Science.gov

Sample records for resistant mycobacterium tuberculosis

  1. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  2. Mycobacterium tuberculosis is resistant to streptolydigin.

    PubMed

    Speer, Alexander; Rowland, Jennifer L; Niederweis, Michael

    2013-07-01

    Drug resistant strains of Mycobacterium tuberculosis (Mtb) undermine tuberculosis (TB) control. Streptolydigin is a broadly effective antibiotic which inhibits RNA polymerase, similarly to rifampicin, a key drug in current TB chemotherapeutic regimens. Due to a vastly improved chemical synthesis streptolydigin and derivatives are being promoted as putative TB drugs. The microplate Alamar Blue assay revealed that Streptococcus salivarius and Mycobacterium smegmatis were susceptible to streptolydigin with minimum inhibitory concentrations (MICs) of 1.6 mg/L and 6.25 mg/L, respectively. By contrast, the MICs of streptolydigin and two derivatives, streptolydiginone and dihydrostreptolydigin, against Mtb were ≥ 100 mg/L demonstrating that Mtb is resistant to streptolydigin in contrast to previous reports. Further, a porin mutant of M. smegmatis is resistant to streptolydigin indicating that porins mediate uptake of streptolydigin across the outer membrane. Since the RNA polymerase is a validated drug target in Mtb and porins are required for susceptibility of M. smegmatis, the absence of MspA-like porins probably contributes to the resistance of Mtb to streptolydigin. This study shows that streptolydigin is not a suitable drug in TB treatment regimens. PMID:23591156

  3. Can Molecular Methods Detect 1% Isoniazid Resistance in Mycobacterium tuberculosis?

    PubMed Central

    Folkvardsen, Dorte Bek; Thomsen, Vibeke Ø.; Rasmussen, Erik Michael; Bang, Didi; Werngren, Jim; Hoffner, Sven; Hillemann, Doris; Rigouts, Leen

    2013-01-01

    Patients may harbor both drug-susceptible and -resistant bacteria, representing heteroresistance. We studied mixtures of isoniazid-resistant and -susceptible Mycobacterium tuberculosis strains. Conventional drug susceptibility testing was the most sensitive method of detection, whereas the line probe assay and sequencing were not able to detect the clinically relevant 1% proportion of resistant bacteria. PMID:23447641

  4. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  5. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  6. EFFECT OF PYRAZINAMIDASE ACTIVITY ON PYRAZINAMIDE RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS

    PubMed Central

    Sheen, Patricia; Ferrer, Patricia; Gilman, Robert H.; López-Llano, Jon; Fuentes, Patricia; Valencia, Eddy; Zimic, Mirko J.

    2009-01-01

    Resistance of Mycobacterium tuberculosis to pyrazinamide is associated with mutations in the pncA gene, which codes for pyrazinamidase. The association between the enzymatic activity of mutated pyrazinamidases and the level of pyrazinamide resistance remains poorly understood. Twelve M. tuberculosis clinical isolates resistant to pyrazinamide were selected based on Wayne activity and localization of pyrazinamidase mutation. Recombinant pyrazinamidases were expressed and tested for their kinetic parameters (activity, kcat, Km, and efficiency). Pyrazinamide resistance level was measured by Bactec-460TB and 7H9 culture. The linear correlation between the resistance level and the kinetic parameters of the corresponding mutated pyrazinamidase was calculated. The enzymatic activity and efficiency of the mutated pyrazinamidases varied with the site of mutation and ranged widely from low to high levels close to the corresponding of the wild-type enzyme. The level of resistance was significantly associated with pyrazinamidase activity and efficiency, but only 27.3% of its statistical variability was explained. Although pyrazinamidase mutations are indeed associated with resistance, the loss of pyrazinamidase activity and efficiency as assessed in the recombinant mutated enzymes is not sufficient to explain a high variability of the level of pyrazinamide resistance, suggesting that complementary mechanisms for pyrazinamide resistance in M. tuberculosis with mutations in pncA are more important than currently thought. PMID:19249243

  7. Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out.

    PubMed

    Eldholm, Vegard; Balloux, François

    2016-08-01

    Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs. PMID:27068531

  8. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lata, Manju; Sharma, Divakar; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-09-01

    Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India. PMID:26238929

  9. Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis.

    PubMed

    Bernard, Christine; Veziris, Nicolas; Brossier, Florence; Sougakoff, Wladimir; Jarlier, Vincent; Robert, Jérôme; Aubry, Alexandra

    2015-03-01

    As a consequence of the use of fluoroquinolones (FQ), resistance to FQ has emerged, leading to cases of nearly untreatable and extensively drug-resistant tuberculosis. Mutations in DNA gyrase represent the main mechanism of FQ resistance. A full understanding of the pattern of mutations found in FQ-resistant (FQ(r)) clinical isolates, and of their proportions, is crucial for improving molecular methods for the detection of FQ resistance in Mycobacterium tuberculosis. In this study, we reviewed the detection of FQ resistance in isolates addressed to the French National Reference Center for Mycobacteria from 2007 to 2012, with the aim of evaluating the performance of PCR sequencing in a real-life context. gyrA and gyrB sequencing, performed prospectively on M. tuberculosis clinical isolates, was compared for FQ susceptibility to 2 mg/liter ofloxacin by the reference proportion method. A total of 605 isolates, of which 50% were multidrug resistant, were analyzed. The increase in FQ(r) strains among multidrug-resistant (MDR) strains during the time of the study was alarming (8% to 30%). The majority (78%) of the isolates with gyrA mutations were FQ(r), whereas only 36% of those with gyrB mutations were FQ(r). Only 12% of the FQ(r) isolates had a single mutation in gyrB. Combined gyrA and gyrB sequencing led to >93% sensitivity for detecting resistance. The analysis of the four false-positive and the five false-negative results of gyrA and gyrB sequencing illustrated the actual limitations of the reference proportion method. Our data emphasize the need for combined gyrA and gyrB sequencing in the investigation of FQ susceptibility in M. tuberculosis and challenge the validity of the current phenotype-based approach as the diagnostic gold standard for determining FQ resistance. PMID:25534742

  10. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains.

    PubMed

    Haque, Md Fazlul; Boonhok, Rachasak; Prammananan, Therdsak; Chaiprasert, Angkana; Utaisincharoen, Pongsak; Sattabongkot, Jetsumon; Palittapongarnpim, Prasit; Ponpuak, Marisa

    2015-10-01

    Autophagy represents a key pathway in innate immune defense to restrict Mycobacterium tuberculosis growth inside host macrophages. Induction of autophagy has been shown to promote mycobacterial phagosome acidification and acquisition of lysosomal hydrolases, resulting in the elimination of intracellular M. tuberculosis reference strains such as H37Rv. The notorious Beijing genotype has been previously shown to be hyper-virulent and associated with increased survival in host cells and a high mortality rate in animal models, but the underlying mechanism that renders this family to have such advantages remains unclear. We hypothesize that autophagic control against M. tuberculosis Beijing strains may be altered. Here, we discovered that the Beijing strains can resist autophagic killing by host cells compared with that of the reference strain H37Rv and a strain belonging to the East African Indian genotype. Moreover, we have determined a possible underlying mechanism and found that the greater ability to evade autophagic elimination possessed by the Beijing strains stems from their higher capacity to inhibit autophagolysosome biogenesis upon autophagy induction. In summary, a previously unrecognized ability of the M. tuberculosis Beijing strains to evade host autophagy was identified, which may have important implications for tuberculosis treatment, especially in regions prevalent by the Beijing genotype. PMID:26160686

  11. Copper resistance is essential for virulence of Mycobacterium tuberculosis.

    PubMed

    Wolschendorf, Frank; Ackart, David; Shrestha, Tej B; Hascall-Dove, Laurel; Nolan, Scott; Lamichhane, Gyanu; Wang, Ying; Bossmann, Stefan H; Basaraba, Randall J; Niederweis, Michael

    2011-01-25

    Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy. PMID:21205886

  12. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains.

    PubMed

    Song, Keum-Soo; Nimse, Satish Balasaheb; Kim, Hee Jin; Yang, Jeongseong; Kim, Taisun

    2016-01-01

    In 2013 alone, the death rate among the 9.0 million people infected with Mycobacterium tuberculosis (TB) worldwide was around 14%, which is unacceptably high. An empiric treatment of patients infected with TB or drug-resistant Mycobacterium tuberculosis (MDR-TB) strain can also result in the spread of MDR-TB. The diagnostic tools which are rapid, reliable, and have simple experimental protocols can significantly help in decreasing the prevalence rate of MDR-TB strain. We report the evaluation of the 9G technology based 9G DNAChips that allow accurate detection and discrimination of TB and MDR-TB-RIF. One hundred and thirteen known cultured samples were used to evaluate the ability of 9G DNAChip in the detection and discrimination of TB and MDR-TB-RIF strains. Hybridization of immobilized probes with the PCR products of TB and MDR-TB-RIF strains allow their detection and discrimination. The accuracy of 9G DNAChip was determined by comparing its results with sequencing analysis and drug susceptibility testing. Sequencing analysis showed 100% agreement with the results of 9G DNAChip. The 9G DNAChip showed very high sensitivity (95.4%) and specificity (100%). PMID:26999135

  13. Accurate Detection of Rifampicin-Resistant Mycobacterium Tuberculosis Strains

    PubMed Central

    Song, Keum-Soo; Nimse, Satish Balasaheb; Kim, Hee Jin; Yang, Jeongseong; Kim, Taisun

    2016-01-01

    In 2013 alone, the death rate among the 9.0 million people infected with Mycobacterium tuberculosis (TB) worldwide was around 14%, which is unacceptably high. An empiric treatment of patients infected with TB or drug-resistant Mycobacterium tuberculosis (MDR-TB) strain can also result in the spread of MDR-TB. The diagnostic tools which are rapid, reliable, and have simple experimental protocols can significantly help in decreasing the prevalence rate of MDR-TB strain. We report the evaluation of the 9G technology based 9G DNAChips that allow accurate detection and discrimination of TB and MDR-TB-RIF. One hundred and thirteen known cultured samples were used to evaluate the ability of 9G DNAChip in the detection and discrimination of TB and MDR-TB-RIF strains. Hybridization of immobilized probes with the PCR products of TB and MDR-TB-RIF strains allow their detection and discrimination. The accuracy of 9G DNAChip was determined by comparing its results with sequencing analysis and drug susceptibility testing. Sequencing analysis showed 100% agreement with the results of 9G DNAChip. The 9G DNAChip showed very high sensitivity (95.4%) and specificity (100%). PMID:26999135

  14. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update.

    PubMed

    Njire, Moses; Tan, Yaoju; Mugweru, Julius; Wang, Changwei; Guo, Jintao; Yew, WingWai; Tan, Shouyong; Zhang, Tianyu

    2016-03-01

    The global control and management of tuberculosis (TB) is faced with the formidable challenge of worsening scenarios of drug-resistant disease. Pyrazinamide (PZA) is an indispensable first-line drug used for the treatment of TB. It plays a key role in reducing TB relapse rates, shortening the course of the disease treatment from 9-12 months to 6 months, and the treatment of patients infected with bacillary strains that are resistant to at least isoniazid and rifampicin. Additionally, it is the only first-line anti-TB drug most likely to be maintained in all new regimens, which are aimed at reducing the treatment period of susceptible, multi-drug resistant and extensively drug-resistant TB. It has a preferential sterilizing activity against non-replicating persister bacilli with low metabolism at acid pH in vitro or in vivo during active inflammation where other drugs may not act so well. PZA seem to have a non-specific cellular target and instead, exerts its anti-mycobacterial effect by disrupting the membrane energetics, the trans-translation process, acidification of the cytoplasm and perhaps coenzyme A synthesis, which is required for survival of Mycobacterium tuberculosis (MTB) persisters. Indeed, the emergence of MTB strains resistant to PZA represents an important clinical and public health problem. The essential role of PZA in TB treatment underlines the need for accurate and rapid detection of its resistance. This article presents an updated review of the molecular mechanisms of drug action and resistance in MTB against PZA, commenting on the several research gaps and proposed drug targets for PZA. PMID:26521205

  15. Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens.

    PubMed

    Bang, Didi; Bengård Andersen, Ase; Thomsen, Vibeke Østergaard

    2006-07-01

    A multiplex PCR DNA strip assay (Genotype MTBDR) designed to detect rifampin (rpoB) and high-level isoniazid (katG) resistance mutations in Mycobacterium tuberculosis isolates was optimized for clinical specimens. Successful genotypic results were achieved with 36 of 38 (95%) smear-positive respiratory specimens, allowing rapid therapeutic adjustments in transmittable drug-resistant tuberculosis. PMID:16825393

  16. Mycobacterium tuberculosis Pyrazinamide Resistance Determinants: a Multicenter Study

    PubMed Central

    Cabibbe, Andrea M.; Feuerriegel, Silke; Casali, Nicola; Drobniewski, Francis; Rodionova, Yulia; Bakonyte, Daiva; Stakenas, Petras; Pimkina, Edita; Augustynowicz-Kopeć, Ewa; Degano, Massimo; Ambrosi, Alessandro; Hoffner, Sven; Mansjö, Mikael; Werngren, Jim; Rüsch-Gerdes, Sabine; Niemann, Stefan; Cirillo, Daniela M.

    2014-01-01

    ABSTRACT Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZAr strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZAr strains, (iii) mutations with an unclear role found in less than 70% of PZAr strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZAr; the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. PMID:25336456

  17. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  18. First-Line Anti-Tubercular Drug Resistance of Mycobacterium tuberculosis in IRAN: A Systematic Review

    PubMed Central

    Pourakbari, Babak; Mamishi, Setareh; Mohammadzadeh, Mona; Mahmoudi, Shima

    2016-01-01

    Background: The spread of drug-resistant tuberculosis (TB) is one of the major public health problems through the world. Surveillance of anti-TB drug resistance is essential for monitoring of TB control strategies. The occurrence of drug resistance, particularly multi-drug resistance Mycobacterium tuberculosis (MDR), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), has become a significant public health dilemma. The status of drug-resistance TB in Iran, one of the eastern Mediterranean countries locating between Azerbaijan and Armenia and high-TB burden countries (such as Afghanistan and Pakistan) has been reported inconsistently. Therefore, the aim of this study was to summarize reports of first-line anti-tubercular drug resistance in M. tuberculosis in Iran. Material and Methods: We systematically reviewed published studies on drug-resistant M. tuberculosis in Iran. The search terms were “Mycobacterium tuberculosis susceptibility” or “Mycobacterium tuberculosis resistant” and Iran. Results: Fifty-two eligible articles, published during 1998–2014, were included in this review. Most of the studies were conducted in Tehran. The most common used laboratory method for detecting M. tuberculosis drug resistant was Agar proportion. The highest resistance to first-line drugs was seen in Tehran, the capital city of Iran. The average prevalence of isoniazid (INH), rifampin (RIF), streptomycin (SM), and ethambotol (EMB) resistance via Agar proportion method in Tehran was 26, 23, 22.5, and 16%, respectively. In general, resistance to INH was more common than RIF, SM, and EMB in Tehran Conclusions: In conclusion, this systematic review summarized the prevalence and distribution of first-line anti-tubercular drug resistance of M. tuberculosis in Iran. Our results suggested that effective strategies to minimize the acquired drug resistance, to control the transmission of resistance and improve the diagnosis measures for TB control in Iran. PMID

  19. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis.

    PubMed

    Mayer, Claudine; Takiff, Howard

    2014-08-01

    The fluoroquinolones (FQs) are synthetic antibiotics effectively used for curing patients with multidrug-resistant tuberculosis (TB). When a multidrug-resistant strain develops resistance to the FQs, as in extensively drug-resistant strains, obtaining a cure is much more difficult, and molecular methods can help by rapidly identifying resistance-causing mutations. The only mutations proven to confer FQ resistance in M. tuberculosis occur in the FQ target, the DNA gyrase, at critical amino acids from both the gyrase A and B subunits that form the FQ binding pocket. GyrA substitutions are much more common and generally confer higher levels of resistance than those in GyrB. Molecular techniques to detect resistance mutations have suboptimal sensitivity because gyrase mutations are not detected in a variable percentage of phenotypically resistant strains. The inability to find gyrase mutations may be explained by heteroresistance: bacilli with a resistance-conferring mutation are present only in a minority of the bacterial population (>1%) and are therefore detected by the proportion method, but not in a sufficient percentage to be reliably detected by molecular techniques. Alternative FQ resistance mechanisms in other bacteria--efflux pumps, pentapeptide proteins, or enzymes that inactivate the FQs--have not yet been demonstrated in FQ-resistant M. tuberculosis but may contribute to intrinsic levels of resistance to the FQs or induced tolerance leading to more frequent gyrase mutations. Moxifloxacin is currently the best anti-TB FQ and is being tested for use with other new drugs in shorter first-line regimens to cure drug-susceptible TB. PMID:26104201

  20. Use of GeneXpert Mycobacterium tuberculosis/rifampicin for rapid detection of rifampicin resistant Mycobacterium tuberculosis strains of clinically suspected multi-drug resistance tuberculosis cases

    PubMed Central

    Guenaoui, Kheira; Ouardi, Aissa; Zeggai, Soumia; Sellam, Feriel; Bekri, Farid; Cherif Touil, Sakina

    2016-01-01

    Background Multi-drug resistance (MDR) TB is defined as tuberculosis (TB) disease caused by a strain of Mycobacterium tuberculosis (MTB) that was resistant to at least isoniazid and rifampicin (RIF). Emerging Multidrug-Resistant TB is one of the major concerns of health policy and rapid detection of M. tuberculosis and detection of RIF resistance in infected patients are essential for disease management. The aim of this study was to evaluate patterns of RIF resistance in cases of sputum positive pulmonary TB by using GeneXpert MTB/RIF and comparing between phenotypic and genotypic testing of RIF resistance in MTB strains of clinically suspected MDR-TB isolated cases in western Algeria. Methods In this study 50 sputum positive cases of pulmonary TB who were potential MDR suspect were included. Their sputum samples were collected and subjected to sputum smear microscopy, culture and conventional MTB/RIF test followed by GeneXpert MTB/RIF assay. Results Of total 50 cases included in this study, MTB was detected in all patients (100%) by GeneXpert MTB/RIF. However, RIF’s resistance was detected in only 21 cases (42%) by GeneXpert MTB/RIF. All RIF resistant strains detected by GeneXpert MTB/RIF were phenotypically confirmed as MDR strains. 42.85% of cases were retreatment failure cases, retreatment cases smear positive at 4 months were 23.82%. While 19.05% of cases were retreatment cases smear positive at diagnosis, and 14.28% patient had history of contact with MDR-TB. Sensitivity, specificity, positive predictive value and negative predictive value of Xpert MTB/RIF to detect RIF resistance in comparison to conventional phenotypic drug susceptibility technique were found equal to the rates of 100%, 100%, 100% and 100%, respectively. Conclusions GeneXpert MTB/RIF assay is efficient and reliable technique for the rapid diagnostic of TB. It’s simplicity, high sensitivity and specificity for RIF resistance detection make this technique a very attractive tool for

  1. Molecular Characterization of Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates in Lithuania

    PubMed Central

    Bakonyte, Daiva; Baranauskaite, Aurelija; Cicenaite, Jurate; Sosnovskaja, Anaida; Stakenas, Petras

    2003-01-01

    Mutations at codon 315 of the katG gene were detected in 312 of 364 (85.7%) isoniazid-resistant Mycobacterium tuberculosis isolates. Seven of 52 (13.5%) isoniazid-resistant isolates with the wild-type Ser315 codon and 10 of 52 (19.2%) isoniazid-resistant isolates with a mutated katG allele had mutation −15C→T in the promoter of the mabA-inhA operon. PMID:12760887

  2. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015.

    PubMed

    Zhang, Y; Yew, W-W

    2015-11-01

    Drug-resistant tuberculosis (DR-TB), including multi- and extensively drug-resistant TB, is posing a significant challenge to effective treatment and TB control worldwide. New progress has been made in our understanding of the mechanisms of resistance to anti-tuberculosis drugs. This review provides an update on the major advances in drug resistance mechanisms since the previous publication in 2009, as well as added information on mechanisms of resistance to new drugs and repurposed agents. The recent application of whole genome sequencing technologies has provided new insight into the mechanisms and complexity of drug resistance. However, further research is needed to address the significance of newly discovered gene mutations in causing drug resistance. Improved knowledge of drug resistance mechanisms will help understand the mechanisms of action of the drugs, devise better molecular diagnostic tests for more effective DR-TB management (and for personalised treatment), and facilitate the development of new drugs to improve the treatment of this disease. PMID:26467578

  3. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D; Sifuentes-Osornio, José; Cave, M Donald; Ponce de León, Alfredo; Alland, David

    2006-08-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  4. Integration of Published Information Into a Resistance-Associated Mutation Database for Mycobacterium tuberculosis

    PubMed Central

    Salamon, Hugh; Yamaguchi, Ken D.; Cirillo, Daniela M.; Miotto, Paolo; Schito, Marco; Posey, James; Starks, Angela M.; Niemann, Stefan; Alland, David; Hanna, Debra; Aviles, Enrique; Perkins, Mark D.; Dolinger, David L.

    2015-01-01

    Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings. PMID:25765106

  5. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain

    PubMed Central

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-01-01

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally. PMID:25960343

  6. Polymorphisms in isoniazid and prothionamide resistance genes of the Mycobacterium tuberculosis complex.

    PubMed

    Projahn, Michaela; Köser, Claudio U; Homolka, Susanne; Summers, David K; Archer, John A C; Niemann, Stefan

    2011-09-01

    Sequence analyses of 74 strains that encompassed major phylogenetic lineages of the Mycobacterium tuberculosis complex revealed 10 polymorphisms in mshA (Rv0486) and four polymorphisms in inhA (Rv1484) that were not responsible for isoniazid or prothionamide resistance. Instead, some of these mutations were phylogenetically informative. This genetic diversity must be taken into consideration for drug development and for the design of molecular tests for drug resistance. PMID:21709103

  7. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  8. Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China.

    PubMed

    Xu, Peng; Wu, Jie; Yang, Chongguang; Luo, Tao; Shen, Xin; Zhang, Yangyi; Nsofor, Chijioke A; Zhu, Guofeng; Gicquel, Brigitte; Gao, Qian

    2016-05-01

    Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug, however, there are relatively few available data on PZA resistant (PZA-R) rate in China. From June 2009 to June 2012, we selected 493 isolates from five field settings in China to investigate PZA-R by pncA gene sequencing. The result showed that PZA-R rate was 1.0% (2/196) among pan-susceptible isolates, 3.1% (4/130) among isoniazid (INH) mono-resistant isolates, 14.0% (6/43) among rifampin (RIF) mono-resistant isolates and 43.5% (54/124) among multidrug resistant (MDR) isolates. MDR tuberculosis (TB), RIF mono-resistance, and retreatment were found to be risk factors for PZA-R. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA mutations indicate that transmission of PZA-R isolates plays an important role in emergence of PZA-R TB. The results suggest that, it is necessary to conduct PZA susceptibility test among MDR isolates and modify the treatment regimens accordingly. PMID:27156619

  9. Alternative genotyping of drug-resistant Mycobacterium tuberculosis strains.

    PubMed

    Antonenko, Petro B; Kresyun, Valentin I; Antonenko, Kate O

    2014-01-01

    The aim of the present research was to study the capability of a genotyping method for M. tuberculosis through detection of six VNTR-loci (MIRU10, MIRU26, MIRU31, MIRU39, MIRU40, ETR-A). Loci MIRU10, MIRU26, MIRU40 and ETR-A have exhibited high polymorphism in group non-Beijing, while loci MIRU26 and MIRU31 - in the Beijing family. A combined detection of all six loci for fingerprinting of the isolates both from Beijing and non-Beijing was highly effective (Hunter-Gaston index was 0.88 and 0.93 correspondently), especially in areas with limited financial resources and high prevalence of multidrug resistant M. tuberculosis strains. PMID:25115121

  10. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis.

    PubMed

    Martin, Anandi; Montoro, Ernesto; Lemus, Dihadenys; Simboli, Norberto; Morcillo, Nora; Velasco, Maritza; Chauca, José; Barrera, Lucía; Ritacco, Viviana; Portaels, Françoise; Palomino, Juan Carlos

    2005-11-01

    The performance of the nitrate reductase assay was evaluated in a multicenter laboratory study to detect resistance of Mycobacterium tuberculosis to the first-line anti-tuberculosis drugs rifampicin, isoniazid, ethambutol and streptomycin using a set of coded isolates. Compared with the gold standard proportion method on Löwenstein-Jensen medium, the assay was highly accurate in detecting resistance to rifampicin, isoniazid and ethambutol with an accuracy of 98%, 96.6% and 97.9%, respectively. For streptomycin, discrepant results were obtained with an overall accuracy of 85.3%. The assay proved easy to be implemented in countries with limited laboratory facilities. PMID:15893391

  11. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lee, A S; Teo, A S; Wong, S Y

    2001-07-01

    Novel mutations in NADH dehydrogenase (ndh) were detected in 8 of 84 (9.5%) isoniazid (INH)-resistant isolates (T110A [n = 1], R268H [n = 7]), but not in 22 INH-susceptible isolates of Mycobacterium tuberculosis. Significantly, all eight isolates with mutations at ndh did not have mutations at katG, kasA, or the promoter regions of inhA or ahpC, except for one isolate. Mutations in ndh appear to be an additional molecular mechanism for isoniazid resistance in M. tuberculosis. PMID:11408244

  12. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru

    PubMed Central

    Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ

    2015-01-01

    Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723

  13. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  14. Association between Mycobacterium tuberculosis Complex Phylogenetic Lineage and Acquired Drug Resistance

    PubMed Central

    Yuen, Courtney M.; Kurbatova, Ekaterina V.; Click, Eleanor S.; Cavanaugh, J. Sean; Cegielski, J. Peter

    2013-01-01

    Background Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance) can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. Methods We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004–2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. Results M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96–24.14) adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29–15.90) adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56–23.83). Conclusions We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management. PMID:24376623

  15. cor, a Novel Carbon Monoxide Resistance Gene, Is Essential for Mycobacterium tuberculosis Pathogenesis

    PubMed Central

    Zacharia, Vineetha M.; Manzanillo, Paolo S.; Nair, Vidhya R.; Marciano, Denise K.; Kinch, Lisa N.; Grishin, Nick V.; Cox, Jeffery S.; Shiloh, Michael U.

    2013-01-01

    ABSTRACT Tuberculosis, caused by Mycobacterium tuberculosis, remains a devastating human infectious disease, causing two million deaths annually. We previously demonstrated that M. tuberculosis induces an enzyme, heme oxygenase (HO1), that produces carbon monoxide (CO) gas and that M. tuberculosis adapts its transcriptome during CO exposure. We now demonstrate that M. tuberculosis carries a novel resistance gene to combat CO toxicity. We screened an M. tuberculosis transposon library for CO-susceptible mutants and found that disruption of Rv1829 (carbon monoxide resistance, Cor) leads to marked CO sensitivity. Heterologous expression of Cor in Escherichia coli rescued it from CO toxicity. Importantly, the virulence of the cor mutant is attenuated in a mouse model of tuberculosis. Thus, Cor is necessary and sufficient to protect bacteria from host-derived CO. Taken together, this represents the first report of a role for HO1-derived CO in controlling infection of an intracellular pathogen and the first identification of a CO resistance gene in a pathogenic organism. PMID:24255121

  16. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain

    PubMed Central

    Halim, Mohd Zakihalani A.; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-01-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  17. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB) PR10 strain.

    PubMed

    Halim, Mohd Zakihalani A; Jaafar, Mohammad Maaruf; Teh, Lay Kek; Ismail, Mohamad Izwan; Lee, Lian Shien; Ngeow, Yun Fong; Nor, Norazmi Mohd; Zainuddin, Zainul Fadziruddin; Tang, Thean Hock; Najimudin, Mohd Nazalan Mohd; Salleh, Mohd Zaki

    2016-03-01

    Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10) isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968. PMID:26981419

  18. Mycobacterium tuberculosis Cluster with Developing Drug Resistance, New York, New York, USA, 2003–2009

    PubMed Central

    Proops, Douglas; Moonan, Patrick K.; Munsiff, Sonal S.; Kreiswirth, Barry N.; Kurepina, Natalia; Goranson, Christopher; Ahuja, Shama D.

    2011-01-01

    In 2004, identification of patients infected with the same Mycobacterium tuberculosis strain in New York, New York, USA, resulted in an outbreak investigation. The investigation involved data collection and analysis, establishing links between patients, and forming transmission hypotheses. Fifty-four geographically clustered cases were identified during 2003–2009. Initially, the M. tuberculosis strain was drug susceptible. However, in 2006, isoniazid resistance emerged, resulting in isoniazid-resistant M. tuberculosis among 17 (31%) patients. Compared with patients with drug-susceptible M. tuberculosis, a greater proportion of patients with isoniazid-resistant M. tuberculosis were US born and had a history of illegal drug use. No patients named one another as contacts. We used patient photographs to identify links between patients. Three links were associated with drug use among patients infected with isoniazid-resistant M. tuberculosis. The photographic method would have been more successful if used earlier in the investigation. Name-based contact investigation might not identify all contacts, particularly when illegal drug use is involved. PMID:21392426

  19. Reversal of Mycobacterium tuberculosis Phenotypic Drug Resistance by 2-Aminoimidazole Based Small Molecules

    PubMed Central

    Ackart, David F.; Lindsey, Erick A.; Podell, Brendan K.; Melander, Roberta J.; Basaraba, Randall J.; Melander, Christian

    2014-01-01

    The expression of phenotypic drug resistance or drug tolerance serves as a strategy for Mycobacterium tuberculosis to survive in vivo antimicrobial drug treatment; however the mechanisms are poorly understood. Progress toward a more in depth understanding of in vivo drug tolerance and the discovery of new therapeutic strategies designed specifically to treat drug-tolerant M. tuberculosis are hampered by the lack of appropriate in vitro assays. A library of 2-aminoimidazole based small molecules combined with the anti-tuberculosis drug isoniazid were screened against M. tuberculosis expressing in vitro drug-tolerance as microbial communities attached to an extracellular matrix derived from lysed leukocytes. Based on the ability of nine of ten 2-aminoimidazole compounds to inhibit M. smegmatis biofilm formation and three of ten molecules capable of dispersing established biofilms, two active candidates and one inactive control were tested against drug tolerant M. tuberculosis. The two active compounds restored isoniazid susceptibility as well as reduced the in vitro minimum inhibitory concentrations of isoniazid in a dose-dependent manner. The dispersion of drug tolerant M. tuberculosis with 2-aminoimidazole based small molecules as an adjunct to antimicrobial treatment has the potential to be an effective anti-tuberculosis treatment strategy designed specifically to eradicate drug-tolerant M. tuberculosis. PMID:24478046

  20. Rapid Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis using TaqMan Allelic Discrimination

    PubMed Central

    Darban-Sarokhalil, Davood; Nasiri, Mohammad J.; Fooladi, Abbas A.I.; Heidarieh, Parvin; Feizabadi, Mohammad M.

