and MVP gene promoters, respectively. In addition, since the invMED1 sequence is primarily located in the -160/-100 bp region of mammalian MDR-related genes, our results present the invMED1/LRP130 couple as a potential central regulator of the transcription of these genes. PMID:15272088

  1. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  2. Neuronal low-density lipoprotein receptor-related protein 1 (LRP1) enhances the anti-apoptotic effect of intravenous immunoglobulin (IVIg) in ischemic stroke.

    PubMed

    Lok, Ker Zhing; Manzanero, Silvia; Arumugam, Thiruma V

    2016-08-01

    The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional and multi-ligand endocytic receptor abundantly expressed in neurons. Intravenous immunoglobulin (IVIg) is a purified preparation of plasma-derived human immunoglobulin used for the treatment of several neurological inflammatory disorders, and proposed for the treatment of stroke for its potent neuroprotective effects. LRP1 has been shown to be involved in the transcytosis of IVIg, and IVIg-LRP1 interaction leads to LRP1 tyrosine phosphorylation, which may contribute to the anti-inflammatory effects of IVIg. However, the question remains whether IVIg could induce its neuroprotective effects via LRP1 in neurons under ischemic stroke conditions. In cultured neurons and in a transient ischemic mouse model, ischemia decrease LRP1 levels and phosphorylation, and IVIg blocks these effects. In ischemic neurons, LRP1 antagonism by receptor associated protein (RAP) enhances the activation of pro-death signaling pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and caspase-3, and IVIg reduces these effects. When applied to ischemic neuronal cultures, RAP induces a dramatic drop in Akt activation, and IVIg reverses this effect, as it does with the decrease in Bcl-2 levels caused by ischemic injury in the presence of RAP. Altogether, these results show evidence of LRP1 expression and activity modulation by IVIg, and support the role of LRP1 as a partner of IVIg in the execution of its neuroprotective effects. PMID:27181517

  3. The role of the low-density lipoprotein receptor-related protein (LRP1) in Alzheimer's A beta generation: development of a cell-based model system.

    PubMed

    Goto, Joy J; Tanzi, Rudolph E

    2002-01-01

    The clearance and degradation of extracellular A beta is critical for regulating beta-amyloid deposition, a major hallmark of brains of patients with A beta in Alzheimer's Disease. The low-density lipoprotein receptor-related protein, LRP1, is a large endocytic receptor that significantly contributes to the balance between degradation and production of A beta. An extracellular portion of the LRP, known as the cluster II region can bind to the secreted form of APP (sAPP-KPI). We show here that a GST fusion protein containing the cluster II region of LRP can be used as a 'mini-receptor' that specifically binds to sAPP-KPI from conditioned cultured medium. The binding between the GST-LRP-cluster II fusion protein and sAPP-KPI can be inhibited with the strong binding ligand of LRP1, called receptor-associated protein (RAP). Furthermore, a cell-based in vitro assay system has been developed to monitor the production of total A beta and A beta(1-42) in the presence and absence of RAP in Chinese hamster ovary (CHO) cell lines both deficient in LRP and expressing LRP. A 3-day treatment of the L2 (CHO cells deficient in LRP and overexpressing APP751) and L3 (CHO cells expressing LRP and overexpressing APP751) cell lines with RAP showed a decrease in total A beta and, interestingly, also a decrease in the ratio of A beta42/A beta(total). This cell-based model system and LRP-cluster II mini-receptor will be very useful for screening novel compounds that can reduce A beta accumulation by inhibiting binding of APP-KPI to LRP1. PMID:12212791

  4. Lrp4 in astrocytes modulates glutamatergic transmission.

    PubMed

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  5. Immunization with individual proteins of the Lrp/AsnC family induces protection against Brucella melitensis 16M challenges in mice

    PubMed Central

    Wang, Xinhui; An, Chang; Yang, Mingjuan; Li, Xinran; Ke, Yuehua; Lei, Shuangshuang; Xu, Xiaoyang; Yu, Jiuxuan; Ren, Hang; Du, Xinying; Wang, Zhoujia; Qiu, Yefeng; Liu, Bo; Chen, Zeliang

    2015-01-01

    Brucellosis is one of the most common zoonoses worldwide. Subunit vaccines are promising for the prevention of human brucellosis. In our previous protective antigen screening studies, we identified a new protective antigen, BMEI0357, which belongs to the Lrp/asnC protein family, a conserved transcriptional regulator in bacteria that is absent in eukaryotes. In the present study, the Brucella genome annotation was screened and a total of six proteins were identified as members of the Lrp/AsnC family. Lrp/AsnC proteins have two domains that are conserved among the family members. However, sequence similarities between these proteins ranged from 9 to 50%, indicating high sequence heterogeneity. To test whether proteins of this family have similar characteristics, all six proteins were cloned and expressed in Escherichia coli. The recombinant proteins were purified and their protective efficacy was evaluated in BALB/c mice challenged with Brucella melitensis 16M. The results show that all six Lrp/AsnC proteins could induce a protective immune response against Brucella melitensis 16M. Antibodies against the Lrp/AsnC proteins were detected in the immunized mice. However, levels of antibodies against these proteins were relatively variable in human brucellosis sera. Taken together, our results show that these six proteins of the Lrp/AsnC family in Brucella could induce protective immune responses in mice. PMID:26579099

  6. Leucine-rich protein 130 contributes to apoptosis resistance of human hepatocarcinoma cells.

    PubMed

    Michaud, Mickaël; Barakat, Stéphane; Magnard, Sandrine; Rigal, Dominique; Baggetto, Loris G

    2011-01-01

    LRP130 is a ubiquitous protein involved in cellular homeostasis, microtubule alteration, and transactivation of a few multidrug resistance genes. Its role in resistance to apoptosis in HepG2 and HUH7 hepatocarcinoma cells was investigated. Using shRNA-producing lentiviruses to down-regulate the LRP130 gene, we showed that i) LRP130 did not affect the capacity of hepatocarcinoma cells to extrude drugs since LRP130 down-regulation was insufficient to significantly reduce P-glycoprotein production in these cells, and ii) the expression of 11 apoptosis-related genes measured by PCR-array was significantly reduced. Interestingly, six of these genes encode extrinsic pathway proapoptotic proteins whose expression was higher in LRP130-non producing than in LRP130-producing HepG2 cells. Fluorescence microscopy confirmed this new anti-apoptotic role of LRP130, which is strengthened by a significantly reduced cytochrome c oxidase activity in LRP130-down-regulated hepatocarcinoma cells. PMID:21109938

  7. Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors.

    PubMed

    Izquierdo, M A; Scheffer, G L; Flens, M J; Giaccone, G; Broxterman, H J; Meijer, C J; van der Valk, P; Scheper, R J

    1996-03-01

    Multidrug resistance (MDR) to anticancer drugs is a major cause of treatment failure in cancer. The lung resistance protein LRP is a newly described protein related to MDR in several in vitro models. LRP has been shown to be a strong predictor of poor response to chemotherapy and prognosis in acute myeloid leukemia and in ovarian carcinoma patients. Recently, based on a 57% and 88% amino acid identity with major vault proteins from Dictyostelium discoideum and Rattus norvegicus, respectively, we identified LRP as the human major vault protein, the main component of highly conserved cellular organelles named vaults. We have studied the immunohistochemical expression of LRP in freshly frozen normal human tissues and 174 cancer specimens of 28 tumor types. LRP was broadly distributed in normal and malignant cells, but distinct patterns of expression were noticed. High LRP expression was seen in bronchus, digestive tract, renal proximal tubules, keratinocytes, macrophages, and adrenal cortex whereas varying ing levels were observed in other organs. LRP was detected in all tumor types examined, but its frequency varied, fairly reflecting the chemosensitivity of different cancers. For example, low rates of LRP positivity were seen in testicular cancer, neuroblastoma, and acute myeloid leukemia; intermediate in ovarian cancer; and high in colon, renal, and pancreatic carcinomas. The wide occurrence of LRP in normal and transformed cells in humans, its similar distribution to that of vaults in other species, as well as the high level of conservation among eukaryotic cells of both the amino acid sequence of the major vault protein and the composition and structure of vaults, suggest that vault function is important to eukaryotic cells. PMID:8774142

  8. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs.

    PubMed

    Mili, Stavroula; Piñol-Roma, Serafín

    2003-07-01

    LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans. PMID:12832482

  9. LRP130, a single-stranded DNA/RNA-binding protein, localizes at the outer nuclear and endoplasmic reticulum membrane, and interacts with mRNA in vivo.

    PubMed

    Tsuchiya, Naoto; Fukuda, Hirokazu; Nakashima, Katsuhiko; Nagao, Minako; Sugimura, Takashi; Nakagama, Hitoshi

    2004-05-01

    LRP130 (also known as a LRPPRC) is an RNA and single-stranded DNA-binding protein, and recently identified as a candidate gene responsible for the Leigh syndrome, a French-Canadian type cytochrome c oxidase deficiency. However, the biological function of LRP130 still remains largely unresolved. In the present study, we found that the C-terminal half of the mouse LRP130 located within a 120 amino acid sequence (a.a. 845-964) binds to synthetic RNA homopolymers, poly(G), poly(U), and poly(C), as well as r(CUGCC)(6). Assessment of the subcellular localization indicated both nuclear/endoplasmic reticulum (ER) and mitochondrial fractions to be positive. To further analyze the subcellular localization of LRP130, a nuclear/ER fraction was fractionated into the nucleoplasm (NP) and nuclear envelope (NE)/ER, and the latter was further separated into outer nuclear membrane (ONM)/ER and inner nuclear membrane (INM) by treatment with Triton X-100. LRP130 was detectable in all three fractions, and the distribution pattern was in good accordance with that known for ONM/ER proteins. Interestingly, immunostaining of HeLa cells demonstrated nuclear rim staining of LRP130, specifically at the outside of the NE and also at ER, and association of LRP130 with poly(A)(+) RNA was restricted only to the ONM/ER fraction. Overexpression of full-length mouse LRP130 fused with EGFP resulted in nuclear accumulation of poly(A)(+) RNA in HeLa cells. Taking all these results together, it is suggested that LRP130, a novel type of RNA-binding protein, associates with mRNA/mRNP complexes at the outside of NE and ER, and plays a role in control of mRNA metabolisms. PMID:15081402

  10. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191.

    PubMed

    Prasad, Joni M; Young, Patricia A; Strickland, Dudley K

    2016-08-26

    The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. PMID:27402839

  11. Leucine-responsive regulatory protein Lrp and PapI homologues influence phase variation of CS31A fimbriae.

    PubMed

    Graveline, Richard; Garneau, Philippe; Martin, Christine; Mourez, Michaël; Hancock, Mark A; Lavoie, Rémi; Harel, Josée

    2014-08-15

    CS31A, a K88-related surface antigen specified by the clp operon, is a member of the type P family of adhesive factors and plays a key role in the establishment of disease caused by septicemic and enterotoxigenic Escherichia coli strains. Its expression is under the control of methylation-dependent transcriptional regulation, for which the leucine-responsive regulatory protein (Lrp) is essential. CS31A is preferentially in the OFF state and exhibits distinct regulatory features compared to the regulation of other P family members. In the present study, surface plasmon resonance and DNase I protection assays showed that Lrp binds to the distal moiety of the clp regulatory region with low micromolar affinity compared to its binding to the proximal moiety, which exhibits stronger, nanomolar affinity. The complex formation was also influenced by the addition of PapI or FooI, which increased the affinity of Lrp for the clp distal and proximal regions and was required to induce phase variation. The influence of PapI or FooI, however, was predominantly associated with a more complete shutdown of clp expression, in contrast to what has previously been observed with AfaF (a PapI ortholog). Taken together, these results suggest that the preferential OFF state observed in CS31A cells is mainly due to the weak interaction of the leucine-responsive regulatory protein with the clp distal region and that the PapI homolog favors the OFF phase. Within the large repertoire of fimbrial variants in the P family, our study illustrates that having a fimbrial operon that lacks its own PapI ortholog allows it to be more flexibly regulated by other orthologs in the cell. PMID:24914179

  12. [Proteins in cancer multidrug resistance].

    PubMed

    Popęda, Marta; Płuciennik, Elżbieta; Bednarek, Andrzej K

    2014-01-01

    Multidrug Resistance (MDR) is defined as insensitivity to administered medicines that are structurally unrelated and have different molecular targets. Cancers possess numerous mechanisms of drug resistance, involving various aspects of cell biology. A pivotal role in this phenomenon is played by proteins--enzymatic or structural parts of the cell. Membrane transporters, including the main members of ABC protein family--P-gp, MRP1 and BCRP, as well as LRP, which builds structure of vaults, determine the multidrug-resistant phenotype by decreasing drug concentration within the cell or modifying its distribution to intracellular compartments. The π isoform of protein enzyme--glutathione S-transferase (GSTP-1), is responsible for excessive intensity of detoxification of cytostatics. A common example of altered drug target site that does not respond to chemotherapy is topoisomerase II α (TopoIIa). Alterations of programmed cell death result from expression of metallothionein (MT)--inhibitor of the process, and cytokeratin 18 (CK18), which, if in high concentration, also prevents apoptosis of cells. Several methods of decreasing activity of these proteins have been developed, aiming to overcome MDR in cancer cells. However, for a variety of reasons, their clinical suitability is still very low, leading to continuous increase in death rate among patients. This paper presents current state of knowledge on the most important examples of proteins responsible for MDR of cancer cells and molecular mechanisms of their action. PMID:24864112

  13. Flow Cytofluorimetric Analysis of Anti-LRP4 (LDL Receptor-Related Protein 4) Autoantibodies in Italian Patients with Myasthenia Gravis

    PubMed Central

    Marino, Mariapaola; Scuderi, Flavia; Samengo, Daniela; Saltelli, Giorgia; Maiuri, Maria Teresa; Shen, Chengyong; Mei, Lin; Sabatelli, Mario; Pani, Giovambattista; Antonini, Giovanni; Evoli, Amelia; Bartoccioni, Emanuela

    2015-01-01

    Background Myasthenia gravis (MG) is an autoimmune disease in which 90% of patients have autoantibodies against the muscle nicotinic acetylcholine receptor (AChR), while autoantibodies to muscle-specific tyrosine kinase (MuSK) have been detected in half (5%) of the remaining 10%. Recently, the low-density lipoprotein receptor-related protein 4 (LRP4), identified as the agrin receptor, has been recognized as a third autoimmune target in a significant portion of the double sero-negative (dSN) myasthenic individuals, with variable frequency depending on different methods and origin countries of the tested population. There is also convincing experimental evidence that anti-LRP4 autoantibodies may cause MG. Methods The aim of this study was to test the presence and diagnostic significance of anti-LRP4 autoantibodies in an Italian population of 101 myasthenic patients (55 dSN, 23 AChR positive and 23 MuSK positive), 45 healthy blood donors and 40 patients with other neurological diseases as controls. All sera were analyzed by a cell-based antigen assay employing LRP4-transfected HEK293T cells, along with a flow cytofluorimetric detection system. Results We found a 14.5% (8/55) frequency of positivity in the dSN-MG group and a 13% frequency of co-occurrence (3/23) in both AChR and MuSK positive patients; moreover, we report a younger female prevalence with a mild form of disease in LRP4-positive dSN-MG individuals. Conclusion Our data confirm LRP4 as a new autoimmune target, supporting the value of including anti-LRP4 antibodies in further studies on Myasthenia gravis. PMID:26284792

  14. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis.

    PubMed

    Ding, Yinyuan; Xian, Xunde; Holland, William L; Tsai, Shirling; Herz, Joachim

    2016-05-01

    Low-density lipoprotein receptor-related protein-1 (LRP1) is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β) trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO) predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2) translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL) triglyceride secretion. PMID:27322467

  15. Escherichia coli Lrp (Leucine-Responsive Regulatory Protein) Does Not Directly Regulate Expression of the leu Operon Promoter

    PubMed Central

    Landgraf, Jeffrey R.; Boxer, Jonathan A.; Calvo, Joseph M.

    1999-01-01

    Studies by R. Lin et al. (J. Bacteriol. 174:1948–1955, 1992) suggested that the Escherichia coli leu operon might be a member of the Lrp regulon. Their results were obtained with a leucine auxotroph; in leucine prototrophs grown in a medium lacking leucine, there was little difference in leu operon expression between lrp+ and lrp strains. Furthermore, when leuP-lacZ transcriptional fusions that lacked the leu attenuator were used, expression from the leu promoter varied less than twofold between lrp+ and lrp strains, irrespective of whether or not excess leucine was added to the medium. The simplest explanation of the observations of Lin et al. is that the known elevated leucine transport capacity of lrp strains (S. A. Haney et al., J. Bacteriol. 174:108–115, 1992) leads to very high intracellular levels of leucine for strains grown with leucine, resulting in the superattenuation of leu operon expression. PMID:10515950

  16. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds.

    PubMed

    Yue, Jing; Li, Cong; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2014-01-01

    Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP) transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content. PMID:24681583

  17. Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by miR-29b in intestinal epithelial cells

    PubMed Central

    Li, Yanwu; Chen, Gang; Wang, Jun-Yao; Zou, Tongtong; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Rao, Jaladanki N.; Wang, Jian-Ying

    2016-01-01

    MicroRNAs (miRNAs) control gene expression by binding to their target mRNAs for degradation and/or translation repression and are implicated in many aspects of cellular physiology. Our previous study shows that miR-29b acts as a biological repressor of intestinal mucosal growth, but its exact downstream targets remain largely unknown. In the present study, we found that mRNAs, encoding Wnt co-receptor LRP6 (low-density lipoprotein-receptor-related protein 6) and RNA-binding protein (RBP) HuR, are novel targets of miR-29b in intestinal epithelial cells (IECs) and that expression of LRP6 and HuR is tightly regulated by miR-29b at the post-transcriptional level. miR-29b interacted with both Lrp6 and HuR mRNAs via their 3′-UTRs and inhibited LRP6 and HuR expression by destabilizing Lrp6 and HuR mRNAs and repressing their translation. Studies using heterologous reporter constructs revealed a greater repressive effect of miR-29b through a single binding site in the Lrp6 or HuR 3′-UTR, whereas deletion mutation of this site prevented miR-29b-induced repression of LRP6 and HuR expression. Repression of HuR by miR-29b in turn also contributed to miR-29b-induced LRP6 inhibition, since ectopic overexpression of HuR in cells overexpressing miR-29b restored LRP6 expression to near normal levels. Taken together, our results suggest that miR-29b inhibits expression of LRP6 and HuR post-transcriptionally, thus playing a role in the regulation of IEC proliferation and intestinal epithelial homoeostasis. PMID:27089893

  18. Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by miR-29b in intestinal epithelial cells.

    PubMed

    Li, Yanwu; Chen, Gang; Wang, Jun-Yao; Zou, Tongtong; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Rao, Jaladanki N; Wang, Jian-Ying

    2016-06-01

    MicroRNAs (miRNAs) control gene expression by binding to their target mRNAs for degradation and/or translation repression and are implicated in many aspects of cellular physiology. Our previous study shows that miR-29b acts as a biological repressor of intestinal mucosal growth, but its exact downstream targets remain largely unknown. In the present study, we found that mRNAs, encoding Wnt co-receptor LRP6 (low-density lipoprotein-receptor-related protein 6) and RNA-binding protein (RBP) HuR, are novel targets of miR-29b in intestinal epithelial cells (IECs) and that expression of LRP6 and HuR is tightly regulated by miR-29b at the post-transcriptional level. miR-29b interacted with both Lrp6 and HuR mRNAs via their 3'-UTRs and inhibited LRP6 and HuR expression by destabilizing Lrp6 and HuR mRNAs and repressing their translation. Studies using heterologous reporter constructs revealed a greater repressive effect of miR-29b through a single binding site in the Lrp6 or HuR 3'-UTR, whereas deletion mutation of this site prevented miR-29b-induced repression of LRP6 and HuR expression. Repression of HuR by miR-29b in turn also contributed to miR-29b-induced LRP6 inhibition, since ectopic overexpression of HuR in cells overexpressing miR-29b restored LRP6 expression to near normal levels. Taken together, our results suggest that miR-29b inhibits expression of LRP6 and HuR post-transcriptionally, thus playing a role in the regulation of IEC proliferation and intestinal epithelial homoeostasis. PMID:27089893

  19. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae

    PubMed Central

    Kanai, Yoshimitsu; Wang, Daliang

    2014-01-01

    Multifunctional low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) recognizes and internalizes a large number of diverse ligands, including LDL and factor VIII. However, little is known about the regulation of LRP1 endocytosis. Here, we show that a microtubule-based motor protein, KIF13B, in an unexpected and unconventional function, enhances caveolin-dependent endocytosis of LRP1. KIF13B was highly expressed in the liver and was localized on the sinusoidal plasma membrane of hepatocytes. KIF13B knockout (KO) mice showed elevated levels of serum cholesterol and factor VIII, and KO MEFs showed decreased uptake of LDL. Exogenous KIF13B, initially localized on the plasma membrane with caveolae, was translocated to the vesicles in the cytoplasm with LRP1 and caveolin-1. KIF13B bound to hDLG1 and utrophin, which, in turn, bound to LRP1 and caveolae, respectively. These linkages were required for the KIF13B-enhanced endocytosis of LRP1. Thus, we propose that KIF13B, working as a scaffold, recruits LRP1 to caveolae via LRP1–hDLG1–KIF13B–utrophin–caveolae linkage and enhances the endocytosis of LRP1. PMID:24469637

  20. Characterization of LrpC DNA-Binding Properties and Regulation of Bacillus subtilis lrpC Gene Expression

    PubMed Central

    Beloin, Christophe; Exley, Rachel; Mahé, Anne-Laure; Zouine, Mohamed; Cubasch, Stephanie; Le Hégarat, Françoise

    2000-01-01

    The lrpC gene was identified during the Bacillus subtilis genome sequencing project. Previous experiments suggested that LrpC has a role in sporulation and in the regulation of amino acid metabolism and that it shares features with Escherichia coli Lrp, a transcription regulator (C. Beloin, S. Ayora, R. Exley, L. Hirschbein, N. Ogasawara, Y. Kasahara, J. C. Alonso, and F. Le Hégarat, Mol. Gen. Genet. 256:63–71, 1997). To characterize the interactions of LrpC with DNA, the protein was overproduced and purified. We show that LrpC binds to multiple sites in the upstream region of its own gene with a stronger affinity for a region encompassing P1, one of the putative promoters identified (P1 and P2). By analyzing lrpC-lacZ transcriptional fusions, we demonstrated that P1 is the major in vivo promoter and that, unlike many members of the lrp/asnC family, lrpC is not negatively autoregulated but rather slightly positively autoregulated. Production of LrpC in vivo is low in both rich and minimal media (50 to 300 LrpC molecules per cell). In rich medium, the cellular LrpC content is six- to sevenfold lower during the exponentional phase than during the stationary growth phase. Possible determinants and the biological significance of the regulation of lrpC expression are discussed. PMID:10913073

  1. Reduction of low-density lipoprotein receptor-related protein (LRP1) in hippocampal neurons does not proportionately reduce, or otherwise alter, amyloid deposition in APPswe/PS1dE9 transgenic mice

    PubMed Central

    2012-01-01

    Introduction The low-density lipoprotein receptor-related protein (LRP1) and its family members have been implicated in the pathogenesis of Alzheimer's disease. Multiple susceptibility factors converge to metabolic pathways that involve LRP1, including modulation of the processing of amyloid precursor protein (APP) and the clearance of Aβ peptide. Methods We used the Cre-lox system to lower LRP1 levels in hippocampal neurons of mice that develop Alzheimer-type amyloid by crosses between mice that express Cre recombinase under the transcriptional control of the GFAP promoter, mice that harbor loxp sites in the LRP1 gene, and the APPswe/PS1dE9 transgenic model. We compared amyloid plaque numbers in APPswe/PS1dE9 mice lacking LRP1 expression in hippocampus (n = 13) to mice with normal levels of LRP1 (n = 12). Student t-test was used to test whether there were significant differences in plaque numbers and amyloid levels between the groups. A regression model was used to fit two regression lines for these groups, and to compare the rates of Aβ accumulation. Results Immunohistochemical analyses demonstrated efficient elimination of LRP1 expression in the CA fields and dentate gyrus of the hippocampus. Within hippocampus, we observed no effect on the severity of amyloid deposition, the rate of Aβ40/42 accumulation, or the architecture of amyloid plaques when LRP1 levels were reduced. Conclusions Expression of LRP1 by neurons in proximity to senile amyloid plaques does not appear to play a major role in modulating the formation of these proximal deposits or in the appearance of the associated neuritic pathology. PMID:22537779

  2. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  3. LRP6 exerts non-canonical effects on Wnt signaling during neural tube closure.

    PubMed

    Gray, Jason D; Kholmanskikh, Stanislav; Castaldo, Bozena S; Hansler, Alex; Chung, Heekyung; Klotz, Brian; Singh, Shawn; Brown, Anthony M C; Ross, M Elizabeth

    2013-11-01

    Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced proliferation and subtle patterning changes in the neural folds. Cell polarity defects in both Lrp6(Cd/Cd) and Lrp6(-/-) cranial folds were indicated by cell shape, centrosome displacement and failure of F-actin and GTP-RhoA accumulation at the apical surface. Mouse embryonic fibroblasts (MEFs) derived from Lrp6(Cd/Cd) or Lrp6(-/-) embryos exhibited elevated and decreased RhoA basal activity levels, respectively. While ligand-independent activation of canonical Wnt signaling, bypassing Lrp-Frizzled receptors, did not activate RhoA, non-canonical Wnt5a stimulation of RhoA activity was impaired in Lrp6(-/-) MEFs. RhoA inhibition exacerbated NTDs in cultured Lrp6 knockout embryos compared with WT littermates. In contrast, a ROCK inhibitor rescued Lrp6(Cd/Cd) embryos from NTDs. Lrp6 co-immunoprecipitated with Disheveled-associated activator of morphogenesis 1 (DAAM1), a formin promoting GEF activity in Wnt signaling. Biochemical and cell biological data revealed intracellular accumulation of Lrp6(Cd) protein where interaction with DAAM1 could account for observed elevated RhoA activity. Conversely, null mutation that eliminates Lrp6 interaction with DAAM1 led to lower basal RhoA activity in Lrp6(-/-) embryos. These results indicate that Lrp6 mediates not only canonical Wnt signaling, but can also modulate non-canonical pathways involving RhoA-dependent mechanisms to impact neurulation, possibly through intracellular complexes with DAAM1. PMID:23773994

  4. K Domain CR9 of Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1) Is Critical for Aggregated LDL-induced Foam Cell Formation from Human Vascular Smooth Muscle Cells*

    PubMed Central

    Costales, Paula; Fuentes-Prior, Pablo; Castellano, Jose; Revuelta-Lopez, Elena; Corral-Rodríguez, Maria Ángeles; Nasarre, Laura; Badimon, Lina; Llorente-Cortes, Vicenta

    2015-01-01

    Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 “minireceptors” (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7–CR9 domains of this cluster (termed P1 (Cys1051–Glu1066), P2 (Asp1090–Cys1104), and P3 (Gly1127–Cys1140)). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis. PMID:25918169

  5. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    PubMed

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association. PMID:26555266

  6. Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics.

    PubMed

    Mossink, Marieke H; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Kickhoefer, Valerie A; Scheffer, George L; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2002-12-15

    Vaults are ribonucleoprotein particles with a distinct structure and a high degree of conservation between species. Although no function has been assigned to the complex yet, there is some evidence for a role of vaults in multidrug resistance. To confirm a direct relation between vaults and multidrug resistance, and to investigate other possible functions of vaults, we have generated a major vault protein (MVP/lung resistance-related protein) knockout mouse model. The MVP(-/-) mice are viable, healthy, and show no obvious abnormalities. We investigated the sensitivity of MVP(-/-) embryonic stem cells and bone marrow cells derived from the MVP-deficient mice to various cytostatic agents with different mechanisms of action. Neither the MVP(-/-) embryonic stem cells nor the MVP(-/-) bone marrow cells showed an increased sensitivity to any of the drugs examined, as compared with wild-type cells. Furthermore, the activities of the ABC-transporters P-glycoprotein, multidrug resistance-associated protein and breast cancer resistance protein were unaltered on MVP deletion in these cells. In addition, MVP wild-type and deficient mice were treated with the anthracycline doxorubicin. Both groups of mice responded similarly to the doxorubicin treatment. Our results suggest that MVP/vaults are not directly involved in the resistance to cytostatic agents. PMID:12499273

  7. Rare LRP6 variants identified in spina bifida patients

    PubMed Central

    Lei, Yunping; Fathe, Kristin; McCartney, Danielle; Zhu, Huiping; Yang, Wei; Ross, M. Elizabeth; Shaw, Gary M.; Finnell, Richard H.

    2014-01-01

    Several single nucleotide variants (SNVs) in low-density lipoprotein receptor-related protein 6 (Lrp6) cause neural tube defects (NTDs) in mice. We therefore examined LRP6 in 192 unrelated infants from California with the NTD, spina bifida, and found four heterozygous missense SNVs, three of which were predicted to be deleterious, among NTD cases and not in 190 ethnically matched non-malformed controls. Parents and siblings could not be tested because of the study design. Like Cd and rs mouse variants, the p.Tyr544Cys Lrp6 protein failed to bind the chaperone protein MESD and impaired Lrp6 subcellular localization to the plasma membrane of MDCK II cells. Only the p.Tyr544Cys Lrp6 variant down-regulated canonical Wnt signaling in a TopFlash luciferase reporter in vitro assay. In contrast, three Lrp6 mutants (p.Ala3Val, p.Tyr544Cys and p.Arg1574Leu) increased non-canonical Wnt/PCP signaling in an Ap1-luciferase assay. Thus, LRP6 variants outside of YWTD-repeats could potentially predispose embryos to NTDs, while Lrp6 modulation of Wnt/PCP signaling would be more essential than its canonical pathway role in neural tube closure. PMID:25546815

  8. Rare LRP6 variants identified in spina bifida patients.

    PubMed

    Lei, Yunping; Fathe, Kristin; McCartney, Danielle; Zhu, Huiping; Yang, Wei; Ross, M Elizabeth; Shaw, Gary M; Finnell, Richard H

    2015-03-01

    Several single-nucleotide variants (SNVs) in low-density lipoprotein receptor-related protein 6 (Lrp6) cause neural tube defects (NTDs) in mice. We therefore examined LRP6 in 192 unrelated infants from California with the NTD, spina bifida, and found four heterozygous missense SNVs, three of which were predicted to be deleterious, among NTD cases and not in 190 ethnically matched nonmalformed controls. Parents and siblings could not be tested because of the study design. Like Crooked tail and Ringleschwanz mouse variants, the p.Tyr544Cys Lrp6 protein failed to bind the chaperone protein mesoderm development and impaired Lrp6 subcellular localization to the plasma membrane of MDCK II cells. Only the p.Tyr544Cys Lrp6 variant downregulated canonical Wnt signaling in a TopFlash luciferase reporter in vitro assay. In contrast, three Lrp6 mutants (p.Ala3Val, p.Tyr544Cys, and p.Arg1574Leu) increased noncanonical Wnt/planar cell polarity (PCP) signaling in an Ap1-luciferase assay. Thus, LRP6 variants outside of YWTD repeats could potentially predispose embryos to NTDs, whereas Lrp6 modulation of Wnt/PCP signaling would be more essential than its canonical pathway role in neural tube closure. PMID:25546815

  9. Sclerostin Inhibition Reverses Skeletal Fragility in an Lrp5-Deficient Mouse Model of OPPG Syndrome

    PubMed Central

    Kedlaya, Rajendra; Veera, Shreya; Horan, Daniel J.; Moss, Rachel E.; Ayturk, Ugur M.; Jacobsen, Christina M.; Bowen, Margot E.; Paszty, Chris; Warman, Matthew L.; Robling, Alexander G.

    2014-01-01

    Osteoporosis pseudoglioma syndrome (OPPG) is a rare genetic disease that produces debilitating effects in the skeleton. OPPG is caused by mutations in LRP5, a WNT co-receptor that mediates osteoblast activity. WNT signaling through LRP5, and also through the closely related receptor LRP6, is inhibited by the protein sclerostin (SOST). It is unclear whether OPPG patients might benefit from the anabolic action of sclerostin neutralization therapy (an approach currently being pursued in clinical trials for postmenopausal osteoporosis) in light of their LRP5 deficiency and consequent osteoblast impairment. To assess whether loss of sclerostin is anabolic in OPPG, we measured bone properties in a mouse model of OPPG (Lrp5−/−), a mouse model of sclerosteosis (Sost−/−), and in mice with both genes knocked out (Lrp5−/−;Sost−/−). Lrp5−/−;Sost−/− mice have larger, denser, and stronger bones than do Lrp5−/− mice, indicating that SOST deficiency can improve bone properties via pathways that do not require LRP5. Next, we determined whether the anabolic effects of sclerostin depletion in Lrp5−/− mice are retained in adult mice by treating 17-week-old Lrp5−/− mice with a sclerostin antibody for 3 weeks. Lrp5+/+ and Lrp5−/− mice each exhibited osteoanabolic responses to antibody therapy, as indicated by increased bone mineral density, content, and formation rates. Collectively, our data show that inhibiting sclerostin can improve bone mass whether LRP5 is present or not. In the absence of LRP5, the anabolic effects of SOST depletion can occur via other receptors (such as LRP4/6). Regardless of the mechanism, our results suggest that humans with OPPG might benefit from sclerostin neutralization therapies. PMID:24225945

  10. Signaling through LRP1: Protection from atherosclerosis and beyond

    PubMed Central

    Boucher, Philippe; Herz, Joachim

    2010-01-01

    The low-density lipoprotein receptor-related protein (LRP1) is a multifunctional cell surface receptor that belongs to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 consists of an 85-KDa membrane-bound carboxyl fragment (β chain) and a non-covalently attached 515-KDa (α chain) amino-terminal fragment. Through its extracellular domain, LRP1 binds at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. LRP-1 has also been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. LRP-1 is thus implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth/differentiation processes, degradation of proteases, and tissue invasion. The embryonic lethal phenotype obtained after target disruption of the LRP-1 gene in the mouse highlights the biological importance of this receptor and revealed a critical, but yet undefined role in development. Tissue-specific gene deletion studies also reveal an important contribution of LRP1 in vascular remodeling, foam cell biology, the central nervous system, and in the molecular mechanisms of atherosclerosis. PMID:20920479

  11. Regulation of LRP-1 expression: make the point.

    PubMed

    Emonard, H; Théret, L; Bennasroune, A H; Dedieu, S

    2014-04-01

    The low-density lipoprotein receptor-related protein-1 (LRP-1) is a membrane receptor displaying both scavenging and signaling functions. The wide variety of extracellular ligands and of cytoplasmic scaffolding and signaling proteins interacting with LRP-1 gives it a major role not only in physiological processes, such as embryogenesis and development, but also in critical pathological situations, including cancer and neurological disorders. In this review, we describe the molecular mechanisms involved at distinct levels in the regulation of LRP-1, from its expression to the proper location and stability at the cell surface. PMID:24661974

  12. LRP Receptor Family Member Associated Bone Disease

    PubMed Central

    Lara-Castillo, N; Johnson, ML

    2015-01-01

    A dozen years ago the identification of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene involved in two rare bone disorders propelled research in the bone field in totally new directions. Since then, there have been an explosion in the number of reports that highlight the role of the Wnt/β-catenin pathway in the regulation of bone homeostasis. In this review we discuss some of the most recent reports (in the past 2 years) highlighting the involvement of the members of the LRP family (LRP5, LRP6, LRP4, and more recently LRP8) in the maintenance of bone and their implications in bone diseases. These reports include records of new single nucleotides polymorphisms (SNPs) and haplotypes that suggest variants in these genes can contribute to subtle variation in bone traits to mutations that give rise to extreme bone phenotypes. All of these serve to further support and reinforce the importance of this tightly regulated pathway in bone. Furthermore, we discuss provocative reports suggesting novel approaches through inhibitors of this pathway to treat rarer diseases such as Osteoporosis-Pseudoglioma Syndrome (OPPG), Osteogenesis Imperfecta (OI), and Sclerosteosis/Van Buchem disease. It is hoped that by understanding the role of each component of the pathway and their involvement in bone diseases that this knowledge will allow us to develop new, more effective therapeutic approaches for more common diseases such as post-menopausal osteoporosis, osteoarthritis, and rheumatoid arthritis as well as these rarer bone diseases. PMID:26048454

  13. LRP5 variants may contribute to ADPKD.

    PubMed

    Cnossen, Wybrich R; te Morsche, René H M; Hoischen, Alexander; Gilissen, Christian; Venselaar, Hanka; Mehdi, Soufi; Bergmann, Carsten; Losekoot, Monique; Breuning, Martijn H; Peters, Dorien J M; Veltman, Joris A; Drenth, Joost P H

    2016-02-01

    Mutations in Polycystic Kidney Disease proteins (PKD1 or PKD2) are causative for autosomal dominant polycystic kidney disease (ADPKD). However, a small subset of ADPKD probands do not harbor a mutation in any of the known genes. Low density lipoprotein Receptor-related Protein 5 (LRP5) was recently associated with hepatic cystogenesis in isolated polycystic liver disease (PCLD). Here, we demonstrate that this gene may also have a role in unlinked and sporadic ADPKD patients. In a cohort of 79 unrelated patients with adult-onset ADPKD, we identified a total of four different LRP5 variants that were predicted to be pathogenic by in silico tools. One ADPKD patient has a positive family history for ADPKD and variant LRP5 c.1680G>T; p.(Trp560Cys) segregated with the disease. Although also two PKD1 variants probably affecting protein function were identified, luciferase activity assays presented for three LRP5 variants significant decreased signal activation of canonical Wnt signaling. This study contributes to the genetic spectrum of ADPKD. Introduction of the canonical Wnt signaling pathway provides new avenues for the study of the pathophysiology. PMID:25920554

  14. LRP-1–CD44, a New Cell Surface Complex Regulating Tumor Cell Adhesion

    PubMed Central

    Perrot, Gwenn; Langlois, Benoit; Devy, Jérôme; Jeanne, Albin; Verzeaux, Laurie; Almagro, Sébastien; Sartelet, Hervé; Hachet, Cathy; Schneider, Christophe; Sick, Emilie; David, Marion; Khrestchatisky, Michel; Emonard, Hervé; Martiny, Laurent

    2012-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells. PMID:22711991

  15. LRP5 and bone mass regulation: Where are we now?

    PubMed Central

    Johnson, Mark L

    2012-01-01

    The discovery of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene underlying conditions of altered bone mass ushered in a new era in bone research. Since those original publications, the role of Lrp5 and the Wnt/β-catenin signaling pathway controlled by Lrp5 and its homologs, Lrp6 and Lrp4, in bone mass regulation has been an intense area of investigation. Studies to date have implicated this pathway in skeletal development, osteoblast differentiation and proliferation, osteoblast/osteocyte apoptosis, regulation of the balance between osteogenesis–chondrogenesis–adipogenesis, regulation of osteoclastogenesis and the response of bone to mechanical loading. Interestingly, the data from knockout and transgenic mice involving Lrp4/5/6 and/or their regulators, as well as β-catenin signaling pathway components, and in vitro studies have sometimes yielded conflicting results. Adding to the complexity of the system are the studies that suggested Lrp5 regulated bone mass through a gut-bone endocrine signaling system involving Lrp5 mediated control of gut serotonin synthesis. However, recent studies have called this into question and so this provocative concept remains an open question. Clearly, the manipulation of Lrp5/Wnt/β-catenin pathway presents as a major target for drug development to treat diseases of low bone mass such as osteoporosis and these new therapies are in full progress. At present, although it is clear that Lrp5 has a role in bone mass regulation, much of the details remain to be elucidated and this is a major and exciting challenge for future studies. PMID:23951413

  16. Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes[S

    PubMed Central

    Reading, Benjamin J.; Hiramatsu, Naoshi; Schilling, Justin; Molloy, Katelyn T.; Glassbrook, Norm; Mizuta, Hiroko; Luo, Wenshu; Baltzegar, David A.; Williams, Valerie N.; Todo, Takashi; Hara, Akihiko; Sullivan, Craig V.

    2014-01-01

    Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism. PMID:25217480

  17. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages

    PubMed Central

    Gorovoy, Matvey; Gaultier, Alban; Campana, W. Marie; Firestein, Gary S.; Gonias, Steven L.

    2010-01-01

    LRP1 is a type-1 transmembrane receptor that mediates the endocytosis of diverse ligands. LRP1 β-chain proteolysis results in release of sLRP1 that is present in human plasma. In this study, we show that LPS and IFN-γ induce shedding of LRP1 from RAW 264.7 cells and BMMs in vitro. ADAM17 was principally responsible for the increase in LRP1 shedding. sLRP1 was also increased in vivo in mouse plasma following injection of LPS and in plasma from human patients with RA or SLE. sLRP1, which was purified from human plasma, and full-length LRP1, purified from mouse liver, activated cell signaling when added to cultures of RAW 264.7 cells and BMMs. Robust activation of p38 MAPK and JNK was observed. The IKK-NF-κB pathway was transiently activated. Proteins that bind to the ligand-binding clusters in LRP1 failed to inhibit sLRP1-initiated cell signaling, however an antibody that targets the sLRP1 N terminus was effective. sLRP1 induced expression of regulatory cytokines by RAW 264.7 cells, including TNF-α, MCP-1/CCL2, and IL-10. These results demonstrate that sLRP1 is generated in inflammation and may regulate inflammation by its effects on macrophage physiology. PMID:20610799

  18. LRP4 in neuromuscular junction and bone development and diseases.

    PubMed

    Shen, Chengyong; Xiong, Wen-Cheng; Mei, Lin

    2015-11-01

    Low-density lipoprotein receptor-related protein 4 (LRP4) is a member of the low-density lipoprotein receptor (LDLR) family. Recent studies have revealed multiple functions and complex signaling mechanisms of LRP4 in different organs and tissues. LPR4 mutation or malfunction has been implicated in neurological disorders including congenital myasthenic syndrome, myasthenia gravis, and diseases of bone or kidney. This article is part of a Special Issue entitled "Muscle Bone Interactions". PMID:26071838

  19. [Multiple involvements of LRP-1 receptor in tumor progression].

    PubMed

    Langlois, B; Emonard, H; Martiny, L; Dedieu, S

    2009-01-01

    Extensive proteolytic remodeling processes constitute a critical step during tumor progression. The endocytic receptor low-density lipoprotein receptor-related protein-1 (LRP-1), by its function in the clearance of multiple extracellular proteases involved in metastatic spreading, has long been considered as a putative tumor suppressor. Moreover, the receptor is likely to control the peritumoral microenvironment by internalization of growth factors and matricial proteins and could therefore participate to the control of signaling events involved in survival and proliferation of cancer cells. Nevertheless, recent data lead to reconsider the initially attributed antitumor properties of LRP-1. A more complex model seems to emerge in which LRP-1 could constitute a sensor of pericellular environment and regulate the membrane proteome dynamics. By its control of focal adhesions composition and turn-over, regulation of the cytoskeleton organization and integrin endocytic recycling, LRP-1 appears as a crucial actor of the epithelial-mesenchymal transition, thereby reinforcing the aggressive phenotype of malignant cells. LRP-1 partitioning into rafts and association with tissue-type and tumor grade specific intracellular scaffold proteins appear crucial to determine its function in tumor progression. Those emerging aspects present numerous promising perspectives in oncology and allow envisaging the development of innovative strategies of control of tumor progression through the targeting of LRP-1. PMID:19233571

  20. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation

    PubMed Central

    Keramati, Ali R.; Singh, Rajvir; Lin, Aiping; Faramarzi, Saeed; Ye, Zhi-jia; Mane, Shrikant; Tellides, George; Lifton, Richard P.; Mani, Arya

    2011-01-01

    Vascular smooth muscle cell (VSMC) proliferation is an important event in atherosclerosis and other vasculopathies. PDGF signaling is a key mediator of SMC proliferation, but the mechanisms that control its activity remain unclear. We previously identified a mutation in LDL receptor-related protein 6 (LRP6), LRP6R611C, that causes early atherosclerosis. Examination of human atherosclerotic coronary arteries showed markedly increased expression of LRP6 and colocalization with PDGF receptor β (PDGFR-β). Further investigation showed that wild-type LRP6 inhibits but LRP6R611C promotes VSMC proliferation in response to PDGF. We found that wild-type LRP6 forms a complex with PDGFR-β and enhances its lysosomal degradation, functions that are severely impaired in LRP6R611C. Further, we observed that wild-type and mutant LRP6 regulate cell-cycle activity by triggering differential effects on PDGF-dependent pathways. These findings implicate LRP6 as a critical modulator of PDGF-dependent regulation of cell cycle in smooth muscle and indicate that loss of this function contributes to development of early atherosclerosis in humans. PMID:21245321

  1. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels

    PubMed Central

    Chang, Ming-Kang; Kramer, Ina; Huber, Thomas; Kinzel, Bernd; Guth-Gundel, Sabine; Leupin, Olivier; Kneissel, Michaela

    2014-01-01

    We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4–agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function. PMID:25404300

  2. In vivo footprinting analysis of Lrp binding to the ilvIH promoter region of Escherichia coli.

    PubMed Central

    Marasco, R; Varcamonti, M; La Cara, F; Ricca, E; De Felice, M; Sacco, M

    1994-01-01

    An in vivo footprinting analysis of the ilvIH regulatory region of Escherichia coli showed that the transcription activator Lrp binds to six sites, scattered over 250 bp upstream of the transcriptional start point. When Lrp-mediated activation was impaired by the presence of exogenous leucine, only one promoter-distal site (site 2) was partially protected by Lrp binding. Equilibrium dialysis experiments showed the formation of an Lrp-leucine complex in vitro. These results suggest that leucine negatively affects ilvIH transcription because its interaction with Lrp reduces the efficiency of binding of the regulatory protein to the promoter region. Images PMID:8071194

  3. Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130.

    PubMed

    Cooper, Marcus P; Uldry, Marc; Kajimura, Shingo; Arany, Zoltan; Spiegelman, Bruce M

    2008-11-14

    The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation. PMID:18728005

  4. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6

    PubMed Central

    Ahn, Victoria E.; Chu, Matthew Ling-Hon; Choi, Hee-Jung; Tran, Denise; Abo, Arie; Weis, William I.