    2016-01-01

    Objectives Multidrug-resistant tuberculosis (MDR-TB) is a global problem that many countries are challenged with. Rapid and accurate detection of MDR-TB is critical for appropriate treatment and controlling of TB. The aim of the present study was to evaluate the TaqMan allelic discrimination without minor groove binder (MGB) as a rapid, efficient, and low-cost method for detection of drug resistant strains of Mycobacterium tuberculosis. Methods A total of 112 M. tuberculosis isolates from cases with diagnosed TB were subjected to drug susceptibility testing (DST), using the proportion method. Resistant isolates were tested for characterization of mutations in the rpoB and KatG genes by TaqMan genotyping. Results Of 112 M. tuberculosis isolates for which DST was performed, three, one, and two isolates were MDR, rifampin (RIF) resistant, and isoniazid (INH) resistant, respectively. According to the threshold cycle (Ct) and curve pattern of mutants, TaqMan probes detect all of the mutations in the analyzed genes (katG 315, AGC→ACC, rpoB 531, TCG→TTG, and rpoB 531, TCG→TGG). Conclusion The present study suggests that drug-resistant strains of M. tuberculosis can be detected by pattern’s curve or Ct with TaqMan probes without MGB in real-time polymerase chain reaction (PCR). PMID:27169012

  1. Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake

    PubMed Central

    Brown, Amanda C; Parish, Tanya

    2008-01-01

    Fosmidomycin is a phosphonic antibiotic which inhibits 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr), the first committed step of the non-mevalonate pathway of isoprenoid biosynthesis. In Mycobacterium tuberculosis Dxr is encoded by Rv2870c, and although the antibiotic has been shown to inhibit the recombinant enzyme [1], mycobacteria are intrinsically resistant to fosmidomycin at the whole cell level. Fosmidomycin is a hydrophilic molecule and in many bacteria its uptake is an active process involving a cAMP dependent glycerol-3-phosphate transporter (GlpT). The fact that there is no glpT homologue in the M. tuberculosis genome and the highly impervious nature of the hydrophobic mycobacterial cell wall suggests that resistance may be due to a lack of cellular penetration. Results We demonstrated that dxr (Rv2780c) is an essential gene in M. tuberculosis, since we could not delete the chromosomal copy unless a second functional copy was provided on an integrating vector. This confirmed that the intracellular target of fosmidomycin was essential as well as sensitive. We looked at the uptake of fosmidomycin in two mycobacterial species, the slow-growing pathogenic M. tuberculosis and the fast-growing, saprophytic Mycobacterium smegmatis; both species were resistant to fosmidomycin to a high level. Fosmidomycin was not accumulated intra-cellularly in M. tuberculosis or M. smegmatis but remained in the extra-cellular medium. In contrast, fosmidomycin uptake was confirmed in the sensitive organism, Escherichia coli. We established that the lack of intra-cellular accumulation was not due to efflux, since efflux pump inhibitors had no effect on fosmidomycin resistance. Finally, we demonstrated that fosmidomycin was not modified by mycobacterial cells or by extracts but remained in a fully functional state. Conclusion Taken together, these data demonstrate that fosmidomycin resistance in M. tuberculosis and M. smegmatis results from a lack of penetration of the

  2. Analysis of the role of Mycobacterium tuberculosis kasA gene mutations in isoniazid resistance.

    PubMed

    Sun, Y-J; Lee, A S G; Wong, S-Y; Paton, N I

    2007-08-01

    Previous studies have suggested that Mycobacterium tuberculosis kasA G312S and G269S gene mutations may represent sequence polymorphisms of the M. tuberculosis East-African-Indian (EAI) and T families, respectively, rather than relating to isoniazid resistance. The present study examined polymorphisms of these two codons in 98 drug-susceptible M. tuberculosis isolates (68 EAI and 30 T isolates). Twenty-eight isolates belonging to a sub-lineage of the EAI family had the kasA G312S mutation, but none of the 30 T isolates had the G269S mutation. The data suggest that the kasA G312S mutation is not related to isoniazid resistance, but represents a sequence polymorphism in a sub-lineage of the EAI family. PMID:17501974

  3. Comprehensive multicenter evaluation of a new line probe assay kit for identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Mitarai, Satoshi; Kato, Seiya; Ogata, Hideo; Aono, Akio; Chikamatsu, Kinuyo; Mizuno, Kazue; Toyota, Emiko; Sejimo, Akiko; Suzuki, Katsuhiro; Yoshida, Shiomi; Saito, Takefumi; Moriya, Ataru; Fujita, Akira; Sato, Shuko; Matsumoto, Tomoshige; Ano, Hiromi; Suetake, Toshinori; Kondo, Yuji; Kirikae, Teruo; Mori, Toru

    2012-03-01

    We evaluated a new line probe assay (LiPA) kit to identify Mycobacterium species and to detect mutations related to drug resistance in Mycobacterium tuberculosis. A total of 554 clinical isolates of Mycobacterium tuberculosis (n = 316), Mycobacterium avium (n = 71), Mycobacterium intracellulare (n = 51), Mycobacterium kansasii (n = 54), and other Mycobacterium species (n = 62) were tested with the LiPA kit in six hospitals. The LiPA kit was also used to directly test 163 sputum specimens. The results of LiPA identification of Mycobacterium species in clinical isolates were almost identical to those of conventional methods. Compared with standard drug susceptibility testing results for the clinical isolates, LiPA showed a sensitivity and specificity of 98.9% and 97.3%, respectively, for detecting rifampin (RIF)-resistant clinical isolates; 90.6% and 100%, respectively, for isoniazid (INH) resistance; 89.7% and 96.0%, respectively, for pyrazinamide (PZA) resistance; and 93.0% and 100%, respectively, for levofloxacin (LVX) resistance. The LiPA kit could detect target species directly in sputum specimens, with a sensitivity of 85.6%. Its sensitivity and specificity for detecting RIF-, PZA-, and LVX-resistant isolates in the sputum specimens were both 100%, and those for detecting INH-resistant isolates were 75.0% and 92.9%, respectively. The kit was able to identify mycobacterial bacilli at the species level, as well as drug-resistant phenotypes, with a high sensitivity and specificity. PMID:22205814

  4. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea

    PubMed Central

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.

    2015-01-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  5. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    PubMed

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C

    2015-07-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  6. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore.

    PubMed

    Lee, A S; Lim, I H; Tang, L L; Telenti, A; Wong, S Y

    1999-08-01

    Genotypic analysis of resistance to isoniazid (INH) in Mycobacterium tuberculosis is complex due to the various genes potentially involved. Mutations in ketoacyl acyl carrier protein synthase (encoded by kasA) were present in 16 of 160 (10%) INH-resistant isolates (R121K [n = 1], G269S [n = 3], G312S [n = 11], G387D [n = 1]). However, G312S was also present in 6 of 32 (19%) susceptible strains. kasA analysis contributed marginally to the performance of INH genotypic testing in Singapore. The significance of kasA polymorphisms in INH resistance should be carefully established. PMID:10428945

  7. Potent Inhibitors of Acetyltransferase Eis Overcome Kanamycin Resistance in Mycobacterium tuberculosis.

    PubMed

    Willby, Melisa J; Green, Keith D; Gajadeera, Chathurada S; Hou, Caixia; Tsodikov, Oleg V; Posey, James E; Garneau-Tsodikova, Sylvie

    2016-06-17

    A major cause of tuberculosis (TB) resistance to the aminoglycoside kanamycin (KAN) is the Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. Upregulation of this enzyme is responsible for inactivation of KAN through acetylation of its amino groups. A 123 000-compound high-throughput screen (HTS) yielded several small-molecule Eis inhibitors that share an isothiazole S,S-dioxide heterocyclic core. These were investigated for their structure-activity relationships. Crystal structures of Eis in complex with two potent inhibitors show that these molecules are bound in the conformationally adaptable aminoglycoside binding site of the enzyme, thereby obstructing binding of KAN for acetylation. Importantly, we demonstrate that several Eis inhibitors, when used in combination with KAN against resistant Mtb, efficiently overcome KAN resistance. This approach paves the way toward development of novel combination therapies against aminoglycoside-resistant TB. PMID:27010218

  8. Detection of Rifampicin Resistance in Mycobacterium tuberculosis by Padlock Probes and Magnetic Nanobead-Based Readout

    PubMed Central

    Engström, Anna; Zardán Gómez de la Torre, Teresa; Strømme, Maria

    2013-01-01

    Control of the global epidemic tuberculosis is severely hampered by the emergence of drug-resistant Mycobacterium tuberculosis strains. Molecular methods offer a more rapid means of characterizing resistant strains than phenotypic drug susceptibility testing. We have developed a molecular method for detection of rifampicin-resistant M. tuberculosis based on padlock probes and magnetic nanobeads. Padlock probes were designed to target the most common mutations associated with rifampicin resistance in M. tuberculosis, i.e. at codons 516, 526 and 531 in the gene rpoB. For detection of the wild type sequence at all three codons simultaneously, a padlock probe and two gap-fill oligonucleotides were used in a novel assay configuration, requiring three ligation events for circularization. The assay also includes a probe for identification of the M. tuberculosis complex. Circularized probes were amplified by rolling circle amplification. Amplification products were coupled to oligonucleotide-conjugated magnetic nanobeads and detected by measuring the frequency-dependent magnetic response of the beads using a portable AC susceptometer. PMID:23630621

  9. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China

    PubMed Central

    Cheng, Xian-feng; Jiang, Chao; Zhang, Min; Xia, Dan; Chu, Li-li; Wen, Yu-feng; Zhu, Ming; Jiang, Yue-gen

    2016-01-01

    Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration. PMID:27047485

  10. Cross-Resistance between Clofazimine and Bedaquiline through Upregulation of MmpL5 in Mycobacterium tuberculosis

    PubMed Central

    Hartkoorn, Ruben C.; Uplekar, Swapna

    2014-01-01

    The antileprosy drug clofazimine is also of interest for the treatment of multidrug-resistant tuberculosis. To understand possible resistance mechanisms, clofazimine-resistant Mycobacterium tuberculosis mutants were isolated in vitro, and, unexpectedly, found to be cross-resistant to bedaquiline. Mutations in the transcriptional regulator Rv0678, with concomitant upregulation of the multisubstrate efflux pump, MmpL5, accounted for this cross-resistance. Mutation in Rv0678 should therefore be considered a confounding factor for the treatment of tuberculosis with clofazimine or bedaquiline. PMID:24590481

  11. IS6110 fingerprinting of drug-resistant Mycobacterium tuberculosis strains isolated in Germany during 1995.

    PubMed Central

    Niemann, S; Rüsch-Gerdes, S; Richter, E

    1997-01-01

    The epidemiological relatedness of drug-resistant Mycobacterium tuberculosis strains isolated in Germany in 1995 was evaluated by the standardized IS6110 fingerprinting method. Altogether, 196 M. tuberculosis isolates from 167 patients were analyzed. A large degree of IS6110 polymorphism was found, ranging from 1 to 20 copies. Multiple isolates from one patient generally remained stable over a period of up to 1 year. However, one strain showed an additional fragment 7 months after the first isolate was obtained. Isolates from 55 patients (33%) showed identical fingerprint patterns or fingerprint patterns that differed only in one band, and thus they were clustered in 22 fingerprint groups. Specific transmission links could be established between members of four groups, e.g., transmission by family contacts. In one case, transmission of a multidrug-resistant strain to a patient initially infected with a drug-susceptible strain could be shown. Besides these fingerprint groups, 30 of the 167 isolates (approximately 18%) could be grouped in two fingerprint clusters with a similarity of at least 78%. Approximately 60% of the patients of these two clusters were known to be immigrants from the former Soviet Union, and one patient is still living in Belarus. In conclusion, our results indicate that (i) transmission of drug-resistant strains contributes substantially to the emergence of drug-resistant tuberculosis in Germany and (ii) drug-resistant M. tuberculosis strains were presumably carried over from the former Soviet Union to Germany by immigrants. PMID:9399486

  12. Epidemiological Characterization of Drug Resistance among Mycobacterium tuberculosis Isolated from Patients in Northeast of Iran during 2012-2013

    PubMed Central

    Tavanaee Sani, Ashraf; Shakiba, Abolfazl; Bahrami Taghanaki, Hamid Reza; Ayati Fard, Seiedeh Fatemeh; Ghazvini, Kiarash

    2015-01-01

    Introduction. Tuberculosis is still one of the most important health problems in developing countries and increasing drug resistance is the main concern for its treatment. This study was designed to characterize the drug resistant Mycobacterium tuberculosis isolated from patients suffering from pulmonary tuberculosis in northeast of Iran. Method. In this cross-sectional study during 2012-2013, drug susceptibility testing was performed on Mycobacterium tuberculosis isolated in northeast of Iran using proportional method. Epidemiological data concerning these strains were also analyzed. Results. Among 125 studied isolates, 25 mycobacteria (20%) were diagnosed as nontuberculosis mycobacteria. Among the remaining 100 Mycobacterium tuberculosis isolates, the resistance rates were 7%, 7%, 3%, and 9% against isoniazid, rifampin, ethambutol, and streptomycin, respectively. Four isolates were resistant against both isoniazid and rifampin (MDR tuberculosis). The highest resistance rate was observed among 15–45-year-old patients. The MDR tuberculosis was much more prevalent among those who had previous history of treatment. Conclusion. Considering these findings, DOTS strategy should be emphasized and promptly used in order to prevent further resistance. Regarding the high rate of nontuberculosis mycobacteria, it is recommended that confirmatory tests were performed before any therapeutic decision. PMID:26064950

  13. Resistance to pyrazinamide in Russian Mycobacterium tuberculosis isolates: pncA sequencing versus Bactec MGIT 960.

    PubMed

    Maslov, Dmitry A; Zaĭchikova, Marina V; Chernousova, Larisa N; Shur, Kirill V; Bekker, Olga B; Smirnova, Tatiana G; Larionova, Elena E; Andreevskaya, Sofya N; Zhang, Ying; Danilenko, Valery N

    2015-09-01

    Resistance to pyrazinamide (PZA) may impact clinical outcome of anti-tuberculosis chemotherapy. PZA susceptibility testing using MGIT 960 is not reliable and little information is available on the prevalence of PZA resistance in Russia. A collection of 64 clinical isolates of Mycobacterium tuberculosis, including 35 multidrug resistant and extensively drug-resistant (MDR/XDR), was analyzed for PZA resistance using MGIT 960, Wayne test, and sequencing of PZA resistance genes pncA, rpsA and panD. In addition, we analyzed 519 MDR-TB strains for susceptibility to PZA by MGIT 960. Sequencing of pncA revealed 17 of 25 (68%) MDR strains and all 10 XDR strains harboring pncA mutations. A correlation of φ = 0.81 between MGIT 960 and pncA sequencing was observed. Mutations in rpsA and panD not associated with PZA resistance as defined by MGIT 960 were identified. We found 1 PZA-resistant strain without mutations in known PZA resistance genes. Almost 73% of MDR-TB strains isolated in Moscow, Russia, were PZA-resistant by MGIT 960 testing of 519 MDR-TB clinical isolates. Further studies are needed to determine the role of rpsA and panD mutations in possible low-level PZA resistance and to identify the molecular basis of new PZA resistance in the isolate without known PZA resistance mutations. PMID:26071666

  14. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis.

    PubMed

    Padhi, Avinash; Naik, Sumanta Kumar; Sengupta, Srabasti; Ganguli, Geetanjali; Sonawane, Avinash

    2016-04-01

    Bacterial species are capable of living as biofilm and/or planktonic forms. Role of biofilms in the pathogenesis of several human pathogens is well established. However, in case of Mycobacterium tuberculosis (Mtb) infection the role of biofilms and the genetic requirements for biofilm formation remains largely unknown. We herein report that ectopic expression of Mtb Rv0024, encoding a putative peptidoglycan amidase, in non-pathogenic Mycobacterium smegmatis(Msm) strain (MsmRv0024) confer at least 10-fold increase in resistance against two prominent anti-tuberculosis drugs isoniazid and pyrazinamide. We further report that the development of resistance was due to significant increase in biofilm formation by Rv0024. Transmission electron microscopy revealed differences in cell surface architecture of MsmRv0024 when compared with Msm wild-type (WT) and vector control Msm pSMT3 (pSMT3) strains and this aggregation pattern was due to increased cell wall hydrophobicity, as determined by Bacterial adhesion to hydrocarbons assay (BATH). Confocal microscopy study showed increased adherence of MsmRv0024 bacteria to lung epithelial cells as compared to pSMT3 strain. However, infection studies showed no differences in host cell invasion and intracellular survival in mouse macrophages. We envision that Rv0024 may play a critical role in initial infection process, adherence to host cells and drug resistance. Thus, Rv0024 may be considered as a potential drug target for the treatment of tuberculosis. PMID:26706821

  15. Rapid Detection of rpoB Gene Mutations Conferring Rifampin Resistance in Mycobacterium tuberculosis

    PubMed Central

    Ao, Wanyuan; Aldous, Stephen; Woodruff, Evelyn; Hicke, Brian; Rea, Larry; Kreiswirth, Barry

    2012-01-01

    Multidrug-resistant Mycobacterium tuberculosis strains are widespread and present a challenge to effective treatment of this infection. The need for a low-cost and rapid detection method for clinically relevant mutations in Mycobacterium tuberculosis that confer multidrug resistance is urgent, particularly for developing countries. We report here a novel test that detects the majority of clinically relevant mutations in the beta subunit of the RNA polymerase (rpoB) gene that confer resistance to rifampin (RIF), the treatment of choice for tuberculosis (TB). The test, termed TB ID/R, combines a novel target and temperature-dependent RNase H2-mediated cleavage of blocked DNA primers to initiate isothermal helicase-dependent amplification of a rpoB gene target sequence. Amplified products are detected by probes arrayed on a modified silicon chip that permits visible detection of both RIF-sensitive and RIF-resistant strains of M. tuberculosis. DNA templates of clinically relevant single-nucleotide mutations in the rpoB gene were created to validate the performance of the TB ID/R test. Except for one rare mutation, all mutations were unambiguously detected. Additionally, 11 RIF-sensitive and 25 RIF-resistant clinical isolates were tested by the TB ID/R test, and 35/36 samples were classified correctly (96.2%). This test is being configured in a low-cost test platform to provide rapid diagnosis and drug susceptibility information for TB in the point-of-care setting in the developing world, where the need is acute. PMID:22518852

  16. Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance

    PubMed Central

    Minato, Yusuke; Thiede, Joshua M.; Kordus, Shannon Lynn; McKlveen, Edward J.; Turman, Breanna J.

    2015-01-01

    para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB. PMID:26033719

  17. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko

    2016-03-01

    The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar. PMID:26806152

  18. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Veigas, Bruno; Machado, Diana; Perdigão, João; Portugal, Isabel; Couto, Isabel; Viveiros, Miguel; Baptista, Pedro V.

    2010-10-01

    Tuberculosis (TB) is one of the leading causes of infection in humans, causing high morbility and mortality all over the world. The rate of new cases of multidrug resistant tuberculosis (MDRTB) continues to increase, and since these infections are very difficult to manage, they constitute a serious health problem. In most cases, drug resistance in Mycobacterium tuberculosis has been related to mutations in several loci within the pathogen's genome. The development of fast, cheap and simple screening methodologies would be of paramount relevance for the early detection of these mutations, essential for the timely and effective diagnosis and management of MDRTB patients. The use of gold nanoparticles derivatized with thiol-modified oligonucleotides (Au-nanoprobes) has led to new approaches in molecular diagnostics. Based on the differential non-cross-linking aggregation of Au-nanoprobes, we were able to develop a colorimetric method for the detection of specific sequences and to apply this approach to pathogen identification and single base mutations/single nucleotide polymorphisms (SNP) discrimination. Here we report on the development of Au-nanoprobes for the specific identification of SNPs within the beta subunit of the RNA polymerase (rpoB locus), responsible for resistance to rifampicin in over 95% of rifampicin resistant M. tuberculosis strains.

  19. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Baldwin, Patrick R.; Reeves, Analise Z.; Powell, Kimberly R.; Napier, Ruth J.; Swimm, Alyson I.; Sun, Aiming; Giesler, Kyle; Bommarius, Bettina; Shinnick, Thomas M.; Snyder, James P.; Liotta, Dennis C.; Kalman, Daniel

    2016-01-01

    Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs. PMID:25618016

  20. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    SciTech Connect

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  1. Application of the resazurin microtitre assay for detection of multidrug resistance in Mycobacterium tuberculosis in Algiers.

    PubMed

    Nateche, Farida; Martin, Anandi; Baraka, Saliha; Palomino, Juan Carlos; Khaled, Safia; Portaels, Françoise

    2006-07-01

    This study assessed the performance of a rapid, low-cost, colorimetric method, the resazurin microtitre assay (REMA) plate method, for the detection of resistance to isoniazid and rifampicin in 136 clinical isolates of Mycobacterium tuberculosis from two hospitals in Algiers. MICs were determined and the results were compared with those obtained with the conventional proportion method on Löwenstein-Jensen medium. Excellent results were obtained for the REMA plate method, with a sensitivity of 100 % for both isoniazid and rifampicin and a specificity of 98.3 and 99.2 %, respectively. The REMA plate method appears to be a reliable method for the rapid determination of multidrug-resistant tuberculosis and is a good alternative for use in resource-limited countries such as Algeria. PMID:16772411

  2. Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage, Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing Active Tuberculosis in South Brazil

    PubMed Central

    Vasconcelos, Sidra E. G.; Esteves, Leonardo S.; Gomes, Harrison M.; Almeida da Silva, Pedro; Perdigão, João; Portugal, Isabel; Viveiros, Miguel; McNerney, Ruth; Pain, Arnab; Clark, Taane G.; Rastogi, Nalin; Unis, Gisela; Rossetti, Maria Lucia R.

    2015-01-01

    We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RDRio, and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n = 8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C(−17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers. PMID:26400784

  3. [Mycobacterium tuberculosis mutants with multidrug resistance: history of origin, genetic and molecular mechanisms of resistance, and emerging challenges].

    PubMed

    Prozorov, A A; Zaĭchikova, M V; Danilenko, V N

    2012-01-01

    The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues. PMID:22567849

  4. Evaluation of the effect of Humulus lupulus alcoholic extract on rifampin-sensitive and resistant isolates of Mycobacterium tuberculosis

    PubMed Central

    Serkani, J. Esmi; Isfahani, B. Nasr; Safaei, H.Gh.; Kermanshahi, R. Kasra; Asghari, Gh.

    2012-01-01

    The increasing incidence of Multi Drug Resistance Tuberculosis (MDR-TB) and Extensively Drug Resistance TB (XDR-TB) worldwide highlight the urgent need to search for newer anti-tuberculosis compounds. It has been determined that pharmaceutical plant, hops (Humulus lupulus), possesses some antibacterial effect. In this study, the antimycobacterial effect of this plant on rifampin sensitive and resistant strains of Mycobacterium tuberculosis were examined. Sensitivity and resistance of 37 Iranian isolates of M. tuberculosis to rifampin was determined by proportion method. Ethanolic extract of hops was prepared using maceration method. PCR-SSCP and direct sequencing were used for confirming existence of mutations in 193-bp rpoB amplicons related to the rifampin resistance in Mycobacterium tuberculosis isolates. Two different concentrations of hops alcoholic extract (4 and 8 mg/ml) were prepared and its effects against 21 resistant and 15 sensitive isolates was determinate using proportion method. Six different mutations in the 193-bp amplified rpoB gene fragments and seven distinguishable PCR-SSCP patterns in 21 Iranian rifampin resistant isolates were recognized. This study showed that the percentage of resistance and the type of mutations were correlated with the PCR-SSCP patterns and the type of mutations in rpoB gene (P<0.05). The results of hops antimycobacterial effect showed that different concentrations of hops ethanolic extract (4 and 8 mg/ml) had a remarkable inhibitory effect on rifampin sensitive and resistant isolates of Mycobacterium tuberculosis. Identification of the effective fraction of hops against Mycobacterium tuberculosis is a further step to be studied. PMID:23248674

  5. Genomic epidemiology of multidrug-resistant Mycobacterium tuberculosis during transcontinental spread.

    PubMed

    Coscolla, Mireia; Barry, Pennan M; Oeltmann, John E; Koshinsky, Heather; Shaw, Tambi; Cilnis, Martin; Posey, Jamie; Rose, Jordan; Weber, Terry; Fofanov, Viacheslav Y; Gagneux, Sebastien; Kato-Maeda, Midori; Metcalfe, John Z

    2015-07-15

    The transcontinental spread of multidrug-resistant (MDR) tuberculosis is poorly characterized in molecular epidemiologic studies. We used genomic sequencing to understand the establishment and dispersion of MDR Mycobacterium tuberculosis within a group of immigrants to the United States. We used a genomic epidemiology approach to study a genotypically matched (by spoligotype, IS6110 restriction fragment length polymorphism, and mycobacterial interspersed repetitive units-variable number of tandem repeat signature) lineage 2/Beijing MDR strain implicated in an outbreak of tuberculosis among refugees in Thailand and consecutive cases within California. All 46 MDR M. tuberculosis genomes from both Thailand and California were highly related, with a median difference of 10 single-nucleotide polymorphisms (SNPs). The Wat Tham Krabok (WTK) strain is a new sequence type distinguished from all known Beijing strains by 55 SNPs and a genomic deletion (Rv1267c) associated with increased fitness. Sequence data revealed a highly prevalent MDR strain that included several closely related but distinct allelic variants within Thailand, rather than the occurrence of a single outbreak. In California, sequencing data supported multiple independent introductions of WTK with subsequent transmission and reactivation within the state, as well as a potential super spreader with a prolonged infectious period. Twenty-seven drug resistance-conferring mutations and 4 putative compensatory mutations were found within WTK strains. Genomic sequencing has substantial epidemiologic value in both low- and high-burden settings in understanding transmission chains of highly prevalent MDR strains. PMID:25601940

  6. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up. PMID:22204067

  7. MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis

    PubMed Central

    2014-01-01

    Background Tuberculosis is an infectious bacterial disease caused by Mycobacterium tuberculosis. It remains a major health threat, killing over one million people every year worldwide. An early antibiotic therapy is the basis of the treatment, and the emergence and spread of multidrug and extensively drug-resistant mutant strains raise significant challenges. As these bacteria grow very slowly, drug resistance mutations are currently detected using molecular biology techniques. Resistance mutations are identified by sequencing the resistance-linked genes followed by a comparison with the literature data. The only online database is the TB Drug Resistance Mutation database (TBDReaM database); however, it requires mutation detection before use, and its interrogation is complex due to its loose syntax and grammar. Description The MUBII-TB-DB database is a simple, highly structured text-based database that contains a set of Mycobacterium tuberculosis mutations (DNA and proteins) occurring at seven loci: rpoB, pncA, katG; mabA(fabG1)-inhA, gyrA, gyrB, and rrs. Resistance mutation data were extracted after the systematic review of MEDLINE referenced publications before March 2013. MUBII analyzes the query sequence obtained by PCR-sequencing using two parallel strategies: i) a BLAST search against a set of previously reconstructed mutated sequences and ii) the alignment of the query sequences (DNA and its protein translation) with the wild-type sequences. The post-treatment includes the extraction of the aligned sequences together with their descriptors (position and nature of mutations). The whole procedure is performed using the internet. The results are graphs (alignments) and text (description of the mutation, therapeutic significance). The system is quick and easy to use, even for technicians without bioinformatics training. Conclusion MUBII-TB-DB is a structured database of the mutations occurring at seven loci of major therapeutic value in tuberculosis management

  8. Evaluation of phage assay for rapid phenotypic detection of rifampicin resistance in Mycobacterium tuberculosis

    PubMed Central

    Yzquierdo, Sergio Luis; Lemus, Dihadenys; Echemendia, Miguel; Montoro, Ernesto; McNerney, Ruth; Martin, Anandi; Palomino, Juan Carlos

    2006-01-01

    Background Conventional methods for susceptibility testing require several months before results can be reported. However, rapid methods to determine drug susceptibility have been developed recently. Phage assay have been reported as a rapid useful tools for antimicrobial susceptibility testing. The aim of this study was to apply the Phage assay for rapid detection of resistance on Mycobacterium tuberculosis strains in Cuba. Methods Phage D29 assay was performed on 102 M. tuberculosis strains to detect rifampicin resistance. The results were compared with the proportion method (gold standard) to evaluate the sensitivity and specificity of Phage assay. Results Phage assay results were available in 2 days whereas Proportion Methods results were obtain in 42 days. A total of 44 strains were detected as rifampicin resistant by both methods. However, one strains deemed resistant by Proportion Methods was susceptible by Phage assay. The sensitivity and specificity of Phage assay were 97.8 % and 100% respectively. Conclusion Phage assay provides rapid and reliable results for susceptibility testing; it's easy to perform, requires no specialized equipment and is applicable to drug susceptibility testing in low income countries where tuberculosis is a major public health problem. PMID:16630356

  9. Drug Resistance Pattern of Mycobacterium tuberculosis Isolates From Patients Referred to TB Reference Laboratory in Ahvaz

    PubMed Central

    Badie, Fereshteh; Arshadi, Maniya; Mohsenpoor, Maryam; Gharibvand, Soodabeh S.

    2015-01-01

    Objectives Tuberculosis remains one of the top three infectious disease killers. The prevalence of multidrug-resistant tuberculosis (MDR-TB) has increased substantially in the past 20 years. When drug resistance is not detected, MDR-TB patients cannot access life-saving treatment; this puts their communities at risk of ongoing MDR-TB transmission. We aimed to determine the patterns of resistance to antituberculosis drugs among Mycobacterium tuberculosis isolates from Khuzestan province in Iran. Methods A total of 850 clinical specimens from patients suspected of active TB were cultured in 2015. Drug susceptibility testing to the first line antiTB drugs for culture positive MTB was performed on Lowenstein–Jensen medium using the proportion method. Results Of 850 cultured specimens, 272 (32%) were culture positive for mycobacteria. Of 64 MTB isolates that were analyzed by the proportion method, 62 (96.8%) were pan-susceptible and two (3.1%) were MDR. Conclusion An important way to prevent the emergence of MDR and XDR TB, and the principles of full implementation of the strategy is directly observed treatment, short-course (DOTS). The efficient diagnosis and timely treatment of MDR-TB patients can prevent disease transmission, reduce the risk of drug resistance developing, and avoid further lung damage. PMID:26981340

  10. Molecular Characterization of Multidrug-Resistant Isolates of Mycobacterium tuberculosis from Patients in North India

    PubMed Central

    Siddiqi, Noman; Shamim, Mohammed; Hussain, Seema; Choudhary, Rakesh Kumar; Ahmed, Niyaz; Prachee; Banerjee, Sharmistha; Savithri, G. R.; Alam, Mahfooz; Pathak, Niteen; Amin, Amol; Hanief, Mohammed; Katoch, V. M.; Sharma, S. K.; Hasnain, Seyed E.

    2002-01-01

    The World Health Organization has identified India as a major hot-spot region for Mycobacterium tuberculosis infection. We have characterized the sequences of the loci associated with multidrug resistance in 126 clinical isolates of M. tuberculosis from India to identify the respective mutations. The loci selected were rpoB (rifampin), katG and the ribosomal binding site of inhA (isoniazid), gyrA and gyrB (ofloxacin), and rpsL and rrs (streptomycin). We found known as well as novel mutations at these loci. Few of the mutations at the rpoB locus could be correlated with the drug resistance levels exhibited by the M. tuberculosis isolates and occurred with frequencies different from those reported earlier. Missense mutations at codons 526 to 531 seemed to be crucial in conferring a high degree of resistance to rifampin. We identified a common Arg463Leu substitution in the katG locus and certain novel insertions and deletions. Mutations were also mapped in the ribosomal binding site of the inhA gene. A Ser95Thr substitution in the gyrA locus was the most common mutation observed in ofloxacin-resistant isolates. A few isolates showed other mutations in this locus. Seven streptomycin-resistant isolates had a silent mutation at the lysine residue at position 121. While certain mutations are widely present, pointing to the magnitude of the polymorphisms at these loci, others are not common, suggesting diversity in the multidrug-resistant M. tuberculosis strains prevalent in this region. Our results additionally have implications for the development of methods for multidrug resistance detection and are also relevant in the shaping of future clinical treatment regimens and drug design strategies. PMID:11796356

  11. A Note on Derivatives of Isoniazid, Rifampicin, and Pyrazinamide Showing Activity Against Resistant Mycobacterium tuberculosis.

    PubMed

    Nusrath Unissa, Ameeruddin; Hanna, Luke Elizabeth; Swaminathan, Soumya

    2016-04-01

    Drug-resistant tuberculosis (DR-TB) is a serious problem that impedes the success of the TB control program. Of note, multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB have certainly complicated the scenario. One of the possible strategies to overcome drug resistance in an economic and simple manner would involve modification of existing anti-TB drugs to obtain derivatives that can work on resistant TB bacilli. These may have improved half-life and increased bioavailability, be more efficacious, and serve as cost-effective alternatives, as compared to new drugs identified through conventional methods of drug discovery and development. Although extensive literature is available on the activity of various derivatives of first-line drugs (isoniazid, rifampicin and pyrazinamide) on drug-susceptible Mycobacterium tuberculosis (MTB), reports on the activity of derivatives on resistant MTB are very limited, to our knowledge. In light of this, the present review aims to provide a concise report on the derivatives of first-line drugs that have the potential to overcome the resistance to the parental drug and could thus serve as effective alternatives. PMID:26613382

  12. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. PMID:26784657

  13. [Epidural abscess due to a Mycobacterium tuberculosis strain with primary resistance to isoniazid and ethambutol].

    PubMed

    Sener, Alper; Akçalı, Alper; Karatağ, Ozan; Koşar, Sule; Değirmenci, Yıldız; Akman, Tarık

    2012-10-01

    Tuberculosis is primarily characterized by pulmonary involvement, however, one third of the cases exhibit extrapulmonary tuberculosis. In this report, a case of epidural abscess due to Mycobacterium tuberculosis with primary resistance to isoniazid and ethambutol was presented. A 57-year-old male patient was admitted to emergency service with ten days history of weakness in legs, disability of walking and fever. Neurological examination revealed paraplegia of lower extremities, numbness distal to T2 disc level and hyperactivity of deep tendon reflexes indicating transverse myelitis. Laboratory findings were as follows; ESR: 74 mm/hour, CRP: 22 g/L, ALT: 42 IU/L, AST: 45 IU/L and white blood cell count 23.000/mm3 (45% polymorphonuclear leukocyte, 45% lymphocyte, 10% monocyte). Spinal magnetic resonance imaging showed a fusiform abscess localized at anterior epidural space and extending along levels of C5-6 and C6-7. The longitudinal dimension of the abscess was 3 cm. The lesion was hypointense on T1 and hyperintense on T2 weighted MRI images with prominent rim shaped contrast enhancement on contrast-enhanced T1-weighted images. At fourth day of hospitalization the patient underwent neurosurgical management. M.tuberculosis was isolated from the cultures of operation material by Mycobacteria Growth Incubator Tube system (MGIT, BBL; BD, USA) on the 12th day. The isolate was found susceptible to streptomycin and rifampisin, but resistant to isoniazid and ethambutol. The treatment was initiated with rifampicin 600 mg/day, pyrazinamid 2 g/day, ethambutol 1.5 g/day and levofloxacin 500 mg/day. At the end of second month levofloxacin 500 mg/day and rifampisin 600 mg/day combination was sustained and total treatment period was planned as nine months. As far as the national literature was considered, this was the first case of extrapulmonary tuberculosis with primary resistance to isoniazid and ethambutol. PMID:23188583

  14. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis.

    PubMed

    Fisher, Jed F; Mobashery, Shahriar

    2016-01-01

    The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections. PMID:27091943

  15. Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar.

    PubMed

    Aung, Htin Lin; Tun, Thanda; Moradigaravand, Danesh; Köser, Claudio U; Nyunt, Wint Wint; Aung, Si Thu; Lwin, Thandar; Thinn, Kyi Kyi; Crump, John A; Parkhill, Julian; Peacock, Sharon J; Cook, Gregory M; Hill, Philip C

    2016-09-01

    Drug-resistant tuberculosis (TB) is a major health threat in Myanmar. An initial study was conducted to explore the potential utility of whole-genome sequencing (WGS) for the diagnosis and management of drug-resistant TB in Myanmar. Fourteen multidrug-resistant Mycobacterium tuberculosis isolates were sequenced. Known resistance genes for a total of nine antibiotics commonly used in the treatment of drug-susceptible and multidrug-resistant TB (MDR-TB) in Myanmar were interrogated through WGS. All 14 isolates were MDR-TB, consistent with the results of phenotypic drug susceptibility testing (DST), and the Beijing lineage predominated. Based on the results of WGS, 9 of the 14 isolates were potentially resistant to at least one of the drugs used in the standard MDR-TB regimen but for which phenotypic DST is not conducted in Myanmar. This study highlights a need for the introduction of second-line DST as part of routine TB diagnosis in Myanmar as well as new classes of TB drugs to construct effective regimens. PMID:27530852

  16. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  17. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?

    PubMed Central

    Koch, Anastasia; Mizrahi, Valerie; Warner, Digby F

    2014-01-01

    The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIFR) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIFR on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIFR mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance. PMID:26038512

  18. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis

    PubMed Central

    Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J.; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A.; Golubchik, Tanya; Wilson, Daniel J.; Wyllie, David H.; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A.; Ismail, Nazir; Omar, Shaheed V.; Smith, E. Grace; Buck, David; McVean, Gil; Walker, A. Sarah; Peto, Tim E. A.; Crook, Derrick W.; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  19. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Bradley, Phelim; Gordon, N Claire; Walker, Timothy M; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A; Golubchik, Tanya; Wilson, Daniel J; Wyllie, David H; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A; Ismail, Nazir; Omar, Shaheed V; Smith, E Grace; Buck, David; McVean, Gil; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  20. Predictive Value of Molecular Drug Resistance Testing of Mycobacterium tuberculosis Isolates in Valle del Cauca, Colombia

    PubMed Central

    García, Pamela K.; Nieto, Luisa Maria; van Soolingen, Dick

    2013-01-01

    Previous evaluations of the molecular GenoType tests have promoted their use to detect resistance to first- and second-line antituberculosis drugs in different geographical regions. However, there are known geographic variations in the mutations associated with drug resistance in Mycobacterium tuberculosis, and especially in South America, there is a paucity of information regarding the frequencies and types of mutations associated with resistance to first- and second-line antituberculosis drugs. We therefore evaluated the performance of the GenoType kits in this region by testing 228 M. tuberculosis isolates in Colombia, including 134 resistant and 94 pansusceptible strains. Overall, the sensitivity and specificity of the GenoType MTBDRplus test ranged from 92 to 96% and 97 to 100%, respectively; the agreement index was optimal (Cohen's kappa, >0.8). The sensitivity of the GenoType MTBDRsl test ranged from 84 to 100% and the specificity from 88 to 100%. The most common mutations were katG S315T1, rpoB S531L, embB M306V, gyrA D94G, and rrs A1401G. Our results reflect the utility of the GenoType tests in Colombia; however, as some discordance still exists between the conventional and molecular approaches in resistance testing, we adhere to the recommendation that the GenoType tests serve as early guides for therapy, followed by phenotypic drug susceptibility testing for all cases. PMID:23658272

  1. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    SciTech Connect

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  2. Epidemiologic Correlates of Pyrazinamide-Resistant Mycobacterium tuberculosis in New York City

    PubMed Central

    Verdugo, Dawn; Fallows, Dorothy; Ahuja, Shama; Schluger, Neil; Kreiswirth, Barry

    2015-01-01

    Pyrazinamide (PZA) has important sterilizing activity in tuberculosis (TB) chemotherapy. We describe trends, risk factors, and molecular epidemiology associated with PZA-resistant (PZAr) Mycobacterium tuberculosis in New York City (NYC). From 2001 to 2008, all incident culture-positive TB cases reported by the NYC Department of Health and Mental Hygiene (DOHMH) were genotyped by IS6110-based restriction fragment length polymorphism and spoligotype. Multidrug-resistant (MDR) isolates underwent DNA sequencing of resistance-determining regions of pncA, rpoB, katG, and fabG1. Demographic and clinical information were extracted from the NYC DOHMH TB registry. During this period, PZAr doubled (1.6% to 3.6%) overall, accounting for 44% (70/159) of the MDR population and 1.4% (75/5511) of the non-MDR population. Molecular genotyping revealed strong microbial phylogenetic associations with PZAr. Clustered isolates and those from acid-fast bacillus (AFB) smear-positive cases had 2.7 (95% confidence interval [CI] = 1.71 to 4.36) and 2.0 (95% CI = 1.19 to 3.43) times higher odds of being PZAr, respectively, indicating a strong likelihood of recent transmission. Among the MDR population, PZAr was acquired somewhat more frequently via primary transmission than by independent pathways. Our molecular analysis also revealed that several historic M. tuberculosis strains responsible for MDR TB outbreaks in the early 1990s were continuing to circulate in NYC. We conclude that the increasing incidence of PZAr, with clear microbial risk factors, underscores the importance of routine PZA drug susceptibility testing and M. tuberculosis genotyping for the identification, control, and prevention of increasingly resistant organisms. PMID:26195530

  3. Multiplex PCR assay specific for the multidrug-resistant strain W of Mycobacterium tuberculosis.

    PubMed

    Plikaytis, B B; Marden, J L; Crawford, J T; Woodley, C L; Butler, W R; Shinnick, T M

    1994-06-01

    In 1991, a multidrug-resistant strain of Mycobacterium tuberculosis was isolated from eight people with tuberculosis at a state correctional facility in New York. This strain, which is designated strain W (IS6110 restriction fragment length polymorphism type 212072), was resistant to isoniazid, rifampin, ethambutol, streptomycin, kanamycin, ethionamide, and rifabutin. Since that outbreak, the W strain has been associated with outbreaks in five hospitals in the New York City area and is a continuing public health problem in the area. To be able to identify this strain rapidly, we developed a multiplex PCR assay which targets a direct repeat of IS6110 with a 556-bp intervening sequence (NTF-1). The amplification generates two amplicons from strain W, which indicate the presence and orientation of the NTF-1 sequence between the direct repeat of IS6110, and a third amplicon, which serves as an internal PCR control. The assay was evaluated with 193 isolates of M. tuberculosis, and all 48 strain W isolates among those 193 isolates were correctly identified. PMID:7915723

  4. Systematic Molecular Characterization of Multidrug-Resistant Mycobacterium tuberculosis Complex Isolates from Spain

    PubMed Central

    Samper, S.; Iglesias, M. J.; Rabanaque, M. J.; Gómez, L. I.; Lafoz, M. C.; Jiménez, M. S.; Ortega, A.; Lezcano, M. A; Van Soolingen, D.; Martín, C.

    2005-01-01

    We used spoligotyping and restriction fragment length polymorphism (RFLP) of the IS6110-insertion sequence to study the molecular epidemiology of multidrug-resistant (MDR) tuberculosis in Spain. We analyzed 180 Mycobacterium tuberculosis complex isolates collected between January 1998 and December 2000. Consecutive isolates from the same patients (n = 23) always had identical genotypes, meaning that no cases of reinfection occurred. A total of 105 isolates (58.3%) had unique RFLP patterns, whereas 75 isolates (41.7%) were in 20 different RFLP clusters. Characterization of the katG and rpoB genes showed that 14 strains included in the RFLP clusters did not actually cluster. Only 33.8% of the strains isolated were suggestive of MDR transmission, a frequency lower than that for susceptible strains in Spain (46.6%). We found that the Beijing/W genotype, which is prevalent worldwide, was significantly associated with immigrants. The 22 isolates in the largest cluster corresponded to the Mycobacterium bovis strain responsible for two nosocomial MDR outbreaks in Spain. PMID:15750087

  5. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement.

    PubMed

    Domínguez, J; Boettger, E C; Cirillo, D; Cobelens, F; Eisenach, K D; Gagneux, S; Hillemann, D; Horsburgh, R; Molina-Moya, B; Niemann, S; Tortoli, E; Whitelaw, A; Lange, C

    2016-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs. We ascertained consensus on the use of the results of molecular DST for clinical treatment decisions in TB patients. This document has been developed by TBNET and RESIST-TB groups to reach a consensus about reporting standards in the clinical use of molecular DST results. Review of the available literature and the search for evidence included hand-searching journals and searching electronic databases. The panel identified single nucleotide mutations in genomic regions of M. tuberculosis coding for katG, inhA, rpoB, embB, rrs, rpsL and gyrA that are likely related to drug resistance in vivo. Identification of any of these mutations in clinical isolates of M. tuberculosis has implications for the management of TB patients, pending the results of in vitro DST. However, false-positive and false-negative results in detecting resistance-associated mutations in drugs for which there is poor or unproven correlation between phenotypic and clinical drug resistance complicate the interpretation. Reports of molecular DST results should therefore include specific information on the mutations identified and provide guidance for clinicians on interpretation and on the choice of the appropriate initial drug regimen. PMID:26688526

  6. High Affinity Inha Inhibitors with Activity Against Drug-Resistant Strains of Mycobacterium Tuberculosis

    SciTech Connect

    Sullivan,T.; Truglio, J.; Boyne, M.; Novichenok, P.; Zhang, X.; Stratton, C.; Li, H.; Kaur, T.; Amin, A.; et al.

    2006-01-01

    Novel chemotherapeutics for treating multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) are required to combat the spread of tuberculosis, a disease that kills more than 2 million people annually. Using structure-based drug design, we have developed a series of alkyl diphenyl ethers that are uncompetitive inhibitors of InhA, the enoyl reductase enzyme in the MTB fatty acid biosynthesis pathway. The most potent compound has a Ki{prime} value of 1 nM for InhA and MIC{sub 99} values of 2-3 {micro}g mL{sup -1} (6-10 {micro}M) for both drug-sensitive and drug-resistant strains of MTB. Overexpression of InhA in MTB results in a 9-12-fold increase in MIC{sub 99}, consistent with the belief that these compounds target InhA within the cell. In addition, transcriptional response studies reveal that the alkyl diphenyl ethers fail to upregulate a putative efflux pump and aromatic dioxygenase, detoxification mechanisms that are triggered by the lead compound triclosan. These diphenyl ether-based InhA inhibitors do not require activation by the mycobacterial KatG enzyme, thereby circumventing the normal mechanism of resistance to the front line drug isoniazid (INH) and thus accounting for their activity against INH-resistant strains of MTB.

  7. Spoligotyping and drug resistance patterns of Mycobacterium tuberculosis isolates from five provinces of Iran

    PubMed Central

    Haeili, Mehri; Darban-Sarokhalil, Davood; Fooladi, Abbas Ali Imani; Javadpour, Sedigheh; Hashemi, Abdorrazagh; Siavoshi, Farideh; Feizabadi, Mohammad Mehdi

    2013-01-01

    Tuberculosis (TB) persists as a public health problem in Iran. Characterization of Mycobacterium tuberculosis isolates circulating in this area will contribute to understand and control the spread of the strains. The aims of this study were to understand the genetic diversity and drug susceptibility of M. tuberculosis isolates circulating in Iran and to analyze the relationship between genotype and drug resistance. A total of 291 M. tuberculosis isolates collected from TB patients were genotyped by spoligotyping. Drug susceptibility testing was performed using proportion method. Spoligotyping resulted in 75 distinct patterns. 86.2% of isolates were grouped in 35 clusters while the remaining isolates were unique. Ural was found to be the most predominant lineage (34.3%) followed by Central Asian strain (CAS) (24%), T (18.2%), Manu2 (7.5%) and Latin American-Mediterranean (LAM) (6.1%). The five largest clusters were Ural/Spoligotype International Type (SIT)127 (15.8%), CAS1/SIT26 (9.2%), T1/SIT53 (6.1%), T1/SIT284 (5.4%), and CAS1/SIT25 (4.4%). About 5% of isolates had multidrug resistance (MDR) and 10% had other resistance. MDR was significantly associated with Beijing strains, but not with Ural family. This study highlights dominance of Ural, CAS, and T families in Iran. Biogeographic specificity of CAS and T families to border provinces of Iran including Sistan-Baluchestan and Kermanshah, respectively, suggested that this family strains might be transmitted from these regions to other provinces of the country. PMID:24311556

  8. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (P<0.05). DNA sequencing revealed that the promoter regions of devR, mtrA, regX3 and Rv3143 did not contain any mutations. Moreover, expression of the four genes could be induced by most of the four first-line antitubercular agents. In addition, either deletion or overexpression of devR in Mycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance. PMID:25937537

  9. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis.

    PubMed

    Ramaswamy, Srinivas V; Reich, Robert; Dou, Shu-Jun; Jasperse, Linda; Pan, Xi; Wanger, Audrey; Quitugua, Teresa; Graviss, Edward A

    2003-04-01

    Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide

  10. Pattern of Drug Resistance and Risk Factors Associated with Development of Drug Resistant Mycobacterium tuberculosis in Pakistan

    PubMed Central

    Ullah, Irfan; Javaid, Arshad; Tahir, Zarfishan; Ullah, Obaid; Shah, Aamer Ali; Hasan, Fariha; Ayub, Najma

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) is a major public health problem in developing countries such as Pakistan. Objective The current study was conducted to assess the frequency of drug resistant tuberculosis including multi drug resistance (MDR- TB) as well as risk factors for development of DR-TB, in Punjab, Pakistan. Methodology Drug susceptibility testing (DST) was performed, using proportion method, for 2367 culture positive Mycobacterium tuberculosis (MTB) cases that were enrolled from January 2012 to December 2013 in the province of Punjab, Pakistan, against first-line anti-tuberculosis drugs. The data was analyzed using statistical software; SPSS version 18. Results Out of 2367 isolates, 273 (11.5%) were resistant to at least one anti-TB drug, while 221 (9.3%) showed MDR- TB. Risk factors for development of MDR-TB were early age (ranges between 10–25 years) and previously treated TB patients. Conclusion DR-TB is a considerable problem in Pakistan. Major risk factors are previous history of TB treatment and younger age group. It emphasizes the need for effective TB control Program in the country. PMID:26809127

  11. Comparative Genomic Analysis of Mycobacterium tuberculosis Drug Resistant Strains from Russia

    PubMed Central

    Ilina, Elena N.; Shitikov, Egor A.; Ikryannikova, Larisa N.; Alekseev, Dmitry G.; Kamashev, Dmitri E.; Malakhova, Maja V.; Parfenova, Tatjana V.; Afanas’ev, Maxim V.; Ischenko, Dmitry S.; Bazaleev, Nikolai A.; Smirnova, Tatjana G.; Larionova, Elena E.; Chernousova, Larisa N.; Beletsky, Alexey V.; Mardanov, Andrei V.; Ravin, Nikolai V.; Skryabin, Konstantin G.; Govorun, Vadim M.

    2013-01-01

    Tuberculosis caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains is a growing problem in many countries. The availability of the complete nucleotide sequences of several MTB genomes allows to use the comparative genomics as a tool to study the relationships of strains and differences in their evolutionary history including acquisition of drug-resistance. In our work, we sequenced three genomes of Russian MTB strains of different phenotypes – drug susceptible, MDR and XDR. Of them, MDR and XDR strains were collected in Tomsk (Siberia, Russia) during the local TB outbreak in 1998–1999 and belonged to rare KQ and KY families in accordance with IS6110 typing, which are considered endemic for Russia. Based on phylogenetic analysis, our isolates belonged to different genetic families, Beijing, Ural and LAM, which made the direct comparison of their genomes impossible. For this reason we performed their comparison in the broader context of all M. tuberculosis genomes available in GenBank. The list of unique individual non-synonymous SNPs for each sequenced isolate was formed by comparison with all SNPs detected within the same phylogenetic group. For further functional analysis, all proteins with unique SNPs were ascribed to 20 different functional classes based on Clusters of Orthologous Groups (COG). We have confirmed drug resistant status of our isolates that harbored almost all known drug-resistance associated mutations. Unique SNPs of an XDR isolate CTRI-4XDR, belonging to a Beijing family were compared in more detail with SNPs of additional 14 Russian XDR strains of the same family. Only type specific mutations in genes of repair, replication and recombination system (COG category L) were found common within this group. Probably the other unique SNPs discovered in CTRI-4XDR may have an important role in adaptation of this microorganism to its surrounding and in escape from antituberculosis drugs

  12. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis.

    PubMed

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H; Valencia, Hugo J; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-09-01

    Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. PMID:23867321

  13. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis

    PubMed Central

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H.; Valencia, Hugo J.; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-01-01

    Summary Background Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. Objective This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Methods Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Findings Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. PMID:23867321

  14. Contribution of dfrA and inhA Mutations to the Detection of Isoniazid-Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Ho, Yu Min; Sun, Yong-Jiang; Wong, Sin-Yew; Lee, Ann S. G.

    2009-01-01

    Screening of 127 isoniazid (INH)-resistant Mycobacterium tuberculosis isolates from Singapore for mutations within the dfrA and inhA genes revealed mutations in 0 and 5 (3.9%) isolates respectively, implying that mutations in dfrA do not contribute to the detection of INH-resistant M. tuberculosis and that mutations within inhA are rare. Thirty-seven (29%) of the 127 isolates had no mutations in any of the genes implicated in INH resistance (katG, kasA, and ndh; inhA and ahpC promoters), suggesting that there are new INH targets yet to be discovered. PMID:19581462

  15. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Ho, Yu Min; Sun, Yong-Jiang; Wong, Sin-Yew; Lee, Ann S G

    2009-09-01

    Screening of 127 isoniazid (INH)-resistant Mycobacterium tuberculosis isolates from Singapore for mutations within the dfrA and inhA genes revealed mutations in 0 and 5 (3.9%) isolates respectively, implying that mutations in dfrA do not contribute to the detection of INH-resistant M. tuberculosis and that mutations within inhA are rare. Thirty-seven (29%) of the 127 isolates had no mutations in any of the genes implicated in INH resistance (katG, kasA, and ndh; inhA and ahpC promoters), suggesting that there are new INH targets yet to be discovered. PMID:19581462

  16. Meropenem-Clavulanate is Effective Against Extensive Drug-Resistant Mycobacterium Tuberculosis

    SciTech Connect

    Hugonnet, J.; Tremblay, L; Boshoff, H; Barry, C; Blanchard, J

    2009-01-01

    e-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of e-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the e-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the 'persistent' state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration-approved drugs and could potentially be used to treat patients with currently untreatable disease.

  17. Pyrosequencing for rapid detection of Mycobacterium tuberculosis second-line drugs and ethambutol resistance.

    PubMed

    Lacoma, Alicia; Molina-Moya, Barbara; Prat, Cristina; Pimkina, Edita; Diaz, Jessica; Dudnyk, Andriy; García-Sierra, Nerea; Haba, Lucía; Maldonado, Jose; Samper, Sofia; Ruiz-Manzano, Juan; Ausina, Vicente; Dominguez, Jose

    2015-11-01

    The aim of this work was to study the diagnostic accuracy of pyrosequencing to detect resistance to fluoroquinolones, kanamycin, amikacin, capreomycin, and ethambutol (EMB) in Mycobacterium tuberculosis clinical strains. One hundred four clinical isolates previously characterized by BACTEC 460TB/MGIT 960 were included. Specific mutations were targeted in gyrA, rrs, eis promoter, and embB. When there was a discordant result between BACTEC and pyrosequencing, Genotype MTBDRsl (Hain Lifescience, Nehren, Germany) was performed. Sensitivity and specificity of pyrosequencing were 70.6% and 100%, respectively, for fluoroquinolones; 93.3% and 81.7%, respectively, for kanamycin; 94.1% and 95.9%, respectively, for amikacin; 90.0% and 100%, respectively, for capreomycin; and 64.8% and 87.8%, respectively, for EMB. This study shows that pyrosequencing may be a useful tool for making early decisions regarding second-line drugs and EMB resistance. However, for a correct management of patients with suspected extensively drug-resistant tuberculosis, susceptibility results obtained by molecular methods should be confirmed by a phenotypic method. PMID:26256417

  18. Whole-Genome Sequence of a Beijing Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Buenaventura, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) has been reported to the WHO by 100 countries, including Colombia. An estimated 9.0% of people with multidrug-resistant TB have XDR-TB. We report the genome sequence of a Beijing XDR-TB clinical isolate from Buenaventura, Colombia. The genome sequence is composed of 4,298,162 bp with 4,359 genes. PMID:26769935

  19. Whole-Genome Sequence of a Beijing Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Buenaventura, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) has been reported to the WHO by 100 countries, including Colombia. An estimated 9.0% of people with multidrug-resistant TB have XDR-TB. We report the genome sequence of a Beijing XDR-TB clinical isolate from Buenaventura, Colombia. The genome sequence is composed of 4,298,162 bp with 4,359 genes. PMID:26769935

  20. Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice

    PubMed Central

    Darby, Crystal M.; Venugopal, Aditya; Ehrt, Sabine; Nathan, Carl F.

    2011-01-01

    Summary The gene Rv2136c is annotated to encode the Mycobacterium tuberculosis (Mtb) homologue of Escherichia coli’s undecaprenyl pyrophosphate phosphatase. In previous work, a genetic screen of 10,100 Mtb transposon mutants identified Rv2136c as being involved in acid resistance in Mtb. The Rv2136c:Tn strain was also sensitive to sodium dodecyl sulfate, lipophilic antibiotics, elevated temperature and reactive oxygen and nitrogen intermediates and was attenuated for growth and persistence in mice. However, none of these phenotypes could be genetically complemented, leading us to generate an Rv2136c knockout strain to test its role in Mtb pathogenicity. Genetic deletion revealed that Rv2136c is not responsible for any of the phenotypes observed in the transposon mutant strain. An independent genomic mutation is likely to have accounted for the extreme attenuation of this strain. Identification of the mutated gene will further our understanding of acid resistance mechanisms in Mtb and may offer a target for anti-tuberculosis chemotherapy. PMID:21778115

  1. Novel mutation detection IN rpoB OF rifampicin-resistant Mycobacterium Tuberculosis using pyroseouencing.

    PubMed

    Htike Min, Pyar Kyi; Pitaksajjakul, Pannamthip; Tipkrua, Natthakan; Wongwit, Waranya; Jintaridh, Pornrutsami; Ramasoota, Pongrama

    2014-07-01

    Tuberculosis (TB) remains a major global public health problem particularly severe in parts of Asia and Africa, where often it is present in HIV-AIDS patients. Although rifampicin-resistant (RIFr) TB is slow to emerge due to the low rate of mutation of its target leading to RIFE being a marker of TB that is already resistant to other anti-TB drugs, and such cases are prone to treatment failure. More than 95% of rifampicin resistance is associated with mutations in Mycobacterium tuberculosis (MTB) rpoB, with 97% of mutations occurring within the 81 bp rifampicin-resistant determining region (RRDR) of this gene. In this study, we employed pyrosequencing technique to identify mutations in RRDR and 5 codons beyond of 39 MTB strains, comprising of 14 multi-drug resistance TB (MDRTB) and 3 RIF susceptible (RIFs) MTB from the Center of Disease Control (CDC), Ratchaburi Province, and 19 mono RIFr MTB, 1 MDRTB and 2 poly-drug resistant MTB from the Chest Institute, Ministry of Public Health, Thailand. Mu- tations in 8/22 samples from the Chest Institute and 13/14 from CDC were able to be identified. Six point mutations were detected, with Ser531Leu mutation accounting for 13, the silent mutation at Gly536 for 4, deletion of Gly523 for 2, combination of His526Cys and novel Leu533Arg for 1, and a novel Leu538Arg for 1. Mutation analysis of the 81 bp fragment and 5 codons beyond in MTB rpoB using pyrosequencing provides a useful approach in predicting RIFr phenotype allowing early diagnosis and appropriate drug therapy. PMID:25507602

  2. Novel mutation detection IN rpoB OF rifampicin-resistant Mycobacterium tuberculosis using pyrosequencing.

    PubMed

    Htike Min, Pyar Kyi; Pitaksajjakul, Pannamthip; Tipkrua, Natthakan; Wongwit, Waranya; Jintaridh, Pornrutsami; Ramasoota, Pongrama

    2014-07-01

    Tuberculosis (TB) remains a major global public health problem particularly severe in parts of Asia and Africa, where often it is present in HIV-AIDS patients. Although rifampicin-resistant (RIFr) TB is slow to emerge due to the low rate of mutation of its target leading to RIFE being a marker of TB that is already resistant to other anti-TB drugs, and such cases are prone to treatment failure. More than 95% of rifampicin resistance is associated with mutations in Mycobacterium tuberculosis (MTB) rpoB, with 97% of mutations occurring within the 81 bp rifampicin-resistant determining region (RRDR) of this gene. In this study, we employed pyrosequencing technique to identify mutations in RRDR and 5 codons beyond of 39 MTB strains, comprising of 14 multi-drug resistance TB (MDRTB) and 3 RIF susceptible (RIFs) MTB from the Center of Disease Control (CDC), Ratchaburi Province, and 19 mono RIFr MTB, 1 MDRTB and 2 poly-drug resistant MTB from the Chest Institute, Ministry of Public Health, Thailand. Mu- tations in 8/22 samples from the Chest Institute and 13/14 from CDC were able to be identified. Six point mutations were detected, with Ser531Leu mutation accounting for 13, the silent mutation at Gly536 for 4, deletion of Gly523 for 2, combination of His526Cys and novel Leu533Arg for 1, and a novel Leu538Arg for 1. Mutation analysis of the 81 bp fragment and 5 codons beyond in MTB rpoB using pyrosequencing provides a useful approach in predicting RIFr phenotype allowing early diagnosis and appropriate drug therapy. PMID:25427352

  3. Evidence of Clonal Expansion in the Genome of a Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolate from Peru.

    PubMed

    Galarza, M; Tarazona, D; Borda, V; Agapito, J C; Guio, H

    2014-01-01

    We report the genome sequence of Mycobacterium tuberculosis INS-MDR from Peru, a multidrug-resistant tuberculosis (MDR-TB) and Latin American-Mediterranean (LAM) lineage strain. Our analysis showed mutations related to drug resistance in the rpoB (D516V), katG (S315T), kasA (G269S), and pncA (Q10R) genes. Our evidence suggests that INS-MDR may be a clonal expansion related to the African strain KZN 1435. PMID:24578270

  4. Detecting Novel Genetic Variants Associated with Isoniazid-Resistant Mycobacterium tuberculosis

    PubMed Central

    Chan, Maurice K. L.; Ong, Danny C. T.; Tongyoo, Pumipat; Wong, Sin-Yew; Lee, Ann S. G.