    2011-01-01

    Summary LDL receptor-related proteins 5 and 6 (LRP5/6) are co-receptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four β-propeller/EGF-like domain repeats. The first two repeats (LRP6(1-2)) bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle x-ray scattering analysis of LRP6(1-4) bound to a non-inhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled co-receptors. PMID:22000856

  5. Well-Defined Protein/Peptide-Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly.

    PubMed

    Zhang, Qiang; Li, Muxiu; Zhu, Chongyu; Nurumbetov, Gabit; Li, Zaidong; Wilson, Paul; Kempe, Kristian; Haddleton, David M

    2015-07-29

    The synthesis of well-defined protein/peptide-polymer conjugates with interesting self-assembly behavior via single electron transfer living radical polymerization in water is described. A range of protein/peptides with different physical and chemical properties have been modified to macroinitiators and optimized polymerization conditions ensure successful polymerization from soluble, insoluble, and dispersed protein/peptide molecules or protein aggregates. This powerful strategy tolerates a range of functional monomers and mediates efficient homo or block copolymerization to generate hydrophilic polymers with controlled molecular weight (MW) and narrow MW distribution. The polymerizations from bovine insulin macroinitiators follow surface-initiated "grafting from" polymerization mechanism and may involve a series of self-assembly and disassembly processes. Synthesized insulin-polymer conjugates form spheres in water, and the self-assembly behavior could be controlled via thermal control, carbohydrate-protein interaction, and protein denaturation. PMID:26149497

  6. Renal LRP2 expression in man and chicken is estrogen-responsive.

    PubMed

    Plieschnig, Julia A; Gensberger, Eva T; Bajari, Tarek M; Schneider, Wolfgang J; Hermann, Marcela

    2012-10-15

    In mammals, low-density lipoprotein receptor-related protein-2 (LRP2) is an endocytic receptor that binds multiple ligands and is essential for a wide range of physiological processes. To gain new insights into the biology of this complex protein, we have initiated the molecular characterization of the LRP2 homolog from an oviparous species, the chicken (Gallus gallus). The galline LRP2 cDNA encodes a membrane protein of 4658 residues. Overall, the galline and human proteins are 73% identical, indicating that the avian gene has been well conserved over 300 million years. Unexpectedly, LRP2 transcript and protein levels in the kidney of females and estrogen-treated roosters were significantly higher than those in untreated males. The estrogen-responsiveness of avian LRP2 may be related to the dramatic differences in lipoprotein metabolism between mature roosters and laying hens. Newly identified potential estrogen-responsive elements (ERE) in the human and galline LRP2 gene, and additional Sp1 sites present in the promoter of the chicken gene, are compatible with both direct estrogen induction via the classical ligand-induced ERE pathway and the indirect transcription factor crosstalk pathway engaging the Sp1 sites. In agreement with this assumption, estrogen induction of LRP2 was observed not only in primary cultured chicken kidney cells, but also human kidney cell lines. These findings point to novel regulatory features of the LRP2 gene resulting in sex-specific receptor expression. PMID:22868208

  7. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes.

    PubMed

    Borrell-Pages, Maria; Carolina Romero, July; Badimon, Lina

    2015-08-01

    Inflammation is triggered after invasion or injury to restore homeostasis. Although the activation of Wnt/β-catenin signaling is one of the first molecular responses to cellular damage, its role in inflammation is still unclear. It was our hypothesis that the low-density lipoprotein (LDL) receptor-related protein 5 (LRP5) and the canonical Wnt signaling pathway are modulators of inflammatory mechanisms. Wild-type (WT) and LRP5(-/-) mice were fed a hypercholesterolemic (HC) diet to trigger dislipidemia and chronic inflammation. Diets were supplemented with plant sterol esters (PSEs) to induce LDL cholesterol lowering and the reduction of inflammation. HC WT mice showed increased serum cholesterol levels that correlated with increased Lrp5 and Wnt/β-catenin gene expression while in the HC LRP5(-/-) mice Wnt/β-catenin pathway was shut down. Functionally, HC induced pro-inflammatory gene expression in LRP5(-/-) mice, suggesting an inhibitory role of the Wnt pathway in inflammation. Dietary PSE administration downregulated serum cholesterol levels in WT and LRP5(-/-) mice. Furthermore, in WT mice PSE increased anti-inflammatory genes expression and inhibited Wnt/β-catenin activation. Hepatic gene expression of Vldlr, Lrp2 and Lrp6 was increased after HC feeding in WT mice but not in LRP5(-/-) mice, suggesting a role for these receptors in the clearance of plasmatic lipoproteins. Finally, an antiatherogenic role for LRP5 was demonstrated as HC LRP5(-/-) mice developed larger aortic atherosclerotic lesions than WT mice. Our results show an anti-inflammatory, pro-survival role for LRP5 and the Wnt signaling pathway in peripheral blood leukocytes. PMID:25748163

  8. The association between LRP-1 variants and chylomicron uptake after a high fat meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro studies suggest that low density lipoprotein receptor-related protein 1 (LRP1) plays a role in the secondary uptake of chylomicrons. In addition, in vivo studies using LRP-1 knockout mice show these animals exhibit delayed chylomicron clearance. Whether this is true in humans is unknown. We...

  9. Evaluation of the clinical relevance of the expression and function of P-glycoprotein, multidrug resistance protein and lung resistance protein in patients with primary acute myelogenous leukemia.

    PubMed

    Tsimberidou, Apostolia Maria; Paterakis, George; Androutsos, George; Anagnostopoulos, Nikolaos; Galanopoulos, Athanasios; Kalmantis, Themistoklis; Meletis, John; Rombos, Yiannis; Sagriotis, Alexandros; Symeonidis, Argyrios; Tiniakou, Maria; Zoumbos, Nikolaos; Yataganas, Xenophon

    2002-02-01

    The multidrug resistance (MDR) transporter-proteins P-glycoprotein (Pgp), multidrug resistance protein (MRP) and lung resistance protein (LRP) have been associated with treatment failure. The aim of this study was to investigate prospectively the clinical significance of expression and function of the MDR proteins, considering other prognostic factors, such as age, immunophenotype, and cytogenetics. Mononuclear cells of peripheral blood or bone marrow from 61 patients with de novo acute myelogenous leukemia (AML) were analyzed. The monoclonal antibodies JSB1, MRPm6 and LRP56 were used for expression studies. Accumulation and retention studies were performed using the substrates Daunorubicin, Calcein-AM, Rhodamine-123 and DiOC(2) in the presence or absence of the modifiers Verapamil, Genistein, Probenecid, BIBW22S and PSC833. Induction treatment consisted of a 3+7 combination of Ida/Ara-C for patients < or = 60 years of age and a 3+5 Ida/VP-16 combination per OS for patients >60. MDR function was expressed as the ratio of mean fluorescence intensity substrate in the presence of modifier over the substrate alone (resistance index, RI). Patients with advanced age, low CD15 expression and high RI for accumulation of DiOC(2) in the presence of BIBW22S had significantly lower complete remission (CR) rates. No factor was prognostic for event-free survival analysis, which was limited to remitters only. Overall survival was shorter in patients with advanced age, poor prognosis cytogenetics, high CD7 expression, and high RI for Daunorubicin efflux modulated by Verapamil. These results suggest that MDR transporter-proteins have a limited role in the treatment failure of patients treated with Idarubicin-based regimens. PMID:11755464

  10. LRP4 serves as a coreceptor of agrin.

    PubMed

    Zhang, Bin; Luo, Shiwen; Wang, Qiang; Suzuki, Tatsuo; Xiong, Wen C; Mei, Lin

    2008-10-23

    Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies. PMID:18957220

  11. LRP1 expression in microglia is protective during CNS autoimmunity.

    PubMed

    Chuang, Tzu-Ying; Guo, Yong; Seki, Scott M; Rosen, Abagail M; Johanson, David M; Mandell, James W; Lucchinetti, Claudia F; Gaultier, Alban

    2016-01-01

    Multiple sclerosis is a devastating neurological disorder characterized by the autoimmune destruction of the central nervous system myelin. While T cells are known orchestrators of the immune response leading to MS pathology, the precise contribution of CNS resident and peripheral infiltrating myeloid cells is less well described. Here, we explore the myeloid cell function of Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor involved in myelin clearance and the inflammatory response, in the context of Multiple sclerosis. Supporting its central role in Multiple sclerosis pathology, we find that LRP1 expression is increased in Multiple sclerosis lesions in comparison to the surrounding healthy tissue. Using two genetic mouse models, we show that deletion of LRP1 in microglia, but not in peripheral macrophages, negatively impacts the progression of experimental autoimmune encephalomyelitis, an animal model of Multiple sclerosis. We further show that the increased disease severity in experimental autoimmune encephalomyelitis is not due to haplodeficiency of the Cx3cr1 locus. At the cellular level, microglia lacking LRP1 adopt a pro-inflammatory phenotype characterized by amoeboid morphology and increased production of the inflammatory mediator TNF-α. We also show that LRP1 functions as a robust inhibitor of NF-kB activation in myeloid cells via a MyD88 dependent pathway, potentially explaining the increase in disease severity observed in mice lacking LRP1 expression in microglia. Taken together, our data suggest that the function of LRP1 in microglia is to keep these cells in an anti-inflammatory and neuroprotective status during inflammatory insult, including experimental autoimmune encephalomyelitis and potentially in Multiple sclerosis. PMID:27400748

  12. Endothelial LRP1 transports amyloid-β1–42 across the blood-brain barrier

    PubMed Central

    Storck, Steffen E.; Meister, Sabrina; Nahrath, Julius; Meißner, Julius N.; Schubert, Nils; Di Spiezio, Alessandro; Baches, Sandra; Vandenbroucke, Roosmarijn E.; Bouter, Yvonne; Prikulis, Ingrid; Korth, Carsten; Weggen, Sascha; Heimann, Axel; Schwaninger, Markus; Bayer, Thomas A.; Pietrzik, Claus U.

    2015-01-01

    According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor–related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-β (Aβ) brain accumulation and drives Alzheimer’s disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in Aβ transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic Aβ clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slco1c1-CreERT2 Lrp1fl/fl mice) and used these mice to accurately evaluate LRP1-mediated Aβ BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [125I] Aβ1–42. Additionally, in the 5xFAD mouse model of AD, brain endothelial–specific Lrp1 deletion reduced plasma Aβ levels and elevated soluble brain Aβ, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic Aβ elimination via the BBB. Together, our results suggest that receptor-mediated Aβ BBB clearance may be a potential target for treatment and prevention of Aβ brain accumulation in AD. PMID:26619118

  13. Mice with a heterozygous Lrp6 deletion have impaired fracture healing

    PubMed Central

    Burgers, Travis A; Vivanco, Juan F; Zahatnansky, Juraj; Moren, Andrew J Vander; Mason, James J; Williams, Bart O

    2016-01-01

    Bone fracture non-unions, the failure of a fracture to heal, occur in 10%–20% of fractures and are a costly and debilitating clinical problem. The Wnt/β-catenin pathway is critical in bone development and fracture healing. Polymorphisms of linking low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt-binding receptor, have been associated with decreased bone mineral density and fragility fractures, although this remains controversial. Mice with a homozygous deletion of Lrp6 have severe skeletal abnormalities and are not viable, whereas mice with a heterozygous deletion have a combinatory effect with Lrp5 to decrease bone mineral density. As fracture healing closely models embryonic skeletal development, we investigated the process of fracture healing in mice heterozygous for Lrp6 (Lrp6 +/−) and hypothesized that the heterozygous deletion of Lrp6 would impair fracture healing. Mid-diaphyseal femur fractures were induced in Lrp6 +/− mice and wild-type controls (Lrp6 +/+). Fractures were analyzed using micro-computed tomography (μCT) scans, biomechanical testing, and histological analysis. Lrp6 +/− mice had significantly decreased stiffness and strength at 28 days post fracture (PF) and significantly decreased BV/TV, total density, immature bone density, and mature area within the callus on day-14 and -21 PF; they had significantly increased empty callus area at days 14 and 21 PF. Our results demonstrate that the heterozygous deletion of Lrp6 impairs fracture healing, which suggests that Lrp6 has a role in fracture healing.

  14. Large-Scale Analysis of Association Between LRP5 and LRP6 Variants and Osteoporosis

    PubMed Central

    van Meurs, Joyce B. J.; Trikalinos, Thomas A.; Ralston, Stuart H.; Balcells, Susana; Brandi, Maria Luisa; Brixen, Kim; Kiel, Douglas P.; Langdahl, Bente L.; Lips, Paul; Ljunggren, Östen; Lorenc, Roman; Obermayer-Pietsch, Barbara; Ohlsson, Claes; Pettersson, Ulrika; Reid, David M.; Rousseau, Francois; Scollen, Serena; Van Hul, Wim; Agueda, Lidia; Åkesson, Kristina; Benevolenskaya, Lidia I.; Ferrari, Serge L.; Hallmans, Göran; Hofman, Albert; Husted, Lise Bjerre; Kruk, Marcin; Kaptoge, Stephen; Karasik, David; Karlsson, Magnus K.; Lorentzon, Mattias; Masi, Laura; McGuigan, Fiona E. A.; Mellström, Dan; Mosekilde, Leif; Nogues, Xavier; Pols, Huibert A. P.; Reeve, Jonathan; Renner, Wilfried; Rivadeneira, Fernando; van Schoor, Natasja M.; Weber, Kurt; Ioannidis, John P. A.; Uitterlinden, André G.

    2012-01-01

    Context Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population. Objective To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk. Design and Setting Prospective, multicenter, collaborative study of individual-level data on 37 534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures. Main Outcome Measures Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures. Results The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n =25 052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P=3.3 × 10−8), as was the Val1330 allele (n = 24 812; 14-mg/cm2 lower BMD per Val1330 copy; P=2.6 × 10−9). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P =3.8 × 10−5) and 8 mg/cm2 (P=5.0×10−6) for the Met667 and Val1330 alleles, respectively (n=25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08–1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01–1.24 for Val1330 [1988 fractures among 20 096 individuals

  15. An RNA-seq Protocol to Identify mRNA Expression Changes in Mouse Diaphyseal Bone: Applications in Mice with Bone Property Altering Lrp5 Mutations

    PubMed Central

    Ayturk, Ugur M.; Jacobsen, Christina M.; Christodoulou, Danos C.; Gorham, Joshua; Seidman, Jonathan G.; Seidman, Christine E.; Robling, Alexander G.; Warman, Matthew L.

    2013-01-01

    Loss-of-function and certain missense mutations in the Wnt co-receptor LRP5 significantly decrease or increase bone mass, respectively. These human skeletal phenotypes have been recapitulated in mice harboring Lrp5 knockout and knockin mutations. We hypothesized that measuring mRNA expression in diaphyseal bone from mice with Lrp5 wild-type (Lrp5+/+), knockout (Lrp5−/−), and high bone mass (HBM)-causing (Lrp5p.A214V/+) alleles could identify genes and pathways that regulate or are regulated by LRP5 activity. We performed RNA-seq on pairs of tibial diaphyseal bones from four 16-week-old mice with each of the aforementioned genotypes. We then evaluated different methods for controlling for contaminating non-skeletal tissue (i.e., blood, bone marrow, and skeletal muscle) in our data. These methods included pre-digestion of diaphyseal bone with collagenase and separate transcriptional profiling of blood, skeletal muscle and bone marrow. We found that collagenase digestion reduced contamination, but also altered gene expression in the remaining cells. In contrast, in silico filtering of the diaphyseal bone RNA-seq data for highly expressed blood, skeletal muscle, and bone marrow transcripts significantly increased the correlation between RNA-seq data from an animal’s right and left tibiae and from animals with the same Lrp5 genotype. We conclude that reliable and reproducible RNA-seq data can be obtained from mouse diaphyseal bone and that lack of LRP5 has a more pronounced effect on gene expression than the HBM-causing LRP5 missense mutation. We identified 84 differentially expressed protein-coding transcripts between LRP5 “sufficient” (i.e., Lrp5+/+ and Lrp5p.A214V/+) and “insufficient” (Lrp5−/−) diaphyseal bone, and far fewer differentially expressed genes between Lrp5p.A214V/+ and Lrp5+/+ diaphyseal bone. PMID:23553928

  16. Effects of nutrition and growth rate on Lrp levels in Escherichia coli.

    PubMed Central

    Landgraf, J R; Wu, J; Calvo, J M

    1996-01-01

    Lrp (leucine-responsive regulatory protein) activates some Escherichia coli operons that function in anabolism and represses others involved in catabolism (for a review, see J. M. Calvo and R. G. Matthews, Microbiol. Rev. 58:466-490, 1994). This overall pattern suggests that Lrp may help cells adapt to changes in the nutritional environment. Here, we tested the idea that the nutritional richness of the medium determines the amount of Lrp in cells. Lrp was measured directly by Western blotting (immunoblotting) in cells grown in a chemically defined rich medium or in a minimal medium. In addition, transcription from the lrp promoter was assessed with a lacZ reporter gene. The results with these two different measurements were nearly the same, indicating that under the conditions employed, beta-galactosidase measurements can accurately reflect Lrp levels. For cells in a minimal medium, Lrp levels were consistently lowest during the logarithmic phase of growth, but overall, there was not much variation in levels as a function of growth phase (1.3-fold difference between highest and lowest values). However, for cells in a rich medium, Lrp levels dropped 3- to 4-fold during the lag phase, remained constant during the log phase, and then rose to starting levels upon entry into the stationary phase. When cells in the log phase were compared, Lrp levels were 3- to 4-fold higher in cells growing in a minimal medium than those in a rich medium. The levels of lrp expression were the same or slightly higher in strains containing mutations in rpoS, cya, or crp compared with wild-type strains, suggesting that neither RpoS nor the cyclic AMP (cAMP) receptor protein-cAMP complex is required for expression. On the other hand, lrp expression was severely restricted in cells that could not make ppGpp because of mutations in relA and spoT. The reduced expression of lrp during logarithmic growth in a rich medium may be due to low ppGpp levels under these conditions. The repressive

  17. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development.

    PubMed

    Baardman, Maria E; Zwier, Mathijs V; Wisse, Lambertus J; Gittenberger-de Groot, Adriana C; Kerstjens-Frederikse, Wilhelmina S; Hofstra, Robert M W; Jurdzinski, Angelika; Hierck, Beerend P; Jongbloed, Monique R M; Berger, Rolf M F; Plösch, Torsten; DeRuiter, Marco C

    2016-04-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts ofLrp2knockout (KO) mice have not yet been investigated. We studied the cardiovascular development ofLrp2KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. TheLrp2KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in theLrp2KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans withLRP2mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. PMID:26822476

  18. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    PubMed Central

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plösch, Torsten; DeRuiter, Marco C.

    2016-01-01

    ABSTRACT Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. PMID:26822476

  19. Mesd Is a Universal Inhibitor of Wnt Co-receptor LRP5/6 and Blocks Wnt/β-catenin Signaling in Cancer Cells†

    PubMed Central

    Lu, Wenyan; Liu, Chia-Chen; Thottassery, Jaideep V.; Bu, Guojun; Li, Yonghe

    2010-01-01

    Mesd is a specialized chaperone for the low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1(Dkk1) to LRP6. Herein, we demonstrated that Mesd also binds to LRP5 with a high affinity, and is a universal inhibitor of LRP5/6 ligands. Mesd not only blocks Wnt antagonists Dkk1 and Sclerostin binding to LRP5/6, but also inhibits Wnt3A and Rspondin1-induced Wnt/β-catenin signaling in LRP5/6 expressing cells. We also found that Mesd, Dkk1 and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/β-catenin signaling in prostate cancer PC-3 cells, and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/β-catenin signaling on the cell surface, and has a potential therapeutic role in Wnt-dependent cancers. PMID:20446724

  20. LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways

    PubMed Central

    Langlois, Benoit; Perrot, Gwenn; Schneider, Christophe; Henriet, Patrick; Emonard, Hervé; Martiny, Laurent; Dedieu, Stéphane

    2010-01-01

    Background The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion. PMID:20644732

  1. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients

    PubMed Central

    Tzartos, John S; Zisimopoulou, Paraskevi; Rentzos, Michael; Karandreas, Nikos; Zouvelou, Vasiliki; Evangelakou, Panagiota; Tsonis, Anastasios; Thomaidis, Thomas; Lauria, Giuseppe; Andreetta, Francesca; Mantegazza, Renato; Tzartos, Socrates J

    2014-01-01

    Objective Amyotrophic lateral sclerosis (ALS) and myasthenia gravis (MG) are caused, respectively, by motor neuron degeneration and neuromuscular junction (NMJ) dysfunction. The membrane protein LRP4 is crucial in the development and function of motor neurons and NMJs and LRP4 autoantibodies have been recently detected in some MG patients. Because of the critical role in motor neuron function we searched for LRP4 antibodies in ALS patients. Methods We developed a cell-based assay and a radioimmunoassay and with these we studied the sera from 104 ALS patients. Results LRP4 autoantibodies were detected in sera from 24/104 (23.4%) ALS patients from Greece (12/51) and Italy (12/53), but only in 5/138 (3.6%) sera from patients with other neurological diseases and 0/40 sera from healthy controls. The presence of LRP4 autoantibodies in five of six tested patients was persistent for at least 10 months. Cerebrospinal fluid samples from six of seven tested LRP4 antibody-seropositive ALS patients were also positive. No autoantibodies to other MG autoantigens (AChR and MuSK) were detected in ALS patients. No differences in clinical pattern were seen between ALS patients with or without LRP4 antibodies. Conclusions We infer that LRP4 autoantibodies are involved in patients with neurological manifestations affecting LRP4-containing tissues and are found more frequently in ALS patients than MG patients. LRP4 antibodies may have a direct pathogenic activity in ALS by participating in the denervation process. PMID:25356387

  2. Schwann cell LRP1 regulates Remak bundle ultrastructure and axonal interactions to prevent neuropathic pain

    PubMed Central

    Orita, Sumihisa; Henry, Kenneth; Mantuano, Elisabetta; Yamauchi, Kazuyo; De Corato, Alice; Ishikawa, Tetsuhiro; Feltri, M. Laura; Wrabetz, Lawrence; Gaultier, Alban; Pollack, Melanie; Ellisman, Mark; Takahashi, Kazuhisa; Gonias, Steven L.; Campana, W. Marie

    2013-01-01

    Trophic support and myelination of axons by Schwann cells in the PNS are essential for normal nerve function. Herein, we show that deletion of the LDL receptor-related protein-1 (LRP1) gene in Schwann cells (scLRP1−/−) induces abnormalities in axon myelination and in ensheathment of axons by non-myelinating Schwann cells in Remak bundles. These anatomical changes in the PNS were associated with mechanical allodynia, even in the absence of nerve injury. In response to crush injury, sciatic nerves in scLRP1−/− mice showed accelerated degeneration and Schwann cell death. Remyelinated axons were evident 20 days after crush injury in control mice, yet were largely absent in scLRP1−/− mice. In the partial nerve ligation model, scLRP1−/− mice demonstrated significantly increased and sustained mechanical allodynia and loss of motor function. Evidence for central sensitization in pain processing included increased p38MAPK activation and activation of microglia in the spinal cord. These studies identify LRP1 as an essential mediator of normal Schwann cell-axonal interactions and as a pivotal regulator of the Schwann cell response to PNS injury in vivo. Mice in which LRP1 is deficient in Schwann cells represent a model for studying how abnormalities in Schwann cell physiology may facilitate and sustain chronic pain. PMID:23536074

  3. Cellular Cholesterol Distribution Influences Proteolytic Release of the LRP-1 Ectodomain

    PubMed Central

    Dekky, Bassil; Wahart, Amandine; Sartelet, Hervé; Féré, Michaël; Angiboust, Jean-François; Dedieu, Stéphane; Piot, Olivier; Devy, Jérôme; Emonard, Hervé

    2016-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional matricellular receptor composed of a large ligand-binding subunit (515-kDa α-chain) associated with a short trans-membrane subunit (85-kDa β-chain). LRP-1, which exhibits both endocytosis and cell signaling properties, plays a key role in tumor invasion by regulating the activity of proteinases such as matrix metalloproteinases (MMPs). LRP-1 is shed at the cell surface by proteinases such as membrane-type 1 MMP (MT1-MMP) and a disintegrin and metalloproteinase-12 (ADAM-12). Here, we show by using biophysical, biochemical, and cellular imaging approaches that efficient extraction of cell cholesterol and increased LRP-1 shedding occur in MDA-MB-231 breast cancer cells but not in MDA-MB-435 cells. Our data show that cholesterol is differently distributed in both cell lines; predominantly intracellularly for MDA-MB-231 cells and at the plasma membrane for MDA-MB-435 cells. This study highlights the relationship between the rate and cellular distribution of cholesterol and its impact on LRP-1 shedding modulation. Altogether, our data strongly suggest that the increase of LRP-1 shedding upon cholesterol depletion induces a higher accessibility of the sheddase substrate, i.e., LRP-1, at the cell surface rather than an increase of expression of the enzyme. PMID:26903870

  4. Cellular Cholesterol Distribution Influences Proteolytic Release of the LRP-1 Ectodomain.

    PubMed

    Dekky, Bassil; Wahart, Amandine; Sartelet, Hervé; Féré, Michaël; Angiboust, Jean-François; Dedieu, Stéphane; Piot, Olivier; Devy, Jérôme; Emonard, Hervé

    2016-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional matricellular receptor composed of a large ligand-binding subunit (515-kDa α-chain) associated with a short trans-membrane subunit (85-kDa β-chain). LRP-1, which exhibits both endocytosis and cell signaling properties, plays a key role in tumor invasion by regulating the activity of proteinases such as matrix metalloproteinases (MMPs). LRP-1 is shed at the cell surface by proteinases such as membrane-type 1 MMP (MT1-MMP) and a disintegrin and metalloproteinase-12 (ADAM-12). Here, we show by using biophysical, biochemical, and cellular imaging approaches that efficient extraction of cell cholesterol and increased LRP-1 shedding occur in MDA-MB-231 breast cancer cells but not in MDA-MB-435 cells. Our data show that cholesterol is differently distributed in both cell lines; predominantly intracellularly for MDA-MB-231 cells and at the plasma membrane for MDA-MB-435 cells. This study highlights the relationship between the rate and cellular distribution of cholesterol and its impact on LRP-1 shedding modulation. Altogether, our data strongly suggest that the increase of LRP-1 shedding upon cholesterol depletion induces a higher accessibility of the sheddase substrate, i.e., LRP-1, at the cell surface rather than an increase of expression of the enzyme. PMID:26903870

  5. Placental heme receptor LRP1 correlates with the heme exporter FLVCR1 and neonatal iron status.

    PubMed

    Cao, Chang; Pressman, Eva K; Cooper, Elizabeth M; Guillet, Ronnie; Westerman, Mark; O'Brien, Kimberly O

    2014-09-01

    LDL receptor-related protein 1 (LRP1) is a transmembrane receptor highly expressed in human placenta. It was recently found to be the receptor for heme and its plasma-binding protein hemopexin (Hx) and is integral to systemic heme clearance. Little is known about systemic concentrations of Hx during pregnancy and whether maternal Hx and placental LRP1 contributes to fetal iron (Fe) homeostasis during pregnancy. We hypothesized that placental LRP1 would be upregulated in maternal/neonatal Fe insufficiency and would be related to maternal circulating Hx. Placental LRP1 expression was assessed in 57 pregnant adolescents (14-18 years) in relationship with maternal and cord blood Fe status indicators (hemoglobin (Hb), serum ferritin, transferrin receptor), the Fe regulatory hormone hepcidin and serum Hx. Hx at mid-gestation correlated positively with Hb at mid-gestation (r=0.35, P=0.02) and Hx at delivery correlated positively with cord hepcidin (r=0.37, P=0.005). Placental LRP1 protein expression was significantly higher in women who exhibited greater decreases in serum Hx from mid-gestation to term (r=0.28, P=0.04). Significant associations were also found between placental LRP1 protein with cord hepcidin (r=-0.29, P=0.03) and placental heme exporter feline leukemia virus C receptor 1 (r=0.34, P=0.03). Our data are consistent with a role for placental heme Fe utilization in supporting fetal Fe demands. PMID:24947444

  6. LRP5 negatively regulates differentiation of monocytes through abrogation of Wnt signalling

    PubMed Central

    Borrell-Pagès, Maria; Romero, July Carolina; Badimon, Lina

    2014-01-01

    Molecular changes involved in cell differentiation are only partially known. Circulating inflammatory cells need to differentiate to perform specialized functions in target tissues. Here, we hypothesized that low-density lipoprotein receptor–related protein 5 (LRP5) is involved, through its participation in the canonical Wnt/β-catenin signalling, in the differentiation process of monocytic cells. To this aim, we characterized differentiation mechanisms of HL60 cells and primary human monocytes. We show that silencing the LRP5 gene increased differentiation of HL60 cells and human monocytes, suggesting that LRP5 signalling abrogates differentiation. We demonstrate that the mechanisms behind this blockade include sequestration of β-catenin at the cellular membrane, inhibition of the Wnt signalling and increase of apoptosis. We further demonstrate the involvement of LRP5 and the Wnt/β-catenin signalling in the process because cellular differentiation can be rescued by the addition of downstream Wnt target genes to the monocytic cells. PMID:24266894

  7. Mesdc2 plays a key role in cell-surface expression of Lrp4 and postsynaptic specialization in myotubes.

    PubMed

    Hoshi, Taisuke; Tezuka, Tohru; Yokoyama, Kazumasa; Iemura, Shun-ichiro; Natsume, Tohru; Yamanashi, Yuji

    2013-11-29

    Low-density lipoprotein receptor-related protein 4 (Lrp4) is essential for pre- and post-synaptic specialization at the neuromuscular junction (NMJ), an indispensable synapse between a motor nerve and skeletal muscle. Muscle-specific receptor tyrosine kinase MuSK must form a complex with Lrp4 to organize postsynaptic specialization at NMJs. Here, we show that the chaperon Mesdc2 binds to the intracellular form of Lrp4 and promotes its glycosylation and cell-surface expression. Furthermore, knockdown of Mesdc2 suppresses cell-surface expression of Lrp4, activation of MuSK, and postsynaptic specialization in muscle cells. These results suggest that Mesdc2 plays an essential role in NMJ formation by promoting Lrp4 maturation. PMID:24140340

  8. LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering beta-catenin subcellular distribution.

    PubMed

    Li, Yonghe; Lu, Wenyan; He, Xi; Schwartz, Alan L; Bu, Guojun

    2004-12-01

    The Wnt signaling pathway plays key roles in both embryogenesis and tumorigenesis. The low-density lipoprotein (LDL) receptor-related protein-6 (LRP6), a novel member of the expanding LDL receptor family, functions as an indispensable co-receptor for the Wnt signaling pathway. Although the role of LRP6 in embryonic development is now well established, its role in tumorigenesis is unclear. We report that LRP6 is readily expressed at the transcript level in several human cancer cell lines and human malignant tissues. Furthermore, using a retroviral gene transfer system, we find that stable expression of LRP6 in human fibrosarcoma HT1080 cells alters subcellular beta-catenin distribution such that the cytosolic beta-catenin level is significantly increased. This is accompanied by a significant increase in Wnt/beta-catenin signaling and cell proliferation. Finally, we demonstrate that LRP6 expression promotes tumorigenesis in vivo. These results thus indicate that LRP6 may function as a potential oncogenic protein by modulating Wnt/beta-catenin signaling. PMID:15516984

  9. New Targets and Cofactors for the Transcription Factor LrpA from Mycobacterium tuberculosis.

    PubMed

    Song, Ningning; Cui, Yingying; Li, Zhaoli; Chen, Liping; Liu, Siguo

    2016-04-01

    Rv3291c (MtbLrpA), a transcriptional regulator, belongs to the leucine-responsive regulatory protein (Lrp) family and is thought to play an important role in Mycobacterium tuberculosis persistence. In this study, we verified 17 novel potential binding sites for MtbLrpA by in vitro binding assays on the basis of previous predictions from an in silico analysis and bacterial one-hybrid (BIH) reporter system. Amino acids, such as tyrosine, phenylalanine, tryptophan, and histidine, strongly affect the binding affinity of MtbLrpA, and vitamins, including B1, B3, B6, VC, B7, B9, B12, VA, and VK3, also decrease MtbLrpA binding affinity. This is the first report regarding that an Lrp-like protein can sense vitamins as an environmental signal. Vitamin supplementation to the environment can change the expression level of the target genes, which provides a potential mechanism for tuberculosis supplementary treatment with vitamins. PMID:26789099

  10. Resistive Switching Memory Devices Based on Proteins.

    PubMed

    Wang, Hong; Meng, Fanben; Zhu, Bowen; Leow, Wan Ru; Liu, Yaqing; Chen, Xiaodong

    2015-12-01

    Resistive switching memory constitutes a prospective candidate for next-generation data storage devices. Meanwhile, naturally occurring biomaterials are promising building blocks for a new generation of environmentally friendly, biocompatible, and biodegradable electronic devices. Recent progress in using proteins to construct resistive switching memory devices is highlighted. The protein materials selection, device engineering, and mechanism of such protein-based resistive switching memory are discussed in detail. Finally, the critical challenges associated with protein-based resistive switching memory devices are presented, as well as insights into the future development of resistive switching memory based on natural biomaterials. PMID:25753764

  11. LRP12 silencing during brain development results in cortical dyslamination and seizure sensitization.

    PubMed

    Grote, Alexander; Robens, Barbara K; Blümcke, Ingmar; Becker, Albert J; Schoch, Susanne; Gembé, Eva

    2016-02-01

    Correct positioning and differentiation of neurons during brain development is a key precondition for proper function. Focal cortical dysplasias (FCDs) are increasingly recognized as causes of therapy refractory epilepsies. Neuropathological analyses of respective surgical specimens from neurosurgery for seizure control often reveal aberrant cortical architecture and/or aberrantly shaped neurons in FCDs. However, the molecular pathogenesis particularly of FCDs with aberrant lamination (so-called FCD type I) is largely unresolved. Lipoproteins and particularly low-density lipoprotein receptor-related protein 12 (LRP12) are involved in brain development. Here, we have examined a potential role of LRP12 in the pathogenesis of FCDs. In vitro knockdown of LRP12 in primary neurons results in impaired neuronal arborization. In vivo ablation of LRP12 by intraventricularly in utero electroporated shRNAs elicits cortical maldevelopment, i.e. aberrant lamination by malpositioning of upper cortical layer neurons. Subsequent epilepsy phenotyping revealed pentylenetetrazol (PTZ)-induced seizures to be aggravated in cortical LRP12-silenced mice. Our data demonstrates IUE mediated cortical gene silencing as an excellent approach to study the role of distinct molecules for epilepsy associated focal brain lesions and suggests LRP12 and lipoprotein homeostasis as potential molecular target structures for the emergence of epilepsy-associated FCDs. PMID:26639854

  12. The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development

    PubMed Central

    Nakajima, Chikako; Haffner, Philipp; Goerke, Sebastian M.; Zurhove, Kai; Adelmann, Giselind; Frotscher, Michael; Herz, Joachim; Bock, Hans H.; May, Petra

    2014-01-01

    Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates Gi-dependent sphingosine-1-phosphate (S1P) signaling and integrates S1P and PDGF-BB signaling pathways, which are both crucial for mural cell recruitment, via its intracellular domain. Loss of LRP1 leads to a lack of S1P-dependent inhibition of RAC1 and loss of constraint of PDGF-BB-induced cell migration. Our studies thus identify LRP1 as a novel player in angiogenesis and in the recruitment and maintenance of mural cells. Moreover, they reveal an unexpected link between lipoprotein receptor and sphingolipid signaling that, in addition to angiogenesis during embryonic development, is of potential importance for other targets of these pathways, such as tumor angiogenesis and inflammatory processes. PMID:25377550

  13. Wise Regulates Bone Deposition through Genetic Interactions with Lrp5

    PubMed Central

    Ellies, Debra L.; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development. PMID:24789067

  14. Lrp4 domains differentially regulate limb/brain development and synaptic plasticity.

    PubMed

    Pohlkamp, Theresa; Durakoglugil, Murat; Lane-Donovan, Courtney; Xian, Xunde; Johnson, Eric B; Hammer, Robert E; Herz, Joachim

    2015-01-01

    Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer's Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. PMID:25688974

  15. Lrp4 Domains Differentially Regulate Limb/Brain Development and Synaptic Plasticity

    PubMed Central

    Pohlkamp, Theresa; Durakoglugil, Murat; Lane-Donovan, Courtney; Xian, Xunde; Johnson, Eric B.; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development. PMID:25688974

  16. The Association Between LRP-1 Variants and Chylomicron Uptake After a High Fat Meal

    PubMed Central

    Frazier-Wood, A.C.; Kabagambe, E.K.; Wojczynski, M.K.; Borecki, I.B.; Tiwari, H.K.; Smith, C.E.; Ordovas, J.M.; Arnett, D.K.

    2013-01-01

    Background and aims In vitro studies suggest that low density lipoprotein receptor-related protein 1 (LRP1) plays a role in the secondary uptake of chylomicrons. In addition, in vivo studies using LRP-1 knockout mice show these animals exhibit delayed chylomicron clearance. Whether this is true in humans is unknown. We aimed to determine whether genetic variants in LRP-1 are associated with postprandial chylomicron uptake in humans given an oral fat challenge. Methods and Results 817 Men and women (mean age +/− standard deviation = 48.4 +/− 16.4 years) forming the study population for the Genetics of Lipid Lowering Drugs Network (GOLDN) study ingested an oral fat load of 700 kilocalories per m2 of body surface area at 83% fat, after an 8-hour fast. Chylomicrons were measured by nuclear resonance spectroscopy (NMR) at fasting, and 3.5 and 6 hours after the meal. 26 Single nucleotide polymorphisms (SNPs) in the LRP-1 gene were genotyped on the Affymetrix 6.0 array. Chylomicrons were, as expected, zero at fasting. Mixed linear models adjusted for age, sex, study site and pedigree tested for associations between LRP-1 SNPs and changes in chylomicron concentrations 3.5–6 hours. A gene-based test across all 26 SNPs was conducted which corrected for the linkage disequilibrium (LD) between SNPs. 11 LRP-1 SNPs were significantly associated with the change in chylomicron concentration correction for multiple testing (Q<.05). The subsequent gene-based test, was also significant (P= .01). Conclusion These results require replication but strongly indicate the role of LRP1 in postprandial lipoprotein uptake and/or clearance. PMID:23484911

  17. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor

    PubMed Central

    Kato, Masaki; Patel, Millan S.; Levasseur, Regis; Lobov, Ivan; Chang, Benny H.-J.; Glass, Donald A.; Hartmann, Christine; Li, Lan; Hwang, Tae-Ho; Brayton, Cory F.; Lang, Richard A.; Karsenty, Gerard; Chan, Lawrence

    2002-01-01

    The low-density lipoprotein receptor–related protein (Lrp)-5 functions as a Wnt coreceptor. Here we show that mice with a targeted disruption of Lrp5 develop a low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation and function in a Cbfa1-independent manner. Lrp5 is expressed in osteoblasts and is required for optimal Wnt signaling in osteoblasts. In addition, Lrp5-deficient mice display persistent embryonic eye vascularization due to a failure of macrophage-induced endothelial cell apoptosis. These results implicate Wnt proteins in the postnatal control of vascular regression and bone formation, two functions affected in many diseases. Moreover, these features recapitulate human osteoporosis-pseudoglioma syndrome, caused by LRP5 inactivation. PMID:11956231

  18. The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment.

    PubMed

    Van Gool, Bart; Dedieu, Stéphane; Emonard, Hervé; Roebroek, Anton J M

    2015-01-01

    The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents. This mini-review focuses on LRP1's role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed. PMID:26617523

  19. The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment

    PubMed Central

    Van Gool, Bart; Dedieu, Stéphane; Emonard, Hervé; Roebroek, Anton J. M.

    2015-01-01

    The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents. This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed. PMID:26617523

  20. Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells.

    PubMed

    Roy, Ananya; Coum, Antoine; Marinescu, Voichita D; Põlajeva, Jelena; Smits, Anja; Nelander, Sven; Uhrbom, Lene; Westermark, Bengt; Forsberg-Nilsson, Karin; Pontén, Fredrik; Tchougounova, Elena

    2015-09-15

    Glioblastoma (GBM) is a high-grade glioma with a complex microenvironment, including various inflammatory cells and mast cells (MCs) as one of them. Previously we had identified glioma grade-dependent MC recruitment. In the present study we investigated the role of plasminogen activator inhibitor 1 (PAI-1) in MC recruitment.PAI-1, a primary regulator in the fibrinolytic cascade is capable of forming a complex with fibrinolytic system proteins together with low-density lipoprotein receptor-related protein 1 (LRP1). We found that neutralizing PAI-1 attenuated infiltration of MCs. To address the potential implication of LRP1 in this process, we used a LRP1 antagonist, receptor-associated protein (RAP), and demonstrated the attenuation of MC migration. Moreover, a positive correlation between the number of MCs and the level of PAI-1 in a large cohort of human glioma samples was observed. Our study demonstrated the expression of LRP1 in human MC line LAD2 and in MCs in human high-grade glioma. The activation of potential PAI-1/LRP1 axis with purified PAI-1 promoted increased phosphorylation of STAT3 and subsequently exocytosis in MCs.These findings indicate the influence of the PAI-1/LRP1 axis on the recruitment of MCs in glioma. The connection between high-grade glioma and MC infiltration could contribute to patient tailored therapy and improve patient stratification in future therapeutic trials. PMID:26164207

  1. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease

    PubMed Central

    Spuch, Carlos; Ortolano, Saida; Navarro, Carmen

    2012-01-01

    Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD. PMID:22934024

  2. Role of LrpC from Bacillus subtilis in DNA transactions during DNA repair and recombination

    PubMed Central

    López-Torrejón, Gema; Martínez-Jiménez, María I.; Ayora, Silvia

    2006-01-01

    Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein, which binds both single-stranded (ss) and double-stranded (ds) DNA and facilitates the formation of higher order protein–DNA complexes in vitro. LrpC binds at different sites within the same DNA molecule promoting intramolecular ligation. When bound to separate molecules, it promotes intermolecular ligation, and joint molecule formation between a circular ssDNA and a homologous ssDNA-tailed linear dsDNA. LrpC binding showed a higher affinity for 4-way (Holliday) junctions in their open conformation, when compared with curved dsDNA. Consistent with these biochemical activities, an lrpC null mutant strain rendered cells sensitive to DNA damaging agents such as methyl methanesulfonate and 4-nitroquinoline-1-oxide, and showed a segregation defect. These findings collectively suggest that LrpC may be involved in DNA transactions during DNA repair and recombination. PMID:16407330

  3. Mutant LRP6 Impairs Endothelial Cell Functions Associated with Familial Normolipidemic Coronary Artery Disease.

    PubMed

    Guo, Jian; Li, Yang; Ren, Yi-Hong; Sun, Zhijun; Dong, Jie; Yan, Han; Xu, Yujun; Wang, Dao Wen; Zheng, Gu-Yan; Du, Jie; Tian, Xiao-Li

    2016-01-01

    Mutations in the genes low-density lipoprotein (LDL) receptor-related protein-6 (LRP6) and myocyte enhancer factor 2A (MEF2A) were reported in families with coronary artery disease (CAD). We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H) in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway. PMID:27455246

  4. Mutant LRP6 Impairs Endothelial Cell Functions Associated with Familial Normolipidemic Coronary Artery Disease

    PubMed Central

    Guo, Jian; Li, Yang; Ren, Yi-Hong; Sun, Zhijun; Dong, Jie; Yan, Han; Xu, Yujun; Wang, Dao Wen; Zheng, Gu-Yan; Du, Jie; Tian, Xiao-Li

    2016-01-01

    Mutations in the genes low-density lipoprotein (LDL) receptor-related protein-6 (LRP6) and myocyte enhancer factor 2A (MEF2A) were reported in families with coronary artery disease (CAD). We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H) in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway. PMID:27455246

  5. A Novel Domain-Specific Mutation in a Sclerosteosis Patient Suggests a Role of LRP4 as an Anchor for Sclerostin in Human Bone.

    PubMed

    Fijalkowski, Igor; Geets, Ellen; Steenackers, Ellen; Van Hoof, Viviane; Ramos, Feliciano J; Mortier, Geert; Fortuna, Ana Maria; Van Hul, Wim; Boudin, Eveline

    2016-04-01

    Mutations in the LRP4 gene, coding for a Wnt signaling coreceptor, have been found to cause several allelic conditions. Among these, two are characterized by a strong skeletal involvement, namely sclerosteosis and Cenani-Lenz syndrome. In this work, we evaluated the role of LRP4 in the pathophysiology of these diseases. First, we report a novel LRP4 mutation, leading to the substitution of arginine at position 1170 in glutamine, identified in a patient with sclerosteosis. This mutation is located in the central cavity of the third β-propeller domain, which is in line with two other sclerosteosis mutations we previously described. Reporter assays demonstrate that this mutation leads to impaired sclerostin inhibition of Wnt signaling. Moreover, we compared the effect of this novel variant to mutations causing Cenani-Lenz syndrome and show that impaired membrane trafficking of the LRP4 protein is the likely mechanism underlying Cenani-Lenz syndrome. This is in contrast to sclerosteosis mutations, previously shown to impair the binding between LRP4 and sclerostin. In addition, to better understand the biology of LRP4, we investigated the circulating sclerostin levels in the serum of a patient suffering from sclerosteosis owing to a LRP4 mutation. We demonstrate that impaired sclerostin binding to the mutated LRP4 protein leads to dramatic increase in circulating sclerostin in this patient. With this study, we provide the first evidence suggesting that LRP4 is responsible for the retention of sclerostin in the bone environment in humans. These findings raise potential concerns about the utility of determining circulating sclerostin levels as a marker for other bone-related parameters. Although more studies are needed to fully understand the mechanism whereby LRP4 facilitates sclerostin action, it is clear that this protein represents a potent target for future osteoporosis therapies and an interesting alternative for the antisclerostin treatment currently under study

  6. MicroRNA-183 suppresses retinoblastoma cell growth, invasion and migration by targeting LRP6.

    PubMed

    Wang, Jianwen; Wang, Xiaochun; Li, Zhongji; Liu, Hongtao; Teng, Yan

    2014-03-01

    Our study demonstrates the downregulation of microRNA-183 (miR-183) in retinoblastoma (RB) tissues and RB cell lines compared with normal retinal tissues. The ectopic expression of miR-183 in the RB cell lines Y79, SO-RB50 and WERI-RB1 suppresses cell viability, migration and invasion. Furthermore, the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) was identified as a new target of miR-183, and restoration of the expression of LRP6 rescues the effects induced by miR-183 in RB cells. These results indicate that miR-183 targets and downregulates LRP6 in the growth, migration and invasion of RB cells. PMID:24289859

  7. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis

    PubMed Central

    Cnossen, Wybrich R.; te Morsche, René H. M.; Hoischen, Alexander; Gilissen, Christian; Chrispijn, Melissa; Venselaar, Hanka; Mehdi, Soufi; Bergmann, Carsten; Veltman, Joris A.; Drenth, Joost P. H.

    2014-01-01

    Polycystic livers are seen in the rare inherited disorder isolated polycystic liver disease (PCLD) and are recognized as the most common extrarenal manifestation in autosomal dominant polycystic kidney disease. Hepatic cystogenesis is characterized by progressive proliferation of cholangiocytes, ultimately causing hepatomegaly. Genetically, polycystic liver disease is a heterogeneous disorder with incomplete penetrance and caused by mutations in PRKCSH, SEC63, PKD1, or PKD2. Genome-wide SNP typing and Sanger sequencing revealed no pathogenic variants in hitherto genes in an extended PCLD family. We performed whole-exome sequencing of DNA samples from two members. A heterozygous variant c.3562C > T located at a highly conserved amino acid position (p.R1188W) in the low density lipoprotein receptor-related protein 5 (LRP5) gene segregated with the disease (logarithm of odds score, 4.62) but was not observed in more than 1,000 unaffected individuals. Screening of LRP5 in a PCLD cohort identified three additional mutations in three unrelated families with polycystic livers (p.V454M, p.R1529S, and p.D1551N), again all undetected in controls. All variants were predicted to be damaging with profound structural effects on LRP5 protein domains. Liver cyst tissue and normal hepatic tissue samples from patients and controls showed abundant LRP5 expression by immunohistochemistry. Functional activity analyses indicated that mutant LRP5 led to reduced wingless signal activation. In conclusion, we demonstrate that germ-line LRP5 missense mutations are associated with hepatic cystogenesis. The findings presented in this study link the pathophysiology of PCLD to deregulation of the canonical wingless signaling pathway. PMID:24706814

  8. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis.

    PubMed

    Cnossen, Wybrich R; te Morsche, René H M; Hoischen, Alexander; Gilissen, Christian; Chrispijn, Melissa; Venselaar, Hanka; Mehdi, Soufi; Bergmann, Carsten; Veltman, Joris A; Drenth, Joost P H

    2014-04-01

    Polycystic livers are seen in the rare inherited disorder isolated polycystic liver disease (PCLD) and are recognized as the most common extrarenal manifestation in autosomal dominant polycystic kidney disease. Hepatic cystogenesis is characterized by progressive proliferation of cholangiocytes, ultimately causing hepatomegaly. Genetically, polycystic liver disease is a heterogeneous disorder with incomplete penetrance and caused by mutations in PRKCSH, SEC63, PKD1, or PKD2. Genome-wide SNP typing and Sanger sequencing revealed no pathogenic variants in hitherto genes in an extended PCLD family. We performed whole-exome sequencing of DNA samples from two members. A heterozygous variant c.3562C > T located at a highly conserved amino acid position (p.R1188W) in the low density lipoprotein receptor-related protein 5 (LRP5) gene segregated with the disease (logarithm of odds score, 4.62) but was not observed in more than 1,000 unaffected individuals. Screening of LRP5 in a PCLD cohort identified three additional mutations in three unrelated families with polycystic livers (p.V454M, p.R1529S, and p.D1551N), again all undetected in controls. All variants were predicted to be damaging with profound structural effects on LRP5 protein domains. Liver cyst tissue and normal hepatic tissue samples from patients and controls showed abundant LRP5 expression by immunohistochemistry. Functional activity analyses indicated that mutant LRP5 led to reduced wingless signal activation. In conclusion, we demonstrate that germ-line LRP5 missense mutations are associated with hepatic cystogenesis. The findings presented in this study link the pathophysiology of PCLD to deregulation of the canonical wingless signaling pathway. PMID:24706814

  9. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner

    PubMed Central

    Ohkawara, Bisei; Cabrera-Serrano, Macarena; Nakata, Tomohiko; Milone, Margherita; Asai, Nobuyuki; Ito, Kenyu; Ito, Mikako; Masuda, Akio; Ito, Yasutomo; Engel, Andrew G.; Ohno, Kinji

    2014-01-01

    Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani–Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner. PMID:24234652

  10. Lentivirus-induced knockdown of LRP1 induces osteoarthritic-like effects and increases susceptibility to apoptosis in chondrocytes via the nuclear factor-κB pathway

    PubMed Central

    YANG, ERPING; ZHENG, HUIFENG; PENG, HAO; DING, YINYUAN

    2015-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is known to regulate cell survival and inflammation. The present study investigated the involvement of LRP1 in the regulation of tumor necrosis factor (TNF)-α-induced expression of matrix metalloproteinase (MMP)-13. Furthermore, the study aimed to elucidate the mechanisms underlying the effects of LRP1 on TNF-α-induced inflammation and apoptosis of chondrocytes. Lentivirus-mediated RNA interference techniques were used to knockdown the LRP1 gene. Subsequently, the effects of LRP1 on TNF-α-induced MMP-13 expression were determined using quantitative polymerase chain reaction, western blot analysis and ELISA. Furthermore, the TNF-α-induced intracellular pathway was investigated using a nuclear factor (NF)-κB inhibitor (Bay 11–7082). In addition, the effect of LRP1 regulation on growth and apoptosis in chondrocytes was investigated using western blot analysis and a TUNEL assay. LRP1 knockdown was shown to increase TNF-α-induced MMP-13 expression via the activation of the NF-κB (p65) pathway, which reduced the expression of collagen type II and cell viability. In addition, LRP1 inhibited cell apoptosis by increasing the expression of phospho-Akt and B-cell lymphoma 2 (Bcl-2), while suppressing the expression of caspase-3 and Bcl-2-associated X protein. The results of the present study indicated that LRP1 was able to inhibit TNF-α-induced apoptosis and inflammation in chondrocytes. Therefore, LRP1 may be an effective osteoarthritis inhibitor, potentially providing a novel approach for antiarthritic therapeutics. PMID:26170918

  11. Preliminary evidence for an association between LRP-1 genotype and body mass index in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The LDL receptor-related protein-1 gene (LRP-1) has been associated with obesity in animal models, but no such association has yet been reported in humans. As data suggest this increase in fat mass may be mediated through a mechanism involving the clearance of plasma triglyceride-rich lipoproteins (...

  12. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    PubMed

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  13. Chromosomal localization of human genes for the LDL receptor family member glycoprotein 330 (LRP2) and its associated protein RAP (LRPAP1)

    SciTech Connect

    Korenberg, J.R.; Chen, X.N.; Argraves, K.M.

    1994-07-01

    Glycoprotein 330 (gp330) is a member of a family of receptors with structural similarities to the low-density lipoprotein receptor. Gp330 is expressed by a number of specialized epithelia, including renal proximal tubules, where it can mediate endocytosis of ligands such as complexes of urokinase and the serpin, plasminogen activator inhibitor-1. Gp330 has also been shown to bind in vitro to lipoprotein lipase and apolipoprotein E-enriched {beta}VLDL, suggesting a role for this receptor in lipoprotein metabolism. The 39-kDa protein, referred to as receptor associated protein (RAP), binds to and copurifies with gp330 and antagonizes the ligand binding activity of gp330. In this paper, the authors report the use of homology-PCR cloning to isolate cDNAs encoding human gp330. Using gp330 cDNA and previously isolated human RAP cDNA probes, they performed fluorescence in situ hybridization to map the human chromosomal location of the genes for these proteins. The gene for gp330 was mapped at a single site on the long arm of human chromosome 2 on the border of bands 2q24-q31. The gene for RAP was mapped to the short arm of human chromosome 4 at position 4q16.3, which is in the region of the chromosomal deletion causing Wolf-Hirschhorn syndrome. The assignment of chromosomal map positions for gp330 and RAP genes will aid in the evaluation of their potential roles in human diseases such as Wolf-Hirschhorn syndrome and disorders of lipoprotein metabolism, such as atherosclerosis. 38 refs., 3 figs., 1 tab.

  14. Elevated LRP6 levels correlate with vascular endothelial growth factor in the vitreous of proliferative diabetic retinopathy

    PubMed Central

    Gao, Xinxiao; Ma, Kai; Lu, Ning; Xu, Yongsheng; Hong, Tingting

    2015-01-01

    Purpose To measure intravitreal low-density lipoprotein receptor-related protein 6 (LRP6) and vascular endothelial growth factor (VEGF) levels in the eyes of patients with proliferative diabetic retinopathy (PDR) and to observe their correlation with PDR activity. Methods Fifty-five eyes of 55 patients were enrolled consecutively. Vitreous samples from 30 eyes with PDR and 25 eyes with nondiabetic macular disease were collected. Active PDR was present in 16 patients and quiescent PDR in 14 patients according to retinal neovascularization. LRP6 and VEGF concentrations in samples were determined using enzyme-linked immunosorbent assay (ELISA). Results ELISA revealed significant increases in the vitreous levels of VEGF in eyes affected with PDR compared to the controls (p<0.001). The mean concentrations of LRP6 were also higher in the vitreous samples from patients with PDR compared to the nondiabetic controls: 39.85 ng/ml and 15.48 ng/ml, respectively (p=0.002). In addition, the vitreous levels of LRP6 and VEGF were significantly higher in active PDR than in quiescent PDR (p=0.022 and p=0.015, respectively). Furthermore, a significant positive correlation was found between intravitreal levels of LRP6 and VEGF in patients with PDR (r=0.567, p=0.001). However, comparison of patients with PDR with controls revealed that the plasma levels of LRP6 were not significantly different between the two groups (p=0.636). Conclusions LRP6 and VEGF levels in the vitreous body from patients with PDR were increased and correlated mutually. LRP6 may be a good diagnostic biomarker and a new therapeutic target for PDR. PMID:26120271

  15. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  16. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish

    PubMed Central

    Willems, Bernd; Tao, Shijie; Yu, Tingsheng; Huysseune, Ann; Witten, Paul Eckhard; Winkler, Christoph

    2015-01-01

    During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton. PMID:26121341

  17. Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of delta-aminolevulinic acid uptake.

    PubMed Central

    King, N D; O'Brian, M R

    1997-01-01

    The heme precursor delta-aminolevulinic acid (ALA) is taken up by the dipeptide permease (Dpp) system in Escherichia coli. In this study, we identified a Bradyrhizobium japonicum genomic library clone that complemented both ALA and dipeptide uptake activities in E. coli dpp mutants. The complementing B. japonicum DNA encoded a product with 58% identity to the E. coli global transcriptional regulator Lrp (leucine-responsive regulatory protein), implying the presence of Dpp-independent ALA uptake activity in those cells. Data support the conclusion that the Lrp homolog induced the oligopeptide permease system in the complemented cells by interfering with the repressor activity of the endogenous Lrp, thus conferring oligopeptide and ALA uptake activities. ALA uptake by B. japonicum was effectively inhibited by a tripeptide and, to a lesser extent, by a dipeptide, and a mutant strain that expressed the lrp homolog from a constitutive promoter was deficient in ALA uptake activity. The data show that Lrp negatively affects ALA uptake in E. coli and B. japonicum. Furthermore, the product of the isolated B. japonicum gene is both a functional and structural homolog of E. coli Lrp, and thus the regulator is not restricted to enteric bacteria. PMID:9045849

  18. Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex.

    PubMed

    Cooper, Marcus P; Qu, Lishu; Rohas, Lindsay M; Lin, Jiandie; Yang, Wenli; Erdjument-Bromage, Hediye; Tempst, Paul; Spiegelman, Bruce M

    2006-11-01

    Leigh syndrome French Canadian variant (LSFC) is an autosomal recessive neurodegenerative disorder due to mutation in the LRP130 (leucine-rich protein 130 kDa) gene. Unlike classic Leigh syndrome, the French Canadian variant spares the heart, skeletal muscle, and kidneys, but severely affects the liver. The precise role of LRP130 in cytochrome c oxidase deficiency and hepatic lactic acidosis that accompanies this disorder is unknown. We show here that LRP130 is a component of the PGC-1alpha (peroxisome proliferator-activated receptor coactivator 1-alpha) transcriptional coactivator holocomplex and regulates expression of PEPCK (phosphoenolpyruvate carboxykinase), G6P (glucose-6-phosphatase), and certain mitochondrial genes through PGC-1alpha. Reduction of LRP130 in fasted mice via adenoviral RNA interference (RNAi) vector blocks the induction of PEPCK and G6P, and blunts hepatic glucose output. LRP130 is also necessary for PGC-1alpha-dependent transcription of several mitochondrial genes in vivo. These data link LRP130 and PGC-1alpha to defective hepatic energy homeostasis in LSFC, and reveal a novel regulatory mechanism of glucose homeostasis. PMID:17050673

  19. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo

    PubMed Central

    Subramanian, Manikandan; Hayes, Crystal D.; Thome, Joseph J.; Thorp, Edward; Matsushima, Glenn K.; Herz, Joachim; Farber, Donna L.; Liu, Kang; Lakshmana, Madepalli; Tabas, Ira

    2014-01-01

    The phagocytosis of apoptotic cells (ACs), or efferocytosis, by DCs is critical for self-tolerance and host defense. Although many efferocytosis-associated receptors have been described in vitro, the functionality of these receptors in vivo has not been explored in depth. Using a spleen efferocytosis assay and targeted genetic deletion in mice, we identified a multiprotein complex — composed of the receptor tyrosine kinase AXL, LDL receptor–related protein–1 (LRP-1), and RAN-binding protein 9 (RANBP9) — that mediates DC efferocytosis and antigen cross-presentation. We found that AXL bound ACs, but required LRP-1 to trigger internalization, in murine CD8α+ DCs and human-derived DCs. AXL and LRP-1 did not interact directly, but relied on RANBP9, which bound both AXL and LRP-1, to form the complex. In a coculture model of antigen presentation, the AXL/LRP-1/RANBP9 complex was used by DCs to cross-present AC-associated antigens to T cells. Furthermore, in a murine model of herpes simplex virus–1 infection, mice lacking DC-specific LRP-1, AXL, or RANBP9 had increased AC accumulation, defective viral antigen-specific CD8+ T cell activation, enhanced viral load, and decreased survival. The discovery of this multiprotein complex that mediates functionally important DC efferocytosis in vivo may have implications for future studies related to host defense and DC-based vaccines. PMID:24509082

  20. Molecular cloning, expression and association study with reproductive traits of the duck LRP8 gene.

    PubMed

    Wang, C; Li, S J; Li, C; Yu, G H; Feng, Y P; Peng, X L; Gong, Y Z

    2013-01-01

    1. Two splice variants of duck LRP8 were identified, one containing 8 ligand-binding repeats (LRP8-1) and the other containing only 7 repeats (LRP8-2). The two transcripts share ~71-91% nucleic acid identity and ~65-94% amino acid identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences shows that duck LRP8 proteins are closely related to those of chicken, turkey and zebra finch. 2. The semi-quantitative reverse transcription polymerase chain reaction (RT-PCR )analysis indicates that the two transcripts are expressed in all the examined tissues, and the LRP8-1 transcript is more highly expressed in hypothalamus, ovary and pituitary gland than in other detected tissues. 3. Six single nucleotide polymorphisms (SNPs) were identified in the coding region. Association analysis demonstrated that the c.528C > T genotypes were associated with egg production (EP) (EP210d, EP300d and EP360d), age at laying the first egg (AFE) and body weight at sexual maturity (BWSM). The c.1371A > G genotypes were associated with egg production (EP210d, EP300d and EP360d). 4. The haplotypes of c.528C > T and c.1371A > G were associated with EP (EP210d, EP300d and EP360d), yolk weight (YW), albumen weight (AW), egg weight (EW), BWSM and the first egg weight (FEW). 5. Duck LRP8 gene was associated with some reproductive traits and is an important candidate gene for the genetic selection of improved reproductive traits. PMID:24286503

  1. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy.

    PubMed

    Le Cigne, A; Chièze, L; Beaussart, A; El-Kirat-Chatel, S; Dufrêne, Y F; Dedieu, S; Schneider, C; Martiny, L; Devy, J; Molinari, M

    2016-04-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness. PMID:26965453

  2. Yeast ABC proteins involved in multidrug resistance.

    PubMed

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects. PMID:24297686

  3. Structural basis of agrin-LRP4-MuSK signaling

    SciTech Connect

    Zong, Yinong; Zhang, Bin; Gu, Shenyan; Lee, Kwangkook; Zhou, Jie; Yao, Guorui; Figueiredo, Dwight; Perry, Kay; Mei, Lin; Jin, Rongsheng

    2012-06-27

    Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.

  4. Structural basis of agrin-LRP4-MuSK signaling.

    PubMed

    Zong, Yinong; Zhang, Bin; Gu, Shenyan; Lee, Kwangkook; Zhou, Jie; Yao, Guorui; Figueiredo, Dwight; Perry, Kay; Mei, Lin; Jin, Rongsheng

    2012-02-01

    Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases. PMID:22302937

  5. Structural basis of agrin–LRP4–MuSK signaling

    PubMed Central

    Zong, Yinong; Zhang, Bin; Gu, Shenyan; Lee, Kwangkook; Zhou, Jie; Yao, Guorui; Figueiredo, Dwight; Perry, Kay; Mei, Lin; Jin, Rongsheng

    2012-01-01

    Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin–LRP4 complex, consisting of two agrin–LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin–LRP4–MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases. PMID:22302937

  6. Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance

    PubMed Central

    Linkevicius, Marius; Sandegren, Linus

    2015-01-01

    Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines. PMID:26596936

  7. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  8. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  9. Structural Mechanisms of the Agrin-LRP4-MuSK Signaling Pathway in Neuromuscular Junction Differentiation

    PubMed Central

    Zong, Yinong; Jin, Rongsheng

    2015-01-01

    The neuromuscular junction (NMJ) is the most extensively studied model of neuronal synaptogenesis. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in the differentiation of NMJs. AChR clustering and postsynaptic differentiation is orchestrated by sophisticated interactions among three proteins: the neuron-secreted proteoglycan agrin, the co-receptor LRP4, and the muscle-specific receptor tyrosine kinase MuSK. LRP4 and MuSK act as scaffolds for multiple binding partners, resulting in a complex and dynamic network of interacting proteins that is required for AChR clustering. In this review, we discuss the structural basis for NMJ postsynaptic differentiation mediated by the agrin-LRP4-MuSK signaling pathway. PMID:23178848

  10. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation.

    PubMed

    Zong, Yinong; Jin, Rongsheng

    2013-09-01

    The neuromuscular junction (NMJ) is the most extensively studied model of neuronal synaptogenesis. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in the differentiation of NMJs. AChR clustering and postsynaptic differentiation is orchestrated by sophisticated interactions among three proteins: the neuron-secreted proteoglycan agrin, the co-receptor LRP4, and the muscle-specific receptor tyrosine kinase MuSK. LRP4 and MuSK act as scaffolds for multiple binding partners, resulting in a complex and dynamic network of interacting proteins that is required for AChR clustering. In this review, we discuss the structural basis for NMJ postsynaptic differentiation mediated by the agrin-LRP4-MuSK signaling pathway. PMID:23178848

  11. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells.

    PubMed

    Lu, Wenyan; Lin, Cuihong; King, Taj D; Chen, Honghong; Reynolds, Robert C; Li, Yonghe

    2012-12-01

    Silibinin is a natural compound isolated from milk thistle seed extracts, and has traditionally been used as a hepatoprotectant. A number of studies have also established the cancer therapeutic and chemopreventive role of silibinin in both in vitro and in vivo models. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for the Wnt/β-catenin pathway and represents a promising target for cancer prevention and therapy. In the present study, we found that silibinin was able to repress endogenous LRP6 expression and block Wnt3A-induced LRP6 phosphorylation and Wnt/β-catenin signaling activation in HEK293 cells. Importantly, silibinin was also able to suppress endogenous LRP6 expression and phosphorylation and block Wnt/β-catenin signaling in prostate cancer PC-3 and DU-145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, silibinin inhibited LRP6 promoter activity and decreased LRP6 mRNA levels in prostate and breast cancer cells. Finally, we demonstrated that silibinin displayed anticancer activity with IC(50) values comparable to those shown to suppress LRP6 expression and Wnt/β-catenin signaling activities in prostate and breast cancer cells. Our data indicate that silibinin is a novel small molecule Wnt/β-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibinin is associated with its inhibitory effect on Wnt/LRP6 signaling. PMID:22820499

  12. Predicting Resistance Mutations Using Protein Design Algorithms

    SciTech Connect

    Frey, K.; Georgiev, I; Donald, B; Anderson, A

    2010-01-01

    Drug resistance resulting from mutations to the target is an unfortunate common phenomenon that limits the lifetime of many of the most successful drugs. In contrast to the investigation of mutations after clinical exposure, it would be powerful to be able to incorporate strategies early in the development process to predict and overcome the effects of possible resistance mutations. Here we present a unique prospective application of an ensemble-based protein design algorithm, K*, to predict potential resistance mutations in dihydrofolate reductase from Staphylococcus aureus using positive design to maintain catalytic function and negative design to interfere with binding of a lead inhibitor. Enzyme inhibition assays show that three of the four highly-ranked predicted mutants are active yet display lower affinity (18-, 9-, and 13-fold) for the inhibitor. A crystal structure of the top-ranked mutant enzyme validates the predicted conformations of the mutated residues and the structural basis of the loss of potency. The use of protein design algorithms to predict resistance mutations could be incorporated in a lead design strategy against any target that is susceptible to mutational resistance.

  13. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity

    PubMed Central

    2012-01-01

    Background Primary osteoporosis is a rare childhood-onset skeletal condition whose pathogenesis has been largely unknown. We have previously shown that primary osteoporosis can be caused by heterozygous missense mutations in the Low-density lipoprotein receptor-related protein 5 (LRP5) gene, and the role of LRP5 is further investigated here. Methods LRP5 was analyzed in 18 otherwise healthy children and adolescents who had evidence of osteoporosis (manifested as reduced bone mineral density i.e. BMD, recurrent peripheral fractures and/or vertebral compression fractures) but who lacked the clinical features of osteogenesis imperfecta (OI) or other known syndromes linked to low BMD. Also 51 controls were analyzed. Methods used in the genetic analyses included direct sequencing and multiplex ligation-dependent probe amplification (MLPA). In vitro studies were performed using luciferase assay and quantitative real-time polymerase chain reaction (qPCR) to examine the effect of two novel and three previously identified mutations on the activity of canonical Wnt signaling and on expression of tryptophan hydroxylase 1 (Tph1) and 5-hydroxytryptamine (5-Htr1b). Results Two novel LRP5 mutations (c.3446 T > A; p.L1149Q and c.3553 G > A; p.G1185R) were identified in two patients and their affected family members. In vitro analyses showed that one of these novel mutations together with two previously reported mutations (p.C913fs, p.R1036Q) significantly reduced the activity of the canonical Wnt signaling pathway. Such reductions may lead to decreased bone formation, and could explain the bone phenotype. Gut-derived Lrp5 has been shown to regulate serotonin synthesis by controlling the production of serotonin rate-limiting enzyme, Tph1. LRP5 mutations did not affect Tph1 expression, and only one mutant (p.L1149Q) reduced expression of serotonin receptor 5-Htr1b (p < 0.002). Conclusions Our results provide additional information on the role of LRP5 mutations and their effects on

  14. Association of LRP5 genotypes with osteoporosis in Tunisian post-menopausal women

    PubMed Central

    2014-01-01

    Background Osteoporosis is a highly heritable trait. Among the genes associated with bone mineral density (BMD), the low-density lipoprotein receptor-related protein 5 gene (LRP5) has been consistently identified in Caucasians. However LRP5 contribution to osteoporosis in populations of other ethnicities remains poorly known. Methods To determine whether LRP5 polymorphisms Ala1330Val and Val667Met are associated with BMD in North Africans, these genotypes were analyzed in 566 post-menopausal Tunisian women with mean age of 59.5 ± 7.7 years, of which 59.1% have low bone mass (T-score < −1 at spine or hip). Results In post-menopausal Tunisian women, 1330Val was weakly associated with reduced BMD T-score at lumbar spine (p = 0.047) but not femur neck. Moreover, the TT/TC genotypes tended to be more frequent in women with osteopenia and osteoporosis than in women with normal BMD (p = 0.066). Adjusting for body size and other potential confounders, LRP5 genotypes were no longer significantly associated with aBMD at any site. Conclusions The less common Val667Met polymorphism showed no association with osteoporosis. The Ala1330Val polymorphism is weakly associated with lower lumbar spine bone density and osteopenia/osteoporosis in postmenopausal Tunisian women. These observations expand our knowledge about the contribution of LRP5 genetic variation to osteoporosis risk in populations of diverse ethnic origin. PMID:24885293

  15. Multidrug Resistance Proteins (MRPs) and Cancer Therapy.

    PubMed

    Zhang, Yun-Kai; Wang, Yi-Jun; Gupta, Pranav; Chen, Zhe-Sheng

    2015-07-01

    The ATP-binding cassette (ABC) transporters are members of a protein superfamily that are known to translocate various substrates across membranes, including metabolic products, lipids and sterols, and xenobiotic drugs. Multidrug resistance proteins (MRPs) belong to the subfamily C in the ABC transporter superfamily. MRPs have been implicated in mediating multidrug resistance by actively extruding chemotherapeutic substrates. Moreover, some MRPs are known to be essential in physiological excretory or regulatory pathways. The importance of MRPs in cancer therapy is also implied by their clinical insights. Modulating the function of MRPs to re-sensitize chemotherapeutic agents in cancer therapy shows great promise in cancer therapy; thus, multiple MRP inhibitors have been developed recently. This review article summarizes the structure, distribution, and physiological as well as pharmacological function of MRP1-MRP9 in cancer chemotherapy. Several novel modulators targeting MRPs in cancer therapy are also discussed. PMID:25840885

  16. LRP1/CD91 is up-regulated in monocytes from patients with haemophilia A: a single-centre analysis.

    PubMed

    Franchini, M; Urbani, S; Amadei, B; Rivolta, G F; Di Perna, C; Riccardi, F; Frattini, F; Crestani, S; Bonfanti, C; Formentini, A; Quintavalla, R; Tagliaferri, A

    2013-05-01

    The low-density lipoprotein receptor-related protein 1 (LRP1) is an ubiquitously expressed endocytic receptor that, among its several functions, is involved in the catabolism of coagulation factor VIII (FVIII) and in the regulation of its plasma concentrations. Although LRP1/CD91 polymorphisms have been associated with increased FVIII levels and a consequent thrombotic risk, no data are available on LRP1/CD91 expression in patients with inherited FVIII deficiency. With the aim of elucidating this issue, 45 consecutive patients with haemophilia A (HA) (18 severe, 5 moderate and 22 mild HA) were enrolled in this cross-sectional, single-centre survey. The LRP1/CD91 mean fluorescence intensity (MFI) in monocytes from HA patients was significantly higher than that detected in 90 healthy blood donors (105 vs. 67, P < 0.001). This over-expression was independent of hepatitis C virus infection status and varied according to the severity of the haemophilia, being higher in patients with more severe FVIII deficiency. In conclusion, our study documents for the first time that LRP1/CD91 is over-expressed on monocytes from HA patients, with the intensity of expression varying according to the severity of the FVIII deficiency. Further studies are needed to assess the clinical implications of these findings. PMID:23387825

  17. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration.

    PubMed

    Mantuano, Elisabetta; Lam, Michael S; Shibayama, Masataka; Campana, W Marie; Gonias, Steven L

    2015-09-15

    NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  18. Low-density lipoprotein receptor–related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction

    PubMed Central

    2014-01-01

    Introduction Wnt ligands bind to low-density lipoprotein receptor–related protein (LRP) 5 or 6, triggering a cascade of downstream events that include β-catenin signaling. Here we explored the roles of LRP5 in interleukin 1β (IL-1β)- or Wnt-mediated osteoarthritic (OA) cartilage destruction in mice. Methods The expression levels of LRP5, type II collagen, and catabolic factors were determined in mouse articular chondrocytes, human OA cartilage, and mouse experimental OA cartilage. Experimental OA in wild-type, Lrp5 total knockout (Lrp5-/-) and chondrocyte-specific knockout (Lrp5fl/fl;Col2a1-cre) mice was caused by aging, destabilization of the medial meniscus (DMM), or intra-articular injection of collagenase. The role of LRP5 was confirmed in vitro by small interfering RNA–mediated knockdown of Lrp5 or in Lrp5-/- cells treated with IL-1β or Wnt proteins. Results IL-1β treatment increased the expression of LRP5 (but not LRP6) via JNK and NF-κB signaling. LRP5 was upregulated in human and mouse OA cartilage, and Lrp5 deficiency in mice inhibited cartilage destruction. Treatment with IL-1β or Wnt decreased the level of Col2a1 and increased those of Mmp3 or Mmp13, whereas Lrp5 knockdown ameliorated these effects. In addition, we found that the functions of LRP5 in arthritic cartilage were subject to transcriptional activation by β-catenin. Moreover, Lrp5-/- and Lrp5fl/fl;Col2a1-cre mice exhibited decreased cartilage destruction (and related changes in gene expression) in response to experimental OA. Conclusions Our findings indicate that LRP5 (but not LRP6) plays an essential role in Wnt/β-catenin-signaling-mediated OA cartilage destruction in part by regulating the expression levels of type II collagen, MMP3, and MMP13. PMID:24479426

  19. The effect of acute and chronic sprint-interval training on LRP130, SIRT3, and PGC-1α expression in human skeletal muscle.

    PubMed

    Edgett, Brittany A; Bonafiglia, Jacob T; Baechler, Brittany L; Quadrilatero, Joe; Gurd, Brendon J

    2016-09-01

    This study examined changes in LRP130 gene and protein expression in response to an acute bout of sprint-interval training (SIT) and 6 weeks of SIT in human skeletal muscle. In addition, we investigated the relationships between changes in LRP130, SIRT3, and PGC-1α gene or protein expression. Fourteen recreationally active men (age: 22.0 ± 2.4 years) performed a single bout of SIT (eight, 20-sec intervals at ~170% of VO2peak work rate, separated by 10 sec of rest). Muscle biopsies were obtained at rest (PRE) and 3 h post-exercise. The same participants then underwent a 6 week SIT program with biopsies after 2 (MID) and 6 (POST) weeks of training. In response to an acute bout of SIT, PGC-1α mRNA expression increased (284%, P < 0.001); however, LRP130 and SIRT3 remained unchanged. VO2peak and fiber-specific SDH activity increased in response to training (P < 0.01). LRP130, SIRT3, and PGC-1α protein expression were also unaltered following 2 and 6 weeks of SIT There were no significant correlations between LRP130, SIRT3, or PGC-1α mRNA expression in response to acute SIT However, changes in protein expression of LRP130, SIRT3, and PGC-1α were positively correlated at several time points with large effect sizes, which suggest that the regulation of these proteins may be coordinated in human skeletal muscle. Future studies should investigate other exercise protocols known to increase PGC-1α and SIRT3 protein, like longer duration steady-state exercise, to identify if LRP130 expression can be altered in response to exercise. PMID:27604398

  20. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1.

    PubMed

    Tachibana, Masaya; Shinohara, Mitsuru; Yamazaki, Yu; Liu, Chia-Chen; Rogers, Justin; Bu, Guojun; Kanekiyo, Takahisa

    2016-03-01

    Apolipoprotein E (apoE) plays a critical role in maintaining synaptic integrity by transporting cholesterol to neurons through the low-density lipoprotein receptor related protein-1 (LRP1). Bexarotene, a retinoid X receptor (RXR) agonist, has been reported to have potential beneficial effects on cognition by increasing brain apoE levels and lipidation. To investigate the effects of bexarotene on aging-related synapse loss and the contribution of neuronal LRP1 to the pathway, forebrain neuron-specific LRP1 knockout (nLrp1(-/-)) and littermate control mice were administered with bexarotene-formulated diet (100mg/kg/day) or control diet at the age of 20-24 months for 8 weeks. Upon bexarotene treatment, levels of brain apoE and ATP-binding cassette sub-family A member 1 (ABCA1) were significantly increased in both mice. While levels of PSD95, glutamate receptor 1 (GluR1), and N-methyl-d-aspartate receptor NR1 subunit (NR1), which are key postsynaptic proteins that regulate synaptic plasticity, were decreased with aging, they were restored by bexarotene treatment in the brains of control but not nLrp1(-/-) mice. These results indicate that the beneficial effects of bexarotene on synaptic integrity depend on the presence of neuronal LRP1. However, we also found that bexarotene treatment led to the activation of glial cells, weight loss and hepatomegaly, which are likely due to hepatic failure. Taken together, our results demonstrate that apoE-targeted treatment through the RXR pathway has a potential beneficial effect on synapses during aging; however, the therapeutic application of bexarotene requires extreme caution due to its toxic side effects. PMID:26688581

  1. LRP4 is critical for neuromuscular junction maintenance.

    PubMed

    Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei; Xiong, Wen-cheng; Mei, Lin

    2014-10-15

    The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms. PMID:25319686

  2. LRP4 Is Critical for Neuromuscular Junction Maintenance

    PubMed Central

    Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei; Xiong, Wen-cheng

    2014-01-01

    The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms. PMID:25319686

  3. PPARγ COUNTERACTS LRP1-INDUCED VASCULAR CALCIFICATION BY INHIBITING A WNT5A SIGNALING PATHWAY

    PubMed Central

    Woldt, Estelle; Terrand, Jérome; Mlih, Mohamed; Matz, Rachel L.; Bruban, Véronique; Coudane, Fanny; Foppolo, Sophie; El Asmar, Zeina; Chollet, Maria Eugenia; Ninio, Ewa; Bednarczyk, Audrey; Thiersé, Danièle; Schaeffer, Christine; Van Dorsselaer, Alain; Boudier, Christian; Wahli, Walter; Chambon, Pierre; Metzger, Daniel; Herz, Joachim; Boucher, Philippe

    2012-01-01

    Vascular calcification is a hallmark of advanced atherosclerosis, but the underlying mechanisms remain unknown. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells (vSMCs) of Low Density Lipoprotein receptor (LDLr) deficient mice fed an atherogenic high-cholesterol diet results in accelerated vascular calcification with chondrogenic metaplasia within the lesions. We demonstrate that vascular calcification in the absence of PPARγ requires the transmembrane receptor Low Density Lipoprotein receptor-related protein-1 (LRP1). LRP1 promotes a previously unknown Wnt5a dependent prochondrogenic pathway that activates the chondrogenic program. PPARγ protects against vascular calcification by activating sFRP2, which we show functions as a Wnt5a antagonist. Thus, targeting this signaling pathway has important clinical implications, impacting on common complications of atherosclerosis including coronary artery calcification and valvular sclerosis. PMID:23011131

  4. Characterization of genetically engineered mouse models carrying Col2a1-cre-induced deletions of Lrp5 and/or Lrp6

    PubMed Central

    Schumacher, Cassie A; Joiner, Danese M; Less, Kennen D; Drewry, Melissa Oosterhouse; Williams, Bart O

    2016-01-01

    Mice carrying Collagen2a1-cre-mediated deletions of Lrp5 and/or Lrp6 were created and characterized. Mice lacking either gene alone were viable and fertile with normal knee morphology. Mice in which both Lrp5 and Lrp6 were conditionally ablated via Collagen2a1-cre-mediated deletion displayed severe defects in skeletal development during embryogenesis. In addition, adult mice carrying Collagen2a1-cre-mediated deletions of Lrp5 and/or Lrp6 displayed low bone mass suggesting that the Collagen2a1-cre transgene was active in cells that subsequently differentiated into osteoblasts. In both embryonic skeletal development and establishment of adult bone mass, Lrp5 and Lrp6 carry out redundant functions. PMID:26962465

  5. LDL Receptor-related Protein 1 Regulates the Abundance of Diverse Cell-signaling Proteins in the Plasma Membrane Proteome

    PubMed Central

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F.; Gonias, Steven L.

    2010-01-01

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, which are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 co-immunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not co-immunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome. PMID:20919742

  6. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Le Cigne, A.; Chièze, L.; Beaussart, A.; El-Kirat-Chatel, S.; Dufrêne, Y. F.; Dedieu, S.; Schneider, C.; Martiny, L.; Devy, J.; Molinari, M.

    2016-03-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies

  7. Resistant mechanisms of anthracyclines--pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues.

    PubMed

    Kubota, T; Furukawa, T; Tanino, H; Suto, A; Otan, Y; Watanabe, M; Ikeda, T; Kitajima, M

    2001-01-01

    Juliano and Ling initially reported the expression of a 170 kDa glycoprotein in the membrane of Chinese hamster ovarian cells in 1976, and named this glycoprotein P-glycoprotein (P-gp) based on its predicted role of causing "permeability" of the cell membrane. After much research on anthracycline-resistance, this P-gp was finally characterized as a multidrug-resistant protein coded by the mdr1 gene. Multidrug resistance associated protein (MRP) was initially cloned from H69AR, a human small cell-lung carcinoma cell line which is resistant to doxorubicin (DXR) but does not express P-gp. MRP also excretes substrates through the cell membrane using energy from ATP catabolism. The substrate of MRP is conjugated with glutathione before active efflux from cell membrane. Recently, membrane transporter proteins were re-categorized as members of "ATP-Binding Cassette transporter"(ABC-transporter) superfamily, as shown at http://www.med.rug.nl/mdl/humanabc.htm and http://www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html. A total of ABC transporters have been defined, and MDR1 and multidrug resistance associated protein 1 (MRP1) were reclassified as ABCB1 and ABCC1, respectively. Their associated superfamilies include 11 and 13 other protein, in addition to ABCB and ABCC, respectively. Lung resistance-related protein (LRP) is not a member of the superfamily of ABC transporter proteins, because it shows nuclear membrane expression and transports substrate between nucleus and cytoplasm. LRP was initially cloned from a non-small cell lung carcinoma cell line, SW1573/2R120 which is resistant to DXR, vincristine, etoposide and gramicidin D and does not express P-gp. The mechanisms of resistance remains unclear, and why some resistant cell lines express P-gp and others express MRP and/or LRP is likewise unclear. PMID:11791127

  8. Mammalian multidrug-resistance proteins (MRPs).

    PubMed

    Slot, Andrew J; Molinski, Steven V; Cole, Susan P C

    2011-09-01

    Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs. PMID:21967058

  9. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1

    PubMed Central

    Ren, Shuyu; Johnson, Bryce G.; Kida, Yujiro; Ip, Colin; Davidson, Kathryn C.; Lin, Shuei-Liong; Kobayashi, Akio; Lang, Richard A.; Hadjantonakis, Anna-Katerina; Moon, Randall T.; Duffield, Jeremy S.

    2013-01-01

    Fibrosis of vital organs is a major public health problem with limited therapeutic options. Mesenchymal cells including microvascular mural cells (pericytes) are major progenitors of scar-forming myofibroblasts in kidney and other organs. Here we show pericytes in healthy kidneys have active WNT/β-catenin signaling responses that are markedly up-regulated following kidney injury. Dickkopf-related protein 1 (DKK-1), a ligand for the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP-5 and LRP-6) and an inhibitor of WNT/β-catenin signaling, effectively inhibits pericyte activation, detachment, and transition to myofibroblasts in vivo in response to kidney injury, resulting in attenuated fibrogenesis, capillary rarefaction, and inflammation. DKK-1 blocks activation and proliferation of established myofibroblasts in vitro and blocks pericyte proliferation to PDGF, pericyte migration, gene activation, and cytoskeletal reorganization to TGF-β or connective tissue growth factor. These effects are largely independent of inhibition of downstream β-catenin signaling. DKK-1 acts predominantly by inhibiting PDGF-, TGF-β–, and connective tissue growth factor-activated MAPK and JNK signaling cascades, acting via LRP-6 with associated WNT ligand. Biochemically, LRP-6 interacts closely with PDGF receptor β and TGF-β receptor 1 at the cell membrane, suggesting that it may have roles in pathways other than WNT/β-catenin. In summary, DKK-1 blocks many of the changes in pericytes required for myofibroblast transition and attenuates established myofibroblast proliferation/activation by mechanisms dependent on LRP-6 and WNT ligands but not the downstream β-catenin pathway. PMID:23302695

  10. Characterization of a clonal human colon adenocarcinoma line intrinsically resistant to doxorubicin.

    PubMed Central

    Dolfini, E.; Dasdia, T.; Arancia, G.; Molinari, A.; Calcabrini, A.; Scheper, R. J.; Flens, M. J.; Gariboldi, M. B.; Monti, E.

    1997-01-01

    Intrinsic low-level resistance to anti-cancer drugs is a major problem in the treatment of gastrointestinal malignancies. To address the problem presented by intrinsically resistant tumours, we have isolated two monoclonal lines from LoVo human colon adenocarcinoma cells: LoVo/C7, which is intrinsically resistant to doxorubicin (DOX); and LoVo/C5, which shows the same resistance index for DOX as the mixed parental cell population. For comparison, we have included in the study a LoVo-resistant line selected by continuous exposure to DOX and expressing a typical multidrug resistant (MDR) phenotype. In these cell lines we have studied the expression and/or activity of a number of proteins, including P-glycoprotein 170 (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione (GSH)-dependent enzymes and protein kinase C (PKC) isoforms, which have been implicated in anti-cancer drug resistance. Intracellular DOX distribution has been assessed by confocal microscopy. The results of the present study indicate that resistance in LoVo/C7 cells cannot be attributed to alterations in P-gp, LRP or GSH/GSH-dependent enzyme levels. Increased expression of MRP, accompanied by alterations in the subcellular distribution of DOX, has been observed in LoVo/C7 cells; changes in PKC isoform pattern have been detected in both intrinsically and pharmacologically resistant cells. Images Figure 2 Figure 5 Figure 6 PMID:9218735

  11. The first propeller domain of LRP6 regulates sensitivity to DKK1.

    PubMed

    Binnerts, Minke E; Tomasevic, Nenad; Bright, Jessica M; Leung, John; Ahn, Victoria E; Kim, Kyung-Ah; Zhan, Xiaoming; Liu, Shouchun; Yonkovich, Shirlee; Williams, Jason; Zhou, Mei; Gros, Delphine; Dixon, Melissa; Korver, Wouter; Weis, William I; Abo, Arie

    2009-08-01

    The Wnt coreceptor LRP6 is required for canonical Wnt signaling. To understand the molecular regulation of LRP6 function, we generated a series of monoclonal antibodies against the extra cellular domain (ECD) of LRP6 and selected a high-affinity mAb (mAb135) that recognizes cell surface expression of endogenous LRP6. mAb135 enhanced Wnt dependent TCF reporter activation and antagonized DKK1 dependent inhibition of Wnt3A signaling, suggesting a role in modulation of LRP6 function. Detailed analysis of LRP6 domain mutants identified Ser 243 in the first propeller domain of LRP6 as a critical residue for mAb135 binding, implicating this domain in regulating the sensitivity of LRP6 to DKK1. In agreement with this notion, mAb135 directly disrupted the interaction of DKK1 with recombinant ECD LRP6 and a truncated form of the LRP6 ECD containing only repeats 1 and 2. Finally, we found that mAb135 completely protected LRP6 from DKK1 dependent internalization. Together, these results identify the first propeller domain as a novel regulatory domain for DKK1 binding to LRP6 and show that mAb against the first propeller domain of LRP6 can be used to modulate this interaction. PMID:19477926

  12. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    PubMed

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  13. Lack of interaction between LRP1 and A2M polymorphisms for the risk of Alzheimer disease.

    PubMed

    Bruno, Elisa; Quattrocchi, Graziella; Nicoletti, Alessandra; Le Pira, Francesco; Maci, Tiziana; Mostile, Giovanni; Andreoli, Virginia; Quattrone, Aldo; Zappia, Mario

    2010-09-27

    Alzheimer disease (AD) has a heterogeneous aetiology, involving genetic and environmental factors. Low-density lipoprotein receptor-related protein 1 (LRP1), alpha-2-macroglobulin (A2M) and apolipoprotein E (APOE) are involved in molecular pathways leading to beta-amyloid deposition. Three polymorphic sites in these genes (APOE-epsilon 2/epsilon 3/epsilon 4, A2M-Ile/Val and LRP1-C/T) have been associated with AD, but the results were not univocal. We carried out a case-control study to investigate the association between these polymorphisms and the risk of developing AD and their possible interaction. We recruited 125 AD patients who fulfilled the diagnostic criteria proposed by NINCDS-ADRDA for probable or possible AD and 310 controls subjects. PCR was used to detect the polymorphisms. ORs and 95% CIs were estimated using logistic regression analysis. The OR for subjects carrying at least one allele Val (A2M-Val+) in their genotypes was 1.52 (95% CI 1.00-2.31; p=0.05); for subjects carrying at least one allele C (LRP1-C+), 1.58 (95% CI 1.00-2.50; p=0.05); for subjects carrying at least one allele epsilon 4 (APOE-epsilon 4+), 3.1 (95%CI 1.87-5.00; p<0.001). The coexistence of at least one allele Val (A2M-Val+) and one allele C (LRP1-C+) increased up two times the risk of AD (OR 2.32; 95% CI 1.23-4.35; p<0.009). No evidence of significant interaction has been found between the studied polymorphisms (p>0.05). In conclusion our study suggests that LRP1-C/T, A2M-Ile/Val and APOE-epsilon 2/epsilon 3/epsilon 4 polymorphisms are associated with AD. PMID:20637261

  14. Combined treatment with chrysin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose synergistically inhibits LRP6 and Skp2 activation in triple-negative breast cancer and xenografts.

    PubMed

    Huang, Cheng; Chen, Yi Jing; Chen, Wei-Jen; Lin, Chih-Li; Wei, Yu Xuan; Huang, Hsiu Chen

    2015-12-01

    Triple-negative breast cancer (TNBC) is difficult to treat because there is no targeted therapy available. Clinical studies have demonstrated that S-phase kinase-associated protein 2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) are highly expressed in TNBC. Therefore, therapeutic strategies designed to downregulate LRP6 or Skp2 may play an important clinical role in the treatment of TNBC. However, the regulatory effects of many drugs on Skp2 and LRP6 expression are currently unknown. In the present study, combined treatment with chrysin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (5GG) synergistically induced apoptosis and cell cycle arrest and inhibited cell proliferation and colony formation in AU565 and MDA-MB-231 human breast cancer cells. Furthermore, the combination of chrysin and 5GG suppressed tumor growth in nude mice with xenografted MDA-MB-231 cells by downregulating the phospho-LRP6 (pLRP6) and Skp2 proteins. Overall, our findings suggested that the combination of chrysin and 5GG has a potential therapeutic value in treating breast cancer, particularly for TNBC associated with Skp2/LRP6 overexpression, and hence warrants further investigation. PMID:25358452

  15. [Comparison of protein expression profiles between bortezomib-resistant JurkatB cells with PSMB5 mutation and their parent cells].

    PubMed

    Lü, Shu-Qing; Yang, Jian-Min; Huang, Chong-Mei; Xu, Xiao-Qian; Zhou, Hong; Song, Ning-Xia; Wang, Jian-Min

    2011-08-01

    This study was purposed to investigate the differences of cyto biological characteristics and protein expression levels between bortezomib-resistant T-lymphoblastic lymphoma/leukemia cell lines JurkatB containing PSMB5 G322A mutation and their parent cell line Jurkat, The cytotoxicities of bortezomib and chemotherapeutic drugs to JurkatB5 cells (end selection concentration of bortezomib was 500 nmol/L), JurkatB8 (end selection concentration 800 nmol/L) and Jurkat cells were analyzed. The cell growth curves were drawn with viable cell counts by trypan blue assay, the colony formation rate were assayed by soft-agar colony culture, and the cell distributions in cell cycle were analyzed by flow cytometry, mRNA expression levels of multidrug resistance (MDR) genes MDR1, LRP and MRP were measured by real-time fluorescence quantitative RT-PCR, the differences of protein expression levels were detected by SpringBio antibody microarray containing 720 proteins. The results showed that the drug resistance multiples for 48 hours of JurkatB5 and JurkatB8 cells (relative to Jurkat) to bortezomib were increased by 33.52 and 39.04 times, respectively. JurkatB5 and JurkatB8 cells did not display significant cross-resistance to daunorubicin, adriamycin, vindesine, and etoposide after exposure for 48 hours. There were no significant differences in the cell growth curve, colony formation rate and cell distributions in cell cycle between JurkatB5, JurkatB8 and Jurkat cells (p > 0.05). There were no significant differences of mRNA expression levels of MDR1, LRP, MRP between JurkatB5 and Jurkat cells (p > 0.05). There were 264 analyzable expression points detected by antibody microarray. Among them, 252 protein expression levels were not significantly different between JurkatB5, JurkatB8 and Jurkat cells (< 2-fold), including 15 drug resistance-related proteins. 12 proteins were detected at higher or lower expression levels in JurkatB5 or JurkatB8 cells then that in Jurkat cells (cell

  16. 42 CFR 68a.6 - How do individuals apply to participate in the CR-LRP?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT... participate in the CR-LRP? An application for participation in the CR-LRP shall be submitted to the NIH...