    2014-01-01

    Background Isoniazid (INH) is a highly effective antibiotic central for the treatment of Mycobacterium tuberculosis (MTB). INH-resistant MTB clinical isolates are frequently mutated in the katG gene and the inhA promoter region, but 10 to 37% of INH-resistant clinical isolates have no detectable alterations in currently known gene targets associated with INH-resistance. We aimed to identify novel genes associated with INH-resistance in these latter isolates. Methodology/Principal Findings INH-resistant clinical isolates of MTB were pre-screened for mutations in the katG, inhA, kasA and ndh genes and the regulatory regions of inhA and ahpC. Twelve INH-resistant isolates with no mutations, and 17 INH-susceptible MTB isolates were subjected to whole genome sequencing. Phylogenetically related variants and synonymous mutations were excluded and further analysis revealed mutations in 60 genes and 4 intergenic regions associated with INH-resistance. Sanger sequencing verification of 45 genes confirmed that mutations in 40 genes were observed only in INH-resistant isolates and not in INH-susceptible isolates. The ratios of non-synonymous to synonymous mutations (dN/dS ratio) for the INH-resistance associated mutations identified in this study were 1.234 for INH-resistant and 0.654 for INH-susceptible isolates, strongly suggesting that these mutations are indeed associated with INH-resistance. Conclusion The discovery of novel targets associated with INH-resistance described in this study may potentially be important for the development of improved molecular detection strategies. PMID:25025225

  5. Binding Pocket Alterations in Dihydrofolate Synthase Confer Resistance to para-Aminosalicylic Acid in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Zhao, Fei; Wang, Xu-De; Erber, Luke N.; Luo, Ming; Guo, Ai-zhen; Yang, Shan-shan; Gu, Jing; Turman, Breanna J.; Gao, Yun-rong; Li, Dong-fang; Cui, Zong-qiang; Zhang, Zhi-ping; Bi, Li-jun; Baughn, Anthony D.

    2014-01-01

    The mechanistic basis for the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursor para-aminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance in M. tuberculosis strain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates of M. tuberculosis and Mycobacterium bovis. From a panel of 85 multidrug-resistant M. tuberculosis clinical isolates, 5 were found to harbor mutations in the folC gene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy of folC fully restored PAS susceptibility in folC mutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics for M. tuberculosis clinical isolates and for further defining the mode of action of this important tuberculosis drug. PMID:24366731

  6. Broad-range PCR coupled with mass-spectrometry for the detection of Mycobacterium tuberculosis drug resistance

    PubMed Central

    Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana

    2016-01-01

    Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827

  7. Characterization of the Genetic Diversity of Extensively-Drug Resistant Mycobacterium tuberculosis Clinical Isolates from Pulmonary Tuberculosis Patients in Peru

    PubMed Central

    Cáceres, Omar; Rastogi, Nalin; Bartra, Carlos; Couvin, David; Galarza, Marco; Asencios, Luis; Mendoza-Ticona, Alberto

    2014-01-01

    Background Peru holds the fourth highest burden of tuberculosis in the Americas. Despite an apparently well-functioning DOTS control program, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase. To worsen this situation, cases of extensively drug resistance tuberculosis (XDR-TB) have been detected. Little information exists about the genetic diversity of drug-susceptible vs. MDR-TB and XDR-TB. Methods Cryopreserved samples of XDR strains from 2007 to 2009 (second semester), were identified and collected. Starting from 227 frozen samples, a total of 142 XDR-TB strains of Mycobacterium tuberculosis complex (MTBC; 1 isolate per patient) were retained for this study. Each strain DNA was analyzed by spoligotyping and the 15-loci Mycobacterial Interspersed Repetitive Unit (MIRU-15). Results Among the 142 isolates analyzed, only 2 samples (1.41%) could not be matched to any lineage. The most prevalent sublineage was Haarlem (43.66%), followed by T (27.46%), LAM (16.2%), Beijing (9.15%), and X clade (1.41%). Spoligotype analysis identified clustering for 128/142 (90.1%) isolates vs. 49/142 (34.5%) with MIRUs. Of the samples, 90.85% belonged to retreated patients. The drug resistant profile demonstrated that 62.67% showed resistance to injectable drugs capreomycin (CAP) and kanamycin (KAN) vs. 15.5% to CAP alone and 21.8% to KAN alone. The SIT219/T1 and SIT50/H3 were the most prevalent patterns in our study. The spoligoforest analysis showed that SIT53/T1 was at the origin of many of the T lineage strains as well as a big proportion of Haarlem lineage strains (SIT50/H3, followed by SIT47/H1, SIT49/H3, and SIT2375/H1), as opposed to the SIT1/Beijing strains that did not appear to evolve into minor Beijing sublineages among the XDR-TB strains. Conclusion In contrast with other Latin-American countries where LAM sublineage is the most predominant, we found the Haarlem to be the most common followed by T sublineage among the XDR-TB strains. PMID

  8. Molecular analysis of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.

    PubMed

    Nusrath Unissa, A; Selvakumar, N; Narayanan, Sujatha; Narayanan, P R

    2008-01-01

    The presence of mutations in specific regions of katG, inhA, oxyR-ahpC and kasA associated with isoniazid (INH)-resistant clinical isolates of Mycobacterium tuberculosis from India were analysed by DNA sequencing. Point mutations in the katG gene at codon 315 and a mutation at codon 138 were detected in 64.3% (45/70) and 4% (1/25) of isolates, respectively. Polymorphisms at codon 463 of the katG gene were found both in resistant and sensitive isolates. Mutation at the inhA and oxyR-ahpC promoter regions occurred in 11.4% (8/70) and 35.0% (14/40) of the isolates, respectively. No mutation was found to occur in kasA and inhA structural gene regions. Of the 70 resistant isolates studied, 55 (78.6%) showed mutation in the regions sequenced. This is the first comprehensive molecular analysis of INH resistance in India, which suggests that point mutation rather than deletion and insertion is the major cause of INH resistance. PMID:18006278

  9. Compensatory Mutations of Rifampin Resistance Are Associated with Transmission of Multidrug-Resistant Mycobacterium tuberculosis Beijing Genotype Strains in China.

    PubMed

    Li, Qin-Jing; Jiao, Wei-Wei; Yin, Qing-Qin; Xu, Fang; Li, Jie-Qiong; Sun, Lin; Xiao, Jing; Li, Ying-Jia; Mokrousov, Igor; Huang, Hai-Rong; Shen, A-Dong

    2016-05-01

    Mycobacterium tuberculosis can acquire resistance to rifampin (RIF) through mutations in the rpoB gene. This is usually accompanied by a fitness cost, which, however, can be mitigated by secondary mutations in the rpoA or rpoC gene. This study aimed to identify rpoA and rpoC mutations in clinical M. tuberculosis isolates in northern China in order to clarify their role in the transmission of drug-resistant tuberculosis (TB). The study collection included 332 RIF-resistant and 178 RIF-susceptible isolates. The majority of isolates belonged to the Beijing genotype (95.3%, 486/510 isolates), and no mutation was found in rpoA or rpoC of the non-Beijing genotype strains. Among the Beijing genotype strains, 27.8% (89/320) of RIF-resistant isolates harbored nonsynonymous mutations in the rpoA (n = 6) or rpoC (n = 83) gene. The proportion of rpoC mutations was significantly higher in new cases (P = 0.023) and in strains with the rpoB S531L mutation (P < 0.001). In addition, multidrug-resistant (MDR) strains with rpoC mutations were significantly associated with 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat clustering (P = 0.016). In summary, we believe that these findings indirectly suggest an epistatic interaction of particular mutations related to RIF resistance and strain fitness and, consequently, the role of such mutations in the spread of MDR M. tuberculosis strains. PMID:26902762

  10. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China.

    PubMed

    Zhang, Min; Yue, Jun; Yang, Yan-Ping; Zhang, Hong-Mei; Lei, Jian-Qiang; Jin, Rui-Liang; Zhang, Xue-Lian; Wang, Hong-Hai

    2005-11-01

    Nine structural genes (furA, katG, inhA, kasA, Rv0340, iniB, iniA, iniC, and efpA) and two regulatory regions (the oxyR-ahpC intergenic region and the promoter of mabA-inhA) in 87 isoniazid (INH)-monoresistant and 50 INH-susceptible Mycobacterium tuberculosis isolates collected from five provinces of China were analyzed by sequencing. Eighty-two (94.3%) INH-resistant isolates had mutations in the katG gene, with the katG Ser315Thr mutation predominant (55.2%). No mutation at codon 463 of katG was detected among the 50 INH-susceptible isolates with different IS6110 fingerprints. In addition, there were 35 (40.2%) INH-resistant isolates that had a mutation at codon 463 of katG. Of the INH-resistant strains, 20 (23.0%) isolates harbored double mutations at two separate loci of katG. Mutations in the inhA promoter region occurred in 13 (14.9%) isolates; 4.6% of the isolates had inhA structural gene mutations, and 11.5% harbored mutations in the oxyR-ahpC intergenic region. Drug resistance-associated mutations were detected in the iniBAC region and efpA. PMID:16272473

  11. Genomic Stability over 9 Years of an Isoniazid Resistant Mycobacterium tuberculosis Outbreak Strain in Sweden

    PubMed Central

    Sandegren, Linus; Groenheit, Ramona; Koivula, Tuija; Ghebremichael, Solomon; Advani, Abdolreza; Castro, Elsie; Pennhag, Alexandra; Hoffner, Sven; Mazurek, Jolanta; Pawlowski, Andrzej; Kan, Boris; Bruchfeld, Judith; Melefors, Öjar; Källenius, Gunilla

    2011-01-01

    In molecular epidemiological studies of drug resistant Mycobacterium tuberculosis (TB) in Sweden a large outbreak of an isoniazid resistant strain was identified, involving 115 patients, mainly from the Horn of Africa. During the outbreak period, the genomic pattern of the outbreak strain has stayed virtually unchanged with regard to drug resistance, IS6110 restriction fragment length polymorphism and spoligotyping patterns. Here we present the complete genome sequence analyses of the index isolate and two isolates sampled nine years after the index case as well as experimental data on the virulence of this outbreak strain. Even though the strain has been present in the community for nine years and passaged between patients at least five times in-between the isolates, we only found four single nucleotide polymorphisms in one of the later isolates and a small (4 amino acids) deletion in the other compared to the index isolate. In contrast to many other evolutionarily successful outbreak lineages (e.g. the Beijing lineage) this outbreak strain appears to be genetically very stable yet evolutionarily successful in a low endemic country such as Sweden. These findings further illustrate that the rate of genomic variation in TB can be highly strain dependent, something that can have important implications for epidemiological studies as well as development of resistance. PMID:21304944

  12. An Altered Mycobacterium tuberculosis Metabolome Induced by katG Mutations Resulting in Isoniazid Resistance

    PubMed Central

    2014-01-01

    The most common form of drug resistance found in tuberculosis (TB)-positive clinical samples is monoresistance to isoniazid. Various genomics and proteomics studies to date have investigated this phenomenon; however, the exact mechanisms relating to how this occurs, as well as the implications of this on the TB-causing organisms function and structure, are only partly understood. Considering this, we followed a metabolomics research approach to identify potential new metabolic pathways and metabolite markers, which when interpreted in context would give a holistic explanation for many of the phenotypic characteristics associated with a katG mutation and the resulting isoniazid resistance in Mycobacterium tuberculosis. In order to achieve these objectives, gas chromatography-time of flight mass spectrometry (GCxGC-TOFMS)-generated metabolite profiles from two isoniazid-resistant strains were compared to a wild-type parent strain. Principal component analyses showed clear differentiation between the groups, and the metabolites best describing the separation between these groups were identified. It is clear from the data that due to a mutation in the katG gene encoding catalase, the isoniazid-resistant strains experience increased susceptibility to oxidative stress and have consequently adapted to this by upregulating the synthesis of a number of compounds involved in (i) increased uptake and use of alkanes and fatty acids as a source of carbon and energy and (ii) the synthesis of a number of compounds directly involved in reducing oxidative stress, including an ascorbic acid degradation pathway, which to date hasn't been proposed to exist in these organisms. PMID:24468786

  13. Potential of Rapid Diagnosis for Controlling Drug-Susceptible and Drug-Resistant Tuberculosis in Communities Where Mycobacterium tuberculosis Infections Are Highly Prevalent ▿

    PubMed Central

    Uys, Pieter W.; Warren, Robin; van Helden, Paul D.; Murray, Megan; Victor, Thomas C.

    2009-01-01

    The long-term persistence of Mycobacterium tuberculosis in communities with high tuberculosis prevalence is a serious problem aggravated by the presence of drug-resistant tuberculosis strains. Drug resistance in an individual patient is often discovered only after a long delay, particularly if the diagnosis is based on current culture-based drug sensitivity testing methods. During such delays, the patient may transmit tuberculosis to his or her contacts. Rapid diagnosis of drug resistance would be expected to reduce this transmission and hence to decrease the prevalence of drug-resistant strains. To investigate this quantitatively, a mathematical model was constructed, assuming a homogeneous population structure typical of communities in South Africa where tuberculosis incidence is high. Computer simulations performed with this model showed that current control strategies will not halt the spread of multidrug-resistant tuberculosis in such communities. The simulations showed that the rapid diagnosis of drug resistance can be expected to reduce the incidence of drug-resistant cases provided the additional measure of screening within the community is implemented. PMID:19297604

  14. Potential of rapid diagnosis for controlling drug-susceptible and drug-resistant tuberculosis in communities where Mycobacterium tuberculosis infections are highly prevalent.

    PubMed

    Uys, Pieter W; Warren, Robin; van Helden, Paul D; Murray, Megan; Victor, Thomas C

    2009-05-01

    The long-term persistence of Mycobacterium tuberculosis in communities with high tuberculosis prevalence is a serious problem aggravated by the presence of drug-resistant tuberculosis strains. Drug resistance in an individual patient is often discovered only after a long delay, particularly if the diagnosis is based on current culture-based drug sensitivity testing methods. During such delays, the patient may transmit tuberculosis to his or her contacts. Rapid diagnosis of drug resistance would be expected to reduce this transmission and hence to decrease the prevalence of drug-resistant strains. To investigate this quantitatively, a mathematical model was constructed, assuming a homogeneous population structure typical of communities in South Africa where tuberculosis incidence is high. Computer simulations performed with this model showed that current control strategies will not halt the spread of multidrug-resistant tuberculosis in such communities. The simulations showed that the rapid diagnosis of drug resistance can be expected to reduce the incidence of drug-resistant cases provided the additional measure of screening within the community is implemented. PMID:19297604

  15. Screening and Characterization of Mutations in Isoniazid-Resistant Mycobacterium tuberculosis Isolates Obtained in Brazil

    PubMed Central

    Cardoso, Rosilene Fressatti; Cooksey, Robert C.; Morlock, Glenn P.; Barco, Patricia; Cecon, Leticia; Forestiero, Francisco; Leite, Clarice Q. F.; Sato, Daisy N.; Shikama, Maria de Lourdes; Mamizuka, Elsa M.; Hirata, Rosario D. C.; Hirata, Mario H.

    2004-01-01

    We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Paraná. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide −48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G269A substitution. Although KatG315 substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance. PMID:15328099

  16. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil.

    PubMed

    Cardoso, Rosilene Fressatti; Cooksey, Robert C; Morlock, Glenn P; Barco, Patricia; Cecon, Leticia; Forestiero, Francisco; Leite, Clarice Q F; Sato, Daisy N; Shikama, Maria de Lourdes; Mamizuka, Elsa M; Hirata, Rosario D C; Hirata, Mario H

    2004-09-01

    We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Paraná. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide -48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G(269)A substitution. Although KatG(315) substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance. PMID:15328099

  17. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis.

    PubMed

    Warrier, Thulasi; Kapilashrami, Kanishk; Argyrou, Argyrides; Ioerger, Thomas R; Little, David; Murphy, Kenan C; Nandakumar, Madhumitha; Park, Suna; Gold, Ben; Mi, Jianjie; Zhang, Tuo; Meiler, Eugenia; Rees, Mike; Somersan-Karakaya, Selin; Porras-De Francisco, Esther; Martinez-Hoyos, Maria; Burns-Huang, Kristin; Roberts, Julia; Ling, Yan; Rhee, Kyu Y; Mendoza-Losana, Alfonso; Luo, Minkui; Nathan, Carl F

    2016-08-01

    The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR. PMID:27432954

  18. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis

    PubMed Central

    Warrier, Thulasi; Kapilashrami, Kanishk; Ioerger, Thomas R.; Little, David; Murphy, Kenan C.; Nandakumar, Madhumitha; Park, Suna; Gold, Ben; Mi, Jianjie; Zhang, Tuo; Meiler, Eugenia; Rees, Mike; Somersan-Karakaya, Selin; Porras-De Francisco, Esther; Martinez-Hoyos, Maria; Burns-Huang, Kristin; Roberts, Julia; Ling, Yan; Rhee, Kyu Y.; Mendoza-Losana, Alfonso; Luo, Minkui; Nathan, Carl F.

    2016-01-01

    The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-β-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR. PMID:27432954

  19. Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis: A Systematic Review

    PubMed Central

    Seifert, Marva; Catanzaro, Donald; Catanzaro, Antonino; Rodwell, Timothy C.

    2015-01-01

    Background Tuberculosis (TB) incidence and mortality are declining worldwide; however, poor detection of drug-resistant disease threatens to reverse current progress toward global TB control. Multiple, rapid molecular diagnostic tests have recently been developed to detect genetic mutations in Mycobacterium tuberculosis (Mtb) genes known to confer first-line drug resistance. Their utility, though, depends on the frequency and distribution of the resistance associated mutations in the pathogen population. Mutations associated with rifampicin resistance, one of the two first-line drugs, are well understood and appear to occur in a single gene region in >95% of phenotypically resistant isolates. Mutations associated with isoniazid, the other first-line drug, are more complex and occur in multiple Mtb genes. Objectives/Methodology A systematic review of all published studies from January 2000 through August 2013 was conducted to quantify the frequency of the most common mutations associated with isoniazid resistance, to describe the frequency at which these mutations co-occur, and to identify the regional differences in the distribution of these mutations. Mutation data from 118 publications were extracted and analyzed for 11,411 Mtb isolates from 49 countries. Principal Findings/Conclusions Globally, 64% of all observed phenotypic isoniazid resistance was associated with the katG315 mutation. The second most frequently observed mutation, inhA-15, was reported among 19% of phenotypically resistant isolates. These two mutations, katG315 and inhA-15, combined with ten of the most commonly occurring mutations in the inhA promoter and the ahpC-oxyR intergenic region explain 84% of global phenotypic isoniazid resistance. Regional variation in the frequency of individual mutations may limit the sensitivity of molecular diagnostic tests. Well-designed systematic surveys and whole genome sequencing are needed to identify mutation frequencies in geographic regions where rapid

  20. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.

    PubMed

    Ramaswamy, S; Musser, J M

    1998-01-01

    Knowledge of the molecular genetic basis of resistance to antituberculous agents has advanced rapidly since we reviewed this topic 3 years ago. Virtually all isolates resistant to rifampin and related rifamycins have a mutation that alters the sequence of a 27-amino-acid region of the beta subunit of ribonucleic acid (RNA) polymerase. Resistance to isoniazid (INH) is more complex. Many resistant organisms have mutations in the katG gene encoding catalase-peroxidase that result in altered enzyme structure. These structural changes apparently result in decreased conversion of INH to a biologically active form. Some INH-resistant organisms also have mutations in the inhA locus or a recently characterized gene (kasA) encoding a beta-ketoacyl-acyl carrier protein synthase. Streptomycin resistance is due mainly to mutations in the 16S rRNA gene or the rpsL gene encoding ribosomal protein S12. Resistance to pyrazinamide in the great majority of organisms is caused by mutations in the gene (pncA) encoding pyrazinamidase that result in diminished enzyme activity. Ethambutol resistance in approximately 60% of organisms is due to amino acid replacements at position 306 of an arabinosyltransferase encoded by the embB gene. Amino acid changes in the A subunit of deoxyribonucleic acid gyrase cause fluoroquinolone resistance in most organisms. Kanamycin resistance is due to nucleotide substitutions in the rrs gene encoding 16S rRNA. Multidrug resistant strains arise by sequential accumulation of resistance mutations for individual drugs. Limited evidence exists indicating that some drug resistant strains with mutations that severely alter catalase-peroxidase activity are less virulent in animal models. A diverse array of strategies is available to assist in rapid detection of drug resistance-associated gene mutations. Although remarkable advances have been made, much remains to be learned about the molecular genetic basis of drug resistance in Mycobacterium tuberculosis. It is

  1. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2007. A report of the Australian Mycobacterium Reference Laboratory Network.

    PubMed

    Lumb, Richard; Bastion, Ivan; Carter, Robyn; Jelfs, Peter; Keehner, Terillee; Sievers, Aina

    2009-09-01

    The Australian Mycobacterium Reference Laboratory Network collects and analyses laboratory data on new cases of disease caused by the Mycobacterium tuberculosis complex. In 2007, a total of 872 cases were identified by bacteriology; an annual reporting rate of 4.1 cases per 100,000 population. Isolates were identified as M. tuberculosis (n=867), M. africanum (n=4) and M. bovis (n=1). Fifteen children aged under 10 years had bacteriologically-confirmed tuberculosis. Results of in vitro drug susceptibility testing were available for 871 of 872 isolates for isoniazid (H), rifampicin (R), ethambutol (E), and pyrazinamide (Z). A total of 98 (11.3%) isolates of M. tuberculosis were resistant to at least one of these anti-tuberculosis agents. Resistance to at least H and R (defined as multi-drug resistance, MDR) was detected in 24 (2.8%) isolates, all from overseas-born patients; 17 were from the respiratory tract (sputum n=16, endotracheal aspirate n=1). Thirteen patients with MDR-TB were from the Papua New Guinea-Torres Strait Islands zone. Of the 98 M. tuberculosis isolates resistant to at least one of the standard drugs, 54 (55.1%) were from new cases, 9 (9.2%) from previously treated cases, and no information was available on the remaining 35 cases. Seven were Australian-born, 90 were overseas- born, and the country of birth of 1 was unknown. Of the 90 overseas-born persons with drug resistant disease, 66 (73.3%) were from 5 countries: India (n=16); Papua New Guinea (n=15); the Philippines (n=12); Vietnam (n=12); and China (n=11). No XDR-TB was detected in 2007. PMID:20043600

  2. Mutations Prevalent among Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Isolates from a Hospital in Vietnam

    PubMed Central

    Caws, M.; Duy, Phan Minh; Tho, Dau Quang; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Farrar, Jeremy

    2006-01-01

    Vietnam is ranked 13th among the WHO list of 22 high-burden countries, based upon estimated total number of tuberculosis cases. Despite having a model national tuberculosis program, consistently achieving and exceeding WHO targets for detection and cure, drug-resistant and multidrug-resistant tuberculosis cases continue to rise. Rapid multidrug-resistant tests applicable in this setting, coupled with effective treatment regimens, would be a useful tool in reversing this trend, allowing early identification of patients with multidrug-resistant tuberculosis and avoiding resistance-amplifying regimens. Sequencing of consecutive isolates identified by the National Tuberculosis Program showed 89% of isoniazid-resistant isolates could be detected by targeting just 2 codons, katG 315 and −15C→T in the inhA promoter, while rifampin resistance will be more complex to detect, with many different mutation and insertion events in rpoB. The most prevalent rifampin resistance-conferring mutations, as in other countries, were in rpoB codons 531 (43%), 526 (31%), and 516 (15%). However, a hybridization-based resistance test with probes targeting the 5 most common mutations would only detect 78% of rifampin-resistant isolates. Overall, these data suggest that rifampin resistance may be used as a surrogate marker for multidrug-resistant tuberculosis and that a sensitivity of between 70 to 80% may be possible for rapid molecular detection of multidrug-resistant tuberculosis in this setting. PMID:16825345

  3. Fitness of drug resistant Mycobacterium tuberculosis and the impact on the transmission among household contacts.

    PubMed

    Morcillo, Nora S; Imperiale, Belén R; Di Giulio, Ángela; Zumárraga, Martín J; Takiff, Howard; Cataldi, Ángel A

    2014-12-01

    There has been an on-going debate on whether the development of drug resistance in Mycobacterium tuberculosis reduces its relative fitness and its ability to cause disease. The aim of this study was to explore this relationship. For this purpose, we evaluated the in vitro growth of clinical isolates and the transmission of the strains within the patients' households. Clinical and epidemiological data from patients in households, drug-susceptibility and genetic patterns of the isolates were collected. BACTEC MGIT 960™ system with the Epicenter™ software was used to perform fitness experiments and calculate the relative fitness (RF) comparing with the H73Rv reference strain. From 39 households, 124 patients and 388 contacts were included. Concerning transmission, 20 Multi drug-resistant (MDR) and 16 drug sensitive (DS) index cases generated 23 and 28 secondary cases, respectively. An average RF drop of 16.7% was found for MDR strains, but only mutations in rpoB codons 531 were associated with reduced fitness. When the strains were transmitted, their RF tended to decrease, and strains with low RF were less frequently transmitted. Within the limitations of this study, the results showed that the decrease in RF was associated to a limited transmission among the households' contacts. PMID:25306497

  4. [Infection caused by Mycobacterium tuberculosis with primary resistance to multiple drugs: a case report of a patient with AIDS].

    PubMed

    Grinbaum, R S; Daher, M; Medeiros, E A; de Mendonça, J S; Beu, M F; Kusano, E; Telles, M A; Ueki, S Y

    1995-01-01

    Primary multidrug-resistant Mycobacterium tuberculosis is an important problem in the United States. There is no report in formal literature of this pathogen in Brazilian patients. CASE REPORT--We report a case of ganglionar tuberculosis diagnosed by acid-fast smears in a male, HIV positive patient. Mode of acquisition of HIV was not determined. Treatment was started, and isoniazid, rifampicin and pyrazinamide were prescribed. The patient and his family reported strict adherence to therapy, but no improvement was observed. After 75 days, the patient was admitted in our hospital because of clinical worsening. Clinical features were the presence of large submandibular and axillar lymph nodes, respiratory insufficiency and complains of abdominal pain. He died six days after admission. Culture obtained from the ganglionar aspirate disclosed M. tuberculosis susceptible to ethambutol, but resistant to isoniazid, rifampicin, pyrazinamide, ethionamide and streptomycin. DISCUSSION--Although this was a case of extrapulmonary tuberculosis, there is a concern about multidrug-resistant tuberculosis, that has been poorly evaluated in Brazil. Since high lethality and intrahospital transmission have been reported, we discuss the need of performing culture and antibiogram in suspected cases, and the prevention of the spread of M. tuberculosis to patients and health-care workers through the strict adherence to the isolation practices. PMID:8574241

  5. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    PubMed Central

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  6. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system

    PubMed Central

    Maruri, Fernanda; Sterling, Timothy R.; Kaiga, Anne W.; Blackman, Amondrea; van der Heijden, Yuri F.; Mayer, Claudine; Cambau, Emmanuelle; Aubry, Alexandra

    2012-01-01

    Fluoroquinolone resistance in Mycobacterium tuberculosis has become increasingly important. A review of mutations in DNA gyrase, the fluoroquinolone target, is needed to improve the molecular detection of resistance. We performed a systematic review of studies reporting mutations in DNA gyrase genes in clinical M. tuberculosis isolates. From 42 studies that met inclusion criteria, 1220 fluoroquinolone-resistant M. tuberculosis isolates underwent sequencing of the quinolone resistance-determining region (QRDR) of gyrA; 780 (64%) had mutations. The QRDR of gyrB was sequenced in 534 resistant isolates; 17 (3%) had mutations. Mutations at gyrA codons 90, 91 or 94 were present in 654/1220 (54%) resistant isolates. Four different GyrB numbering systems were reported, resulting in mutation location discrepancies. We propose a consensus numbering system. Most fluoroquinolone-resistant M. tuberculosis isolates had mutations in DNA gyrase, but a substantial proportion did not. The proposed consensus numbering system can improve molecular detection of resistance and identification of novel mutations. PMID:22279180

  7. Drug resistant strains of Mycobacterium tuberculosis identified through PCR-RFLP from patients of Central Punjab, Pakistan.