  17. 42 CFR 68a.6 - How do individuals apply to participate in the CR-LRP?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT... participate in the CR-LRP? An application for participation in the CR-LRP shall be submitted to the NIH...

  18. 42 CFR 68a.6 - How do individuals apply to participate in the CR-LRP?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT... participate in the CR-LRP? An application for participation in the CR-LRP shall be submitted to the NIH...

  19. Structure of the Dual-Mode Wnt Regulator Kremen1 and Insight into Ternary Complex Formation with LRP6 and Dickkopf.

    PubMed

    Zebisch, Matthias; Jackson, Verity A; Zhao, Yuguang; Jones, E Yvonne

    2016-09-01

    Kremen 1 and 2 have been identified as co-receptors for Dickkopf (Dkk) proteins, hallmark secreted antagonists of canonical Wnt signaling. We present here three crystal structures of the ectodomain of human Kremen1 (KRM1ECD) at resolutions between 1.9 and 3.2 Å. KRM1ECD emerges as a rigid molecule with tight interactions stabilizing a triangular arrangement of its Kringle, WSC, and CUB structural domains. The structures reveal an unpredicted homology of the WSC domain to hepatocyte growth factor. We further report the general architecture of the ternary complex formed by the Wnt co-receptor Lrp5/6, Dkk, and Krm, determined from a low-resolution complex crystal structure between β-propeller/EGF repeats (PE) 3 and 4 of the Wnt co-receptor LRP6 (LRP6PE3PE4), the cysteine-rich domain 2 (CRD2) of DKK1, and KRM1ECD. DKK1CRD2 is sandwiched between LRP6PE3 and KRM1Kringle-WSC. Modeling studies supported by surface plasmon resonance suggest a direct interaction site between Krm1CUB and Lrp6PE2. PMID:27524201

  20. Rare nonconservative LRP6 mutations are associated with metabolic syndrome.

    PubMed

    Singh, Rajvir; Smith, Emily; Fathzadeh, Mohsen; Liu, Wenzhong; Go, Gwang-Woong; Subrahmanyan, Lakshman; Faramarzi, Saeed; McKenna, William; Mani, Arya

    2013-09-01

    A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. PMID:23703864

  1. Rare nonconservative LRP6 mutations are associated with metabolic syndrome

    PubMed Central

    Singh, Rajvir; Smith, Emily; Fathzadeh, Mohsen; Liu, Wenzhong; Go, Gwang-Woong; Subrahmanyan, Lakshman; Faramarzi, Saeed; McKenna, William; Mani, Arya

    2013-01-01

    A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which co-segregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. PMID:23703864

  2. Modulation of the LDL receptor and LRP levels by HIV protease inhibitors.

    PubMed

    Tran, Huan; Robinson, Susan; Mikhailenko, Irina; Strickland, Dudley K

    2003-10-01

    Inhibitors of the human immunodeficiency virus (HIV)-1 protease have proven to be effective antiretroviral drugs. However, patients receiving these drugs develop serious metabolic abnormalities, including hypercholesterolemia. The objective of the present study was to identify mechanisms by which HIV protease inhibitors increase plasma cholesterol levels. We hypothesized that HIV protease inhibitors may affect gene regulation of certain LDL receptor (LDLR) family members, thereby altering the catabolism of cholesterol-containing lipoproteins. In this present study we investigated the effect of several HIV protease inhibitors (ABT-378, Amprenavir, Indinavir, Nelfinavir, Ritonavir, and Saquinavir) on mRNA, protein, and functional levels of LDLR family members. Our results demonstrate that one of these drugs, Nelfinavir, significantly decreases LDLR and LDLR-related protein (LRP) mRNA and protein levels, resulting in the reduced functional activity of these two receptors. Nelfinavir exerts its effect by reducing levels of active SREBP1 in the nucleus. The finding that Nelfinavir reduces the levels of two key receptors (LRP and LDLR) involved in lipoprotein catabolism and maintenance of vessel wall integrity identifies a mechanism that causes hypercholesterolemia complications in HIV patients treated with this drug and raises concerns about the atherogenic nature of Nelfinavir. PMID:12837856

  3. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  4. Cytotoxicity mechanism of α-MMC in normal liver cells through LRP1 mediated endocytosis and JNK activation.

    PubMed

    Wang, Ling; Shen, Fubing; Zhang, Min; He, Qianchuan; Zhao, Hui; Yu, Xiaoping; Yang, Shuxia; Liu, Yang; Deng, Nianhua; Zheng, Juecun; Zhu, Lixia; Liu, Xiaolan

    2016-05-16

    Alpha-momorcharin (α-MMC), a type I ribosome-inactivating protein isolated from Momordica charantia, is a potential drug candidate with strong anti-tumor activity. However, α-MMC has a severe hepatotoxicity when applied in vivo, which may greatly hinders its use in clinic in the future. The biological mechanism of hepatotoxicity induced by α-MMC is largely unknown, especially the mechanism by which α-MMC enters the hepatocytes. In this study, we investigated α-MMC-induced cytotoxicity in normal liver L02 cell line as well as the mechanism underlying it. As expected, α-MMC is more toxic in L02 cells than in various normal cells from other organs. The cytotoxic effect of α-MMC on L02 cells is found to be mediated through cell apoptosis as detected by flow cytometry and fluorescence microscopy. Importantly, α-MMC was shown to bind to a specific receptor on cell membrane, as the density of the cell membrane receptor is closely related to both the amount of α-MMC endocytosed and the cytotoxicity in different cell lines. By using LRP1 competitive inhibitor α2-M or siRNA targeting LRP1, we further identified that LRP1 protein served as the membrane receptor for α-MMC. Both α2-M and siRNA targeting LRP1 can significantly inhibit α-MMC's endocytosis as well as its cytotoxicity in L02 cells. In addition, it was found that α-MMC can activate the JNK signalling pathways via LRP1 in L02 cells. As JNK activation often leads to cell apoptosis, the activation of JNK may play an important role in α-MMC-induced cytotoxicity. To our knowledge, this is the first report showing that LRP1 mediates the cytotoxicity of α-MMC through (1) endocytosis and induced apoptosis and (2) the activation of the JNK pathway. Our findings shed light on the fundamental mechanism of hepatotoxicity of α-MMC and offer reference to understand its mechanism of lymphocytotoxicity and neurotoxicity. PMID:27262837

  5. Vaults: a ribonucleoprotein particle involved in drug resistance?

    PubMed

    Mossink, Marieke H; van Zon, Arend; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-10-20

    Vaults are ribonucleoprotein particles found in the cytoplasm of eucaryotic cells. The 13 MDa particles are composed of multiple copies of three proteins: an M(r) 100 000 major vault protein (MVP) and two minor vault proteins of M(r) 193 000 (vault poly-(ADP-ribose) polymerase) and M(r) 240 000 (telomerase-associated protein 1), as well as small untranslated RNA molecules of approximately 100 bases. Although the existence of vaults was first reported in the mid-1980s no function has yet been attributed to this organelle. The notion that vaults might play a role in drug resistance was suggested by the molecular identification of the lung resistance-related (LRP) protein as the human MVP. MVP/LRP was found to be overexpressed in many chemoresistant cancer cell lines and primary tumor samples of different histogenetic origin. Several, but not all, clinico-pathological studies showed that MVP expression at diagnosis was an independent adverse prognostic factor for response to chemotherapy. The hollow barrel-shaped structure of the vault complex and its subcellular localization indicate a function in intracellular transport. It was therefore postulated that vaults contributed to drug resistance by transporting drugs away from their intracellular targets and/or the sequestration of drugs. Here, we review the current knowledge on the vault complex and critically discuss the evidence that links vaults to drug resistance. PMID:14576851

  6. Familial Exudative Vitreoretinopathy With a Novel LRP5 Mutation.

    PubMed

    Pefkianaki, Maria; Hasanreisoglu, Murat; Suchy, Sharon F; Shields, Carol L

    2016-01-01

    This report reviews the genetics of familial exudative vitreoretinopathy (FEVR) and describes the identification of a novel variant in the LRP5 gene. A 20-month-old boy presented with reduced visual acuity in the right eye from exudative retinal detachment with mild retinal traction. Fluorescein angiography in the right eye disclosed extensive peripheral retinal non-perfusion and telangiectatic vessels and the left eye showed minimal peripheral non-perfusion. These features were suggestive of FEVR. Treatment with laser photocoagulation and cryotherapy to the region of non-perfusion was performed with resolution of the exudative retinal detachment. Fundus examination of the father revealed mild signs of FEVR, such as hyperacute retinal vascular branching and slight retinal vascular traction, whereas the mother's fundus examination was unremarkable. Genetic testing revealed that the affected boy was negative for mutations in the FZD4, NDP, and TSPAN12 genes and heterozygous for a previously unreported A745V variant in the LRP5 gene. The father was also heterozygous for the A745V variant in the LRP5 gene and the unaffected mother showed no mutation. A genetic evaluation of the known genes associated with FEVR revealed a novel variant in the LRP5 gene that co-segregated with the phenotype in the family. [J Pediatr Ophthalmol Strabismus. 2016;53:e39-e42.]. PMID:27486893

  7. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Yoshizumi, Misako; Ueda, Emi; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2016-07-01

    Interaction between multiple myeloma (MM) cells and the bone marrow microenvironment plays a critical role in MM pathogenesis and the development of drug resistance. Recently, it has been reported that MM cells express the receptor activator of nuclear factor-κB (NF-κB) (RANK). However, the role of the RANK/RANK ligand (RANKL) system in drug resistance remains unclear. In this study, we demonstrated a novel function of the RANK/RANKL system in promoting drug resistance in MM. We found that RANKL treatment induced drug resistance in RANK-expressing but not RANK-negative cell lines. RANKL stimulation of RANK-expressing cells increased multidrug resistance protein 1 (MDR1), breast cancer resistance protein (BCRP), and lung resistance protein 1 (LRP1) expression and decreased Bim expression through various signaling molecules. RNA silencing of Bim expression induced drug resistance, but the RANKL-mediated drug resistance could not be overcome through the RNA silencing of MDR1, BCRP, and LRP1 expression. These results indicate that the RANK/RANKL system induces chemoresistance through the activation of multiple signal transduction pathways and by decreasing Bim expression in RANK-positive MM cells. These findings may prove to be useful in the development of cell adhesion-mediated drug resistance inhibitors in RANK-positive MM cells. PMID:26762414

  8. LRP-1-mediated intracellular antibody delivery to the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe

    2015-07-01

    The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.

  9. LRP-1-mediated intracellular antibody delivery to the Central Nervous System

    PubMed Central

    Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe

    2015-01-01

    The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells. PMID:26189707

  10. LRP-1-mediated intracellular antibody delivery to the Central Nervous System.

    PubMed

    Tian, Xiaohe; Nyberg, Sophie; S Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N Joan; Battaglia, Giuseppe

    2015-01-01

    The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells. PMID:26189707

  11. Physically Transient Resistive Switching Memory Based on Silk Protein.

    PubMed

    Wang, Hong; Zhu, Bowen; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-05-01

    Physically transient resistive switching devices based on silk protein are successfully demonstrated. The devices can be absolutely dissolved in deionized water or in phosphate-buffered saline in 2 h. At the same time, a reasonable resistance OFF/ON ratio of larger than 10(2) and a retention time of more than 10(4) s are achieved for nonvolatile memory applications. PMID:27028213

  12. [The structure of cellular vaults, their role in the normal cell and in the multidrug resistance of cancer].

    PubMed

    Szaflarski, Witold; Nowicki, Michał; Zabel, Maciej

    2011-01-01

    The cellular vaults have been described for the first time in 1986 as ribonucleoprotein complexes composed of three proteins, MVP, TEP1 and vPARP and several vRNA strains. Biochemical and structural studies revealed their ubiquitous existence in the cytoplasm of many eukaryotic cells and their barrel-like structure indicating their engagement in the intracellular transport. Furthermore, the high homology between MVP and LRP which was already known to be involved in multidrug resistance mechanism opened a discussion about the role of vaults in both normal and cancer cells. The histopathology research demonstrated an increased amount of MVP/LRP proteins in the cancer as well as showed translocation possibility between cytoplasm and nuclear envelope, which can be of crucial point in the prevention of nucleus against anticancer drugs. PMID:22235652

  13. Resistive random access memory utilizing ferritin protein with Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Uenuma, Mutsunori; Kawano, Kentaro; Zheng, Bin; Okamoto, Naofumi; Horita, Masahiro; Yoshii, Shigeo; Yamashita, Ichiro; Uraoka, Yukiharu

    2011-05-01

    This study reports controlled single conductive paths found in resistive random access memory (ReRAM) formed by embedding Pt nanoparticles (Pt NPs) in NiO film. Homogeneous Pt NPs produced and placed by ferritin protein produce electric field convergence which leads to controlled conductive path formation. The ReRAM with Pt NPs shows stable switching behavior. A Pt NP density decrease results in an increase of OFF state resistance and decrease of forming voltage, whereas ON resistance was independent of the Pt NP density, which indicates that a single metal NP in a memory cell will achieve low power and stable operation.

  14. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection

    PubMed Central

    Sharkey, Liam K. R.; Edwards, Thomas A.

    2016-01-01

    ABSTRACT Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to an in vitro translation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosome in vitro. To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection. PMID:27006457

  15. Identification of a homozygous missense mutation in LRP2 and a hemizygous missense mutation in TSPYL2 in a family with mild intellectual disability.

    PubMed

    Vasli, Nasim; Ahmed, Iltaf; Mittal, Kirti; Ohadi, Mehrnaz; Mikhailov, Anna; Rafiq, Muhammad A; Bhatti, Attya; Carter, Melissa T; Andrade, Danielle M; Ayub, Muhammad; Vincent, John B; John, Peter

    2016-04-01

    Non-syndromic autosomal recessive intellectual disability (ID) is a genetically heterogeneous disorder with more than 50 mutated genes to date. ID is characterized by deficits in memory skills and language development with difficulty in learning, problem solving, and adaptive behaviors, and affects ∼1% of the population. For detection of disease-causing mutations in such a heterogeneous disorder, homozygosity mapping together with exome sequencing is a powerful approach, as almost all known genes can be assessed simultaneously in a high-throughput manner. In this study, a hemizygous c.786C>G:p.Ile262Met in the testis specific protein Y-encoded-like 2 (TSPYL2) gene and a homozygous c.11335G>A:p.Asp3779Asn in the low-density lipoprotein receptor-related protein 2 (LRP2) gene were detected after genome-wide genotyping and exome sequencing in a consanguineous Pakistani family with two boys with mild ID. Mutations in the LRP2 gene have previously been reported in patients with Donnai-Barrow and Stickler syndromes. LRP2 has also been associated with a 2q locus for autism (AUTS5). The TSPYL2 variant is not listed in any single-nucleotide polymorphism databases, and the LRP2 variant was absent in 400 ethnically matched healthy control chromosomes, and is not listed in single-nucleotide polymorphism databases as a common polymorphism. The LRP2 mutation identified here is located in one of the low-density lipoprotein-receptor class A domains, which is a cysteine-rich repeat that plays a central role in mammalian cholesterol metabolism, suggesting that alteration of cholesterol processing pathway can contribute to ID. PMID:26529358

  16. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration.

    PubMed

    Landowski, Lila M; Pavez, Macarena; Brown, Lachlan S; Gasperini, Robert; Taylor, Bruce V; West, Adrian K; Foa, Lisa

    2016-01-15

    The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system. PMID:26598525

  17. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    PubMed

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  18. Cycloheximide resistance in yeast: the gene and its protein.

    PubMed Central

    Käufer, N F; Fried, H M; Schwindinger, W F; Jasin, M; Warner, J R

    1983-01-01

    Mutations in the yeast gene CYH2 can lead to resistance to cycloheximide, an inhibitor of eukaryotic protein synthesis. The gene product of CYH2 is ribosomal protein L29, a component of the 60S ribosomal subunit. We have cloned the wild-type and resistance alleles of CYH2 and determined their nucleotide sequence. Transcription of CYH2 appears to initiate and terminate at multiple sites, as judged by S1 nuclease analysis. The gene is transcribed into an RNA molecule of about 1082 nucleotides, containing an intervening sequence of 510 nucleotides. The splice junction of the intron resides within a codon near the 5' end of the gene. In confirmation of peptide analysis by Stocklein et al. (1) we find that resistance to cycloheximide is due to a transversion mutation resulting in the replacement of a glutamine by glutamic acid in position 37 of L29. Images PMID:6304624

  19. Smooth Muscle Cell Deletion of LDL Receptor Related Protein-1 Augments AngII-Induced Superior Mesenteric Arterial and Ascending Aortic Aneurysms

    PubMed Central

    Davis, Frank M.; Rateri, Debra L.; Balakrishnan, Anju; Howatt, Deborah A.; Strickland, Dudley K.; Muratoglu, Selen C.; Haggerty, Christopher M.; Fornwalt, Brandon K.; Cassis, Lisa A.; Daugherty, Alan

    2015-01-01

    Objective LRP1, a multifunctional protein involved in endocytosis and cell signaling pathways, leads to a range of vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced AngII-induced arterial pathologies. Approach and Results LRP1 protein abundance was equivalent in selected arterial-regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on AngII vascular responses, SMC-specific LRP1 (smLRP1) +/+ and -/- mice were infused with saline, AngII, or norepinephrine (NE). Several smLRP-/- mice died of superior mesenteric arterial (SMA) rupture during AngII infusion. In surviving mice, AngII profoundly augmented SMA dilation in smLRP1-/- mice. SMA dilation was blood pressure-dependent as demonstrated by a similar response during NE infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. AngII infusion led to no significant differences in abdominal aorta diameters between smLRP1+/+ and -/- mice. In contrast, ascending aortic dilation was exacerbated markedly in AngII-infused smLRP1-/- mice, but NE had no significant effect on either aortic region. Ascending aortas of smLRP1-/- mice infused with AngII had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 and uPA. Conclusions smLRP1 deficiency had no effect on AngII-induced abdominal aortic aneurysm formation. Conversely, AngII infusion in smLRP1-/- mice exacerbated SMA and ascending aorta dilation. Dilation in these two regions had differential association with blood pressure and divergent pathologic characteristics. PMID:25395615

  20. Resistance of platelet proteins to effects of ionizing radiation

    SciTech Connect

    Prodouz, K.N.; Habraken, J.W.; Moroff, G. )

    1990-12-01

    Gamma irradiation of blood components prevents lymphocyte-induced graft-versus-host disease after transfusion in immunocompromised individuals. In this report we demonstrate the resistance of blood platelet proteins to gamma radiation-induced protein cleavage and aggregate formation when platelet concentrates were treated with a dose of 5000 rad. Results of one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total platelet protein and cytoskeletal protein preparations indicate that platelet proteins are neither cleaved nor cross-linked under these conditions of irradiation. These results support those of a previous study that documented the lack of any adverse effect of 5000 rad gamma radiation on in vitro platelet properties.

  1. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation.

    PubMed

    Guillet, C; Masgrau, A; Walrand, S; Boirie, Y

    2012-12-01

    Metabolic and structural changes in skeletal muscle that accompany obesity are often associated with the development of insulin resistance. The first events in the pathogenesis of this disorder are considered as an accumulation of lipids within skeletal muscle due to blunted muscle capacity to oxidize fatty acids. Fat infiltration is also associated with muscle fibre typology modification, decrease in muscle mass and impairments in muscle strength. Thus, as a result of obesity, mobility and quality of life are affected, and this is in part due to quantitative and qualitative impairments in skeletal muscle. In addition, the insulin resistance related to obesity results not only in defective insulin-stimulated glucose disposal but has also detrimental consequences on protein metabolism at the skeletal muscle level and whole-body level. This review highlights the involvement of fat accumulation and insulin resistance in metabolic disorders occurring in skeletal muscle during the development of obesity, and the impairments in the regulation of protein metabolism and protein turnover in the links between obesity, metabolic inflammation and insulin resistance. PMID:23107259

  2. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins

    PubMed Central

    Schorch, Björn; Song, Shuo; van Diemen, Ferdy R.; Bock, Hans H.; May, Petra; Herz, Joachim; Brummelkamp, Thijn R.; Papatheodorou, Panagiotis; Aktories, Klaus

    2014-01-01

    Large glycosylating toxins are major virulence factors of various species of pathogenic Clostridia. Prototypes are Clostridium difficile toxins A and B, which cause antibiotics-associated diarrhea and pseudomembranous colitis. The current model of the toxins’ action suggests that receptor binding is mediated by a C-terminal domain of combined repetitive oligopeptides (CROP). This model is challenged by the glycosylating Clostridium perfringens large cytotoxin (TpeL toxin) that is devoid of the CROP domain but still intoxicates cells. Using a haploid genetic screen, we identified LDL receptor-related protein 1 (LRP1) as a host cell receptor for the TpeL toxin. LRP1-deficient cells are not able to take up TpeL and are not intoxicated. Expression of cluster IV of LRP1 is sufficient to rescue toxin uptake in these cells. By plasmon resonance spectroscopy, a KD value of 23 nM was determined for binding of TpeL to LRP1 cluster IV. The C terminus of TpeL (residues 1335–1779) represents the receptor-binding domain (RBD) of the toxin. RBD-like regions are conserved in all other clostridial glycosylating toxins preceding their CROP domain. CROP-deficient C. difficile toxin B is toxic to cells, depending on the RBD-like region (residues 1349–1811) but does not interact with LRP1. Our data indicate the presence of a second, CROP-independent receptor-binding domain in clostridial glycosylating toxins and suggest a two-receptor model for the cellular uptake of clostridial glycosylating toxins. PMID:24737893

  3. Marine natural products as breast cancer resistance protein inhibitors.

    PubMed

    Cherigo, Lilia; Lopez, Dioxelis; Martinez-Luis, Sergio

    2015-04-01

    Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters. PMID:25854646

  4. Marine Natural Products as Breast Cancer Resistance Protein Inhibitors

    PubMed Central

    Cherigo, Lilia; Lopez, Dioxelis; Martinez-Luis, Sergio

    2015-01-01

    Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters. PMID:25854646

  5. Structural Basis of Protein Oxidation Resistance: A Lysozyme Study

    PubMed Central

    Girod, Marion; Enjalbert, Quentin; Brunet, Claire; Antoine, Rodolphe; Lemoine, Jérôme; Lukac, Iva; Radman, Miroslav; Krisko, Anita; Dugourd, Philippe

    2014-01-01

    Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD) simulations, we find the protein parts with increased root-mean-square deviation (RMSD) to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation. PMID:24999730

  6. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein.

    PubMed

    Szczypka, M S; Wemmie, J A; Moye-Rowley, W S; Thiele, D J

    1994-09-01

    Members of the ATP binding cassette (ABC) protein superfamily transport a variety of substances across biological membranes, including drugs, ions, and peptides. The yeast cadmium factor (YCF1) gene from Saccharomyces cerevisiae is required for cadmium resistance and encodes a 1,515 amino acid protein with extensive homology to both the human multidrug resistance-associated protein (MRP1) and the cystic fibrosis transmembrane conductance regulator (hCFTR). S. cerevisiae cells harboring a deletion of the YCF1 gene are hypersensitive to cadmium compared with wild type cells. Mutagenesis experiments demonstrate that conserved amino acid residues, functionally critical in hCFTR, play a vital role in YCF1-mediated cadmium resistance. Mutagenesis of phenylalanine 713 in the YCF1 nucleotide binding fold 1, which correlates with the delta F508 mutation found in the most common form of cystic fibrosis, completely abolished YCF1 function in cadmium detoxification. Furthermore, substitution of a serine to alanine residue in a potential protein kinase A phosphorylation site in a central region of YCF1, which displays sequence similarity to the central regulatory domain of hCFTR, also rendered YCF1 nonfunctional. These results suggest that YCF1 is composed of modular domains found in human proteins which function in drug and ion transport. PMID:7521334

  7. Wnt Coreceptor Lrp5 Is a Driver of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Lam, Anna P.; Herazo-Maya, Jose D.; Sennello, Joseph A.; Flozak, Annette S.; Russell, Susan; Mutlu, Gökhan M.; Budinger, G. R. Scott; DasGupta, Ramanuj; Varga, John; Kaminski, Naftali

    2014-01-01

    Rationale: Wnt/β-catenin signaling has been implicated in lung fibrosis, but how this occurs and whether expression changes in Wnt pathway components predict disease progression is unknown. Objectives: To determine whether the Wnt coreceptor Lrp5 drives pulmonary fibrosis in mice and is predictive of disease severity in humans. Methods: We examined mice with impaired Wnt signaling caused by loss of the Wnt coreceptor Lrp5 in models of lung fibrosis induced by bleomycin or an adenovirus encoding an active form of transforming growth factor (TGF)-β. We also analyzed gene expression in peripheral blood mononuclear cells (PBMC) from patients with idiopathic pulmonary fibrosis (IPF). Measurements and Main Results: In patients with IPF, analysis of peripheral blood mononuclear cells revealed that elevation of positive regulators, Lrp5 and 6, was independently associated with disease progression. LRP5 was also associated with disease severity at presentation in an additional cohort of patients with IPF. Lrp5 null mice were protected against bleomycin-induced pulmonary fibrosis, an effect that was phenocopied by direct inhibition of β-catenin signaling by the small molecular inhibitor of β-catenin responsive transcription. Transplantation of Lrp5 null bone marrow cells into wild-type mice did not limit fibrosis. Instead, Lrp5 loss was associated with reduced TGF-β production by alveolar type 2 cells and leukocytes. Consistent with a role of Lrp5 in the activation of TGF-β, Lrp5 null mice were not protected against lung fibrosis induced by TGF-β. Conclusions: We show that the Wnt coreceptor, Lrp5, is a genetic driver of lung fibrosis in mice and a marker of disease progression and severity in humans with IPF. Evidence that TGF-β signaling can override a loss in Lrp5 has implications for patient selection and timing of Wnt pathway inhibitors in lung fibrosis. PMID:24921217

  8. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  9. Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast

    PubMed Central

    Frey, Julie L.; Li, Zhu; Ellis, Jessica M.; Zhang, Qian; Farber, Charles R.; Aja, Susan; Wolfgang, Michael J.; Clemens, Thomas L.

    2015-01-01

    The Wnt coreceptors Lrp5 and Lrp6 are essential for normal postnatal bone accrual and osteoblast function. In this study, we identify a previously unrecognized skeletal function unique to Lrp5 that enables osteoblasts to oxidize fatty acids. Mice lacking the Lrp5 coreceptor specifically in osteoblasts and osteocytes exhibit the expected reductions in postnatal bone mass but also exhibit an increase in body fat with corresponding reductions in energy expenditure. Conversely, mice expressing a high bone mass mutant Lrp5 allele are leaner with reduced plasma triglyceride and free fatty acid levels. In this context, Wnt-initiated signals downstream of Lrp5, but not the closely related Lrp6 coreceptor, regulate the activation of β-catenin and thereby induce the expression of key enzymes required for fatty acid β-oxidation. These results suggest that Wnt-Lrp5 signaling regulates basic cellular activities beyond those associated with fate specification and differentiation in bone and that the skeleton influences global energy homeostasis via mechanisms independent of osteocalcin and glucose metabolism. PMID:25802278

  10. 42 CFR 68.15 - When can an NIH LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false When can an NIH LRP payment obligation be... HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) LOAN REPAYMENT PROGRAMS (LRPs) § 68.15 When can an NIH LRP payment obligation be discharged in bankruptcy? Any...

  11. 42 CFR 68.15 - When can an NIH LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false When can an NIH LRP payment obligation be... HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) LOAN REPAYMENT PROGRAMS (LRPs) § 68.15 When can an NIH LRP payment obligation be discharged in bankruptcy? Any...

  12. Functional Characterization of a Small-Molecule Inhibitor of the DKK1-LRP6 Interaction

    PubMed Central

    Iozzi, Sara; Remelli, Rosaria; Lelli, Barbara; Diamanti, Daniela; Pileri, Silvia; Bracci, Luisa; Roncarati, Renza; Caricasole, Andrea; Bernocco, Simonetta

    2012-01-01

    Background. DKK1 antagonizes canonical Wnt signalling through high-affinity binding to LRP5/6, an essential component of the Wnt receptor complex responsible for mediating downstream canonical Wnt signalling. DKK1 overexpression is known for its pathological implications in osteoporosis, cancer, and neurodegeneration, suggesting the interaction with LRP5/6 as a potential therapeutic target. Results. We show that the small-molecule NCI8642 can efficiently displace DKK1 from LRP6 and block DKK1 inhibitory activity on canonical Wnt signalling, as shown in binding and cellular assays, respectively. We further characterize NCI8642 binding activity on LRP6 by Surface Plasmon Resonance (SPR) technology. Conclusions. This study demonstrates that the DKK1-LRP6 interaction can be the target of small molecules and unlocks the possibility of new therapeutic tools for diseases associated with DKK1 dysregulation. PMID:27398238

  13. Lipoprotein Receptor LRP1 Regulates Leptin Signaling and Energy Homeostasis in the Adult Central Nervous System

    PubMed Central

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J.; Herz, Joachim; Muglia, Louis J.; Bu, Guojun

    2011-01-01

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system. PMID:21264353

  14. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  15. The Effects and Mechanisms of Periplaneta americana Extract Reversal of Multi-Drug Resistance in BEL-7402/5-FU Cells.

    PubMed

    Yuan, Falu; Liu, Junyong; Qiao, Tingting; Li, Ting; Shen, Qi; Peng, Fang

    2016-01-01

    The present study reports the reversing effects of extracts from P. americana on multidrug resistance of BEL-7402/5-FU cells, as well as a preliminary investigation on their mechanism of action. A methylthiazolyl tetrazolium (MTT) method was applied to determine the multidrug resistance of BEL-7402/5-FU, while an intracellular drug accumulation assay was used to evaluate the effects of a column chromatography extract (PACC) and defatted extract (PADF) from P. americana on reversing multi-drug resistance. BEL-7402/5-FU reflected high resistance to 5-FU; PACC and PADF could promote drug accumulation in BEL-7402/5-FU cells, among which PADF was more effective than PACC. Moreover, results from the immunocytochemical method showed that PACC and PADF could downregulate the expression of drug resistance-associated proteins (P-gp, MRP, LRP); PACC and PADF had no effects on the expression of multidrug resistance-associated enzymes (GST-π), but PACC could increase the expression of multidrug resistance-associated enzymes (PKC). Results of real-time fluorescence quantitative PCR revealed that PACC and PADF were able to markedly inhibit the expression of multidrug resistance-associated genes (MDR1, LRP and MRP1); PACC presented a significant impact on the gene expression of multidrug resistance-associated enzymes, which increased the gene expression of GST-π and PKC. However, PADF had little impact on the expression of multidrug resistance-associated enzymes. These results demonstrated that PACC and PADF extracted from P. americana could effectively reverse MDR in BEL-7402/5-FU cells, whose mechanism was to inhibit the expression of P-gp, MRP, and LRP, and that PADF was more effective in the reversal of MDR than did PACC. In addition, some of extracts from P. americana altered (sometimes increasing) the expression of multidrug resistance-associated enzymes. PMID:27367657

  16. Functional interactions between the LRP6 WNT co-receptor and folate supplementation.

    PubMed

    Gray, Jason D; Nakouzi, Ghunwa; Slowinska-Castaldo, Bozena; Dazard, Jean-Eudes; Rao, J Sunil; Nadeau, Joseph H; Ross, M Elizabeth

    2010-12-01

    Crooked tail (Cd) mice bear a gain-of-function mutation in Lrp6, a co-receptor for canonical WNT signaling, and are a model of neural tube defects (NTDs), preventable with dietary folic acid (FA) supplementation. Whether the FA response reflects a direct influence of FA on LRP6 function was tested with prenatal supplementation in LRP6-deficient embryos. The enriched FA (10 ppm) diet reduced the occurrence of birth defects among all litters compared with the control (2 ppm FA) diet, but did so by increasing early lethality of Lrp6(-/-) embryos while actually increasing NTDs among nulls alive at embryonic days 10-13 (E10-13). Proliferation in cranial neural folds was reduced in homozygous Lrp6(-/-) mutants versus wild-type embryos at E10, and FA supplementation increased proliferation in wild-type but not mutant neuroepithelia. Canonical WNT activity was reduced in LRP6-deficient midbrain-hindbrain at E9.5, demonstrated in vivo by a TCF/LEF-reporter transgene. FA levels in media modulated the canonical WNT response in NIH3T3 cells, suggesting that although FA was required for optimal WNT signaling, even modest FA elevations attenuated LRP5/6-dependent canonical WNT responses. Gene expression analysis in embryos and adults showed striking interactions between targeted Lrp6 deficiency and FA supplementation, especially for mitochondrial function, folate and methionine metabolism, WNT signaling and cytoskeletal regulation that together implicate relevant signaling and metabolic pathways supporting cell proliferation, morphology and differentiation. We propose that FA supplementation rescues Lrp6(Cd/Cd) fetuses by normalizing hyperactive WNT activity, whereas in LRP6-deficient embryos, added FA further attenuates reduced WNT activity, thereby compromising development. PMID:20843827

  17. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    PubMed Central

    2010-01-01

    Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp)-homologues. The function of two of them, Irp (OE3923F) and lrpA1 (OE2621R), were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3. PMID:20509863

  18. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis.

    PubMed

    Shen, Chengyong; Lu, Yisheng; Zhang, Bin; Figueiredo, Dwight; Bean, Jonathan; Jung, Jiung; Wu, Haitao; Barik, Arnab; Yin, Dong-Min; Xiong, Wen-Cheng; Mei, Lin

    2013-12-01

    Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood. PMID:24200689

  19. Antibodies against low-density lipoprotein receptor–related protein 4 induce myasthenia gravis

    PubMed Central

    Shen, Chengyong; Lu, Yisheng; Zhang, Bin; Figueiredo, Dwight; Bean, Jonathan; Jung, Jiung; Wu, Haitao; Barik, Arnab; Yin, Dong-Min; Xiong, Wen-Cheng; Mei, Lin

    2013-01-01

    Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor–related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood. PMID:24200689

  20. Nuclear export of proteins and drug resistance in cancer

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Sullivan, Daniel M.

    2015-01-01

    The intracellular location of a protein is crucial to its normal functioning in a cell. Cancer cells utilize the normal processes of nuclear-cytoplasmic transport through the nuclear pore complex of a cell to effectively evade anti-neoplastic mechanisms. CRM1-mediated export is increased in various cancers. Proteins that are exported in cancer include tumor-suppressive proteins such as retinoblastoma, APC, p53, BRAC1, FOXO proteins, INI1/hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, p21CIP, p27KIP1, N-WASP/FAK, estradiol receptor and Tob, drug targets topoisomerase I and IIα and BCR-ABL, and the molecular chaperone protein Hsp90. Here, we review in detail the current processes and known structures involved in the export of a protein through the nuclear pore complex. We also discuss the export receptor molecule CRM1 and its binding to the leucine-rich nuclear export signal of the cargo protein and the formation of a nuclear export trimer with RanGTP. The therapeutic potential of various CRM1 inhibitors will be addressed, including leptomycin B, ratjadone, KOS-2464, and specific small molecule inhibitors of CRM1, N-azolylacrylate analogs, FOXO export inhibitors, valtrate, acetoxychavicol acetate, CBS9106, and SINE inhibitors. We will also discuss examples of how drug resistance may be reversed by targeting the exported proteins topoisomerase IIα, BCR-ABL, and galectin-3. As effective and less toxic CRM1 export inhibitors become available, they may be used as both single agents and in combination with current chemotherapeutic drugs. We believe that the future development of low-toxicity, small-molecule CRM1 inhibitors may provide a new approach to treating cancer. PMID:22209898

  1. Mutagenesis Mapping of the Protein-Protein Interaction Underlying FusB-Type Fusidic Acid Resistance

    PubMed Central

    Cox, Georgina; Edwards, Thomas A.

    2013-01-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB–EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  2. Mutagenesis mapping of the protein-protein interaction underlying FusB-type fusidic acid resistance.

    PubMed

    Cox, Georgina; Edwards, Thomas A; O'Neill, Alex J

    2013-10-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB-EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  3. Protein Carbonylation, Mitochondrial Dysfunction, and Insulin Resistance123

    PubMed Central

    Frohnert, Brigitte I.; Bernlohr, David A.

    2013-01-01

    Oxidative stress has been identified as a common mechanism for cellular damage and dysfunction in a wide variety of disease states. Current understanding of the metabolic changes associated with obesity and the development of insulin resistance has focused on the role of oxidative stress and its interaction with inflammatory processes at both the tissue and organismal level. Obesity-related oxidative stress is an important contributing factor in the development of insulin resistance in the adipocyte as well as the myocyte. Moreover, oxidative stress has been linked to mitochondrial dysfunction, and this is thought to play a role in the metabolic defects associated with oxidative stress. Of the various effects of oxidative stress, protein carbonylation has been identified as a potential mechanism underlying mitochondrial dysfunction. As such, this review focuses on the relationship between protein carbonylation and mitochondrial biology and addresses those features that point to either the causal or casual relationship of lipid peroxidation–induced protein carbonylation as a determining factor in mitochondrial dysfunction. PMID:23493532

  4. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?

    PubMed Central

    Giner-Lamia, Joaquín; Pereira, Sara B.; Bovea-Marco, Miquel; Futschik, Matthias E.; Tamagnini, Paula; Oliveira, Paulo

    2016-01-01

    Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  5. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the C-­terminal domain of Ss-LrpB, a transcription regulator from Sulfolobus solfataricus

    PubMed Central

    Peeters, Eveline; Hoa, Bach Thi Mai; Zegers, Ingrid; Charlier, Daniel; Maes, Dominique

    2005-01-01

    Ss-LrpB from Sulfolobus solfataricus P2 belongs to the bacterial/archaeal superfamily of Lrp-like (leucine-responsive regulatory protein-like) transcription regulators. The N-terminal DNA-binding domain contains a HTH motif and the C-terminal domain contains an αβ-sandwich (βαββαβ fold). The C-­terminal domain was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P21212, with unit-cell parameters a = 59.35, b = 74.86, c = 38.08 Å and a data set was collected to 2.0 Å resolution. Structure determination using a selenomethionine derivative is under way. PMID:16511214

  6. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    PubMed Central

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  7. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan

    PubMed Central

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Zebisch, Matthias; Harlos, Karl; Elegheert, Jonathan; Jones, E Yvonne

    2015-01-01

    Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling. DOI: http://dx.doi.org/10.7554/eLife.06554.001 PMID:26158506

  8. Multidrug resistance-associated protein 4 is a determinant of arsenite resistance.

    PubMed

    Yuan, Bo; Yoshino, Yuta; Fukushima, Hisayo; Markova, Svetlana; Takagi, Norio; Toyoda, Hiroo; Kroetz, Deanna L

    2016-01-01

    Although arsenic trioxide (arsenite, As(III)) has shown a remarkable efficacy in the treatment of acute promyelocytic leukemia patients, multidrug resistance is still a major concern for its clinical use. Multidrug resistance-associated protein 4 (MRP4), which belongs to the ATP-binding cassette (ABC) superfamily of transporters, is localized to the basolateral membrane of hepatocytes and the apical membrane of renal proximal tubule cells. Due to its characteristic localization, MRP4 is proposed as a candidate in the elimination of arsenic and may contribute to resistance to As(III). To test this hypothesis, stable HEK293 cells overexpressing MRP4 or MRP2 were used to establish the role of these two transporters in As(III) resistance. The IC50 values of As(III) in MRP4 cells were approximately 6-fold higher than those in MRP2 cells, supporting an important role for MRP4 in resistance to As(III). The capacity of MRP4 to confer resistance to As(III) was further confirmed by a dramatic decrease in the IC50 values with the addition of MK571, an MRP4 inhibitor, and cyclosporine A, a well-known broad-spectrum inhibitor of ABC transporters. Surprisingly, the sensitivity of the MRP2 cells to As(III) was similar to that of the parent cells, although insufficient formation of glutathione and/or Se conjugated arsenic compounds in the MRP2 cells might limit transport. Given that MRP4 is a major contributor to arsenic resistance in vitro, further investigation into the correlation between MRP4 expression and treatment outcome of leukemia patients treated with arsenic-based regimens is warranted. PMID:26497925

  9. Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation

    PubMed Central

    Wu, Haitao; Lu, Yisheng; Shen, Chengyong; Patel, Neil; Gan, Lin; Xiong, Wen C.; Mei, Lin

    2012-01-01

    SUMMARY Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act incis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of co-cultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin’s receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development. PMID:22794264

  10. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation.

    PubMed

    Wu, Haitao; Lu, Yisheng; Shen, Chengyong; Patel, Neil; Gan, Lin; Xiong, Wen C; Mei, Lin

    2012-07-12

    Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act in cis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of cocultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin's receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development. PMID:22794264

  11. Protein Kinase Cα Mediates Erlotinib Resistance in Lung Cancer Cells

    PubMed Central

    Abera, Mahlet B.

    2015-01-01

    Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non–small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment. PMID:25724832

  12. Protein kinase Cα mediates erlotinib resistance in lung cancer cells.

    PubMed

    Abera, Mahlet B; Kazanietz, Marcelo G

    2015-05-01

    Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment. PMID:25724832

  13. Convergent multi-miRNA Targeting of ApoE Drives LRP1/LRP8-Dependent Melanoma Metastasis and Angiogenesis

    PubMed Central

    Pencheva, Nora; Tran, Hien; Buss, Colin; Huh, Doowon; Drobnjak, Marija; Busam, Klaus; Tavazoie, Sohail F.

    2013-01-01

    SUMMARY Through in-vivo selection of human cancer cell populations, we uncover a convergent and cooperative miRNA network that drives melanoma metastasis. We identify miR-1908, miR-199a-5p, and miR-199a-3p as endogenous promoters of metastatic invasion, angiogenesis, and colonization in melanoma. These miRNAs convergently target Apolipoprotein E (ApoE) and the heat-shock factor DNAJA4. Cancer-secreted ApoE suppresses invasion and metastatic endothelial recruitment (MER) by engaging melanoma-cell LRP1 and endothelial-cell LRP8 receptors, respectively–while DNAJA4 promotes ApoE expression. Expression levels of these miRNAs and ApoE correlate with human metastatic progression outcomes. Treatment of cells with locked nucleic acids (LNAs) targeting these miRNAs inhibits metastasis to multiple organs, while therapeutic delivery of these LNAs strongly suppresses melanoma metastasis. We thus identify miRNAs with dual cell-intrinsic/cell-extrinsic roles in cancer, reveal convergent cooperativity in a metastatic miRNA network, identify ApoE as an anti-angiogenic and metastasis-suppressive factor, and uncover multiple prognostic miRNAs with synergistic combinatorial therapeutic potential in melanoma. PMID:23142051

  14. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis.

    PubMed

    Pencheva, Nora; Tran, Hien; Buss, Colin; Huh, Doowon; Drobnjak, Marija; Busam, Klaus; Tavazoie, Sohail F

    2012-11-21

    Through in vivo selection of human cancer cell populations, we uncover a convergent and cooperative miRNA network that drives melanoma metastasis. We identify miR-1908, miR-199a-5p, and miR-199a-3p as endogenous promoters of metastatic invasion, angiogenesis, and colonization in melanoma. These miRNAs convergently target apolipoprotein E (ApoE) and the heat shock factor DNAJA4. Cancer-secreted ApoE suppresses invasion and metastatic endothelial recruitment (MER) by engaging melanoma cell LRP1 and endothelial cell LRP8 receptors, respectively, while DNAJA4 promotes ApoE expression. Expression levels of these miRNAs and ApoE correlate with human metastatic progression outcomes. Treatment of cells with locked nucleic acids (LNAs) targeting these miRNAs inhibits metastasis to multiple organs, and therapeutic delivery of these LNAs strongly suppresses melanoma metastasis. We thus identify miRNAs with dual cell-intrinsic/cell-extrinsic roles in cancer, reveal convergent cooperativity in a metastatic miRNA network, identify ApoE as an anti-angiogenic and metastasis-suppressive factor, and uncover multiple prognostic miRNAs with synergistic combinatorial therapeutic potential in melanoma. PMID:23142051

  15. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver.

    PubMed Central

    Lund, H; Takahashi, K; Hamilton, R L; Havel, R J

    1989-01-01

    The high affinity of 45Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellular distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. Weaker ligand-blotting properties and an extraordinary susceptibility to proteolysis most likely contribute to the difficulty of detecting LRP in conventional assays for lipoprotein receptors. Our data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism. Images PMID:2594771

  16. Aerobic Exercise Recovers Disuse-induced Atrophy Through the Stimulus of the LRP130/PGC-1α Complex in Aged Rats.

    PubMed

    Vechetti-Junior, Ivan J; Bertaglia, Raquel S; Fernandez, Geysson J; de Paula, Tassiana G; de Souza, Rodrigo W A; Moraes, Leonardo N; Mareco, Edson A; de Freitas, Carlos E A; Aguiar, Andreo F; Carvalho, Robson F; Dal-Pai-Silva, Maeli

    2016-05-01

    Physical training has been shown to be important to the control of muscle mass during aging, through the activation of several pathways including, IGF1-AKT and PGC-1α. Also, it was demonstrated that LRP130, a component of the PGC-1α complex, is important for the PGC-1α-dependent transcription of several mitochondrial genes in vivo. To explore the role of physical training during aging, we investigated the effects on muscle recovery after short-term immobilization followed by 3 or 7 days with aerobic or resistance training. Using morphological (myofibrillar adenosine triphosphatase activity, to assess the total muscle fiber cross-sectional area (CSA) and the frequency of specific fiber types), biochemical (myosin heavy chain), and molecular analyses (quantitative real-time PCR, functional pathways analyses, and Western blot), our results indicated that after an atrophic stimulus, only animals subjected to aerobic training showed entire recovery of cross-sectional area; aerobic training reduced the ubiquitin-proteasome system components involved in muscle atrophy after 3 days of recovery, and the upregulation in PGC-1α expression enhanced the process of muscle recovery by inhibiting the FoxO pathway, with the possible involvement of LRP130. These results suggest that aerobic training enhanced the muscle regeneration process after disuse-induced atrophy in aged rats possibly through of the LRP130/PGC-1α complex by inhibiting the ubiquitin-proteasome system. PMID:25991827

  17. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System

    PubMed Central

    Auderset, Loic; Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation–where expression levels are much higher. PMID:27280679

  18. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System.

    PubMed

    Auderset, Loic; Cullen, Carlie L; Young, Kaylene M

    2016-01-01

    The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation-where expression levels are much higher. PMID:27280679

  19. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    SciTech Connect

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  20. β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "noncanonical" WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency.

    PubMed

    Ring, Larisa; Neth, Peter; Weber, Christian; Steffens, Sabine; Faussner, Alexander

    2014-02-01

    The WNT/β-catenin signalling cascade is the best-investigated frizzled receptor (FZD) pathway, however, whether and how specific combinations of WNT/FZD and co-receptors LRP5 and LRP6 differentially affect this pathway are not well understood. This is mostly due to the fact that there are 19 WNTs, 10 FZDs and at least two co-receptors. In our attempt to identify the signalling capabilities of specific WNT/FZD/LRP combinations we made use of our previously reported TCF/LEF Gaussia luciferase reporter gene HEK293 cell line (Ring et al., 2011). Generation of WNT/FZD fusion constructs - but not their separate transfection - without or with additional isogenic overexpression of LRP5 and LRP6 in our reporter cells permitted the investigation of specific WNT/FZD/LRP combinations. The canonical WNT3a in fusion to almost all FZDs was able to induce β-catenin-dependent signalling with strong dependency on LRP6 but not LRP5. Interestingly, noncanonical WNT ligands, WNT4 and WNT5a, were also able to act "canonically" but only in fusion with specific FZDs and with selective dependence on LRP5 or LRP6. These data and extension of this experimental setup to the poorly characterized other WNTs should facilitate deeper insight into the complex WNT/FZD signalling system and its function. PMID:24269653

  1. Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance

    PubMed Central

    Natarajan, Karthika; Xie, Yi; Baer, Maria R.; Ross, Douglas D.

    2012-01-01

    Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed “side population cells,” which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the “side population” phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. PMID:22248732

  2. Protease-resistant prions selectively decrease Shadoo protein.

    PubMed

    Watts, Joel C; Stöhr, Jan; Bhardwaj, Sumita; Wille, Holger; Oehler, Abby; Dearmond, Stephen J; Giles, Kurt; Prusiner, Stanley B

    2011-11-01

    The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease. PMID:22163178

  3. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

    PubMed Central

    Areta, José L; Burke, Louise M; Ross, Megan L; Camera, Donny M; West, Daniel W D; Broad, Elizabeth M; Jeacocke, Nikki A; Moore, Daniel R; Stellingwerff, Trent; Phillips, Stuart M; Hawley, John A; Coffey, Vernon G

    2013-01-01

    Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n= 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-13C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1–12 h recovery (88–148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31–48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass. PMID:23459753

  4. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?

    PubMed

    Giner-Lamia, Joaquín; Pereira, Sara B; Bovea-Marco, Miquel; Futschik, Matthias E; Tamagnini, Paula; Oliveira, Paulo

    2016-01-01

    Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria. PMID:27375598

  5. Urotensin II inhibited the proliferation of cardiac side population cells in mice during pressure overload by JNK-LRP6 signalling

    PubMed Central

    Chen, Zhidan; Xu, Jiahong; Ye, Yong; Li, Yang; Gong, Hui; Zhang, Guoping; Wu, Jian; jia, Jianguo; Liu, Ming; Chen, Ying; Yang, Chunjie; Tang, Yu; Zhu, Yichun; Ge, Junbo; Zou, Yunzeng

    2014-01-01

    Cardiac side population cells (CSPs) are promising cell resource for the regeneration in diseased heart as intrinsic cardiac stem cells. However, the relative low ratio of CSPs in the heart limited the ability of CSPs to repair heart and improve cardiac function effectively under pathophysiological condition. Which factors limiting the proliferation of CSPs in diseased heart are unclear. Here, we show that urotensin II (UII) regulates the proliferation of CSPs by c-Jun N-terminal kinase (JNK) and low density lipoprotein receptor-related protein 6 (LRP6) signalling during pressure overload. Pressure overload greatly upregulated UII level in plasma, UII receptor (UT) antagonist, urantide, promoted CSPs proliferation and improved cardiac dysfunction during chronic pressure overload. In cultured CSPs subjected to mechanical stretch (MS), UII significantly inhibited the proliferation by UT. Nanofluidic proteomic immunoassay showed that it is the JNK activation, but not the extracellular signal-regulated kinase signalling, that involved in the UII-inhibited- proliferation of CSPs during pressure overload. Further analysis in vitro indicated UII-induced-phospho-JNK regulates phosphorylation of LRP6 in cultured CSPs after MS, which is important in the inhibitory effect of UII on the CSPs during pressure overload. In conclusion, UII inhibited the proliferation of CSPs by JNK/LRP6 signalling during pressure overload. Pharmacological inhibition of UII promotes CSPs proliferation in mice, offering a possible therapeutic approach for cardiac failure induced by pressure overload. PMID:24447593

  6. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of Ss-LrpB, a transcription regulator from Sulfolobus solfataricus

    SciTech Connect

    Peeters, Eveline; Hoa, Bach Thi Mai; Zegers, Ingrid; Charlier, Daniel; Maes, Dominique

    2005-11-01

    The C-terminal domain of the transcriptional regulator Ss-LrpB from S. solfataricus was purified by affinity chromatography and crystallized. Crystals belong to space group P2{sub 1}2{sub 1}2. A complete data set was collected to a resolution of 2 Å. Ss-LrpB from Sulfolobus solfataricus P2 belongs to the bacterial/archaeal superfamily of Lrp-like (leucine-responsive regulatory protein-like) transcription regulators. The N-terminal DNA-binding domain contains a HTH motif and the C-terminal domain contains an αβ-sandwich (βαββαβ fold). The C-terminal domain was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 59.35, b = 74.86, c = 38.08 Å and a data set was collected to 2.0 Å resolution. Structure determination using a selenomethionine derivative is under way.

  7. REST alleviates neurotoxic prion peptide-induced synaptic abnormalities, neurofibrillary degeneration and neuronal death partially via LRP6-mediated Wnt-β-catenin signaling

    PubMed Central

    Song, Zhiqi; Zhu, Ting; Zhou, Xiangmei; Barrow, Paul; Yang, Wei; Cui, Yongyong; Yang, Lifeng; Zhao, Deming

    2016-01-01

    Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks including synaptic damage, spongiform degeneration and neuronal death. The factors and mechanisms that maintain cellular morphological integrity and protect against neurodegeneration in prion diseases are still unclear. Here we report that after stimulation with the neurotoxic PrP106-126 fragment in primary cortical neurons, REST translocates from the cytoplasm to the nucleus and protects neurons from harmful effects of PrP106-126. Overexpression of REST reduces pathological damage and abnormal biochemical alterations of neurons induced by PrP106-126 and maintains neuronal viability by stabilizing the level of pro-survival protein FOXO1 and inhibiting the permeability of the mitochondrial outer membrane, release of cytochrome c from mitochondria to cytoplasm and the activation of Capase3. Conversely, knockdown of REST exacerbates morphological damage and inhibits the expression of FOXO1. Additionally, by overexpression or knockdown of LRP6, we further show that LRP6-mediated Wnt-β-catenin signaling partly regulates the expression of REST. Collectively, we demonstrate for the first time novel neuroprotective function of REST in prion diseases and hypothesise that the LRP6-Wnt-β-catenin/REST signaling plays critical and collaborative roles in neuroprotection. This signaling of neuronal survival regulation could be explored as a viable therapeutic target for prion diseases and associated neurodegenerative diseases. PMID:26919115

  8. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations

    PubMed Central

    Pielot, Rainer; Smalla, Karl-Heinz; Müller, Anke; Landgraf, Peter; Lehmann, Anne-Christin; Eisenschmidt, Elke; Haus, Utz-Uwe; Weismantel, Robert; Gundelfinger, Eckart D.; Dieterich, Daniela C.

    2012-01-01

    Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design. PMID:22737123

  9. Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution.

    PubMed

    Remédio, Leonor; Gribble, Katherine D; Lee, Jennifer K; Kim, Natalie; Hallock, Peter T; Delestrée, Nicolas; Mentis, George Z; Froemke, Robert C; Granato, Michael; Burden, Steven J

    2016-05-01

    Motor axons approach muscles that are prepatterned in the prospective synaptic region. In mice, prepatterning of acetylcholine receptors requires Lrp4, a LDLR family member, and MuSK, a receptor tyrosine kinase. Lrp4 can bind and stimulate MuSK, strongly suggesting that association between Lrp4 and MuSK, independent of additional ligands, initiates prepatterning in mice. In zebrafish, Wnts, which bind the Frizzled (Fz)-like domain in MuSK, are required for prepatterning, suggesting that Wnts may contribute to prepatterning and neuromuscular development in mammals. We show that prepatterning in mice requires Lrp4 but not the MuSK Fz-like domain. In contrast, prepatterning in zebrafish requires the MuSK Fz-like domain but not Lrp4. Despite these differences, neuromuscular synapse formation in zebrafish and mice share similar mechanisms, requiring Lrp4, MuSK, and neuronal Agrin but not the MuSK Fz-like domain or Wnt production from muscle. Our findings demonstrate that evolutionary divergent mechanisms establish muscle prepatterning in zebrafish and mice. PMID:27151977

  10. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    PubMed

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  11. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    PubMed Central

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; Sherman, David H.; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  12. Role of C Reactive Protein (CRP) in Leptin Resistance

    PubMed Central

    Hribal, Marta Letizia; Fiorentino, Teresa Vanessa; Sesti, Giorgio

    2014-01-01

    Increased plasma levels of both leptin and C reactive protein (CRP) have been reported in a number of conditions, including obesity, and have been linked to cardiovascular pathophysiological processes and increased cardiovascular risk; interestingly these two biomarkers appear to be able to reciprocally regulate their bioavailability, through complex mechanisms that have not been completely clarified yet. Here we first review clinical evidence suggesting not only that the circulatory levels of CRP and leptin show an independent correlation, but also that assessing them in tandem may result in an increased ability to predict cardiovascular disease. We summarize also molecular studies showing that leptin is able to promote CRP production from hepatocytes and endothelial cells in vitro and discuss the studies addressing the possibility that in vivo leptin administration may be able to modulate plasma CRP levels. Furthermore, we describe two studies demonstrating that CRP directly binds leptin in extra-cellular settings, thus impairing its biological actions. Finally we report genetic evidence that common variations at the leptin receptor locus are associated with CRP blood levels. Overall, the data reviewed here show that the chronic elevation of CRP observed in obese subjects may worsen leptin resistance, contributing to the pathogenesis of cardiovascular disease, and highlight a potential link between conditions, such as leptin resistance and endothelial dysfunction, that may be amenable of pharmacological treatment targeted to the disruption of leptin-CRP interaction. PMID:23688010

  13. Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers.

    PubMed

    Wang, Yupeng; Yan, Lesan; Li, Bin; Qi, Yanxin; Xie, Zhigang; Jing, Xiabin; Chen, Xuesi; Huang, Yubin

    2015-09-01

    The protein adsorption and self-assembly behavior of biocompatible graft copolymer, poly(lactide-co-diazidomethyl trimethylene carbonate)-g-poly(ethylene glycol) [P(LA-co-DAC)-g-PEG], were systematically studied. The graft copolymers showed enhanced resistance to non-specific protein adsorption compared with their block copolymer counterparts, indicative of the increased effect of PEG density beyond PEG length. Diverse nanostructures including vesicles can be assembled from the amphiphilic graft copolymers with well-defined nano-sizes. Hemoglobin (Hb), as a model protein, can be entrapped in the formed vesicles and keep the gas-binding capacity. The reduced release rate of Hb from graft copolymer vesicles indicated the relatively stable membrane packing compared with block copolymer counterpart. PMID:26036907

  14. HIV-1 Tat Protein Enhances Expression and Function of Breast Cancer Resistance Protein.

    PubMed

    Zhou, Yancong; Zhang, Kun; Yin, Xiaojie; Nie, Qichang; Ma, Yonggang

    2016-01-01

    ATP binding cassette (ABC) transporters can transfer a variety of antiviral agents from the cytoplasm to body fluid, which results in a reduced intracellular concentration of the drugs. Proteins of HIV-1, e.g., Tat and gp120, altered some types of ABC transporter expression in brain microvascular endothelial cells and astrocytes. However, the effect of Tat on ABC transporters in T lymphocytes is unclear. In this study the status of breast cancer resistance protein (BCRP) in Tat expressing cell lines was examined with real-time PCR and flow cytometry. It was found that HIV-1 Tat protein upregulated BCRP expression and enhanced efflux mediated by BCRP significantly, which could inhibit antiviral drugs from entering infected cells and interfere with the therapeutic effect of HAART. PMID:26367065

  15. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  16. [National evaluation of the diagnosis of activated protein C resistance].

    PubMed

    Montiel-Manzano, Guadalupe; de la Peña-Díaz, Aurora; Majluf-Cruz, Abraham; Cesarman-Maus, Gabriela; Corona-de la Peña, Norma; Cruz-Cruz, Donají; Gaminio, Elizabeth; Martínez-Murillo, Carlos; Mayagoitia, Teresa; Miranda-Peralta, Enrique; Poblete, Teresita; Quintana-Martínez, Sandra; Ramírez, Raúl; Razo, Daniel; Ruiz de Chávez-Ochoa, Adriana; Reyes-Núñez, Virginia Adriana; Salazar, Rosario; Vicencio-Santiago, Guadalupe Virginia; Villa, Rosario; Reyes-Núñez, Aurelia Virginia

    2003-01-01

    Thrombophilia or prothrombotic state appears when activation of blood hemostatic mechanisms overcomes the physiological anticoagulant capacity allowing a thrombotic event. Thrombosis is the leading worldwide mortality cause and due to its high associated morbidity and mortality, it should be insisted in the opportune identification of a thrombophilic state. The study of thrombophilia identifies individuals at high risk for thrombosis. This meeting was conceived first to analyze the current status of the diagnosis of thrombophilia in Mexico and second to create the base for a national consensus for thrombophilia screening and for the establishment of a national center for laboratory reference and quality control for thrombophilia. Since searching of activated protein C resistance (APCR) and FV Leiden seem to have priority either in the clinical setting and in public health services, it was decided to start with these two abnormalities as a model to analyze the current status of thrombophilia diagnosis in the clinical laboratory. At this time, several thrombophilic abnormalities have been described however, APCR remains the most important cause of thrombophilia, accounting for as much as 20% to 60% of all venous thrombosis. APCR is a consequence of the resistance of activated FV to be inactivated by activated protein C. Procoagulant activity of activated FV increases the risk of thrombosis. Hereditary APCR is almost always due to a point mutation at the nucleotide 1691 of the FV gen inducing an Arg506Glu substitution in FV molecule. This mutation is better known as FV Leiden. Heterocygous carriers of FV Leiden have a thrombotic risk 5 to 10 times higher than general population while the risk for the homocygote state is increased 50 to 100-fold. When activated PC is added to plasma from patients with FV Leiden, this last resists the anticoagulant effect of activated PC. Therefore, thrombin production is not inhibited. This phenomenon is called APCR. The functional

  17. Tumor promotion by caspase-resistant retinoblastoma protein

    PubMed Central

    Borges, Helena L.; Bird, Jeff; Wasson, Katherine; Cardiff, Robert D.; Varki, Nissi; Eckmann, Lars; Wang, Jean Y. J.

    2005-01-01

    The retinoblastoma (RB) protein regulates cell proliferation and cell death. RB is cleaved by caspase during apoptosis. A mutation of the caspase-cleavage site in the RB C terminus has been made in the mouse Rb-1 locus; the resulting Rb-MI mice are resistant to endotoxin-induced apoptosis in the intestine. The Rb-MI mice do not exhibit increased tumor incidence, because the MI mutation does not disrupt the Rb tumor suppressor function. In this study, we show that Rb-MI can promote the formation of colonic adenomas in the p53-null genetic background. Consistent with this tumor phenotype, Rb-MI reduces colorectal epithelial apoptosis and ulceration caused by dextran sulfate sodium. By contrast, Rb-MI does not affect the lymphoma phenotype of p53-null mice, in keeping with its inability to protect thymocytes and splenocytes from apoptosis. The Rb-MI protein is expressed and phosphorylated in the tumors, thereby inactivating its growth suppression function. These results suggest that RB tumor suppressor function, i.e., inhibition of proliferation, is inactivated by phosphorylation, whereas RB tumor promoting function, i.e., inhibition of apoptosis, is inactivated by caspase cleavage. PMID:16227443

  18. Cutaneous necrosis in pregnancy secondary to activated protein C resistance in hereditary angioedema.

    PubMed

    Perkins, W; Downie, I; Keefe, M; Chisholm, M

    1995-04-01

    A 26-year-old woman with hereditary angineurotic oedema (HAE) presented at 22 weeks gestation with severe cutaneous necrosis similar to that seen in coumarin skin necrosis. Protein S deficiency secondary to HAE and pregnancy was postulated. Treatment with heparin, C1-inhibitor concentrates, systemic steroids and surgical debridement resulted in a successful outcome for both mother and child. Subsequent investigations revealed normal levels of protein C, antithrombin III, total protein S, free protein S but reduced function protein S activity with evidence of activated protein C resistance. Cutaneous necrosis has not been reported in associated with activated protein C resistance previously and the possible mechanisms are discussed. PMID:7745572

  19. Heterochromatin Protein 1 Binding Protein 3 Expression as a Candidate Marker of Intrinsic 5-Fluorouracil Resistance

    PubMed Central

    HADAC, JAMIE N.; MILLER, DEVON D.; GRIMES, IAN C.; CLIPSON, LINDA; NEWTON, MICHAEL A.; SCHELMAN, WILLIAM R.; HALBERG, RICHARD B.

    2016-01-01

    Background Despite receiving post-operative 5-fluorouracil (5-FU)-based chemotherapy, approximately 50% of patients with stage IIIC colon cancer experience recurrence. Currently, no molecular signature can predict response to 5-FU. Materials and Methods Mouse models of colon cancer have been developed and characterized. Individual tumors in these mice can be longitudinally monitored and assessed to identify differences between those that are responsive and those that are resistant to therapy. Gene expression was analyzed in serial biopsies that were collected before and after treatment with 5-FU. Colon tumors had heterogeneous responses to treatment with 5-FU. Microarray analysis of pretreatment biopsies revealed that Hp1bp3, a gene encoding heterochromatin protein 1 binding protein 3, was differentially expressed between sensitive and resistant tumors. Conclusion Using mouse models of human colorectal cancer, Hp1bp3 was identified as a candidate marker of intrinsic 5-FU resistance and may represent a potential biomarker for patient stratification or a target of clinical importance. PMID:26976970

  20. Interferon Consensus Sequence Binding Protein Confers Resistance against Yersinia enterocolitica

    PubMed Central

    Hein, Joachim; Kempf, Volkhard A. J.; Diebold, Joachim; Bücheler, Nicole; Preger, Sonja; Horak, Ivan; Sing, Andreas; Kramer, Uwe; Autenrieth, Ingo B.

    2000-01-01

    Interferon consensus sequence binding protein (ICSBP)-deficient mice display enhanced susceptibility to intracellular pathogens. At least two distinct immunoregulatory defects are responsible for this phenotype. First, diminished production of reactive oxygen intermediates in macrophages results in impaired intracellular killing of microorganisms. Second, defective early interleukin-12 (IL-12) production upon microbial challenge leads to a failure in gamma interferon (IFN-γ) induction and subsequently in T helper 1 immune responses. Here, we investigated the role of ICSBP in resistance against the extracellular bacterium Yersinia enterocolitica. ICSBP−/− mice failed to produce IL-12 and IFN-γ, but also IL-4, after Yersinia challenge. In addition, granuloma formation was highly disturbed in infected ICSBP−/− mice, leading to multiple necrotic abscesses in affected organs. Consequently, ICSBP−/− mice rapidly succumbed to acute Yersinia infection. In vitro treatment of spleen cells from ICSBP−/− mice with recombinant IL-12 (rIL-12) or rIL-18 in combination with a second stimulus resulted in IFN-γ induction. In experimental therapy of infected ICSBP−/− mice, we observed that administration of rIL-12 induced IFN-γ production which was associated with improved resistance to Yersinia. In contrast, treatment with rIL-18 failed to enhance endogenous IFN-γ production but nevertheless reduced bacterial burden in ICSBP−/− mice. Although cytokine therapy with rIL-12 or rIL-18 ameliorated the course of Yersinia infection in ICSBP−/− mice, both cytokines failed to completely restore impaired immunity. Taken together, the results indicate that the transcription factor ICSBP is essential for efficient host immune defense against Yersinia. These results are important for understanding the complex host immune responses in bacterial infections. PMID:10678954

  1. IDENTIFICATION OF MAIZE KERNEL ENDOSPERM PROTEINS ASSOCIATED WITH RESISTANCE TO AFLATOXIN CONTAMINATION BY ASPERGILLUS FLAVUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are carcinogens produced mainly by Aspergillus flavus during infection of susceptible crops, such as maize (Zea mays L.). Previously, embryo proteins from maize genotypes resistant or susceptible to A. flavus infection were compared using proteomics and resistance-associated proteins wer...

  2. Protein Defense Systems against the Lantibiotic Nisin: Function of the Immunity Protein NisI and the Resistance Protein NSR

    PubMed Central

    Khosa, Sakshi; Lagedroste, Marcel; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are potential alternatives to antibiotics because of their broad-range killing spectrum. The producer strain is immune against its own synthesized lantibiotic via the expression of two proteins LanI and LanFEG. Recently, gene operons are found in mainly human pathogenic strains, which confer resistance against lantibiotics. Of all the lantibiotics discovered till date, nisin produced by some Lactococcus lactis strains is the most prominent member. Nisin has multiple mode of actions of which binding to the cell wall precursor lipid II and subsequent insertion into the bacterial membrane to form pores are the most effective. The nisin producing strains express the lipoprotein NisI to prevent a suicidal effect. NisI binds nisin, inducing a reversible cell clustering to prevent nisin from reaching the membrane. Importantly NisI does not modify nisin and releases it as soon as the concentration in the media drops below a certain level. The human pathogen Streptococcus agalactiae is naturally resistant against nisin by expressing a resistance protein called SaNSR, which is a nisin degrading enzyme. By cleaving off the last six amino acids of nisin, its effectiveness is 100-fold reduced. This cleavage reaction appears to be specific for nisin since SaNSR recognizes the C-terminal located lanthionine rings. Recently, the structures of both NisI and SaNSR were determined by NMR and X-ray crystallography, respectively. Furthermore, for both proteins the binding site for nisin was determined. Within this review, the structures of both proteins and their different defense mechanisms are described. PMID:27148193

  3. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease

    PubMed Central

    Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Accumulation and aggregation of amyloid-β (Aβ) peptides in the brain trigger the development of progressive neurodegeneration and dementia associated with Alzheimer’s disease (AD). Perturbation in Aβ clearance, rather than Aβ production, is likely the cause of sporadic, late-onset AD, which accounts for the majority of AD cases. Since cellular uptake and subsequent degradation constitute a major Aβ clearance pathway, the receptor-mediated endocytosis of Aβ has been intensely investigated. Among Aβ receptors, the low-density lipoprotein receptor-related protein 1 (LRP1) is one of the most studied receptors. LRP1 is a large endocytic receptor for more than 40 ligands, including apolipoprotein E, α2-macroglobulin and Aβ. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in brain Aβ clearance. LRP1 is highly expressed in a variety of cell types in the brain including neurons, vascular cells and glial cells, where LRP1 functions to maintain brain homeostasis and control Aβ metabolism. LRP1-mediated endocytosis regulates cellular Aβ uptake by binding to Aβ either directly or indirectly through its co-receptors or ligands. Furthermore, LRP1 regulates several signaling pathways, which also likely influences Aβ endocytic pathways. In this review, we discuss how LRP1 regulates the brain Aβ clearance and how this unique endocytic receptor participates in AD pathogenesis. Understanding of the mechanisms underlying LRP1-mediated Aβ clearance should enable the rational design of novel diagnostic and therapeutic strategies for AD. PMID:24904407

  4. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  5. Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance*

    PubMed Central

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-01-01

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H2AsVO4−/HAsVO42−) to arsenite (AsIII(OH)3) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  6. The major vault protein is related to the toxic anion resistance protein (TelA) family.

    PubMed

    Suprenant, Kathy A; Bloom, Nathan; Fang, Jianwen; Lushington, Gerald

    2007-03-01

    Vaults are barrel-shaped ribonucleoprotein particles that are abundant in certain tumors and multidrug resistant cancer cells. Prokaryotic relatives of the major vault protein, MVP, have not been identified. We used sequence analysis and molecular modeling to show that MVP and the toxic anion resistance protein, TelA of Rhodobacter sphaeroides strain 2.4.1, share a novel fold that consists of a three-stranded antiparallel beta-sheet. Because of this strong structural correspondence, we examined whether mammalian cell vaults respond to tellurite treatment. In the presence of the oxyanion tellurite, large vault aggregates, or vaultosomes, appear at the cell periphery in 15 min or less. Vaultosome formation is temperature-dependent, reversible, and occurs in normal human umbilical vein endothelial cells as well as transformed HeLa cervical cancer cells. Vaultosome formation is not restricted to tellurite and occurs in the presence of other toxic oxyanions (selenate, selinite, arsenate, arsenite, vanadate). In addition, vaultosomes form independently from other stress-induced ribonucleoprotein complexes, stress granules and aggresomes. Vaultosome formation is therefore a unique cellular response to an environmental toxin. PMID:17337707

  7. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression.

    PubMed

    Fayard, Bérengère; Bianchi, Fabrizio; Dey, Julien; Moreno, Eliza; Djaffer, Sabrina; Hynes, Nancy E; Monard, Denis

    2009-07-15

    Through their ability to degrade the extracellular matrix, proteases mediate cancer cell invasion and metastasis. Paradoxically, some serine protease inhibitors (serpins) are often overexpressed in human tumors. Using computational analysis, we found that the RNA level of protease nexin-1 (PN-1), a serpin that blocks numerous proteases activity, is significantly elevated in estrogen receptor-alpha-negative and in high-grade breast cancer. The in silico approach was complemented by mechanistic studies on two mammary cancer cell lines, the PN-1-negative 168FARN cells and the PN-1-positive 4T1 cells, both of which form primary mammary tumors, but only 4T1 tumors are able to metastasize to the lungs. We show that treatment of 168FARN cells with PN-1 stimulates extracellular signal-regulated kinase activation via low-density lipoprotein receptor-related protein-1 (LRP-1) binding, resulting in increased matrix metalloproteinase (MMP)-9 RNA, protein, and secreted activity. PN-1-silenced 4T1 cells express low MMP-9 levels. Moreover, injection of PN-1-silenced cells into mice did not affect 4T1 primary mammary tumor outgrowth; however, the tumors had impaired metastatic potential, which could be restored by reexpressing soluble MMP-9 in the PN-1-silenced 4T1 cells. Thus, using mammary tumor models, we describe a novel pathway whereby the serpin PN-1 by binding LRP-1 stimulates extracellular signal-regulated kinase signaling, MMP-9 expression, and metastatic spread of mammary tumors. Importantly, an analysis of 126 breast cancer patients revealed that those whose breast tumors had elevated PN-1 levels had a significantly higher probability to develop lung metastasis, but not metastasis to other sites, on relapse. These results suggest that PN-1 might become a prognostic marker in breast cancer. PMID:19584287

  8. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice

    PubMed Central

    Choi, Hong Y; Liu, Yun; Tennert, Christian; Sugiura, Yoshie; Karakatsani, Andromachi; Kröger, Stephan; Johnson, Eric B; Hammer, Robert E; Lin, Weichun; Herz, Joachim

    2013-01-01

    ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI: http://dx.doi.org/10.7554/eLife.00220.001 PMID:23986861

  9. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice.

    PubMed

    Choi, Hong Y; Liu, Yun; Tennert, Christian; Sugiura, Yoshie; Karakatsani, Andromachi; Kröger, Stephan; Johnson, Eric B; Hammer, Robert E; Lin, Weichun; Herz, Joachim

    2013-01-01

    ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer's disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP(-/-);LRP4(ECD/ECD) mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI:http://dx.doi.org/10.7554/eLife.00220.001. PMID:23986861

  10. Characteristics of protein variants in trichlorphon-resistant Bactrocera dorsalis (Diptera; Tephritidae) larvae.

    PubMed

    Jin, T; Zeng, L; Lin, Y-Y; Lu, Y-Y; Liang, G-W

    2012-01-01

    Functional proteins in larvae of Bactrocera dorsalis, a major fruit pest, play a central role in their resistance to organophosphorus insecticides. Changes in proteins in B. dorsalis larvae after trichlorphon treatment may have a role in the resistance response to trichlorphon. We analyzed 14 protein spots of crude proteins from B. dorsalis larvae post-treatment with trichlorphon in two-dimensional gel electrophoresis through mass spectrometry and protein sequencing. We found functional proteins that are responsible for signal transduction (pkaap and dual specificity tyrosine-phosphorylation-regulated kinase), immunity (hemolectin), synthesis and decomposition (twinstar, cathepsin B, RE66325p), oxidative stress metabolism (glutathione S transferase and CG7320), energy metabolism (Act57B), and cytoskeleton formation (actin). These proteins appear to be involved in the resistance response to trichlorphon. PMID:22869077

  11. Binding and inhibition of drug transport proteins by heparin

    PubMed Central

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  12. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    PubMed

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. PMID:23650106

  13. Differentially Expressed Proteins Associated with Fusarium Head Blight Resistance in Wheat

    PubMed Central

    Zhang, Xianghui; Fu, Jianming; Hiromasa, Yasuaki; Pan, Hongyu; Bai, Guihua

    2013-01-01

    Background Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1. Methods The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins. Results Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1−NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1−NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification. Conclusions Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance. PMID:24376514

  14. Lipoprotein receptor-related protein 1 variants and dietary fatty acids: meta-analysis of European origin and African American studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density lipoprotein-related receptor protein 1 (LRP1) is a multi-functional endocytic receptor and signaling molecule that is expressed in adipose and the hypothalamus. Evidence for a role of LRP1 in adiposity is accumulating from animal and in vitro models, but data from human studies are limit...

  15. Crystal Structure of the Carbapenem Intrinsic Resistance Protein CarG

    PubMed Central

    Tichy, E.M.; Luisi, B.F.; Salmond, G.P.C.

    2015-01-01

    In the Gram-negative enterobacterium Erwinia (Pectobacterium) and Serratia sp. ATCC 39006, intrinsic resistance to the carbapenem antibiotic 1-carbapen-2-em-3-carboxylic acid is mediated by the CarF and CarG proteins, by an unknown mechanism. Here, we report a high-resolution crystal structure for the Serratia sp. ATCC 39006 carbapenem resistance protein CarG. This structure of CarG is the first in the carbapenem intrinsic resistance (CIR) family of resistance proteins from carbapenem-producing bacteria. The crystal structure shows the protein to form a homodimer, in agreement with results from analytical gel filtration. The structure of CarG does not show homology with any known antibiotic resistance proteins nor does it belong to any well-characterised protein structural family. However, it is a close structural homologue of the bacterial inhibitor of invertebrate lysozyme, PliI-Ah, with some interesting structural variations, including the absence of the catalytic site responsible for lysozyme inhibition. Both proteins show a unique β-sandwich fold with short terminal α-helices. The core of the protein is formed by stacked anti-parallel sheets that are individually very similar in the two proteins but differ in their packing interface, causing the splaying of the two sheets in CarG. Furthermore, a conserved cation binding site identified in CarG is absent from the homologue. PMID:24583229

  16. Innate resistance to avian influenza: Of MHC's and Mx proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is an economically important virus of poultry that has significant impact on global trade. Recently, increased attention to animal genomics has been applied to enhance innate resistance to infectious diseases in poultry. Two known contributors to innate resistance are the host m...

  17. LDL receptor-related protein-1 regulates NFκB and microRNA-155 in macrophages to control the inflammatory response.

    PubMed

    Mantuano, Elisabetta; Brifault, Coralie; Lam, Michael S; Azmoon, Pardis; Gilder, Andrew S; Gonias, Steven L

    2016-02-01

    LDL receptor-related protein-1 (LRP1) is an endocytic and cell-signaling receptor. In mice in which LRP1 is deleted in myeloid cells, the response to lipopolysaccharide (LPS) was greatly exacerbated. LRP1 deletion in macrophages in vitro, under the control of tamoxifen-activated Cre-ER(T) fusion protein, robustly increased expression of proinflammatory cytokines and chemokines. In LRP1-expressing macrophages, proinflammatory mediator expression was regulated by LRP1 ligands in a ligand-specific manner. The LRP1 agonists, α2-macroglobulin and tissue-type plasminogen activator, attenuated expression of inflammatory mediators, even in the presence of LPS. The antagonists, receptor-associated protein (RAP) and lactoferrin (LF), and LRP1-specific antibody had the entirely opposite effect, promoting inflammatory mediator expression and mimicking LRP1 deletion. NFκB was rapidly activated in response to RAP and LF and responsible for the initial increase in expression of proinflammatory mediators. RAP and LF also significantly increased expression of microRNA-155 (miR-155) after a lag phase of about 4 h. miR-155 expression reflected, at least in part, activation of secondary cell-signaling pathways downstream of TNFα. Although miR-155 was not involved in the initial induction of cytokine expression in response to LRP1 antagonists, miR-155 was essential for sustaining the proinflammatory response. We conclude that LRP1, NFκB, and miR-155 function as members of a previously unidentified system that has the potential to inhibit or sustain inflammation, depending on the continuum of LRP1 ligands present in the macrophage microenvironment. PMID:26787872

  18. Differential expression of hemolymph proteins between susceptible and insecticide-resistant Blattella germanica (Blattodea: Blattellidae).

    PubMed

    Zhang, F; Wang, X J; Huang, Y H; Zhao, Z G; Zhang, S S; Gong, X S; Xie, L; Kang, D M; Jing, X

    2014-08-01

    A proteomic approach combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain and a beta-cypermethrin-susceptible strain. Twenty-eight hemolymph proteins were differentially expressed in the resistant cockroach strain; 19 proteins were upregulated and 9 proteins were downregulated compared with the susceptible strain. Protein identification indicated that expression of putative cuticular protein, nitric oxide synthase, triosephosphate isomerase, alpha-amylase, ABC transporter, and Per a 3 allergen was elevated, and expression of arginine kinase and glycosidase was reduced. The differential expression of these proteins reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides. PMID:25182623

  19. p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells.

    PubMed

    Sakisaka, Yukihiko; Kanaya, Sousuke; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2016-09-16

    Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene and protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration. PMID:27450807

  20. Effect of whey and soy protein supplementation combined with resistance training in young adults.

    PubMed

    Candow, Darren G; Burke, Natalie C; Smith-Palmer, T; Burke, Darren G

    2006-06-01

    The purpose was to compare changes in lean tissue mass, strength, and myofibrillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N= 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofibrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength. PMID:16948480

  1. Contemporary Issues in Protein Requirements and Consumption for Resistance Trained Athletes

    PubMed Central

    Wilson, Jacob; Wilson, Gabriel J

    2006-01-01

    In recent years an explosion of research papers concerning protein consumption has been published. The need to consolidate this information has become critical from both practical and future research standpoints. For this reason, the following paper presents an in depth analysis of contemporary issues in protein requirements and consumption for resistance trained athletes. Specifically, the paper covers: 1.) protein requirements for resistance trained athletes; 2.) the effect of the digestion rate of protein on muscular protein balance; 3.) the optimal timing of protein intake relative to exercise; 4.) the optimal pattern of protein ingestion, relative to how an individual should consume their protein throughout a 24 hour period, and what sources are utilized during this time frame; 5.) protein composition and its interaction with measures of protein balance and strength performance; 6.) the combination of protein and carbohydrates on plasma insulin levels and protein balance; 7.) the efficacy of protein supplements and whole food protein sources. Our goal is to provide the reader with practical information in optimizing protein intake as well as for provision of sound advice to their clients. Finally, special care was taken to provide future research implications. PMID:18500966

  2. Agrin mediates chondrocyte homeostasis and requires both LRP4 and α-dystroglycan to enhance cartilage formation in vitro and in vivo

    PubMed Central

    Eldridge, Suzanne; Nalesso, Giovanna; Ismail, Habib; Vicente-Greco, Karin; Kabouridis, Panos; Ramachandran, Manoj; Niemeier, Andreas; Herz, Joachim; Pitzalis, Costantino; Perretti, Mauro; Dell'Accio, Francesco

    2016-01-01

    Objectives Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. Methods Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. Results Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. Conclusions We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration. PMID:26290588

  3. Low-density lipoprotein receptor-related protein-1 : a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain

    PubMed Central

    Zlokovic, Berislav V.; Deane, Rashid; Sagare, Abhay P.; Bell, Robert D.; Winkler, Ethan A.

    2010-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP1), a member of the LDL receptor family, has major roles in the cellular transport of cholesterol, endocytosis of forty structurally diverse ligands, transcytosis of ligands across the blood-brain barrier, and transmembrane and nuclear signaling. Recent evidence indicates that LRP1 regulates brain and systemic clearance of Alzheimer's disease (AD) amyloid β-peptide (Aβ). According to the two hit vascular hypothesis for AD, vascular damage precedes cerebrovascular and brain Aβ accumulation (hit 1) which then further amplifies neurovascular dysfunction (hit 2) preceding neurodegeneration. In this study, we discuss the roles of LRP1 during the hit 1 and hit 2 stage of AD pathogenesis and describe a three-level serial LRP1-dependent homeostatic control of Aβ clearance including (i) cell-surface LRP1 at the BBB and cerebrovascular cells mediating brain-to-blood Aβ clearance (ii) circulating LRP1 providing a key endogenous peripheral ‘sink’ activity for plasma Aβ which prevents free Aβ access to the brain, and (iii) LRP1 in the liver mediating systemic Aβ clearance. Pitfalls in experimental Aβ brain clearance measurements with the concurrent use of peptides/proteins such as receptor-associated protein and aprotinin are also discussed. We suggest that LRP1 has a critical role in AD pathogenesis and is an important therapeutic target in AD. PMID:20854368

  4. Activated protein C resistance in patients with central retinal vein occlusion

    PubMed Central

    Larsson, J; Sellman, A; Bauer, B

    1997-01-01

    AIM/BACKGROUND—A new defect in the anticoagulant system has recently been discovered—activated protein C resistance. The frequency of this disorder has been shown to be increased in young patients (<50 years of age) with central retinal vein occlusion. This study was carried out to determine if there was any overrepresentation of activated protein C resistance in patients >50 years of age with central retinal vein occlusion.
METHODS—Blood samples were obtained from 83 patients >50 years of age and with a history of central retinal vein occlusion. The blood samples were analysed for activated protein C resistance with standard clinical laboratory methods.
RESULTS—In this material 11% of the patients were resistant to activated protein C. The normal incidence of activated protein C resistance in the same geographical area is 10-11%.
CONCLUSION—Activated protein C resistance does not seem to be a cause of central retinal vein occlusion in people older than 50 years.

 PMID:9486021

  5. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Bat, Erhan; Lee, Juneyoung; Lau, Uland Y.; Maynard, Heather D.

    2015-03-01

    Direct-write patterning of multiple proteins on surfaces is of tremendous interest for a myriad of applications. Precise arrangement of different proteins at increasingly smaller dimensions is a fundamental challenge to apply the materials in tissue engineering, diagnostics, proteomics and biosensors. Herein, we present a new resist that protects proteins during electron-beam exposure and its application in direct-write patterning of multiple proteins. Polymers with pendant trehalose units are shown to effectively crosslink to surfaces as negative resists, while at the same time providing stabilization to proteins during the vacuum and electron-beam irradiation steps. In this manner, arbitrary patterns of several different classes of proteins such as enzymes, growth factors and immunoglobulins are realized. Utilizing the high-precision alignment capability of electron-beam lithography, surfaces with complex patterns of multiple proteins are successfully generated at the micrometre and nanometre scale without requiring cleanroom conditions.

  6. Dickkopf-1 negatively regulates the expression of osteoprotegerin, a key osteoclastogenesis inhibitor, by sequestering Lrp6 in primary and metastatic lytic bone lesions.

    PubMed

    Wang, Jian-Hang; Zhang, Yuanjin; Li, Hong-Yan; Liu, Yun-Yan; Sun, Tao

    2016-06-01

    Recently, an inverse role for Wnt signaling in the development of osteoclasts in the bone was demonstrated. In the present study, we examined whether there is a commonality in the mechanism of bone resorption and lysis that occur in a diverse set of bone metastatic lesions, as well as in primary bone lesions. Compared with control bone tissue and bone biopsies from patients with nonmetastatic primary tumors (i.e., breast carcinoma, lung adenocarcinoma, and prostate carcinoma), patients with bone metastatic lesions from the three aforementioned primary tumors, as well as osteolytic lesions obtained from the bone biopsies of patients with multiple myeloma, demonstrated an upregulated expression of the glycoprotein Dickkopf-1 at both the mRNA and protein levels. Additionally, by coimmunoprecipitation, Dickkopf-1 pulled-down low-density lipoprotein receptor-related protein 6 (Lrp6), which is a key downstream effector of the Wnt signaling pathway. The expression of Lrp6 was unaltered in the osteometastatic lesions. This negative regulation was associated with a lowered expression of osteoprotegerin in the osteometastatic lesions, an observation that was previously reported to promote osteoclastogenesis. These findings provide a common mechanism for the inverse relationship between the Wnt signaling pathway and the development of primary or metastatic bone lesions. Pharmacological modulation of the Wnt signaling pathway might benefit the clinical management of primary and metastatic bone lesions. PMID:27310953

  7. Polyglycerol coatings of glass vials for protein resistance.

    PubMed

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. PMID:23624376

  8. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance

    PubMed Central

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4−/−) mice. Most Lrp4−/− foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4−/− foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  9. Polyhydramnios in Lrp4 knockout mice with bilateral kidney agenesis: Defects in the pathways of amniotic fluid clearance.

    PubMed

    Tanahashi, Hiroshi; Tian, Qing-Bao; Hara, Yoshinobu; Sakagami, Hiroyuki; Endo, Shogo; Suzuki, Tatsuo

    2016-01-01

    Amniotic fluid volume during mid-to-late gestation depends mainly on the urine excretion from the foetal kidneys and partly on the fluid secretion from the foetal lungs during foetal breathing-like movements. Urine is necessary for foetal breathing-like movements, which is critical for foetal lung development. Bilateral renal agenesis and/or obstruction of the urinary tract lead to oligohydramnios, which causes infant death within a short period after birth due to pulmonary hypoplasia. Lrp4, which functions as an agrin receptor, is essential for the formation of neuromuscular junctions. Herein, we report novel phenotypes of Lrp4 knockout (Lrp4(-/-)) mice. Most Lrp4(-/-) foetuses showed unilateral or bilateral kidney agenesis, and Lrp4 knockout resulted in polyhydramnios. The loss of Lrp4 compromised foetal swallowing and breathing-like movements and downregulated the expression of aquaporin-9 in the foetal membrane and aquaporin-1 in the placenta, which possibly affected the amniotic fluid clearance. These results suggest that amniotic fluid removal was compromised in Lrp4(-/-) foetuses, resulting in polyhydramnios despite the impairment of urine production. Our findings indicate that amniotic fluid removal plays an essential role in regulating the amniotic fluid volume. PMID:26847765

  10. 42 CFR 68c.6 - How do individuals apply to participate in the CIR-LRP?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How do individuals apply to participate in the CIR-LRP? 68c.6 Section 68c.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  11. 42 CFR 68c.8 - What does the CIR-LRP provide to participants?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false What does the CIR-LRP provide to participants? 68c.8 Section 68c.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  12. 42 CFR 68c.8 - What does the CIR-LRP provide to participants?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false What does the CIR-LRP provide to participants? 68c.8 Section 68c.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  13. 42 CFR 68c.6 - How do individuals apply to participate in the CIR-LRP?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How do individuals apply to participate in the CIR-LRP? 68c.6 Section 68c.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  14. 42 CFR 68c.6 - How do individuals apply to participate in the CIR-LRP?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How do individuals apply to participate in the CIR-LRP? 68c.6 Section 68c.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  15. 42 CFR 68c.8 - What does the CIR-LRP provide to participants?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What does the CIR-LRP provide to participants? 68c.8 Section 68c.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION...

  16. 42 CFR 68c.7 - How are applicants selected to participate in the CIR-LRP?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How are applicants selected to participate in the CIR-LRP? 68c.7 Section 68c.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION AND INFERTILITY RESEARCH LOAN...

  17. 42 CFR 68c.7 - How are applicants selected to participate in the CIR-LRP?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How are applicants selected to participate in the CIR-LRP? 68c.7 Section 68c.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN...

  18. 42 CFR 68c.7 - How are applicants selected to participate in the CIR-LRP?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How are applicants selected to participate in the CIR-LRP? 68c.7 Section 68c.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN...

  19. 42 CFR 68a.8 - What does the CR-LRP provide to participants?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false What does the CR-LRP provide to participants? 68a.8 Section 68a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT PROGRAM...

  20. 42 CFR 68a.7 - How are applicants selected to participate in the CR-LRP?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How are applicants selected to participate in the CR-LRP? 68a.7 Section 68a.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH...

  1. 42 CFR 68a.7 - How are applicants selected to participate in the CR-LRP?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How are applicants selected to participate in the CR-LRP? 68a.7 Section 68a.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH...

  2. 42 CFR 68a.8 - What does the CR-LRP provide to participants?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What does the CR-LRP provide to participants? 68a.8 Section 68a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT PROGRAM...

  3. 42 CFR 68a.8 - What does the CR-LRP provide to participants?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false What does the CR-LRP provide to participants? 68a.8 Section 68a.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH LOAN REPAYMENT PROGRAM...

  4. 42 CFR 68a.7 - How are applicants selected to participate in the CR-LRP?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How are applicants selected to participate in the CR-LRP? 68a.7 Section 68a.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL RESEARCH...

  5. Crystal structure of the TLDc domain of oxidation resistance protein 2 from zebrafish.

    PubMed

    Blaise, Mickaël; Alsarraf, Husam M A B; Wong, Jaslyn E M M; Midtgaard, Søren Roi; Laroche, Fabrice; Schack, Lotte; Spaink, Herman; Stougaard, Jens; Thirup, Søren

    2012-06-01

    The oxidation resistance proteins (OXR) help to protect eukaryotes from reactive oxygen species. The sole C-terminal domain of the OXR, named TLDc is sufficient to perform this function. However, the mechanism by which oxidation resistance occurs is poorly understood. We present here the crystal structure of the TLDc domain of the oxidation resistance protein 2 from zebrafish. The structure was determined by X-ray crystallography to atomic resolution (0.97Å) and adopts an overall globular shape. Two antiparallel β-sheets form a central β-sandwich, surrounded by two helices and two one-turn helices. The fold shares low structural similarity to known structures. PMID:22434723

  6. Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance

    PubMed Central

    Das, Manasi; Sahoo, Sanjeeb K.