    PubMed

    Riaz, Muhammad; Mahmood, Zahed; Javed, Muhammad Tariq; Javed, Irum; Shahid, Muhammad; Abbas, Mazhar; Ehtisham-Ul-Haque, Syed

    2016-09-01

    The study was carried out to determine, by PCR-RFLP, the magnitude of drug resistance in Mycobacterium tuberculosis The study was carried out on 221 random sputum samples collected from patients and 120 suspected cases of drug resistance. Genetic variation in drug-resistant strains was evaluated through PCR-RFLP for isoniazid, ethambutol, streptomycin, and ofloxacin. Out of 341 patients, 91.5% were confirmed as M. tuberculosis complex infected on the basis of PCR. The random samples revealed resistance in 8.2% cases, while 73.3% of those with suspected drug resistance were found resistant. Among drug-resistant isolates, 56.1% were resistant to a single drug, 33.3% to two drugs, and 10.6% to more than two drugs. Ofloxacin resistance was observed along with isoniazid, ethambutol, and streptomycin in 6.5% cases. Resistance to isoniazid was observed in 61% cases, to ethambutol in 50.4%, and to streptomycin in 43.1% cases. It was concluded that PCR-RFLP is a useful molecular technique for the rapid detection of mutations in drug-resistant tuberculosis patients and may be used to diagnose drug resistance at the earliest. PMID:27069023

  8. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis

    PubMed Central

    Nebenzahl-Guimaraes, Hanna; Jacobson, Karen R.; Farhat, Maha R.; Murray, Megan B.

    2014-01-01

    Background Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype. Methods We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. Results We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. Conclusions This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance. PMID:24055765

  9. In-house phage amplification assay is a sound alternative for detecting rifampin-resistant Mycobacterium tuberculosis in low-resource settings.

    PubMed

    Símboli, Norberto; Takiff, Howard; McNerney, Ruth; López, Beatriz; Martin, Anandi; Palomino, Juan Carlos; Barrera, Lucía; Ritacco, Viviana

    2005-01-01

    An in-house mycobacteriophage amplification assay for detecting rifampin-resistant Mycobacterium tuberculosis showed 100% sensitivity, 97.7% specificity, and 95.2% predictive value for resistance in a test of 129 isolates from a hot spot area of multidrug-resistant M. tuberculosis. The applicability of the test was demonstrated in the routine work flow of a low-resource reference laboratory. PMID:15616326

  10. In-House Phage Amplification Assay Is a Sound Alternative for Detecting Rifampin-Resistant Mycobacterium tuberculosis in Low-Resource Settings

    PubMed Central

    Símboli, Norberto; Takiff, Howard; McNerney, Ruth; López, Beatriz; Martin, Anandi; Palomino, Juan Carlos; Barrera, Lucía; Ritacco, Viviana

    2005-01-01

    An in-house mycobacteriophage amplification assay for detecting rifampin-resistant Mycobacterium tuberculosis showed 100% sensitivity, 97.7% specificity, and 95.2% predictive value for resistance in a test of 129 isolates from a hot spot area of multidrug-resistant M. tuberculosis. The applicability of the test was demonstrated in the routine work flow of a low-resource reference laboratory. PMID:15616326

  11. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Brossier, F; Veziris, N; Truffot-Pernot, C; Jarlier, V; Sougakoff, W

    2011-01-01

    Ethionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active against Mycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded by ndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETH(r)) isolates, 24 ETH-susceptible (ETH(s)) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETH(Sip); defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETH(r) isolates, we found mutations in ethA, ethR, or inhA or its promoter, which mostly corresponded to new alterations in ethA and ethR. The 9 ETH(r) isolates without a mutation in these three genes (9/47, 19%) had no mutation in ndh, and a single isolate had a mutation in mshA. Of the 16 ETH(Sip) isolates, 7 had a mutation in ethA, 8 had no detectable mutation, and 1 had a mutation in mshA. Finally, of the 24 ETH(s) isolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in the inhA promoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETH(r) isolates, highlighting the complexity of the mechanisms of ETH resistance in M. tuberculosis. PMID:20974869

  12. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2000: report of the Australian Mycobacterium Laboratory Reference Network.

    PubMed

    Lumb, Richard; Bastian, Ivan; Dawson, David; Gilpin, Chris; Havekort, Frank; Howard, Peter; Sievers, Aina

    2002-01-01

    The Australian Mycobacterium Reference Laboratory Network collected and analysed laboratory data on new diagnoses of disease caused by Mycobacterium tuberculosis complex in the year 2000. A total of 765 cases were identified, representing an annual reporting rate of 4.0 cases of laboratory-confirmed tuberculosis (TB) per 100,000 population. Pulmonary disease was diagnosed in 64.9 per cent of cases with a male:female ratio of 1.5:1. Smears were positive for 209/365 (57.3%) of sputum isolates and 39/117 (33.3%) bronchoscopy isolates. Sputum from males was more likely to be smear-positive (63.3%) than from females (47.5%). Isolates from lymph node accounted for 136 (17.7%) of all cases; only 28.7 per cent were smear-positive. Eighty-four (11.0%) isolates, comprising 82 M. tuberculosis and 2 M. bovis strains, demonstrated in vitro resistance to at least one of the standard anti-TB medications. Resistance to at least isoniazid and rifampicin (defined as multidrug-resistant TB) was observed for only 8 (1.0%) strains, a rate similar to previous years. Almost all (96.3%) of patients with drug resistant strains were classified as having initial resistance. The country of birth was known for 76 (92.7%) of 82 patients with a drug resistant strain of M. tuberculosis; 6 were Australian-born and 70 (92.1%) had migrated from a total of 17 countries. Of these 70 migrants with drug-resistant disease, 68.6 per cent had migrated from one of the following countries: Vietnam (n=15), China (n=11), Philippines (n=11), India (n=6), and Indonesia (n=5). PMID:12206373

  13. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype

    PubMed Central

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431

  14. Rifoligotyping assay: an alternative method for rapid detection of rifampicin resistance in Mycobacterium tuberculosis isolates from Morocco

    PubMed Central

    Chaoui, Imane; Atalhi, Naima; Sabouni, Radia; Akrim, Mohammed; Abid, Mohammed; Amzazi, Saaid; ElMzibri, Mohammed

    2014-01-01

    One of the greatest threats to global tuberculosis (TB) control is the growing prevalence of drug resistant strains. In the past decades, considerable efforts have been made upon the development of new molecular technologies and methodologies for detection of drug resistance in Mycobacterium tuberculosis (MTB). A sensitive, specific reverse line blot assay, called rifoligotyping (RIFO), for the detection of genotypic resistance to rifampicin (RIF), was designed and evaluated. RIFO includes oligonucleotide probes specific for wild-type and mutant sequences, allowing specific and sensitive detection of both genotypes in a single assay. The RIFO was applied on 500 MTB isolates from Morocco. The results of the RIFO showed a good sensitivity (90.9%) and high specificity (100%); the positive and negative predictive values were 100% and 96.1%, respectively. This rapid, simple, economical assay provides a practical alternative for RIF genotyping, especially in low-income countries, to improve TB control and management. PMID:26740783

  15. Upregulation of the Phthiocerol Dimycocerosate Biosynthetic Pathway by Rifampin-Resistant, rpoB Mutant Mycobacterium tuberculosis

    PubMed Central

    Bisson, Gregory P.; Broeckling, Corey; Prenni, Jessica; Rifat, Dalin; Lun, Desmond S.; Burgos, Marcos; Weissman, Drew; Karakousis, Petros C.; Dobos, Karen

    2012-01-01

    Multidrug-resistant tuberculosis has emerged as a major threat to tuberculosis control. Phylogenetically related rifampin-resistant actinomycetes with mutations mapping to clinically dominant Mycobacterium tuberculosis mutations in the rpoB gene show upregulation of gene networks encoding secondary metabolites. We compared the expressed proteomes and metabolomes of two fully drug-susceptible clinical strains of M. tuberculosis (wild type) to those of their respective rifampin-resistant, rpoB mutant progeny strains with confirmed rifampin monoresistance following antitubercular therapy. Each of these strains was also used to infect gamma interferon- and lipopolysaccharide-activated murine J774A.1 macrophages to analyze transcriptional responses in a physiologically relevant model. Both rpoB mutants showed significant upregulation of the polyketide synthase genes ppsA-ppsE and drrA, which constitute an operon encoding multifunctional enzymes involved in the biosynthesis of phthiocerol dimycocerosate and other lipids in M. tuberculosis, but also of various secondary metabolites in related organisms, including antibiotics, such as erythromycin and rifamycins. ppsA (Rv2931), ppsB (Rv2932), and ppsC (Rv2933) were also found to be upregulated more than 10-fold in the Beijing rpoB mutant strain relative to its wild-type parent strain during infection of activated murine macrophages. In addition, metabolomics identified precursors of phthiocerol dimycocerosate, but not the intact molecule itself, in greater abundance in both rpoB mutant isolates. These data suggest that rpoB mutation in M. tuberculosis may trigger compensatory transcriptional changes in secondary metabolism genes analogous to those observed in related actinobacteria. These findings may assist in developing novel methods to diagnose and treat drug-resistant M. tuberculosis infections. PMID:23002228

  16. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. PMID:26341133

  17. Characterization of Molecular Evolution in Multi-Drug Resistant of Mycobacterium tuberculosis by rpoB Gene in Patient with Active Pulmonary Tuberculosis from Iranian Isolates

    PubMed Central

    Saeed, Zaker Bostanabad; Karim, Rahimi Mohammad; Parvaneh, Adimi; Zahra, Tayebee; Mozhgan, Masoumi; Shahin, Pourazar; Esmail, Jabbarzadeh; Mehdi, Shekarabi; Azarmidokht, Pourmand; Konstantina, Sourkova Larisa; Petrovich, Titov Leonid

    2009-01-01

    This is the first genetic biodiversity study of Mycobacterium tuberculosis in Iran. Thus, we investigated the genetic patterns of strains isolated in the first survey of anti-tuberculosis drug-resistance by rpoB gene as part of the Global Project of Anti-tuberculosis Drug Resistance Surveillance (IAU, Iran). A 411-bp fragment of the rpoB gene, containing the sequence of the 81-bp rpoB fragment, was amplified by PCR and the rpoB gene fragments of tuberculosis strains were sequenced using the Amersham auto sequencer. For analysing tree evolution used method UPGMA and Neighbour-Joining. Clinical isolates (34/163) were analyzed by using sequencing gene rpoB and genotyped by program MEGA. The results were compared with the international database. Multi-drug resistant (MDR) was 14% in never treated patients and 8% in previously treated patients. Mutations in rpoB gene and katG genes were detected in 95% and 84% of the MDR strains, respectively. Two clusters were found to be identical by the four different analysis methods, presumably representing cases of recent transmission of MDR tuberculosis. The other strains are divided into 2 groups: group A – similar to the standard and Eastern strains (China, Taiwan) and group B – strains of another genotype. They are grouped separately on the dendrogram and became prevalent in Iran (they are called Iranian residential strains). This study gives a first overview of the M. tuberculosis strains circulating in Iran during the first survey of anti-tuberculosis drug-resistance. It may aid in the creation of a national database that will be a valuable support for further studies. PMID:23675155

  18. Evaluation of the GenoType MTBDR assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates.

    PubMed

    Saglik, I; Oz, Y; Kiraz, N

    2014-01-01

    Detection of drug resistance plays a critical role in tuberculosis treatment. The aim of this study was to evaluate the performance of GenoType Mycobacteria Drug Resistance (MTBDR) assay (Hain Lifescience, Germany) and to compare it with radiometric BACTEC 460 TB system (Becton Dickinson, USA) for the detection of rifampicin (RIF) and isoniazid (INH) resistance in 84 Mycobacterium tuberculosis complex (MTBC) isolates. RIF resistance was identified in 6 of 7 (85.7%) isolates and INH resistance was identified in 8 of 14 (57.1%) isolates by the GenoType MTBDR assay. Compared with BACTEC system, the sensitivity, specificity, positive predictive value and negative predictive values were 85.7%, 98.7%, 85.7% and 98.7% for RIF resistance; and 57.1%, 100%, 100% and 92.1% for INH resistance, respectively. GenoType MTBDR assay is reliable when tested specimen is resistant to the tested drugs. Although test was more successful in the detection of RIF resistance, it exhibited low sensitivity for the detection of INH resistance. PMID:25008829

  19. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance.

    PubMed

    Datta, Gargi; Nieto, Luisa M; Davidson, Rebecca M; Mehaffy, Carolina; Pederson, Caroline; Dobos, Karen M; Strong, Michael

    2016-05-01

    Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation. PMID:27156618

  20. Role of the Cys154Arg Substitution in Ribosomal Protein L3 in Oxazolidinone Resistance in Mycobacterium tuberculosis.

    PubMed

    Makafe, Gaëlle Guiewi; Cao, Yuanyuan; Tan, Yaoju; Julius, Mugweru; Liu, Zhiyong; Wang, Changwei; Njire, Moses M; Cai, Xingshan; Liu, Tianzhou; Wang, Bangxing; Pang, Wei; Tan, Shouyong; Zhang, Buchang; Yew, Wing Wai; Lamichhane, Gyanu; Guo, Jintao; Zhang, Tianyu

    2016-05-01

    We expressed the wild-type rplC and mutated rplC (Cys154Arg) genes, respectively, in Mycobacterium tuberculosis H37Ra and H37Rv in an attempt to delineate the role of rplC (Cys154Arg) regarding oxazolidinone resistance. An increase of the MICs of linezolid (LZD) and sutezolid (PNU-100480, PNU) against the recombinant mycobacteria with overexpressed rplC mutation (Cys154Arg) was found, suggesting the rplC gene is a determinant of bacillary susceptibilities to LZD and PNU. PMID:26953211

  1. Strong In Vitro Activities of Two New Rifabutin Analogs against Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    PubMed Central

    García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia

    2010-01-01

    Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731

  2. Correlation between GyrA Substitutions and Ofloxacin, Levofloxacin, and Moxifloxacin Cross-Resistance in Mycobacterium tuberculosis

    PubMed Central

    Willby, Melisa; Sikes, R. David; Malik, Seidu; Metchock, Beverly

    2015-01-01

    The newer fluoroquinolones moxifloxacin (MXF) and levofloxacin (LVX) are becoming more common components of tuberculosis (TB) treatment regimens. However, the critical concentrations for testing susceptibility of Mycobacterium tuberculosis to MXF and LVX are not yet well established. Additionally, the degree of cross-resistance between ofloxacin (OFX) and these newer fluoroquinolones has not been thoroughly investigated. In this study, the MICs for MXF and LVX and susceptibility to the critical concentration of OFX were determined using the agar proportion method for 133 isolates of M. tuberculosis. Most isolates resistant to OFX had LVX MICs of >1 μg/ml and MXF MICs of >0.5 μg/ml. The presence of mutations within the gyrA quinolone resistance-determining regions (QRDR) correlated well with increased MICs, and the level of LVX and MXF resistance was dependent on the specific gyrA mutation present. Substitutions Ala90Val, Asp94Ala, and Asp94Tyr resulted in low-level MXF resistance (MICs were >0.5 but ≤2 μg/ml), while other mutations led to MXF MICs of >2 μg/ml. Based on these results, a critical concentration of 1 μg/ml is suggested for LVX and 0.5 μg/ml for MXF drug susceptibility testing by agar proportion with reflex testing for MXF at 2 μg/ml. PMID:26100699

  3. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand.

    PubMed

    Regmi, Sanjib Mani; Chaiprasert, Angkana; Kulawonganunchai, Supasak; Tongsima, Sissades; Coker, Olabisi Oluwabukola; Prammananan, Therdsak; Viratyosin, Wasna; Thaipisuttikul, Iyarit

    2015-10-01

    The Mycobacterium tuberculosis Beijing family is often associated with multidrug resistance and large outbreaks. Conventional genotyping study of a community outbreak of multidrug-resistant tuberculosis (MDR-TB) that occurred in Kanchanaburi Province, Thailand was carried out. The study revealed that the outbreak was clonal and the strain was identified as a member of Beijing family. Although, the outbreak isolates showed identical spoligotyping and mycobacterial interspersed repetitive units-variable number tandem repeats patterns, a discrepancy regarding ethambutol resistance was observed. In-depth characterization of the isolates through whole genome sequencing of the first and the last three isolates from our culture collection showed them to belong to principal genetic group 1, single nucleotide polymorphism (SNP) cluster group 2, sequence type 10. Compared with the M. tuberculosis H37Rv reference genome, 1242 SNPs were commonly found in all isolates. The genomes of these isolates were shown to be clonal and highly stable over a 5-year period and two or three unique SNPs were identified in each of the last three isolates. Genes known to be associated with drug resistance and their promoter regions, where applicable, were analyzed. The presence of low or no fitness cost mutations for drug resistance and an additional L731P SNP in the rpoB gene was observed in all isolates. These findings might account for the successful transmission of this MDR-TB strain. PMID:25903079

  4. Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR.

    PubMed

    Wada, Takayuki; Maeda, Shinji; Tamaru, Aki; Imai, Shigeyoshi; Hase, Atsushi; Kobayashi, Kazuo

    2004-11-01

    Mutations in particular nucleotides of genes coding for drug targets or drug-converting enzymes lead to drug resistance in Mycobacterium tuberculosis. For rapid detection of drug-resistant M. tuberculosis in clinical specimens, a simple and applicable method is needed. Eight TaqMan minor groove binder (MGB) probes, which discriminate one-base mismatches, were designed (dual-probe assay with four reaction tubes). The target of six MGB probes was the rpoB gene, which is involved in rifampin resistance; five probes were designed to detect for mutation sites within an 81-bp hot spot of the rpoB gene, and one probe was designed as a tuberculosis (TB) control outside the rpoB gene hot-spot. We also designed probes to examine codon 315 of katG and codon 306 of embB for mutations associated with resistance to isoniazid and ethambutol, respectively. Our system was M. tuberculosis complex specific, because neither nontuberculous mycobacteria nor bacteria other than mycobacteria reacted with the system. Detection limits in direct and preamplified analyses were 250 and 10 fg of genomic DNA, respectively. The system could detect mutations of the rpoB, katG, and embB genes in DNAs extracted from 45 laboratory strains and from sputum samples of 27 patients with pulmonary TB. This system was much faster (3 h from DNA preparation) than conventional drug susceptibility testing (3 weeks). Results from the dual-MGB-probe assay were consistent with DNA sequencing. Because the dual-probe assay system is simple, rapid, and accurate, it can be applied to detect drug-resistant M. tuberculosis in clinical laboratories. PMID:15528726

  5. Cholesterol Analogs with Degradation-resistant Alkyl Side Chains Are Effective Mycobacterium tuberculosis Growth Inhibitors.

    PubMed

    Frank, Daniel J; Zhao, Yan; Wong, Siew Hoon; Basudhar, Debashree; De Voss, James J; Ortiz de Montellano, Paul R

    2016-04-01

    Cholest-4-en-3-one, whether added exogenously or generated intracellularly from cholesterol, inhibits the growth ofMycobacterium tuberculosiswhen CYP125A1 and CYP142A1, the cytochrome P450 enzymes that initiate degradation of the sterol side chain, are disabled. Here we demonstrate that a 16-hydroxy derivative of cholesterol, which was previously reported to inhibit growth ofM. tuberculosis, acts by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3β,16β,26-triol (1) (and its 3-keto metabolite) inhibit growth suggests that cholesterol analogs with non-degradable side chains represent a novel class of anti-mycobacterial agents. In accord with this, two cholesterol analogs with truncated, fluorinated side chains have been synthesized and shown to similarly block the growth in culture ofM. tuberculosis. PMID:26833565

  6. 2-(Quinolin-4-yloxy)acetamides Are Active against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains.

    PubMed

    Pissinate, Kenia; Villela, Anne Drumond; Rodrigues-Junior, Valnês; Giacobbo, Bruno Couto; Grams, Estêvão Silveira; Abbadi, Bruno Lopes; Trindade, Rogério Valim; Roesler Nery, Laura; Bonan, Carla Denise; Back, Davi Fernando; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2016-03-10

    2-(Quinolin-4-yloxy)acetamides have been described as potent in vitro inhibitors of Mycobacterium tuberculosis growth. Herein, additional chemical modifications of lead compounds were carried out, yielding highly potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.05 μM. Further, the synthesized compounds were active against drug-resistant strains and were devoid of apparent toxicity to Vero and HaCat cells (IC50s ≥ 20 μM). In addition, the 2-(quinolin-4-yloxy)acetamides showed intracellular activity against the bacilli in infected macrophages with action similar to rifampin, low risk of drug-drug interactions, and no sign of cardiac toxicity in zebrafish (Danio rerio) at 1 and 5 μM. Therefore, these data indicate that this class of compounds may furnish candidates for future development to, hopefully, provide drug alternatives for tuberculosis treatment. PMID:26985307

  7. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection.

    PubMed

    Rodrigues-Junior, Valnês S; Villela, Anne D; Gonçalves, Raoni S B; Abbadi, Bruno Lopes; Trindade, Rogério Valim; López-Gavín, Alexandre; Tudó, Griselda; González-Martín, Julian; Basso, Luiz Augusto; de Souza, Marcus V N; Campos, Maria Martha; Santos, Diógenes Santiago

    2016-08-01

    Repurposing of drugs to treat tuberculosis (TB) has been considered an alternative to overcome the global TB epidemic, especially to combat drug-resistant forms of the disease. Mefloquine has been reported as a potent drug to kill drug-resistant strains of Mycobacterium tuberculosis. In addition, mefloquine-derived molecules have been synthesised and their effectiveness against mycobacteria has been assessed. In this work, we demonstrate for the first time the activities of mefloquine and its oxazolidine derivative compound 1E in a murine model of TB infection following administration of both drugs by the oral route. The effects of associations between mefloquine or 1E with the clinically used antituberculosis drugs isoniazid, rifampicin, ethambutol, moxifloxacin and streptomycin were also investigated. Importantly, combination of mefloquine with isoniazid and of 1E with streptomycin showed a two-fold decrease in their minimum inhibitory concentrations (MICs). Moreover, no tested combinations demonstrated antagonist interactions. Here we describe novel evidence on the activity of mefloquine and 1E against a series of quinolone-resistant M. tuberculosis strains. These data show MICs against quinolone-resistant strains (0.5-8 µg/mL) similar to or lower than those previously reported for multidrug-resistant strains. Taking these results together, we can suggest the use of mefloquine or 1E in combination with clinically available drugs, especially in the case of resistant forms of TB. PMID:27364701

  8. Multidrug-resistant strains of Mycobacterium tuberculosis isolated from patients in Tehran belong to a genetically distinct cluster.

    PubMed

    Feizabadi, M M; Shahriari, M; Safavi, M; Gharavi, S; Hamid, M

    2003-01-01

    Restriction fragment length polymorphism (RFLP) analysis was used to study the molecular epidemiology of tuberculosis (TB) in certain areas of Tehran. 120 isolates of Mycobacterium tuberculosis, including drug-resistant strains (n = 23), were analysed using polymorphic GC-rich sequence (PGRS) and IS6110 probes. There was considerable diversity among the strains cultured from patients from certain areas. The results of RFLP showed that multidrug resistant (MDR) isolates of M. tuberculosis in Tehran belong to a group of strains with low copies of IS6110 and PGRS. The degree of clustering was higher for the drug-resistant strains than for the susceptible ones (65% vs 20%). Based on the demographic data and results of RFLP, it appears that recent transmissions of TB from old patients have occurred in Tehran. However, drug-resistant TB in the city is mainly caused by strains that look different from those cultured from such patients. The majority of MDR isolates (85%) in this study contained a low copy number of IS6110 and PGRS in RFLP, and were mostly recovered from immigrants and refugees. PMID:12685884

  9. Distribution of Spoligotyping Defined Genotypic Lineages among Drug-Resistant Mycobacterium tuberculosis Complex Clinical Isolates in Ankara, Turkey

    PubMed Central

    Kisa, Ozgul; Tarhan, Gulnur; Gunal, Selami; Albay, Ali; Durmaz, Riza; Saribas, Zeynep; Zozio, Thierry; Alp, Alpaslan; Ceyhan, Ismail; Tombak, Ahmet; Rastogi, Nalin

    2012-01-01

    Background Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey. Methods and Findings A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates. Conclusions The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical

  10. Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex.

    PubMed

    Berrada, Zenda L; Lin, Shou-Yean Grace; Rodwell, Timothy C; Nguyen, Duylinh; Schecter, Gisela F; Pham, Lucy; Janda, J Michael; Elmaraachli, Wael; Catanzaro, Antonino; Desmond, Edward

    2016-06-01

    Cross-resistance in rifamycins has been observed in rifampin (RIF)-resistant Mycobacterium tuberculosis complex isolates; some rpoB mutations do not confer broad in vitro rifamycin resistance. We examined 164 isolates, of which 102 were RIF-resistant, for differential resistance between RIF and rifabutin (RFB). A total of 42 unique single mutations or combinations of mutations were detected. The number of unique mutations identified exceeded that reported in any previous study. RFB and RIF MICs up to 8 μg/mL by MGIT 960 were studied; the cut-off values for susceptibility to RIF and RFB were 1 μg/mL and 0.5 μg/mL, respectively. We identified 31 isolates resistant to RIF but susceptible to RFB with the mutations D516V, D516F, 518 deletion, S522L, H526A, H526C, H526G, H526L, and two dual mutations (S522L + K527R and H526S + K527R). Clinical investigations using RFB to treat multidrug-resistant tuberculosis cases harboring those mutations are recommended. PMID:27036978

  11. Pattern of drug resistance of Mycobacterium tuberculosis clinical isolates to first-line antituberculosis drugs in pulmonary cases

    PubMed Central

    Kalo, Deepika; Kant, Surya; Srivastava, Kanchan; Sharma, Ajay K.

    2015-01-01

    Context: Mycobacterium tuberculosis (MTB), the human pathogen causes Tuberculosis (TB). It is a highly infectious and globally pandemic disease. The severity increases when the MTB becomes resistant to antituberculosis drugs. India is reported to be in the second place, with the highest number of drug-resistant TB cases. The treatment of drug-resistant TB is even more complicated. Materials and Methods: The present study comprises of 159 TB patients, in which 88 are reported to have drug-resistant TB (55.3%). All the patients are in the age group of 18–70 years. Patients having extrapulmonary TB and diabetes were excluded from the study. The collected samples were processed and stained for acid fastness and smear positivity. They were subjected to inoculation on Lowenstein–Jensen (LJ) slants. Results: The results showed that out of the four drugs — Streptomycin, Isoniazid, Rifampicin, and Ethambutol — the resistant cases reported in Streptomycin were 45 (24.9%), whereas, in Isoniazid, Rifampicin, and Ethambutol, the resistant cases were 62 (34.2%), 27 (14.9%), and 47 (26.0%), respectively. Isoniazid showed the highest percentage of resistance among the patients. Conclusion: Effective measures such as convincing the patients to take the prescribed drugs and follow the five major strategies under the Directly Observed Treatment, Short Course (DOTS), could help in managing such cases. PMID:26180382

  12. Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Medellín, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The Mycobacterium tuberculosis Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes. PMID:27313305

  13. Whole-Genome Sequencing of Two Latin American-Mediterranean Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates from Medellín, Colombia.

    PubMed

    Alvarez, N; Haft, D; Hurtado, U A; Robledo, J; Rouzaud, F

    2016-01-01

    Colombia, with a tuberculosis incidence of 33 cases per 100,000 population, is one of the countries that have reported extensively drug-resistant Mycobacterium tuberculosis (XDR-TB). We report the high-quality draft genome sequences of two Latin American-Mediterranean XDR-TB clinical isolates (TBR-152 and TBR-175), comprising 4,303,775 bp and 4,330,115 bp, respectively. PMID:27034498

  14. Whole-Genome Sequencing of Two Latin American–Mediterranean Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates from Medellín, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Colombia, with a tuberculosis incidence of 33 cases per 100,000 population, is one of the countries that have reported extensively drug-resistant Mycobacterium tuberculosis (XDR-TB). We report the high-quality draft genome sequences of two Latin American–Mediterranean XDR-TB clinical isolates (TBR-152 and TBR-175), comprising 4,303,775 bp and 4,330,115 bp, respectively. PMID:27034498

  15. Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate from Medellín, Colombia

    PubMed Central

    Haft, D.; Hurtado, U. A.; Robledo, J.; Rouzaud, F.

    2016-01-01

    Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The Mycobacterium tuberculosis Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes. PMID:27313305

  16. Genotype MTBDRplus for Direct Detection of Mycobacterium tuberculosis and Drug Resistance in Strains from Gold Miners in South Africa

    PubMed Central

    Chihota, Violet N.; Lewis, James J.; van der Meulen, Minty; Mathema, Barun; Beylis, Natalie; Fielding, Katherine L.; Grant, Alison D.; Churchyard, Gavin J.

    2012-01-01

    GenoType MTBDRplus is a molecular assay for detection of Mycobacterium tuberculosis and drug resistance. Assay performance as applied directly to consecutive unselected sputum samples has not been established. The objective of this study was to determine the accuracy of the MTBDRplus test for direct detection of M. tuberculosis (in sputum) and for drug resistance in consecutively submitted sputum samples. In this cross-sectional study in South Africa, one sputum specimen from each person suspected of having pulmonary tuberculosis was tested by smear microscopy, direct MTBDRplus, and Mycobacterial Growth Indicator Tube (MGIT) culture with MGIT drug susceptibility testing. MGIT results were the reference standard. We tested 2,510 sputum samples, and 529 (21.1%) were positive for M. tuberculosis by MGIT. Direct MTBDRplus identified M. tuberculosis in 256 of 529 specimens (sensitivity, 48.4%; 95% confidence interval [CI], 44.1, 52.7). The sensitivity of MTBDRplus for M. tuberculosis detection by sputum smear status was as follows: smear negative, 13.7% (95% CI, 9.8, 18.4); smear scanty, 46.2% (95% CI, 19.2, 74.9); smear 1+, 69.1% (95% CI, 55.2, 80.9); smear 2+, 86.3% (95% CI, 73.7, 94.3); smear 3+, 89.8% (95% CI, 83.7, 94.2). Direct MTBDRplus testing was negative for 1,594/1,612 sputum samples that were culture negative for M. tuberculosis (specificity, 98.9%; 95% CI, 98.2, 99.3). For specimens positive for M. tuberculosis by MTBDRplus, this assay's sensitivity and specificity for rifampin resistance were 85.7% (95% CI, 57.2, 98.2) and 96.6% (95% CI, 93.2, 98.6) and for isoniazid resistance they were 62.1% (95% CI, 42.3, 79.3) and 97.9% (95% CI, 94.8, 99.4). For sputum testing, the sensitivity of MTBDRplus is directly related to the specimen's bacillary burden. Our results support recommendations that the MTBDRplus test not be used for direct testing of smear-negative or paucibacillary sputum samples. PMID:22238443

  17. A First Assessment of Mycobacterium tuberculosis Genetic Diversity and Drug-Resistance Patterns in Twelve Caribbean Territories

    PubMed Central

    Millet, Julie; Baboolal, Shirematee; Akpaka, Patrick E.

    2014-01-01

    With the exception of some French-speaking islands, data on tuberculosis (TB) in the Caribbean are scarce. In this study, we report a first assessment of genetic diversity of a convenience sample of Mycobacterium tuberculosis strains received from twelve Caribbean territories by spoligotyping and describe their drug-resistance patterns. Of the 480 isolates, 40 (8.3%) isolates showed resistance to at least one anti-TB drug. The proportion of drug-resistant strains was significantly higher in The Bahamas (21.4%; P = 0.02), and Guyana (27.5%; P < 0.0001), while it was significantly lower in Jamaica (2.4%; P = 0.03) than in other countries of the present study. Regarding genetic diversity, 104 distinct spoligotype patterns were observed: 49 corresponded to clustered strains (2 to 93 strains per cluster), while 55 remained unclustered among which 16 patterns were not reported previously. Combining the study results with regional data retrieved from the international SITVIT2 database underlined a connection between frequency of certain M. tuberculosis phylogenetic lineages and the language spoken, suggesting historical (colonial) and ongoing links (trade, tourism, and migratory flows) with European countries with which they shared a common past. PMID:24795893

  18. The Mycobacterium tuberculosis Cytochrome P450 System

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2009-01-01

    Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of twenty cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets. PMID:19635450

  19. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis.

    PubMed

    Hajian, Behnoush; Scocchera, Eric; Keshipeddy, Santosh; G-Dayanandan, Narendran; Shoen, Carolyn; Krucinska, Jolanta; Reeve, Stephanie; Cynamon, Michael; Anderson, Amy C; Wright, Dennis L

    2016-01-01

    Mycobacterium tuberculosis continues to cause widespread, life-threatening disease. In the last decade, this threat has grown dramatically as multi- and extensively-drug resistant (MDR and XDR) bacteria have spread globally and the number of agents that effectively treat these infections is significantly reduced. We have been developing the propargyl-linked antifolates (PLAs) as potent inhibitors of the essential enzyme dihydrofolate reductase (DHFR) from bacteria and recently found that charged PLAs with partial zwitterionic character showed improved mycobacterial cell permeability. Building on a hypothesis that these PLAs may penetrate the outer membrane of M. tuberculosis and inhibit the essential cytoplasmic DHFR, we screened a group of PLAs for antitubercular activity. In this work, we identified several PLAs as potent inhibitors of the growth of M. tuberculosis with several of the compounds exhibiting minimum inhibition concentrations equal to or less than 1 μg/mL. Furthermore, two of the compounds were very potent inhibitors of MDR and XDR strains. A high resolution crystal structure of one PLA bound to DHFR from M. tuberculosis reveals the interactions of the ligands with the target enzyme. PMID:27580226

  20. Identification of rifampin-resistant mycobacterium tuberculosis strains by hybridization, PCR, and ligase detaction reaction on oligonucleotide microchips.

    SciTech Connect

    Mikhailovich, V.; Lapa, S.; Gryadunov, D.; Sobolev, A.; Strizhkov, B.; Chernyh, N.; Skotnikova, O.; Irtuganova, O.; Moroz, A.; Litvinov, V.; Vladimirskii, M.; Perelman, M.; Chernousova, L.; Erokhin, V.; Mirzabekov, A.; Biochip Technology Center; Russian Academy of Sciences; Moscow Antituberculosis Center; Moscow Medical Academy; Russian Academy of Medical Sciences

    2001-07-01

    Three new molecular approaches were developed to identify drug-resistant strains of Mycobacterium tuberculosis using biochips with oligonucleotides immobilized in polyacrylamide gel pads. These approaches are significantly faster than traditional bacteriological methods. All three approaches -- hybridization, PCR, and ligase detection reaction -- were designed to analyze an 81-bp fragment of the gene rpoB encoding the {beta}-subunit of RNA polymerase, where most known mutations of rifampin resistance are located. The call set for hybridization analysis consisted of 42 immobilized oligonucleotides and enabled us to identify 30 mutant variants of the rpoB gene within 24 h. These variants are found in 95% of all mutants whose rifampin resistance is caused by mutations in the 81-bp fragment. Using the second approach, allele-specific on-chip PCR, it was possible to directly identify mutations in clinical samples within 1.5 h. The third approach, on-chip ligase detection reaction, was sensitive enough to reveal rifampin-resistant strains in a model mixture containing 1% of resistant and 99% of susceptible bacteria. This level of sensitivity is comparable to that from the determination of M. tuberculosis drug resistance by using standard bacteriological tests.

  1. Molecular and Growth-Based Drug Susceptibility Testing of Mycobacterium tuberculosis Complex for Ethambutol Resistance in the United States

    PubMed Central

    McAlister, Allison; Hartline, Denise; Metchock, Beverly; Starks, Angela M.

    2016-01-01

    Ethambutol (EMB) is used as a part of drug regimens for treatment of tuberculosis (TB). Susceptibility of Mycobacterium tuberculosis complex (MTBC) isolates to EMB can be discerned by DNA sequencing to detect mutations in the embB gene associated with resistance. US Public Health Laboratories (PHL) primarily use growth-based drug susceptibility test (DST) methods to determine EMB resistance. The Centers for Disease Control and Prevention (CDC) provides a service for molecular detection of drug resistance (MDDR) by DNA sequencing and concurrent growth-based DST using agar proportion. PHL and CDC test results were compared for 211 MTBC samples submitted to CDC from September 2009 through February 2011. Concordance between growth-based DST results from PHL and CDC was 88.2%. A growth-based comparison of 39 samples, where an embB mutation associated with EMB resistance was detected, revealed a higher percentage of EMB resistance by CDC (84.6%) than by PHL (59.0%) which was significant (P value = 0.002). Discordance between all growth-based test results from PHL and CDC was also significant (P value = 0.003). Most discordance was linked to false susceptibility using the BACTEC™ MGIT™ 960 (MGIT) growth-based system. Our analysis supports coalescing growth-based and molecular results for an informed interpretation of potential EMB resistance. PMID:27375902

  2. Molecular and Growth-Based Drug Susceptibility Testing of Mycobacterium tuberculosis Complex for Ethambutol Resistance in the United States.

    PubMed

    Yakrus, Mitchell A; Driscoll, Jeffrey; McAlister, Allison; Sikes, David; Hartline, Denise; Metchock, Beverly; Starks, Angela M

    2016-01-01

    Ethambutol (EMB) is used as a part of drug regimens for treatment of tuberculosis (TB). Susceptibility of Mycobacterium tuberculosis complex (MTBC) isolates to EMB can be discerned by DNA sequencing to detect mutations in the embB gene associated with resistance. US Public Health Laboratories (PHL) primarily use growth-based drug susceptibility test (DST) methods to determine EMB resistance. The Centers for Disease Control and Prevention (CDC) provides a service for molecular detection of drug resistance (MDDR) by DNA sequencing and concurrent growth-based DST using agar proportion. PHL and CDC test results were compared for 211 MTBC samples submitted to CDC from September 2009 through February 2011. Concordance between growth-based DST results from PHL and CDC was 88.2%. A growth-based comparison of 39 samples, where an embB mutation associated with EMB resistance was detected, revealed a higher percentage of EMB resistance by CDC (84.6%) than by PHL (59.0%) which was significant (P value = 0.002). Discordance between all growth-based test results from PHL and CDC was also significant (P value = 0.003). Most discordance was linked to false susceptibility using the BACTEC™ MGIT™ 960 (MGIT) growth-based system. Our analysis supports coalescing growth-based and molecular results for an informed interpretation of potential EMB resistance. PMID:27375902

  3. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis

    PubMed Central

    Peters, Wendy; Scott, Holly M.; Chambers, Henry F.; Flynn, JoAnne L.; Charo, Israel F.; Ernst, Joel D.

    2001-01-01

    Although the protective cellular immune response to Mycobacterium tuberculosis requires recruitment of macrophages and T lymphocytes to the site of infection, the signals that regulate this trafficking have not been defined. We investigated the role of C-C chemokine receptor 2 (CCR2)-dependent cell recruitment in the protective response to M. tuberculosis. CCR2−/− mice died early after infection and had 100-fold more bacteria in their lungs than did CCR2+/+ mice. CCR2−/− mice exhibited an early defect in macrophage recruitment to the lung and a later defect in recruitment of dendritic cells and T cells to the lung. CCR2−/− mice also had fewer macrophages and dendritic cells recruited to the mediastinal lymph node (MLN) after infection. T cell migration through the MLN was similar in CCR2−/− and CCR2+/+ mice. However, T cell priming was delayed in the MLNs of the CCR2−/− mice, and fewer CD4+ and CD8+ T cells primed to produce IFN-γ accumulated in the lungs of the CCR2−/− mice. These data demonstrate that cellular responses mediated by activation of CCR2 are essential in the initial immune response and control of infection with M. tuberculosis. PMID:11438742

  4. Mycobacterium tuberculosis pncA Polymorphisms That Do Not Confer Pyrazinamide Resistance at a Breakpoint Concentration of 100 Micrograms per Milliliter in MGIT

    PubMed Central

    Whitfield, Michael G.; Streicher, Elizabeth M.; Sampson, Samantha L.; Sirgel, Frik A.; van Helden, Paul D.; Mercante, Alexandra; Willby, Melisa; Hughes, Kelsey; Birkness, Kris; Morlock, Glenn; van Rie, Annelies; Posey, James E.

    2015-01-01

    Sequencing of the Mycobacterium tuberculosis pncA gene allows for pyrazinamide susceptibility testing. We summarize data on pncA polymorphisms that do not confer resistance at a susceptibility breakpoint of 100 μg/ml pyrazinamide in MGIT within a cohort of isolates from South Africa and the U.S. Centers for Disease Control and Prevention. PMID:26292310

  5. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  6. Proficient Detection of Multi-Drug-Resistant Mycobacterium tuberculosis by Padlock Probes and Lateral Flow Nucleic Acid Biosensors.

    PubMed

    Pavankumar, Asalapuram R; Engström, Anna; Liu, Jie; Herthnek, David; Nilsson, Mats

    2016-04-19

    Tuberculosis is a major communicable disease. Its causative agent, Mycobacterium tuberculosis, becomes resistant to antibiotics by acquisition of point mutations in the chromosome. Multi-drug-resistant tuberculosis (MDR-TB) is an increasing public health threat, and prompt detection of such strains is of critical importance. As rolling circle amplification of padlock probes can be used to robustly distinguish single-nucleotide variants, we combined this technique with a sensitive lateral flow nucleic acid biosensor to develop a rapid molecular diagnostic test for MDR-TB. A proof-of-concept test was established for detection of the most common mutations [rpoB 531 (TCG/TTG) and katG 315 (AGC/ACC)] causing MDR-TB and verification of loss of the respective wild type. The molecular diagnostic test produces visual signals corresponding to the respective genotypes on lateral flow strips in approximately 75 min. By detecting only two mutations, the test can detect about 60% of all MDR-TB cases. The padlock probe-lateral flow (PLP-LF) test is the first of its kind and can ideally be performed at resource-limited clinical laboratories. Rapid information about the drug-susceptibility pattern can assist clinicians to choose suitable treatment regimens and take appropriate infection control actions rather than prescribing empirical treatment, thereby helping to control the spread of MDR-TB in the community. PMID:26985774

  7. Combinatorial active-site variants confer sustained clavulanate resistance in BlaC β-lactamase from Mycobacterium tuberculosis

    PubMed Central

    Egesborg, Philippe; Carlettini, Hélène; Volpato, Jordan P; Doucet, Nicolas

    2015-01-01

    Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam–BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam–BlaC inhibitor combination treatments against M. tuberculosis. PMID:25492589

  8. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    PubMed

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates. PMID:25553930

  9. Esters of Pyrazinoic Acid Are Active against Pyrazinamide-Resistant Strains of Mycobacterium tuberculosis and Other Naturally Resistant Mycobacteria In Vitro and Ex Vivo within Macrophages.

    PubMed

    Pires, David; Valente, Emília; Simões, Marta Filipa; Carmo, Nuno; Testa, Bernard; Constantino, Luís; Anes, Elsa

    2015-12-01

    Pyrazinamide (PZA) is active against major Mycobacterium tuberculosis species (M. tuberculosis, M. africanum, and M. microti) but not against M. bovis and M. avium. The latter two are mycobacterial species involved in human and cattle tuberculosis and in HIV coinfections, respectively. PZA is a first-line agent for the treatment of human tuberculosis and requires activation by a mycobacterial pyrazinamidase to form the active metabolite pyrazinoic acid (POA). As a result of this mechanism, resistance to PZA, as is often found in tuberculosis patients, is caused by point mutations in pyrazinamidase. In previous work, we have shown that POA esters and amides synthesized in our laboratory were stable in plasma (M. F. Simões, E. Valente, M. J. Gómez, E. Anes, and L. Constantino, Eur J Pharm Sci 37:257-263, 2009, http://dx.doi.org/10.1016/j.ejps.2009.02.012). Although the amides did not present significant activity, the esters were active against sensitive mycobacteria at concentrations 5- to 10-fold lower than those of PZA. Here, we report that these POA derivatives possess antibacterial efficacy in vitro and ex vivo against several species and strains of Mycobacterium with natural or acquired resistance to PZA, including M. bovis and M. avium. Our results indicate that the resistance probably was overcome by cleavage of the prodrugs into POA and a long-chain alcohol. Although it is not possible to rule out that the esters have intrinsic activity per se, we bring evidence here that long-chain fatty alcohols possess a significant antimycobacterial effect against PZA-resistant species and strains and are not mere inactive promoieties. These findings may lead to candidate dual drugs having enhanced activity against both PZA-susceptible and PZA-resistant isolates and being suitable for clinical development. PMID:26438493

  10. Disparities in Capreomycin Resistance Levels Associated with the rrs A1401G Mutation in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Reeves, Analise Z.; Campbell, Patricia J.; Willby, Melisa J.

    2014-01-01

    As the prevalence of multidrug-resistant and extensively drug-resistant tuberculosis strains continues to rise, so does the need to develop accurate and rapid molecular tests to complement time-consuming growth-based drug susceptibility testing. Performance of molecular methods relies on the association of specific mutations with phenotypic drug resistance and while considerable progress has been made for resistance detection of first-line antituberculosis drugs, rapid detection of resistance for second-line drugs lags behind. The rrs A1401G allele is considered a strong predictor of cross-resistance between the three second-line injectable drugs, capreomycin (CAP), kanamycin, and amikacin. However, discordance is often observed between the rrs A1401G mutation and CAP resistance, with up to 40% of rrs A1401G mutants being classified as CAP susceptible. We measured the MICs to CAP in 53 clinical isolates harboring the rrs A1401G mutation and found that the CAP MICs ranged from 8 μg/ml to 40 μg/ml. These results were drastically different from engineered A1401G mutants generated in isogenic Mycobacterium tuberculosis, which exclusively exhibited high-level CAP MICs of 40 μg/ml. These data support the results of prior studies, which suggest that the critical concentration of CAP (10 μg/ml) used to determine resistance by indirect agar proportion may be too high to detect all CAP-resistant strains and suggest that a larger percentage of resistant isolates could be identified by lowering the critical concentration. These data also suggest that differences in resistance levels among clinical isolates are possibly due to second site or compensatory mutations located elsewhere in the genome. PMID:25385119

  11. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

    PubMed Central

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  12. Porins increase copper susceptibility of Mycobacterium tuberculosis.

    PubMed

    Speer, Alexander; Rowland, Jennifer L; Haeili, Mehri; Niederweis, Michael; Wolschendorf, Frank

    2013-11-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  13. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis.

    PubMed

    Almeida, Deepak; Ioerger, Thomas; Tyagi, Sandeep; Li, Si-Yang; Mdluli, Khisimuzi; Andries, Koen; Grosset, Jacques; Sacchettini, Jim; Nuermberger, Eric

    2016-08-01

    The novel ATP synthase inhibitor bedaquiline recently received accelerated approval for treatment of multidrug-resistant tuberculosis and is currently being studied as a component of novel treatment-shortening regimens for drug-susceptible and multidrug-resistant tuberculosis. In a limited number of bedaquiline-treated patients reported to date, ≥4-fold upward shifts in bedaquiline MIC during treatment have been attributed to non-target-based mutations in Rv0678 that putatively increase bedaquiline efflux through the MmpS5-MmpL5 pump. These mutations also confer low-level clofazimine resistance, presumably by a similar mechanism. Here, we describe a new non-target-based determinant of low-level bedaquiline and clofazimine cross-resistance in Mycobacterium tuberculosis: loss-of-function mutations in pepQ (Rv2535c), which corresponds to a putative Xaa-Pro aminopeptidase. pepQ mutants were selected in mice by treatment with clinically relevant doses of bedaquiline, with or without clofazimine, and were shown to have bedaquiline and clofazimine MICs 4 times higher than those for the parental H37Rv strain. Coincubation with efflux inhibitors verapamil and reserpine lowered bedaquiline MICs against both mutant and parent strains to a level below the MIC against H37Rv in the absence of efflux pump inhibitors. However, quantitative PCR (qPCR) revealed no significant differences in expression of Rv0678, mmpS5, or mmpL5 between mutant and parent strains. Complementation of a pepQ mutant with the wild-type gene restored susceptibility, indicating that loss of PepQ function is sufficient for reduced susceptibility both in vitro and in mice. Although the mechanism by which mutations in pepQ confer bedaquiline and clofazimine cross-resistance remains unclear, these results may have clinical implications and warrant further evaluation of clinical isolates with reduced susceptibility to either drug for mutations in this gene. PMID:27185800

  14. The T2 Mycobacterium tuberculosis Genotype, Predominant in Kampala, Uganda, Shows Negative Correlation with Antituberculosis Drug Resistance

    PubMed Central

    Lukoye, Deus; Katabazi, Fred A.; Musisi, Kenneth; Kateete, David P.; Asiimwe, Benon B.; Okee, Moses; Joloba, Moses L.

    2014-01-01

    Surveillance of the circulating Mycobacterium tuberculosis complex (MTC) strains in a given locality is important for understanding tuberculosis (TB) epidemiology. We performed molecular epidemiological studies on sputum smear-positive isolates that were collected for anti-TB drug resistance surveillance to establish the variability of MTC lineages with anti-TB drug resistance and HIV infection. Spoligotyping was performed to determine MTC phylogenetic lineages. We compared patients' MTC lineages with drug susceptibility testing (DST) patterns and HIV serostatus. Out of the 533 isolates, 497 (93.2%) had complete DST, PCR, and spoligotyping results while 484 (90.1%) participants had results for HIV testing. Overall, the frequency of any resistance was 75/497 (15.1%), highest among the LAM (34.4%; 95% confidence interval [CI], 18.5 to 53.2) and lowest among the T2 (11.5%; 95% CI, 7.6 to 16.3) family members. By multivariate analysis, LAM (adjusted odds ratio [ORadj], 5.0; 95% CI, 2.0 to 11.9; P < 0.001) and CAS (ORadj, 2.9; 95% CI, 1.4.0 to 6.3; P = 0.006) families were more likely to show any resistance than was T2. All other MTC lineages combined were more likely to be resistant to any of the anti-TB drugs than were the T2 strains (ORadj, 1.7; 95% CI, 1.0 to 2.9; P = 0.040). There were no significant associations between multidrug resistance and MTC lineages, but numbers of multidrug-resistant TB strains were small. No association was established between MTC lineages and HIV status. In conclusion, the T2 MTC lineage negatively correlates with anti-TB drug resistance, which might partly explain the reported low levels of anti-TB drug resistance in Kampala, Uganda. Patients' HIV status plays no role with respect to the MTC lineage distribution. PMID:24777100

  15. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis

    PubMed Central

    Jacobson, Karen R.; Franke, Molly F.; Kaur, Devinder; Sloutsky, Alex; Mitnick, Carole D.; Murray, Megan

    2016-01-01

    Molecular diagnostics that rapidly and accurately predict resistance to fluoroquinolone drugs and especially later-generation agents promise to improve treatment outcomes for patients with multidrug-resistant tuberculosis and prevent the spread of disease. Mutations in the gyr genes are known to confer most fluoroquinolone resistance, but knowledge about the effects of gyr mutations on susceptibility to early- versus later-generation fluoroquinolones and about the role of mutation-mutation interactions is limited. Here, we sequenced the full gyrA and gyrB open reading frames in 240 multidrug-resistant and extensively drug-resistant tuberculosis strains and quantified their ofloxacin and moxifloxacin MIC by testing growth at six concentrations for each drug. We constructed a multivariate regression model to assess both the individual mutation effects and interactions on the drug MICs. We found that gyrB mutations contribute to fluoroquinolone resistance both individually and through interactions with gyrA mutations. These effects were statistically significant. In these clinical isolates, several gyrA and gyrB mutations conferred different levels of resistance to ofloxacin and moxifloxacin. Consideration of gyr mutation combinations during the interpretation of molecular test results may improve the accuracy of predicting the fluoroquinolone resistance phenotype. Further, the differential effects of gyr mutations on the activity of early- and later-generation fluoroquinolones requires further investigation and could inform the selection of a fluoroquinolone for treatment. PMID:26763957

  16. Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis.

    PubMed

    Farhat, Maha R; Jacobson, Karen R; Franke, Molly F; Kaur, Devinder; Sloutsky, Alex; Mitnick, Carole D; Murray, Megan

    2016-03-01

    Molecular diagnostics that rapidly and accurately predict resistance to fluoroquinolone drugs and especially later-generation agents promise to improve treatment outcomes for patients with multidrug-resistant tuberculosis and prevent the spread of disease. Mutations in the gyr genes are known to confer most fluoroquinolone resistance, but knowledge about the effects of gyr mutations on susceptibility to early- versus later-generation fluoroquinolones and about the role of mutation-mutation interactions is limited. Here, we sequenced the full gyrA and gyrB open reading frames in 240 multidrug-resistant and extensively drug-resistant tuberculosis strains and quantified their ofloxacin and moxifloxacin MIC by testing growth at six concentrations for each drug. We constructed a multivariate regression model to assess both the individual mutation effects and interactions on the drug MICs. We found that gyrB mutations contribute to fluoroquinolone resistance both individually and through interactions with gyrA mutations. These effects were statistically significant. In these clinical isolates, several gyrA and gyrB mutations conferred different levels of resistance to ofloxacin and moxifloxacin. Consideration of gyr mutation combinations during the interpretation of molecular test results may improve the accuracy of predicting the fluoroquinolone resistance phenotype. Further, the differential effects of gyr mutations on the activity of early- and later-generation fluoroquinolones requires further investigation and could inform the selection of a fluoroquinolone for treatment. PMID:26763957

  17. Prevalence of pyrazinamide resistance across the spectrum of drug resistant phenotypes of Mycobacterium tuberculosis.

    PubMed

    Whitfield, Michael G; Streicher, Elizabeth M; Dolby, Tania; Simpson, John A; Sampson, Samantha L; Van Helden, Paul D; Van Rie, Annelies; Warren, Robin M

    2016-07-01

    Pyrazinamide resistance is largely unknown in the spectrum of drug resistant phenotypes. We summarize data on PZA resistance in clinical isolates from South Africa. PZA DST should be performed when considering its inclusion in treatment of patients with rifampicin-resistant TB or MDR-TB. PMID:27450014

  18. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

    PubMed Central

    Walker, Timothy M; Kohl, Thomas A; Omar, Shaheed V; Hedge, Jessica; Del Ojo Elias, Carlos; Bradley, Phelim; Iqbal, Zamin; Feuerriegel, Silke; Niehaus, Katherine E; Wilson, Daniel J; Clifton, David A; Kapatai, Georgia; Ip, Camilla L C; Bowden, Rory; Drobniewski, Francis A; Allix-Béguec, Caroline; Gaudin, Cyril; Parkhill, Julian; Diel, Roland; Supply, Philip; Crook, Derrick W; Smith, E Grace; Walker, A Sarah; Ismail, Nazir; Niemann, Stefan; Peto, Tim E A

    2015-01-01

    Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically

  19. Tuberculous Spondylitis in Russia and Prominent Role of Multidrug-Resistant Clone Mycobacterium tuberculosis Beijing B0/W148

    PubMed Central

    Solovieva, Natalia; Mushkin, Alexander; Manicheva, Olga; Vishnevsky, Boris; Zhuravlev, Viacheslav; Narvskaya, Olga

    2015-01-01

    Extrapulmonary and, in particular, spinal tuberculosis (TB) constitutes a minor but significant part of the total TB incidence. In spite of this, almost no studies on the genetic diversity and drug resistance of Mycobacterium tuberculosis isolates from spinal TB patients have been published to date. Here, we report results of the first Russian and globally largest molecular study of M. tuberculosis isolates recovered from patients with tuberculous spondylitis (TBS). The majority of 107 isolates were assigned to the Beijing genotype (n = 80); the other main families were T (n = 11), Ural (n = 7), and LAM (n = 4). Multidrug resistance (MDR) was more frequently found among Beijing (90.5%) and, intriguingly, Ural (71.4%) isolates than other genotypes (5%; P < 0.001). The extremely drug-resistant (XDR) phenotype was exclusively found in the Beijing isolates (n = 7). A notable prevalence of the rpoB531 and katG315 mutations in Beijing strains that were similarly high in both TBS (this study) and published pulmonary TB (PTB) samples from Russia shows that TBS and PTB Beijing strains follow the same paradigm of acquisition of rifampin (RIF) and isoniazid (INH) resistance. The 24-locus mycobacterial interspersed repetitive unit–variable-number tandem-repeat (MIRU-VNTR) subtyping of 80 Beijing isolates further discriminated them into 24 types (Hunter Gaston index [HGI] = 0.83); types 100-32 and 94-32 represented the largest groups. A genotype of Russian successful clone B0/W148 was identified in 30 of 80 Beijing isolates. In conclusion, this study highlighted a crucial impact of the Beijing genotype and the especially prominent role of its MDR-associated successful clone B0/W148 cluster in the development of spinal MDR-TB in Russian patients. PMID:25645851

  20. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH-NADH adduct formation activities

    PubMed Central

    Cade, Christine E; Dlouhy, Adrienne C; Medzihradszky, Katalin F; Salas-Castillo, Saida Patricia; Ghiladi, Reza A

    2010-01-01

    Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H2O2), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct. PMID:20054829

  1. Whole Genome Sequencing Reveals Complex Evolution Patterns of Multidrug-Resistant Mycobacterium tuberculosis Beijing Strains in Patients

    PubMed Central

    Merker, Matthias; Kohl, Thomas A.; Roetzer, Andreas; Truebe, Leona; Richter, Elvira; Rüsch-Gerdes, Sabine; Fattorini, Lanfranco; Oggioni, Marco R.; Cox, Helen; Varaine, Francis; Niemann, Stefan

    2013-01-01

    Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains represent a major threat for tuberculosis (TB) control. Treatment of MDR-TB patients is long and less effective, resulting in a significant number of treatment failures. The development of further resistances leads to extensively drug-resistant (XDR) variants. However, data on the individual reasons for treatment failure, e.g. an induced mutational burst, and on the evolution of bacteria in the patient are only sparsely available. To address this question, we investigated the intra-patient evolution of serial MTBC isolates obtained from three MDR-TB patients undergoing longitudinal treatment, finally leading to XDR-TB. Sequential isolates displayed identical IS6110 fingerprint patterns, suggesting the absence of exogenous re-infection. We utilized whole genome sequencing (WGS) to screen for variations in three isolates from Patient A and four isolates from Patient B and C, respectively. Acquired polymorphisms were subsequently validated in up to 15 serial isolates by Sanger sequencing. We determined eight (Patient A) and nine (Patient B) polymorphisms, which occurred in a stepwise manner during the course of the therapy and were linked to resistance or a potential compensatory mechanism. For both patients, our analysis revealed the long-term co-existence of clonal subpopulations that displayed different drug resistance allele combinations. Out of these, the most resistant clone was fixed in the population. In contrast, baseline and follow-up isolates of Patient C were distinguished each by eleven unique polymorphisms, indicating an exogenous re-infection with an XDR strain not detected by IS6110 RFLP typing. Our study demonstrates that intra-patient microevolution of MDR-MTBC strains under longitudinal treatment is more complex than previously anticipated. However, a mutator phenotype was not detected. The presence of different subpopulations might confound phenotypic and molecular drug

  2. Detection and Characteristics of Rifampicin-Resistant Isolates of Mycobacterium tuberculosis.

    PubMed

    Cherednichenko, A G; Dymova, M A; Solodilova, O A; Petrenko, T I; Prozorov, A I; Filipenko, M L

    2016-03-01

    Genotyping and analysis the drug resistance of 59 isolates of M. tuberculosis obtained from patients living in Altai Territory were performed using a BACTEC MGIT 960 fluorometric system by means of VNTR typing (variable number tandem repeat), PCR-RFLP analysis, and sequence analysis. The occurrence frequency was highest for isolates of the Beijing family (n=30, 50.8%). Analysis of mutation spectrum in the rpoB gene associated with rifampicin resistance revealed the major mutation (codon 531 of the rpoB gene) in 93% samples, which allows us to use rapid test systems. PMID:27021095

  3. Mycobacterium tuberculosis infection and vaccine development.

    PubMed

    Tang, Jiansong; Yam, Wing-Cheong; Chen, Zhiwei

    2016-05-01

    Following HIV/AIDS, tuberculosis (TB) continues to be the second most deadly infectious disease in humans. The global TB prevalence has become worse in recent years due to the emergence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains, as well as co-infection with HIV. Although Bacillus Calmette-Guérin (BCG) vaccine has nearly been used for a century in many countries, it does not protect adult pulmonary tuberculosis and even causes disseminated BCG disease in HIV-positive population. It is impossible to use BCG to eliminate the Mycobacterium tuberculosis (M. tb) infection or to prevent TB onset and reactivation. Consequently, novel vaccines are urgently needed for TB prevention and immunotherapy. In this review, we discuss the TB prevalence, interaction between M. tb and host immune system, as well as recent progress of TB vaccine research and development. PMID:27156616

  4. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Uzun, Meltem; Durupinar, Belma

    2015-08-01

    The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA), malachite green decolourisation assay (MGDA), microplate nitrate reductase assay (MNRA) and crystal violet decolourisation assay (CVDA), for the rapid detection of multidrug-resistant (MDR) tuberculosis. Fifty Mycobacterium tuberculosis isolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH) and the remaining isolates were susceptible to both INH and rifampicin (RIF). INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF). In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%). The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment. PMID:26222021

  5. The Transcriptional Foundations of Sp110-mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra.

    PubMed

    Wu, Yongyan; Guo, Zekun; Yao, Kezhen; Miao, Yue; Liang, Shuxin; Liu, Fayang; Wang, Yongsheng; Zhang, Yong

    2016-01-01

    Human tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading global health problem, causing 1.3 million deaths each year. The nuclear body protein, Sp110, has been linked to TB resistance and previous work showed that it enhances macrophage apoptosis upon Mtb infection. Here, we report on the role of Sp110 in transcriptional regulation of macrophage responses to Mtb through integrated transcriptome and mechanistic studies. Transcriptome analysis revealed that Sp110 regulates genes involved in immune responses, apoptosis, defence responses, and inflammatory responses. Detailed investigation revealed that, in addition to apoptosis-related genes, Sp110 regulates cytokines, chemokines and genes that regulate intracellular survival of Mtb. Moreover, Sp110 regulates miRNA expression in macrophages, with immune and apoptosis-related miRNAs such as miR-125a, miR-146a, miR-155, miR-21a and miR-99b under Sp110 regulation. Additionally, our results showed that Sp110 upregulates BCL2 modifying factor (Bmf) by inhibiting miR-125a, and forced expression of Bmf induces macrophage apoptosis. These findings not only reveal the transcriptional basis of Sp110-mediated macrophage resistance to Mtb, but also suggest potential regulatory roles for Sp110 related to inflammatory responses, miRNA profiles, and the intracellular growth of Mtb. PMID:26912204

  6. The Transcriptional Foundations of Sp110-mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra

    PubMed Central

    Wu, Yongyan; Guo, Zekun; Yao, Kezhen; Miao, Yue; Liang, Shuxin; Liu, Fayang; Wang, Yongsheng; Zhang, Yong

    2016-01-01

    Human tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading global health problem, causing 1.3 million deaths each year. The nuclear body protein, Sp110, has been linked to TB resistance and previous work showed that it enhances macrophage apoptosis upon Mtb infection. Here, we report on the role of Sp110 in transcriptional regulation of macrophage responses to Mtb through integrated transcriptome and mechanistic studies. Transcriptome analysis revealed that Sp110 regulates genes involved in immune responses, apoptosis, defence responses, and inflammatory responses. Detailed investigation revealed that, in addition to apoptosis-related genes, Sp110 regulates cytokines, chemokines and genes that regulate intracellular survival of Mtb. Moreover, Sp110 regulates miRNA expression in macrophages, with immune and apoptosis-related miRNAs such as miR-125a, miR-146a, miR-155, miR-21a and miR-99b under Sp110 regulation. Additionally, our results showed that Sp110 upregulates BCL2 modifying factor (Bmf) by inhibiting miR-125a, and forced expression of Bmf induces macrophage apoptosis. These findings not only reveal the transcriptional basis of Sp110-mediated macrophage resistance to Mtb, but also suggest potential regulatory roles for Sp110 related to inflammatory responses, miRNA profiles, and the intracellular growth of Mtb. PMID:26912204

  7. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates

    PubMed Central

    Coban, Ahmet Yilmaz; Akbal, Ahmet Ugur; Uzun, Meltem; Durupinar, Belma

    2015-01-01

    The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA), malachite green decolourisation assay (MGDA), microplate nitrate reductase assay (MNRA) and crystal violet decolourisation assay (CVDA), for the rapid detection of multidrug-resistant (MDR) tuberculosis. Fifty Mycobacterium tuberculosis isolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH) and the remaining isolates were susceptible to both INH and rifampicin (RIF). INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF). In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%). The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment. PMID:26222021

  8. Mycobacterium tuberculosis Complex Genotype Diversity and Drug Resistance Profiles in a Pediatric Population in Mexico

    PubMed Central

    Macías Parra, Mercedes; Kumate Rodríguez, Jesús; Arredondo García, José Luís; López-Vidal, Yolanda; Castañón-Arreola, Mauricio; Balandrano, Susana; Rastogi, Nalin; Gutiérrez Castrellón, Pedro

    2011-01-01

    The aim of this study was to determine the frequency of drug resistance and the clonality of genotype patterns in M. tuberculosis clinical isolates from pediatric patients in Mexico (n = 90 patients from 19 states; time period—January 2002 to December 2003). Pulmonary disease was the most frequent clinical manifestation (71%). Children with systemic tuberculosis (TB) were significantly younger compared to patients with localized TB infections (mean 7.7 ± 6.2 years versus 15 ± 3.4 years P = 0.001). Resistance to any anti-TB drug was detected in 24/90 (26.7%) of the isolates; 21/90 (23.3%) and 10/90 (11.1%) were resistant to Isoniazid and Rifampicin, respectively, and 10/90 (11.1%) strains were multidrug-resistant (MDR). Spoligotyping produced a total of 55 different patterns; 12/55 corresponded to clustered isolates (n = 47, clustering rate of 52.2%), and 43/55 to unclustered isolates (19 patterns were designated as orphan by the SITVIT2 database). Database comparison led to designation of 36 shared types (SITs); 32 SITs (n = 65 isolates) matched a preexisting shared type in SITVIT2, whereas 4 SITs (n = 6 isolates) were newly created. Lineage classification based on principal genetic groups (PGG) revealed that 10% of the strains belonged to PGG1 (Bovis and Manu lineages). Among PGG2/3 group, the most predominant clade was the Latin-American and Mediterranean (LAM) in 27.8% of isolates, followed by Haarlem and T lineages. The number of single drug-resistant (DR) and multidrug-resistant (MDR-TB) isolates in this study was similar to previously reported in studies from adult population with risk factors. No association between the spoligotype, age, region, or resistance pattern was observed. However, contrary to a study on M. tuberculosis spoligotyping in Acapulco city that characterized a single cluster of SIT19 corresponding to the EAI2-Manila lineage in 70 (26%) of patients, not a single SIT19 isolate was found in our pediatric patient population. Neither did we

  9. Immune Responses in Cattle Inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare antigen-specific immune responses to varied patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis), colonization without path...

  10. Pyrosequencing for rapid detection of extensively drug-resistant Mycobacterium tuberculosis in clinical isolates and clinical specimens.

    PubMed

    Lin, S-Y Grace; Rodwell, Timothy C; Victor, Thomas C; Rider, Errin C; Pham, Lucy; Catanzaro, Antonino; Desmond, Edward P

    2014-02-01

    Treating extensively drug-resistant (XDR) tuberculosis (TB) is a serious challenge. Culture-based drug susceptibility testing (DST) may take 4 weeks or longer from specimen collection to the availability of results. We developed a pyrosequencing (PSQ) assay including eight subassays for the rapid identification of Mycobacterium tuberculosis complex (MTBC) and concurrent detection of mutations associated with resistance to drugs defining XDR TB. The entire procedure, from DNA extraction to the availability of results, was accomplished within 6 h. The assay was validated for testing clinical isolates and clinical specimens, which improves the turnaround time for molecular DST and maximizes the benefit of using molecular testing. A total of 130 clinical isolates and 129 clinical specimens were studied. The correlations between the PSQ results and the phenotypic DST results were 94.3% for isoniazid, 98.7% for rifampin, 97.6% for quinolones (ofloxacin, levofloxacin, or moxifloxacin), 99.2% for amikacin, 99.2% for capreomycin, and 96.4% for kanamycin. For testing clinical specimens, the PSQ assay yielded a 98.4% sensitivity for detecting MTBC and a 95.8% sensitivity for generating complete sequencing results from all subassays. The PSQ assay was able to rapidly and accurately detect drug resistance mutations with the sequence information provided, which allows further study of the association of drug resistance or susceptibility with each mutation and the accumulation of such knowledge for future interpretation of results. Thus, reporting of false resistance for mutations known not to confer resistance can be prevented, which is a significant benefit of the assay over existing molecular diagnostic methods endorsed by the World Health Organization. PMID:24478476

  11. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients.

    PubMed

    Faksri, Kiatichai; Tan, Jun Hao; Disratthakit, Areeya; Xia, Eryu; Prammananan, Therdsak; Suriyaphol, Prapat; Khor, Chiea Chuen; Teo, Yik-Ying; Ong, Rick Twee-Hee; Chaiprasert, Angkana

    2016-01-01

    Multi-drug and extensively drug-resistant tuberculosis (MDR and XDR-TB) are problems that threaten public health worldwide. Only some genetic markers associated with drug-resistant TB are known. Whole-genome sequencing (WGS) is a promising tool for distinguishing between re-infection and persistent infection in isolates taken at different times from a single patient, but has not yet been applied in MDR and XDR-TB. We aim to detect genetic markers associated with drug resistance and distinguish between reinfection and persistent infection from MDR and XDR-TB patients based on WGS analysis. Samples of Mycobacterium tuberculosis (n = 7), serially isolated from 2 MDR cases and 1 XDR-TB case, were retrieved from Siriraj Hospital, Bangkok. The WGS analysis used an Illumina Miseq sequencer. In cases of persistent infection, MDR-TB isolates differed at an average of 2 SNPs across the span of 2-9 months whereas in the case of reinfection, isolates differed at 61 SNPs across 2 years. Known genetic markers associated with resistance were detected from strains susceptible to streptomycin (2/7 isolates), p-aminosalicylic acid (3/7 isolates) and fluoroquinolone drugs. Among fluoroquinolone drugs, ofloxacin had the highest phenotype-genotype concordance (6/7 isolates), whereas gatifloxcain had the lowest (3/7 isolates). A putative candidate SNP in Rv2477c associated with kanamycin and amikacin resistance was suggested for further validation. WGS provided comprehensive results regarding molecular epidemiology, distinguishing between persistent infection and reinfection in M/XDR-TB and potentially can be used for detection of novel mutations associated with drug resistance. PMID:27518818

  12. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients

    PubMed Central

    Faksri, Kiatichai; Tan, Jun Hao; Disratthakit, Areeya; Xia, Eryu; Prammananan, Therdsak; Suriyaphol, Prapat; Khor, Chiea Chuen; Teo, Yik-Ying; Ong, Rick Twee-Hee; Chaiprasert, Angkana

    2016-01-01

    Multi-drug and extensively drug-resistant tuberculosis (MDR and XDR-TB) are problems that threaten public health worldwide. Only some genetic markers associated with drug-resistant TB are known. Whole-genome sequencing (WGS) is a promising tool for distinguishing between re-infection and persistent infection in isolates taken at different times from a single patient, but has not yet been applied in MDR and XDR-TB. We aim to detect genetic markers associated with drug resistance and distinguish between reinfection and persistent infection from MDR and XDR-TB patients based on WGS analysis. Samples of Mycobacterium tuberculosis (n = 7), serially isolated from 2 MDR cases and 1 XDR-TB case, were retrieved from Siriraj Hospital, Bangkok. The WGS analysis used an Illumina Miseq sequencer. In cases of persistent infection, MDR-TB isolates differed at an average of 2 SNPs across the span of 2–9 months whereas in the case of reinfection, isolates differed at 61 SNPs across 2 years. Known genetic markers associated with resistance were detected from strains susceptible to streptomycin (2/7 isolates), p-aminosalicylic acid (3/7 isolates) and fluoroquinolone drugs. Among fluoroquinolone drugs, ofloxacin had the highest phenotype-genotype concordance (6/7 isolates), whereas gatifloxcain had the lowest (3/7 isolates). A putative candidate SNP in Rv2477c associated with kanamycin and amikacin resistance was suggested for further validation. WGS provided comprehensive results regarding molecular epidemiology, distinguishing between persistent infection and reinfection in M/XDR-TB and potentially can be used for detection of novel mutations associated with drug resistance. PMID:27518818

  13. Evidence of Clonal Expansion in the Genome of a Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolate from Peru

    PubMed Central

    Galarza, M.; Tarazona, D.; Borda, V.; Agapito, J. C.

    2014-01-01

    We report the genome sequence of Mycobacterium tuberculosis INS-MDR from Peru, a multidrug-resistant tuberculosis (MDR-TB) and Latin American-Mediterranean (LAM) lineage strain. Our analysis showed mutations related to drug resistance in the rpoB (D516V), katG (S315T), kasA (G269S), and pncA (Q10R) genes. Our evidence suggests that INS-MDR may be a clonal expansion related to the African strain KZN 1435. PMID:24578270

  14. Complete Genome Sequence of Multidrug-Resistant Clinical Isolate Mycobacterium tuberculosis 187.0, Used To Study the Effect of Drug Susceptibility Reversion by the New Medicinal Drug FS-1

    PubMed Central

    Ilin, Aleksandr I.; Kulmanov, Murat E.; Akhmetova, Gulshara K.; Lankina, Marina V.; Shvidko, Sergey V.; Reva, Oleg N.

    2015-01-01

    Complete genome sequence of the multidrug-resistant clinical isolate Mycobacterium tuberculosis SCAID 187.0 containing several drug-resistance mutations is presented. This strain is used in experiments to study genomic and population changes leading to reversion of susceptibility to the 1st line anti-tuberculosis (TB) drugs under the influence of a new medicinal drug FS-1. PMID:26543112

  15. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  16. New agents for the treatment of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Hoagland, Daniel T; Liu, Jiuyu; Lee, Robin B; Lee, Richard E

    2016-07-01

    Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens. PMID:27151308

  17. Molecular Characterization of Multidrug-Resistant Mycobacterium tuberculosis Isolates from China

    PubMed Central

    Zhao, Li-Li; Chen, Yan; Liu, Hai-Can; Xia, Qiang; Wu, Xiao-Cui; Sun, Qing; Zhao, Xiu-Qin; Li, Gui-Lian; Liu, Zhi-Guang

    2014-01-01

    To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China. PMID:24419342

  18. Cationic amphipathic D-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis.

    PubMed

    Lan, Yun; Lam, Jason T; Siu, Gilman K H; Yam, Wing Cheong; Mason, A James; Lam, Jenny K W

    2014-12-01

    Tuberculosis (TB) is the leading cause of bacterial death worldwide. Due to the emergence of multi-drug resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), and the persistence of latent infections, a safe and effective TB therapy is highly sought after. Antimicrobial peptides (AMPs) have therapeutic potential against infectious diseases and have the ability to target microbial pathogens within eukaryotic cells. In the present study, we investigated the activity of a family of six AMPs containing all-D amino acids (D-LAK peptides) against MDR and XDR clinical strains of Mycobacterium tuberculosis (Mtb) both in vitro and, using THP-1 cells as a macrophage model, cultured ex vivo. All the D-LAK peptides successfully inhibited the growth of Mtb in vitro and were similarly effective against MDR and XDR strains. D-LAK peptides effectively broke down the heavy clumping of mycobacteria in broth culture, consistent with a 'detergent-like effect' that could reduce the hydrophobic interactions between the highly lipidic cell walls of the mycobacteria, preventing bacteria cell aggregation. Furthermore, though not able to eradicate the intracellular mycobacteria, D-LAK peptides substantially inhibited the intracellular growth of drug-resistant Mtb clinical isolates at concentrations that were well tolerated by THP-1 cells. Finally, combining D-LAK peptide with isoniazid could enhance the anti-TB efficacy. D-LAK peptide, particularly D-LAK120-A, was effective as an adjunct agent at non-toxic concentration to potentiate the efficacy of isoniazid against drug-resistant Mtb in vitro, possibly by facilitating the access of isoniazid into the mycobacteria by increasing the surface permeability of the pathogen. PMID:25154927

  19. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  20. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology

    PubMed Central

    Chandra, Pallavi; Rajmani, R. S.; Verma, Garima; Bhavesh, Neel Sarovar

    2016-01-01

    ABSTRACT In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase

  1. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis.

    PubMed

    Ramirez, Melissa V; Cowart, Kelley C; Campbell, Patricia J; Morlock, Glenn P; Sikes, David; Winchell, Jonas M; Posey, James E

    2010-11-01

    The current study describes the development of a unique real-time PCR assay for the detection of mutations conferring drug resistance in Mycobacterium tuberculosis. The rifampicin resistance determinant region (RRDR) of rpoB and specific regions of katG and the inhA promoter were targeted for the detection of rifampin (RIF) and isoniazid (INH) resistance, respectively. Additionally, this assay was multiplexed to discriminate Mycobacterium tuberculosis complex (MTC) strains from nontuberculous Mycobacteria (NTM) strains by targeting the IS6110 insertion element. High-resolution melting (HRM) analysis following real-time PCR was used to identify M. tuberculosis strains containing mutations at the targeted loci, and locked nucleic acid (LNA) probes were used to enhance the detection of strains containing specific single-nucleotide polymorphism (SNP) transversion mutations. This method was used to screen 252 M. tuberculosis clinical isolates, including 154 RIF-resistant strains and 174 INH-resistant strains based on the agar proportion method of drug susceptibility testing (DST). Of the 154 RIF-resistant strains, 148 were also resistant to INH and therefore classified as multidrug resistant (MDR). The assay demonstrated sensitivity and specificity of 91% and 98%, respectively, for the detection of RIF resistance and 87% and 100% for the detection of INH resistance. Overall, this assay showed a sensitivity of 85% and a specificity of 98% for the detection of MDR strains. This method provides a rapid, robust, and inexpensive way to detect the dominant mutations known to confer MDR in M. tuberculosis strains and offers several advantages over current molecular and culture-based techniques. PMID:20810777

  2. Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal

    PubMed Central

    Manson McGuire, Abigail; Desjardins, Christopher A.; Munsamy, Vanisha; Shea, Terrance P.; Walker, Bruce J.; Bantubani, Nonkqubela; Almeida, Deepak V.; Alvarado, Lucia; Chapman, Sinéad B.; Mvelase, Nomonde R.; Duffy, Eamon Y.; Fitzgerald, Michael G.; Govender, Pamla; Gujja, Sharvari; Hamilton, Susanna; Howarth, Clinton; Larimer, Jeffrey D.; Maharaj, Kashmeel; Pearson, Matthew D.; Priest, Margaret E.; Zeng, Qiandong; Padayatchi, Nesri; Grosset, Jacques; Young, Sarah K.; Wortman, Jennifer; Mlisana, Koleka P.; O'Donnell, Max R.; Birren, Bruce W.; Bishai, William R.; Pym, Alexander S.; Earl, Ashlee M.

    2015-01-01

    Background The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents. Methods and Findings We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452

  3. Targeting the histidine pathway in Mycobacterium tuberculosis.

    PubMed

    Lunardi, Juleane; Nunes, José Eduardo S; Bizarro, Cristiano V; Basso, Luiz Augusto; Santos, Diógenes Santiago; Machado, Pablo

    2013-01-01

    Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins. PMID:24111909

  4. Multicenter Evaluation of Genechip for Detection of Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Pang, Yu; Xia, Hui; Zhang, Zhiying; Li, Junchen; Dong, Yi; Li, Qiang; Ou, Xichao; Song, Yuanyuan; Wang, Yufeng; O'Brien, Richard; Kam, Kai Man; Chi, Junying; Huan, Shitong; Chin, Daniel P.

    2013-01-01

    Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China. PMID:23515537

  5. Frequency and Geographic Distribution of gyrA and gyrB Mutations Associated with Fluoroquinolone Resistance in Clinical Mycobacterium Tuberculosis Isolates: A Systematic Review

    PubMed Central

    Avalos, Elisea; Catanzaro, Donald; Catanzaro, Antonino; Ganiats, Theodore; Brodine, Stephanie; Alcaraz, John; Rodwell, Timothy

    2015-01-01

    Background The detection of mutations in the gyrA and gyrB genes in the Mycobacterium tuberculosis genome that have been demonstrated to confer phenotypic resistance to fluoroquinolones is the most promising technology for rapid diagnosis of fluoroquinolone resistance. Methods In order to characterize the diversity and frequency of gyrA and gyrB mutations and to describe the global distribution of these mutations, we conducted a systematic review, from May 1996 to April 2013, of all published studies evaluating Mycobacterium tuberculosis mutations associated with resistance to fluoroquinolones. The overall goal of the study was to determine the potential utility and reliability of these mutations as diagnostic markers to detect phenotypic fluoroquinolone resistance in Mycobacterium tuberculosis and to describe their geographic distribution. Results Forty-six studies, covering four continents and 18 countries, provided mutation data for 3,846 unique clinical isolates with phenotypic resistance profiles to fluoroquinolones. The gyrA mutations occurring most frequently in fluoroquinolone-resistant isolates, ranged from 21–32% for D94G and 13–20% for A90V, by drug. Eighty seven percent of all strains that were phenotypically resistant to moxifloxacin and 83% of ofloxacin resistant isolates contained mutations in gyrA. Additionally we found that 83% and 80% of moxifloxacin and ofloxacin resistant strains respectively, were observed to have mutations in the gyrA codons interrogated by the existing MTBDRsl line probe assay. In China and Russia, 83% and 84% of fluoroquinolone resistant strains respectively, were observed to have gyrA mutations in the gene regions covered by the MTBDRsl assay. Conclusions Molecular diagnostics, specifically the Genotype MTBDRsl assay, focusing on codons 88–94 should have moderate to high sensitivity in most countries. While we did observe geographic differences in the frequencies of single gyrA mutations across countries, molecular

  6. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates.

    PubMed

    Rueda, Johana; Realpe, Teresa; Mejia, Gloria Isabel; Zapata, Elsa; Rozo, Juan Carlos; Ferro, Beatriz Eugenia; Robledo, Jaime

    2015-12-01

    Ethionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in the Mycobacterium tuberculosis population. ETH resistance in M. tuberculosis is phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in the inhA promoter and in the following genes: katG, ethA, ethR, mshA, ndh, and inhA. We sequenced the above genes in 64 M. tuberculosis isolates (n = 57 ETH-resistant MDR-TB isolates; n = 3 ETH-susceptible MDR-TB isolates; and n = 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% in katG, 72% in ethA, 45.6% in mshA, 8.7% in ndh, and 33.3% in inhA or its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations in katG; one had a mutation in ethA, and another, in mshA and inhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations in mshA gene unrelated to the resistance. Mutations not previously reported were found in the ethA, mshA, katG, and ndh genes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in the M. tuberculosis isolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB. PMID:26369965

  7. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Realpe, Teresa; Mejia, Gloria Isabel; Zapata, Elsa; Rozo, Juan Carlos; Ferro, Beatriz Eugenia; Robledo, Jaime

    2015-01-01

    Ethionamide (ETH) is an antibiotic used for the treatment of multidrug-resistant (MDR) tuberculosis (TB) (MDR-TB), and its use may be limited with the emergence of resistance in the Mycobacterium tuberculosis population. ETH resistance in M. tuberculosis is phenomenon independent or cross related when accompanied with isoniazid (INH) resistance. In most cases, resistance to INH and ETH is explained by mutations in the inhA promoter and in the following genes: katG, ethA, ethR, mshA, ndh, and inhA. We sequenced the above genes in 64 M. tuberculosis isolates (n = 57 ETH-resistant MDR-TB isolates; n = 3 ETH-susceptible MDR-TB isolates; and n = 4 fully susceptible isolates). Each isolate was tested for susceptibility to first- and second-line drugs using the agar proportion method. Mutations were observed in ETH-resistant MDR-TB isolates at the following rates: 100% in katG, 72% in ethA, 45.6% in mshA, 8.7% in ndh, and 33.3% in inhA or its promoter. Of the three ETH-susceptible MDR-TB isolates, all showed mutations in katG; one had a mutation in ethA, and another, in mshA and inhA. Finally, of the four fully susceptible isolates, two showed no detectable mutation in the studied genes, and two had mutations in mshA gene unrelated to the resistance. Mutations not previously reported were found in the ethA, mshA, katG, and ndh genes. The concordance between the phenotypic susceptibility testing to INH and ETH and the sequencing was 1 and 0.45, respectively. Among isolates exhibiting INH resistance, the high frequency of independent resistance and cross-resistance with ETH in the M. tuberculosis isolates suggests the need to confirm the susceptibility to ETH before considering it in the treatment of patients with MDR-TB. PMID:26369965

  8. Systematic Review of Mutations in Pyrazinamidase Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Ramirez-Busby, Sarah M.

    2015-01-01

    Pyrazinamide (PZA) is an important first-line drug in the treatment of tuberculosis (TB) and of significant interest to the HIV-infected community due to the prevalence of TB-HIV coinfection in some regions of the world. The mechanism of resistance to PZA is unlike that of any other anti-TB drug. The gene pncA, encoding pyrazinamidase (PZase), is associated with resistance to PZA. However, because single mutations in PZase have a low prevalence, the individual sensitivities are low. Hundreds of distinct mutations in the enzyme have been associated with resistance, while some only appear in susceptible isolates. This makes interpretation of molecular testing difficult and often leads to the simplification that any PZase mutation causes resistance. This systematic review reports a comprehensive global list of mutations observed in PZase and its promoter region in clinical strains, their phenotypic association, their global frequencies and diversity, the method of phenotypic determination, their MIC values when given, and the method of MIC determination and assesses the strength of the association between mutations and phenotypic resistance to PZA. In this systematic review, we report global statistics for 641 mutations in 171 (of 187) codons from 2,760 resistant strains and 96 mutations from 3,329 susceptible strains reported in 61 studies. For diagnostics, individual mutations (or any subset) were not sufficiently sensitive. Assuming similar error profiles of the 5 phenotyping platforms included in this study, the entire enzyme and its promoter provide a combined estimated sensitivity of 83%. This review highlights the need for identification of an alternative mechanism(s) of resistance, at least for the unexplained 17% of cases. PMID:26077261

  9. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA

    PubMed Central

    Kumar, Vivek; Sobhia, M. Elizabeth

    2015-01-01

    Examination of InhA mutants I16T, I21V, I47T, S94A, and I95P showed that direct and water mediated H-bond interactions between NADH and binding site residues reduced drastically. It allowed conformational flexibility to NADH, particularly at the pyrophosphate region, leading to weakening of its binding at dinucleotide binding site. The highly scattered distribution of pyrophosphate dihedral angles and chi1 side chain dihedral angles of corresponding active site residues therein confirmed weak bonding between InhA and NADH. The average direct and water mediated bridged H-bond interactions between NADH and mutants were observed weaker as compared to wild type. Further, estimated NADH binding free energy in mutants supported the observed weakening of InhA-NADH interactions. Similarly, per residue contribution to NADH binding was also found little less as compared to corresponding residues in wild type. This investigation clearly depicted and supported the effect of mutations on NADH binding and can be accounted for isoniazid resistance as suggested by previous biochemical and mutagenic studies. Further, structural analysis of InhA provided the crucial points to enhance the NADH binding affinity towards InhA mutants in the presence of direct InhA inhibitors to combat isoniazid drug resistance. This combination could be a potential alternative for treatment of drug resistant tuberculosis. PMID:26658674

  10. Label-free DNA-based detection of Mycobacterium tuberculosis and rifampicin resistance through hydration induced stress in microcantilevers.

    PubMed

    Domínguez, Carmen M; Kosaka, Priscila M; Sotillo, Alma; Mingorance, Jesús; Tamayo, Javier; Calleja, Montserrat

    2015-02-01

    We have developed a label-free assay for the genomic detection of Mycobacterium tuberculosis and rifampicin resistance. The method relies on the quantification of the hydration induced stress on microcantilever biosensors functionalized with oligonucleotide probes, before and after hybridization with specific targets. We have found a limit of detection of 10 fg/mL for PCR amplified products of 122 bp. Furthermore, the technique can successfully target genomic DNA (gDNA) fragments of length >500 bp, and it can successfully discriminate single mismatches. We have used both loci IS6110 and rpoB as targets to detect the mycobacteria and the rifampicin resistance from gDNA directly extracted from bacterial culture and without PCR amplification. We have been able to detect 2 pg/mL target concentration in samples with an excess of interfering DNA and in a total analysis time of 1 h and 30 min. The detection limit found demonstrates the capability to develop direct assays without the need for long culture steps or PCR amplification. The methodology can be easily translated to different microbial targets, and it is suitable for further development of miniaturized devices and multiplexed detection. PMID:25599922

  11. A molecular platform for the diagnosis of multidrug-resistant and pre-extensively drug-resistant tuberculosis based on single nucleotide polymorphism mutations present in Colombian isolates of Mycobacterium tuberculosis

    PubMed Central

    Martínez, Luz Maira Wintaco; Castro, Gloria Puerto; Guerrero, Martha Inírida

    2016-01-01

    Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours. PMID:26841047

  12. Prevention of False Resistance Results Obtained in Testing the Susceptibility of Mycobacterium tuberculosis to Pyrazinamide with the Bactec MGIT 960 System Using a Reduced Inoculum

    PubMed Central

    Mustazzolu, Alessandro; Giannoni, Federico; Bornigia, Stefano; Gherardi, Giancarlo; Fattorini, Lanfranco

    2013-01-01

    The susceptibility of 211 clinical isolates of Mycobacterium tuberculosis complex (201 M. tuberculosis and 10 Mycobacterium bovis isolates) to pyrazinamide (PZA) was assessed by the nonradiometric Bactec MGIT 960 system (M960). Detection of PZA resistance was followed by a repeat testing using a reduced inoculum (RI) of 0.25 ml instead of 0.5 ml. According to the first M960 analysis, resistance was observed in 55 samples. In the RI assay, 32 samples turned out to be susceptible and 23 proved to be resistant (58.2% false positivity). The Bactec 460 assay confirmed as resistant those strains detected by the RI assay, while discrepant results were found susceptible. Mutation analysis performed on 13 M. tuberculosis isolates detected pncA mutations in 11 samples. On the basis of our data, we suggest using the RI assay to confirm all PZA resistance results obtained with the standard M960 assay. Further studies are required to confirm our findings. PMID:23100351

  13. Contribution of β-Lactamases to β-Lactam Susceptibilities of Susceptible and Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Segura, C.; Salvadó, M.; Collado, I.; Chaves, J.; Coira, A.

    1998-01-01

    The β-lactamases in 154 clinical Mycobacterium tuberculosis strains were studied. Susceptibilities to β-lactam antibiotics, their combination with clavulanate (2:1), and two fluoroquinolones were determined in 24 M. tuberculosis strains susceptible to antimycobacterial drugs and in nine multiresistant strains. All 154 M. tuberculosis isolates showed a single chromosomal β-lactamase pattern (pI 4.9 and 5.1). M. tuberculosis β-lactamase hydrolyzes cefotaxime with a maximum rate of 22.5 ± 2.19 IU/liter (strain 1382). Neither amoxicillin, carbenicillin, cefotaxime, ceftriaxone, nor aztreonam was active alone. Except for aztreonam, β-lactam combinations with clavulanate produced better antimycobacterial activity. PMID:9624510

  14. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis

    PubMed Central

    Stinear, Timothy P.; Seemann, Torsten; Harrison, Paul F.; Jenkin, Grant A.; Davies, John K.; Johnson, Paul D.R.; Abdellah, Zahra; Arrowsmith, Claire; Chillingworth, Tracey; Churcher, Carol; Clarke, Kay; Cronin, Ann; Davis, Paul; Goodhead, Ian; Holroyd, Nancy; Jagels, Kay; Lord, Angela; Moule, Sharon; Mungall, Karen; Norbertczak, Halina; Quail, Michael A.; Rabbinowitsch, Ester; Walker, Danielle; White, Brian; Whitehead, Sally; Small, Pamela L.C.; Brosch, Roland; Ramakrishnan, Lalita; Fischbach, Michael A.; Parkhill, Julian; Cole, Stewart T.

    2008-01-01

    Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis. PMID:18403782

  15. Prevalence of mutations conferring resistance among multi- and extensively drug-resistant Mycobacterium tuberculosis isolates in China.

    PubMed

    Chen, Yan; Zhao, Bing; Liu, Hai-can; Sun, Qing; Zhao, Xiu-qin; Liu, Zhi-guang; Wan, Kang-lin; Zhao, Li-li

    2016-03-01

    To identify the mutations in multi- and extensively drug-resistant tuberculosis isolates and to evaluate the use of molecular markers of resistance, we analyzed 257 multi- and extensively drug-resistant isolates and 64 pan-sensitive isolates from 23 provinces in China. Seven loci associated with drug resistance, including rpoB for rifampin (RIF), katG, inhA and oxyR-ahpC for isoniazid (INH), gyrA and gyrB for ofloxacin (OFX), and rrs for kanmycin (KAN), were examined by DNA sequencing. Compared with the phenotypic data, the sensitivity and specificity for DNA sequencing were 91.1% and 98.4% for RIF, 80.2% and 98.4% for INH, 72.2% and 98.3% for OFX and 40% and 98.2% for KAN, respectively. The most common mutations found in RIF, INH, OFX and KAN resistance were Ser531Leu (48.2%) in rpoB, Ser315Thr (49.8%) in katG, C(-15)T (10.5%) in inhA, Asp94Gly (20.3%), Asp94Ala (12.7%) and Ala90Val (21.5%) in gyrA, and A1401G (40%) in rrs. This molecular information will be helpful to establish new molecular biology-based methods for diagnosing multi- and extensively drug-resistant tuberculosis in China. PMID:26486879

  16. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis

    PubMed Central

    Ramazanzadeh, Rashid; Roshani, Daem; Shakib, Pegah; Rouhi, Samaneh

    2015-01-01

    Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family. PMID:25767526

  17. Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis.

    PubMed

    Malinga, Lesibana; Brand, Jeannette; Olorunju, Steve; Stoltz, Anton; van der Walt, Martie

    2016-08-01

    Mutations causing mono and cross-resistance among amikacin, kanamycin and capreomycin of second-line injectable drugs (SLIDs) namely are not well understood. We investigated 124 isolates of Mycobacterium tuberculosis for mutations within rrs, eis, tlyA and efflux pump (Rv1258c and Rv0194) genes involved in resistance towards SLIDs. The distribution of mutations across these genes were significantly different in strains with mono-resistance or cross-resistance. A new mutation G878A was found in rrs gene, among strains with capreomycin mono-resistant, or in strains with cross-resistance of capreomycin, kanamycin and amikacin. This mutation was associated with the Euro-American X3 lineage (P < 0.0001). Mutations in the two efflux genes Rv1258c and Rv0194 were confined to strains with only capreomycin/amikacin/kanamycin cross-resistance. We further investigated the minimum inhibitory concentration of capreomycin on isolates with new G878A mutation ranging from 8 μg/mL to 64 μg/mL. Inclusion of G878A on new molecular assays could increase the sensitivity of capreomycin resistance detection. PMID:27298046

  18. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB.

    PubMed

    Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun

    2016-01-01

    Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype. PMID:26786661

  19. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants.

    PubMed

    Lall, N; Meyer, J J

    1999-09-01

    Twenty South African medicinal plants used to treat pulmonary diseases were screened for activity against drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis. A preliminary screening of acetone and water plant extracts against a drug-sensitive strain of Mycobacterium tuberculosis, H37Rv, was done by the agar plate method. Fourteen of the 20 acetone extracts showed inhibitory activity at a concentration of 0.5 mg/ml against this strain. Acetone as well as water extracts of Cryptocarya latifolia, Euclea natalensis, Helichrysum melanacme, Nidorella anomala and Thymus vulgaris inhibited the growth of M. tuberculosis. Given the activity of 14 acetone extracts at 0.5 mg/ml against the drug-sensitive strain by the agar plate method, a further study was done employing a rapid radiometric method to confirm the inhibitory activity. These active acetone extracts were screened against the H37Rv strain as well as a strain resistant to the drugs isoniazid and rifampin. The minimal inhibitory concentration of Croton pseudopulchellus, Ekebergia capensis, Euclea natalensis, Nidorella anomala and Polygala myrtifolia was 0.1 mg/ml against the H37Rv strain by the radiometric method. Extracts of Chenopodium ambrosioides, Ekebergia capensis, Euclea natalensis, Helichrysum melanacme, Nidorella anomala and Polygala myrtifolia were active against the resistant strain at 0.1 mg/ml. Eight plants showed activity against both strains at a concentration of 1.0 mg/ml. PMID:10473184

  20. Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCR-Based Melting Curve Analysis

    PubMed Central

    Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Quan, Shengmao; Wang, Feng; Wen, Huixin

    2014-01-01

    The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions −17 to −8), inhA position 94, and the ahpC promoter (positions −44 to −30 and −15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2 × 103 to 2 × 104 bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA −15C→T, katG S315N (AGC→AAC), and ahpC promoter −10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates. PMID:24599986

  1. Rapid detection of isoniazid resistance in Mycobacterium tuberculosis isolates by use of real-time-PCR-based melting curve analysis.

    PubMed

    Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Quan, Shengmao; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2014-05-01

    The MeltPro TB/INH assay, recently approved by the Chinese Food and Drug Administration, is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test specially designed to detect 30 isoniazid (INH) resistance mutations in katG position 315 (katG 315), the inhA promoter (positions -17 to -8), inhA position 94, and the ahpC promoter (positions -44 to -30 and -15 to 3) of Mycobacterium tuberculosis. Here we evaluated both the analytical performance and clinical performance of this assay. Analytical studies with corresponding panels demonstrated that the accuracy for detection of different mutation types (10 wild-type samples and 12 mutant type samples), the limit of detection (2×10(3) to 2×10(4) bacilli/ml), reproducibility (standard deviation [SD], <0.4°C), and the lowest heteroresistance level (40%) all met the parameters preset by the kit. The assay could be run on five types of real-time PCR machines, with the shortest running time (105 min) obtained with the LightCycler 480 II. Clinical studies enrolled 1,096 clinical isolates collected from three geographically different tuberculosis centers, including 437 INH-resistant isolates and 659 INH-susceptible isolates characterized by traditional drug susceptibility testing on Löwenstein-Jensen solid medium. The clinical sensitivity and specificity of the MeltPro TB/INH assay were 90.8% and 96.4%, respectively. DNA sequencing analysis showed that, except for the 5 mutants outside the detection range of the MeltPro assay, a concordance rate between the two methods of 99.1% (457/461) was obtained. Among the 26 mutation types detected, katG S315T (AGC→ACC), inhA -15C→T, katG S315N (AGC→AAC), and ahpC promoter -10C→T accounted for more than 90%. Overall, the MeltPro TB/INH assay represents a reliable and rapid tool for the detection of INH resistance in clinical isolates. PMID:24599986

  2. Extensively drug-resistant tuberculosis.

    PubMed

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  3. Simplified Microarray System for Simultaneously Detecting Rifampin, Isoniazid, Ethambutol, and Streptomycin Resistance Markers in Mycobacterium tuberculosis

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Lambarqui, Amine; Bryant, Lexi; Rudy, George B.; Dionne, Kim; Fisher, Stefanie L.; Parrish, Nicole

    2014-01-01

    We developed a simplified microarray test for detecting and identifying mutations in rpoB, katG, inhA, embB, and rpsL and compared the analytical performance of the test to that of phenotypic drug susceptibility testing (DST). The analytical sensitivity was estimated to be at least 110 genome copies per amplification reaction. The microarray test correctly detected 95.2% of mutations for which there was a sequence-specific probe on the microarray and 100% of 96 wild-type sequences. In a blinded analysis of 153 clinical isolates, microarray sensitivity for first-line drugs relative to phenotypic DST (true resistance) was 100% for rifampin (RIF) (14/14), 90.0% for isoniazid (INH) (36/40), 70% for ethambutol (EMB) (7/10), and 89.1% (57/64) combined. Microarray specificity (true susceptibility) for first-line agents was 95.0% for RIF (132/139), 98.2% for INH (111/113), and 98.6% for EMB (141/143). Overall microarray specificity for RIF, INH, and EMB combined was 97.2% (384/395). The overall positive and negative predictive values for RIF, INH, and EMB combined were 84.9% and 98.3%, respectively. For the second-line drug streptomycin (STR), overall concordance between the agar proportion method and microarray analysis was 89.5% (137/153). Sensitivity was 34.8% (8/23) because of limited microarray coverage for STR-conferring mutations, and specificity was 99.2% (129/130). All false-susceptible discrepant results were a consequence of DNA mutations that are not represented by a specific microarray probe. There were zero invalid results from 220 total tests. The simplified microarray system is suitable for detecting resistance-conferring mutations in clinical M. tuberculosis isolates and can now be used for prospective trials or integrated into an all-in-one, closed-amplicon consumable. PMID:24719444

  4. A Systematic Follow-Up of Mycobacterium tuberculosis Drug-Resistance and Associated Genotypic Lineages in the French Departments of the Americas over a Seventeen-Year Period

    PubMed Central

    Millet, Julie; Berchel, Mylène; Bomer, Anne-Gaël; Schuster, Franziska; Paasch, Delaina; Cadelis, Gilbert

    2014-01-01

    The population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland France and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995–December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed—T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)—two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage. PMID:24738068

  5. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis.

    PubMed

    Larsen, Michelle H; Vilchèze, Catherine; Kremer, Laurent; Besra, Gurdyal S; Parsons, Linda; Salfinger, Max; Heifets, Leonid; Hazbon, Manzour H; Alland, David; Sacchettini, James C; Jacobs, William R

    2002-10-01

    The inhA and kasA genes of Mycobacterium tuberculosis have each been proposed to encode the primary target of the antibiotic isoniazid (INH). Previous studies investigating whether overexpressed inhA or kasA could confer resistance to INH yielded disparate results. In this work, multicopy plasmids expressing either inhA or kasA genes were transformed into M. smegmatis, M. bovis BCG and three different M. tuberculosis strains. The resulting transformants, as well as previously published M. tuberculosis strains with multicopy inhA or kasAB plasmids, were tested for their resistance to INH, ethionamide (ETH) or thiolactomycin (TLM). Mycobacteria containing inhA plasmids uniformly exhibited 20-fold or greater increased resistance to INH and 10-fold or greater increased resistance to ETH. In contrast, the kasA plasmid conferred no increased resistance to INH or ETH in any of the five strains, but it did confer resistance to thiolactomycin, a known KasA inhibitor. INH is known to increase the expression of kasA in INH-susceptible M. tuberculosis strains. Using molecular beacons, quantified inhA and kasA mRNA levels showed that increased inhA mRNA levels corre--lated with INH resistance, whereas kasA mRNA levels did not. In summary, analysis of strains harbouring inhA or kasA plasmids yielded the same conclusion: overexpressed inhA, but not kasA, confers INH and ETH resistance to M. smegmatis, M. bovis BCG and M. tuberculosis. Therefore, InhA is the primary target of action of INH and ETH in all three species. PMID:12406221

  6. Simultaneous identification of rifampin-resistant Mycobacterium tuberculosis and nontuberculous mycobacteria by polymerase chain reaction-single strand conformation polymorphism and sequence analysis of the RNA polymerase gene (rpoB).

    PubMed

    Kim, Bum-Joon; Lee, Keun-Hwa; Yun, Yeo-Jun; Park, Eun-Mi; Park, Young-Gil; Bai, Gil-Han; Cha, Chang-Yong; Kook, Yoon-Hoh

    2004-07-01

    Interspecies variations and mutations associated with rifampin resistance in rpoB of Mycobacterium allow for the simultaneous identification of rifampin-resistant Mycobacterium tuberculosis and nontuberculous mycobacteria by PCR-SSCP analysis and PCR- sequencing. One hundred and ten strains of rifampin-susceptible M. tuberculosis, 14 strains of rifampin-resistant M. tuberculosis, and four strains of the M. avium complex were easily identified by PCR-SSCP. Of another seven strains, which showed unique SSCP patterns, three were identified as rifampin-resistant M. tuberculosis and four as M. terrae complex by subsequent sequence analysis of their rpoB DNAs (306 bp). These results were concordant with those obtained by susceptibility testing, biochemical identification, and 16S rDNA sequencing. PMID:15177909

  7. Peritoneal tuberculosis due to Mycobacterium caprae

    PubMed Central

    Nebreda, T.; Álvarez-Prida, E.; Blanco, B.; Remacha, M.A.; Samper, S.; Jiménez, M.S.

    2016-01-01

    The incidence of tuberculosis in humans due to Mycobacterium caprae is very low and is almost confined to Europe. We report a case of a previously healthy 41-year-old Moroccan with a 6 month history of abdominal pain, weight loss, fatigue and diarrhea. A diagnosis of peritoneal tuberculosis due to M. caprae was made. PMID:27134824

  8. Mycobacterium tuberculosis and the host response

    PubMed Central

    Kaufmann, Stefan H.E.; Cole, Stewart T.; Mizrahi, Valerie; Rubin, Eric; Nathan, Carl

    2005-01-01

    Mycobacterium tuberculosis remains a leading cause of morbidity and mortality worldwide. Advances reported at a recent international meeting highlight insights and controversies in the genetics of M. tuberculosis and the infected host, the nature of protective immune responses, adaptation of the bacillus to host-imposed stresses, animal models, and new techniques. PMID:15939785

  9. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy.

    PubMed

    Mieras, Liesbeth; Anthony, Richard; van Brakel, Wim; Bratschi, Martin W; van den Broek, Jacques; Cambau, Emmanuelle; Cavaliero, Arielle; Kasang, Christa; Perera, Geethal; Reichman, Lee; Richardus, Jan Hendrik; Saunderson, Paul; Steinmann, Peter; Yew, Wing Wai

    2016-01-01

    Post-exposure prophylaxis (PEP) for leprosy is administered as one single dose of rifampicin (SDR) to the contacts of newly diagnosed leprosy patients. SDR reduces the risk of developing leprosy among contacts by around 60 % in the first 2-3 years after receiving SDR. In countries where SDR is currently being implemented under routine programme conditions in defined areas, questions were raised by health authorities and professional bodies about the possible risk of inducing rifampicin resistance among the M. tuberculosis strains circulating in these areas. This issue has not been addressed in scientific literature to date. To produce an authoritative consensus statement about the risk that SDR would induce rifampicin-resistant tuberculosis, a meeting was convened with tuberculosis (TB) and leprosy experts. The experts carefully reviewed and discussed the available evidence regarding the mechanisms and risk factors for the development of (multi) drug-resistance in M. tuberculosis with a view to the special situation of the use of SDR as PEP for leprosy. They concluded that SDR given to contacts of leprosy patients, in the absence of symptoms of active TB, poses a negligible risk of generating resistance in M. tuberculosis in individuals and at the population level. Thus, the benefits of SDR prophylaxis in reducing the risk of developing leprosy in contacts of new leprosy patients far outweigh the risks of generating drug resistance in M. tuberculosis. PMID:27268059

  10. Multidrug Resistant Mycobacterium tuberculosis: A Retrospective katG and rpoB Mutation Profile Analysis in Isolates from a Reference Center in Brazil

    PubMed Central

    de Freitas, Flávia A. D.; Bernardo, Vagner; Gomgnimbou, Michel K.; Sola, Christophe; Siqueira, Hélio R.; Pereira, Márcia A. S.; Fandinho, Fátima C. O.; Gomes, Harrison M.; Araújo, Marcelo E. I.; Suffys, Philip N.; Marques, Elizabeth A.; Albano, Rodolpho M.

    2014-01-01

    Background Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center. Methods and Findings Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates. Conclusions Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment. PMID:25093512

  11. Pathway Profiling in Mycobacterium tuberculosis

    PubMed Central

    Thomas, Suzanne T.; VanderVen, Brian C.; Sherman, David R.; Russell, David G.; Sampson, Nicole S.

    2011-01-01

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, imports and metabolizes host cholesterol during infection. This ability is important in the chronic phase of infection. Here we investigate the role of the intracellular growth operon (igr), which has previously been identified as having a cholesterol-sensitive phenotype in vitro and which is important for intracellular growth of the mycobacteria. We have employed isotopically labeled low density lipoproteins containing either [1,7,15,22,26-14C]cholesterol or [1,7,15,22,26-13C]cholesterol and high resolution LC/MS as tools to profile the cholesterol-derived metabolome of an igr operon-disrupted mutant (Δigr) of M. tuberculosis. A partially metabolized cholesterol species accumulated in the Δigr knock-out strain that was absent in the complemented and parental wild-type strains. Structural elucidation by multidimensional 1H and 13C NMR spectroscopy revealed the accumulated metabolite to be methyl 1β-(2′-propanoate)-3aα-H-4α-(3′-propanoic acid)-7aβ-methylhexahydro-5-indanone. Heterologously expressed and purified FadE28-FadE29, an acyl-CoA dehydrogenase encoded by the igr operon, catalyzes the dehydrogenation of 2′-propanoyl-CoA ester side chains in substrates with structures analogous to the characterized metabolite. Based on the structure of the isolated metabolite, enzyme activity, and bioinformatic annotations, we assign the primary function of the igr operon to be degradation of the 2′-propanoate side chain. Therefore, the igr operon is necessary to completely metabolize the side chain of cholesterol metabolites. PMID:22045806

  12. Mycobacterium tuberculosis Mutations Associated with Reduced Susceptibility to Linezolid.

    PubMed

    Zhang, Shuo; Chen, Jiazhen; Cui, Peng; Shi, Wanliang; Shi, Xiaohong; Niu, Hongxia; Chan, Denise; Yew, Wing Wai; Zhang, Wenhong; Zhang, Ying

    2016-04-01

    Linezolid (LZD) has become increasingly important for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its mechanisms of resistance are not well characterized. We isolated 32 mutants ofMycobacterium tuberculosiswith reduced susceptibility to LZD, which was accounted for byrrlandrplCmutations in almost equal proportions, causing lower and higher MICs, respectively. Our findings provide useful information for the rapid detection of LZD resistance for improved treatment of MDR-TB. PMID:26810645

  13. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target

    PubMed Central

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  14. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target.

    PubMed

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  15. Mutations in the rpoB Gene of Rifampin-Resistant Mycobacterium tuberculosis Isolates in Spain and Their Rapid Detection by PCR–Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Garcia, Lucia; Alonso-Sanz, Mercedes; Rebollo, Maria J.; Tercero, Juan C.; Chaves, Fernando

    2001-01-01

    Genetic alterations in the rpoB gene were characterized in 50 rifampin-resistant (Rifr) clinical isolates of Mycobacterium tuberculosis complex from Spain. A rapid PCR–enzyme-linked immunosorbent assay (ELISA) technique for the identification of rpoB mutations was evaluated with isolates of the M. tuberculosis complex and clinical specimens from tuberculosis patients that were positive for acid-fast bacilli (AFB). Sequence analysis demonstrated 11 different rpoB mutations among the Rifr isolates in the study. The most frequent mutations were those associated with codon 531 (24 of 50; 48%) and codon 526 (11 of 50; 22%). Although the PCR-ELISA does not permit characterization of the specific Rifr allele within each strain, 10 of the 11 Rifr genotypes were correctly identified by this method. We used the PCR-ELISA to predict the rifampin susceptibility of M. tuberculosis complex organisms from 30 AFB-positive sputum specimens. For 28 samples, of which 9 contained Rifr organisms and 19 contained susceptible strains, results were concordant with those based on culture-based drug susceptibility testing and sequencing. Results from the remaining two samples could not be interpreted because of low bacillary load (microscopy score of 1+ for 1 to 9 microorganisms/100 fields). Our results suggest that the PCR-ELISA is an easy technique to implement and could be used as a rapid procedure for detecting rifampin resistance to complement conventional culture-based methods. PMID:11325996

  16. Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug- and extensively drug-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Horita, Yasuhiro; Takii, Takemasa; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, Yoosa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-08-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  17. Antitubercular Activity of Disulfiram, an Antialcoholism Drug, against Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates

    PubMed Central

    Horita, Yasuhiro; Yagi, Tetsuya; Ogawa, Kenji; Fujiwara, Nagatoshi; Inagaki, Emi; Kremer, Laurent; Sato, Yasuo; Kuroishi, Ryuji; Lee, YooSa; Makino, Toshiaki; Mizukami, Hajime; Hasegawa, Tomohiro; Yamamoto, Ryuji; Onozaki, Kikuo

    2012-01-01

    The antimycobacterial activities of disulfiram (DSF) and diethyldithiocarbamate (DDC) against multidrug- and extensively drug-resistant tuberculosis (MDR/XDR-TB) clinical isolates were evaluated in vitro. Both DSF and DDC exhibited potent antitubercular activities against 42 clinical isolates of M. tuberculosis, including MDR/XDR-TB strains. Moreover, DSF showed remarkable bactericidal activity ex vivo and in vivo. Therefore, DSF might be a drug repurposed for the treatment of MDR/XDR-TB. PMID:22615274

  18. The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide

    PubMed Central

    Gandotra, Sheetal; Lebron, Maria B.; Ehrt, Sabine

    2010-01-01

    Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (ΔprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of ΔprcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function. PMID:20711362

  19. Investigation of Ser315 Substitutions within katG Gene in Isoniazid-Resistant Clinical Isolates of Mycobacterium tuberculosis from South India

    PubMed Central

    Unissa, A. Nusrath; Selvakumar, N.; Narayanan, Sujatha; Suganthi, C.; Hanna, L. E.

    2015-01-01

    Mutation at codon 315 of katG gene is the major cause for isoniazid (INH) resistance in Mycobacterium tuberculosis (M. tuberculosis). Substitution at codon 315 of katG gene was analyzed in 85 phenotypically resistant isolates collected from various parts of southern India by direct sequencing method. The obtained results were interpreted in the context of minimum inhibitory concentration (MIC) of INH. Of the 85 phenotypically resistant isolates, 56 (66%) were also correlated by the presence of resistance mutations in the katG gene; 47 of these isolates had ACC, 6 had AAC, 2 had ATC, and one had CGC codon. The frequency of Ser315 substitution in katG gene was found to be higher (70%) amongst multidrug-resistant (MDR) strains than among non-MDR (61%) INH-resistant isolates. Further, the frequency of mutations was found to be greater (74%) in isolates with higher MIC values in contrast to those isolates with low MIC values (58%). Therefore, the study identified high prevalence of Ser315Thr substitution in katG gene of INH-resistant isolates from south India. Also, isolates harboring this substitution were found to be associated with multidrug and high level INH resistance. PMID:25699262

  20. Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis

    PubMed Central

    Gomez, Andromeda; Andreu, Núria; Ferrer-Navarro, Mario; Yero, Daniel; Gibert, Isidre

    2016-01-01

    A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested. PMID:27193696

  1. Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis.

    PubMed

    Gomez, Andromeda; Andreu, Núria; Ferrer-Navarro, Mario; Yero, Daniel; Gibert, Isidre

    2016-01-01

    A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested. PMID:27193696

  2. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  3. Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan)

    PubMed Central

    Ismail, Nurul-Ain; Ismail, Mohd Fazli; Noor, Siti Suraiya MD; Camalxaman, Siti Nazrina

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) remains a public health issue that is of major concern on a global scale. The characterisation of clinical isolates may provide key information regarding the underlying mechanisms of drug resistance, and helps to augment therapeutic options. This study aims to evaluate the frequency of gene mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance among nine clinical isolates. Methods A total of nine drug resistant Mycobacterium tuberculosis clinical isolates were screened for genetic mutations in rpoB and katusing polymerase chain reaction (PCR) amplification and DNA sequencing. Genotypic analysis was performed to detect the mutations in the sequence of the target genes. Results Our findings reveal that 80% of the isolates possess mutations at codon 119 (His119Tyr) and 135 (Arg135Trp and Ser135Leu) within the rpoB gene; and 70% possess mutations in the katG gene at codon 238 with amino acid change (Leu238Arg). Conclusion Findings from this study provide an overview of the current situation of RIF and INH resistance in a hospital Universiti Sains Malaysia (HUSM) located in Kelantan, Malaysia, which could facilitate molecular-based detection methods of drug-resistant strains. Further information regarding the molecular mechanisms involved in resistance in RR-/MDR-TB should be addressed in the near future. PMID:27540322

  4. Dormancy models for Mycobacterium tuberculosis: A minireview.

    PubMed

    Alnimr, Amani M

    2015-01-01

    Dormancy models for Mycobacterium tuberculosis play important roles in understanding various aspects of tuberculosis pathogenesis and in the testing of novel therapeutic regimens. By simulating the latent tuberculosis infection, in which the bacteria exist in a non-replicative state, the models demonstrate reduced susceptibility to antimycobacterial agents. This minireview outlines the models available for simulating latent tuberculosis both in vitro and in several animal species. Additionally, this minireview discusses the advantages and disadvantages of these models for investigating the bacterial subpopulations and susceptibilities to sterilization by various antituberculosis drugs. PMID:26413043

  5. Dormancy models for Mycobacterium tuberculosis: A minireview

    PubMed Central

    Alnimr, Amani M.

    2015-01-01

    Dormancy models for Mycobacterium tuberculosis play important roles in understanding various aspects of tuberculosis pathogenesis and in the testing of novel therapeutic regimens. By simulating the latent tuberculosis infection, in which the bacteria exist in a non-replicative state, the models demonstrate reduced susceptibility to antimycobacterial agents. This minireview outlines the models available for simulating latent tuberculosis both in vitro and in several animal species. Additionally, this minireview discusses the advantages and disadvantages of these models for investigating the bacterial subpopulations and susceptibilities to sterilization by various antituberculosis drugs. PMID:26413043

  6. Co-infection of long-standing extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) and non-tuberculosis mycobacteria: A case report.

    PubMed

    Izadi, Nafiseh; Derakhshan, Mohammad; Samiei, Amin; Ghazvini, Kiarash

    2015-01-01

    We report a 69-years-old Iranian HIV negative male patient, with long-standing pulmonary tuberculosis (eleven years) co-infected with non-tuberculosis mycobacteria. Despite of initiation of first line anti-tuberculosis therapy after diagnosis the patient poorly respond because of low compliance with anti-TB treatment. After several incomplete treatments the smear was still positive and thus drug susceptibility tests were performed on isolated organism which revealed that the organisms was resistant not only against isoniazid and rifampin but also against Ofloxacin (OFX), Capreomycin (CAP), p-aminosalicylic acid (PAS), ethionamide (ETH), Kanamycin (KAN), ciprofloxacin (Cip), amikacin (AMK) and cycloserine (CYC). Persistence and resistance of infection had led us to do more investigation using molecular methods, which revealed co-infection with Non-tuberculosis mycobacteria (NTM). The patient is still alive with cough and shortness of breath. PMID:26236585

  7. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    PubMed

    Roh, Sandy S; Smith, Laura E; Lee, Jong Seok; Via, Laura E; Barry, Clifton E; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  8. Importance of the Genetic Diversity within the Mycobacterium tuberculosis Complex for the Development of Novel Antibiotics and Diagnostic Tests of Drug Resistance

    PubMed Central

    Feuerriegel, Silke; Summers, David K.; Archer, John A. C.; Niemann, Stefan

    2012-01-01

    Despite being genetically monomorphic, the limited genetic diversity within the Mycobacterium tuberculosis complex (MTBC) has practical consequences for molecular methods for drug susceptibility testing and for the use of current antibiotics and those in clinical trials. It renders some representatives of MTBC intrinsically resistant against one or multiple antibiotics and affects the spectrum and consequences of resistance mutations selected for during treatment. Moreover, neutral or silent changes within genes responsible for drug resistance can cause false-positive results with hybridization-based assays, which have been recently introduced to replace slower phenotypic methods. We discuss the consequences of these findings and propose concrete steps to rigorously assess the genetic diversity of MTBC to support ongoing clinical trials. PMID:23006760

  9. Whole genome analysis of an MDR Beijing/W strain of Mycobacterium tuberculosis with large genomic deletions associated with resistance to isoniazid.

    PubMed

    Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng

    2016-05-15

    Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb. PMID:26854371

  10. Tuberculosis-resistant transgenic cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...