    2012-01-01

    Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype. PMID:22470431

  7. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

    PubMed

    Das, Manasi; Sahoo, Sanjeeb K

    2012-01-01

    Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype. PMID:22470431

  8. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    PubMed Central

    2011-01-01

    Age-related muscle wasting (sarcopenia) is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i) elevated basal-fasted rates of muscle protein breakdown, ii) a reduction in basal muscle protein synthesis (MPS), or iii) a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise. PMID:21975196

  9. Dietary protein and resistance training effects on muscle and body composition in older persons.

    PubMed

    Campbell, Wayne W; Leidy, Heather J

    2007-12-01

    The regular performance of resistance exercises and the habitual ingestion of adequate amounts of dietary protein from high-quality sources are two important ways for older persons to slow the progression of and treat sarcopenia, the age-related loss of skeletal muscle mass and function. Resistance training can help older people gain muscle strength, hypertrophy muscle, and increase whole body fat-free mass. It can also help frail elderly people improve balance and physical functioning capabilities. Inadequate protein intake will cause adverse metabolic and physiological accommodation responses that include the loss of fat-free mass and muscle strength and size. Findings from controlled feeding studies show that older persons retain the capacity to metabolically adjust to lower protein intakes by increasing the efficiency of nitrogen retention and amino acid utilization. However, they also suggest that the recommended dietary allowance of 0.8 g protein x kg(-1) x d(-1) might not be sufficient to prevent subtle accommodations and blunt desired changes in body composition and muscle size with resistance training. Most of the limited research suggests that resistance training-induced improvements in body composition, muscle strength and size, and physical functioning are not enhanced when older people who habitually consume adequate protein (modestly above the RDA) increase their protein intake by either increasing the ingestion of higher-protein foods or consuming protein-enriched nutritional supplements. PMID:18187436

  10. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    SciTech Connect

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  11. Lipid transfer protein-mediated resistance to a trichothecene mycotoxin – Novel players in FHB resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid transfer proteins are a class of basic cysteine rich proteins characterized by an eight cysteine motif backbone with intrinsic antimicrobial activities against bacterial and fungal pathogens. Previously, we identified two type IV nonspecific lipid transfer protein (nsLTP) genes (LTP4.4 and LTP...

  12. Elevated Circulating Sclerostin Concentrations in Individuals With High Bone Mass, With and Without LRP5 Mutations

    PubMed Central

    Poole, Kenneth E. S.; McCloskey, Eugene V.; Duncan, Emma L.; Rittweger, Jörn; Fraser, William D.; Smith, George Davey; Tobias, Jonathan H.

    2014-01-01

    Context: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. Objective: Our objective was to determine circulating sclerostin concentrations in HBM. Design and Participants: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. Main measures: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. Results: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). Conclusions: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to

  13. Fixation-resistant photoactivatable fluorescent proteins for CLEM.

    PubMed

    Paez-Segala, Maria G; Sun, Mei G; Shtengel, Gleb; Viswanathan, Sarada; Baird, Michelle A; Macklin, John J; Patel, Ronak; Allen, John R; Howe, Elizabeth S; Piszczek, Grzegorz; Hess, Harald F; Davidson, Michael W; Wang, Yalin; Looger, Loren L

    2015-03-01

    Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they lose their fluorescence after heavy fixation, hindering applications such as correlative light and electron microscopy (CLEM). Here we report engineered variants of the photoconvertible Eos fluorescent protein that fluoresce and photoconvert normally in heavily fixed (0.5-1% OsO4), plastic resin-embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy. PMID:25581799

  14. Heat-resistant protein expression during germination of maize seeds under water stress.

    PubMed

    Abreu, V M; Silva Neta, I C; Von Pinho, E V R; Naves, G M F; Guimarães, R M; Santos, H O; Von Pinho, R G

    2016-01-01

    Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heat-resistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods. PMID:27525950

  15. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation.

    PubMed

    Safina, Dina; Schlitt, Frederik; Romeo, Ramona; Pflanzner, Thorsten; Pietrzik, Claus U; Narayanaswami, Vasanthy; Edenhofer, Frank; Faissner, Andreas

    2016-08-01

    The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380. PMID:27258849

  16. Correlation of polymorphism of APOE and LRP genes to cognitive impairment and behavioral and psychological symptoms of dementia in Alzheimer’s disease and vascular dementia

    PubMed Central

    Mou, Chengzhi; Han, Tao; Wang, Min; Jiang, Meng; Liu, Bin; Hu, Jia

    2015-01-01

    Objective: To discuss the correlation of polymorphism of APOE and LRP genes to cognitive impairment and behavioral and psychological symptoms of dementia (BPSD) in Alzheimer’s disease (AD) and vascular dementia (VD). Method: AD cases, VD cases and healthy control cases totaling 237, 255 and 234 were recruited, respectively. The mini-mental state examination (MMSE) was performed to evaluate cognitive impairment. Hamilton Depression Rating Scale (HAMD) and Hamilton Anxiety Scale (HAMA) were adopted to evaluate BPSD. Apolipoprotein E (APOE) and Low-density lipoprotein receptor-related protein gene (LRP) genotyping was carried out using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: (1) Frequencies of APOEε4 allele in AD group and VD group were significantly higher than that of the control (P<0.05); (2) MMSE scores of APOEε4 carriers in AD group and VD group were lower than that of non-APOEε4 carriers in the same group (P<0.05); (3) The proportion of APOEε4 carriers presenting with BPSD in AD group was considerably higher that of non-APOEε4 carriers (P<0.05). Conclusion: APOEε4 may be the common risk factor for cognitive impairment in AD and VD and the risk factor for BPSD in AD. PMID:26885125

  17. 42 CFR 68c.14 - When can a CIR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION AND INFERTILITY RESEARCH LOAN REPAYMENT PROGRAM § 68c.14 When can a CIR-LRP...

  18. Role of LRP1 and ERK and cAMP Signaling Pathways in Lactoferrin-Induced Lipolysis in Mature Rat Adipocytes

    PubMed Central

    Ikoma-Seki, Keiko; Nakamura, Kanae; Morishita, Satoru; Ono, Tomoji; Sugiyama, Keikichi; Nishino, Hoyoku; Hirano, Hisashi; Murakoshi, Michiaki

    2015-01-01

    Lactoferrin (LF) is a multifunctional glycoprotein present in milk. A clinical study showed that enteric-coated bovine LF tablets decrease visceral fat accumulation. Furthermore, animal studies revealed that ingested LF is partially delivered to mesenteric fat, and in vitro studies showed that LF promotes lipolysis in mature adipocytes. The aim of the present study was to determine the mechanism underlying the induction of lipolysis in mature adipocytes that is induced by LF. To address this question, we used proteomics techniques to analyze protein expression profiles. Mature adipocytes from primary cultures of rat mesenteric fat were collected at various times after exposure to LF. Proteomic analysis revealed that the expression levels of hormone-sensitive lipase (HSL), which catalyzes the rate-limiting step of lipolysis, were upregulated and that HSL was activated by protein kinase A within 15 min after the cells were treated with LF. We previously reported that LF increases the intracellular concentration of cyclic adenosine monophosphate (cAMP), suggesting that LF activates the cAMP signaling pathway. In this study, we show that the expression level and the activity of the components of the extracellular signal-regulated kinase (ERK) signaling pathway were upregulated. Moreover, LF increased the activity of the transcription factor cAMP response element binding protein (CREB), which acts downstream in the cAMP and ERK signaling pathways and regulates the expression levels of adenylyl cyclase and HSL. Moreover, silencing of the putative LF receptor low-density lipoprotein receptor-related protein 1 (LRP1) attenuated lipolysis in LF-treated adipocytes. These results suggest that LF promoted lipolysis in mature adipocytes by regulating the expression levels of proteins involved in lipolysis through controlling the activity of cAMP/ERK signaling pathways via LRP1. PMID:26506094

  19. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins.

    PubMed Central

    Fields, T A; Casey, P J

    1997-01-01

    Pertussis toxin (PTX) has been widely used as a reagent to characterize the involvement of heterotrimeric G-proteins in signalling. This toxin catalyses the ADP-ribosylation of specific G-protein alpha subunits of the Gi family, and this modification prevents the occurrence of the receptor-G-protein interaction. This review focuses on the biochemical properties and signalling of those G-proteins historically classified as 'PTX-resistant' due to the inability of the toxin to influence signalling through them. These G-proteins include members of the Gq and G12 families and one Gi family member, i.e. Gz. Signalling pathways controlled by these G-proteins are well characterized only for Gq family members, which activate specific isoforms of phospholipase C, resulting in increases in intracellular calcium and activation of protein kinase C (PKC), among other responses. While members of the G12 family have been implicated in processes that regulate cell growth, and Gz has been shown to inhibit adenylate cyclase, the specific downstream targets to these G-proteins in vivo have not been clearly established. Since two of these proteins, G12 alpha and Gz alpha, are excellent substrates for PKC, there is the potential for cross-talk between their signalling and Gq-dependent processes leading to activation of PKC. In tissues that express these G-proteins, a number of guanine-nucleotide-dependent, PTX-resistant, signalling pathways have been defined for which the G-protein involved has not been identified. This review summarizes these pathways and discusses the evidence both for the participation of specific PTX-resistant G-proteins in them and for the regulation of these processes by PKC. PMID:9032437

  20. Establishing the Lysine-rich Protein CEST Reporter Gene as a CEST MR Imaging Detector for Oncolytic Virotherapy

    PubMed Central

    Farrar, Christian T.; Buhrman, Jason S.; Liu, Guanshu; Kleijn, Anne; Lamfers, Martine L. M.; McMahon, Michael T.; Gilad, Assaf A.

    2015-01-01

    Purpose To (a) evaluate whether the lysine-rich protein (LRP) magnetic resonance (MR) imaging reporter gene can be engineered into G47Δ, a herpes simplex–derived oncolytic virus that is currently being tested in clinical trials, without disrupting its therapeutic effectiveness and (b) establish the ability of chemical exchange saturation transfer (CEST) MR imaging to demonstrate G47Δ-LRP. Materials and Methods The institutional subcommittee for research animal care approved all in vivo procedures. Oncolytic herpes simplex virus G47Δ, which carried the LRP gene, was constructed and tested for its capacity to replicate in cancer cells and express LRP in vitro. The LRP gene was detected through CEST imaging of lysates derived from cells infected with G47Δ-LRP or the control G47Δ–empty virus. G47Δ-LRP was then tested for its therapeutic effectiveness and detection with CEST MR imaging in vivo. Images of rat gliomas were acquired before and 8–10 hours after injection of G47Δ-LRP (n = 7) or G47Δ–empty virus (n = 6). Group comparisons were analyzed with a paired t test. Results No significant differences were observed in viral replication or therapeutic effectiveness between G47Δ-LRP and G47Δ–empty virus. An increase in CEST image contrast was observed in cell lysates (mean ± standard deviation, 0.52% ± 0.06; P = .01) and in tumors (1.1% ± 0.3, P = .02) after infection with G47Δ-LRP but not G47Δ–empty viruses. No histopathologic differences were observed between tumors infected with G47Δ-LRP and G47Δ–empty virus. Conclusion This study has demonstrated the ability of CEST MR imaging to show G47Δ-LRP at acute stages of viral infection. The introduction of the LRP transgene had no effect on the viral replication or therapeutic effectiveness. This can aid in development of the LRP gene as a reporter for the real-time detection of viral spread. © RSNA, 2015 Online supplemental material is available for this article. PMID:25686366

  1. Analysis Of Proteins Differentially Accumulated During Potato Late Blight Resistance Mediated by the RB Resistance Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The RB gene cloned from the wild diploid potato species Solanum bulbocastanum confers resistance against the late blight pathogen, Phytophthora infestans. Two-dimensional gel electrophoresis followed by mass spectrometry was used to examine for the first time the changes of the proteome pattern of ...

  2. Resistive Switching: Physically Transient Resistive Switching Memory Based on Silk Protein (Small 20/2016).

    PubMed

    Wang, Hong; Zhu, Bowen; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-05-01

    On page 2715, physically transient resistive switching memory based on silk fibroin is demonstrated by Y. Hao, X. Chen, and co-workers. The memory devices can be absolutely dissolved in deionized water or phosphate-buffered saline in 2 hours. The transient devices have the potential for application in secure data storage systems and biocompatible electronics. PMID:27198963

  3. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar

    PubMed Central

    Sousa, Daniele O. B.; Carvalho, Ana F. U.; Oliveira, José Tadeu A.; Farias, Davi F.; Castelar, Ivan; Oliveira, Henrique P.; Vasconcelos, Ilka M.

    2015-01-01

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed. PMID:26205163

  4. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    PubMed

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-01

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed. PMID:26205163

  5. Context-dependent resistance to proteolysis of intrinsically disordered proteins

    PubMed Central

    Suskiewicz, Marcin J; Sussman, Joel L; Silman, Israel; Shaul, Yosef

    2011-01-01

    Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the “degradation by default” model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution. PMID:21574196

  6. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. PMID:27163530

  7. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum.

    PubMed

    Tucker, Theodora G H A; Milne, Alison M; Fournel-Gigleux, Sylvie; Fenner, Katherine S; Coughtrie, Michael W H

    2012-01-15

    The ATP-binding cassette (ABC) transporters breast cancer resistance protein (BCRP), multidrug resistance-associated protein 2 (MRP2), and P-glycoprotein (Pgp) are important in the distribution and elimination of many drugs and endogenous metabolites. Due to their membrane location and hydrophobicity it is difficult to generate purified protein standards to quantify these transporters in human tissues. The present study generated transporter proteins fused with the S-peptide of ribonuclease for use as standards in immunoquantification in human liver and small intestine. Quantification of the S•tag™, a 15 amino acid peptide, is based on the formation of a functional ribonuclease activity upon its high affinity reconstitution with ribonuclease S-protein. S-tagged transporters were used as full-length protein standards in the immunoquantification of endogenous BCRP, MRP2, and Pgp levels in 14 duodenum and 13 liver human tissue samples. Expression levels in the duodenum were 305±248 (BCRP), 66±70 (MRP2), and 275±205 (Pgp) fmoles per cm(2). Hepatic levels were 2.6±0.9 (BCRP), 19.8±10.5 (MRP2), and 26.1±10.1 (total Pgp) pmoles per g of liver. The mean hepatic scaling factor was 35.8mg crude membrane per g of liver, and the mean duodenal scaling factor was 1.3mg crude membrane per cm(2) mucosal lining. Interindividual variability was greater in duodenal samples than liver samples. It is hoped that this innovative method of quantifying these transporters (and other membrane proteins) will improve in vivo-in vitro extrapolation and in silico prediction of drug absorption and elimination, thus supporting drug development. PMID:22062654

  8. Neisseria gonorrhoeae strain with high-level resistance to spectinomycin due to a novel resistance mechanism (mutated ribosomal protein S5) verified in Norway.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Skogen, Vegard; Olsen, Anne Olaug; Moi, Harald; Syversen, Gaute; Hjelmevoll, Stig Ove

    2013-02-01

    Gonorrhea may become untreatable, and new treatment options are essential. Verified resistance to spectinomycin is exceedingly rare. However, we describe a high-level spectinomycin-resistant (MIC, >1,024 μg/ml) Neisseria gonorrhoeae strain from Norway with a novel resistance mechanism. The resistance determinant was a deletion of codon 27 (valine) and a K28E alteration in the ribosomal protein 5S. The traditional spectinomycin resistance gene (16S rRNA) was wild type. Despite this exceedingly rare finding, spectinomycin available for treatment of ceftriaxone-resistant urogenital gonorrhea would be very valuable. PMID:23183436

  9. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication.

    PubMed

    Carr, Stephen B; Phillips, Simon E V; Thomas, Christopher D

    2016-03-18

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  10. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  11. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity.

    PubMed

    Nilsson, Mats I; Dobson, Justin P; Greene, Nicholas P; Wiggs, Michael P; Shimkus, Kevin L; Wudeck, Elyse V; Davis, Amanda R; Laureano, Marissa L; Fluckey, James D

    2013-10-01

    Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals. PMID:23804240

  12. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

    PubMed Central

    Thawani, Vijay; Mehra, Arti

    2016-01-01

    This study was done to assess the antifungal susceptibility of clinical isolates of Candida albicans and to evaluate its total protein profile based on morphological difference on drug resistance. Hundred and twenty clinical isolates of C. albicans from various clinical specimens were tested for susceptibility against four antifungal agents, namely, fluconazole, itraconazole, amphotericin B, and ketoconazole. A significant increase of drug resistance in clinical isolates of C. albicans was observed. The study showed 50% fluconazole and itraconazole resistance at 32 μg mL−1 with a MIC50 and MIC90 values at 34 and 47 and 36 and 49 μg mL−1, respectively. All isolates were sensitive to amphotericin B and ketoconazole. The SDS-PAGE protein profile showed a prevalent band of ~52.5 kDa, indicating overexpression of gene in 72% strains with fluconazole resistance. Since the opportunistic infections of Candida spp. are increasing along with drug resistance, the total protein profile will help in understanding the evolutionary changes in drug resistance and also to characterize them. PMID:27478638

  13. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    PubMed Central

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. Conclusion The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. PMID:25081370

  14. Protein profiling of mefloquine resistant Plasmodium falciparum using mass spectrometry-based proteomics

    PubMed Central

    Reamtong, Onrapak; Srimuang, Krongkan; Saralamba, Naowarat; Sangvanich, Polkit; Day, Nicholas P.J.; White, Nicholas J.; Imwong, Mallika

    2015-01-01

    Malaria is a mosquito borne infectious disease caused by protozoa of genus Plasmodium. There are five species of Plasmodium that are found to infect humans. Plasmodium falciparum can cause severe malaria leading to higher morbidity and mortality of malaria than the other four species. Antimalarial resistance is the major obstacle to control malaria. Mefloquine was used in combination with Artesunate for uncomplicated P. falciparum in South East Asia and it has developed and established mefloquine resistance in this region. Here, gel-enhanced liquid chromatography/tandem mass spectrometry (GeLC–MS/MS)-based proteomics and label-free quantification were used to explore the protein profiles of mefloquine-sensitive and -induced resistant P. falciparum. A Thai P. falciparum isolate (S066) was used as a model in this research. Our data revealed for the first time that 69 proteins exhibited at least 2-fold differences in their expression levels between the two parasite lines. Of these, 36 were up-regulated and 33 were down-regulated in the mefloquine-resistant line compared with the mefloquine-sensitive line. These findings are consistent with those of past studies, where the multidrug resistance protein Pgh1 showed an up-regulation pattern consistent with that expected from its average 3-copy pfmdr1 gene number. Pgh1 and eight other up-regulated proteins (i.e., histo-aspartyl protease protein, exportin 1, eukaryotic translation initiation factor 3 subunit 8, peptidyl-prolyl cis-trans isomerase, serine rich protein homologue, exported protein 1, ATP synthase beta chain and phospholipid scramblase 1) were further validated for their expression levels using reverse transcriptase quantitative real-time PCR. The data support the up-regulation status in the mefloquine-resistant parasite line of all the candidate genes referred to above. Therefore, GeLC–MS/MS-based proteomics combined with label-free quantification is a reliable approach for exploring mefloquine resistance

  15. Crystallization of DIR1, a LTP2-like resistance signalling protein from Arabidopsis thaliana

    SciTech Connect

    Lascombe, Marie-Bernard; Buhot, Nathalie; Bakan, Bénédicte; Marion, Didier; Blein, Jean Pierre; Lamb, Chris J.; Prangé, Thierry

    2006-07-01

    DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. DIR1, a putative LTP2 protein from Arabidopsis thaliana implicated in systemic acquired resistance in planta, has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} with one molecule per asymmetric unit. The crystals diffract to a resolution of 1.6 Å.

  16. Correlation between penicillin-binding protein 2 mutations and carbapenem resistance in Escherichia coli.

    PubMed

    Yamachika, Shinichiro; Sugihara, Chika; Kamai, Yasuki; Yamashita, Makoto

    2013-03-01

    It is well known that carbapenem-resistant mutations in penicillin-binding proteins (PBPs) are not observed in most Gram-negative bacteria under either clinical or experimental conditions. To understand the mechanisms involved in carbapenem resistance, this study constructed a mutS- and tolC-deficient Escherichia coli strain, which was expected to have elevated mutation frequencies and to lack drug efflux. Using this mutant, carbapenem-resistant strains with target mutations were successfully and efficiently isolated. The mutations T547I/A, M574I and G601D were identified in the PBP2 gene. Meropenem (MEPM)-resistant strains with the PBP2 T547I mutation showed fourfold increased resistance to 1-β-methyl-substituted carbapenems, such as doripenem, MEPM and biapenem, but not to non-substituted carbapenems such as imipenem and panipenem and other β-lactams. In addition, resistance resulting from the G601D mutation was limited to MEPM, whilst the M574I mutation conferred resistance to MEPM, imipenem and panipenem. This is the first report, to the best of our knowledge, that E. coli also has a carbapenem-resistance mechanism as a result of PBP2 mutations, and it provides insight into the resistance profiles of PBP2 mutations to carbapenems with and without the 1-β-methyl group. PMID:23222859

  17. Annotated differentially expressed salivary proteins of susceptible and insecticide-resistant mosquitoes of Anopheles stephensi.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  18. Annotated Differentially Expressed Salivary Proteins of Susceptible and Insecticide-Resistant Mosquitoes of Anopheles stephensi

    PubMed Central

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun

    2015-01-01

    Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins

  19. Dietary protein safety and resistance exercise: what do we really know?

    PubMed

    Lowery, Lonnie M; Devia, Lorena

    2009-01-01

    Resistance trainers continue to receive mixed messages about the safety of purposely seeking ample dietary protein in their quest for stimulating protein synthesis, improving performance, or maintaining health. Despite protein's lay popularity and the routinely high intakes exhibited by strength athletes, liberal and purposeful protein consumption is often maligned by "experts". University textbooks, instructors, and various forms of literature from personal training groups and athletic organizations continue to use dissuasive language surrounding dietary protein. Due to the widely known health benefits of dietary protein and a growing body of evidence on its safety profile, this is unfortunate. In response, researchers have critiqued unfounded educational messages. As a recent summarizing example, the International Society of Sports Nutrition (ISSN) Position Stand: Protein and Exercise reviewed general literature on renal and bone health. The concluding remark that "Concerns that protein intake within this range [1.4 - 2.0 g/kg body weight per day] is unhealthy are unfounded in healthy, exercising individuals." was based largely upon data from non-athletes due to "a lack of scientific evidence". Future studies were deemed necessary. This assessment is not unique in the scientific literature. Investigators continue to cite controversy, debate, and the lack of direct evidence that allows it. This review discusses the few existing safety studies done specific to athletes and calls for protein research specific to resistance trainers. Population-specific, long term data will be necessary for effective education in dietetics textbooks and from sports governing bodies. PMID:19138405

  20. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    PubMed Central

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  1. Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis

    PubMed Central

    Wang, Zhipeng; Liang, Shuang; Lian, Xin; Liu, Lei; Zhao, Shu; Xuan, Qijia; Guo, Li; Liu, Hang; Yang, Yuguang; Dong, Tieying; Liu, Yanchen; Liu, Zhaoliang; Zhang, Qingyuan

    2015-01-01

    Chemoresistance is a poor prognostic factor in breast cancer and is a major obstacle to the successful treatment of patients receiving chemotherapy. However, the precise mechanism of resistance remains unclear. In this study, a pair of breast cancer cell lines, MCF-7 and its adriamycin-resistant counterpart MCF-7/ADR was used to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We applied nanoflow liquid chromatography (nLC) and tandem mass tags (TmT) quantitative mass spectrometry to distinguish the differentially expressed proteins (DEPs) between the two cell lines. Bioinformatics analyses were used to identify functionally active proteins and networks. 80 DEPs were identified with either up- or down-regulation. Basing on the human protein-protein interactions (PPI), we have retrieved the associated functional interaction networks for the DEPs and analyzed the biological functions. Six different signaling pathways and most of the DEPs strongly linked to chemoresistance, invasion, metastasis development, proliferation, and apoptosis. The identified proteins in biological networks served to resistant drug and to select critical candidates for validation analyses by western blot. The glucose-6-phosphate dehydrogenase (G6PD), gamma-glutamyl cyclotransferase (GGCT), isocitrate dehydrogenase 1 (NADP+,soluble)(IDH1), isocitrate dehydrogenase 2 (NADP+,mitochondrial) (IDH2) and glutathione S-transferase pi 1(GSTP1), five of the critical components of GSH pathway, contribute to chemoresistance. PMID:25818003

  2. Identification of a Putative Protein Profile Associated with Tamoxifen Therapy Resistance in Breast Cancer*S⃞

    PubMed Central

    Umar, Arzu; Kang, Hyuk; Timmermans, Annemieke M.; Look, Maxime P.; Meijer-van Gelder, Marion E.; den Bakker, Michael A.; Jaitly, Navdeep; Martens, John W. M.; Luider, Theo M.; Foekens, John A.; Paša-Tolić, Ljiljana

    2009-01-01

    Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on ∼5,500 pooled tumor cells (corresponding to ∼550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with ≥2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were higher in therapy-resistant

  3. Circulating growth arrest-specific protein 6 levels are associated with erythropoietin resistance in hemodialysis patients.

    PubMed

    Chen, Miao-Pei; Chen, Chien-Wen; Chen, Jin-Shuen; Mao, Hung-Chung; Chou, Chu-Lin

    2016-01-01

    Growth arrest-specific protein 6 (Gas6) works synergistically with erythropoietin (EPO) to increase the proliferation and maturation of erythroblasts. However, the role of Gas 6 levels on EPO resistance in hemodialysis (HD) patients remains unclear. Therefore, the objective of this study was the first to examine the correlation between plasma Gas6 levels and EPO resistance in HD patients. We enrolled 134 HD patients and 85 healthy individuals. The HD patients were divided into 2 groups: 98 non-EPO-resistant patients and 36 EPO-resistant patients. Plasma levels of Gas6, interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), and albumin were quantified. Compared with non-EPO-resistant patients, EPO-resistant patients had elevated plasma concentrations of Gas6 (15.4 ± 3.3 vs. 13.7 ± 3.2 ng/mL, P = 0.006), IL-6 (3.1 ± 3.1 vs. 2.1 ± 1.5 pg/mL, P = 0.009), and hs-CRP (12.7 ± 25.2 vs. 4.5 ± 5.5 mg/L, P = 0.002). In EPO-resistant HD patients, plasma Gas6 levels were negatively correlated with albumin levels (r = -0.388, P < 0.021). Elevated Gas6 levels are associated with EPO resistance in HD patients. Also, EPO resistance is related to inflammation and malnutrition. Thus, circulating Gas6 levels could be used as the potential marker in HD patients with EPO resistance. PMID:26788441

  4. Sequencing of LRP2 reveals multiple rare variants associated with urinary trefoil factor-3.

    PubMed

    McMahon, Gearoid M; Olden, Matthias; Garnaas, Maija; Yang, Qiong; Liu, Xuan; Hwang, Shih-Jen; Larson, Martin G; Goessling, Wolfram; Fox, Caroline S

    2014-12-01

    Novel biomarkers are being investigated to identify patients with kidney disease. We measured a panel of 13 urinary biomarkers in participants from the Offspring Cohort of the Framingham Heart Study. Using an Affymetrix chip with imputation to 2.5 M single-nucleotide polymorphisms (SNPs), we conducted a GWAS of these biomarkers (n=2640) followed by exonic sequencing and genotyping. Functional studies in zebrafish were used to investigate histologic correlation with renal function. Across all 13 biomarkers, there were 97 significant SNPs at three loci. Lead SNPs at each locus were rs6555820 (P=6.7×10(-49); minor allele frequency [MAF]=0.49) in HAVCR1 (associated with kidney injury molecule-1), rs7565788 (P=2.15×10(-16); MAF=0.22) in LRP2 (associated with trefoil factor 3 [TFF3]), and rs11048230 (P=4.77×10(-8); MAF=0.10) in an intergenic region near RASSF8 (associated with vascular endothelial growth factor). Validation in the CKDGen Consortium (n=67,093) showed that only rs7565788 at LRP2, which encodes megalin, was associated with eGFR (P=0.003). Sequencing of exons 16-72 of LRP2 in 200 unrelated individuals at extremes of urinary TFF3 levels identified 197 variants (152 rare; MAF<0.05), 31 of which (27 rare) were nonsynonymous. In aggregate testing, rare variants were associated with urinary TFF3 levels (P=0.003), and the lead GWAS signal was not explained by these variants. Knockdown of LRP2 in zebrafish did not alter the renal phenotype in static or kidney injury models. In conclusion, this study revealed common variants associated with urinary levels of TFF3, kidney injury molecule-1, and vascular endothelial growth factor and identified a cluster of rare variants independently associated with TFF3. PMID:24876117

  5. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

    PubMed Central

    2012-01-01

    Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS) in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y) completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g), or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively). We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40). A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003). Rates of MPS for S20 were less than W20 (P = 0.02) and not different from 0 g (P = 0.41) in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P < 0.005); however S40 increased MPS greater than 0 g under post-exercise conditions (P = 0.04). Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein. PMID

  6. Activated Protein C Resistance Does Not Increase Risk for Recurrent Stroke or Death in Stroke Patients

    PubMed Central

    Thaler, Christoph; Sonntag, Natalie; Schleef, Michael; Rondak, Ina-Christine; Poppert, Holger

    2016-01-01

    Background Activated protein C (APC) resistance is the most common inherited prothrombotic disorder. The role of APC resistance in ischemic stroke is controversially discussed. Objectives The aim of this single center follow up study was to investigate the effect of APC resistance on stroke recurrence and survival in stroke patients. Patients/Methods We retrospectively identified 966 patients who had had an ischemic stroke or transitory ischemic attack (TIA) and in whom laboratory tests for APC resistance had been conducted. These patients were contacted to determine the primary outcomes of recurrent ischemic stroke or death. Results A total of 858 patients with an average follow up time of 8.48 years were included. APC resistance did not influence cumulative incidence functions for stroke free and total survival. In multivariate analyses, crude and adjusted hazard ratios for recurrent stroke as well as for death where not significantly increased in patients with APC resistance. This also applies to the subgroups of young patients, patients with cryptogenic stroke and patients with atrial fibrillation. Conclusion APC-resistance is not a risk factor for subsequent stroke or death in patients with a first ischemic stroke or TIA. Testing for APC-resistance in stroke patients therefore cannot be routinely recommended. PMID:27508300

  7. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    PubMed Central

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  8. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    PubMed

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-01-01

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites. PMID:26345948

  9. A Novel Membrane Protein, VanJ, Conferring Resistance to Teicoplanin

    PubMed Central

    Novotna, Gabriela; Hill, Chris; Vincent, Karen; Liu, Chang

    2012-01-01

    Bacterial resistance to the glycopeptide antibiotic teicoplanin shows some important differences from the closely related compound vancomycin. They are currently poorly understood but may reflect significant differences in the mode of action of each antibiotic. Streptomyces coelicolor possesses a vanRSJKHAX gene cluster that when expressed confers resistance to both vancomycin and teicoplanin. The resistance to vancomycin is mediated by the enzymes encoded by vanKHAX, but not by vanJ. vanHAX effect a reprogramming of peptidoglycan biosynthesis, which is considered to be generic, conferring resistance to all glycopeptide antibiotics. Here, we show that vanKHAX are not in fact required for teicoplanin resistance in S. coelicolor, which instead is mediated solely by vanJ. vanJ is shown to encode a membrane protein oriented with its C-terminal active site exposed to the extracytoplasmic space. VanJ also confers resistance to the teicoplanin-like antibiotics ristocetin and A47934 and to a broad range of semisynthetic teicoplanin derivatives, but not generally to antibiotics or semisynthetic derivatives with vancomycin-like structures. vanJ homologues are found ubiquitously in streptomycetes and include staP from the Streptomyces toyocaensis A47934 biosynthetic gene cluster. While overexpression of staP also conferred resistance to teicoplanin, similar expression of other vanJ homologues (SCO2255, SCO7017, and SAV5946) did not. The vanJ and staP orthologues, therefore, appear to represent a subset of a larger protein family whose members have acquired specialist roles in antibiotic resistance. Future characterization of the divergent enzymatic activity within this new family will contribute to defining the molecular mechanisms important for teicoplanin activity and resistance. PMID:22232274

  10. Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity.

    PubMed

    Zhang, H L; Lin, H H; Tao, L; Ma, X H; Dai, J L; Jia, J; Cao, Z W

    2008-09-01

    Increasing antibiotic resistance has become a worldwide challenge to the clinical treatment of infectious diseases. The identification of antibiotic resistance proteins (ARPs) would be helpful in the discovery of new therapeutic targets and the design of novel drugs to control the potential spread of antibiotic resistance. In this work, a support vector machine (SVM)-based ARP prediction system was developed using 1308 ARPs and 15587 non-ARPs. Its performance was evaluated using 313 ARPs and 7156 non-ARPs. The computed prediction accuracy was 88.5% for ARPs and 99.2% for non-ARPs. A potential application of this method is the identification of ARPs non-homologous to proteins of known function. Further genome screening found that ca. 3.5% and 3.2% of proteins in Escherichia coli and Staphylococcus aureus, respectively, are potential ARPs. These results suggest the usefulness of SVMs for facilitating the identification of ARPs. The software can be accessed at SARPI (Server for Antibiotic Resistance Protein Identification). PMID:18583101

  11. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  12. Understanding Interactions between Phytopathogenic Phytophthora Effector IpiO and the Host Resistance Protein RB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of phytopathogenic Phytophthora are well known for their ability to cause disease on economically important crops, with almost 100 recognized species targeting close to 300 different hosts. The host resistance protein RB, isolated from wild potato, specifically recognizes the P. infestans Ip...

  13. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism

    PubMed Central

    2012-01-01

    Provision of dietary amino acids increases skeletal muscle protein synthesis (MPS), an effect that is enhanced by prior resistance exercise. As a fundamentally necessary process in the enhancement of muscle mass, strategies to enhance rates of MPS would be beneficial in the development of interventions aimed at increasing skeletal muscle mass particularly when combined with chronic resistance exercise. The purpose of this review article is to provide an update on current findings regarding the nutritional regulation of MPS and highlight nutrition based strategies that may serve to maximize skeletal muscle protein anabolism with resistance exercise. Such factors include timing of protein intake, dietary protein type, the role of leucine as a key anabolic amino acid, and the impact of other macronutrients (i.e. carbohydrate) on the regulation of MPS after resistance exercise. We contend that nutritional strategies that serve to maximally stimulate MPS may be useful in the development of nutrition and exercise based interventions aimed at enhancing skeletal muscle mass which may be of interest to elderly populations and to athletes. PMID:22594765

  14. A chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol

    PubMed Central

    Fischer, Juliana de Saldanha da Gama; Carvalho, Paulo Costa; Fonseca, Clovis Orlando da; Liao, Lujian; Degrave, Wim M; Carvalho, Maria da Gloria da Costa; Yates, John R; Domont, Gilberto B

    2010-01-01

    Glioblastoma multiform (GBM) is by far the most malignant glioma. We have introduced a new treatment for GBMs that comprises the inhalation of a naturally occurring terpene with chemotherapeutic properties known as perillyl alcohol (POH). Clinical trial results on recurrent GBM patients showed that POH extends the average life by more than eight months, temporarily slows tumor growth, and in some cases even decreases tumor size. After approximately seven months the tumor continues to grow and leads to a dismal prognosis. To investigate how these tumors become resistant to POH we generated an A172 human glioblastoma cell culture tolerant to 0.06 mM of POH (A172r). We used Multidimensional Protein Identification Technology (MudPIT) to compare the protein expression profile of A172r cells to the established glioblastoma A172 cell line. Our results include a list of identified proteins unique to either the resistant or the non-resistant cell line. These proteins are related to cellular growth, negative apoptosis regulation, Ras pathway, and other key cellular functions that could be connected to the underlying mechanisms of resistance. PMID:20806975

  15. Knocked-out and still walking: prion protein-deficient cattle are resistant to prion disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Disruption of PrP**c expression in the mouse results in resistance to PrP-propagation and disease. However, the impa...

  16. Enhanced pest resistance of maize leaves expressing monocot crop plant derived ribosome inactivating protein and agglutinin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although many insect resistance genes have been identified, the number of studies examining their effects in combination using transgenic systems is limited. We introduced a construct into maize containing the coding sequence for maize ribosome inactivating protein (MRIP), wheat germ agglutinin (WGA...

  17. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport.

    PubMed

    Guo, Y-X; He, L-Y; Zhang, M; Wang, F; Liu, F; Peng, W-X

    2016-05-13

    Alzheimer's disease (AD) is characterized by the accumulation and deposition of plaques of amyloid-β (Aβ) peptide in the brain. Growing epidemiological and experimental studies have shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts neuroprotection against AD. However, the underlying mechanisms of the action remain unclear. Since Aβ clearance plays a crucial role in Aβ balance in the brain, the aim of the present study was to investigate potential effects of 1,25(OH)2D3 on Aβ1-40, the major soluble oligomeric form of Aβ, clearance via transport across blood-brain barrier (BBB) mediated by low-density lipoprotein receptor-related protein 1 (LRP1) (efflux) and receptor for advanced glycation end products (RAGE) (influx) and peripheral uptake by liver mediated by LRP1. We identified colocalization of LRP1 and RAGE at BBB of mice, established an in vitro BBB model by culturing monolayer mouse brain microvascular endothelial cell line (bEnd.3) cells under hypoxia and observed that 1,25(OH)2D3 treatment enhanced Aβ1-40 efflux across the BBB model and uptake by HepG2 cells. After 1,25(OH)2D3 exposure, LRP1 expression was increased significantly both in vivo and in vitro, and RAGE expression was reduced in the in vitro BBB model but not in microvascular endothelial cells of mice hippocampus. Additionally, we explored the correlation between the corresponding effects of 1,25(OH)2D3 and its nuclear hormone receptor vitamin D receptor (VDR) level. We found that VDR expression was upregulated after 1,25(OH)2D3 treatment both in vivo and in vitro. Collectively, our finding that 1,25(OH)2D3 reduces cerebral Aβ1-40 level by increasing Aβ1-40 brain-to-blood efflux and peripheral uptake through regulating LRP1 and RAGE could shed light on the mechanism of 1,25(OH)2D3 neuroprotection against AD. And the action of 1,25(OH)2D3 might be associated with the VDR pathway. PMID:26820600

  18. A bile‐inducible membrane protein mediates bifidobacterial bile resistance

    PubMed Central

    Ruiz, Lorena; O'Connell‐Motherway, Mary; Zomer, Aldert; de los Reyes‐Gavilán, Clara G.; Margolles, Abelardo; van Sinderen, Douwe

    2012-01-01

    Summary Bbr_0838 from Bifidobacterium breve UCC2003 is predicted to encode a 683 residue membrane protein, containing both a permease domain that displays similarity to transporters belonging to the major facilitator superfamily, as well as a CBS (cystathionine beta synthase) domain. The high level of similarity to bile efflux pumps from other bifidobacteria suggests a significant and general role for Bbr_0838 in bile tolerance. Bbr_0838 transcription was shown to be monocistronic and strongly induced upon exposure to bile. Further analysis delineated the transcriptional start site and the minimal region required for promoter activity and bile regulation. Insertional inactivation of Bbr_0838 in B. breve UCC2003 resulted in a strain, UCC2003:838800, which exhibited reduced survival upon cholate exposure as compared with the parent strain, a phenotype that was reversed when a functional, plasmid‐encoded Bbr_0838 gene was introduced into UCC2003:838800. Transcriptome analysis of UCC2003:838800 grown in the presence or absence of bile demonstrated that transcription of Bbr_0832, which is predicted to encode a macrolide efflux transporter gene, was significantly increased in the presence of bile, representing a likely compensatory mechanism for bile removal in the absence of Bbr_0838. This study represents the first in‐depth analysis of a bile‐inducible locus in bifidobacteria, identifying a key gene relevant for bifidobacterial bile tolerance. PMID:22296641

  19. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males

    PubMed Central

    2012-01-01

    Background The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. Methods Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. Results PULSE Q rates were greater than BOLUS (~19%, P<0.05) with a trend towards being greater than INT (~9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect±90%CI; 0.59±0.87) and moderate (0.80±0.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.42±1.00) for INT vs. PULSE. Conclusion We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g) at regular intervals (~3h) throughout the day. PMID:23067428

  20. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects.

    PubMed

    Tabashnik, Bruce E; Zhang, Min; Fabrick, Jeffrey A; Wu, Yidong; Gao, Meijing; Huang, Fangneng; Wei, Jizhen; Zhang, Jie; Yelich, Alexander; Unnithan, Gopalan C; Bravo, Alejandra; Soberón, Mario; Carrière, Yves; Li, Xianchun

    2015-01-01

    Transgenic crops that produce Bacillus thuringiensis (Bt) proteins for pest control are grown extensively, but insect adaptation can reduce their effectiveness. Established mode of action models assert that Bt proteins Cry1Ab and Cry1Ac are produced as inactive protoxins that require conversion to a smaller activated form to exert toxicity. However, contrary to this widely accepted paradigm, we report evidence from seven resistant strains of three major crop pests showing that Cry1Ab and Cry1Ac protoxins were generally more potent than the corresponding activated toxins. Moreover, resistance was higher to activated toxins than protoxins in eight of nine cases evaluated in this study. These data and previously reported results support a new model in which protoxins and activated toxins kill insects via different pathways. Recognizing that protoxins can be more potent than activated toxins against resistant insects may help to enhance and sustain the efficacy of transgenic Bt crops. PMID:26455902

  1. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects

    PubMed Central

    Tabashnik, Bruce E.; Zhang, Min; Fabrick, Jeffrey A.; Wu, Yidong; Gao, Meijing; Huang, Fangneng; Wei, Jizhen; Zhang, Jie; Yelich, Alexander; Unnithan, Gopalan C.; Bravo, Alejandra; Soberón, Mario; Carrière, Yves; Li, Xianchun

    2015-01-01

    Transgenic crops that produce Bacillus thuringiensis (Bt) proteins for pest control are grown extensively, but insect adaptation can reduce their effectiveness. Established mode of action models assert that Bt proteins Cry1Ab and Cry1Ac are produced as inactive protoxins that require conversion to a smaller activated form to exert toxicity. However, contrary to this widely accepted paradigm, we report evidence from seven resistant strains of three major crop pests showing that Cry1Ab and Cry1Ac protoxins were generally more potent than the corresponding activated toxins. Moreover, resistance was higher to activated toxins than protoxins in eight of nine cases evaluated in this study. These data and previously reported results support a new model in which protoxins and activated toxins kill insects via different pathways. Recognizing that protoxins can be more potent than activated toxins against resistant insects may help to enhance and sustain the efficacy of transgenic Bt crops. PMID:26455902

  2. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    PubMed Central

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  3. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.

    PubMed

    Reidy, Paul T; Rasmussen, Blake B

    2016-02-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on

  4. Global protein synthesis in human trophoblast is resistant to inhibition by hypoxia

    PubMed Central

    Williams, S.F.; Fik, E.; Zamudio, S.; Illsley, N.P.

    2012-01-01

    Placental growth and function depend on syncytial cell processes which require the continuing synthesis of cellular proteins. The substantial energy demands of protein synthesis are met primarily from oxidative metabolism. Although the responses of individual proteins produced by the syncytiotrophoblast to oxygen deprivation have been investigated previously, there is no information available on global protein synthesis in syncytiotrophoblast under conditions of hypoxia. These studies were designed to test the hypothesis that syncytial protein synthesis is decreased in a dose-dependent manner by hypoxia. Experiments were performed to measure amino acid incorporation into proteins in primary syncytiotrophoblast cells exposed to oxygen concentrations ranging from 0 to 10%. Compared to cells exposed to normoxia (10% O2), no changes were observed following exposure to 5% or 3% O2, but after exposure to 1% O2, protein synthesis after 24 and 48 h decreased by 24% and 23% and with exposure to 0% O2, by 65% and 50%. As a consequence of these results, we hypothesized that global protein synthesis in conditions of severe hypoxia was being supported by glucose metabolism. Additional experiments were performed therefore to examine the role of glucose in supporting protein synthesis. These demonstrated that at each oxygen concentration there was a significant, decreasing linear trend in protein synthesis as glucose concentration was reduced. Under conditions of near-anoxia and in the absence of glucose, protein synthesis was reduced by >85%. Even under normoxic conditions (defined as 10% O2) and in the presence of oxidative substrates, reductions in glucose were accompanied by decreases in protein synthesis. These experiments demonstrate that syncytiotrophoblast cells are resistant to reductions in protein synthesis at O2 concentrations greater than 1%. This could be explained by our finding that a significant fraction of protein synthesis in the syncytiotrophoblast is

  5. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines

    PubMed Central

    2014-01-01

    Background Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells. Results We found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) promoted MC3T3-E1 cells and MG-63 cells proliferation and differentiation dose dependently. Western blot analysis results showed that estrogen receptor α (ER-α), estrogen receptor β (ER-β), β-catenin and Bcl-2 protein expression increased after MC3T3-E1 cells were treated with dioscin. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that dioscin could increase the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) and up-regulate the level of Lrp5 and β-catenin. And by RNA interference analysis, we proved that the effect of dioscin increasing the ratio of OPG/RANKL was dependent on Lrp5 pathway. In addition, we also found that these effects of dioscin were abolished by ICI 182, 780 (100 nM), an antagonist of ER, indicating that an ER signaling pathway was also involved. We also found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) induced MG-63 cells proliferation and differentiation in a dose-dependent manner. Western blot analysis results indicated that ER-α, ER-β and β-catenin protein expression increased after MG-63 cells were treated with dioscin. Conclusions The current study is the first to reveal that dioscin can promote osteoblasts proliferation and differentiation via Lrp5 and ER pathway. PMID:24742230

  6. Interaction of the apolipoprotein E receptors low density lipoprotein receptor-related protein and sorLA/LR11.

    PubMed

    Spoelgen, R; Adams, K W; Koker, M; Thomas, A V; Andersen, O M; Hallett, P J; Bercury, K K; Joyner, D F; Deng, M; Stoothoff, W H; Strickland, D K; Willnow, T E; Hyman, B T

    2009-02-18

    In this study, we examined protein-protein interactions between two neuronal receptors, low density lipoprotein receptor-related protein (LRP) and sorLA/LR11, and found that these receptors interact, as indicated by three independent lines of evidence: co-immunoprecipitation experiments on mouse brain extracts and mouse neuronal cells, surface plasmon resonance analysis with purified human LRP and sorLA, and fluorescence lifetime imaging microscopy (FLIM) on rat primary cortical neurons. Immunocytochemistry experiments revealed widespread co-localization of LRP and sorLA within perinuclear compartments of rat primary neurons, while FLIM analysis showed that LRP-sorLA interactions take place within a subset of these compartments. PMID:19047013

  7. Deciphering the protein translation inhibition and coping mechanism of trichothecene toxin in resistant fungi.

    PubMed

    Kumari, Indu; Ahmed, Mushtaq; Akhter, Yusuf

    2016-09-01

    In modern times for combating the deleterious soil microbes for improved sustainable agricultural practices, there is a need to have a proper understanding of the plant-microbe interactions present in the rhizospheric microbiome of the plant roots. In the present study, the interactions of trichodermin with petidyltransferase centre of ribosomal complex was studied by molecular dynamics and in silico interaction methods to demonstrate its mechanism of action and to decipher the possible reason how it may inhibit protein synthesis at the ribosomal complex. Further we have illustrated how trichodermin resistance protein (60S ribosomal protein L3) helps to overcome the deleterious effects of trichothecene compounds like trichodermin. Normal mode analysis of trichodermin resistance protein and 25S rRNA that constitutes the petidyltransferase centre showed that the W-finger region of the protein moved towards 25S rRNA. Further analysis of molecular dynamics simulation time frames showed that several intermediate states of large motions of the protein molecules towards the 25S rRNA which finally blocks the binding pocket of the trichodermin. It indicated that this protein not only changes the local environment and conformation of the petidyltransferase centre but also restrain trichodermin from binding to the 25S rRNA at the petidyltransferase centre. PMID:27495375

  8. The Role of Organic Proteins on the Crack Growth Resistance of Human Enamel

    PubMed Central

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-01-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. PMID:25805107

  9. The role of organic proteins on the crack growth resistance of human enamel.

    PubMed

    Yahyazadehfar, Mobin; Arola, Dwayne

    2015-06-01

    With only 1% protein by weight, tooth enamel is the most highly mineralized tissue in mammals. The focus of this study was to evaluate contributions of the proteins on the fracture resistance of this unique structural material. Sections of enamel were obtained from the cusps of human molars and the crack growth resistance was quantified using a conventional fracture mechanics approach with complementary finite element analysis. In selected specimens the proteins were extracted using a potassium hydroxide treatment. Removal of the proteins resulted in approximately 40% decrease in the fracture toughness with respect to the fully proteinized control. The loss of organic content was most detrimental to the extrinsic toughening mechanisms, causing over 80% reduction in their contribution to the total energy to fracture. This degradation occurred by embrittlement of the unbroken bridging ligaments and consequent reduction in the crack closure stress. Although the organic content of tooth enamel is very small, it is essential to crack growth toughening by facilitating the formation of unbroken ligaments and in fortifying their potency. Replicating functions of the organic content will be critical to the successful development of bio-inspired materials that are designed for fracture resistance. PMID:25805107

  10. High Levels of Expression of P-glycoprotein/Multidrug Resistance Protein Result in Resistance to Vintafolide.

    PubMed

    Guertin, Amy D; O'Neil, Jennifer; Stoeck, Alexander; Reddy, Joseph A; Cristescu, Razvan; Haines, Brian B; Hinton, Marlene C; Dorton, Ryan; Bloomfield, Alicia; Nelson, Melissa; Vetzel, Marilynn; Lejnine, Serguei; Nebozhyn, Michael; Zhang, Theresa; Loboda, Andrey; Picard, Kristen L; Schmidt, Emmett V; Dussault, Isabelle; Leamon, Christopher P

    2016-08-01

    Targeting surface receptors overexpressed on cancer cells is one way to specifically treat cancer versus normal cells. Vintafolide (EC145), which consists of folate linked to a cytotoxic small molecule, desacetylvinblastine hydrazide (DAVLBH), takes advantage of the overexpression of folate receptor (FR) on cancer cells. Once bound to FR, vintafolide enters the cell by endocytosis, and the reducing environment of the endosome cleaves the linker, releasing DAVLBH to destabilize microtubules. Vintafolide has shown efficacy and improved tolerability compared with DAVLBH in FR-positive preclinical models. As the first FR-targeting drug to reach the clinic, vintafolide has achieved favorable responses in phase II clinical trials in FR-positive ovarian and lung cancer. However, some FR-positive patients in these clinical trials do not respond to vintafolide. We sought to identify potential biomarkers of resistance to aid in the future development of this and other FR-targeting drugs. Here, we confirm that high P-glycoprotein (P-gp) expression was the strongest predictor of resistance to DAVLBH in a panel of 359 cancer cell lines. Furthermore, targeted delivery of DAVLBH via the FR, as in vintafolide, fails to overcome P-gp-mediated efflux of DAVLBH in both in vitro and in vivo preclinical models. Therefore, we suggest that patients whose tumors express high levels of P-gp be excluded from future clinical trials for vintafolide as well as other FR-targeted therapeutics bearing a P-gp substrate. Mol Cancer Ther; 15(8); 1998-2008. ©2016 AACR. PMID:27256377

  11. Implication of Unfolded Protein Response and Autophagy in the Treatment of BRAF Inhibitor Resistant Melanoma.

    PubMed

    Meng, Xiao-Xiao; Xu, Hong-Xi; Yao, Mu; Dong, Qihan; Zhang, Xu Dong

    2016-01-01

    The continuous activation of the mitogen-activated protein kinase signaling cascade, typified by the BRAFV600E mutation, is one of the key alterations in melanoma. Accordingly, two BRAF inhibitors (BRAFi), vemurafenib and dabrafenib are utilized to treat melanoma and resulted in an excellent clinical outcome. However, the clinical success is not long-lasting, and the BRAFi resistance and disease progression inevitably occurs in nearly all patients. Endoplasmic reticulum stress-induced unfolded protein response and autophagy have emerged as potential pro-survival mechanisms adopted by melanoma cells in response to BRAFi. In this review, we discuss the role of unfolded protein response and autophagy that are implicated in the development of BRAFi-resistant melanoma and the corresponding strategy aiming at overcoming the intractable clinical problem. PMID:26419469

  12. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. PMID:27558726

  13. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops

    PubMed Central

    Narusaka, Mari; Hatakeyama, Katsunori; Shirasu, Ken; Narusaka, Yoshihiro

    2014-01-01

    Bacterial wilt phytopathogen Ralstonia solanacearum is a serious soil-borne disease that attacks several economically important plants worldwide, including Brassicaceae. Previous studies indicate that recognition of avirulence (Avr)-effector PopP2 by resistance (R) protein, RRS1-R, and physical interaction between RRS1-R and PopP2 in the nucleus are required for resistance. Of late, we showed that a pair of Arabidopsis thaliana TIR-NLR proteins, RRS1 and RPS4, function together in disease resistance against multiple pathogen isolates. Here, we report that dual R proteins, RRS1 and RPS4, from A. thaliana ecotype Wassilewskija confer resistance to bacterial wilt in transgenic Brassica crops. For practical applications, this finding may provide a new strategy for developing disease resistant plants that express R genes from other plants. PMID:25763492

  14. Comparative analysis of zinc finger proteins involved in plant disease resistance.

    PubMed

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Sharma, Tilak R

    2012-01-01

    A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R(2) =0.95) and the aliphatic (R(2) =0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-k(h)-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54. PMID:22916136

  15. Comparative Analysis of Zinc Finger Proteins Involved in Plant Disease Resistance

    PubMed Central

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Sharma, Tilak R.

    2012-01-01

    A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R2 = 0.95) and the aliphatic (R2 = 0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-kh-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54. PMID:22916136

  16. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    PubMed Central

    2013-01-01

    Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early

  17. An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses.

    PubMed

    Ishibashi, Kazuhiro; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2009-05-26

    Any individual virus can infect only a limited range of hosts, and most plant species are "nonhosts" to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato. PMID:19423673

  18. An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses

    PubMed Central

    Ishibashi, Kazuhiro; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2009-01-01

    Any individual virus can infect only a limited range of hosts, and most plant species are “nonhosts” to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato. PMID:19423673

  19. Combinatorial synthesis with high throughput discovery of protein-resistant membrane surfaces.

    PubMed

    Gu, Minghao; Vegas, Arturo J; Anderson, Daniel G; Langer, Robert S; Kilduff, James E; Belfort, Georges

    2013-08-01

    Using combinatorial methods, we synthesized a series of new vinyl amide monomers and graft-polymerized them to light-sensitive poly(ether sulfone) (PES) porous films for protein resistance. To increase the discovery rate and statistical confidence, we developed high throughput surface modification methods (HTP) that allow synthesis, screening and selection of desirable monomers from a large library in a relatively short time (days). A series of amide monomers were synthesized by amidation of methacryloyl chloride with amines and grafted onto commercial poly(ether sulfone) (PES) membranes using irradiation from atmospheric pressure plasma (APP). The modified PES membrane surfaces were then tested and screened for static protein adhesion using HTP. Hydroxyl amide monomers N-(3-hydroxypropyl)methacrylamide (A3), N-(4-hydroxybutyl)methacrylamide (A4), and N-(4-hydroxybutyl)methacrylamide (A6), ethylene glycol (EG) monomer N-(3-methoxypropyl)methacrylamide (A7), and N-(2-(dimethylamino)ethyl)-N-methylmethacrylamide (A8), and N-(2-(diethylamino)ethyl)-N-methylmethacrylamide (A9) all terminated with tertiary amines and were shown to have protein resistance. The PES membranes modified with these monomers exhibited both low protein adhesion (i.e. membrane plugging or fouling) and high flux. Their performance is comparable with previously identified best performing PEG and zwitterionic monomers, i.e. the so-called gold-standard for protein resistance. Combining a Hansen solubility parameter (HSP) analysis of the amide monomers and the HTP filtration results, we conclude that monomer solubility in water correlates with protein-resistant surfaces, presumably through its effects on surface-water interactions. PMID:23706542

  20. Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3.

    PubMed Central

    Mendelman, P M; Campos, J; Chaffin, D O; Serfass, D A; Smith, A L; Sáez-Nieto, J A

    1988-01-01

    We examined clinical isolates of Neisseria meningitidis relatively resistant to penicillin G (mean MIC, 0.3 micrograms/ml; range, 0.1 to 0.7 micrograms/ml), which were isolated from blood and cerebrospinal fluid for resistance mechanisms, by using susceptible isolates (mean MIC, less than or equal to 0.06 micrograms/ml) for comparison. The resistant strains did not produce detectable beta-lactamase activity, otherwise modify penicillin G, or bind less total penicillin. Penicillin-binding protein (PBP) 3 of the six resistant isolates tested uniformly bound less penicillin G in comparison to the same PBP of four susceptible isolates. Reflecting the reduced binding affinity of PBP 3 of the two resistant strains tested, the amount of 3H-labeled penicillin G required for half-maximal binding was increased in comparison with that of PBP 3 of the two susceptible isolates. We conclude that the mechanism of resistance in these meningococci relatively resistant to penicillin G was decreased affinity of PBP 3. Images PMID:3134848

  1. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins.

    PubMed

    Aminov, R I; Garrigues-Jeanjean, N; Mackie, R I

    2001-01-01

    Phylogenetic analysis of tetracycline resistance genes encoding the ribosomal protection proteins (RPPs) revealed the monophyletic origin of these genes. The most deeply branching class, exemplified by tet and otrA, consisted of genes from the antibiotic-producing organisms Streptomyces rimosus and Streptomyces lividans. With a high degree of confidence, the corresponding genes of the other seven classes (Tet M, Tet S, Tet O, Tet W, Tet Q, Tet T, and TetB P) formed phylogenetically distinct separate clusters. Based on this phylogenetic analysis, a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources was developed and characterized. A pair of degenerate primers targeted all tetracycline resistance genes encoding RPPs except otrA and tet, and seven other primer pairs were designed to target the specific classes. The primers were used to detect the circulation of these genes in the rumina of cows, in swine feed and feces, and in swine fecal streptococci. Classes Tet O and Tet W were found in the intestinal contents of both animals, while Tet M was confined to pigs and Tet Q was confined to the rumen. The tet(O) and tet(W) genes circulating in the microbiota of the rumen and the gastrointestinal tract of pigs were identical despite the differences in animal hosts and antibiotic use regimens. Swine fecal streptococci uniformly possessed the tet(O) gene, and 22% of them also carried tet(M). This population could be considered one of the main reservoirs of these two resistance genes in the pig gastrointestinal tract. All classes of RPPs except Tet T and TetB P were found in the commercial components of swine feed. This is the first demonstration of the applicability of molecular ecology techniques to estimation of the gene pool and the flux of antibiotic resistance genes in production animals. PMID:11133424

  2. Effects of resistance training and protein supplementation on bone turnover in young adult women

    PubMed Central

    Mullins, Nicole M; Sinning, Wayne E

    2005-01-01

    Background The strength of aging bone depends on the balance between the resorption and formation phases of the remodeling process. The purpose of this study was to examine the interaction of two factors with the potential to exert opposing influences on bone turnover, resistance exercise training and high dietary protein intake. It was hypothesized that resistance training by young, healthy, untrained women with protein intakes near recommended levels (0.8 g·kg-1·d-1) would promote bone formation and/or inhibit bone resorption, and that subsequent supplementation to provide 2.4 g protein·kg-1·d-1 would reverse these effects. Methods Bone formation was assessed with serum bone-specific alkaline phosphatase (BAP) and osteocalcin (OC), and bone resorption with urinary calcium and deoxypyridinoline (DPD). Biochemical, strength, anthropometric, dietary, and physical activity data were obtained from 24 healthy, untrained, eumenorrheic women (18–29y) at baseline, after eight weeks of resistance training (3 d·wk-1, ~1 hr·d-1; 3 sets, 6–10 repetitions, 13 exercises, 75–85% maximum voluntary contraction), and after 12 weeks of resistance training and 10 days of protein/placebo supplementation. Subjects were randomized (double-blind) to either a high protein (HP) or training control (TC) group and, during the final 10 days, consumed either enough purified whey protein to bring daily protein intake to 2.4 g·kg-1·d-1, or an equivalent dose of isoenergetic, carbohydrate placebo. Results Strength, lean tissue mass, and DPD increased significantly in both groups over time, while percent body fat and BAP decreased (repeated measures ANOVA, p ≤ 0.05, Bonferroni correction). No significant changes were observed for serum OC or urinary calcium, and no significant group (TC, HP) × time (baseline, week 8, week 12) interactions emerged for any of the biochemical measures. Conclusion (1) Twelve weeks of high-intensity resistance training did not appear to enhance bone

  3. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    PubMed Central

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  4. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line.

    PubMed

    Zhang, Lidong; Zhu, Hongbo; Teraishi, Fuminori; Davis, John J; Guo, Wei; Fan, Zhen; Fang, Bingliang

    2005-06-01

    The tumor-selective cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) makes TRAIL an attractive candidate as an anticancer agent. However, resistance to TRAIL poses a challenge in anticancer therapy with TRAIL. Therefore, characterizing the mechanisms of resistance and developing strategies to overcome the resistance are important steps toward successful TRAIL-mediated cancer therapy. In this study, we investigated mechanisms of acquired TRAIL resistance in a colon cancer DLD1 cell line. Compared with the TRAIL-susceptible DLD1 cell line, TRAIL-resistant DLD1/TRAIL-R cells have a low level of caspase-8 protein, but not its mRNA. Suppression of caspase-8 expression by siRNA in parental DLD1 cells led to TRAIL resistance. Restoration of caspase-8 protein expression by stable transfection rendered the DLD1/TRAIL-R cell line fully sensitive to TRAIL protein, suggesting that the low level of caspase-8 protein expression might be the culprit in TRAIL resistance in DLD1/TRAIL-R cells. Sequencing analysis of the caspase-8 coding region revealed a missense mutation that is present in both TRAIL-sensitive and TRAIL-resistant DLD1 cells. Subsequent study showed that the degradation of caspase-8 protein was accelerated in DLD1/TRAIL-R cells compared to parental DLD1 cells. Thus, accelerated degradation of caspase-8 protein is one of the mechanisms that lead to TRAIL resistance. PMID:16036110

  5. Outer membrane protein shifts in biocide-resistant Pseudomonas aeruginosa PAO1.

    PubMed

    Winder, C L; Al-Adham, I S; Abdel Malek, S M; Buultjens, T E; Horrocks, A J; Collier, P J

    2000-08-01

    Benzisothiazolone (BIT), N-methylisothiazolone (MIT) and 5-chloro-N-methylisothiazolone (CMIT) are highly effective biocidal agents and are used as preservatives in a variety of cosmetic preparations. The isothiazolones have proven efficacy against many fungal and bacterial species including Pseudomonas aeruginosa. However, some species are beginning to exhibit resistance towards this group of compounds after extended exposure. This experiment induced resistance in cultures of Ps. aeruginosa exposed to incrementally increasing sub-minimum inhibitory concentrations (MICs) of the isothiazolones in their pure chemical forms. The induced resistance was observed as a gradual increase in MIC with each new passage. The MICs for all three test isothiazolones and a thiol-interactive control compound (thiomersal) increased by approximately twofold during the course of the experiment. The onset of resistance was also observed by reference to the altered presence of an outer membrane protein, designated the T-OMP, in SDS-PAGE preparations. T-OMP was observed to disappear from the biocide-exposed preparations and reappear when the resistance-induced cultures were passaged in the absence of biocide. This reappearance of T-OMP was not accompanied by a complete reversal of induced resistance, but by a small decrease in MIC. The induction of resistance towards one biocide resulted in the development of cross-resistance towards other members of the group and the control, thiomersal. It has been suggested that the disappearance of T-OMP from these preparations is associated with the onset of resistance to the isothiazolones in their Kathon form (CMIT and MIT). PMID:10971761

  6. Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone.

    PubMed

    Zhou, Gang; Shi, Qing-shan; Ouyang, You-sheng; Chen, Yi-ben

    2014-04-01

    Isothiazolones are used as preservatives in various modern industrial products. Although microorganisms that exhibit resistance towards these biocides have been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from industrial contamination samples. The bacterial cell structure was disrupted by 50 μg ml⁻¹ Kathon treatment. BC-IR and BC-327 did not display resistance in the presence of 1 ml L⁻¹ Tween 80, 1 ml L⁻¹ Triton X-100, 0.1 % sodium dodecyl sulfate or 1 mmol L⁻¹ EDTA-2Na. Additionally, BC-IR and BC-327 exhibited lower relative conductivity from 10 to 180 min. The types as well as the levels of outer-membrane proteins (OMPs) were altered among WT, BC-IR and BC-327. Finally, the two Kathon-resistance strains BC-IR and BC-327 presented higher resistance capacity to H₂O₂. We measured the levels of peroxide-sensor genes and observed that the transcriptional activator oxyR, superoxide dismutase sod1, sod2, catalase cat1 and cat3 were all up-regulated under oxidative conditions for all strains. Taken together, OMPs and peroxide-sensor genes in B. cepacia contributed to isothiazolone resistance; However, the laboratory strain BC-IR exhibited a different resistance mechanism and properties compared to the isolated strain BC-327. PMID:24197783

  7. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction.

    PubMed

    Weatherbee, Scott D; Anderson, Kathryn V; Niswander, Lee A

    2006-12-01

    Low-density lipoprotein receptor-related protein 4 (Lrp4) is a member of a family of structurally related, single-pass transmembrane proteins that carry out a variety of functions in development and physiology, including signal transduction and receptor-mediated endocytosis. Lrp4 is expressed in multiple tissues in the mouse, and is important for the proper development and morphogenesis of limbs, ectodermal organs, lungs and kidneys. We show that Lrp4 is also expressed in the post-synaptic endplate region of muscles and is required to form neuromuscular synapses. Lrp4-mutant mice die at birth with defects in both presynaptic and postsynaptic differentiation, including aberrant motor axon growth and branching, a lack of acetylcholine receptor and postsynaptic protein clustering, and a failure to express postsynaptic genes selectively by myofiber synaptic nuclei. Our data show that Lrp4 is required during the earliest events in postsynaptic neuromuscular junction (NMJ) formation and suggest that it acts in the early, nerveindependent steps of NMJ assembly. The identification of Lrp4 as a crucial factor for NMJ formation may have implications for human neuromuscular diseases such as myasthenia syndromes. PMID:17119023

  8. Protein kinase C-gamma is present in adriamycin resistant HL-60 leukemia cells.

    PubMed

    Aquino, A; Warren, B S; Omichinski, J; Hartman, K D; Glazer, R I

    1990-01-30

    The isoform pattern of protein kinase C (PKC) was examined in wild-type and Adriamycin-resistant (HL-60/AR) HL-60 leukemia cells. Analyses were carried out by immunoblotting with mouse monoclonal antibodies against PKC-alpha and PKC-beta and a rabbit polyclonal antibody against the variable (V3) region of PKC-gamma. HL-60/AR cells contained an equivalent level of PKC-alpha and a lower amount of PKC-beta than HL-60 cells. In contrast, only HL-60/AR cells contained PKC-gamma. These results indicate that the regulation of this family of isoenzymes is altered in drug-resistant cells. PMID:2302237

  9. Increased Systemic Exposure of Methotrexate by a Polyphenol-Rich Herb via Modulation on Efflux Transporters Multidrug Resistance-Associated Protein 2 and Breast Cancer Resistance Protein.

    PubMed

    Yu, Chung-Ping; Hsieh, Yun-Chung; Shia, Chi-Sheng; Hsu, Pei-Wen; Chen, Jen-Yuan; Hou, Yu-Chi; Hsieh, Yo-Wen

    2016-01-01

    Scutellariae radix (SR, roots of Scutellaria baicalensis Georgi), a popular Chinese medicine, contains plenty of flavonoids such as baicalin, wogonoside, baicalein, and wogonin. Methotrexate (MTX), an important immunosuppressant with a narrow therapeutic index, is a substrate of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). This study investigated the effect of SR on MTX pharmacokinetics and the underlying mechanisms. Rats were orally administered MTX alone and with 1.0 or 2.0 g/kg of SR. The serum concentrations of MTX were determined by a fluorescence polarization immunoassay. Cell models were used to explore the involvement of MRP2 and BCRP in the interaction. The results showed that 1.0 g/kg of SR significantly increased Cmax, AUC(0-30), AUC(0-2880), and mean residence time (MRT) of MTX by 50%, 45%, 501%, and 347%, respectively, and 2.0 g/kg of SR significantly enhanced the AUC(0-2880) and MRT by 242% and 293%, respectively, but decreased AUC(0-30) by 41%. Cell line studies indicated that SR activated the BCRP-mediated efflux transport, whereas the serum metabolites of SR inhibited both the BCRP- and MRP2-mediated efflux transports. In conclusion, SR ingestion increased the systemic exposure and MRT of MTX via modulation on MRP2 and BCRP. PMID:26852865

  10. Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1).

    PubMed

    Nunoya, Kenichi; Grant, Caroline E; Zhang, Dawei; Cole, Susan P C; Deeley, Roger G

    2003-08-01

    Multidrug resistance protein 1 (MRP1) transports a wide range of structurally diverse conjugated and nonconjugated organic anions and some peptides, including oxidized and reduced glutathione (GSH). The protein confers resistance to certain heavy metal oxyanions and a variety of natural product-type chemotherapeutic agents. Elevated levels of MRP1 have been detected in many human tumors, and the protein is a candidate therapeutic target for drug resistance reversing agents. Previously, we have shown that human MRP1 (hMRP1) and murine MRP1 (mMRP1) differ in their substrate specificity despite a high degree of structural conservation. Since rat models are widely used in the drug discovery and development stage, we have cloned and functionally characterized rat MRP1 (rMRP1). Like mMRP1 and in contrast to hMRP1, rMRP1 confers no, or very low, resistance to anthracyclines and transports the two estrogen conjugates, 17beta-estradiol-17-(beta-d-glucuronide) (E217betaG) and estrone 3-sulfate, relatively poorly. Mutational studies combined with vesicle transport assays identified several amino acids conserved between rat and mouse, but not hMRP1, that make major contributions to these differences in substrate specificity. Despite the fact that the rodent proteins transport E217betaG poorly and the GSH-stimulated transport of estrone 3-sulfate is low compared with hMRP1, site-directed mutagenesis studies indicate that different nonconserved amino acids are involved in the low efficiency with which each of the two estrogen conjugates is transported. Our studies also suggest that although rMRP1 and mMRP1 are 95% identical in primary structure, their substrate specificities may be influenced by amino acids that are not conserved between the two rodent proteins. PMID:12867490

  11. A protein kinase Cβ inhibitor attenuates multidrug resistance of neuroblastoma cells

    PubMed Central

    Svensson, Karin; Larsson, Christer

    2003-01-01

    Background The acquisition of drug resistance is a major reason for poor outcome of neuroblastoma. Protein kinase C (PKC) has been suggested to influence drug resistance in cancer cells. The aim of this study was to elucidate whether inhibition of PKCβ isoforms influences drug-resistance of neuroblastoma cells. Methods The effect of the PKCβ inhibitor LY379196 on the growth-suppressing effects of different chemotherapeutics on neuroblastoma cells was analyzed with MTT assays. The effect of LY379196 on the accumulation of [3H]vincristine was also investigated Results The PKCβ inhibitor LY379196 suppressed the growth of three neuroblastoma cell lines. LY379196 also augmented the growth-suppressive effect of doxorubicin, etoposide, paclitaxel, and vincristine, but not of carboplatin. The effect was most marked for vincristine and for the cell-line (SK-N-BE(2)) that was least sensitive to vincristine. No effect was observed on the non-resistant IMR-32 cells. Two other PKC inhibitors, Gö6976 and GF109203X, also enhanced the vincristine effect. The PKC inhibitors caused an increased accumulation of [3H]vincristine in SK-N-BE(2) cells. Conclusions This indicates that inhibition of PKCβ could attenuate multidrug resistance in neuroblastoma cells by augmenting the levels of natural product anticancer drugs in resistant cells. PMID:12697075

  12. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1

    PubMed Central

    Patel, Saumya K.; Prasanth Kumar, Sivakumar; Highland, Hyacinth N.; Jasrai, Yogesh T.; Pandya, Himanshu A.; Desai, Ketaki R.

    2013-01-01

    The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. PMID:25937947

  13. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

    PubMed

    Patel, Saumya K; George, Linz-Buoy; Prasanth Kumar, Sivakumar; Highland, Hyacinth N; Jasrai, Yogesh T; Pandya, Himanshu A; Desai, Ketaki R

    2013-01-01

    The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. PMID:25937947

  14. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    PubMed

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation. PMID:25837301

  15. Insulin resistance of protein metabolism in type 2 diabetes and impact on dietary needs: a review.

    PubMed

    Gougeon, Réjeanne

    2013-04-01

    Evidence shows that the metabolism of protein is altered in type 2 diabetes mellitus and insulin resistance not only applies to glucose and lipid but protein metabolism as well. Population surveys report greater susceptibility to loss of lean tissue and muscle strength with aging in diabetes. Prevention of sarcopenia requires that protein receives more attention in dietary prescriptions. Protein intake of 1-1.2 g/kg of body weight (with weight at a body mass index of 25 kg/m(2))/day may be distributed equally among 3 meals a day, including breakfast, to optimize anabolism. Adopting a dietary pattern that provides a high plant-to-animal ratio and greater food volume favouring consumption of vegetables, legumes, fruits, complemented with fish, low fat dairy and meat (preferably cooked slowly in moisture), soy and nuts may assist with metabolic and weight control. Depending on the magnitude of energy restriction, usual protein intake should be maintained or increased, and the caloric deficit taken from fat and carbohydrate foods. Exercise before protein-rich meals improves skeletal muscle protein anabolism. Because high levels of amino acids lower glucose uptake in individuals without diabetes, the challenge remains to define the optimal protein intake and exercise regimen to protect from losses of muscle mass and strength while maintaining adequate glucose control in type 2 diabetes. PMID:24070802

  16. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    PubMed

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. PMID:27521921

  17. Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation

    PubMed Central

    Smith, Gordon I.; Yoshino, Jun; Stromsdorfer, Kelly L.; Klein, Seth J.; Magkos, Faidon; Reeds, Dominic N.; Klein, Samuel

    2015-01-01

    Increased plasma branched-chain amino acid concentrations are associated with insulin resistance, and intravenous amino acid infusion blunts insulin-mediated glucose disposal. We tested the hypothesis that protein ingestion impairs insulin-mediated glucose disposal by leucine-mediated mTOR signaling, which can inhibit AKT. We measured glucose disposal and muscle p-mTORSer2448, p-AKTSer473, and p-AKTThr308 in 22 women during a hyperinsulinemic-euglycemic clamp procedure with and without concomitant ingestion of whey protein (0.6 g/kg fat-free mass; n = 11) or leucine that matched the amount given with whey protein (n = 11). Both whey protein and leucine ingestion raised plasma leucine concentration by approximately twofold and muscle p-mTORSer2448 by ∼30% above the values observed in the control (no amino acid ingestion) studies; p-AKTSer473 and p-AKTThr308 were not affected by whey protein or leucine ingestion. Whey protein ingestion decreased insulin-mediated glucose disposal (median 38.8 [quartiles 30.8, 61.8] vs. 51.9 [41.0, 77.3] µmol glucose/µU insulin · mL−1 · min−1; P < 0.01), whereas ingestion of leucine did not (52.3 [43.3, 65.4] vs. 52.3 [43.9, 73.2]). These results indicate that 1) protein ingestion causes insulin resistance and could be an important regulator of postprandial glucose homeostasis and 2) the insulin-desensitizing effect of protein ingestion is not due to inhibition of AKT by leucine-mediated mTOR signaling. PMID:25475435

  18. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium.

    PubMed Central

    Parra-Lopez, C; Lin, R; Aspedon, A; Groisman, E A

    1994-01-01

    The ability of invading pathogens to proliferate within host tissues requires the capacity to resist the killing effects of a wide variety of host defense molecules. sap mutants of the facultative intracellular parasite Salmonella typhimurium exhibit hypersensitivity to antimicrobial peptides, cannot survive within macrophages in vitro and are attenuated for mouse virulence in vivo. We conducted a molecular genetic analysis of the sapG locus and showed that it encodes a product that is 99% identical to the NAD+ binding protein TrkA, a component of a low-affinity K+ uptake system in Escherichia coli. SapG exhibits similarity with other E. coli proteins implicated in K+ transport including KefC, a glutathione-regulated efflux protein, and Kch, a putative transporter similar to eukaryotic K+ channel proteins, sapG mutants were killed by the antimicrobial peptide protamine in the presence of both high and low K+, indicating that protamine hypersensitivity is not due to K+ starvation. Strains with mutations in sapG and either sapJ or the sapABCDF operon were as susceptible as sapG single mutants, suggesting that the proteins encoded by these loci participate in the same resistance pathway. SapG may modulate the activities of SapABCDF and SapJ to mediate the transport of peptides and potassium. Images PMID:8076592

  19. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid

    PubMed Central

    Cox, Georgina; Thompson, Gary S.; Jenkins, Huw T.; Peske, Frank; Savelsbergh, Andreas; Rodnina, Marina V.; Wintermeyer, Wolfgang; Homans, Steve W.; Edwards, Thomas A.; O'Neill, Alexander J.

    2012-01-01

    Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G. PMID:22308410

  20. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid.

    PubMed

    Cox, Georgina; Thompson, Gary S; Jenkins, Huw T; Peske, Frank; Savelsbergh, Andreas; Rodnina, Marina V; Wintermeyer, Wolfgang; Homans, Steve W; Edwards, Thomas A; O'Neill, Alexander J

    2012-02-01

    Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G. PMID:22308410

  1. microRNA-16 Is Downregulated During Insulin Resistance and Controls Skeletal Muscle Protein Accretion.

    PubMed

    Lee, David E; Brown, Jacob L; Rosa, Megan E; Brown, Lemuel A; Perry, Richard A; Wiggs, Michael P; Nilsson, Mats I; Crouse, Stephen F; Fluckey, James D; Washington, Tyrone A; Greene, Nicholas P

    2016-08-01

    Insulin resistant diabetes, currently at epidemic levels in developed countries, begins in the skeletal muscle and is linked to altered protein turnover. microRNAs downregulate targeted mRNA translation decreasing the amount of translated protein, thereby regulating many cellular processes. Regulation of miRNAs and their function in skeletal muscle insulin resistance is largely unexplored. The purpose of this study was to identify the effects of insulin resistance on contents of skeletal muscle miRNAs with potential functions in protein turnover. We examined miRs -1, -16, -23, -27, -133a, -133b, and -206 in muscles of Zucker rats. miR-1 was 5- to 10-fold greater in obesity, whereas miRs-16 and -133b were repressed ∼50% in obese compared to lean rats, with no other alterations in miRNA contents. miR-16 correlated to protein synthesis in lean, but not obese rats. miR-16 reduction by lipid overload was verified in-vivo by diet-induced obesity and in-vitro using a diacylglycerol analog. A role for miR-16 in protein turnover of skeletal myocytes was established using transient overexpression and anti-miR inhibition. miR-16 overexpression resulted in lower protein synthesis (puromycin incorporation, ∼25-50%), mTOR (∼25%), and p70S6K1 (∼40%) in starved and insulin stimulated myoblasts. Conversely, anti-miR-16 increased basal protein synthesis (puromycin incorporation, ∼75%), mTOR (∼100%), and p70S6K1 (∼100%). Autophagy was enhanced by miR-16 overexpression (∼50% less BCL-2, ∼100% greater LC3II/I, ∼50% less p62) and impaired with miR-16 inhibition (∼45% greater BCL-2, ∼25% less total LC3, ∼50% greater p62). This study demonstrates reduced miR-16 during insulin resistance and establishes miR-16 control of protein accretion in skeletal muscle. J. Cell. Biochem. 117: 1775-1787, 2016. © 2015 Wiley Periodicals, Inc. PMID:26683117

  2. Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps.

    PubMed

    Lamping, Erwin; Cannon, Richard D

    2010-01-01

    Azole antifungal drugs are used widely to treat people with oral fungal infections. Unfortunately, fungi can develop resistance to these drugs. This resistance can be due to the overexpression or mutation of cytochrome P450 14alpha-lanosterol demethylase, also known as ERG11 or CYP51, and/or the overexpression of membrane-located multidrug efflux pumps. We have developed a heterologous membrane protein expression system that can be used to study the structure and function of these proteins in the non-pathogenic, genetically stable, and versatile eukaryotic model organism, Saccharomyces cerevisiae. In this chapter we describe the techniques used to express the Candida albicans efflux pump Cdr1p in S. cerevisiae. PMID:20717788

  3. The LRP6 rs2302685 polymorphism is associated with increased risk of myocardial infarction

    PubMed Central

    2014-01-01

    Background Abnormal lipids is one of the critical risk factors for myocardial infarction (MI), however the role of genetic variants in lipid metabolism-related genes on MI pathogenesis still requires further investigation. We herein genotyped three SNPs (LRP6 rs2302685, LDLRAP1 rs6687605, SOAT1 rs13306731) in lipid metabolism-related genes, aimed to shed light on the influence of these SNPs on individual susceptibility to MI. Methods Genotyping of the three SNPs (rs2302685, rs6687605 and rs13306731) was performed in 285 MI cases and 650 control subjects using polymerase chain reaction–ligation detection reaction (PCR–LDR) method. The association of these SNPs with MI and lipid profiles was performed with SPSS software. Results Multivariate logistic regression analysis showed that C allele (OR = 1.62, P = 0.039) and the combined CT/CC genotype (OR = 1.67, P = 0.035) of LRP6 rs2302685 were associated with increased MI risk, while the other two SNPs had no significant effect. Further stratified analysis uncovered a more evident association with MI risk among younger subjects (≤60 years old). Fascinatingly, CT/CC genotype of rs2302685 conferred increased LDL-C levels compared to TT genotype (3.0 mmol/L vs 2.72 mmol/L) in younger subjects. Conclusions Our data provides the first evidence that LRP6 rs2302685 polymorphism is associated with an increased risk of MI in Chinese subjects, and the association is more evident among younger individuals, which probably due to the elevated LDL-C levels. PMID:24906453

  4. Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4 Myasthenia

    PubMed Central

    Selcen, Duygu; Ohkawara, Bisei; Shen, Xin-Ming; McEvoy, Kathleen; Ohno, Kinji; Engel, Andrew G.

    2015-01-01

    IMPORTANCE Congenital myasthenic syndromes (CMS) are heterogeneous disorders. Defining the phenotypic features, genetic basis, and pathomechanisms of a CMS is relevant to prognosis, genetic counseling, and therapy. OBJECTIVE To characterize clinical, structural, electrophysiologic, and genetic features of a CMS and search for optimal therapy. DESIGN, SETTINGS, AND PARTICIPANTS Two sisters, 34 and 20 years of age suffering from a CMS affecting the limb-girdle muscles were investigated at an academic medical center by clinical observation, in vitro analysis of neuromuscular transmission, cytochemical and electron microscopy studies of the neuromuscular junction, exome sequencing, expression studies in HEK293 and COS-7 cells, and for response to therapy. MAIN OUTCOMES AND MEASURES We identified the disease gene and mutation, confirmed pathogenicity of the mutation by expression studies, and instituted optimal pharmacotherapy. RESULTS Intercostal muscle endplates (EPs) were abnormally small with attenuated reactivities for the acetylcholine receptor and acetylcholine esterase. Most EPs had poorly differentiated or degenerate junctional folds and some appeared denuded of nerve terminals. The amplitude of the EP potential (EPP), the miniature EPP, and the quantal content of the EPP were all markedly reduced. Exome sequencing identified a novel homozygous p.Glu1233Ala mutation in LRP4, a coreceptor for agrin to activate MuSK, required for EP development and maintenance. Expression studies indicate the mutation compromises ability of LRP4 to bind to, phosphorylate, and activate MuSK. Albuterol improved the patients’ symptoms. CONCLUSIONS AND RELEVANCE We identify a second CMS kinship harboring mutations in LRP4, identify the mechanisms that impair neuromuscular transmission, and mitigate the disease by appropriate therapy. PMID:26052878

  5. Genetic Variants in LRP1 and ULK4 Are Associated with Acute Aortic Dissections.

    PubMed

    Guo, Dong-Chuan; Grove, Megan L; Prakash, Siddharth K; Eriksson, Per; Hostetler, Ellen M; LeMaire, Scott A; Body, Simon C; Shalhub, Sherene; Estrera, Anthony L; Safi, Hazim J; Regalado, Ellen S; Zhou, Wei; Mathis, Michael R; Eagle, Kim A; Yang, Bo; Willer, Cristen J; Boerwinkle, Eric; Milewicz, Dianna M

    2016-09-01

    Acute aortic dissections are a preventable cause of sudden death if individuals at risk are identified and surgically repaired in a non-emergency setting. Although mutations in single genes can be used to identify at-risk individuals, the majority of dissection case subjects do not have evidence of a single gene disorder, but rather have the other major risk factor for dissections, hypertension. Initial genome-wide association studies (GWASs) identified SNPs at the FBN1 locus associated with both thoracic aortic aneurysms and dissections. Here, we used the Illumina HumanExome array to genotype 753 individuals of European descent presenting specifically with non-familial, sporadic thoracic aortic dissection (STAD) and compared them to the genotypes of 2,259 control subjects from the Atherosclerosis Risk in Communities (ARIC) study matched for age, gender, and, for the majority of cases, hypertension. SNPs in FBN1, LRP1, and ULK4 were identified to be significantly associated with STAD, and these results were replicated in two independent cohorts. Combining the data from all cohorts confirmed an inverse association between LRP1 rs11172113 and STAD (p = 2.74 × 10(-8); OR = 0.82, 95% CI = 0.76-0.89) and a direct association between ULK4 rs2272007 and STAD (p = 1.15 × 10(-9); OR = 1.35, 95% CI = 1.23-1.49). Genomic copy-number variation analysis independently confirmed that ULK4 deletions were significantly associated with development of thoracic aortic disease. These results indicate that genetic variations in LRP1 and ULK4 contribute to risk for presenting with an acute aortic dissection. PMID:27569546

  6. LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements.

    PubMed

    Chen, Jing; Valsecchi, Matteo; Gegenfurtner, Karl R

    2016-07-01

    Several studies have indicated that human observers are very efficient at tracking self-generated hand movements with their gaze, yet it is not clear whether this is simply a by-product of the predictability of self-generated actions or if it results from a deeper coupling of the somatomotor and oculomotor systems. In a first behavioral experiment we compared pursuit performance as observers either followed their own finger or tracked a dot whose motion was externally generated but mimicked their finger motion. We found that even when the dot motion was completely predictable in terms of both onset time and kinematics, pursuit was not identical to that produced as the observers tracked their finger, as evidenced by increased rate of catch-up saccades and by the fact that in the initial phase of the movement gaze was lagging behind the dot, whereas it was ahead of the finger. In a second experiment we recorded EEG in the attempt to find a direct link between the finger motor preparation, indexed by the lateralized readiness potential (LRP) and the latency of smooth pursuit. After taking into account finger movement onset variability, we observed larger LRP amplitudes associated with earlier smooth pursuit onset across trials. The same held across subjects, where average LRP onset correlated with average eye latency. The evidence from both experiments concurs to indicate that a strong coupling exists between the motor systems leading to eye and finger movements and that simple top-down predictive signals are unlikely to support optimal coordination. PMID:27009159

  7. Novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein: enzymatic analysis of the mutant proteins.

    PubMed Central

    Hallett, P; Maxwell, A

    1991-01-01

    Using the techniques of gap misrepair mutagenesis and site-directed mutagenesis, we have generated two novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein. DNA sequencing showed these mutations to be Ser-83----Ala and Gln-106----Arg. The mutant proteins were overproduced and purified, and their enzymatic properties were analyzed and compared with those of the wild-type enzyme. With ciprofloxacin and other quinolones, the inhibition of DNA supercoiling, relaxation, and decatenation and the induction of DNA cleavage were investigated for both wild-type and mutant enzymes. In each assay, the mutant enzymes were found to require approximately 10 times more drug to inhibit the reaction or induce cleavage than was the wild-type enzyme. However, the Ca2(+)-directed DNA cleavage reaction was indistinguishable for wild-type and mutant gyrases. We discuss models for the gyrase-mediated bactericidal effects of quinolone drugs. Images PMID:1850970

  8. Macrophage Replication Screen Identifies a Novel Francisella Hydroperoxide Resistance Protein Involved in Virulence

    PubMed Central

    Llewellyn, Anna C.; Bina, James E.; Weiss, David S.

    2011-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is

  9. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs.

    PubMed

    Lee, Hyun-Jung; Gottesman, Susan

    2016-08-19

    Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an 'RNA landscape,' identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ' L: eucine-responsive R: egulatory P: rotein,' regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator. PMID:27137887

  10. Collagen Q and anti-MuSK autoantibody competitively suppress agrin/LRP4/MuSK signaling

    PubMed Central

    Otsuka, Kenji; Ito, Mikako; Ohkawara, Bisei; Masuda, Akio; Kawakami, Yu; Sahashi, Ko; Nishida, Hiroshi; Mabuchi, Naoki; Takano, Akemi; Engel, Andrew G.; Ohno, Kinji

    2015-01-01

    MuSK antibody-positive myasthenia gravis (MuSK-MG) accounts for 5 to 15% of autoimmune MG. MuSK and LRP4 are coreceptors for agrin in the signaling pathway that causes clustering of acetylcholine receptor (AChR). MuSK also anchors the acetylcholinesterase (AChE)/collagen Q (ColQ) complex to the synaptic basal lamina. We previously reported that anti-MuSK antibodies (MuSK-IgG) block binding of ColQ to MuSK and cause partial endplate AChE deficiency in mice. We here analyzed the physiological significance of binding of ColQ to MuSK and block of this binding by MuSK-IgG. In vitro plate-binding assay showed that MuSK-IgG blocked MuSK-LRP4 interaction in the presence of agrin. Passive transfer of MuSK-IgG to Colq-knockout mice attenuated AChR clustering, indicating that lack of ColQ is not the key event causing defective clustering of AChR in MuSK-MG. In three MuSK-MG patients, the MuSK antibodies recognized the first and fourth immunoglobulin-like domains (Ig1 and Ig4) of MuSK. In two other MuSK-MG patients, they recognized only the Ig4 domain. LRP4 and ColQ also bound to the Ig1 and Ig4 domains of MuSK. Unexpectedly, the AChE/ColQ complex blocked MuSK-LRP4 interaction and suppressed agrin/LRP4/MuSK signaling. Quantitative analysis showed that MuSK-IgG suppressed agrin/LRP4/MuSK signaling to a greater extent than ColQ. PMID:26355076

  11. Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates.

    PubMed

    Pec, Martina K; Aguirre, Amable; Fernández, Javier J; Souto, Maria L; Dorta, Javier F; Villar, Jesús

    2002-11-01

    We had shown previously that the novel, marine, anticancer compound dehydrothyrsiferol (DHT) does not modulate P-glycoprotein (P-gp) dependent drug efflux. Many chemotherapeutics with clinical impact are substrates for the structurally distant related membrane transport protein MRP1 (multidrug resistance-associated protein 1). Thus, we were interested in analysing the behaviour of DHT and control compounds in specific drug transport of MRP1 overexpressing cells. We established a fluorescence based drug efflux system for specific, functional detection of interference of a test compound in MRP1 mediated drug extrusion. Briefly, MRP1 overexpressing HL60/Adr cells were incubated to uptake and then efflux fluorescent 5(6)-carboxyfluorescein diacetate (CFDA), rhodamine 123 (Rh123), or 3,3-diethylocarbocyanine iodide (DiOC2), respectively. Changes in cell fluorescence intensity after coincubation with the compound of interest were determined by flow cytometry. MRP1 mediated efflux of CFDA was analysed in the presence of DHT, the known substrates genistein, probenecid, and the specific inhibitor MK-571. To exclude unknown P-gp related interference in drug transport, efflux of the fluorescent P-gp substrate DiOC2 and specific inhibition by cyclosporin A (CsA) were analysed. Cytotoxicity of DHT in resistant HL60/Adr cells was found to be even superior to that in the parental HL60 leukaemia cell line. Consequently, DHT did not interfere in MRP1 mediated drug transport. In contrast to DiOC2, rhodamine 123 was not specifically effluxed by P-gp but also by MRP1. Therefore, we propose the MRP1 specific CFDA efflux model as a screening and/or excluding system for MRP1 substrates. Together with previous data our results suggest DHT to be an interesting candidate for further investigation directed towards a drug development regimen. PMID:12373300

  12. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer.

    PubMed

    Lv, Yingqian; Zhao, Shan; Han, Jinzhu; Zheng, Likang; Yang, Zixin; Zhao, Li

    2015-01-01

    Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF)-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1) were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. PMID:26251616

  13. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    PubMed Central

    Lv, Yingqian; Zhao, Shan; Han, Jinzhu; Zheng, Likang; Yang, Zixin; Zhao, Li

    2015-01-01

    Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF)-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1) were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at −378 to −373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. PMID:26251616

  14. Bactobolin Resistance Is Conferred by Mutations in the L2 Ribosomal Protein

    PubMed Central

    Chandler, Josephine R.; Truong, Thao T.; Silva, Patricia M.; Seyedsayamdost, Mohammad R.; Carr, Gavin; Radey, Matthew; Jacobs, Michael A.; Sims, Elizabeth H.; Clardy, Jon; Greenberg, E. Peter

    2012-01-01

    ABSTRACT Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). PMID:23249812

  15. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump.

    PubMed Central

    Zaman, G J; Flens, M J; van Leusden, M R; de Haas, M; Mülder, H S; Lankelma, J; Pinedo, H M; Scheper, R J; Baas, F; Broxterman, H J

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA. MRP-overexpressing SW-1573 cells are resistant to doxorubicin, daunorubicin, vincristine, VP-16, colchicine, and rhodamine 123, but not to 4'-(9-acridinylamino)methanesulfon-m-anisidide or taxol. The intracellular accumulation of drug (daunorubicin, vincristine, and VP-16) is decreased and the efflux of drug (daunorubicin) is increased in the transfectant. The decreased accumulation of daunorubicin is abolished by permeabilization of the plasma membrane with digitonin, showing that MRP can lower the intracellular daunorubicin level against a concentration gradient. Anti-MRP antisera predominantly stain the plasma membrane of MRP-overexpressing cells. We conclude that MRP is a plasma membrane drug-efflux pump. Images PMID:7916458

  16. Heat Resistant Characteristics of Major Royal Jelly Protein 1 (MRJP1) Oligomer

    PubMed Central

    Moriyama, Takanori; Ito, Aimi; Omote, Sumire; Miura, Yuri; Tsumoto, Hiroki

    2015-01-01

    Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells. PMID:26020775

  17. Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes.

    PubMed

    Tria, Maria Celeste R; Grande, Carlos David T; Ponnapati, Ramakrishna R; Advincula, Rigoberto C

    2010-12-13

    This paper introduces a novel and versatile method of grafting protein and cell-resistant poly(poly ethylene glycol methyl ether methacrylate) (PPEGMEMA) brushes on conducting Au surface. The process started with the electrochemical deposition and full characterization of an electro-active chain transfer agent (CTA) on the Au surface. The electrochemical behavior of the CTA was investigated by cyclic voltammetry (CV) while the deposition and stability of the CTA on the surface were confirmed by ellipsometry, contact angle, and X-ray photoelectron spectroscopy (XPS). The capability of the electrodeposited CTA to mediate surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization on both the polymethyl methacrylate (PMMA; model polymer) and PPEGMEMA brushes was demonstrated by the increase in thicknesses of the films after polymerization. Contact angles also decreased with the incorporation of the more hydrophilic brushes. Significant changes in the morphologies of the films before and after polymerization were also observed with atomic force microscopy (AFM) analyses. Furthermore, XPS results showed an increase in the O 1s peak intensity relative to C 1s after polymerizations, which confirmed the grafting of polyethyleneglycol (PEG) bearing brushes. The ability of the PPEGMEMA-modified Au surface to resist nonspecific adhesion of proteins and cells was monitored and confirmed by XPS, ellipsometry, contact angle, AFM, and fluorescence imaging. The new method presented has potential application as robust protein and cell-resistant coatings for electrically conducting electrodes and biomedical devices. PMID:21028799

  18. Mitomycin Resistance in Streptomyces lavendulae Includes a Novel Drug-Binding-Protein-Dependent Export System

    PubMed Central

    Sheldon, Paul J.; Mao, Yingqing; He, Min; Sherman, David H.

    1999-01-01

    Sequence analysis of Streptomyces lavendulae NRRL 2564 chromosomal DNA adjacent to the mitomycin resistance locus mrd (encoding a previously described mitomycin-binding protein [P. Sheldon, D. A. Johnson, P. R. August, H.-W. Liu, and D. H. Sherman, J. Bacteriol. 179:1796–1804, 1997]) revealed a putative mitomycin C (MC) transport gene (mct) encoding a hydrophobic polypeptide that has significant amino acid sequence similarity with several actinomycete antibiotic export proteins. Disruption of mct by insertional inactivation resulted in an S. lavendulae mutant strain that was considerably more sensitive to MC. Expression of mct in Escherichia coli conferred a fivefold increase in cellular resistance to MC, led to the synthesis of a membrane-associated protein, and correlated with reduced intracellular accumulation of the drug. Coexpression of mct and mrd in E. coli resulted in a 150-fold increase in resistance, as well as reduced intracellular accumulation of MC. Taken together, these data provide evidence that MRD and Mct function as components of a novel drug export system specific to the mitomycins. PMID:10198016

  19. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform. PMID:27249052

  20. Pyrrolopyrimidine Derivatives as Novel Inhibitors of Multidrug Resistance-Associated Protein 1 (MRP1, ABCC1).

    PubMed

    Schmitt, Sven Marcel; Stefan, Katja; Wiese, Michael

    2016-04-14

    Five series of pyrrolo[3,2-d]pyrimidines were synthesized and evaluated with respect to potency and selectivity toward multidrug resistance-associated protein 1 (MRP1, ABCC1). This transport protein is a major target to overcome multidrug resistance in cancer patients. We investigated differently substituted pyrrolopyrimidines using the doxorubicin selected and MRP1 overexpressing small cell lung cancer cell line H69 AR in a calcein AM and daunorubicin cell accumulation assay. New compounds with high potency and selectivity were identified. Piperazine residues at position 4 bearing large phenylalkyl side chains proved to be beneficial for MRP1 inhibition. Its replacement by an amino group led to decreased activity. Aliphatic and aliphatic-aromatic variations at position 5 and 6 revealed compounds with IC50 values in high nanomolar range. All investigated compounds had low affinity toward P-glycoprotein (P-gp, ABCB1). Pyrrolopyrimidines with small substituents showed moderate inhibition against breast cancer resistance protein (BCRP, ABCG2). PMID:26943020

  1. Genomic structure, gene expression, and promoter analysis of human multidrug resistance-associated protein 7

    SciTech Connect

    Kao, Hsin-Hsin; Chang, Ming-Shi; Cheng, Jan-Fang; Huang, Jin-Ding

    2002-03-15

    The multidrug resistance-associated protein (MRP) subfamily transporters associated with anticancer drug efflux are attributed to the multidrug-resistance of cancer cells. The genomic organization of human multidrug resistance-associated protein 7 (MRP7) was identified. The human MRP7 gene, consisting of 22 exons and 21 introns, greatly differs from other members of the human MRP subfamily. A splicing variant of human MRP7, MRP7A, expressed in most human tissues, was also characterized. The 1.93-kb promoter region of MRP7 was isolated and shown to support luciferase activity at a level 4- to 5-fold greater than that of the SV40 promoter. Basal MRP7 gene expression was regulated by 2 regions in the 5-flanking region at 1,780 1,287 bp, and at 611 to 208 bp. In Madin-Darby canine kidney (MDCK) cells, MRP7 promoter activity was increased by 226 percent by genotoxic 2-acetylaminofluorene and 347 percent by the histone deacetylase inhibitor, trichostatin A. The protein was expressed in the membrane fraction of transfected MDCK cells.

  2. Membrane protein resistance of oligo(ethylene oxide) self-assembled monolayers.

    PubMed

    Vaish, Amit; Vanderah, David J; Vierling, Ryan; Crawshaw, Fay; Gallagher, D Travis; Walker, Marlon L

    2014-10-01

    As part of an effort to develop biointerfaces for structure-function studies of integral membrane proteins (IMPs) a series of oligo(ethylene oxide) self-assembled monolayers (OEO-SAMs) were evaluated for their resistance to protein adsorption (RPA) of IMPs on Au and Pt. Spectroscopic ellipsometry (SE) was used to determine SAM thicknesses and compare the RPA of HS(CH2)3O(CH2CH2O)6CH3 (1), HS(CH2)3O(CH2CH2O)6H (2), [HS(CH2)3]2CHO(CH2CH2O)6CH3 (3) and [HS(CH2)3]2CHO(CH2CH2O)6H (4), assembled from water. For both substrates, SAM thicknesses for 1 to 4 were found to be comparable indicating SAMs with similar surface coverages and OEO chain order and packing densities. Fibrinogen (Fb), a soluble plasma protein, and rhodopsin (Rd), an integral membrane G-protein coupled receptor, adsorbed to the SAMs of 1, as expected from previous reports, but not to the hydroxy-terminated SAMs of 2 and 4. The methoxy-terminated SAMs of 3 were resistant to Fb but, surprisingly, not to Rd. The stark difference between the adsorption of Rd to the SAMs of 3 and 4 clearly indicate that a hydroxy-terminus of the OEO chain is essential for high RPA of IMPs. The similar thicknesses and high RPA of the SAMs of 2 and 4 show the conditions of protein resistance (screening the underlying substrate, packing densities, SAM order, and conformational mobility of the OEO chains) defined from previous studies on Au are applicable to Pt. In addition, the SAMs of 4, exhibiting the highest resistance to Fb and Rd, were placed in contact with undiluted fetal bovine serum for 2h. Low protein adsorption (≈12.4ng/cm(2)), obtained under these more challenging conditions, denote a high potential of the SAMs of 4 for various applications requiring the suppression of non-specific protein adsorption. PMID:25124834

  3. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance.

    PubMed

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin L; Rodig, Scott J; Tyner, Jeffrey W; Marto, Jarrod A; Weinstock, David M; Lane, Andrew A

    2015-01-01

    Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  4. Contributions of Aspergillus fumigatus ATP-Binding Cassette Transporter Proteins to Drug Resistance and Virulence

    PubMed Central

    Paul, Sanjoy; Diekema, Daniel

    2013-01-01

    In yeast cells such as those of Saccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of two Aspergillus fumigatus proteins that share high sequence similarity with S. cerevisiae Pdr5, an ABC transporter protein that is commonly overproduced in azole-resistant isolates in this yeast. The two A. fumigatus genes encoding the ABC transporters sharing the highest sequence similarity to S. cerevisiae Pdr5 are called abcA and abcB here. We constructed deletion alleles of these two different ABC transporter-encoding genes in three different strains of A. fumigatus. Loss of abcB invariably elicited increased azole susceptibility, while abcA disruption alleles had variable phenotypes. Specific antibodies were raised to both AbcA and AbcB proteins. These antisera allowed detection of AbcB in wild-type cells, while AbcA could be visualized only when overproduced from the hspA promoter in A. fumigatus. Overproduction of AbcA also yielded increased azole resistance. Green fluorescent protein fusions were used to provide evidence that both AbcA and AbcB are localized to the plasma membrane in A. fumigatus. Promoter fusions to firefly luciferase suggested that expression of both ABC transporter-encoding genes is inducible by azole challenge. Virulence assays implicated AbcB as a possible factor required for normal pathogenesis. This work provides important new insights into the physiological roles of ABC transporters in this major fungal pathogen. PMID:24123268

  5. MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters

    PubMed Central

    Koneczny, Inga; Cossins, Judith; Waters, Patrick; Beeson, David; Vincent, Angela

    2013-01-01

    A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 Mu

  6. EFFECTS OF SOY PROTEIN AND ISOFLAVONES ON INSULIN RESISTANCE AND ADIPONECTIN IN MALE MONKEYS

    PubMed Central

    Wagner, Janice D.; Zhang, Li; Shadoan, Melanie K.; Kavanagh, Kylie; Chen, Haiying; Trenasari, Kristitianti; Kaplan, Jay R.; Adams, Michael R.

    2008-01-01

    Isoflavones may influence insulin action by means of their well-known receptor-mediated estrogenic activity. However, isoflavones also bind to PPAR’s which are strongly associated with insulin action. Soy protein with its isoflavones has previously been shown to improve glycemic control in diabetic postmenopausal women and to improve insulin sensitivity in ovariectomized monkeys. The purpose of the current report was to extend our studies of dietary soy protein to male monkeys and determine effects of the soy isoflavones on insulin resistance. Two studies are reported here. Study one involved 91 male monkeys consuming three diets differing only by the source of protein (casein-lactalbumin, soy protein with a low isoflavone concentration or soy protein with a high isoflavone concentration). Intravenous glucose tolerance tests (IVGTTs) were done and plasma adiponectin and lipoprotein concentrations were determined after 25 months of study. Samples of visceral fat were obtained at 31 months for assessment adiponectin and PPARγ expression. The second study involved 8 monkeys in a Latin square design that compared the effects of diets with either casein/lactalbumin, soy protein with a high isoflavone concentration, or soy protein that was alcohol-washed to deplete the isoflavones. After eight weeks of treatment, insulin sensitivity and plasma lipoproteins were assessed. At ten weeks, skeletal muscle was biopsied for determination of insulin receptor, PPARα and PPARγ content. The major findings were that consumption of isoflavone-containing soy protein dose-dependently increased insulin responses to the glucose challenge and decreased plasma adiponectin while isoflavone-depleted soy protein decreased body weight and had no effect on plasma adiponectin concentrations. Muscle PPARα and γ expression was also increased with the isoflavone-depleted soy relative to either casein or soy protein containing the isoflavones. Further studies are needed to determine the

  7. Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion.

    PubMed

    Wall, Benjamin T; Dirks, Marlou L; Snijders, Tim; van Dijk, Jan-Willem; Fritsch, Mario; Verdijk, Lex B; van Loon, Luc J C

    2016-01-15

    Disuse leads to rapid loss of skeletal muscle mass and function. It has been hypothesized that short successive periods of muscle disuse throughout the lifespan play an important role in the development of sarcopenia. The physiological mechanisms underlying short-term muscle disuse atrophy remain to be elucidated. We assessed the impact of 5 days of muscle disuse on postabsorptive and postprandial myofibrillar protein synthesis rates in humans. Twelve healthy young (22 ± 1 yr) men underwent a 5-day period of one-legged knee immobilization (full leg cast). Quadriceps cross-sectional area (CSA) of both legs was assessed before and after immobilization. Continuous infusions of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine were combined with the ingestion of a 25-g bolus of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled dietary protein to assess myofibrillar muscle protein fractional synthetic rates in the immobilized and nonimmobilized control leg. Immobilization led to a 3.9 ± 0.6% decrease in quadriceps muscle CSA of the immobilized leg. Based on the l-[ring-(2)H5]phenylalanine tracer, immobilization reduced postabsorptive myofibrillar protein synthesis rates by 41 ± 13% (0.015 ± 0.002 vs. 0.032 ± 0.005%/h, P < 0.01) and postprandial myofibrillar protein synthesis rates by 53 ± 4% (0.020 ± 0.002 vs. 0.044 ± 0.003%/h, P < 0.01). Comparable results were found using the l-[1-(13)C]leucine tracer. Following protein ingestion, myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments were 53 ± 18% lower in the immobilized compared with the control leg (0.007 ± 0.002 and 0.015 ± 0.002 mole% excess, respectively, P < 0.05). We conclude that 5 days of muscle disuse substantially lowers postabsorptive myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. PMID:26578714

  8. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    PubMed

    Ilina, Elena N; Malakhova, Maya V; Bodoev, Ivan N; Oparina, Nina Y; Filimonova, Alla V; Govorun, Vadim M

    2013-01-01

    Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10(-5) colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT). PMID:23847609

  9. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    PubMed Central

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  10. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    PubMed

    McLaughlin, John E; Bin-Umer, Mohamed Anwar; Widiez, Thomas; Finn, Daniel; McCormick, Susan; Tumer, Nilgun E

    2015-01-01

    Fusarium head blight (FHB) or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON) accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin), a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1) contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP) genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS) production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  11. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin

    PubMed Central

    McLaughlin, John E.; Bin-Umer, Mohamed Anwar; Widiez, Thomas; Finn, Daniel; McCormick, Susan; Tumer, Nilgun E.

    2015-01-01

    Fusarium head blight (FHB) or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON) accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin), a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1) contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP) genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS) production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  12. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34.

    PubMed

    Zhang, Yian-Biao; Monchy, Sébastien; Greenberg, Bill; Mergeay, Max; Gang, Oleg; Taghavi, Safiyh; van der Lelie, Daniel

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC(2)BC(1)HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V). PMID:19238575

  13. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

    SciTech Connect

    Zhang, Y.; van der Lelie, D.; Monchy, S.; Greenberg, B.; Gang, O.; Taghavi, S.

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC{sub 2}BC{sub 1}HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).

  14. Fibroblasts From Longer-Lived Species of Primates, Rodents, Bats, Carnivores, and Birds Resist Protein Damage

    PubMed Central

    Pickering, Andrew M.; Lehr, Marcus; Kohler, William J.; Han, Melissa L.

    2015-01-01

    Species differ greatly in their rates of aging. Among mammalian species life span ranges from 2 to over 60 years. Here, we test the hypothesis that skin-derived fibroblasts from long-lived species of animals differ from those of short-lived animals in their defenses against protein damage. In parallel studies of rodents, nonhuman primates, birds, and species from the Laurasiatheria superorder (bats, carnivores, shrews, and ungulates), we find associations between species longevity and resistance of proteins to oxidative stress after exposure to H2O2 or paraquat. In addition, baseline levels of protein carbonyl appear to be higher in cells from shorter-lived mammals compared with longer-lived mammals. Thus, resistance to protein oxidation is associated with species maximal life span in independent clades of mammals, suggesting that this cellular property may be required for evolution of longevity. Evaluation of the properties of primary fibroblast cell lines can provide insights into the factors that regulate the pace of aging across species of mammals. PMID:25070662

  15. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    PubMed Central

    Vetting, Matthew W.; Hegde, Subray S.; Zhang, Yong; Blanchard, John S.

    2011-01-01

    The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-­helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric. PMID:21393830

  16. SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter.

    PubMed Central

    Sagné, C; Isambert, M F; Henry, J P; Gasnier, B

    1996-01-01

    The vesicular monoamine transporter, which catalyses a H+/ monoamine antiport in monoaminergic vesicle membrane, is a very hydrophobic intrinsic membrane protein. After solubilization, this protein was found to have a high tendency to aggregate, as shown by SDS/PAGE, especially when samples were boiled in the classical Laemmli buffer before electrophoresis. This behavior was analysed in some detail. The aggregation was promoted by high temperatures, organic solvents and acidic pH, suggesting that it resulted from the unfolding of structure remaining in SDS. The aggregates were very stable and could be dissociated only by suspension in anhydrous trifluoroacetic acid. This SDS-resistant aggregation behaviour was shared by very few intrinsic proteins of the chromaffin granule membrane. Consequently, a purification procedure was based on this property. A detergent extract of chromaffin granule membranes enriched in monoamine transporter was heated and the aggregates were isolated by size-exclusion HPLC in SDS. The aggregates, containing the transporter, were dissociated in the presence of trifluoroacetic acid and analysed on the same HPLC column. This strategy might be of general interest for the purification of membrane proteins that exhibit SDS-resistant aggregation. PMID:8670158

  17. Differential involvement of glutathione S-transferase mu 1 and multidrug resistance protein 1 in melanoma acquired resistance to vinca alkaloids.

    PubMed

    Attaoua, Chaker; Vincent, Laure-Anaïs; Abdel Jaoued, Aida; Hadj-Kaddour, Kamel; Baï, Qiang; De Vos, John; Vian, Laurence; Cuq, Pierre

    2015-02-01

    On account of its extreme intrinsic resistance to apoptosis and of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) is still a therapeutic challenge. We previously showed that glutathione S-transferase mu 1 (GSTM1) acts in synergy with multidrug resistance protein 1 (MRP1) to protect GSTM1-transfected human CAL1 melanoma cells from toxic effects of vincristine (VCR). Herein, we investigated the role of these proteins in the acquired resistance of CAL1 cells to vinca alkaloids (VAs). Resistant lines were established by continuous exposure (>1 year) of parental CAL1-wt cells to VCR, vindesine (VDS), or vinorelbine (VRB): CAL1R-VCR, CAL1R-VDS, CAL1R-VRB, respectively. All resistant lines displayed more than 10-fold increase in resistance to their selection VA, and specifically expressed GSTM1. Suggesting a direct interaction between this protein and VAs, each VA specifically decreased the GSTM1-mediated glutathione conjugation activity in cell lysates. Curcumin (GSTM1 inhibitor), BSO (glutathione synthesis inhibitor), and MK571 (MRP1 inhibitor) considerably reversed the acquired resistance to VCR and VDS, but not to VRB. Microarray data analysis revealed similar gene expression patterns of CAL1R-VCR and CAL1R-VDS, and a distinct one for CAL1R-VRB. These data suggest a differential involvement of GSTM1 and MRP1 in acquired resistance to VAs. A coordinated expression and activity of GSTM1 and MRP1 is required to protect CAL1 cells from VCR and VDS, while the simple expression of GSTM1 is sufficient, possibly by a direct drug/protein interaction, to confer resistance against VRB. PMID:25283245

  18. Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells.

    PubMed

    Mo, Lihong; Pospichalova, Vendula; Huang, Zhiqing; Murphy, Susan K; Payne, Sturgis; Wang, Fang; Kennedy, Margaret; Cianciolo, George J; Bryja, Vitezslav; Pizzo, Salvatore V; Bachelder, Robin E

    2015-01-01

    Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance. PMID:26148191

  19. Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal.

    PubMed

    Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda

    2011-01-01

    Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes. PMID:21383919

  20. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans: a proteomics-based approach.

    PubMed

    Sharma, Nidhi; Hotte, Naomi; Rahman, Muhammad H; Mohammadi, Mohsen; Deyholos, Michael K; Kav, Nat N V

    2008-09-01

    To better understand the pathogen-stress response of Brassica species against the ubiquitous hemi-biotroph fungus Leptosphaeria maculans, we conducted a comparative proteomic analysis between blackleg-susceptible Brassica napus and blackleg-resistant Brassica carinata following pathogen inoculation. We examined temporal changes (6, 12, 24, 48 and 72 h) in protein profiles of both species subjected to pathogen-challenge using two-dimensional gel electrophoresis. A total of 64 proteins were found to be significantly affected by the pathogen in the two species, out of which 51 protein spots were identified using tandem mass spectrometry. The proteins identified included antioxidant enzymes, photosynthetic and metabolic enzymes, and those involved in protein processing and signaling. Specifically, we observed that in the tolerant B. carinata, enzymes involved in the detoxification of free radicals increased in response to the pathogen whereas no such increase was observed in the susceptible B. napus. The expression of genes encoding four selected proteins was validated using quantitative real-time PCR and an additional one by Western blotting. Our findings are discussed with respect to tolerance or susceptibility of these species to the pathogen. PMID:18668695

  1. Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal

    PubMed Central

    Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda

    2011-01-01

    Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes. PMID:21383919

  2. Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation

    PubMed Central

    Jeong, Myong-Ho; Ho, Seok-Man; Vuong, Tuan Anh; Jo, Shin-Bum; Liu, Guizhong; Aaronson, Stuart A.; Leem, Young-Eun; Kang, Jong-Sun

    2015-01-01

    Canonical Wnt signalling regulates expansion of neural progenitors and functions as a dorsalizing signal in the developing forebrain. In contrast, the multifunctional co-receptor Cdo promotes neuronal differentiation and is important for the function of the ventralizing signal, Shh. Here we show that Cdo negatively regulates Wnt signalling during neurogenesis. Wnt signalling is enhanced in Cdo-deficient cells, leading to impaired neuronal differentiation. The ectodomains of Cdo and Lrp6 interact via the Ig2 repeat of Cdo and the LDLR repeats of Lrp6, and the Cdo Ig2 repeat is necessary for Cdo-dependent Wnt inhibition. Furthermore, the Cdo-deficient dorsal forebrain displays stronger Wnt signalling activity, increased cell proliferation and enhanced expression of the dorsal markers and Wnt targets, Pax6, Gli3, Axin2. Therefore, in addition to promoting ventral central nervous system cell fates with Shh, Cdo promotes neuronal differentiation by suppression of Wnt signalling and provides a direct link between two major dorsoventral morphogenetic signalling pathways. PMID:25406935

  3. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi.

    PubMed

    Delgado-Cerezo, Magdalena; Sánchez-Rodríguez, Clara; Escudero, Viviana; Miedes, Eva; Fernández, Paula Virginia; Jordá, Lucía; Hernández-Blanco, Camilo; Sánchez-Vallet, Andrea; Bednarek, Pawel; Schulze-Lefert, Paul; Somerville, Shauna; Estevez, José Manuel; Persson, Staffan; Molina, Antonio

    2012-01-01

    The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition. PMID:21980142

  4. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis.

    PubMed

    Hasan, Md Anayet; Khan, Md Arif; Sharmin, Tahmina; Hasan Mazumder, Md Habibul; Chowdhury, Afrin Sultana

    2016-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is a Gram-positive, facultative aerobic bacterium which is evolved from the extensive exposure of Vancomycin to Methicillin resistant S. aureus (MRSA) that had become the most common cause of hospital and community-acquired infections. Due to the emergence of different antibiotic resistance strains, there is an exigency to develop novel drug targets to address the provocation of multidrug-resistant bacteria. In this study, in-silico genome subtraction methodology was used to design potential and pathogen specific drug targets against VRSA. Our study divulged 1987 proteins from the proteome of 34,549 proteins, which have no homologues in human genome after sequential analysis through CD-HIT and BLASTp. The high stringency analysis of the remaining proteins against database of essential genes (DEG) resulted in 169 proteins which are essential for S. aureus. Metabolic pathway analysis of human host and pathogen by KAAS at the KEGG server sorted out 19 proteins involved in unique metabolic pathways. 26 human non-homologous membrane-bound essential proteins including 4 which were also involved in unique metabolic pathway were deduced through PSORTb, CELLO v.2.5, ngLOC. Functional classification of uncharacterized proteins through SVMprot derived 7 human non-homologous membrane-bound hypothetical essential proteins. Study of potential drug target against Drug Bank revealed pbpA-penicillin-binding protein 1 and hypothetical protein MQW_01796 as the best drug target candidate. 2D structure was predicted by PRED-TMBB, 3D structure and functional analysis was also performed. Protein-protein interaction network of potential drug target proteins was analyzed by using STRING. The identified drug targets are expected to have great potential for designing novel drugs against VRSA infections and further screening of the compounds against these new targets may result in the discovery of novel therapeutic compounds that can be

  5. The Mechanism of Herbicide Resistance in Tobacco Cells with a New Mutation in the QB Protein 1

    PubMed Central

    Sigematsu, Yoshio; Sato, Fumihiko; Yamada, Yasuyuki

    1989-01-01

    A new mutant of the psbA gene conferring resistance to 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) was obtained by selection of photomixotrophic tobacco (Nicotiana tabacum cv Samsun NN) cells. The 264th codon AGT (serine) in the wild psbA gene was changed to ACT (threonine) in these mutant tobacco cells. All other higher plants resistant to atrazine exhibit a change to GGT (glycine) in this codon. Measurements of Hill reaction activity and chlorophyll fluorescence showed that the threonine 264-containing plastoquinone serving as secondary stable electron acceptor of PSII (QB protein) had not only strong resistance to triazine-type herbicides but also moderate resistance to substituted urea-type herbicides. Threonine-type QB protein showed especially strong resistance to methoxylamino derivatives of the substituted urea herbicides. The projected secondary structures of the mutant QB proteins indicate that the cross-resistance of threonine 264 QB protein to triazine and urea herbicides is mainly due to a conformational change of the binding site for the herbicides. However, the glycine 264 QB protein is resistant to only triazine herbicides because of the absence of an hydroxyl group and not because of a conformational change. Images Figure 1 PMID:16666653

  6. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    NASA Astrophysics Data System (ADS)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  7. Undetectable bacterial resistance to phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we tested for the emergence of resistant Staphylococcus aureus to any of three phage lytic proteins constructs. The investigated cell wall lytic enzymes w...

  8. Identification of a protein which differs in lines of barley resistant or susceptible to Erysiphe graminis f. sp. hordei

    SciTech Connect

    Simons, S.P.; Somerville, S.C. )

    1990-05-01

    As yet no resistance genes or gene products have been isolated from a plant. We wish to isolate the Ml-a gene which encodes resistance by barley to Erysiphe graminis f. sp. hordei, the causal agent of the powdery mildew disease. We have utilized near isogenic barley lines, resistant and susceptible to E. g. hordei, race CR3 to provide a homogenous background for examination of protein differences related to resistance. To enrich for epidermal tissue, the site of infection, proteins from {sup 35}S labelled coleoptiles were analyzed by 2D-PAGE. Two major protein differences were observed, one of which is a polymorphism identified by a higher molecular weight form in the susceptible line, with the lower molecular weight form appearing in the resistant line. A partially susceptible mutant line derived from the resistant line shows a 63% reduction in the level of the resistant form of the polypeptide. A likely conclusion from these results is that we have identified the Ml-a gene product. Further characterization of the polymorphic protein and its gene will lead to an understanding of gene-for-gene related resistance processes.

  9. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression

    PubMed Central

    Nakanishi, Takeo; Ross, Douglas D.

    2012-01-01

    Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract, as well as through the blood-brain, placental, and possibly blood-testis barriers. BCRP recognizes and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer multiple mechanisms of drug resistance, self-renewal (sternness), and invasiveness (aggressiveness), and thereby impart a poor prognosis. Therefore, blocking BCRP-mediated active efflux may provide a therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression may lead to identification of a novel molecular target to modulate BCRP-mediated MDR. Current evidence suggests that BCRP gene transcription is regulated by a number of trans-acting elements including hypoxia inducible factor 1α, estrogen receptor, and peroxisome proliferator-activated receptor. Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification are likely associated with drug-induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling may play a critical role in modulating BCRP function under a variety of conditions. These biological events seem involved in a complicated manner. Untangling the events would be an essential first step to developing a method to modulate BCRP function to aid patients with

  10. Norrin, Frizzled4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization

    PubMed Central

    Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C.; Smallwood, Philip M.; Peachey, Neal S.; Nathans, Jeremy

    2009-01-01

    SUMMARY Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled4 (Fz4) receptor, Lrp5 co-receptor, or Norrin ligand cause retinal hypovascularization, but the role of Norrin/Fz4/Lrp signaling in vascular development has not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, while excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is up-regulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease. PMID:19837032

  11. 42 CFR 68c.14 - When can a CIR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false When can a CIR-LRP payment obligation be discharged in bankruptcy? 68c.14 Section 68c.14 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION AND INFERTILITY RESEARCH...

  12. 42 CFR 68c.14 - When can a CIR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false When can a CIR-LRP payment obligation be discharged in bankruptcy? 68c.14 Section 68c.14 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF CHILD HEALTH AND...

  13. 42 CFR 68a.14 - When can a CR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false When can a CR-LRP payment obligation be discharged in bankruptcy? 68a.14 Section 68a.14 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL...

  14. 42 CFR 68a.14 - When can a CR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false When can a CR-LRP payment obligation be discharged in bankruptcy? 68a.14 Section 68a.14 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL...

  15. 42 CFR 68a.14 - When can a CR-LRP payment obligation be discharged in bankruptcy?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false When can a CR-LRP payment obligation be discharged in bankruptcy? 68a.14 Section 68a.14 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH (NIH) CLINICAL...

  16. Discovery of novel phenoxazinone derivatives as DKK1/LRP6 interaction inhibitors: Synthesis, biological evaluation and structure-activity relationships.

    PubMed

    Thysiadis, Savvas; Mpousis, Spyros; Avramidis, Nicolaos; Katsamakas, Sotirios; Balomenos, Athanasios; Remelli, Rosaria; Efthimiopoulos, Spyros; Sarli, Vasiliki

    2016-03-01

    Amino derivatives of NCI8642 were synthesized and evaluated as inhibitors of DKK1/LRP6 interactions. The new inhibitors were able to activate the Wnt signaling pathway as indicated by the increased levels of β-catenin, and decrease the DKK1-induced Tau phosphorylation at serine 396. PMID:26819000

  17. Identification of the multidrug resistance-associated protein (mrp) related gene in red mullet (Mullus barbatus).

    PubMed

    Sauerborn, Roberta; Polancec, Darija Stupin; Zaja, Roko; Smital, Tvrtko

    2004-01-01

    Multixenobiotic resistance mechanism (MXR) in aquatic organisms is mediated by the activity of the P-glycoprotein (Pgp) transporter that binds and actively effluxes different chemicals out of cell. In addition to the Pgp, several other, non-Pgp transport proteins have been recently identified in different human and animal tissues. Given their characteristics and tissue distribution we hypothesized that members of the so-called multidrug resistance-associated protein (MRP) family may be expressed in aquatic organisms. This study attempted to identify MRP related genes in different tissues of several marine and freshwater bivalves (Mytilus galloprovincialis, Dreissena polymorpha, Anodonta cygnea) and fish species (Mullus barbatus, Cyprinus carpio, Salmo trutta). Following an alignment of known MRP1 and MRP2 human sequences, as well as the GenBank available mrp2 sequences from different animals, we determined highly conserved regions and used them to design three pairs of consensus primers. Total RNA was isolated, reverse transcribed to cDNA and the obtained cDNAs were PCR amplified with the corresponding primers. The amplified PCR products were sequenced and their homology compared with Pgp and MRP protein sequences from different species. The expression of MRP related mRNA was clearly identified only in liver tissue isolated from red mullet, with homologies at the protein level ranging from 75% to 76%. Described results clearly pointed at the possibility that at least in the red mullet MXR as a general defense mechanism may be mediated by the activities of at least two different types of transport proteins. PMID:15178032

  18. Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae

    PubMed Central

    Khosa, Sakshi; Frieg, Benedikt; Mulnaes, Daniel; Kleinschrodt, Diana; Hoeppner, Astrid; Gohlke, Holger; Smits, Sander H. J.

    2016-01-01

    Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resistance protein from Streptococcus agalactiae (SaNSR) at 2.2 Å resolution. It contains an N-terminal helical bundle, and protease cap and core domains. The latter harbors the highly conserved TASSAEM region, which lies in a hydrophobic tunnel formed by all domains. By integrative modeling, mutagenesis studies, and genetic engineering of nisin variants, a model of the SaNSR/nisin complex is generated, revealing that SaNSR recognizes the last C-terminally located lanthionine ring of nisin. This determines the substrate specificity of SaNSR and ensures the exact coordination of the nisin cleavage site at the TASSAEM region. PMID:26727488

  19. Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants.

    PubMed

    Ta, Philong; Buchmeier, Nancy; Newton, Gerald L; Rawat, Mamta; Fahey, Robert C

    2011-04-01

    The mshA::Tn5 mutant of Mycobacterium smegmatis does not produce mycothiol (MSH) and was found to markedly overproduce both ergothioneine and an ~15-kDa protein determined to be organic hydroperoxide resistance protein (Ohr). An mshA(G32D) mutant lacking MSH overproduced ergothioneine but not Ohr. Comparison of the mutant phenotypes with those of the wild-type strain indicated the following: Ohr protects against organic hydroperoxide toxicity, whereas ergothioneine does not; an additional MSH-dependent organic hydroperoxide peroxidase exists; and elevated isoniazid resistance in the mutant is associated with both Ohr and the absence of MSH. Purified Ohr showed high activity with linoleic acid hydroperoxide, indicating lipid hydroperoxides as the likely physiologic targets. The reduction of oxidized Ohr by NADH was shown to be catalyzed by lipoamide dehydrogenase and either lipoamide or DlaT (SucB). Since free lipoamide and lipoic acid levels were shown to be undetectable in M. smegmatis, the bound lipoyl residues of DlaT are the likely source of the physiological dithiol reductant for Ohr. The pattern of occurrence of homologs of Ohr among bacteria suggests that the ohr gene has been distributed by lateral transfer. The finding of multiple Ohr homologs with various sequence identities in some bacterial genomes indicates that there may be multiple physiologic targets for Ohr proteins. PMID:21335456

  20. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress.

    PubMed

    Ma, Heran; Liu, Rui; Zhao, Ziyuan; Zhang, Zhixian; Cao, Yue; Ma, Yudan; Guo, Yi; Xu, Li

    2016-01-01

    Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI). The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC-MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da). FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans), FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products. PMID:27455060

  1. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress

    PubMed Central

    Ma, Heran; Liu, Rui; Zhao, Ziyuan; Zhang, Zhixian; Cao, Yue; Ma, Yudan; Guo, Yi; Xu, Li

    2016-01-01

    Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI). The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC–MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da). FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans), FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products. PMID:27455060

  2. Up-regulation of lipolysis genes and increased production of AMP-activated protein kinase protein in the skeletal muscle of rats after resistance training

    PubMed Central

    An, Jae-Heung; Yoon, Jin-Hwan; Suk, Min-Hwa; Shin, Yun-A

    2016-01-01

    The purpose of this study was to investigate the expression of lipogenesis- and lipolysis-related genes and proteins in skeletal muscles after 12 weeks of resistance training. Sprague-Dawley rats (n=12) were randomly divided into control (resting) and resistance training groups. A tower-climbing exercise, in which rats climbed to the top of their cage with a weight applied to their tails, used for resistance training. After 12 weeks, rats from the resistance training group had lower body weights (411.66±14.71 g vs. 478.33±24.63 g in the control), there was no significant difference between the two groups in the concentrations of total cholesterol, and high or low density lipoprotein cholesterol. However, the concentration of triglyceride was lower in resistance-trained rats (59.83±14.05 μg/mL vs 93.33±33.89 μg/mL in the control). The mRNA expression levels of the lipogenesis-related genes sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase were not significantly different between the resistance-trained and control rats; however, mRNA expression of the lipolysis-related carnitine palmitoyl transferase 1 and malonyl-CoA decarboxylase increased significantly with resistance training. AMP-activated protein kinase protein levels also significantly increased in resistance training group compared with in the control group. These results suggested that resistance exercise training contributing to reduced weight gain may be in part be due to increase the lipolysis metabolism and energy expenditure in response to resistance training. PMID:27419110

  3. Up-regulation of lipolysis genes and increased production of AMP-activated protein kinase protein in the skeletal muscle of rats after resistance training.

    PubMed

    An, Jae-Heung; Yoon, Jin-Hwan; Suk, Min-Hwa; Shin, Yun-A

    2016-06-01

    The purpose of this study was to investigate the expression of lipogenesis- and lipolysis-related genes and proteins in skeletal muscles after 12 weeks of resistance training. Sprague-Dawley rats (n=12) were randomly divided into control (resting) and resistance training groups. A tower-climbing exercise, in which rats climbed to the top of their cage with a weight applied to their tails, used for resistance training. After 12 weeks, rats from the resistance training group had lower body weights (411.66±14.71 g vs. 478.33±24.63 g in the control), there was no significant difference between the two groups in the concentrations of total cholesterol, and high or low density lipoprotein cholesterol. However, the concentration of triglyceride was lower in resistance-trained rats (59.83±14.05 μg/mL vs 93.33±33.89 μg/mL in the control). The mRNA expression levels of the lipogenesis-related genes sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase were not significantly different between the resistance-trained and control rats; however, mRNA expression of the lipolysis-related carnitine palmitoyl transferase 1 and malonyl-CoA decarboxylase increased significantly with resistance training. AMP-activated protein kinase protein levels also significantly increased in resistance training group compared with in the control group. These results suggested that resistance exercise training contributing to reduced weight gain may be in part be due to increase the lipolysis metabolism and energy expenditure in response to resistance training. PMID:27419110

  4. Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification

    PubMed Central

    Hackam, David J.; Rotstein, Ori D.; Zhang, Wei-jian; Gruenheid, Samantha; Gros, Philippe; Grinstein, Sergio

    1998-01-01

    The mechanisms underlying the survival of intracellular parasites such as mycobacteria in host macrophages remain poorly understood. In mice, mutations at the Nramp1 gene (for natural resistance-associated macrophage protein), cause susceptibility to mycobacterial infections. Nramp1 encodes an integral membrane protein that is recruited to the phagosome membrane in infected macrophages. In this study, we used microfluorescence ratio imaging of macrophages from wild-type and Nramp1 mutant mice to analyze the effect of loss of Nramp1 function on the properties of phagosomes containing inert particles or live mycobacteria. The pH of phagosomes containing live Mycobacterium bovis was significantly more acidic in Nramp1- expressing macrophages than in mutant cells (pH 5.5 ± 0.06 versus pH 6.6 ± 0.05, respectively; P <0.005). The enhanced acidification could not be accounted for by differences in proton consumption during dismutation of superoxide, phagosomal buffering power, counterion conductance, or in the rate of proton “leak”, as these were found to be comparable in wild-type and Nramp1-deficient macrophages. Rather, after ingestion of live mycobacteria, Nramp1-expressing cells exhibited increased concanamycin-sensitive H+ pumping across the phagosomal membrane. This was associated with an enhanced ability of phagosomes to fuse with vacuolar-type ATPase–containing late endosomes and/or lysosomes. This effect was restricted to live M. bovis and was not seen in phagosomes containing dead M. bovis or latex beads. These data support the notion that Nramp1 affects intracellular mycobacterial replication by modulating phagosomal pH, suggesting that Nramp1 plays a central role in this process. PMID:9670047

  5. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  6. Protein and lipid analysis of detergent-resistant membranes isolated from bovine kidney.

    PubMed

    Bonnin, Stéphanie; El Kirat, Karim; Becchi, Michel; Dubois, Madeleine; Grangeasse, Christophe; Giraud, Claire; Prigent, Annie-France; Lagarde, Michel; Roux, Bernard; Besson, Françoise

    2003-12-01

    Detergent-resistant membranes (DRM) were prepared from bovine kidney cortex. The criterion used to test their purification was the increase in the activity of a GPI membrane-anchored protein, the alkaline phosphatase. Its association with specific proteins and lipids was tested. Two successive Triton X-100 treatments followed by purification on sucrose gradient at 4 degrees C were necessary to obtain DRM with a maximum of alkaline phosphatase activity and a typical protein pattern. A third Triton treatment did not alter this DRM composition. Among the enriched protein, we identified, by mass spectrometry, a microsomal dipeptidase, which was GPI membrane-anchored. Protein-kinase activities, mainly serine-kinase, were enriched during the DRM purification. Using the typical FTIR olefinic =C-H bands of the acyl chains, a global decrease in the unsaturation level of DRM lipids was observed as compared with total membranes. Three main phospholipids were identified in DRM. Their fatty acid compositions were determined by gas chromatography and compared with those of total membranes. The most enriched saturated fatty acid was palmitic acid (+44% for phosphatidylethanolamine, +52% for phosphatidylcholine and +49% for sphingomyelin), agreeing with a selection of specific phospholipids among the saturated ones during the DRM purification. PMID:14739076

  7. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1)

    SciTech Connect

    DeGorter, Marianne K.; Conseil, Gwenaelle; Deeley, Roger G.; Campbell, Robert L.; Cole, Susan P.C.

    2008-01-04

    Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr{sup 324} in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.

  8. The Giant Protein Ebh Is a Determinant of Staphylococcus aureus Cell Size and Complement Resistance

    PubMed Central

    Cheng, Alice G.; Missiakas, Dominique

    2014-01-01

    Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections. PMID:24363342

  9. Regulation of macrophage alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein by lipopolysaccharide and interferon-gamma.

    PubMed Central

    LaMarre, J; Wolf, B B; Kittler, E L; Quesenberry, P J; Gonias, S L

    1993-01-01

    alpha 2-Macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2M-R/LRP) is a broad specificity receptor that may function in lipoprotein metabolism, proteinase regulation, and growth factor regulation. In this study, we demonstrated that alpha 2M-R/LRP expression in macrophages can be markedly decreased by LPS and by IFN-gamma. Regulation of alpha 2M-R/LRP in RAW 264.7 cells was demonstrated at the mRNA, antigen, and receptor-function levels. In receptor-function studies, the decrease in alpha 2M-R/LRP expression was detected as a 90% decrease in the Bmax or maximum receptor binding capacity for activated alpha 2M after treatment with LPS or IFN-gamma. Western blot analysis of whole cell lysates demonstrated significant loss of alpha 2M-R/LRP heavy-chain. Northern blot analysis of poly(A)+ RNA revealed a marked decrease in alpha 2M-R/LRP mRNA after treatment with LPS (79% decrease) or IFN-gamma (70% decrease). Other cytokines, including tumor necrosis factor-alpha, transforming growth factor-beta-1, and interleukin-6 did not regulate alpha 2M-R/LRP. The ability of LPS and IFN-gamma to regulate alpha 2M-R/LRP was confirmed in experiments with primary cultures of murine bone marrow macrophages. These studies demonstrate that macrophage alpha 2M-R/LRP is subject to significant downregulation by physiologically significant cytokines and signaling macromolecules. Images PMID:7680664

  10. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas

    PubMed Central

    Nanni, Samuel Burke; Pratt, Jonathan; Beauchemin, David; Haidara, Khadidja; Annabi, Borhane

    2016-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells. PMID:27226736

  11. Upper-body obese women are resistant to postprandial stimulation of protein synthesis

    PubMed Central

    Liebau, Felix; Jensen, Michael D.; Nair, K. Sreekumaran; Rooyackers, Olav

    2014-01-01

    Background and Aims Upper-body, i.e. visceral, obesity is associated with insulin resistance and impaired protein synthesis. It is unclear whether postprandial stimulation of protein synthesis is affected by body fat distribution. We investigated the postprandial protein anabolic response in a cohort of obese women. Methods Participants were studied after an overnight fast and after a mixed meal, grouped as upper-body obese (UBO, waist-to-hip ratio, WHR, >0.85, n=6) vs. lower-body obese (LBO, WHR<0.80, n=7). Lipid and carbohydrate metabolism were assessed by measurements of plasma free fatty acids (FFA), insulin and glucose concentrations, and calculation of the Quicki index from fasting glucose and insulin values. Different labels of stable isotopes of phenylalanine were administered intravenously and orally, and leg and whole-body protein breakdown and synthesis were calculated from phenylalanine/tyrosine isotopic enrichments in femoral arterial and venous blood, using equations for steady-state kinetics. Data are denoted as mean±SD. Results Age (38 vs. 40, p=0.549) and body-mass index (33.7±1.9 vs. 35.0±1.8, p=0.241) were similar in both groups. UBO subjects had more visceral fat (p=0.002) and higher fat-free body mass (FFM) (p=0.015). Plasma insulin concentrations were greater in UBO than LBO women (p=0.013), and UBO were less insulin sensitive (Quicki=0.32±0.01 vs. 0.36±0.02, p=0.005). Protein kinetics across the leg were not different between groups. Fasting whole body protein balance was similarly negative in both groups (UBO −6.5±2.4 vs. LBO −7.6±0.9 μmol/kgFFM/h, p=1.0). Postprandially, whole body protein balance became less positive in UBO than in LBO (14.8±3.7 vs. 20.2±3.7 μmol/kgFFM/h, p=0.017). Conclusions Whole-body protein balance following a meal is less positive in upper-body obese, insulin-resistant, women than in lower-body obese women. PMID:24269078

  12. Leucine Supplementation Improves Acquired Growth Hormone Resistance in Rats with Protein-Energy Malnutrition

    PubMed Central

    Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    Background Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition. Methodology/Principal Findings Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in

  13. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Church, David D; Mangine, Gerald T; Oliveira, Leonardo P; Moon, Jordan R; Fukuda, David H; Stout, Jeffrey R

    2015-11-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P < .0001); however, no differences were observed between trials. Resistance exercise also elicited a significant insulin, growth hormone, and cortisol response (P < .01); however, no differences were observed between trials for insulin-like growth factor-1, insulin, testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men. PMID:26428621

  14. Reduced membrane protein associated with resistance of human squamous carcinoma cells to methotrexate and cis-platinum.

    PubMed

    Bernal, S D; Speak, J A; Boeheim, K; Dreyfuss, A I; Wright, J E; Teicher, B A; Rosowsky, A; Tsao, S W; Wong, Y C

    1990-06-01

    A membrane protein recognized by monoclonal antibody SQM1 was identified in human squamous carcinomas, including those originating in the head and neck (SqCHN), lung and cervix. Cell lines derived from SqCHN of previously untreated patients expressed high amounts of this protein. In contrast, many cell lines established from SqCHN of patients previously treated with chemotherapy and/or radiation showed diminished amounts of this SQM1 protein. The expression of SQM1 antigen was determined in several SqCHN cell lines made resistant by exposure to methotrexate (MTX) in vitro. The parent cell lines all exhibited strong binding to SQM1 antibody. The MTX-resistant sublines showed much lower membrane binding of SQM1. The lowest SQM1 reactivity was found in cell lines with high resistance to MTX and with diminished rate of MTX transport. Some highly MTX-resistant cell lines which had high levels of dihydrofolate reductase, but which retained a high rate of MTX transport, also retained high levels of SQM1 binding. Reduced SQM1 protein was also found in SqCHN cells which developed resistance to the alkylating drug cis-latinum (CDDP) and which showed reduced membrane transport of CDDP. Cell growth kinetics and non-specific antigenic shifts were not responsible for the differences in SQM1 binding between the parent cell lines and their drug-resistant sublines. The finding of a novel protein which is reduced in cells resistant to MTX and CDDP could contribute to our understanding of the basic mechanisms of drug resistance. By detecting SQM1 protein in clinical specimens, it may be possible to monitor the development of drug resistance in tumors. PMID:2195318

  15. Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.

    1995-01-01

    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.

  16. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss