Sample records for resistant mycobacterium tuberculosis

  1. Drug resistant Mycobacterium tuberculosis in Mexico.

    PubMed

    Zazueta-Beltran, Jorge; León-Sicairos, Claudia; Canizalez-Roman, Adrián

    2009-04-30

    Tuberculosis (TB) remains a serious public health problem, worsened by an increased frequency of multidrug-resistant (MDR) Mycobacterium tuberculosis strains. The World Health Organization (WHO) and the International Union Against Tuberculosis and Lung Disease (IUATLD) launched the Global Project on Anti-Tuberculosis Drug Resistance Surveillance to measure the prevalence of drug resistance. Data from the global reports on resistance to anti-tuberculosis (anti-TB) drugs have shown that drug resistance still presents worldwide and that MDR-TB is present in almost all the world. Though the Global Project (WHO) has been operating since 1994, very few countries and states have reported new information. Data from repeated surveys employing comparable methodologies over several years are essential to determine with any certainty in which direction the prevalence of drug resistance is moving. Drug-resistant tuberculosis and MDR-TB have been identified in Mexico, even with the existence of a National Tuberculosis Program based on Directly Observed Treatment, Short-course (DOTS). This review discusses available surveillance data on drug susceptibility data for TB in different states of Mexico.

  2. High clustering rates of multidrug-resistant Mycobacterium tuberculosis genotypes in Panama

    PubMed Central

    2013-01-01

    Background Tuberculosis continues to be one of the leading causes of death worldwide and in the American region. Although multidrug-resistant tuberculosis (MDR-TB) remains a threat to TB control in Panama, few studies have focused in typing MDR-TB strains. The aim of our study was to characterize MDR Mycobacterium tuberculosis clinical isolates using PCR-based genetic markers. Methods From 2002 to 2004, a total of 231 Mycobacterium tuberculosis isolates from TB cases country-wide were screened for antibiotic resistance, and MDR-TB isolates were further genotyped by double repetitive element PCR (DRE-PCR), (GTG)5-PCR and spoligotyping. Results A total of 37 isolates (0.85%) were resistant to both isoniazid (INH) and rifampicin (RIF). Among these 37 isolates, only two (5.4%) were resistant to all five drugs tested. Dual genotyping using DRE-PCR and (GTG)5-PCR of MDR Mycobacterium tuberculosis isolates revealed eight clusters comprising 82.9% of the MDR-TB strain collection, and six isolates (17.1%) showed unique fingerprints. The spoligotyping of MDR-TB clinical isolates identified 68% as members of the 42 (LAM9) family genotype. Conclusion Our findings suggest that MDR Mycobacterium tuberculosis is highly clustered in Panama’s metropolitan area corresponding to Panama City and Colon City, and our study reveals the genotype distribution across the country. PMID:24053690

  3. Progress on mechanism of ethambutol resistance in Mycobacterium Tuberculosis.

    PubMed

    Wang, Ting; Jiao, Wei-wei; Shen, A-dong

    2016-10-20

    The occurance and prevalence of multidrug-resistant tuberculosis poses a serious threat to the global tuberculosis control. Ethambutol (EMB) is one of the first-line anti-tuberculosis drugs, which is usually used in combination with isoniazid and rifampicin for treating pan-sensitive tuberculosis, and it can also be used in drug-resistant tuberculosis. However, the situation of EMB resistance is alarmingly high, especially in multi-drug resistant tuberculosis. In China, EMB resistance rate in the previously treated cases was up to 17.2% and showed an increased tendency. What was worse, 51.3%-66.7% of multidrug-resistant tuberculosis cases were resistant to EMB. Thus, it is important to understand the drug resistance mechanism of EMB, which will help to slow down the drug resistance rate of EMB. In this review, we focus on the current status of EMB resistance, the effects of EMB and the mechanisms of EMB resistance in Mycobacterium tuberculosis.

  4. Detection of Drug-Resistant Mycobacterium tuberculosis.

    PubMed

    Engström, Anna; Juréen, Pontus

    2015-01-01

    Tuberculosis (TB) remains a global health problem. The increasing prevalence of drug-resistant Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate diagnosis of the pathogen and its drug susceptibility pattern is essential for timely initiation of optimal treatment, and, ultimately, control of the disease. We have developed a molecular method for detection of first- and second-line drug resistance in M. tuberculosis by Pyrosequencing(®). The method consists of seven Pyrosequencing assays for the detection of mutations in the genes or promoter regions, which are most commonly responsible for resistance to the drugs rifampicin, isoniazid, ethambutol, amikacin, kanamycin, capreomycin, and fluoroquinolones. The method was validated on clinical isolates and it was shown that the sensitivity and specificity of the method were comparable to those of Sanger sequencing. In the protocol in this chapter we describe the steps necessary for setting up and performing Pyrosequencing for M. tuberculosis. The first part of the protocol describes the assay development and the second part of the protocol describes utilization of the method.

  5. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  6. Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.

    PubMed

    Esteban, Jaime; Muñoz-Egea, Maria-Carmen

    2016-12-01

    Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.

  7. Resistance pattern of multi-drug resistant strains of Mycobacterium tuberculosis and characteristics of patients with multi-drug resistant tuberculosis.

    PubMed

    Moisoiu, Adriana; Mitran, Cristina Iulia; Mitran, Mãdãlina Irina; Huhu, Mihaela Roxana; Ioghen, Octavian Costin; Gheorghe, Adelina-Silvana; Tampa, Mircea; Georgescu, Simona Roxana; Popa, Mircea Ioan

    2016-01-01

    Multi-drug resistant tuberculosis (MDR-TB) is a major concern in the medical community. Knowledge about the drug resistance pattern of Mycobacterium tuberculosis strains plays an essential role in the management of the disease. We conducted a retrospective, 3-year study (2009-2011), in an urban area. We collected data on the drug resistance for 497 M. tuberculosis strains, isolated from patients with pulmonary TB. Among the 497 strains, we identified 158 MDR strains. Eighty medical recorders of patients infected with MDR strains were available and we included those patients in the study group. Of the 497 analysed strains, 8% were resistant to a single anti-TB drug. We identified 5.2% polyresistant drug strains, the most frequent combination being INH+EMB (1.4%). Of the 158 MDR strains identified (31.8%), over 60% were resistant to all first line anti-TB drugs tested. Most of them presented resistance to STM (86.1%) and EMB (67.7%). With respect to second line anti-TB drugs resistance to KM (23.4%) was the most common, followed by OFX (8.2%). With respect to the patients with MDR-TB, a percentage of 61.2% of them had a history of anti-TB treatment. Regarding lifestyle habits, 61.2% of the patients were smokers and 18.8% were abusing alcohol. Out of 51 patients, for whom information was available regarding their occupation, only 33.3 % were employees. MDR strains of Mycobacterium tuberculosis display an increased resistance to first line anti-TB drugs. Extension of resistance to second line anti-TB drugs narrows the therapeutic options. Knowledge of MDR-TB risk factors is imperative for the correct and rapid initiation of the treatment.

  8. Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India.

    PubMed

    Agrawal, D; Udwadia, Z F; Rodriguez, C; Mehta, A

    2009-01-01

    Tertiary referral centre, private hospital, Mumbai, India. To analyse the incidence of fluoroquinolone (FQ) resistant Mycobacterium tuberculosis (TB) in our laboratory from 1995 to 2004. Retrospective review and analysis of the drug susceptibility test records of all M. tuberculosis culture-positive samples from our Microbiology Department from 1995 to 2004. FQ resistance has increased exponentially in our laboratory, from 3% in 1996 to 35% in 2004. The incidence of multidrug-resistant tuberculosis has also increased during the same period, from 33% in 1995 to 56% in 2004. The incidence of FQ-resistant M. tuberculosis is gradually increasing to alarming levels. This may be due to widespread use of this vital group of drugs in the treatment of community-acquired infections. We urge that these broad spectrum antibiotics be used judiciously, and ideally be reserved for treatment of resistant TB in TB-endemic areas.

  9. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  10. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru

    PubMed Central

    Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ

    2015-01-01

    Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723

  11. Sequence analysis of the drug‑resistant rpoB gene in the Mycobacterium tuberculosis L‑form among patients with pneumoconiosis complicated by tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin

    2014-04-01

    The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.

  12. Mycobacterium tuberculosis and Rifampin Resistance, United Kingdom

    PubMed Central

    Sam, I-Ching; More, Philip; Kemp, Melanie; Brown, Timothy

    2006-01-01

    The United Kingdom Health Protection Agency Mycobacterium Reference Unit offers a national "Fastrack" molecular service for detecting Mycobacterium tuberculosis complex (MTBC) and rifampin resistance by using the INNO-LiPA Rif.TB assay. We analyzed the service in a routine, nontrial context of 1,997 primary clinical specimens, including 658 nonrespiratory specimens. The overall adjusted concordance, sensitivity, specificity, positive predictive value, and negative predictive value for detecting MTBC were 91.2%, 85.2%, 96.2%, 95.7%, and 86.7%, respectively (unadjusted, 86.7%, 85.2%, 88.2%, 86.9%, and 86.7%), when false-positive samples from patients (n = 83) with a known microbiologic diagnosis of MTBC or patients receiving current or recent antituberculous treatment were excluded. The parameters for detecting rifampin resistance were 99.1%, 95.0%, 99.6%, 92.7%, and 99.7%, respectively. The assay enabled earlier diagnosis of MTBC and rifampin resistance (15.2 days) compared with culture-based techniques (30.7 days). PMID:16704831

  13. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia

    PubMed Central

    Biadglegne, Fantahun; Tessema, Belay; Sack, Ulrich; Rodloff, Arne C.

    2014-01-01

    Background & objectives: The emergence of drug resistance tuberculosis (TB) is a significant challenge for TB control and prevention programmes, and the major problem is multidrug resistant tuberculosis (MDR-TB). The present study was carried out to determine the frequency of drug resistant Mycobacterium tuberculosis isolates among newly and retreated TB lymphadenitis patients and risk factors for acquiring this infection. Methods: Two hundred twenty five M. tuberculosis isolates from TB lymphadenitis patients who were diagnosed as new and retreated tuberculosis cases between April 2012 and May 2012 were included in this study. Isolates were tested for susceptibility to isoniazed (INH), rifampicin (RMP), streptomycin (SM), ethambutol (EMB) and pyrazinamide (PZA) using the BacT/AlerT 3D system protocol. Results: Among 225 isolates, 15 (6.7%) were resistant to at least one first line anti-TB drug. Three (1.3%) were MDR-TB. Resistance to INH, RMP, SM, and EMB was found in 8 (3.6%), 4 (1.8%), 10 (4.4%), and 4 (1.8%) isolates, respectively. Of the 212 new TB lymphadenitis cases three (1.4%) were MDR-TB. A rifampicin resistant M. tuberculosis isolate was diagnosed from smear and culture negative newly treated cases. All isolates were susceptible to PZA. Matted cervical lymph nodes were the prominent sites involved. Newly treated TB lymphadenitis patients had a greater risk for presenting resistance to anti-TB drugs (P=0.046). Interpretation & conclusions: Our study showed that TB lymphadenitis patients harboured drug resistant TB and MDR-TB, although at a low rate. Resistance was not associated with age, sex, patients’ education and contact history. Further research is required to determine transmission dynamics of drug resistant strains. PMID:25222786

  14. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania.

    PubMed

    Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko

    2018-06-26

    Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.

  15. Genetic diversity, transmission dynamics and drug resistance of Mycobacterium tuberculosis in Angola.

    PubMed

    Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel

    2017-02-23

    Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission.

  16. Comprehensive Multicenter Evaluation of a New Line Probe Assay Kit for Identification of Mycobacterium Species and Detection of Drug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Mitarai, Satoshi; Kato, Seiya; Ogata, Hideo; Aono, Akio; Chikamatsu, Kinuyo; Mizuno, Kazue; Toyota, Emiko; Sejimo, Akiko; Suzuki, Katsuhiro; Yoshida, Shiomi; Saito, Takefumi; Moriya, Ataru; Fujita, Akira; Sato, Shuko; Matsumoto, Tomoshige; Ano, Hiromi; Suetake, Toshinori; Kondo, Yuji; Mori, Toru

    2012-01-01

    We evaluated a new line probe assay (LiPA) kit to identify Mycobacterium species and to detect mutations related to drug resistance in Mycobacterium tuberculosis. A total of 554 clinical isolates of Mycobacterium tuberculosis (n = 316), Mycobacterium avium (n = 71), Mycobacterium intracellulare (n = 51), Mycobacterium kansasii (n = 54), and other Mycobacterium species (n = 62) were tested with the LiPA kit in six hospitals. The LiPA kit was also used to directly test 163 sputum specimens. The results of LiPA identification of Mycobacterium species in clinical isolates were almost identical to those of conventional methods. Compared with standard drug susceptibility testing results for the clinical isolates, LiPA showed a sensitivity and specificity of 98.9% and 97.3%, respectively, for detecting rifampin (RIF)-resistant clinical isolates; 90.6% and 100%, respectively, for isoniazid (INH) resistance; 89.7% and 96.0%, respectively, for pyrazinamide (PZA) resistance; and 93.0% and 100%, respectively, for levofloxacin (LVX) resistance. The LiPA kit could detect target species directly in sputum specimens, with a sensitivity of 85.6%. Its sensitivity and specificity for detecting RIF-, PZA-, and LVX-resistant isolates in the sputum specimens were both 100%, and those for detecting INH-resistant isolates were 75.0% and 92.9%, respectively. The kit was able to identify mycobacterial bacilli at the species level, as well as drug-resistant phenotypes, with a high sensitivity and specificity. PMID:22205814

  17. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis inmore » complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.« less

  18. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.

    PubMed

    Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko

    2013-01-01

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420.

    PubMed

    Blondiaux, Nicolas; Moune, Martin; Desroses, Matthieu; Frita, Rosangela; Flipo, Marion; Mathys, Vanessa; Soetaert, Karine; Kiass, Mehdi; Delorme, Vincent; Djaout, Kamel; Trebosc, Vincent; Kemmer, Christian; Wintjens, René; Wohlkönig, Alexandre; Antoine, Rudy; Huot, Ludovic; Hot, David; Coscolla, Mireia; Feldmann, Julia; Gagneux, Sebastien; Locht, Camille; Brodin, Priscille; Gitzinger, Marc; Déprez, Benoit; Willand, Nicolas; Baulard, Alain R

    2017-03-17

    Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis , circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide. Copyright © 2017, American Association for the Advancement of Science.

  20. Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible Mycobacterium tuberculosis.

    PubMed

    Putim, Chanyanuch; Phaonakrop, Narumon; Jaresitthikunchai, Janthima; Gamngoen, Ratikorn; Tragoolpua, Khajornsak; Intorasoot, Sorasak; Anukool, Usanee; Tharincharoen, Chayada Sitthidet; Phunpae, Ponrut; Tayapiwatana, Chatchai; Kasinrerk, Watchara; Roytrakul, Sittiruk; Butr-Indr, Bordin

    2018-03-01

    The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification.

  1. Drug resistance of Mycobacterium tuberculosis in Malawi: a cross-sectional survey

    PubMed Central

    Abouyannis, Michael; Dacombe, Russell; Dambe, Isaias; Mpunga, James; Faragher, Brian; Gausi, Francis; Ndhlovu, Henry; Kachiza, Chifundo; Suarez, Pedro; Mundy, Catherine; Banda, Hastings T; Nyasulu, Ishmael

    2014-01-01

    Abstract Objective To document the prevalence of multidrug resistance among people newly diagnosed with – and those retreated for – tuberculosis in Malawi. Methods We conducted a nationally representative survey of people with sputum-smear-positive tuberculosis between 2010 and 2011. For all consenting participants, we collected demographic and clinical data, two sputum samples and tested for human immunodeficiency virus (HIV).The samples underwent resistance testing at the Central Reference Laboratory in Lilongwe, Malawi. All Mycobacterium tuberculosis isolates found to be multidrug-resistant were retested for resistance to first-line drugs – and tested for resistance to second-line drugs – at a Supranational Tuberculosis Reference Laboratory in South Africa. Findings Overall, M. tuberculosis was isolated from 1777 (83.8%) of the 2120 smear-positive tuberculosis patients. Multidrug resistance was identified in five (0.4%) of 1196 isolates from new cases and 28 (4.8%) of 581 isolates from people undergoing retreatment. Of the 31 isolates from retreatment cases who had previously failed treatment, nine (29.0%) showed multidrug resistance. Although resistance to second-line drugs was found, no cases of extensive drug-resistant tuberculosis were detected. HIV testing of people from whom M. tuberculosis isolates were obtained showed that 577 (48.2%) of people newly diagnosed and 386 (66.4%) of people undergoing retreatment were positive. Conclusion The prevalence of multidrug resistance among people with smear-positive tuberculosis was low for sub-Saharan Africa – probably reflecting the strength of Malawi’s tuberculosis control programme. The relatively high prevalence of such resistance observed among those with previous treatment failure may highlight a need for a change in the national policy for retreating this subgroup of people with tuberculosis. PMID:25378741

  2. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives.

    PubMed

    Schön, T; Miotto, P; Köser, C U; Viveiros, M; Böttger, E; Cambau, E

    2017-03-01

    Drug-resistance testing, or antimicrobial susceptibility testing (AST), is mandatory for Mycobacterium tuberculosis in cases of failure on standard therapy. We reviewed the different methods and techniques of phenotypic and genotypic approaches. Although multiresistant and extensively drug-resistant (MDR/XDR) tuberculosis is present worldwide, AST for M. tuberculosis (AST-MTB) is still mainly performed according to the resources available rather than the drug-resistance rates. Phenotypic methods, i.e. culture-based AST, are commonly used in high-income countries to confirm susceptibility of new cases of tuberculosis. They are also used to detect resistance in tuberculosis cases with risk factors, in combination with genotypic tests. In low-income countries, genotypic methods screening hot-spot mutations known to confer resistance were found to be easier to perform because they avoid the culture and biosafety constraint. Given that genotypic tests can rapidly detect the prominent mechanisms of resistance, such as the rpoB mutation for rifampicin resistance, we are facing new challenges with the observation of false-resistance (mutations not conferring resistance) and false-susceptibility (mutations different from the common mechanism) results. Phenotypic and genotypic approaches are therefore complementary for obtaining a high sensitivity and specificity for detecting drug resistances and susceptibilities to accurately predict MDR/XDR cure and to gather relevant data for resistance surveillance. Although AST-MTB was established in the 1960s, there is no consensus reference method for MIC determination against which the numerous AST-MTB techniques can be compared. This information is necessary for assessing in vitro activity and setting breakpoints for future anti-tuberculosis agents. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Evolution of Mycobacterium tuberculosis.

    PubMed

    Behr, Marcel A

    2013-01-01

    Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.

  4. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    PubMed

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  5. Screening mutations in drug-resistant Mycobacterium tuberculosis strains in Yunnan, China.

    PubMed

    Li, Daoqun; Song, Yuzhu; Zhang, Cheng-Lin; Li, Xiaofei; Xia, Xueshan; Zhang, A-Mei

    Drug-resistant tuberculosis (DR-TB), especially multidrug-resistant tuberculosis (MDR-TB), is a serious medical and societal problem in China. The purpose of this study was to evaluate the mutation characteristics of drug-resistant Mycobacterium tuberculosis (M. tuberculosis) isolates in Yunnan, China. Drug susceptibility testing (DST) was performed in 523 clinical M. tuberculosis isolates. Six drug resistance genes (katG, inhA, rpoB, rpsL, embB, and pncA) were selected to screen for mutations. In total, 54 clinical M. tuberculosis strains were identified as drug-resistant by DST, including 18 single drug-resistant (SDR) strains and 36 multidrug-resistant (MDR) strains. Twenty-four types of mutations in five genes (excluding the inhA gene) were screened in forty-one strains. Six novel mutations were identified in this study, including three missense mutations (p.S302R in katG, p.D78G in embB, and p.M1I in pncA), two frameshift mutations (408 ins A and 538-580 del in pncA), and one mutation in a control region (-6 C>T located upstream of rpsL). The mutation frequencies in the hotspot mutation regions in the katG, rpoB, rpsL, embB, and pncA genes were 92.5%, 44.4%, 54.2%, 52.6%, and 37.5%, respectively. The mutation spectra and frequencies seemed somewhat unique in the Yunnan DR-TB strains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Cutaneous Squamous Cell Carcinoma in Lupus Vulgaris Caused by Drug Resistant Mycobacterium Tuberculosis

    PubMed Central

    Kumaran, Muthu S.; Narang, Tarun; Jitendriya, Madhukara; Tirumale, Rajalakshmi; Manjunath, Suraj; Savio, Jayanthi

    2017-01-01

    Tuberculosis (TB) is still a major public health problem in the world, with many factors contributing to this burden, including poor living conditions, overcrowding, poverty, malnutrition, illiteracy, and rapid spread of human immunodeficiency virus infection. Cutaneous tuberculosis is a less common form of extrapulmonary tuberculosis, and in this paucibacillary form the diagnosis depends on histopathology, tuberculin positivity, and response to treatment. The diagnosis is even more difficult in cases with drug resistant Mycobacterium tuberculosis due to lack of awareness and lack of facilities to diagnose drug resistant tuberculosis. In this article, we describe an unusual case of multidrug resistant lupus vulgaris (LV), in a 34-year-old male who responded to anti-tubercular treatment (ATT) initially, but developed recurrent disease which failed to respond to standard four-drug ATT; subsequently, tissue culture showed growth of multidrug resistant M. tuberculosis. Subsequently, he also developed cutaneous squamous cell carcinoma. This article aims to exemplify a grave complication that can occur in long-standing case of LV, the limitations faced by clinicians in developing countries where tuberculosis is endemic, and classical methods of proving drug resistance are generally unavailable or fail. PMID:28761842

  7. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  8. Antibiotic Resistance and Single-Nucleotide Polymorphism Cluster Grouping Type in a Multinational Sample of Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.

    2007-01-01

    A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140

  9. [Epidemiology of resistance to antituberculosis drugs in Mycobacterium tuberculosis complex strains isolated from adenopathies in Djibouti. Prospective study carried out in 1999].

    PubMed

    Koeck, J L; Bernatas, J J; Gerome, P; Fabre, M; Houmed, A; Herve, V; Teyssou, R

    2002-01-01

    Tuberculosis is a major cause of death in the Republic of Djibouti. Tuberculous lymphadenitis represents about 25% of the clinical forms of tuberculosis in this country. Between January 1999 and April 1999, 196 lymph node specimens were consecutively collected from 153 patients living in Djibouti. Testing of susceptibility to the major anti-tuberculosis drugs was performed by the proportion method. Growth of Mycobacterium tuberculosis complex strains was obtained from specimens of 85 patients including 9 with prior treatment. Strains were identified as Mycobacterium tuberculosis in 78 cases, Mycobacterium canetti in 3, Mycobacterium africanum in 3, and Mycobacterium bovis in 1. Prevalence of HIV infection was 15%. Assessment of primary resistance demonstrated that the overall resistance rate, i.e., resistance to 1 or more drugs, was 18 (21.2%). Results showed resistance to isoniazid (H) in 6 cases (7.1%), rifampicin (R) in 3 (3.5%), ethambutol (E) in 1 (1.2%), streptomycin (S) in 13 (15.3%) and pyrazinamide (Z) in 1 (1.2%). Multidrug resistance (MDR) was found in 2 cases (2.4%). Assessment of acquired resistance demonstrated resistance to H in 4 cases (44%), R in 2 (22%), S in 2 (22%), E in 0, Z in 0 and MDR in 1 (11%). These findings were not significantly different from data obtained from sputum samples analysed between 1997 and 2000 or from those described in a study conducted in 1985.

  10. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    PubMed

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Drug Resistance and Population Structure of Mycobacterium tuberculosis Beijing Strains Isolated in Poland.

    PubMed

    Kozińska, Monika; Augustynowicz-Kopeć, Ewa

    2015-01-01

    In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.

  12. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolated in Nepal.

    PubMed

    Poudel, Ajay; Nakajima, Chie; Fukushima, Yukari; Suzuki, Haruka; Pandey, Basu Dev; Maharjan, Bhagwan; Suzuki, Yasuhiko

    2012-06-01

    Despite the fact that Nepal is one of the first countries globally to introduce multidrug-resistant tuberculosis (MDR-TB) case management, the number of MDR-TB cases is continuing to rise in Nepal. Rapid molecular tests applicable in this setting to identify resistant organisms would be an effective tool in reversing this trend. To develop such tools, information about the frequency and distribution of mutations that are associated with phenotypic drug resistance in Mycobacterium tuberculosis is required. In the present study, we investigated the prevalence of mutations in rpoB and katG genes and the inhA promoter region in 158 M. tuberculosis isolates (109 phenotypically MDR and 49 non-MDR isolates collected in Nepal) by DNA sequencing. Mutations affecting the 81-bp rifampin (RIF) resistance-determining region (RRDR) of rpoB were identified in 106 of 109 (97.3%) RIF-resistant isolates. Codons 531, 526, and 516 were the most commonly affected, at percentages of 58.7, 15.6, and 15.6%, respectively. Of 113 isoniazid (INH)-resistant isolates, 99 (87.6%) had mutations in the katG gene, with Ser315Thr being the most prevalent (81.4%) substitution. Mutations in the inhA promoter region were detected in 14 (12.4%) INH-resistant isolates. The results from this study provide an overview of the current situation of RIF and INH resistance in M. tuberculosis in Nepal and can serve as a basis for developing or improving rapid molecular tests to monitor drug-resistant strains in this country.

  13. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  14. Admixed Phylogenetic Distribution of Drug Resistant Mycobacterium tuberculosis in Saudi Arabia

    PubMed Central

    Varghese, Bright; Supply, Philip; Allix-Béguec, Caroline; Shoukri, Mohammed; Al-Omari, Ruba; Herbawi, Mais; Al-Hajoj, Sahal

    2013-01-01

    Background The phylogeographical structure of Mycobacterium tuberculosis is generally bimodal in low tuberculosis (TB) incidence countries, where genetic lineages of the isolates generally differ with little strain clustering between autochthonous and foreign-born TB patients. However, less is known on this structure in Saudi Arabia—the most important hub of human migration as it hosts a total population of expatriates and pilgrims from all over the world which is equal to that of its citizens. Methodology We explored the mycobacterial phylogenetic structure and strain molecular clustering in Saudi Arabia by genotyping 322 drug-resistant clinical isolates collected over a 12-month period in a national drug surveillance survey, using 24 locus-based MIRU-VNTR typing and spoligotyping. Principal Findings In contrast to the cosmopolitan population of the country, almost all the known phylogeographic lineages of M. tuberculosis complex (with noticeable exception of Mycobacterium africanum/West-African 1 and 2) were detected, with Delhi/CAS (21.1%), EAI (11.2%), Beijing (11.2%) and main branches of the Euro-American super-lineage such as Ghana (14.9%), Haarlem (10.6%) and Cameroon (7.8%) being represented. Statistically significant associations of strain lineages were observed with poly-drug resistance and multi drug resistance especially among previously treated cases (p value of < = 0.001 for both types of resistance), with relative over-representation of Beijing strains in the latter category. However, there was no significant difference among Saudi and non-Saudi TB patients regarding distribution of phylogenetic lineages (p = 0.311). Moreover, 59.5% (22/37) of the strain molecular clusters were shared between the Saudi born and immigrant TB patients. Conclusions Specific distribution of M. tuberculosis phylogeographic lineages is not observed between the autochthonous and foreign-born populations. These observations might reflect both socially favored

  15. Comparative genomics of archived pyrazinamide resistant Mycobacterium tuberculosis complex isolates from Uganda

    USDA-ARS?s Scientific Manuscript database

    Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...

  16. Primary and acquired drug resistance in Mycobacterium tuberculosis strains in western region of Libyan Arab Jamahiriya.

    PubMed

    Elghoul, M T; Joshi, R M; Rizghalla, T

    1989-10-01

    Drug resistance in Mycobacterium tuberculosis strains prevalent in the Western Region of Libyan Arab Jamahiriya was studied for the years 1984, 1985 and 1986 at the regional tuberculosis control centre at Gurgi, Tripoli. Records of resistance to streptomycin, isoniazid, ethambutol and rifampicin were analysed. Whereas primary drug resistance was observed in 5.1%, 19.5% and 3.8%, acquired drug resistance was found in 12.2%, 34.0% and 15.3% of the strains in 1984, 1985 and 1986 respectively. Only 3 out of 598 strains (1.2%) were found to show acquired resistance to rifampicin. No primary resistance to rifampicin was observed. The situation of drug resistance in pulmonary tuberculosis in the Jamahiriya is discussed.

  17. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea

    PubMed Central

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.

    2015-01-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  18. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    PubMed

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C

    2015-07-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. Copyright © 2015. Published by Elsevier B.V.

  19. Efflux Pump Gene Expression in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Jiang, Yi; Wei, Jianhao; Zhao, Li-li; Zhao, Xiuqin; Lu, Jianxin; Wan, Kanglin

    2015-01-01

    Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis. PMID:25695504

  20. Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs

    PubMed Central

    Seifert, Marva; Garfein, Richard S.; Rodwell, Timothy C.

    2017-01-01

    ABSTRACT Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality

  1. Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs.

    PubMed

    Georghiou, Sophia B; Seifert, Marva; Catanzaro, Donald G; Garfein, Richard S; Rodwell, Timothy C

    2017-06-01

    Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality during

  2. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Peñuelas-Urquides, K; González-Escalante, L; Villarreal-Treviño, L; Silva-Ramírez, B; Gutiérrez-Fuentes, D J; Mojica-Espinosa, R; Rangel-Escareño, C; Uribe-Figueroa, L; Molina-Salinas, G M; Dávila-Velderrain, J; Castorena-Torres, F; Bermúdez de León, M; Said-Fernández, S

    2013-09-01

    Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.

  3. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value.

    PubMed

    Farhat, Maha R; Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M; Victor, Tommie C; Warren, Robin M; van Soolingen, Dick; Murray, Megan

    2016-09-01

    The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.

  4. Genetic Mimetics of Mycobacterium tuberculosis and Methicillin-Resistant Staphylococcus aureus as Verification Standards for Molecular Diagnostics.

    PubMed

    Machowski, Edith Erika; Kana, Bavesh Davandra

    2017-12-01

    Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDR plus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDR plus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis , with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCC mec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases. Copyright © 2017 American Society for Microbiology.

  5. Genetic Determinants of Drug Resistance in Mycobacterium tuberculosis and Their Diagnostic Value

    PubMed Central

    Sultana, Razvan; Iartchouk, Oleg; Bozeman, Sam; Galagan, James; Sisk, Peter; Stolte, Christian; Nebenzahl-Guimaraes, Hanna; Jacobson, Karen; Sloutsky, Alexander; Kaur, Devinder; Posey, James; Kreiswirth, Barry N.; Kurepina, Natalia; Rigouts, Leen; Streicher, Elizabeth M.; Victor, Tommie C.; Warren, Robin M.; van Soolingen, Dick; Murray, Megan

    2016-01-01

    Rationale: The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance–conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs. Objectives: To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance. Methods: We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool. Measurements and Main Results: The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci. Conclusions: These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs. PMID:26910495

  6. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement.

    PubMed

    Domínguez, J; Boettger, E C; Cirillo, D; Cobelens, F; Eisenach, K D; Gagneux, S; Hillemann, D; Horsburgh, R; Molina-Moya, B; Niemann, S; Tortoli, E; Whitelaw, A; Lange, C

    2016-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs. We ascertained consensus on the use of the results of molecular DST for clinical treatment decisions in TB patients. This document has been developed by TBNET and RESIST-TB groups to reach a consensus about reporting standards in the clinical use of molecular DST results. Review of the available literature and the search for evidence included hand-searching journals and searching electronic databases. The panel identified single nucleotide mutations in genomic regions of M. tuberculosis coding for katG, inhA, rpoB, embB, rrs, rpsL and gyrA that are likely related to drug resistance in vivo. Identification of any of these mutations in clinical isolates of M. tuberculosis has implications for the management of TB patients, pending the results of in vitro DST. However, false-positive and false-negative results in detecting resistance-associated mutations in drugs for which there is poor or unproven correlation between phenotypic and clinical drug resistance complicate the interpretation. Reports of molecular DST results should therefore include specific information on the mutations identified and provide guidance for clinicians on interpretation and on the choice of the appropriate initial drug regimen.

  7. Pyrosequencing for Rapid Detection of Mycobacterium tuberculosis Resistance to Rifampin, Isoniazid, and Fluoroquinolones ▿

    PubMed Central

    Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.

    2009-01-01

    After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642

  8. Broad-range PCR coupled with mass-spectrometry for the detection of Mycobacterium tuberculosis drug resistance

    PubMed Central

    Florea, Dragoş; Oţelea, Dan; Olaru, Ioana D.; Hristea, Adriana

    2016-01-01

    Background The need to limit the spread of drug-resistant Mycobacterium tuberculosis requires rapid detection of resistant strains. The present study aimed to evaluate a commercial assay using broad-range PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in M. tuberculosis strains isolated from Romanian patients with pulmonary tuberculosis. Methods PCR/ESI-MS was used to detect genotypic resistance to RIF and INH in a panel of 63 M. tuberculosis isolates phenotypically characterized using the absolute concentration method on Löwenstein-Jensen medium. Results Thirty-eight (60%) strains were susceptible to both drugs, 22 (35%) were RIF and INH resistant, one was INH mono-resistant and two were RIF mono-resistant. The sensitivity for INH and RIF resistance mutations detection were 100% and 92% respectively, with a specificity of more than 95% for each drug. Conclusion PCR/ESI-MS is a good method for the detection of RIF and INH resistance and might represent an alternative to other rapid diagnostic tests for the detection of genetic markers of resistance in M. tuberculosis isolates. PMID:27019827

  9. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    PubMed

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. Copyright © 2015 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  10. Characterization of phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis isolates from a city in Mexico.

    PubMed

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor Raúl; Mendoza-Olazarán, Soraya; Balderas-Rentería, Isaías; González, Gloria María; Garza-González, Elvira

    2015-03-01

    The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains has become a worldwide health care problem, making treatment of tuberculosis difficult. The aim of this study was to determine phenotypic resistance and gene mutations associated with MDR of clinical isolates of Mycobacterium tuberculosis from Guadalajara, Mexico. One hundred and five isolates were subjected to drug susceptibility testing to first line drugs using the proportion and Mycobacteria Growth Indicator Tube (MGIT) methods. Genes associated with isoniazid (inhA, katG, ahpC) and rifampicin (rpoB) resistance were analyzed by either pyrosequencing or PCR-RFLP. Resistance to any drug was detected in 48.6% of isolates, of which 40% were isoniazid-resistant, 20% were rifampicin-resistant and 19% were MDR. Drug-resistant isolates had the following frequency of mutations in rpoB (48%), katG (14%), inhA (26%), ahpC (26%). Susceptible isolates also had a mutation in ahpC (29%). This is the first analysis of mutations associated with MDR of M. tuberculosis in Guadalajara. Commonly reported mutations worldwide were found in rpoB, katG and inhA genes. Substitution C to T in position -15 of the ahpC gene may possibly be a polymorphism. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. Polymorphisms of twenty regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...

  12. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia.

    PubMed

    Mesfin, Eyob Abera; Beyene, Dereje; Tesfaye, Abreham; Admasu, Addisu; Addise, Desalegn; Amare, Miskir; Dagne, Biniyam; Yaregal, Zelalem; Tesfaye, Ephrem; Tessema, Belay

    2018-01-01

    Multidrug drug-resistant tuberculosis (MDR-TB) is a major health problem and seriously threatens TB control and prevention efforts globally. Ethiopia is among the 30th highest TB burden countries for MDR-TB with 14% prevalence among previously treated cases. The focus of this study was on determining drug resistance patterns of Mycobacterium tuberculosis among MDR-TB suspected cases and associated risk factors. A cross-sectional study was conducted in Addis Ababa from June 2015 to December 2016. Sputum samples and socio-demographic data were collected from 358 MDR-TB suspected cases. Samples were analyzed using Ziehl-Neelsen technique, GeneXpert MTB/RIF assay, and culture using Lowenstein-Jensen and Mycobacterial growth indicator tube. Data were analyzed using SPSS version 23. A total of 226 the study participants were culture positive for Mycobacterium tuberculosis, among them, 133 (58.8%) participants were males. Moreover, 162 (71.7%) had been previously treated for tuberculosis, while 128 (56.6%) were TB/HIV co-infected. A majority [122 (54%)] of the isolates were resistant to any first-line anti-TB drugs. Among the resistant isolates, 110 (48.7%) were determined to be resistant to isoniazid, 94 (41.6%) to streptomycin, 89 (39.4%) to rifampicin, 72 (31.9%) to ethambutol, and 70 (30.9%) to pyrazinamide. The prevalence of MDR-TB was 89 (39.4%), of which 52/89 (58.4%) isolates were resistance to all five first-line drugs. Risk factors such as TB/HIV co-infection (AOR = 5.59, p = 0.00), cigarette smoking (AOR = 3.52, p = 0.045), alcohol drinking (AOR = 5.14, p = 0.001) hospital admission (AOR = 3.49, p = 0.005) and visiting (AOR = 3.34, p = 0.044) were significantly associated with MDR-TB. The prevalence of MDR-TB in the study population was of a significantly high level among previously treated patients and age group of 25-34. TB/HIV coinfection, smoking of cigarette, alcohol drinking, hospital admission and health facility visiting were identified as risk factors

  13. DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.

    PubMed

    Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.

  14. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    PubMed Central

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  15. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    Aye, Khin Saw; Nakajima, Chie; Yamaguchi, Tomoyuki; Win, Min Min; Shwe, Mu Mu; Win, Aye Aye; Lwin, Thandar; Nyunt, Wint Wint; Ti, Ti; Suzuki, Yasuhiko

    2016-03-01

    The number of multi-drug-resistant tuberculosis (MDR-TB) cases is rising worldwide. As a countermeasure against this situation, the implementation of rapid molecular tests to identify MDR-TB would be effective. To develop such tests, information on the frequency and distribution of mutations associating with phenotypic drug resistance in Mycobacterium tuberculosis is required in each country. During 2010, the common mutations in the rpoB, katG and inhA of 178 phenotypically MDR M. tuberculosis isolates collected by the National Tuberculosis Control Program (NTP) in Myanmar were investigated by DNA sequencing. Mutations affecting the 81-bp rifampicin (RIF) resistance-determining region (RRDR) of the rpoB were identified in 127 of 178 isolates (71.3%). Two of the most frequently affected codons were 531 and 526, with percentages of 48.3% and 14.0% respectively. For isoniazid (INH) resistance, 114 of 178 MDR-TB isolates (64.0%) had mutations in the katG in which a mutation-conferring amino acid substitution at codon 315 from Ser to Thr was the most common. Mutations in the inhA regulatory region were also detected in 20 (11.2%) isolates, with the majority at position -15. Distinct mutation rate and pattern from surrounding countries might suggest that MDR-TB has developed and spread domestically in Myanmar. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Study of Mycobacterium tuberculosis drug resistance in the region of Galicia, Spain.

    PubMed

    Pérez del Molino Bernal, M L; Túñez, V; Cruz-Ferro, E; Fernández-Villar, A; Vázquez-Gallardo, R; Díaz-Cabanela, D; Anibarro, L

    2005-11-01

    Galicia, a region in north-east Spain with its own government and health system and a population of 2 695 880. To study the epidemiology of resistant tuberculosis (TB). A prospective, descriptive, and observational study of all Mycobacterium tuberculosis isolates processed by each of the laboratories in Galicia that perform mycobacterial cultures. The study followed the methodology recommended by the World Health Organization and the International Union Against Tuberculosis and Lung Disease, and included isolates processed between 1 November 2001 and 1 June 2002. Of 400 strains analysed, 360 corresponded to previously untreated cases and 40 to previously treated cases. Of the previously untreated cases, 88.3% contained strains susceptible to isoniazid, rifampicin, streptomycin and ethambutol, while 4.4% were resistant to isoniazid. The rate of susceptibility to the four drugs was 77.5% in the previously treated cases. Multidrug-resistant TB was detected in 1.4% of the previously untreated cases and in 7.5% of the previously treated cases. Although Galicia has a high incidence of TB (49.4 cases per 100 000 population in 2001), the resistance levels detected by the study do not currently pose a serious problem for the region.

  17. In Vitro Activity and MIC of Sitafloxacin against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis Isolated in Thailand

    PubMed Central

    Leechawengwongs, Manoon; Prammananan, Therdsak; Jaitrong, Sarinya; Billamas, Pamaree; Makhao, Nampueng; Thamnongdee, Nongnard; Thanormchat, Arirat; Phurattanakornkul, Arisa; Rattanarangsee, Somcharn; Ratanajaraya, Chate; Disratthakit, Areeya

    2017-01-01

    ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB. PMID:29061759

  18. Copper resistance is essential for virulence of Mycobacterium tuberculosis

    PubMed Central

    Wolschendorf, Frank; Ackart, David; Shrestha, Tej B.; Hascall-Dove, Laurel; Nolan, Scott; Lamichhane, Gyanu; Wang, Ying; Bossmann, Stefan H.; Basaraba, Randall J.; Niederweis, Michael

    2011-01-01

    Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy. PMID:21205886

  19. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis.

    PubMed

    Riojas, Marco A; McGough, Katya J; Rider-Riojas, Cristin J; Rastogi, Nalin; Hazbón, Manzour Hernando

    2018-01-01

    The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37Rv T were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37Rv T . Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37Rv T (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.

  20. Increased resistance to ciprofloxacin and ofloxacin in multidrug-resistant mycobacterium tuberculosis isolates from patients seen at a tertiary hospital in the Philippines.

    PubMed

    Grimaldo, E R; Tupasi, T E; Rivera, A B; Quelapio, M I; Cardaño, R C; Derilo, J O; Belen, V A

    2001-06-01

    A hospital-based study at the Makati Medical Center, Makati City, Philippines, a hyperendemic area for tuberculosis (TB). To determine the susceptibility of Mycobacterium tuberculosis to ciprofloxacin and ofloxacin. Retrospective analysis of drug susceptibility tests (DST) of M. tuberculosis isolated from 1995-2000. Resistance to ciprofloxacin was 26.8%, ofloxacin 35.3%, and multidrug resistance (MDR) was 17.2%. Of the MDR strains, 51.4% were resistant to ciprofloxacin and ofloxacin. Acquired resistance was significantly higher for all first-line drugs and for ciprofloxacin, but not for ofloxacin. A significant increase in resistance to ciprofloxacin and ofloxacin was noted compared to 1989-1994, while resistance to the firstline drugs was not significantly different. Ciprofloxacin and ofloxacin are now a significantly less effective alternative therapy in tuberculosis, particularly MDR-TB, due to a selection pressure from their widespread use in the treatment of TB and possibly other infections in the community, which is hyperendemic for tuberculosis.

  1. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Coelho, Tatiane S; Perdigão, João; Pereira, Catarina; Couto, Isabel; Portugal, Isabel; Maschmann, Raquel De Abreu; Ramos, Daniela F; von Groll, Andrea; Rossetti, Maria L R; Silva, Pedro A; Viveiros, Miguel

    2017-01-01

    Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis . A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55 , and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality that is often

  2. Increasing drug resistance of Mycobacterium tuberculosis in Sinaloa, Mexico, 1997-2005.

    PubMed

    Zazueta-Beltran, Jorge; León-Sicairos, Nidia; Muro-Amador, Secundino; Flores-Gaxiola, Adrian; Velazquez-Roman, Jorge; Flores-Villaseñor, Hector; Canizalez-Roman, Adrian

    2011-04-01

    In 1997 the US Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) reported high proportions of drug-resistant Mycobacterium tuberculosis in three Mexican states: Sinaloa, Baja California, and Oaxaca. In 2006, we showed that resistance to anti-tuberculosis drugs remained frequent in Sinaloa. The objectives of this study were to describe drug-resistant tuberculosis (TB) trends and to investigate the probability that patients acquire resistance to first-line anti-TB drugs on recurrence after treatment in Sinaloa. Sputum specimens were collected from patients diagnosed with TB at all the health care institutions of Sinaloa during 1997-2005. Isolates were tested for susceptibility to first-line drugs. Among 671 isolates tested from 1997 to 2002, the overall resistance rate was 34.9% (95% confidence interval (CI) 31.2-38.4) with a 1.2% increase per year (Chi-square=4.258, p=0.03906). The prevalence of multi-drug resistance (MDR) was 17.9% (95% CI 14.9-20.7) with a 1.2% increase per year (Chi-square=8.352, p=0.00385). Of 50 patients registered twice between 1997 and 2005, 15 were fully susceptible at first registration, of whom six (40%) acquired drug resistance. Of 35 cases with any drug resistance at first registration, 21 (60%) came to acquire resistance to at least one other drug. The proportion of drug-resistant TB increased during 1997-2005 in Sinaloa. Major efforts are needed to prevent the further rise and spread of drug-resistant and MDR TB. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis.

    PubMed

    Flandrois, Jean-Pierre; Lina, Gérard; Dumitrescu, Oana

    2014-04-14

    Tuberculosis is an infectious bacterial disease caused by Mycobacterium tuberculosis. It remains a major health threat, killing over one million people every year worldwide. An early antibiotic therapy is the basis of the treatment, and the emergence and spread of multidrug and extensively drug-resistant mutant strains raise significant challenges. As these bacteria grow very slowly, drug resistance mutations are currently detected using molecular biology techniques. Resistance mutations are identified by sequencing the resistance-linked genes followed by a comparison with the literature data. The only online database is the TB Drug Resistance Mutation database (TBDReaM database); however, it requires mutation detection before use, and its interrogation is complex due to its loose syntax and grammar. The MUBII-TB-DB database is a simple, highly structured text-based database that contains a set of Mycobacterium tuberculosis mutations (DNA and proteins) occurring at seven loci: rpoB, pncA, katG; mabA(fabG1)-inhA, gyrA, gyrB, and rrs. Resistance mutation data were extracted after the systematic review of MEDLINE referenced publications before March 2013. MUBII analyzes the query sequence obtained by PCR-sequencing using two parallel strategies: i) a BLAST search against a set of previously reconstructed mutated sequences and ii) the alignment of the query sequences (DNA and its protein translation) with the wild-type sequences. The post-treatment includes the extraction of the aligned sequences together with their descriptors (position and nature of mutations). The whole procedure is performed using the internet. The results are graphs (alignments) and text (description of the mutation, therapeutic significance). The system is quick and easy to use, even for technicians without bioinformatics training. MUBII-TB-DB is a structured database of the mutations occurring at seven loci of major therapeutic value in tuberculosis management. Moreover, the system provides

  4. High prevalence of multidrug-resistant tuberculosis among patients with rifampicin resistance using GeneXpert Mycobacterium tuberculosis/rifampicin in Ghana.

    PubMed

    Boakye-Appiah, Justice K; Steinmetz, Alexis R; Pupulampu, Peter; Ofori-Yirenkyi, Stephen; Tetteh, Ishmael; Frimpong, Michael; Oppong, Patrick; Opare-Sem, Ohene; Norman, Betty R; Stienstra, Ymkje; van der Werf, Tjip S; Wansbrough-Jones, Mark; Bonsu, Frank; Obeng-Baah, Joseph; Phillips, Richard O

    2016-06-01

    Drug-resistant strains of tuberculosis (TB) represent a major threat to global TB control. In low- and middle-income countries, resource constraints make it difficult to identify and monitor cases of resistance using drug susceptibility testing and culture. Molecular assays such as the GeneXpert Mycobacterium tuberculosis/rifampicin may prove to be a cost-effective solution to this problem in these settings. The objective of this study is to evaluate the use of GeneXpert in the diagnosis of pulmonary TB since it was introduced into two tertiary hospitals in Ghana in 2013. A 2-year retrospective audit of clinical cases involving patients who presented with clinically suspected TB or documented TB not improving on standard therapy and had samples sent for GeneXpert testing. GeneXpert identified 169 cases of TB, including 17 cases of rifampicin-resistant TB. Of the seven cases with final culture and drug susceptibility testing results, six demonstrated further drug resistance and five of these were multidrug-resistant TB. These findings call for a scale-up of TB control in Ghana and provide evidence that the expansion of GeneXpert may be an optimal means to improve case finding and guide treatment of drug-resistant TB in this setting. Copyright © 2016. Published by Elsevier Ltd.

  5. Molecular Characteristics of Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Strains Isolated in Vietnam

    PubMed Central

    Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-01-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp “hot-spot” region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests. PMID:22170905

  6. Molecular characteristics of rifampin- and isoniazid-resistant mycobacterium tuberculosis strains isolated in Vietnam.

    PubMed

    Minh, Nghiem Ngoc; Van Bac, Nguyen; Son, Nguyen Thai; Lien, Vu Thi Kim; Ha, Chu Hoang; Cuong, Nguyen Huu; Mai, Cung Thi Ngoc; Le, Thanh Hoa

    2012-03-01

    Molecular characterization of the drug resistance of Mycobacterium tuberculosis strains with different origins can generate information that is useful for developing molecular methods. These methods are widely applicable for rapid detection of drug resistance. A total of 166 rifampin (RIF)- and/or isoniazid (INH)-resistant strains of M. tuberculosis have been isolated from different parts of Vietnam; they were screened for mutations associated with resistance to these drugs by sequence analysis investigating genetic mutations associated with RIF and INH resistance. Seventeen different mutations were identified in 74 RIF-resistant strains, 56 of which (approximately 76%) had mutations in the so-called 81-bp "hot-spot" region of the rpoB gene. The most common point mutations were in codons 531 (37.8%), 526 (23%), and 516 (9.46%) of the rpoB gene. Mutations were not found in three strains (4.05%). In the case of INH resistance, five different mutations in the katG genes of 82 resistant strains were detected, among which the nucleotide substitution at codon 315 (76.83%) is the most common mutation. This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis strains from Vietnam, and detection of the katG and rpoB mutations of the INH and RIF-resistant strains should be useful for rapid detection of the INH- and RIF-resistant strains by molecular tests.

  7. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis

    PubMed Central

    Sun, Chongyun; Li, Chao; Wang, Xiaochen; Liu, Haican; Zhang, Pingping; Zhao, Xiuqin; Wang, Xinrui; Jiang, Yi; Yang, Ruifu; Wan, Kanglin; Zhou, Lei

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis can be rapidly diagnosed through nucleic acid amplification techniques by analyzing the variations in the associated gene sequences. In the present study, a locked nucleic acid (LNA) probe-based real-time PCR assay was developed to identify the mutations in the rpoB gene associated with rifampin (RFP) resistance in M. tuberculosis. Six LNA probes with the discrimination capability of one-base mismatch were designed to monitor the 23 most frequent rpoB mutations. The target mutations were identified using the probes in a “probe dropout” manner (quantification cycle = 0); thus, the proposed technique exhibited superiority in mutation detection. The LNA probe-based real-time PCR assay was developed in a two-tube format with three LNA probes and one internal amplification control probe in each tube. The assay showed excellent specificity to M. tuberculosis with or without RFP resistance by evaluating 12 strains of common non-tuberculosis mycobacteria. The limit of detection of M. tuberculosis was 10 genomic equivalents (GE)/reaction by further introducing a nested PCR method. In a blind validation of 154 clinical mycobacterium isolates, 142/142 (100%) were correctly detected through the assay. Of these isolates, 88/88 (100%) were determined as RFP susceptible and 52/54 (96.3%) were characterized as RFP resistant. Two unrecognized RFP-resistant strains were sequenced and were found to contain mutations outside the range of the 23 mutation targets. In conclusion, this study established a sensitive, accurate, and low-cost LNA probe-based assay suitable for a four-multiplexing real-time PCR instrument. The proposed method can be used to diagnose RFP-resistant tuberculosis in clinical laboratories. PMID:26599667

  8. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up.

  9. Molecular characterisation of Mycobacterium tuberculosis isolates in the First National Survey of Anti-tuberculosis Drug Resistance from Venezuela

    PubMed Central

    Aristimuño, Liselotte; Armengol, Raimond; Cebollada, Alberto; España, Mercedes; Guilarte, Alexis; Lafoz, Carmen; Lezcano, María A; Revillo, María J; Martín, Carlos; Ramírez, Carmen; Rastogi, Nalin; Rojas, Janet; de Salas, Albina Vázques; Sola, Christophe; Samper, Sofía

    2006-01-01

    Background Molecular typing of Mycobacterium tuberculosis strains has become a valuable tool in the epidemiology of tuberculosis (TB) by allowing detection of outbreaks, tracking of epidemics, identification of genotypes and transmission events among patients who would have remained undetected by conventional contact investigation. This is the first genetic biodiversity study of M. tuberculosis in Venezuela. Thus, we investigated the genetic patterns of strains isolated in the first survey of anti-tuberculosis drug-resistance realised as part of the Global Project of Anti-tuberculosis Drug Resistance Surveillance (WHO/IUATLD). Results Clinical isolates (670/873) were genotyped by spoligotyping. The results were compared with the international spoligotyping database (SpolDB4). Multidrug resistant (MDR) strains (14/18) were also analysed by IS6110-RFLP assays, and resistance to isoniazid and rifampicin was characterised. Spoligotyping grouped 82% (548/670) of the strains into 59 clusters. Twenty new spoligotypes (SITs) specific to Venezuela were identified. Eight new inter-regional clusters were created. The Beijing genotype was not found. The genetic network shows that the Latin American and Mediterranean family constitutes the backbone of the genetic TB population-structure in Venezuela, responsible of >60% of total TB cases studied. MDR was 0.5% in never treated patients and 13.5% in previously treated patients. Mutations in rpoB gene and katG genes were detected in 64% and 43% of the MDR strains, respectively. Two clusters were found to be identical by the four different analysis methods, presumably representing cases of recent transmission of MDR tuberculosis. Conclusion This study gives a first overview of the M. tuberculosis strains circulating in Venezuela during the first survey of anti-tuberculosis drug-resistance. It may aid in the creation of a national database that will be a valuable support for further studies. PMID:17032442

  10. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload

    PubMed Central

    Rowland, Jennifer L.; Niederweis, Michael

    2012-01-01

    SUMMARY Mycobacterium tuberculosis is an important bacterial pathogen with an extremely slow growth rate, an unusual outer membrane of very low permeability and a cunning ability to survive inside the human host despite a potent immune response. A key trait of M. tuberculosis is to acquire essential nutrients while still preserving its natural resistance to toxic compounds. In this regard, copper homeostasis mechanisms are particularly interesting, because copper is an important element for bacterial growth, but copper overload is toxic. In M. tuberculosis at least two enzymes require copper as a cofactor: the Cu/Zn-superoxide dismutase SodC and the cytochrome c oxidase which is essential for growth in vitro. Mutants of M. tuberculosis lacking the copper metallothionein MymT, the efflux pump CtpV and the membrane protein MctB are more susceptible to copper indicating that these proteins are part of a multipronged system to balance intracellular copper levels. Recent evidence showed that part of copper toxicity is a reversible damage of accessible Fe-S clusters of dehydratases and the displacement of other divalent cations such as zinc and manganese as cofactors in proteins. There is accumulating evidence that macrophages use copper to poison bacteria trapped inside phagosomes. Here, we review the rapidly increasing knowledge about copper homeostasis mechanisms in M. tuberculosis and contrast those with similar mechanisms in E. coli. These findings reveal an intricate interplay between the host which aims to overload the phagosome with copper and M. tuberculosis which utilizes several mechanisms to reduce the toxic effects of excess copper. PMID:22361385

  11. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Baldwin, Patrick R.; Reeves, Analise Z.; Powell, Kimberly R.; Napier, Ruth J.; Swimm, Alyson I.; Sun, Aiming; Giesler, Kyle; Bommarius, Bettina; Shinnick, Thomas M.; Snyder, James P.; Liotta, Dennis C.; Kalman, Daniel

    2016-01-01

    Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs. PMID:25618016

  12. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Engström, Anna

    2016-01-01

    Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.

  13. Lipoprotein Processing Is Essential for Resistance of Mycobacterium tuberculosis to Malachite Green▿

    PubMed Central

    Banaei, Niaz; Kincaid, Eleanor Z.; Lin, S.-Y. Grace; Desmond, Edward; Jacobs, William R.; Ernst, Joel D.

    2009-01-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (ΔlspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 104-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green. PMID:19596883

  14. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green.

    PubMed

    Banaei, Niaz; Kincaid, Eleanor Z; Lin, S-Y Grace; Desmond, Edward; Jacobs, William R; Ernst, Joel D

    2009-09-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (DeltalspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 10(4)-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green.

  15. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical strains isolated in the Philippines.

    PubMed

    Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan A; Portero, José L; Jiménez, M Soledad

    2004-06-01

    The prevalence of mutations in the katG, inhA and oxyR-ahpC genes of isoniazid (INH)-resistant Mycobacterium tuberculosis isolates in the Philippines were determined. Of 306 M. tuberculosis isolates studied, 81 (26.5%) exhibited INH-resistance. Forty-four strains (54.3%) had mutations in the katG gene, eighteen strains (22.2%) had mutations in the putative inhA locus region, seven had mutations in both regions and five strains had mutations in the oxyR-ahpC operon. Only seven strains had no mutations. A total of 71 of the 81 (87.6%) resistant strains and 65 of the 72 (90.3%) INH sensitive randomly selected strains showed amino acid substitution in codon 463 (Arg to Leu) (88.9%). This fact supports the hypothesis that mutations at codon 463 are independent of INH-resistance and are linked to the geographical origins of the strains. Copyright 2004 Elsevier B.V.

  16. Mycobacterium tuberculosis lineages and anti-tuberculosis drug resistance in reference hospitals across Viet Nam.

    PubMed

    Nguyen, Van Anh Thi; Bañuls, Anne-Laure; Tran, Thanh Hoa Thi; Pham, Kim Lien Thi; Nguyen, Thai Son; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Nam Lien Thi; Dang, Duc Anh; Marks, Guy B; Choisy, Marc

    2016-07-28

    Mycobacterium tuberculosis, the tuberculosis (TB) pathogen, despite a low level of genetic diversity, has revealed a high variety of biological and epidemiological characteristics linked to their lineages, such as transmissibility, fitness and propensity to acquire drug resistance. This has important implications for the epidemiology of TB. We conducted this first countrywide cross-sectional study to identify the prevalent M. tuberculosis lineages and to assess their epidemiological associations and their relation to drug resistance. The study was conducted among isolates acquired in reference hospitals across Vietnam. Isolates with drug susceptibility testing profiles were identified for their lineages by spoligotyping. Logistic regression was used to investigate the association of M. tuberculosis lineages with location, age and sex of the patients and drug resistance levels. Results showed that the most prevalent lineage was Beijing (55.4 %), followed by EAI (27.5 %), T (6.4 %), LAM (1.3 %), Haarlem (1 %) and Zero type (0.3 %). The proportion of Beijing isolates in the North (70.4 %) and the South (68 %) was higher than in the Centre (28 %) (OR = 1.7 [95 % CI: 1.4-2.0], p < 0.0001), whereas the proportion of EAI isolates in the North (7.1 %) and the South (17 %) was much lower compared with the Centre (59 %) (OR = 0.5 [95 % CI: 0.4-0.6], p < 0.0001). Overall, Beijing isolates were the most likely to be drug-resistant and EAI isolates were the least likely to be drug-resistant, except in the South of Vietnam where EAI is also highly drug-resistant. The proportion of Beijing isolates was significantly higher (p < 0.01), and the proportion of EAI isolates was significantly lower (p < 0.05) in younger patients. The proportion of drug-resistance was higher in isolates collected from male patients and from patients in the middle age groups. The findings suggest ongoing replacement of EAI lineage, which is mainly more drug

  17. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into emergence and spread of multidrug resistance

    PubMed Central

    Manson, Abigail L.; Cohen, Keira A.; Abeel, Thomas; Desjardins, Christopher A.; Armstrong, Derek T.; Barry, Clifton E.; Brand, Jeannette; Chapman, Sinéad B.; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M.; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A. A.; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E.; Cassell, Gail H.; Dorman, Susan E.; Ellner, Jerrold; Farnia, Parissa; Galagan, James E.; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S.; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R.; Cohen, Ted; Hoffner, Sven; Birren, Bruce W.; Earl, Ashlee M.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB. PMID:28092681

  18. Molecular Characterization of Isoniazid-Resistant Mycobacterium tuberculosis Isolates Collected in Australia

    PubMed Central

    Lavender, Caroline; Globan, Maria; Sievers, Aina; Billman-Jacobe, Helen; Fyfe, Janet

    2005-01-01

    Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA −15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA −15 C-to-T mutation clustered with any one genotypic group, but that the −15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region. PMID:16189082

  19. Detection of tuberculosis drug resistance: a comparison by Mycobacterium tuberculosis MLPA assay versus Genotype®MTBDRplus.

    PubMed

    Santos, Paula Fernanda Gonçalves Dos; Costa, Elis Regina Dalla; Ramalho, Daniela M; Rossetti, Maria Lucia; Barcellos, Regina Bones; Nunes, Luciana de Souza; Esteves, Leonardo Souza; Rodenbusch, Rodrigo; Anthony, Richard M; Bergval, Indra; Sengstake, Sarah; Viveiros, Miguel; Kritski, Afrânio; Oliveira, Martha M

    2017-06-01

    To cope with the emergence of multidrug-resistant tuberculosis (MDR-TB), new molecular methods that can routinely be used to screen for a wide range of drug resistance related genetic markers in the Mycobacterium tuberculosis genome are urgently needed. To evaluate the performance of multiplex ligaton-dependent probe amplification (MLPA) against Genotype® MTBDRplus to detect resistance to isoniazid (INHr) and rifampicin (RIFr). 96 culture isolates characterised for identification, drug susceptibility testing (DST) and sequencing of rpoB, katG, and inhA genes were evaluated by the MLPA and Genotype®MTBDRplus assays. With sequencing as a reference standard, sensitivity (SE) to detect INHr was 92.8% and 85.7%, and specificity (SP) was 100% and 97.5%, for MLPA and Genotype®MTBDRplus, respectively. In relation to RIFr, SE was 87.5% and 100%, and SP was 100% and 98.8%, respectively. Kappa value was identical between Genotype®MTBDRplus and MLPA compared with the standard DST and sequencing for detection of INHr [0.83 (0.75-0.91)] and RIFr [0.93 (0.88-0.98)]. Compared to Genotype®MTBDRplus, MLPA showed similar sensitivity to detect INH and RIF resistance. The results obtained by the MLPA and Genotype®MTBDRplus assays indicate that both molecular tests can be used for the rapid detection of drug-resistant TB with high accuracy. MLPA has the added value of providing information on the circulating M. tuberculosis lineages.

  20. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    PubMed Central

    2011-01-01

    Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in

  1. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    PubMed Central

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-01-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results. PMID:24402143

  2. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  3. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Drug resistance characteristics of Mycobacterium tuberculosis isolates to four first-line antituberculous drugs from tuberculosis patients with AIDS in Beijing, China.

    PubMed

    Gao, Gui-ju; Lian, Lulu; Sun, Yue; Wei, Jianhao; Xiao, Jiang; Wang, Xiaoying; Zhang, Ling; Zhao, Xiuqin; Yang, Di; Zhao, Hong-xin; Zhao, Hui; Wang, Hui-zhu; Wan, Kang-lin; Li, Xing-wang

    2015-02-01

    The objective of this study was to investigate the drug resistance characteristics of Mycobacterium tuberculosis isolates to four first-line antituberculous drugs (ATDs) from tuberculosis (TB) patients with AIDS in Beijing, China. All M. tuberculosis strains were isolated from specimens from TB patients with AIDS hospitalised between April 2010 and October 2012. Isolates were cultured by mycobacterial culture methods and were identified by multilocus PCR. Drug sensitivity testing was performed by the proportion method with the following first-line ATDs: isoniazid; rifampicin; streptomycin; and ethambutol. Results were compared with the drug resistance status of M. tuberculosis strains isolated from TB patients without HIV infection in Beijing. Among 41 M. tuberculosis isolates from TB patients with AIDS, the rates of total drug resistance (58.5%), initial drug resistance (46.7%) and acquired drug resistance (90.9%) were significantly higher than in TB patients without HIV infection (34.1%, 24.5% and 48.5%, respectively; P<0.05). In TB patients with AIDS, the rates of acquired drug resistance (90.9%) and acquired multidrug-resistant TB (MDR-TB) (54.5%) were significantly higher than the rates of initial drug resistance (46.7%) and initial MDR-TB (10.0%) (P<0.05). In patients with TB without HIV infection, the rate of acquired drug resistance (48.5%) was significantly higher than the rate of initial drug resistance (24.5%) (P<0.05). M. tuberculosis drug resistance in TB patients with AIDS is significantly more serious than in TB patients without HIV infection. These results showed that more attention should be paid to M. tuberculosis drug resistance in AIDS patients. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. Detection of Mycobacterium tuberculosis resistance mutations to rifampin and isoniazid by real-time PCR.

    PubMed

    Hristea, A; Otelea, D; Paraschiv, S; Macri, A; Baicus, C; Moldovan, O; Tinischi, M; Arama, V; Streinu-Cercel, A

    2010-01-01

    The objective of our study was to evaluate the use of a real-time polymerase chain reaction (PCR)-based technique for the prediction of phenotypic resistance of Mycobacterium tuberculosis. We tested 67 M tuberculosis strains (26 drug resistant and 41 drug susceptible) using a method recommended for the LightCycler platform. The susceptibility testing was performed by the absolute concentration method. For rifampin resistance, two regions of the rpoB gene were targeted, while for identification of isoniazid resistance, we searched for mutations in katG and inhA genes. The sensitivity and specificity of this method for rapid detection of mutations for isoniazid resistance were 96% (95% CI: 88% to 100%) and 95% (95% CI: 89% to 100%), respectively. For detection of rifampin resistance, the sensitivity and specificity were 92% (95% CI: 81% to 100%) and 74% (95% CI: 61% to 87%), respectively. The main isoniazid resistance mechanism identified in our isolates is related to changes in the katG gene that encodes catalase. We found that for rifampin resistance the concordance between the predicted and observed phenotype was less than satisfactory. Using this method, the best accuracy for genotyping compared with phenotypic resistance testing was obtained for detecting isoniazid resistance mutations. Although real-time PCR assay may be a valuable diagnostic tool, it is not yet completely satisfactory for detection of drug resistance mutations in M tuberculosis.

  6. Prevalence of Mycobacterium tuberculosis Beijing genotype and its association with drug resistance in North India.

    PubMed

    Mathuria, Jitendra P; Srivastava, Govind N; Sharma, Pragya; Mathuria, Bharat L; Ojha, Sanjay; Katoch, Vishwa M; Anupurba, Shampa

    The global presence and rapid dissemination of Beijing genotype of Mycobacterium tuberculosis, makes it an important issue of public health. Its presence and association with multi-drug resistance has been shown in many settings. In present study we tried to find its prevalence and association with drug resistance in North India. One hundred and twenty four M. tuberculosis isolates were analyzed with spoligotyping, further drug susceptibility testing was done by 1% proportional method. Out of these, 11 (8.9%) M. tuberculosis isolates were identified as Beijing and 113 (91.1%) as non-Beijing genotypes. While looking at their drug susceptibility patterns, 6 (54.5%) & 22 (19.5%) were found to be multi drug resistant (MDR) among Beijing and non-Beijing isolates respectively. Our study concluded that the Beijing strains were not so common in north India and these strains do not fully associate with MDR. Copyright © 2017 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  7. Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic Pyrazinamide Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rosen, Brandon C.; Dillon, Nicholas A.; Peterson, Nicholas D.; Minato, Yusuke

    2016-01-01

    ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis. PMID:27855077

  8. Evaluation of phage assay for rapid phenotypic detection of rifampicin resistance in Mycobacterium tuberculosis

    PubMed Central

    Yzquierdo, Sergio Luis; Lemus, Dihadenys; Echemendia, Miguel; Montoro, Ernesto; McNerney, Ruth; Martin, Anandi; Palomino, Juan Carlos

    2006-01-01

    Background Conventional methods for susceptibility testing require several months before results can be reported. However, rapid methods to determine drug susceptibility have been developed recently. Phage assay have been reported as a rapid useful tools for antimicrobial susceptibility testing. The aim of this study was to apply the Phage assay for rapid detection of resistance on Mycobacterium tuberculosis strains in Cuba. Methods Phage D29 assay was performed on 102 M. tuberculosis strains to detect rifampicin resistance. The results were compared with the proportion method (gold standard) to evaluate the sensitivity and specificity of Phage assay. Results Phage assay results were available in 2 days whereas Proportion Methods results were obtain in 42 days. A total of 44 strains were detected as rifampicin resistant by both methods. However, one strains deemed resistant by Proportion Methods was susceptible by Phage assay. The sensitivity and specificity of Phage assay were 97.8 % and 100% respectively. Conclusion Phage assay provides rapid and reliable results for susceptibility testing; it's easy to perform, requires no specialized equipment and is applicable to drug susceptibility testing in low income countries where tuberculosis is a major public health problem. PMID:16630356

  9. Porins Increase Copper Susceptibility of Mycobacterium tuberculosis

    PubMed Central

    Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael

    2013-01-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  10. Genotypes of Mycobacterium tuberculosis in patients at risk of drug resistance in Bolivia.

    PubMed

    Monteserin, Johana; Camacho, Mirtha; Barrera, Lucía; Palomino, Juan Carlos; Ritacco, Viviana; Martin, Anandi

    2013-07-01

    Bolivia ranks among the 10 Latin American countries with the highest rates of tuberculosis (TB) and multidrug resistant (MDR) TB. In view of this, and of the lacking information on the population structure of Mycobacterium tuberculosis in the country, we explored genotype associations with drug resistance and clustering by analyzing isolates collected in 2010 from 100 consecutive TB patients at risk of drug resistance in seven of the nine departments in which Bolivia is divided. Fourteen isolates were MDR, 29 had other drug resistance profiles, and 57 were pansusceptible. Spoligotype family distribution was: Haarlem 39.4%, LAM 26.3%, T 22.2%, S 2.0%, X 1.0%, orphan 9.1%, with very low intra-family diversity and absence of Beijing genotypes. We found 66 different MIRU-VNTR patterns; the most frequent corresponded to Multiple Locus Variable Analysis (MLVA) MtbC15 patterns 860, 372 and 873. Twelve clusters, each with identical MIRU-VNTR and spoligotypes, gathered 35 patients. We found no association of genotype with drug resistant or MDR-TB. Clustering associated with SIT 50 and the H3 subfamily to which it belongs (p<0.0001). The largest cluster involved isolates from three departments and displayed a genotype (SIT 50/MLVA 860) previously identified in Bolivian migrants into Spain and Argentina suggesting that this genotype is widespread among Bolivian patients. Our study presents a first overview of M. tuberculosis genotypes at risk of drug resistance circulating in Bolivia. However, results should be taken cautiously because the sample is small and includes a particular subset of M. tuberculosis population. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.

    PubMed

    Gordon, Stephen V; Parish, Tanya

    2018-04-01

    Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.

  12. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana

    2016-08-01

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  13. Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams

    PubMed Central

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C.; Winglee, Kathryn; Pelly, Shaaretha

    2014-01-01

    ABSTRACT Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. PMID:25227469

  14. Phenotypic and genotypic analysis of anti-tuberculosis drug resistance in Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    Aung, Wah Wah; Ei, Phyu Win; Nyunt, Wint Wint; Swe, Thyn Lei; Lwin, Thandar; Htwe, Mi Mi; Kim, Kyung Jun; Lee, Jong Seok; Kim, Chang Ki; Cho, Sang Nae; Song, Sun Dae; Chang, Chulhun L

    2015-09-01

    Tuberculosis (TB) is one of the most serious health problems in Myanmar. Because TB drug resistance is associated with genetic mutation(s) relevant to responses to each drug, genotypic methods for detecting these mutations have been proposed to overcome the limitations of classic phenotypic drug susceptibility testing (DST). We explored the current estimates of drug-resistant TB and evaluated the usefulness of genotypic DST in Myanmar. We determined the drug susceptibility of Mycobacterium tuberculosis isolated from sputum smear-positive patients with newly diagnosed pulmonary TB at two main TB centers in Myanmar during 2013 by using conventional phenotypic DST and the GenoType MTBDRplus assay (Hain Lifescience, Germany). Discrepant results were confirmed by sequencing the genes relevant to each type of resistance (rpoB for rifampicin; katG and inhA for isoniazid). Of 191 isolates, phenotypic DST showed that 27.7% (n=53) were resistant to at least one first-line drug and 20.9% (n=40) were resistant to two or more, including 18.3% (n=35) multidrug-resistant TB (MDR-TB) strains. Monoresistant strains accounted for 6.8% (n=13) of the samples. Genotypic assay of 189 isolates showed 17.5% (n=33) MDR-TB and 5.3% (n=10) isoniazid-monoresistant strains. Genotypic susceptibility results were 99.5% (n=188) concordant and agreed almost perfectly with phenotypic DST (kappa=0.99; 95% confidence interval 0.96-1.01). The results highlight the burden of TB drug resistance and prove the usefulness of the genotypic DST in Myanmar.

  15. Whole-Genome Sequencing of Mycobacterium tuberculosis Provides Insight into the Evolution and Genetic Composition of Drug-Resistant Tuberculosis in Belarus.

    PubMed

    Wollenberg, Kurt R; Desjardins, Christopher A; Zalutskaya, Aksana; Slodovnikova, Vervara; Oler, Andrew J; Quiñones, Mariam; Abeel, Thomas; Chapman, Sinead B; Tartakovsky, Michael; Gabrielian, Andrei; Hoffner, Sven; Skrahin, Aliaksandr; Birren, Bruce W; Rosenthal, Alexander; Skrahina, Alena; Earl, Ashlee M

    2017-02-01

    The emergence and spread of drug-resistant Mycobacterium tuberculosis (DR-TB) are critical global health issues. Eastern Europe has some of the highest incidences of DR-TB, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. To better understand the genetic composition and evolution of MDR- and XDR-TB in the region, we sequenced and analyzed the genomes of 138 M. tuberculosis isolates from 97 patients sampled between 2010 and 2013 in Minsk, Belarus. MDR and XDR-TB isolates were significantly more likely to belong to the Beijing lineage than to the Euro-American lineage, and known resistance-conferring loci accounted for the majority of phenotypic resistance to first- and second-line drugs in MDR and XDR-TB. Using a phylogenomic approach, we estimated that the majority of MDR-TB was due to the recent transmission of already-resistant M. tuberculosis strains rather than repeated de novo evolution of resistance within patients, while XDR-TB was acquired through both routes. Longitudinal sampling of M. tuberculosis from 34 patients with treatment failure showed that most strains persisted genetically unchanged during treatment or acquired resistance to fluoroquinolones. HIV+ patients were significantly more likely to have multiple infections over time than HIV- patients, highlighting a specific need for careful infection control in these patients. These data provide a better understanding of the genomic composition, transmission, and evolution of MDR- and XDR-TB in Belarus and will enable improved diagnostics, treatment protocols, and prognostic decision-making. Copyright © 2017 Wollenberg et al.

  16. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivativesmore » was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.« less

  17. Proteomic analysis of drug-resistant Mycobacterium tuberculosis by one-dimensional gel electrophoresis and charge chromatography.

    PubMed

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Mahdian, Reza; Yari, Fatemeh; Bahrmand, Ahmadreza

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is a form of TB caused by Mycobacterium tuberculosis (M. tuberculosis) that do not respond to, at least, isoniazid and rifampicin, the two most powerful, first-line (or standard) anti-TB drugs. Novel intervention strategies for eliminating this disease were based on finding proteins that can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profiles of MDR-TB with sensitive isolates. Proteomic analysis of M. tuberculosis MDR-TB and sensitive isolates was obtained with ion exchange chromatography coupled with MALDI-TOF-TOF (matrix-assisted laser desorption/ionization) in order to identify individual proteins that have different expression in MDR-TB to be used as a drug target or diagnostic marker for designing valuable TB vaccines or TB rapid tests. We identified eight proteins in MDR-TB isolates, and analyses showed that these proteins are absent in M. tuberculosis-sensitive isolates: (Rv2140c, Rv0009, Rv1932, Rv0251c, Rv2558, Rv1284, Rv3699 and MMP major membrane proteins). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug-resistant and sensitive M. tuberculosis isolates.

  18. Evaluation of the Quantamatrix Multiplexed Assay Platform system for simultaneous detection of Mycobacterium tuberculosis and the rifampicin resistance gene using cultured mycobacteria.

    PubMed

    Wang, Hye-Young; Uh, Young; Kim, Seoyong; Shim, Tae-Sun; Lee, Hyeyoung

    2017-08-01

    The differentiation of Mycobacterium tuberculosis complex (MTBC) from non-tuberculous mycobacteria (NTM) is of primary importance for infection control and the selection of anti-tuberculosis drugs. Up to date data on rifampicin (RIF)-resistant tuberculosis (TB) is essential for the early management of multidrug-resistant TB. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform, QMAP) for the rapid differentiation of 23 Mycobacterium species including MTBC and RIF-resistant strains. A total of 314 clinical Mycobacterium isolates cultured from respiratory specimens were used in this study. The sensitivity and specificity of the QMAP system for Mycobacterium species were 100% (95% CI 99.15-100%, p<0.0001) and 97.8% (95% CI 91.86-99.87%, p<0.0001), respectively. The results of conventional drug susceptibility testing and the QMAP Dual-ID assay were completely concordant for all clinical isolates (100%, 95% CI 98.56-100%). Out of 223 M. tuberculosis (MTB) isolates, 196 were pan-susceptible and 27 were resistant to RIF according to QMAP results. All of the mutations in the RIF resistance-determining region detected by the QMAP system were confirmed by rpoB sequence analysis and a REBA MTB-Rifa reverse blot hybridization assay. The majority of the mutations (n=26, 96.3%), including those missing wild-type probe signals, were located in three codons (529-534, 524-529, and 514-520), and 17 (65.4%) of these mutations were detected by three mutation probes (531TTG, 526TAC, and 516GTC). The entire QMAP system assay takes about 3h to complete, while results from the culture-based conventional method can take up to 48-72h. Although improvements to the QMAP system are needed for direct respiratory specimens, it may be useful for rapid screening, not only to identify and accurately discriminate MTBC from NTM, but also to identify RIF-resistant MTB strains in positive culture samples

  19. Genetic diversity of Mycobacterium tuberculosis isoniazid monoresistant and multidrug-resistant in Rio Grande do Sul, a tuberculosis high-burden state in Brazil.

    PubMed

    Esteves, Leonardo Souza; Dalla Costa, Elis Regina; Vasconcellos, Sidra Ezidio Gonçalves; Vargas, Andrei; Ferreira Junior, Sérgio Luis Montego; Halon, Maria Laura; Ribeiro, Marta Osorio; Rodenbusch, Rodrigo; Gomes, Harrison Magdinier; Suffys, Philip N; Rossetti, Maria Lucia R

    2018-05-01

    Tuberculosis (TB) remains a major public health problem in the world and Brazil is among the countries with the highest incidence and prevalence rates, and Rio Grande do Sul, a Brazilian state, occupy a prominent position. Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) further aggravates this scenario, making it more difficult to treat and control the disease. Isoniazid monoresistance (IMR) may increase the risk of progression to MDR-TB and treatment failure. However, most drug resistance molecular tests only focus on detecting rifampicin (RIF) resistance.In the present study, we characterized a total of 63 drug resistant isolates of M. tuberculosis (35 MDR, 26 IMR and two isolates monoresistant to rifampicin [RMR]) of the Rio Grande do Sul state by MIRU-VNTR (24 loci), spoligotyping, presence of RD Rio , fbpC 103 , pks15/1 and sequencing of the katG, rpoB and inhA genes. We observed a higher proportion of the LAM family 30/63 (47.61%). In IMR, mutations were found in the katG gene (98% at codon 315) in 72.5%, and mutations in the promoter region of the inhA gene in 6.25% of the isolates. In MDR-TB and RMR-TB isolates, 92.1% had mutations in the rpoB gene (57% at codon 531). The presence of a 12 bp insertion between codons 516 and 517 of the rpoB gene in MDR-TB isolates was found in five isolates. In conclusion, we observed that the highest frequency of IMR-TB and MDR-TB strains belong to the LAM and Haarlem genotypes in Rio Grande do Sul state. A significant number of isolates previously characterized as Mycobacterium pinnipedi2 through spoligotyping were found to belong to the M. tuberculosis LAM family. This was responsible for a number of significant cases and the molecular profile of this strain and the pattern of mutations related to drug resistance were analyzed. These findings may contribute to a better understanding about the spread of M. tuberculosis resistant in southern of Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Acquisition of second-line drug resistance and extensive drug resistance during recent transmission of Mycobacterium tuberculosis in rural China.

    PubMed

    Hu, Y; Mathema, B; Zhao, Q; Chen, L; Lu, W; Wang, W; Kreiswirth, B; Xu, B

    2015-12-01

    Multidrug-resistant tuberculosis (MDR-TB) is prevalent in countries with a high TB burden, like China. As little is known about the emergence and spread of second-line drug (SLD) -resistant TB, we investigate the emergence and transmission of SLD-resistant Mycobacterium tuberculosis in rural China. In a multi-centre population-based study, we described the bacterial population structure and the transmission characteristics of SLD-resistant TB using Spoligotyping in combination with genotyping based on 24-locus MIRU-VNTR (mycobacterial interspersed repetitive unit-variable-number tandem repeat) plus four highly variable loci for the Beijing family, in four rural Chinese regions with diverse geographic and socio-demographic characteristics. Transmission networks among genotypically clustered patients were constructed using social network analysis. Of 1332 M. tuberculosis patient isolates recovered, the Beijing family represented 74.8% of all isolates and an association with MDR and simultaneous resistance between first-line drugs and SLDs. The genotyping analysis revealed that 189 isolates shared MIRU-VNTR patterns in 78 clusters with clustering rate and recent transmission rate of 14.2% and 8.3%, respectively. Fifty-three SLD-resistant isolates were observed in 31 clusters, 30 of which contained the strains with different drug susceptibility profiles and genetic mutations. In conjunction with molecular data, socio-network analysis indicated a key role of Central Township in the transmission across a highly interconnected network where SLD resistance accumulation occurred during transmission. SLD-resistant M. tuberculosis has been spreading in rural China with Beijing family being the dominant strains. Primary transmission of SLD-resistant strains in the population highlights the importance of routine drug susceptibility testing and effective anti-tuberculosis regimens for drug-resistant TB. Copyright © 2015 European Society of Clinical Microbiology and

  1. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance.

    PubMed

    Manson, Abigail L; Cohen, Keira A; Abeel, Thomas; Desjardins, Christopher A; Armstrong, Derek T; Barry, Clifton E; Brand, Jeannette; Chapman, Sinéad B; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A A; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E; Cassell, Gail H; Dorman, Susan E; Ellner, Jerrold; Farnia, Parissa; Galagan, James E; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R; Cohen, Ted; Hoffner, Sven; Birren, Bruce W; Earl, Ashlee M

    2017-03-01

    Multidrug-resistant tuberculosis (MDR-TB), caused by drug-resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. Here we examined a data set of whole-genome sequences from 5,310 M. tuberculosis isolates from five continents. Despite the great diversity of these isolates with respect to geographical point of isolation, genetic background and drug resistance, the patterns for the emergence of drug resistance were conserved globally. We have identified harbinger mutations that often precede multidrug resistance. In particular, the katG mutation encoding p.Ser315Thr, which confers resistance to isoniazid, overwhelmingly arose before mutations that conferred rifampicin resistance across all of the lineages, geographical regions and time periods. Therefore, molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of polymorphisms that occur before the emergence of multidrug resistance, particularly katG p.Ser315Thr, into molecular diagnostics should enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.

  2. [Study on molecular characteristics regarding DNA genotype of Mycobacterium tuberculosis clinical strains in Shandong].

    PubMed

    Deng, Yun-feng; Zhang, Yan-an; Zheng, Jian-li; Jing, Hui; Wang, Yan; Wang, Hai-ying; Ma, Xin; Liu, Zhi-min

    2010-03-01

    To establish the molecular characteristics of Mycobacterium tuberculosis and on factors influencing the recent transmission of drug resistant isolates in Shandong. Mycobacterium tuberculosis isolated from active pulmonary tuberculosis patients of 13 counties were genotyped by mycobacterial interspersed repetitive units (MIRU) methods. 12 loci of MIRU were detected in 558 isolates and a total of 143 MIRU patterns were confirmed. 66 isolates had distinct patterns, and 481 (86.2%) strains were in clusters. Shandong cluster included 177 strains with 74.6% of the isolates belonged to Beijing family. The recent transmission index of multi-drug resistance strains was in lower level, comparing to the susceptible strains. Our results showed that the Shandong cluster isolates had capacities of facilitating person-to-person transmission and high level of drug resistance.

  3. Genetic diversity, transmission dynamics, and drug resistance of Mycobacterium tuberculosis in Luanda, Angola.

    PubMed

    Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel

    2016-12-01

    Despite the important role that the African region plays in a global tuberculosis (TB) epidemiological context, many countries in the region still lack data on the prevalence of specific Mycobacterium tuberculosis strains and drug resistance. This is the case for Angola, which presently lacks any data concerning drug-resistance rates and prevalence of specific M. tuberculosis genotypes and respective population structure. In this study, we made the first characterization of the genetic diversity and drug resistance of M. tuberculosis complex strains circulating in Luanda, Angola's most important setting concerning TB epidemiology. We have analyzed 89 M. tuberculosis isolates recovered from the same number of patients. All clinical isolates were genotyped by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTRs). First-line drug-susceptibility testing was performed by the standard BACTEC 960 Mycobacteria Growth Indicator Tube (MGIT) procedure. We have detected 33 different spoligotype profiles corresponding to 24 different shared international types (SITs) and nine orphan profiles. SIT 20 (LAM1) was the most prevalent (n=16, 18.2%) followed by SIT 42 (LAM9; n=15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped into five distinct clusters. Drug-susceptibility testing revealed a worrying situation concerning resistance rates. Drug-susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which four (4.5%) were multidrug resistant (MDR). Drug-resistant isolates were found across distinct clades and MIRU-VNTR clusters. This first cross-sectional study conducted in Luanda, Angola, provides a framework for future studies and programmatic management of TB in Angola. We provide sufficient

  4. Immune Responses in Cattle Inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii

    USDA-ARS?s Scientific Manuscript database

    Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare antigen-specific immune responses to varied patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis), colonization without path...

  5. Correlation between Genotypic and Phenotypic Testing for Resistance to Rifampin in Mycobacterium tuberculosis Clinical Isolates in Haiti: Investigation of Cases with Discrepant Susceptibility Results

    PubMed Central

    Ocheretina, Oksana; Escuyer, Vincent E.; Mabou, Marie-Marcelle; Royal-Mardi, Gertrude; Collins, Sean; Vilbrun, Stalz C.; Pape, Jean W.; Fitzgerald, Daniel W.

    2014-01-01

    The World Health Organization has recommended use of molecular-based tests MTBDRplus and GeneXpert MTB/RIF to diagnose multidrug-resistant tuberculosis in developing and high-burden countries. Both tests are based on detection of mutations in the Rifampin (RIF) Resistance-Determining Region of DNA-dependent RNA Polymerase gene (rpoB). Such mutations are found in 95–98% of Mycobacterium tuberculosis strains determined to be RIF-resistant by the “gold standard” culture-based drug susceptibility testing (DST). We report the phenotypic and genotypic characterization of 153 consecutive clinical Mycobacterium tuberculosis strains diagnosed as RIF-resistant by molecular tests in our laboratory in Port-au-Prince, Haiti. 133 isolates (86.9%) were resistant to both RIF and Isoniazid and 4 isolates (2.6%) were RIF mono-resistant in MGIT SIRE liquid culture-based DST. However the remaining 16 isolates (10.5%) tested RIF-sensitive by the assay. Five strains with discordant genotypic and phenotypic susceptibility results had RIF minimal inhibitory concentration (MIC) close to the cut-off value of 1 µg/ml used in phenotypic susceptibility assays and were confirmed as resistant by DST on solid media. Nine strains had sub-critical RIF MICs ranging from 0.063 to 0.5 µg/ml. Finally two strains were pan-susceptible and harbored a silent rpoB mutation. Our data indicate that not only detection of the presence but also identification of the nature of rpoB mutation is needed to accurately diagnose resistance to RIF in Mycobacterium tuberculosis. Observed clinical significance of low-level resistance to RIF supports the re-evaluation of the present critical concentration of the drug used in culture-based DST assays. PMID:24599230

  6. Rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis by the direct thin-layer agar method.

    PubMed

    Robledo, J; Mejia, G I; Paniagua, L; Martin, A; Guzmán, A

    2008-12-01

    We evaluated thin-layer agar (TLA) for the detection of resistance of Mycobacterium tuberculosis to rifampicin (RMP) and isoniazid (INH) as a direct method in patients at risk of multidrug-resistant tuberculosis (MDR-TB). Quadrant TLA plates contain 7H10 Middlebrook growth control, para-nitrobenzoic acid, INH and RMP. Detection of RMP and INH resistance by TLA was compared to that in indirect conventional drug susceptibility testing (DST) and conventional culture media. Median time for growth was respectively 22, 10 and 7.6 days for Löwenstein-Jensen, TLA and the Mycobacterial Growth Indicator Tube. TLA sensitivity, specificity and predictive values for RMP and INH resistance were 100%. Time to resistance detection was respectively 11 and 11.5 days for RMP and INH. TLA showed a rapid turnaround time and performance comparable to conventional DST methods.

  7. [A preliminary study on the molecular characteristics of D-cycloserine resistance of Mycobacterium tuberculosis].

    PubMed

    Li, C; Li, G L; Luo, Q; Li, S J; Wang, R B; Lou, Y L; Lyu, J X; Wan, K L

    2017-02-10

    Objective: To investigate the relationship between D-cycloserine resistance and the gene mutations of alrA , ddlA and cycA of Mycobacterium ( M. ) tuberculosis , as well as the association between D-cycloserine resistance and spoligotyping genotyping. Methods: A total of 145 M. tuberculosis strains were selected from the strain bank. D-cycloserine resistant phenotypes of the strains were determined by the proportion method and the minimal inhibitory concentration was determined by resazurin microtiter assay. PCR amplification and DNA direct sequencing methods were used for the analysis of gene mutations. Relationship between the resistance phenotype and genotype was analyzed by chi -square test. Results: Of the 145 clinically collected strains, 24 (16.6%) of them were D-cycloserine resistant and 121 (83.4%) were sensitive. There were only synonymous mutations noticed on alrA , ddlA and cycA in sensitive strains. Of the 24 D-cycloserine resistant strains, 3 (12.5%) isolates' cycA and 1 (4.2%) isolates' alrA happened to be non-synonymous mutations, in which the codes were 188, 318 and 508 of cycA , and 261 of alrA , respectively. Results on drug sensitivity tests confirmed the minimal inhibitory concentration of the mutant strains were all increased to some degrees. The D-cycloserine resistant rates of 88 Beijing genotype and 57 non-Beijing genotype strains were 20.5% and 10.5% , respectively, but with no statistically significant difference ( χ (2) =2.47, P >0.05). Conclusions: The non-synonymous mutations of alrA and cycA might contribute to one of the mechanisms of M. tuberculosis D-cycloserine resistance. M. tuberculosis Beijing genotype or non-Beijing genotype was not considered to be associated with the D-cycloserine resistance.

  8. Effect of Lagerstroemia tomentosa and Diospyros virginiana methanolic extracts on different drug-resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Esfahani, B. Nasr; Hozoorbakhsh, F.; Rashed, Kh.; Havaei, S.A.; Heidari, K.; Moghim, Sh.

    2014-01-01

    Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis. The increasing incidence of multi drug resistance tuberculosis (MDR-TB) and extensively drug resistance tuberculosis (XDR-TB) worldwide highlighted the urgent need to search for alternative antimycobacterial agents. More and more people in developing countries utilize traditional medicine for their major primary health care needs. It has been determined that pharmaceutical plant, Lagerstroemia tomentosa and Diospyros virginiana, possesses some antibacterial effect. In this study, the antimycobacterial effects of L. tomentosa and D. virginiana methanolic extracts on sensitive and resistant isolates of MTB were examined. Leaf methanolic extract was prepared using methanol 70%. Sensitivity and resistance of isolates was determined by proportion method. The effects of two different methonolic extract concentrations (20 and 40 μg/ml) of the plants were examined against 6 sensitive and resistant strains of MTB with different patterns of drug resistance. MTB H37Rv (ATCC 27294) was set as control in all culturing and sensitivity testing processes. The results showed that L. tomentosa and D. virginiana methanolic extracts had weak inhibitory effect on different strains of MTB. The highest percentage of inhibition for L. tomentosa and D. virginiana was observed 38% and 33.3%, respectively. PMID:25657789

  9. Detection of Multidrug Resistance in Mycobacterium tuberculosis▿

    PubMed Central

    Sekiguchi, Jun-ichiro; Miyoshi-Akiyama, Tohru; Augustynowicz-Kopeć, Ewa; Zwolska, Zofia; Kirikae, Fumiko; Toyota, Emiko; Kobayashi, Intetsu; Morita, Koji; Kudo, Koichiro; Kato, Seiya; Kuratsuji, Tadatoshi; Mori, Toru; Kirikae, Teruo

    2007-01-01

    We developed a DNA sequencing-based method to detect mutations in the genome of drug-resistant Mycobacterium tuberculosis. Drug resistance in M. tuberculosis is caused by mutations in restricted regions of the genome. Eight genome regions associated with drug resistance, including rpoB for rifampin (RIF), katG and the mabA (fabG1)-inhA promoter for isoniazid (INH), embB for ethambutol (EMB), pncA for pyrazinamide (PZA), rpsL and rrs for streptomycin (STR), and gyrA for levofloxacin, were amplified simultaneously by PCR, and the DNA sequences were determined. It took 6.5 h to complete all procedures. Among the 138 clinical isolates tested, 55 were resistant to at least one drug. Thirty-four of 38 INH-resistant isolates (89.5%), 28 of 28 RIF-resistant isolates (100%), 15 of 18 EMB-resistant isolates (83.3%), 18 of 30 STR-resistant isolates (60%), and 17 of 17 PZA-resistant isolates (100%) had mutations related to specific drug resistance. Eighteen of these mutations had not been reported previously. These novel mutations include one in rpoB, eight in katG, one in the mabA-inhA regulatory region, two in embB, five in pncA, and one in rrs. Escherichia coli isolates expressing individually five of the eight katG mutations showed loss of catalase and INH oxidation activities, and isolates carrying any of the five pncA mutations showed no pyrazinamidase activity, indicating that these mutations are associated with INH and PZA resistance, respectively. Our sequencing-based method was also useful for testing sputa from tuberculosis patients and for screening of mutations in Mycobacterium bovis. In conclusion, our new method is useful for rapid detection of multiple-drug-resistant M. tuberculosis and for identifying novel mutations in drug-resistant M. tuberculosis. PMID:17108078

  10. Evaluation of two line probe assays for rapid detection of Mycobacterium tuberculosis, tuberculosis (TB) drug resistance, and non-TB Mycobacteria in HIV-infected individuals with suspected TB.

    PubMed

    Luetkemeyer, Anne F; Kendall, Michelle A; Wu, Xingye; Lourenço, Maria Cristina; Jentsch, Ute; Swindells, Susan; Qasba, Sarojini S; Sanchez, Jorge; Havlir, Diane V; Grinsztejn, Beatriz; Sanne, Ian M; Firnhaber, Cynthia

    2014-04-01

    Limited performance data from line probe assays (LPAs), nucleic acid tests used for the rapid diagnosis of tuberculosis (TB), nontuberculosis mycobacteria (NTM), and Mycobacterium tuberculosis drug resistance are available for HIV-infected individuals, in whom paucibacillary TB is common. In this study, the strategy of testing sputum with GenoType MTBDRplus (MTBDR-Plus) and GenoType Direct LPA (Direct LPA) was compared to a gold standard of one mycobacterial growth indicator tube (MGIT) liquid culture. HIV-positive (HIV(+)) individuals with suspected TB from southern Africa and South America with <7 days of TB treatment had 1 sputum specimen tested with Direct LPA, MTBDR-Plus LPA, smear microscopy, MGIT, biochemical identification of mycobacterial species, and culture-based drug-susceptibility testing (DST). Of 639 participants, 59.3% were MGIT M. tuberculosis culture positive, of which 276 (72.8%) were acid-fast bacillus (AFB) smear positive. MTBDR-Plus had a sensitivity of 81.0% and a specificity of 100%, with sensitivities of 44.1% in AFB smear-negative versus 94.6% in AFB smear-positive specimens. For specimens that were positive for M. tuberculosis by MTBDR-Plus, the sensitivity and specificity for rifampin resistance were 91.7% and 96.6%, respectively, and for isoniazid (INH) they were 70.6% and 99.1%. The Direct LPA had a sensitivity of 88.4% and a specificity of 94.6% for M. tuberculosis detection, with a sensitivity of 72.5% in smear-negative specimens. Ten of 639 MGIT cultures grew Mycobacterium avium complex or Mycobacterium kansasii, half of which were detected by Direct LPA. Both LPA assays performed well in specimens from HIV-infected individuals, including in AFB smear-negative specimens, with 72.5% sensitivity for M. tuberculosis identification with the Direct LPA and 44.1% sensitivity with MTBDR-Plus. LPAs have a continued role for use in settings where rapid identification of INH resistance and clinically relevant NTM are priorities.

  11. Genetic variation in Mycobacterium tuberculosis isolates from a London outbreak associated with isoniazid resistance.

    PubMed

    Satta, Giovanni; Witney, Adam A; Shorten, Robert J; Karlikowska, Magdalena; Lipman, Marc; McHugh, Timothy D

    2016-08-16

    The largest outbreak of isoniazid-resistant (INH-R) Mycobacterium tuberculosis in Western Europe is centred in North London, with over 400 cases diagnosed since 1995. In the current study, we evaluated the genetic variation in a subset of clinical samples from the outbreak with the hypothesis that these isolates have unique biological characteristics that have served to prolong the outbreak. Fitness assays, mutation rate estimation, and whole-genome sequencing were performed to test for selective advantage and compensatory mutations. This detailed analysis of the genetic variation of these INH-R samples suggests that this outbreak consists of successful, closely related, circulating strains with heterogeneous resistance profiles and little or no associated fitness cost or impact on their mutation rate. Specific deletions and SNPs could be a peculiar feature of these INH-R M. tuberculosis isolates, and could potentially explain their persistence over the years.

  12. Burden of Multidrug Resistant Mycobacterium tuberculosis Among New Cases in Al-Madinah Al-Monawarah, Saudi Arabia.

    PubMed

    Elhassan, Mogahid M; Hemeg, Hassan A; Elmekki, Miskelyemen A; Turkistani, Khalid A; Abdul-Aziz, Ahmed A

    2017-01-01

    The pattern of Mycobacterium tuberculosis susceptibility to first line drugs and multidrug resistance in Al-Madinah Al-Munawarah, a seasonally overcrowded are during Hajj and Omrah, is not well studied. This study aimed to investigate anti-tuberculosis drug resistance and its distribution among new cases in Al-Madinah Al-Monawarah. Study subjects included 622 patients with first time confirmed TB referred to the central tuberculosis laboratory in Al-Madinah between January 2012 and December 2014. Out of the 622 isolates, 99 (15.9%) were Mycobacteria Other Than Tuberculosis (MOTTS) and 25 (4.0%), three of which (12%) were children under five years of age, revealed multidrug resistance (MDR). Monoresistance to isoniazid (H) was (1.8%), to rifampin (R) was (1.4%), to streptomycin (S) was (1.9 %) to ethambutol (E) was (1.1 %) and to pyrazinamide (Z) was (2.1%). Being among the new cases, multidrug resistant tuberculosis (MDR TB) is supposed to be caused by strains which are originally multidrug resistant. Neither nationality nor gender was found to be associated with MDR TB. Since 12% of MDR cases were among children, a probability of primary infection with MDR strains is to be considered. Moreover, mass gathering during Hajj and Omrah seasons does not seem to increase the burden of MDR in the region. However, further investigation is needed to molecularly characterize MDR isolates and their phylogenetics and geographical origin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Influence of Stress and Antibiotic Resistance on Cell-Length Distribution in Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Vijay, Srinivasan; Vinh, Dao N.; Hai, Hoang T.; Ha, Vu T. N.; Dung, Vu T. M.; Dinh, Tran D.; Nhung, Hoang N.; Tram, Trinh T. B.; Aldridge, Bree B.; Hanh, Nguyen T.; Thu, Do D. A.; Phu, Nguyen H.; Thwaites, Guy E.; Thuong, Nguyen T. T.

    2017-01-01

    Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation. PMID:29209302

  14. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis

    PubMed Central

    Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J.; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A.; Golubchik, Tanya; Wilson, Daniel J.; Wyllie, David H.; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A.; Ismail, Nazir; Omar, Shaheed V.; Smith, E. Grace; Buck, David; McVean, Gil; Walker, A. Sarah; Peto, Tim E. A.; Crook, Derrick W.; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  15. Conspicuous multidrug-resistant Mycobacterium tuberculosis cluster strains do not trespass country borders in Latin America and Spain.

    PubMed

    Ritacco, Viviana; Iglesias, María-José; Ferrazoli, Lucilaine; Monteserin, Johana; Dalla Costa, Elis R; Cebollada, Alberto; Morcillo, Nora; Robledo, Jaime; de Waard, Jacobus H; Araya, Pamela; Aristimuño, Liselotte; Díaz, Raúl; Gavin, Patricia; Imperiale, Belen; Simonsen, Vera; Zapata, Elsa M; Jiménez, María S; Rossetti, Maria L; Martin, Carlos; Barrera, Lucía; Samper, Sofia

    2012-06-01

    Multidrug-resistant Mycobacterium tuberculosis strain diversity in Ibero-America was examined by comparing extant genotype collections in national or state tuberculosis networks. To this end, genotypes from over 1000 patients with multidrug-resistant tuberculosis diagnosed from 2004 through 2008 in Argentina, Brazil, Chile, Colombia, Venezuela and Spain were compared in a database constructed ad hoc. Most of the 116 clusters identified by IS6110 restriction fragment length polymorphism were small and restricted to individual countries. The three largest clusters, of 116, 49 and 25 patients, were found in Argentina and corresponded to previously documented locally-epidemic strains. Only 13 small clusters involved more than one country, altogether accounting for 41 patients, of whom 13 were, in turn, immigrants from Latin American countries different from those participating in the study (Peru, Ecuador and Bolivia). Most of these international clusters belonged either to the emerging RD(Rio) LAM lineage or to the Haarlem family of M. tuberculosis and four were further split by country when analyzed with spoligotyping and rifampin resistance-conferring mutations, suggesting that they did not represent ongoing transnational transmission events. The Beijing genotype accounted for 1.3% and 10.2% of patients with multidrug-resistant tuberculosis in Latin America and Spain, respectively, including one international cluster of two cases. In brief, Euro-American genotypes were widely predominant among multidrug-resistant M. tuberculosis strains in Ibero-America, reflecting closely their predominance in the general M. tuberculosis population in the region, and no evidence was found of acknowledged outbreak strains trespassing country borders. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. DNA Replication in Mycobacterium tuberculosis

    PubMed Central

    DITSE, ZANELE; LAMERS, MEINDERT H.; WARNER, DIGBY F.

    2017-01-01

    Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication—in particular, its regulation and coordination with cell division—in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli—both of which might be relevant to the emergence and fixation of genetic drug resistance. PMID:28361736

  17. Multidrug-resistant tuberculosis.

    PubMed

    Zager, Ellen M; McNerney, Ruth

    2008-01-25

    With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB) has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB) that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose that inclusion of population based statistics in

  18. Molecular Characteristics of Mycobacterium tuberculosis Strains Isolated from Cutaneous Tuberculosis Patients in China.

    PubMed

    Jiang, Haiqin; Jin, Yali; Vissa, Varalakshmi; Zhang, Liangfen; Liu, Weijun; Qin, Lianhua; Wan, Kanglin; Wu, Xiaocui; Wang, Hongsheng; Liu, Weida; Wang, Baoxi

    2017-04-06

    Cutaneous tuberculosis (CTB) is probably underreported due to difficulties in detection and diagnosis. To address this issue, genotypes of Mycobacterium tuberculosis strains isolated from 30 patients with CTB were mapped at multiple loci, namely, RD105 deletions, spacer oligonucleotides, and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats (MIRU-VNTRs). Fifty-eight strains of pulmonary tuberculosis (PTB) were mapped as experimental controls. Drug resistance-associated gene mutations were determined by amplicon sequencing of target regions within 7 genes. Beijing family isolates were the most prevalent strains in CTB and PTB. MIRU-VNTR typing separated the Beijing strains from the non-Beijing strains, and the majority of CTB could be separated from PTB counterparts. Drug resistance determining regions showed only one CTB strain expressing isomazid resistance. Thus, while the CTB strains belonged to the same phylogenetic lineages and sub-lineages as the PTB strains, they differed at the level of several MIRU-VNTRs and in the proportion of drug resistance.

  19. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting.

    PubMed

    Perdigão, João; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Viveiros, Miguel; Portugal, Isabel

    2014-11-18

    Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM).The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  20. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection.

    PubMed

    Booty, Matthew G; Barreira-Silva, Palmira; Carpenter, Stephen M; Nunes-Alves, Cláudio; Jacques, Miye K; Stowell, Britni L; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M

    2016-11-07

    IL-21 is produced predominantly by activated CD4 + T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γ c ) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8 + T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4 + and CD8 + T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R -/- mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R -/- T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.

  1. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection

    PubMed Central

    Booty, Matthew G.; Barreira-Silva, Palmira; Carpenter, Stephen M.; Nunes-Alves, Cláudio; Jacques, Miye K.; Stowell, Britni L.; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M.

    2016-01-01

    IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R−/− mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R−/− T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis. PMID:27819295

  2. Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Narang, Anshika; Giri, Astha; Gupta, Shraddha; Garima, Kushal; Bose, Mridula; Varma-Basil, Mandira

    2017-01-01

    Isoniazid (INH) resistance in Mycobacterium tuberculosis has been mainly attributed to mutations in katG (64%) and inhA (19%). However, 20%-30% resistance to INH cannot be explained by mutations alone. Hence, other mechanisms besides mutations may play a significant role in providing drug resistance. Here, we explored the role of 24 putative efflux pump genes conferring INH-resistance in M. tuberculosis. Real-time expression profiling of the efflux pump genes was performed in five INH-susceptible and six high-level INH-resistant clinical isolates of M. tuberculosis exposed to the drug. Isolates were also analyzed for mutations in katG and inhA. Four high-level INH-resistant isolates (minimum inhibitory concentration [MIC] ≥2.5 mg/L) with mutations at codon 315 (AGC-ACC) of katG showed upregulation of one of the efflux genes Rv1634, Rv0849, efpA, or p55. Another high-level INH-resistant isolate (MIC 1.5 mg/L), with no mutations at katG or inhA overexpressed 8/24 efflux genes, namely, Rv1273c, Rv0194, Rv1634, Rv1250, Rv3823c, Rv0507, jefA, and p55. Five of these, namely, Rv0194, Rv1634, Rv1250, Rv0507, and p55 were induced only in resistant isolates. The high number of efflux genes overexpressed in an INH-resistant isolate with no known INH resistance associated mutations, suggests a role for efflux pumps in resistance to this antituberculous agent, with the role of Rv0194 and Rv0507 in INH resistance being reported for the first time.

  3. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    PubMed Central

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  4. Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics.

    PubMed

    Manson, Abigail L; Abeel, Thomas; Galagan, James E; Sundaramurthi, Jagadish Chandrabose; Salazar, Alex; Gehrmann, Thies; Shanmugam, Siva Kumar; Palaniyandi, Kannan; Narayanan, Sujatha; Swaminathan, Soumya; Earl, Ashlee M

    2017-06-01

    India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Susceptibility Testing of Extensively Drug-Resistant and Pre-Extensively Drug-Resistant Mycobacterium tuberculosis against Levofloxacin, Linezolid, and Amoxicillin-Clavulanate

    PubMed Central

    Ahmed, Imran; Jabeen, Kauser; Inayat, Raunaq

    2013-01-01

    Pakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR) Mycobacterium tuberculosis against LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC. M. tuberculosis H37Rv was used as a control strain. A total of 102 M. tuberculosis isolates (XDR, n = 59; pre-XDR, n = 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases. PMID:23507286

  6. Susceptibility testing of extensively drug-resistant and pre-extensively drug-resistant Mycobacterium tuberculosis against levofloxacin, linezolid, and amoxicillin-clavulanate.

    PubMed

    Ahmed, Imran; Jabeen, Kauser; Inayat, Raunaq; Hasan, Rumina

    2013-06-01

    Pakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR) Mycobacterium tuberculosis against LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC. M. tuberculosis H37Rv was used as a control strain. A total of 102 M. tuberculosis isolates (XDR, n = 59; pre-XDR, n = 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases.

  7. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  8. Gene mutations in Mycobacterium tuberculosis: multidrug-resistant TB as an emerging global public health crisis.

    PubMed

    Mishra, Rahul; Shukla, Priyanka; Huang, Wei; Hu, Ning

    2015-01-01

    Against a constant background of established infections, epidemics of new and old infectious diseases periodically emerge, greatly magnifying the global burden of infections. TB poses formidable challenges to the global health at the public health and scientific level by acquiring gene mutation into anti TB drugs specially rifampin and isoniazid which leads resistant to drug regime and treatment forms. Our tools to combat MDR (multidrug resistant) TB are dangerously out of date and ineffective. Besides new tools (TB drugs, vaccines, diagnostics), we also need new strategies to identify key Mycobacterium tuberculosis and human host interaction. It is all equally important that we build up high quality clinical trial capacity and bio banks for TB biomarkers identification. But most important is global commitment at all levels to roll back TB before it expose us again. Rapid development of drug resistance caused by M. tuberculosis has lead to measure resistance accurately and easily. This knowledge will certainly help us to understand how to prevent the occurrence of drug resistance as well as identifying genes associated with new drug resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Rapid detection of rifampin-resistant clinical isolates of Mycobacterium tuberculosis by reverse dot blot hybridization.

    PubMed

    Guo, Qian; Yu, Yan; Zhu, Yan Ling; Zhao, Xiu Qin; Liu, Zhi Guang; Zhang, Yuan Yuan; Li, Gui Lian; Wei, Jian Hao; Wu, Yi Mou; Wan, Kang Lin

    2015-01-01

    A PCR-reverse dot blot hybridization (RDBH) assay was developed for rapid detection of rpoB gene mutations in 'hot mutation region' of Mycobacterium tuberculosis (M. tuberculosis). 12 oligonucleotide probes based on the wild-type and mutant genotype rpoB sequences of M. tuberculosis were designed to screen the most frequent wild-type and mutant genotypes for diagnosing RIF resistance. 300 M. tuberculosis clinical isolates were detected by RDBH, conventional drug-susceptibility testing (DST) and DNA sequencing to evaluate the RDBH assay. The sensitivity and specificity of the RDBH assay were 91.2% (165/181) and 98.3% (117/119), respectively, as compared to DST. When compared with DNA sequencing, the accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the RDBH assay were 97.7% (293/300), 98.2% (164/167), and 97.0% (129/133), respectively. Furthermore, the results indicated that the most common mutations were in codons 531 (48.6%), 526 (25.4%), 516 (8.8%), and 511 (6.6%), and the combinative mutation rate was 15 (8.3%). One and two strains of insertion and deletion were found among all strains, respectively. Our findings demonstrate that the RDBH assay is a rapid, simple and sensitive method for diagnosing RIF-resistant tuberculosis. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion

  11. Diagnosis and Treatment of Drug-Resistant Tuberculosis.

    PubMed

    Caminero, José A; Cayla, Joan A; García-García, José-María; García-Pérez, Francisco J; Palacios, Juan J; Ruiz-Manzano, Juan

    2017-09-01

    In the last 2 decades, drug-resistant tuberculosis has become a threat and a challenge to worldwide public health. The diagnosis and treatment of these forms of tuberculosis are much more complex and prognosis clearly worsens as the resistance pattern intensifies. Nevertheless, it is important to remember that with the appropriatesystematic clinical management, most of these patients can be cured. These guidelines itemize the basis for the diagnosis and treatment of all tuberculosis patients, from those infected by strains that are sensitive to all drugs, to those who are extensively drug-resistant. Specific recommendations are given forall cases. The current and future role of new molecular methods for detecting resistance, shorter multi-drug-resistant tuberculosis regimens, and new drugs with activity against Mycobacterium tuberculosis are also addressed. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    PubMed

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American

  13. In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 against Mycobacterium tuberculosis

    PubMed Central

    Cho, S.; Yang, T. J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S. G.

    2014-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7. In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. PMID:25331696

  14. Direct detection of Mycobacterium tuberculosis and drug resistance in respiratory specimen using Abbott Realtime MTB detection and RIF/INH resistance assay.

    PubMed

    Tam, Kingsley King-Gee; Leung, Kenneth Siu-Sing; To, Sabrina Wai-Chi; Siu, Gilman Kit-Hang; Lau, Terrence Chi-Kong; Shek, Victor Chi-Man; Tse, Cindy Wing-Sze; Wong, Samson Sai-Yin; Ho, Pak-Leung; Yam, Wing-Cheong

    2017-10-01

    Abbott RealTime MTB (Abbott-RT) in conjunction with Abbott RealTime MTB RIF/INH Resistance (Abbott-RIF/INH) is a new, high-throughput automated nucleic acid amplification platform (Abbott-MDR) for detection of Mycobacterium tuberculosis complex (MTBC) and the genotypic markers for rifampicin (RIF) and isoniazid (INH) resistance directly from respiratory specimens. This prospective study evaluated the diagnostic performance of this new platform for MTBC and multidrug-resistant tuberculosis (MDR-TB) using 610 sputum specimens in a tuberculosis high-burden setting. Using conventional culture results and clinical background as reference standards, Abbott-RT exhibited an overall sensitivity and specificity of 95.2% and 99.8%, respectively. Genotypic RIF/INH resistance of 178 "MTB detected" specimens was subsequently analyzed by Abbott-RIF/INH. Compared to phenotypic drug susceptibility test results, Abbott-RIF/INH detected resistance genotypic markers in 84.6% MDR-TB, 80% mono-RIF-resistant and 66.7% mono-INH-resistant specimens. Two of the RIF-resistant specimens carried a novel single, nonsense mutation at rpoB Q513 and in silico simulation demonstrated that the truncated RpoB protein failed to bind with other subunits for transcription. Overall, Abbott-MDR platform provided high throughput and reliable diagnosis of MDR-TB within a TB high-burden region. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analysis of isoniazid-resistant transposon mutants of Mycobacterium smegmatis.

    PubMed

    Billman-Jacobe, H; Sloan, J; Coppel, R L

    1996-10-15

    The emergence of multidrug-resistant tuberculosis has renewed interest in the study of drug resistance in mycobacteria with the objective of improved chemotherapy. The genetic basis of isoniazid resistance in a model mycobacterium was studied. Eleven isoniazid-resistant mutants of Mycobacterium smegmatis were created using transposon mutagenesis. Genetic and enzymatic characterisation of the mutants showed that katG, encoding T-catalase, was inactivated. The nucleotide sequence of M. smegmatis katG was determined and the mutation sites mapped demonstrating that both the amino and carboxyl halves of T-catalase are important for enzymatic activity.

  16. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar.

    PubMed

    San, Lai Lai; Aye, Khin Saw; Oo, Nan Aye Thida; Shwe, Mu Mu; Fukushima, Yukari; Gordon, Stephen V; Suzuki, Yasuhiko; Nakajima, Chie

    2018-06-21

    Myanmar is a WHO high tuberculosis (TB) burden country with a high multidrug-resistant (MDR)-TB burden. Significantly a high prevalence of the Beijing genotype of Mycobacterium tuberculosis (MTB) among MDR-MTB has been reported previously. To explore whether an association exists between the prevalence of the Beijing MTB genotype and MDR-TB in Myanmar, we performed detailed genetic characterization of TB clinical isolates. A total of 265 MDR-MTB clinical isolates collected in 2010 and 2012 were subjected to spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, SNP typing and drug resistance-associated gene sequencing including rpoC to detect potential compensatory evolution. Of the total MDR-MTB isolates, 79.2% (210/265) were of the Beijing genotype, the majority of which were the "modern" subtype. Beijing genotype isolates were differentiated by 15-loci MIRU-VNTR and a high clustering rate (53.0%) was observed in the modern subtype. These MIRU-VNTR patterns were similar to Beijing genotype clones spreading across Russia and Central Asia. High prevalence of katG Ser315Thr, and genetic evidence of XDR and pre-XDR and compensatory mutations in rpoC were observed among clustered isolates. MDR-MTB strains of the Beijing genotype might be spreading in Myanmar and present a major challenge to TB control in this country. Copyright © 2018. Published by Elsevier Ltd.

  17. Rapid Detection of Mycobacterium tuberculosis and Rifampin Resistance by Use of On-Demand, Near-Patient Technology▿ † ‡

    PubMed Central

    Helb, Danica; Jones, Martin; Story, Elizabeth; Boehme, Catharina; Wallace, Ellen; Ho, Ken; Kop, JoAnn; Owens, Michelle R.; Rodgers, Richard; Banada, Padmapriya; Safi, Hassan; Blakemore, Robert; Lan, N. T. Ngoc; Jones-López, Edward C.; Levi, Michael; Burday, Michele; Ayakaka, Irene; Mugerwa, Roy D.; McMillan, Bill; Winn-Deen, Emily; Christel, Lee; Dailey, Peter; Perkins, Mark D.; Persing, David H.; Alland, David

    2010-01-01

    Current nucleic acid amplification methods to detect Mycobacterium tuberculosis are complex, labor-intensive, and technically challenging. We developed and performed the first analysis of the Cepheid Gene Xpert System's MTB/RIF assay, an integrated hands-free sputum-processing and real-time PCR system with rapid on-demand, near-patient technology, to simultaneously detect M. tuberculosis and rifampin resistance. Analytic tests of M. tuberculosis DNA demonstrated a limit of detection (LOD) of 4.5 genomes per reaction. Studies using sputum spiked with known numbers of M. tuberculosis CFU predicted a clinical LOD of 131 CFU/ml. Killing studies showed that the assay's buffer decreased M. tuberculosis viability by at least 8 logs, substantially reducing biohazards. Tests of 23 different commonly occurring rifampin resistance mutations demonstrated that all 23 (100%) would be identified as rifampin resistant. An analysis of 20 nontuberculosis mycobacteria species confirmed high assay specificity. A small clinical validation study of 107 clinical sputum samples from suspected tuberculosis cases in Vietnam detected 29/29 (100%) smear-positive culture-positive cases and 33/39 (84.6%) or 38/53 (71.7%) smear-negative culture-positive cases, as determined by growth on solid medium or on both solid and liquid media, respectively. M. tuberculosis was not detected in 25/25 (100%) of the culture-negative samples. A study of 64 smear-positive culture-positive sputa from retreatment tuberculosis cases in Uganda detected 63/64 (98.4%) culture-positive cases and 9/9 (100%) cases of rifampin resistance. Rifampin resistance was excluded in 54/55 (98.2%) susceptible cases. Specificity rose to 100% after correcting for a conventional susceptibility test error. In conclusion, this highly sensitive and simple-to-use system can detect M. tuberculosis directly from sputum in less than 2 h. PMID:19864480

  18. Whole-Genome Analysis of Mycobacterium tuberculosis from Patients with Tuberculous Spondylitis, Russia.

    PubMed

    Chernyaeva, Ekaterina; Rotkevich, Mikhail; Krasheninnikova, Ksenia; Yurchenko, Andrey; Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Zhuravlev, Viacheslav; Yablonsky, Piotr; O'Brien, Stephen J

    2018-03-01

    Whole-genome analysis of Mycobacterium tuberculosis isolates collected in Russia (N = 71) from patients with tuberculous spondylitis supports a detailed characterization of pathogen strain distributions and drug resistance phenotype, plus distinguished occurrence and association of known resistance mutations. We identify known and novel genome determinants related to bacterial virulence, pathogenicity, and drug resistance.

  19. Genetic diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and identification of a rare multidrug resistant Beijing genotype.

    PubMed

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.

  20. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype

    PubMed Central

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431

  1. Tuberculosis-resistant transgenic cattle

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...

  2. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS.

    PubMed

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.

  3. Distribution of Spoligotyping Defined Genotypic Lineages among Drug-Resistant Mycobacterium tuberculosis Complex Clinical Isolates in Ankara, Turkey

    PubMed Central

    Kisa, Ozgul; Tarhan, Gulnur; Gunal, Selami; Albay, Ali; Durmaz, Riza; Saribas, Zeynep; Zozio, Thierry; Alp, Alpaslan; Ceyhan, Ismail; Tombak, Ahmet; Rastogi, Nalin

    2012-01-01

    Background Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey. Methods and Findings A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates. Conclusions The results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical

  4. Phenotypic and genotypic characteristics of drug resistance in Mycobacterium tuberculosis isolates from pediatric population of Chennai, India.

    PubMed

    Therese, K Lily; Gayathri, R; Balasubramanian, S; Natrajan, S; Madhavan, H N

    2012-01-01

    Multidrug-resistant TB (MDR-TB) has been reported in almost all parts of the world. Childhood TB is accorded low priority by national TB control programs. Probable reasons include diagnostic difficulties, limited resources, misplaced faith in BCG and lack of data on treatment. Good data on the burden of all forms of TB among children in India are not available. To study the drug sensitivity pattern of tuberculosis in children aged from 3 months to 18 years and the outcome of drug-resistant tuberculosis by BACTEC culture system and PCR-based DNA sequencing technique. This is a retrospective study. One hundred and fifty-nine clinical specimens were processed for Ziehl-Neelsen stain, Mycobacterial culture by BACTEC method, phenotypic DST for first-line drugs for Mycobacterium tuberculosis (M. tuberculosis) isolates and PCR-based DNA sequencing was performed for the M. tuberculosis isolates targeting rpoB, katG, inhA, oxyR-ahpC, rpsL, rrs and pncA. Out of the 159 Mycobacterial cultures performed during the study period, 17 clinical specimens (10.7%) were culture positive for M. tuberculosis. Among the 17 M. tuberculosis isolates, 2 were multidrug-resistant TB. PCR-based DNA sequencing revealed the presence of many novel mutations targeting katG, inhA, oxyR-ahpC and pncA and the most commonly reported mutation Ser531Leu in the rpoB gene. This study underlines the urgent need to take efforts to develop methods for rapid detection and drug susceptibility of tubercle bacilli in the pediatric population.

  5. [Description of Mycobacterium tuberculosis mutations conferring resistance to rifampicin and isoniazid detected by GenoType® MTBDRplus V.2 in Colombia].

    PubMed

    Llerena, Claudia; Medina, Raquel

    2017-01-24

    The GenoType®MTBDRplusV.2 assay is a molecular technique endorsed by the World Health Organization and the Pan American Health Organization that allows for the identification of the Mycobacterium tuberculosis complex and the detection of mutations in the rpoβ gene for rifampicin resistance, and katG and inhA genes for isoniazid resistance. Due to the genetic variability in the circulating strains around the world, the national tuberculosis control programs should assess the performance of these new diagnostic technologies and their use under program conditions as rapid tests. To describe the mutations identified by the GenoType®MTBDRplusV.2 assay in pulmonary samples and Mycobacterium tuberculosis isolates in the Laboratorio Nacional de Referencia of the Instituto Nacional de Salud in 2014. We conducted a retrospective, descriptive study to detect the expression of inhA, KatG and rpoβ genes, responsible for resistence against isoniazid and rifampicin using the GenoType® MTBDRplus V.2 assay in 837 samples and isolates from tuberculosis cases. Several mutations in the rpoβ gene were identified. Ser531Leu was the most frequent (36.6%) followed by Asp516Val (21.6%), while Ser315Thr1 was the most frequent mutation in the katG gene (91.9%). We were able to identify different mutations present in MDR-TB strains in the country, with frequencies similar to those reported in other countries in the South American region.

  6. A New Approach for Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis

    PubMed Central

    Loli, Sebastian; Gilman, Robert H.; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Background: Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. Objective: To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. Methods: The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. Result: POA efflux rate predicted PZA resistance with 70.83%–92.85% sensitivity and 100% specificity compared with BACTEC 460. Conclusion: POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance. PMID:22372927

  7. A new approach for pyrazinamide susceptibility testing in Mycobacterium tuberculosis.

    PubMed

    Zimic, Mirko; Loli, Sebastian; Gilman, Robert H; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-08-01

    Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. POA efflux rate predicted PZA resistance with 70.83%-92.85% sensitivity and 100% specificity compared with BACTEC 460. POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance.

  8. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates.

    PubMed

    Liu, Fei; Hu, Yongfei; Wang, Qi; Li, Hong Min; Gao, George F; Liu, Cui Hua; Zhu, Baoli

    2014-06-13

    Due to excessive antibiotic use, drug-resistant Mycobacterium tuberculosis has become a serious public health threat and a major obstacle to disease control in many countries. To better understand the evolution of drug-resistant M. tuberculosis strains, we performed whole genome sequencing for 7 M. tuberculosis clinical isolates with different antibiotic resistance profiles and conducted comparative genomic analysis of gene variations among them. We observed that all 7 M. tuberculosis clinical isolates with different levels of drug resistance harbored similar numbers of SNPs, ranging from 1409-1464. The numbers of insertion/deletions (Indels) identified in the 7 isolates were also similar, ranging from 56 to 101. A total of 39 types of mutations were identified in drug resistance-associated loci, including 14 previously reported ones and 25 newly identified ones. Sixteen of the identified large Indels spanned PE-PPE-PGRS genes, which represents a major source of antigenic variability. Aside from SNPs and Indels, a CRISPR locus with varied spacers was observed in all 7 clinical isolates, suggesting that they might play an important role in plasticity of the M. tuberculosis genome. The nucleotide diversity (Л value) and selection intensity (dN/dS value) of the whole genome sequences of the 7 isolates were similar. The dN/dS values were less than 1 for all 7 isolates (range from 0.608885 to 0.637365), supporting the notion that M. tuberculosis genomes undergo purifying selection. The Л values and dN/dS values were comparable between drug-susceptible and drug-resistant strains. In this study, we show that clinical M. tuberculosis isolates exhibit distinct variations in terms of the distribution of SNP, Indels, CRISPR-cas locus, as well as the nucleotide diversity and selection intensity, but there are no generalizable differences between drug-susceptible and drug-resistant isolates on the genomic scale. Our study provides evidence strengthening the notion that

  9. A molecular platform for the diagnosis of multidrug-resistant and pre-extensively drug-resistant tuberculosis based on single nucleotide polymorphism mutations present in Colombian isolates of Mycobacterium tuberculosis.

    PubMed

    Martínez, Luz Maira Wintaco; Castro, Gloria Puerto; Guerrero, Martha Inírida

    2016-02-01

    Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.

  10. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review.

    PubMed

    Papaventsis, D; Casali, N; Kontsevaya, I; Drobniewski, F; Cirillo, D M; Nikolayevskyy, V

    2017-02-01

    We conducted a systematic review to determine the diagnostic accuracy of whole genome sequencing (WGS) of Mycobacterium tuberculosis for the detection of resistance to first- and second-line anti-tuberculosis (TB) drugs. The study was conducted according to the criteria of the Preferred Reporting Items for Systematic Reviews group. A total of 20 publications were included. The sensitivity, specificity, positive-predictive value and negative-predictive value of WGS using phenotypic drug susceptibility testing methods as a reference standard were determined. Anti-TB agents tested included all first-line drugs, a variety of reserve drugs, as well as new drugs. Polymorphisms in a total of 53 genes were tested for associations with drug resistance. Pooled sensitivity and specificity values for detection of resistance to selected first-line drugs were 0.98 (95% CI 0.93-0.98) and 0.98 (95% CI 0.98-1.00) for rifampicin and 0.97 (95% CI 0.94-0.99) and 0.93 (95% CI 0.91-0.96) for isoniazid, respectively. Due to high heterogeneity in study designs, lack of data, knowledge of resistance mechanisms and clarity on exclusion of phylogenetic markers, there was a significant variation in analytical performance of WGS for the remaining first-line, reserved drugs and new drugs. Whole genome sequencing could be considered a promising alternative to existing phenotypic and molecular drug susceptibility testing methods for rifampicin and isoniazid pending standardization of analytical pipelines. To ensure clinical relevance of WGS for detection of M. tuberculosis complex drug resistance, future studies should include information on clinical outcomes. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Mycobacterium tuberculosis: ecology and evolution of a human bacterium.

    PubMed

    Bañuls, Anne-Laure; Sanou, Adama; Anh, Nguyen Thi Van; Godreuil, Sylvain

    2015-11-01

    Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.

  12. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    PubMed

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  13. Complex multifractal nature in Mycobacterium tuberculosis genome

    PubMed Central

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-01-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326

  14. Complex multifractal nature in Mycobacterium tuberculosis genome

    NASA Astrophysics Data System (ADS)

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-04-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.

  15. Molecular detection and drug resistance of Mycobacterium tuberculosis complex from cattle at a dairy farm in the Nkonkobe region of South Africa: a pilot study.

    PubMed

    Silaigwana, Blessing; Green, Ezekiel; Ndip, Roland N

    2012-06-01

    Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and animals. We investigated the presence of MTBC in cattle milk and its drug resistance using polymerase chain reaction (PCR). Two hundred samples (100 mL each) were obtained from a dairy farm in the Nkonkobe region of South Africa. The samples were processed using the modified Petroff method. DNA was isolated using a Zymo Bacterial DNA kit and amplified using Seeplex(®) MTB Nested ACE assay. The Genotype(®) Mycobacterium tuberculosis-multidrug resistantplus (MTBDRplus) assay was used to perform drug susceptibility and detection of mutations conferring resistance to isoniazid (INH) and rifampicin (RIF). Eleven samples tested positive for MTBC DNA using the Seeplex(®) MTB Nested ACE assay. The Genotype(®) MTBDRplus assay showed that 10/11 samples were resistant to both INH and RIF i.e., multi-drug resistant (MDR). The most and least frequent rpoB mutations detected in RIF resistant samples were H526Y (9/10) and D516V (2/10) respectively. None of the INH resistant samples harbored mutations in the katG gene. However, all of them harbored the T8A mutation in the inhA gene. These results have clinical and epidemiological significance and calls for further studies and necessary actions to delineate the situation.

  16. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  17. Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex.

    PubMed

    Berrada, Zenda L; Lin, Shou-Yean Grace; Rodwell, Timothy C; Nguyen, Duylinh; Schecter, Gisela F; Pham, Lucy; Janda, J Michael; Elmaraachli, Wael; Catanzaro, Antonino; Desmond, Edward

    2016-06-01

    Cross-resistance in rifamycins has been observed in rifampin (RIF)-resistant Mycobacterium tuberculosis complex isolates; some rpoB mutations do not confer broad in vitro rifamycin resistance. We examined 164 isolates, of which 102 were RIF-resistant, for differential resistance between RIF and rifabutin (RFB). A total of 42 unique single mutations or combinations of mutations were detected. The number of unique mutations identified exceeded that reported in any previous study. RFB and RIF MICs up to 8 μg/mL by MGIT 960 were studied; the cut-off values for susceptibility to RIF and RFB were 1 μg/mL and 0.5 μg/mL, respectively. We identified 31 isolates resistant to RIF but susceptible to RFB with the mutations D516V, D516F, 518 deletion, S522L, H526A, H526C, H526G, H526L, and two dual mutations (S522L + K527R and H526S + K527R). Clinical investigations using RFB to treat multidrug-resistant tuberculosis cases harboring those mutations are recommended. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. [Drug resistance profile of Mycobacterium tuberculosis in the state of Mato Grosso do Sul, Brazil, 2000-2006].

    PubMed

    Marques, Marli; Cunha, Eunice Atsuko Totumi; Ruffino-Netto, Antonio; Andrade, Sonia Maria de Oliveira

    2010-01-01

    To determine the drug resistance profile of Mycobacterium tuberculosis in the state of Mato Grosso do Sul, Brazil, between 2000 and 2006. Descriptive study of reported tuberculosis cases in the Brazilian Case Registry Database. We included only those cases in which M. tuberculosis culture was positive and sensitivity to drugs (rifampicin, isoniazid, streptomycin and ethambutol) was tested. Löwenstein-Jensen and Ogawa-Kudoh solid media were used for cultures, as was an automated liquid medium system. Sensitivity tests were based on the proportion method. Among the 783 cases evaluated, males predominated (69.7%), as did patients in the 20-49 year age bracket (70%), a diagnosis of pulmonary tuberculosis (94.4%) and positive HIV serology (8.6%); 645 (82.4%) were new cases, and 138 (17.6%) had previously been treated. Resistance to at least one drug was found in 143 cases (18.3%). The primary resistance (PR) rate was, respectively, 8.1%, 1.6%, 2.8% and 12.4%, for monoresistance, multidrug resistance (MDR), other patterns of resistance and resistance to at least one drug, whereas the acquired resistance (AR) rate was 14.5%, 20.3%, 10.9% and 45.7%, respectively, and the combined resistance (CR) rate was 9.2%, 4.9%, 4.2% and 18.3%, respectively. In PR, streptomycin was the most common drug, whereas isoniazid was the most common in AR and CR (7.2% and 3.7%, respectively). These high levels of resistance undermine the efforts for tuberculosis control in Mato Grosso do Sul. Acquired MDR was 12.7 times more common than was primary MDR, demonstrating that the previous use of drug therapy is an indicator of resistance. These levels reflect the poor quality of the health care provided to these patients, showing the importance of using the directly observed treatment, short course strategy, as well as the need to perform cultures and sensitivity tests for the early diagnosis of drug resistance.

  19. High diversity of multidrug-resistant Mycobacterium tuberculosis Central Asian Strain isolates in Nepal.

    PubMed

    Shah, Yogendra; Maharjan, Bhagwan; Thapa, Jeewan; Poudel, Ajay; Diab, Hassan Mahmoud; Pandey, Basu Dev; Solo, Eddie S; Isoda, Norikazu; Suzuki, Yasuhiko; Nakajima, Chie

    2017-10-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) poses a major public health problem in Nepal. Although it has been reported as one of the dominant genotypes of MTB in Nepal, little information on the Central Asian Strain (CAS) family is available, especially isolates related to multidrug resistance (MDR) cases. This study aimed to elucidate the genetic and epidemiological characteristics of MDR CAS isolates in Nepal. A total of 145 MDR CAS isolates collected in Nepal from 2008 to 2013 were characterized by spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, and drug resistance-associated gene sequencing. Spoligotyping analysis showed CAS1_Delhi SIT26 as predominant (60/145, 41.4%). However, by combining spoligotyping and MIRU-VNTR typing, it was possible to successfully discriminate all 145 isolates into 116 different types including 18 clusters with 47 isolates (clustering rate 32.4%). About a half of these clustered isolates shared the same genetic and geographical characteristics with other isolates in each cluster, and some of them shared rare point mutations in rpoB that are thought to be associated with rifampicin resistance. Although the data obtained show little evidence that large outbreaks of MDR-TB caused by the CAS family have occurred in Nepal, they strongly suggest several MDR-MTB transmission cases. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations.

    PubMed

    Kurz, Sebastian G; Wolff, Kerstin A; Hazra, Saugata; Bethel, Christopher R; Hujer, Andrea M; Smith, Kerri M; Xu, Yan; Tremblay, Lee W; Blanchard, John S; Nguyen, Liem; Bonomo, Robert A

    2013-12-01

    The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam-β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis.

  1. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  2. Clinical and Drug Resistance Characteristics of New Pediatric Tuberculosis Cases in Northern China.

    PubMed

    Wang, Ting; Dong, Fang; Li, Qin-Jing; Yin, Qing-Qin; Song, Wen-Qi; Mokrousov, Igor; Jiao, Wei-Wei; Shen, A-Dong

    2018-05-09

    The aim of this study was to evaluate the clinical features and characteristics of drug resistance in newly diagnosed pediatric tuberculosis (TB) patients in northern China. Mycobacterium tuberculosis isolates were collected from September 2010 to October 2016 at the Beijing Children's Hospital. Patients were divided into two groups (resistant to at least one drug and pan-susceptible) according to drug susceptibility testing (DST) results. A total of 132 new cases, mainly from northern China (87.9%), were included in the study. The median age was 1.9 years (1 month-15 years). Resistance to at least one drug was detected in Mycobacterium tuberculosis isolates from 33 (25%) cases. Eight cases of multidrug-resistant TB (MDR-TB) (6.1%) were detected. The two groups did not differ in clinical presentations (disease site, fever >2 weeks, and cough >2 weeks) or in chest imaging (lesion location, lymphadenitis [mediastinal], and pleural effusion). The rate of Mycobacterium tuberculosis drug resistance in new pediatric TB cases was as high as in the new adult patients surveyed in the national drug resistance survey conducted in 2007. No significant difference was observed in clinical features between patients infected with drug-resistant and drug-susceptible strains. Routine DST is important for prescribing effective antituberculosis treatment regimens.

  3. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates from India and Mexico by a molecular beacon assay.

    PubMed

    Varma-Basil, Mandira; El-Hajj, Hiyam; Colangeli, Roberto; Hazbón, Manzour Hernando; Kumar, Sujeet; Bose, Mridula; Bobadilla-del-Valle, Miriam; García, Lourdes García; Hernández, Araceli; Kramer, Fred Russell; Osornio, Jose Sifuentes; Ponce-de-León, Alfredo; Alland, David

    2004-12-01

    We assessed the performance of a rapid, single-well, real-time PCR assay for the detection of rifampin-resistant Mycobacterium tuberculosis by using clinical isolates from north India and Mexico, regions with a high incidence of tuberculosis. The assay uses five differently colored molecular beacons to determine if a short region of the M. tuberculosis rpoB gene contains mutations that predict rifampin resistance in most isolates. Until now, the assay had not been sufficiently tested on samples from countries with a high incidence of tuberculosis. In the present study, the assay detected mutations in 16 out of 16 rifampin-resistant isolates from north India (100%) and in 55 of 64 rifampin-resistant isolates from Mexico (86%) compared to results with standard susceptibility testing. The assay did not detect mutations (a finding predictive of rifampin susceptibility) in 37 out of 37 rifampin-susceptible isolates from India (100%) and 125 out of 126 rifampin-susceptible isolates from Mexico (99%). DNA sequencing revealed that none of the nine rifampin-resistant isolates from Mexico, which were misidentified as rifampin susceptible by the molecular beacon assay, contained a mutation in the region targeted by the molecular beacons. The one rifampin-susceptible isolate from Mexico that appeared to be rifampin resistant by the molecular beacon assay contained an S531W mutation, which is usually associated with rifampin resistance. Of the rifampin-resistant isolates that were correctly identified in the molecular beacon assay, one contained a novel L530A mutation and another contained a novel deletion between codons 511 and 514. Overall, the molecular beacon assay appears to have sufficient sensitivity (89%) and specificity (99%) for use in countries with a high prevalence of tuberculosis.

  4. Direct Application of the INNO-LiPA Rif.TB Line-Probe Assay for Rapid Identification of Mycobacterium tuberculosis Complex Strains and Detection of Rifampin Resistance in 360 Smear-Positive Respiratory Specimens from an Area of High Incidence of Multidrug-Resistant Tuberculosis

    PubMed Central

    Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard

    2005-01-01

    The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166

  5. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis.

    PubMed

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H; Valencia, Hugo J; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-09-01

    Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis

    PubMed Central

    Sheen, Patricia; Lozano, Katherine; Gilman, Robert H.; Valencia, Hugo J.; Loli, Sebastian; Fuentes, Patricia; Grandjean, Louis; Zimic, Mirko

    2013-01-01

    Summary Background Mutations in the pyrazinamidase (PZAse) coding gene, pncA, have been considered as the main cause of pyrazinamide (PZA) resistance in Mycobacterium tuberculosis. However, recent studies suggest there is no single mechanism of resistance to PZA. The pyrazinoic acid (POA) efflux rate is the basis of the PZA susceptibility Wayne test, and its quantitative measurement has been found to be a highly sensitive and specific predictor of PZA resistance. Based on biological considerations, the POA efflux rate is directly determined by the PZAse activity, the level of pncA expression, and the efficiency of the POA efflux pump system. Objective This study analyzes the individual and the adjusted contribution of PZAse activity, pncA expression and POA efflux rate on PZA resistance. Methods Thirty M. tuberculosis strains with known microbiological PZA susceptibility or resistance were analyzed. For each strain, PZAse was recombinantly produced and its enzymatic activity measured. The level of pncA mRNA was estimated by quantitative RT-PCR, and the POA efflux rate was determined. Mutations in the pncA promoter were detected by DNA sequencing. All factors were evaluated by multiple regression analysis to determine their adjusted effects on the level of PZA resistance. Findings Low level of pncA expression associated to mutations in the pncA promoter region was observed in pncA wild type resistant strains. POA efflux rate was the best predictor after adjusting for the other factors, followed by PZAse activity. These results suggest that tests which rely on pncA mutations or PZAse activity are likely to be less predictive of real PZA resistance than tests which measure the rate of POA efflux. This should be further analyzed in light of the development of alternate assays to determine PZA resistance. PMID:23867321

  7. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    PubMed Central

    2010-01-01

    Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539

  8. Structural measurements and cell line studies of the copper-PEG-Rifampicin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli

    2015-02-01

    The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Strong In Vitro Activities of Two New Rifabutin Analogs against Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    PubMed Central

    García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia

    2010-01-01

    Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731

  11. Phenotypic assays for Mycobacterium tuberculosis infection.

    PubMed

    Song, Ok-Ryul; Deboosere, Nathalie; Delorme, Vincent; Queval, Christophe J; Deloison, Gaspard; Werkmeister, Elisabeth; Lafont, Frank; Baulard, Alain; Iantomasi, Raffaella; Brodin, Priscille

    2017-10-01

    Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  12. Mycobacterium tuberculosis Metabolism

    PubMed Central

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  13. Torticollis in Mice Intravenously Infected with Mycobacterium tuberculosis

    PubMed Central

    Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V

    2011-01-01

    Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 106 cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin–pyrazinamide or moxifloxacin–rifampin–pyrazinamide. Torticollis did not develop in mice receiving isoniazid–rifampin–pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media. PMID:21439219

  14. Torticollis in mice intravenously infected with Mycobacterium tuberculosis.

    PubMed

    Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V

    2011-03-01

    Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 10(6) cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin-pyrazinamide or moxifloxacin-rifampin-pyrazinamide. Torticollis did not develop in mice receiving isoniazid- rifampin-pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media.

  15. Xpert MTB/RIF for rapid detection of rifampicin-resistant Mycobacterium tuberculosis from pulmonary tuberculosis patients in Southwest Ethiopia.

    PubMed

    Tadesse, Mulualem; Aragaw, Dossegnaw; Dimah, Belayneh; Efa, Feyisa; Abebe, Gemeda

    2016-12-01

    Accurate and rapid detection of drug-resistant strains of tuberculosis (TB) is critical for early initiation of treatment and for limiting the transmission of drug-resistant TB. Here, we investigated the accuracy of Xpert MTB/RIF for detection of rifampicin (RIF) resistance, and whether this detection predicts the presence of multidrug resistant (MDR) TB in Southwest Ethiopia. Smear- or culture-positive sputa obtained from TB patients with increased suspicion of drug resistance were included in this study. GenoType MTBDRplus line-probe assays (LPAs) and Xpert MTB/RIF tests were performed on smear-positive sputum specimens and on cultured isolates for smear-negative specimens. We performed routine drug-susceptibility testing using LPA as the reference standard for confirmation of RIF and isoniazid (INH) resistance. First-line drug-susceptibility results were available for 67 Mycobacterium tuberculosis complex-positive sputum specimens using the LPA test, with our preliminary results indicating that 30% (20/67) were MDR-TB, 3% (2/67) were RIF monoresistant, 6% (4/67) were INH monoresistant, and 61% (41/67) were susceptible to both RIF and INH. Relative to routine RIF-susceptibility testing (LPA), Xpert MTB/RIF detected all RIF resistance correctly, with 100% sensitivity and 97.8% specificity and a positive-predictive value of 95.7%. Of the 23 RIF-resistant strains according to Xpert MTB/RIF, 87% (20/23) were resistant to both RIF and INH (MDR), 8.7% (2/23) were RIF monoresistant, and 4.3% (1/23) were sensitive to RIF according to the LPA test. A high proportion of RIF resistance was documented among patients previously categorized as failure cases (50%, 10/20), followed by relapse cases (31.6%, 6/19) and defaulters (28.6%, 2/7). Xpert MTB/RIF was highly effective at identifying RIF-resistant strains in smear- or culture-positive samples. RIF resistance based on Xpert MTB/RIF results could be used to estimate MDR and allow rapid initiation of MDR-TB treatment in

  16. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    PubMed

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Mutation of Rv2887, a marR-Like Gene, Confers Mycobacterium tuberculosis Resistance to an Imidazopyridine-Based Agent

    PubMed Central

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan

    2015-01-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. PMID:26303802

  18. Multidrug resistant tuberculosis diagnosed by synovial fluid analysis.

    PubMed

    van Zeller, M; Monteiro, R; Ramalho, J; Almeida, I; Duarte, R

    2012-01-01

    Tuberculosis remains a major public health problem worldwide. HIV co-infection is contributing to an increased incidence of the disease, particularly that caused by multidrug resistant strains of Mycobacterium tuberculosis (MT). We describe an HIV-infected patient with pleural and lymph node tuberculosis diagnosed by pleural effusion characteristics and biopsy specimens, without MT identification, that further presented with knee-joint involvement. Arthrocentesis allowed MT isolation and drug susceptibility testing, resulting in a diagnosis of multidrug-resistant tuberculosis and an appropriate treatment regimen. MT identification and drug susceptibility tests are very important, especially for HIV co-infected patients. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  19. Isolation of Mycobacterium tuberculosis Strains with a Silent Mutation in rpoB Leading to Potential Misassignment of Resistance Category ▿

    PubMed Central

    Alonso, María; Palacios, Juan José; Herranz, Marta; Penedo, Ana; Menéndez, Ángela; Bouza, Emilio; García de Viedma, Darío

    2011-01-01

    Our study provides an alert regarding the transmission of rifampin-susceptible strains of Mycobacterium tuberculosis with a silent substitution in codon 514 of rpoB. Among 1,450 cases, we identified 12 isolates sharing this mutation and related restriction fragment length polymorphism (RFLP) types. The mutation impaired hybridization with the wild-type probes in three independent commercial assays, which could lead to misassignment of resistance. PMID:21562104

  20. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  1. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production.

    PubMed

    Mahmud, Hafij Al; Seo, Hoonhee; Kim, Sukyung; Islam, Md Imtiazul; Nam, Kung-Woo; Cho, Hyun-Deuk; Song, Ho-Yeon

    2017-05-25

    Human tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent. In this study, the effects of TQ on intracellular mycobacterial replication are examined in macrophages. In addition, its effect on mycobacteria-induced NO production and pro-inflammatory responses were investigated in Mycobacterium tuberculosis (MTB)-infected Type II human alveolar and human myeloid cell lines. TQ at concentrations ranging from 12.5 to 25 μg/mL and 6.25 to 12.5 μg/mL reduced intracellular M. tuberculosis H37Rv and extensively drug-resistant tuberculosis (XDR-TB) 72 h post-infection in RAW 264.7 cells. TQ treatment also produced a concentration-dependent reduction in nitric oxide production in both H37Rv and XDR-TB infected RAW 264.7 cells. Furthermore, TQ reduced the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and interlukin-6 (IL-6) in H37Rv-infected cells and eventually reduced pathogen-derived stress in host cells. TQ inhibits intracellular H37Rv and XDR-TB replication and MTB-induced production of NO and pro-inflammatory molecules. Therefore, along with its anti-inflammatory effects, TQ represents a prospective treatment option to combat Mycobacterium tuberculosis infection.

  2. Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control.

    PubMed

    Yang, Chongguang; Gao, Qian

    2018-02-01

    Tuberculosis (TB) has remained an ongoing concern in China. The national scale-up of the Directly Observed Treatment, Short Course (DOTS) program has accelerated the fight against TB in China. Nevertheless, many challenges still remain, including the spread of drug-resistant strains, high disease burden in rural areas, and enormous rural-to-urban migrations. Whether incident active TB represents recent transmission or endogenous reactivation has helped to prioritize the strategies for TB control. Evidence from molecular epidemiology studies has delineated the recent transmission of Mycobacterium tuberculosis (M. tuberculosis) strains in many settings. However, the transmission patterns of TB in most areas of China are still not clear. Studies carried out to date could not capture the real burden of recent transmission of the disease in China because of the retrospective study design, incomplete sampling, and use of low-resolution genotyping methods. We reviewed the implementations of molecular epidemiology of TB in China, the estimated disease burden due to recent transmission of M. tuberculosis strains, the primary transmission of drug-resistant TB, and the evaluation of a feasible genotyping method of M. tuberculosis strains in circulation.

  3. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target

    PubMed Central

    Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2016-01-01

    Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953

  4. Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation.

    PubMed

    Levillain, Florence; Poquet, Yannick; Mallet, Ludovic; Mazères, Serge; Marceau, Michael; Brosch, Roland; Bange, Franz-Christoph; Supply, Philip; Magalon, Axel; Neyrolles, Olivier

    2017-11-01

    The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.

  5. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in Eastern Cape, South Africa.

    PubMed

    Famewo, Elizabeth B; Clarke, Anna M; Wiid, Ian; Ngwane, Andile; van Helden, Paul; Afolayan, Anthony J

    2017-09-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis has become a global public health problem. Polyherbal medicines offer great hope for developing alternative drugs for the treatment of tuberculosis. To evaluate the anti-tubercular activity of polyherbal medicines used for the treatment of tuberculosis. The remedies were screened against Mycobacterium tuberculosis H37Rv using Middlebrook 7H9 media and MGIT BACTEC 960 system. They were liquid preparations from King Williams Town site A (KWTa), King Williams Town site B (KWTb), King Williams Town site C (KWTc), Hogsback first site (HBfs), Hogsback second site (HBss), Hogsback third site (HBts), East London (EL), Alice (AL) and Fort Beaufort (FB). The susceptibility testing revealed that all the remedies contain anti-tubercular activity with KWTa, KWTb, KWTc, HBfs, HBts, AL and FB exhibiting more activity at a concentration below 25 µl/ml. Furthermore, MIC values exhibited inhibitory activity with the most active remedies from KWTa, HBfs and HBts at 1.562 µg/ml. However, isoniazid showed more inhibitory activity against M. tuberculosis at 0.05 µg/ml when compare to the polyherbal remedies. This study has indicated that these remedies could be potential sources of new anti-mycobacterial agents against M. tuberculosis . However, the activity of these preparations and their active principles still require in vivo study in order to assess their future as new anti-tuberculosis agents.

  6. Mycobacterium tuberculosis Arylamine N-Acetyltransferase Acetylates and Thus Inactivates para-Aminosalicylic Acid.

    PubMed

    Wang, Xude; Yang, Shanshan; Gu, Jing; Deng, Jiaoyu

    2016-12-01

    Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) is able to acetylate para-aminosalicylic acid (PAS) both in vitro and in vivo as determined by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) techniques. The antituberculosis activity of the acetylated PAS is significantly reduced. As a result, overexpression of TBNAT in M. tuberculosis results in PAS resistance, as determined by MIC tests and drug exposure experiments. Taken together, our results suggest that TBNAT from M. tuberculosis is able to inactivate PAS by acetylating the compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Impact of Hypoxia on Drug Resistance and Growth Characteristics of Mycobacterium tuberculosis Clinical Isolates.

    PubMed

    Liu, Zhonghua; Gao, Yulu; Yang, Hua; Bao, Haiyang; Qin, Lianhua; Zhu, Changtai; Chen, Yawen; Hu, Zhongyi

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.

  8. Mycobacterium tuberculosis Complex and HIV Co-Infection among Extrapulmonary Tuberculosis Suspected Cases at the University of Gondar Hospital, Northwestern Ethiopia.

    PubMed

    Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw

    2016-01-01

    Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed.

  9. Mycobacterium tuberculosis Complex and HIV Co-Infection among Extrapulmonary Tuberculosis Suspected Cases at the University of Gondar Hospital, Northwestern Ethiopia

    PubMed Central

    Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw

    2016-01-01

    Background Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. Method An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. Results A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). Conclusion The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed. PMID:26950547

  10. Tuberculosis patients co-infected with Mycobacterium bovis and Mycobacterium tuberculosis in an urban area of Brazil.

    PubMed

    Silva, Marcio Roberto; Rocha, Adalgiza da Silva; da Costa, Ronaldo Rodrigues; de Alencar, Andrea Padilha; de Oliveira, Vania Maria; Fonseca Júnior, Antônio Augusto; Sales, Mariana Lázaro; Issa, Marina de Azevedo; Filho, Paulo Martins Soares; Pereira, Omara Tereza Vianello; dos Santos, Eduardo Calazans; Mendes, Rejane Silva; Ferreira, Angela Maria de Jesus; Mota, Pedro Moacyr Pinto Coelho; Suffys, Philip Noel; Guimarães, Mark Drew Crosland

    2013-05-01

    In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials.

  11. Molecular detection of Mycobacterium tuberculosis in cattle and buffaloes: a cause for public health concern.

    PubMed

    Abdel-Moein, Khaled A; Hamed, Osman; Fouad, Heba

    2016-12-01

    Tuberculosis is a re-emerging disease causing a growing public health burden. The current study was conducted to investigate the occurrence of Mycobacterium tuberculosis among cattle and buffaloes with tuberculous lesions. Typical tuberculous lesions were collected from 34 cattle and 34 buffaloes (Bubalus bubalis) through postmortem examination of slaughtered animals in abattoirs. DNAs were extracted from samples, and M. tuberculosis was identified by PCR. Positive samples were examined for resistance against rifampicin and isoniazid using GenoType MTBDRplus. Moreover, sera from 90 slaughterhouse workers, butchers, or meat inspectors were examined for the presence of M. tuberculosis antibodies using ELISA. Five cattle (14.7 %) and three buffaloes (8.8 %) tested positive. M. tuberculosis from one cattle was resistant to rifampicin and another was resistant to isoniazid. In addition, the seroprevalence of M. tuberculosis IgG among examined humans was 5.6 %. The occurrence of M. tuberculosis in cattle and buffaloes is a public health concern.

  12. Direct detection of Mycobacterium tuberculosis rifampin resistance in bio-safe stained sputum smears.

    PubMed

    Lavania, Surabhi; Anthwal, Divya; Bhalla, Manpreet; Singh, Nagendra; Haldar, Sagarika; Tyagi, Jaya Sivaswami

    2017-01-01

    Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing.

  13. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    PubMed

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  14. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion

    PubMed Central

    Yang, Xinting; Liu, Zichen; Li, Kun

    2017-01-01

    ABSTRACT Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively (P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS6110 per ml of pleural effusion and showed good accordance of the results between repeated tests (r = 0.978, P = 2.84 × 10−10). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. PMID:28275073

  15. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance.

    PubMed

    Datta, Gargi; Nieto, Luisa M; Davidson, Rebecca M; Mehaffy, Carolina; Pederson, Caroline; Dobos, Karen M; Strong, Michael

    2016-05-01

    Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Beyond multidrug-resistant tuberculosis in Europe: a TBNET study.

    PubMed

    Günther, G; van Leth, F; Altet, N; Dedicoat, M; Duarte, R; Gualano, G; Kunst, H; Muylle, I; Spinu, V; Tiberi, S; Viiklepp, P; Lange, C

    2015-12-01

    The emergence of drug-resistant tuberculosis (TB) is a challenge to TB control in Europe. We evaluated second-line drug susceptibility testing in Mycobacterium tuberculosis isolates from patients with multidrug-resistant, pre-extensively drug-resistant (pre-XDR-TB) and XDR-TB at 23 TBNET sites in 16 European countries. Over 30% of bacilli from patients with pre-XDR-TB showed resistance to any fluoroquinolone and almost 70% to any second-line injectable drug. Respectively >90% and >80% of the XDR-TB strains tested showed phenotypic resistance to pyrazinamide and ethambutol. Resistance to prothionamide/ethionamide was high in bacilli from pre-XDR-TB patients (43%) and XDR-TB patients (49%).

  17. De Novo Emergence of Genetically Resistant Mutants of Mycobacterium tuberculosis from the Persistence Phase Cells Formed against Antituberculosis Drugs In Vitro

    PubMed Central

    Sebastian, Jees; Swaminath, Sharmada; Nair, Rashmi Ravindran; Jakkala, Kishor; Pradhan, Atul

    2016-01-01

    ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli. PMID:27895008

  18. Drug-resistant tuberculosis: time for visionary political leadership.

    PubMed

    Abubakar, Ibrahim; Zignol, Matteo; Falzon, Dennis; Raviglione, Mario; Ditiu, Lucica; Masham, Susan; Adetifa, Ifedayo; Ford, Nathan; Cox, Helen; Lawn, Stephen D; Marais, Ben J; McHugh, Timothy D; Mwaba, Peter; Bates, Matthew; Lipman, Marc; Zijenah, Lynn; Logan, Simon; McNerney, Ruth; Zumla, Adam; Sarda, Krishna; Nahid, Payam; Hoelscher, Michael; Pletschette, Michel; Memish, Ziad A; Kim, Peter; Hafner, Richard; Cole, Stewart; Migliori, Giovanni Battista; Maeurer, Markus; Schito, Marco; Zumla, Alimuddin

    2013-06-01

    Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans. Copyright © 2013 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd. All rights reserved.

  19. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens.

    PubMed

    Kostera, Joshua; Leckie, Gregor; Tang, Ning; Lampinen, John; Szostak, Magdalena; Abravaya, Klara; Wang, Hong

    2016-12-01

    Clinical management of drug-resistant tuberculosis patients continues to present significant challenges to global health. To tackle these challenges, the Abbott RealTime MTB RIF/INH Resistance assay was developed to accelerate the diagnosis of rifampicin and/or isoniazid resistant tuberculosis to within a day. This article summarizes the performance of the Abbott RealTime MTB RIF/INH Resistance assay; including reliability, analytical sensitivity, and clinical sensitivity/specificity as compared to Cepheid GeneXpert MTB/RIF version 1.0 and Hain MTBDRplus version 2.0. The limit of detection (LOD) of the Abbott RealTime MTB RIF/INH Resistance assay was determined to be 32 colony forming units/milliliter (cfu/mL) using the Mycobacterium tuberculosis (MTB) strain H37Rv cell line. For rifampicin resistance detection, the Abbott RealTime MTB RIF/INH Resistance assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Cepheid GeneXpert MTB/RIF. For isoniazid resistance detection, the assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Hain MTBDRplus. The performance data presented herein demonstrate that the Abbott RealTime MTB RIF/INH Resistance assay is a sensitive, robust, and reliable test for realtime simultaneous detection of first line anti-tuberculosis antibiotics rifampicin and isoniazid in patient specimens. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Mycobacterium tuberculosis Infection in a Domesticated Korean Wild Boar ( Sus scrofa coreanus).

    PubMed

    Seo, Min-Goo; Ouh, In-Ohk; Kim, Munki; Lee, Jienny; Kim, Young-Hoan; Do, Jae-Cheul; Kwak, Dongmi

    2017-06-01

    Tuberculosis, a chronic progressive disease, has been reported in bovine, swine, and primate species. Here, we report the first case of Mycobacterium tuberculosis infection in a Korean wild boar ( Sus scrofa coreanus). The owners this domesticated boar brought it to the Gyeongbuk Veterinary Service Laboratory in Korea after it was found dead and severely emaciated. Demarcated yellowish white nodules were found around the larynx and retropharyngeal lymph node during necropsy. The lungs had diffuse fibrinous pleuritis, severe congestion, and scattered nodules. More nodules were found in the spleen. Tuberculosis is characterized by massive macrophage infiltration and central caseous necrosis; both characteristics were found in the lungs. Histopathologic examination revealed that the alveolar lumen had marked fibrosis and exudates. Examination of the fluid revealed extensive macrophage permeation. To confirm a Mycobacterium infection, PCR was performed using two primer sets specific to the rpoB gene of Mycobacterium; Mycobacterium was detected in the lungs and spleen. To identify the species of Mycobacterium, immunohistochemical evaluation was performed using antibodies against Mycobacterium tuberculosis and Mycobacterium bovis . The results revealed immunoreactivity against M. tuberculosis but not against M. bovis . The consumption of undercooked or raw meat from game animals may expose humans and other animals to sylvatic infection. Consequently, Koreans who ingest wild boar may be at risk of a tuberculosis infection. To reduce the risk of foodborne infection and maintain public health, continuous monitoring and control strategies are required.

  1. Mycobacterium tuberculosis Infection among Asian Elephants in Captivity.

    PubMed

    Simpson, Gary; Zimmerman, Ralph; Shashkina, Elena; Chen, Liang; Richard, Michael; Bradford, Carol M; Dragoo, Gwen A; Saiers, Rhonda L; Peloquin, Charles A; Daley, Charles L; Planet, Paul; Narachenia, Apurva; Mathema, Barun; Kreiswirth, Barry N

    2017-03-01

    Although awareness of tuberculosis among captive elephants is increasing, antituberculosis therapy for these animals is not standardized. We describe Mycobacterium tuberculosis transmission between captive elephants based on whole genome analysis and report a successful combination treatment. Infection control protocols and careful monitoring of treatment of captive elephants with tuberculosis are warranted.

  2. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  3. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance

    PubMed Central

    Zimic, Mirko; Sheen, Patricia; Quiliano, Miguel; Gutierrez, Andrés; Gilman, Robert H.

    2010-01-01

    Resistance to pyrazinamide in Mycobacterium tuberculosis is usually associated with a reduction of pyrazinamidase activity caused by mutations in pncA, the pyrazinamidase coding gene. Pyrazinamidase is a hydrolase that converts pyrazinamide, the antituberculous drug against the latent stage, to the active compound, pyrazinoic acid. To better understand the relationship between pncA mutations and pyrazinamide-resistance, it is necessary to analyze the distribution of pncA mutations from pyrazinamide resistant strains. We determined the distribution of Peruvian and globally reported pncA missense mutations from M. tuberculosis clinical isolates resistant to pyrazinamide. The distributions of the single amino acid substitutions were compared at the secondary-structure-domains level. The distribution of the Peruvian mutations followed a similar pattern as the mutations reported globally. A consensus clustering of mutations was observed in hot-spot regions located in the metal coordination site and to a lesser extent in the active site of the enzyme. The data was not able to reject the null hypothesis that both distributions are similar, suggesting that pncA mutations associated to pyrazinamide resistance in M. tuberculosis, follow a conserved pattern responsible to impair the pyrazinamidase activity. PMID:19963078

  4. Whole-Transcriptome and -Genome Analysis of Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates Identifies Downregulation of ethA as a Mechanism of Ethionamide Resistance

    PubMed Central

    de Welzen, Lynne; Eldholm, Vegard; Maharaj, Kashmeel; Manson, Abigail L.; Earl, Ashlee M.

    2017-01-01

    ABSTRACT Genetics-based drug susceptibility testing has improved the diagnosis of drug-resistant tuberculosis but is limited by our lack of knowledge of all resistance mechanisms. Next-generation sequencing has assisted in identifying the principal genetic mechanisms of resistance for many drugs, but a significant proportion of phenotypic drug resistance is unexplained genetically. Few studies have formally compared the transcriptomes of susceptible and resistant Mycobacterium tuberculosis strains. We carried out comparative whole-genome transcriptomics of extensively drug-resistant (XDR) clinical isolates using RNA sequencing (RNA-seq) to find novel transcription-mediated mechanisms of resistance. We identified a promoter mutation (t to c) at position −11 (t−11c) relative to the start codon of ethA that reduces the expression of a monooxygenase (EthA) that activates ethionamide. (In this article, nucleotide changes are lowercase and amino acid substitutions are uppercase.) Using a flow cytometry-based reporter assay, we show that the reduced transcription of ethA is not due to transcriptional repression by ethR. Clinical strains harboring this mutation were resistant to ethionamide. Other ethA promoter mutations were identified in a global genomic survey of resistant M. tuberculosis strains. These results demonstrate a new mechanism of ethionamide resistance that can cause high-level resistance when it is combined with other ethionamide resistance-conferring mutations. Our study revealed many other genes which were highly up- or downregulated in XDR strains, including a toxin-antitoxin module (mazF5 mazE5) and tRNAs (leuX and thrU). This suggests that global transcriptional modifications could contribute to resistance or the maintenance of bacterial fitness have also occurred in XDR strains. PMID:28993337

  5. Mycobacterium tuberculosis Infection among Asian Elephants in Captivity

    PubMed Central

    Simpson, Gary; Zimmerman, Ralph; Shashkina, Elena; Chen, Liang; Richard, Michael; Bradford, Carol M.; Dragoo, Gwen A.; Saiers, Rhonda L.; Peloquin, Charles A.; Daley, Charles L.; Planet, Paul; Narachenia, Apurva; Mathema, Barun

    2017-01-01

    Although awareness of tuberculosis among captive elephants is increasing, antituberculosis therapy for these animals is not standardized. We describe Mycobacterium tuberculosis transmission between captive elephants based on whole genome analysis and report a successful combination treatment. Infection control protocols and careful monitoring of treatment of captive elephants with tuberculosis are warranted. PMID:28221115

  6. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    PubMed

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates. Copyright © 2014. Published by Elsevier Ltd.

  7. Docking into Mycobacterium tuberculosis Thioredoxin Reductase Protein Yields Pyrazolone Lead Molecules for Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Sweeney, Noreena L.; Lipker, Lauren; Hanson, Alicia M.; Bohl, Chris J.; Engel, Katie E.; Kalous, Kelsey S.; Stemper, Mary E.; Sem, Daniel S.; Schwan, William R.

    2017-01-01

    The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics. PMID:28134858

  8. Single nucleotide polymorphisms may explain the contrasting phenotypes of two variants of a multidrug-resistant Mycobacterium tuberculosis strain.

    PubMed

    Bigi, María Mercedes; Lopez, Beatriz; Blanco, Federico Carlos; Sasiain, María Del Carmen; De la Barrera, Silvia; Marti, Marcelo A; Sosa, Ezequiel Jorge; Fernández Do Porto, Darío Augusto; Ritacco, Viviana; Bigi, Fabiana; Soria, Marcelo Abel

    2017-03-01

    Globally, about 4.5% of new tuberculosis (TB) cases are multi-drug-resistant (MDR), i.e. resistant to the two most powerful first-line anti-TB drugs. Indeed, 480,000 people developed MDR-TB in 2015 and 190,000 people died because of MDR-TB. The MDR Mycobacterium tuberculosis M family, which belongs to the Haarlem lineage, is highly prosperous in Argentina and capable of building up further drug resistance without impairing its ability to spread. In this study, we sequenced the whole genomes of a highly prosperous M-family strain (Mp) and its contemporary variant, strain 410, which produced only one recorded tuberculosis case in the last two decades. Previous reports have demonstrated that Mp induced dysfunctional CD8 + cytotoxic T cell activity, suggesting that this strain has the ability to evade the immune response against M. tuberculosis. Comparative analysis of Mp and 410 genomes revealed non-synonymous polymorphisms in eleven genes and five intergenic regions with polymorphisms between both strains. Some of these genes and promoter regions are involved in the metabolism of cell wall components, others in drug resistance and a SNP in Rv1861, a gene encoding a putative transglycosylase that produces a truncated protein in Mp. The mutation in Rv3787c, a putative S-adenosyl-l-methionine-dependent methyltransferase, is conserved in all of the other prosperous M strains here analysed and absent in non-prosperous M strains. Remarkably, three polymorphic promoter regions displayed differential transcriptional activity between Mp and 410. We speculate that the observed mutations/polymorphisms are associated with the reported higher capacity of Mp for modulating the host's immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes?

    PubMed

    Nguyen, Huy Quang; Nguyen, Nhung Viet; Contamin, Lucie; Tran, Thanh Hoa Thi; Vu, Thuong Thi; Nguyen, Hung Van; Nguyen, Ngoc Lan Thi; Nguyen, Son Thai; Dang, Anh Duc; Bañuls, Anne-Laure; Nguyen, Van Anh Thi

    2017-06-01

    In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (<69%). The mutation patterns revealed 23.1% of pre-XDR and 7.7% of XDR isolates, mostly belonging to Beijing family. The genotypic diversity and the variety of mutations reflect the existence of various evolutionary paths leading to FLD and SLD resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Lipolytic enzymes in Mycobacterium tuberculosis.

    PubMed

    Côtes, K; Bakala N'goma, J C; Dhouib, R; Douchet, I; Maurin, D; Carrière, F; Canaan, S

    2008-04-01

    Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.

  11. [Frontier of mycobacterium research--host vs. mycobacterium].

    PubMed

    Okada, Masaji; Shirakawa, Taro

    2005-09-01

    During the past decade, we have observed advance in tuberculosis research including novel vaccines, innate immunity (TLR), SNIP analysis and molecular mechanism of drug resistance. Worldwide genome project enabled the whole genome sequence of host resistant against tuberculosis as well as the whole genome sequence of M. tuberculosis H37Rv. DNA technology has also provided a great impact on the development of novel vaccine against TB. In this symposium, we have invited leading researchers in the field of the frontier study of Mycobacterium research in order to provide general overview of the cutting edge of frontier research. Molecular mechanism of drug resistance of M. tuberculosis has been clarified. On the other hand, molecular mechanism of host-defence (insusceptibility of host) against M. tuberculosis has not yet elucidated. Dr. Taro Shirakawa (Kyoto University) reviewed the susceptibility genes of host in TB infection and presented candidate genes associated with multi-drug resistant tuberculosis. Dr. Naoto Keicho (International Medical Center of Japan) tried to identify host genetic factors involved in susceptibility to pulmonary Mycobacterium avium complex (MAC) infection by candidate gene approach and genome-wide approach. In Japan, Dr. Masaji Okada (National Hospital Organization Kinki-Chuo Chest Medical Center) has been engaged actively in the development of new tuberculosis vaccines (HVJ-liposome/Hsp65 DNA + IL-12 DNA vaccine and recombinant 72f BCG vaccine). He showed basic strategy for construction of new candidate vaccines and also showed significant efficacy on the protection of tuberculosis infection using cynomolgus monkeys, which are very similar to human tuberculosis. Dr. Hatsumi Taniguchi (University of Occupational and Environmental Health) presented that M. tuberculosis mIHF and the neighbor genes went into a dormacy-like state of M. smegmatis in J774 macrophage cells. This study might provide a weapon for elucidating the mechanism of dormacy

  12. Direct detection of Mycobacterium tuberculosis rifampin resistance in bio-safe stained sputum smears

    PubMed Central

    Lavania, Surabhi; Anthwal, Divya; Bhalla, Manpreet; Singh, Nagendra; Haldar, Sagarika; Tyagi, Jaya Sivaswami

    2017-01-01

    Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing. PMID:29216262

  13. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.

    PubMed

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.

  14. An Upstream Truncation of the furA-katG Operon Confers High-Level Isoniazid Resistance in a Mycobacterium tuberculosis Clinical Isolate with No Known Resistance-Associated Mutations

    PubMed Central

    Yam, Wing Cheong; Zhang, Ying; Kao, Richard Y. T.

    2014-01-01

    Although the major causes of isoniazid (INH) resistance in Mycobacterium tuberculosis are confined to structural mutations in katG and promoter mutations in the mabA-inhA operon, a significant proportion of INH-resistant strains have unknown resistance mechanisms. Recently, we identified a high-level INH-resistant M. tuberculosis clinical isolate, GB005, with no known resistance-associated mutations. A comprehensive study was performed to investigate the molecular basis of drug resistance in this strain. Although no mutations were found throughout the katG and furA-katG intergenic region, the katG expression and the catalase activity were greatly diminished compared to those in H37Rv (P < 0.01). Northern blotting revealed that the katG transcript from the isolate was smaller than that of H37Rv. Sequencing analysis of furA and upstream genes discovered a 7.2-kb truncation extended from the 96th base preceding the initiation codon of katG. Complementation of the M. tuberculosis Δ(furA-katG) strain with katG and different portions of the truncated region identified a 134-bp upstream fragment of furA that was essential for full catalase activity and INH susceptibility in M. tuberculosis. The promoter activity of this fragment was also shown to be stronger than that of the furA-katG intergenic region (P < 0.01). Collectively, these findings demonstrate that deletion of the 134-bp furA upstream fragment is responsible for the reduction in katG expression, resulting in INH resistance in GB005. To our knowledge, this is the first report showing that deletion of the upstream region preceding the furA-katG operon causes high-level INH resistance in a clinical isolate of M. tuberculosis. PMID:25092698

  15. Analysis of mutational characteristics of the drug-resistant gene katG in multi-drug resistant Mycobacterium tuberculosis L-form among patients with pneumoconiosis complicated with tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Liu, Qian-Ying; Ma, Shuai; Li, Ying; Li, Chao-Pin

    2014-05-01

    The aim of the present study was to investigate the mutational characteristics of drug‑resistant genetic mutations in the katG gene to isoniazid (INH) in multi‑drug resistant Mycobacterium tuberculosis (MTB) L‑form among patients with pneumoconiosis complicated with tuberculosis (TB), in order to reduce the occurrence of drug resistance in patients, and gain further insight into the mechanisms underlying drug resistance in MDR‑TB L‑form. A total of 114 clinically isolated strains of MTB L‑forms were collected. The MDR‑TB L‑forms were identified using a conventional antimicrobial susceptibility test (AST). The DNA genomes were extracted, the target genes were amplified by polymerase chain reaction technology and the hotspot mutational regions in the katG gene were analyzed by direct sequencing. The results of AST analysis demonstrated that there were 31 strains of MDR‑TB L‑forms in 114 clinical isolates. The mutation rate of katG was 61.29% (19/31) in INH‑resistant isolates, mainly concentrated in codon 315 (Ser315Thr, 48.39% and Ser315Asn, 9.68%) and 431 (Ala431Val, 3.23%). Base substitutions were identified, however, no multisite mutations were found. No mutations in katG were identified in 10 INH‑sensitive strains that were randomly selected. INH‑resistance was more severe in MDR‑TB L‑form isolates among patients with pneumoconiosis complicated with TB. The substitution of highly conserved amino acids encoded by the katG gene resulted in the molecular mechanisms responsible for INH resistance in MDR‑TB L‑form isolates. It was also verified that the katG gene was in diversiform. The katG Ser315Thr mutation is one of the main causes of resistance to INH in MDR‑TB L-form isolates.

  16. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains.

    PubMed

    Uc-Cachón, Andrés Humberto; Borges-Argáez, Rocío; Said-Fernández, Salvador; Vargas-Villarreal, Javier; González-Salazar, Francisco; Méndez-González, Martha; Cáceres-Farfán, Mirbella; Molina-Salinas, Gloria María

    2014-02-01

    The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194

  17. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    PubMed

    Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H

    2001-08-01

    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.

  18. Current prospects of synthetic curcumin analogs and chalcone derivatives against mycobacterium tuberculosis.

    PubMed

    Bukhari, Syed Nasir Abbas; Franzblau, Scott G; Jantan, Ibrahim; Jasamai, Malina

    2013-11-01

    Tuberculosis, caused by Mycobacterium tuberculosis, is amongst the foremost infectious diseases. Treatment of tuberculosis is a complex process due to various factors including a patient's inability to persevere with a combined treatment regimen, the difficulty in eradicating the infection in immune-suppressed patients, and multidrug resistance (MDR). Extensive research circumscribing molecules to counteract this disease has led to the identification of many inhibitory small molecules. Among these are chalcone derivatives along with curcumin analogs. In this review article, we summarize the reported literature regarding anti tubercular activity of chalcone derivatives and synthetic curcumin analogs. Our goal is to provide an analysis of research to date in order to facilitate the synthesis of superior antitubercular chalcone derivatives and curcumin analogs.

  19. [Differentiation of species within the Mycobacterium tuberculosis complex by molecular techniques].

    PubMed

    Herrera-León, Laura; Pozuelo-Díaz, Rodolfo; Molina Moreno, Tamara; Valverde Cobacho, Azucena; Saiz Vega, Pilar; Jiménez Pajares, María Soledad

    2009-11-01

    The Mycobacterium tuberculosis complex includes the following species: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium bovis-BCG, Mycobacterium microti, Mycobacterium caprae, Mycobacterium pinnipedii, and Mycobacterium canettii. These species cause tuberculosis in humans and animals. Identification of mycobacterial strains has classically been performed by phenotype study. Over the last years, laboratories have developed several molecular techniques to differentiate between these species. The aim of this study is to evaluate these methods and develop a simple, fast, identification scheme. We analyzed 251 strains randomly obtained from the strains studied in 2004, and 797 strains received by the Reference Laboratory between 2005 and 2007. Phenotype characterization of 4183 strains isolated during that period was done by studying the colony morphology, characteristics in culture, nitrate reduction, niacin accumulation, and growth in the presence of thiophen-2-carboxylic acid hydrazide 10 microg/mL and pyrazinamide 50 microg/mL. The molecular identification scheme designed was as follows: 1) gyrB PCR-RFLP with RsaI, TaqI or SacII and hsp65 RFLP/PCR with HhaI., and 2) multiplex-PCR to determine the presence/absence of the RD9 and RD1 regions. The results showed 100% agreement between phenotype study and the molecular scheme. This molecular identification scheme is a simple and fast method, with 100% sensitivity and specificity, that can be implemented in most clinical laboratories at a low cost.

  20. Laboratory Diagnosis and Susceptibility Testing for Mycobacterium tuberculosis.

    PubMed

    Procop, Gary W

    2016-12-01

    The laboratory, which utilizes some of the most sophisticated and rapidly changing technologies, plays a critical role in the diagnosis of tuberculosis. Some of these tools are being employed in resource-challenged countries for the rapid detection and characterization of Mycobacterium tuberculosis. Foremost, the laboratory defines appropriate specimen criteria for optimal test performance. The direct detection of mycobacteria in the clinical specimen, predominantly done by acid-fast staining, may eventually be replaced by rapid-cycle PCR. The widespread use of the Xpert MTB/RIF (Cepheid) assay, which detects both M. tuberculosis and key genetic determinants of rifampin resistance, is important for the early detection of multidrug-resistant strains. Culture, using both broth and solid media, remains the standard for establishing the laboratory-based diagnosis of tuberculosis. Cultured isolates are identified far less commonly by traditional biochemical profiling and more commonly by molecular methods, such as DNA probes and broad-range PCR with DNA sequencing. Non-nucleic acid-based methods of identification, such as high-performance liquid chromatography and, more recently, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, may also be used for identification. Cultured isolates of M. tuberculosis should be submitted for susceptibility testing according to standard guidelines. The use of broth-based susceptibility testing is recommended to significantly decrease the time to result. Cultured isolates may also be submitted for strain typing for epidemiologic purposes. The use of massive parallel sequencing, also known as next-generation sequencing, promises to continue to this molecular revolution in mycobacteriology, as whole-genome sequencing provides identification, susceptibility, and typing information simultaneously.

  1. Prevalence and occurrence rate of Mycobacterium tuberculosis Haarlem family multi-drug resistant in the worldwide population: A systematic review and meta-analysis

    PubMed Central

    Ramazanzadeh, Rashid; Roshani, Daem; Shakib, Pegah; Rouhi, Samaneh

    2015-01-01

    Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family. PMID:25767526

  2. Polyclonal Pulmonary Tuberculosis Infections and Risk for Multidrug Resistance, Lima, Peru

    PubMed Central

    Shi, Cynthia X.; Chindelevitch, Leonid; Calderon, Roger; Zhang, Zibiao; Galea, Jerome T.; Contreras, Carmen; Yataco, Rosa; Lecca, Leonid; Becerra, Mercedes C.; Murray, Megan B.; Cohen, Ted

    2017-01-01

    Because within-host Mycobacterium tuberculosis diversity complicates diagnosis and treatment of tuberculosis (TB), we measured diversity prevalence and associated factors among 3,098 pulmonary TB patients in Lima, Peru. The 161 patients with polyclonal infection were more likely than the 115 with clonal or the 2,822 with simple infections to have multidrug-resistant TB. PMID:29048297

  3. Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification.

    PubMed Central

    Wiid, I J; Werely, C; Beyers, N; Donald, P; van Helden, P D

    1994-01-01

    Culture of Mycobacterium tuberculosis provides no information on the identity of a strain or the distribution of such a strain in the community. Strain identification of M. tuberculosis can help to address important epidemiological questions, e.g., the origin of an infection in a patient's household or community, whether reactivation of infection is endogenous or exogenous in origin, and the spread and early detection of organisms with acquired antibiotic resistance. To research this problem, strain identification must be reliable and accurate. Although genetic identification techniques already exist, it is valuable to have genetic identification techniques based on a number of genetic markers to improve the accurate identification of M. tuberculosis strains. We show that oligonucleotide (GTG)5 can be successfully applied to the identification of M. tuberculosis strains. This technique may be particularly useful in cases in which M. tuberculosis strains have few or no insertion elements (e.g., IS6110) or in identifying other strains of mycobacteria when informative probes are lacking. Images PMID:7914207

  4. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors.

    PubMed

    Altaf, Mudassar; Miller, Christopher H; Bellows, David S; O'Toole, Ronan

    2010-11-01

    The objective of this study was to measure the efficacy of Mycobacterium smegmatis as a surrogate in vitro model for the detection of compounds which are inhibitory to the growth of Mycobacterium tuberculosis. A chemical screen of the LOPAC library for anti-mycobacterial compounds was performed using M. smegmatis. Parallel screens were conducted with another tuberculosis model, Mycobacterium bovis BCG, and with M. tuberculosis under identical growth conditions and the inhibitors detected across the three species were compared. 50% of compounds that were detected as active against M. tuberculosis were not detected using M. smegmatis compared to 21% of compounds using M. bovis BCG. To examine whether these findings were unique to LOPAC, screens were performed with the NIH Diversity Set and Spectrum Collection. An even higher proportion of M. tuberculosis inhibitors were not detected from the NIH Diversity Set and Spectrum Collection using M. smegmatis compared to M. bovis BCG. These data reveal that a significant proportion of M. tuberculosis inhibitors are missed in library screening with M. smegmatis. The basis of the variation in the inhibitory profiles of M. smegmatis and M. tuberculosis has yet to be fully determined, however, our genomic comparisons indicate that approximately 30% of M. tuberculosis proteins lack conserved orthologues in M. smegmatis compared to 3% being absent in M. bovis BCG. In conclusion, although M. smegmatis offers some technical benefits such as a shorter generation time and negligible risk to laboratory workers, it is significantly less effective in the detection of anti-M. tuberculosis compounds relative to M. bovis BCG. This limitation needs to be taken into consideration when selecting an in vitro screening model for tuberculosis drug discovery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Mycobacterium tuberculosis in Wild Asian Elephants, Southern India.

    PubMed

    Zachariah, Arun; Pandiyan, Jeganathan; Madhavilatha, G K; Mundayoor, Sathish; Chandramohan, Bathrachalam; Sajesh, P K; Santhosh, Sam; Mikota, Susan K

    2017-03-01

    We tested 3 ild Asian elephants (Elephas maximus) in southern India and confirmed infection in 3 animals with Mycobacterium tuberculosis, an obligate human pathogen, by PCR and genetic sequencing. Our results indicate that tuberculosis may be spilling over from humans (reverse zoonosis) and emerging in wild elephants.

  6. Tuberculosis in Sudan: a study of Mycobacterium tuberculosis strain genotype and susceptibility to anti-tuberculosis drugs

    PubMed Central

    2011-01-01

    Background Sudan is a large country with a diverse population and history of civil conflict. Poverty levels are high with a gross national income per capita of less than two thousand dollars. The country has a high burden of tuberculosis (TB) with an estimated 50,000 incident cases during 2009, when the estimated prevalence was 209 cases per 100,000 of the population. Few studies have been undertaken on TB in Sudan and the prevalence of drug resistant disease is not known. Methods In this study Mycobacterium tuberculosis isolates from 235 patients attending three treatment centers in Sudan were screened for susceptibility to isoniazid, rifampicin, ethambutol and streptomycin by the proportion method on Lowenstein Jensen media. 232 isolates were also genotyped by spoligotyping. Demographic details of patients were recorded using a structured questionnaire. Statistical analyses were conducted to examine the associations between drug resistance with risk ratios computed for a set of risk factors (gender, age, case status - new or relapse, geographic origin of the patient, spoligotype, number of people per room, marital status and type of housing). Results Multi drug-resistant tuberculosis (MDR-TB), being resistance to at least rifampicin and isoniazid, was found in 5% (95% CI: 2,8) of new cases and 24% (95% CI: 14,34) of previously treated patients. Drug resistance was associated with previous treatment with risk ratios of 3.51 (95% CI: 2.69-4.60; p < 0.001) for resistance to any drug and 5.23 (95% CI: 2.30-11.90; p < 0.001) for MDR-TB. Resistance was also associated with the geographic region of origin of the patient, being most frequently observed in patients from the Northern region and least in the Eastern region with risk ratios of 7.43 (95%CI:3.42,16.18; p: < 0.001) and 14.09 (95%CI:1.80,110.53; p:0.026) for resistance to any drug and MDR-TB. The major genotype observed was of the Central Asia spoligotype family (CAS1_Delhi), representing 49% of the 232 isolates

  7. A country-wide study of spoligotype and drug resistance characteristics of Mycobacterium tuberculosis isolates from children in China.

    PubMed

    Jiao, Weiwei; Liu, Zhiguang; Han, Rui; Zhao, Xiuqin; Dong, Fang; Dong, Haiyan; Huang, Hairong; Tian, Jianling; Li, Qinjing; Lian, Lulu; Yin, Qingqin; Song, Wenqi; Wan, Kanglin; Shen, A-Dong

    2013-01-01

    Tuberculosis (TB) is still a big threat to human health, especially in children. However, an isolation of Mycobacterium tuberculosis culture from pediatric cases remains a challenge. In order to provide some scientific basis for children TB control, we investigated the genotyping and drug resistance characteristics of M. tuberculosis isolates from pediatric cases in China. In this study, a total of 440 strains including 90 from children (<15 years), 159 from adolescents (15-18 years) and 191 from adults (>18 years) isolated in 25 provinces across China were subjected to spoligotyping and drug susceptibility testing. As a result, Beijing family strains were shown to remain predominant in China (85.6%, 81.1% and 75.4% in three above groups, respectively), especially among new children cases (91.0% vs. 69.6% in previously treated cases, P=0.03). The prevalence of the Beijing genotype isolates was higher in northern and central China in the total collection (85.1% in northern and 83.9% in central vs. 61.6% in southern China, P<0.001) and a similar trend was seen in all three age groups (P=0.708, <0.001 and 0.025, respectively). In adolescents, the frequencies of isoniazid (INH)-resistant and ethambutol (EMB)-resistant isolates were significantly higher among Beijing strains compared to non-Beijing genotype strains (P=0.028 for INH and P=0.027 for EMB). Furthermore, strong association was observed between resistance to rifampicine (RIF), streptomycin (STR) and multidrug resistance (MDR) among Beijing compared to non-Beijing strains in previously treated cases of children (P=0.01, 0.01 and 0.025, respectively). Beijing family was more prevalent in northern and central China compared to southern China and these strains were predominant in all age groups. The genetic diversity of M. tuberculosis isolates from children was similar to that found in adolescents and adults. Beijing genotype was associated with RIF, STR and MDR resistance in previously treated children.

  8. Prevalence of mutations in genes associated with isoniazid resistance Mycobacterium tuberculosis isolates from retreated smear positive pulmonary tuberculosis patients: A Meta-analysis.

    PubMed

    Alagappan, Chitra; Shivekar, Smita Sunil; Brammacharry, Usharani; Kapalamurthy, Vidya Raj Cuppusamy; Sakkaravarthy, Anbazhagi; Subashkumar, Rathinasamy; Muthaiah, Muthuraj

    2018-03-28

    The prevalence of isoniazid mono resistance is high in India. We investigated the molecular epidemiological characteristics association with the isoniazid resistance mutations in Mycobacterium tuberculosis in codon katG315 and in the promoter region of the inhA gene. Sputum specimens of smear-positive tuberculosis patients were subjected to Genotype MTBDRplus testing to identify katG and inhA mutations. Seventeen publications along with this current study assessed 14,100 genotypically resistant isolates for mutations in katG inclusive of codon position 315. In total, 1821 of 15438 isoniazid-resistant strains (11.8%) had detectable mutations: 71.0% in katG codon 315 (katG315) and 29.0% in the inhA promoter region. Economically active age group had 89.1%, paediatric age group had 0.4% and in the age group >60years had 10.5% isoniazid mono resistant and in males and females were 17.7% and 15.9% respectively. The meta-analysis derived a pooled katGS315T resistant TB prevalence of 64.5% (95% CI; 0.593±0.754%) with Q value 732.19, I2 98.35% and p-0.000 for treated TB cases. Isoniazid resistant was transferred widely and its prevalence and transmission of INH resistant isolates especially with katG315Thr mutation was confirmed. Therefore, it is important to diagnose the katG315Thr mutants among INH-resistant strains as it could be seen as a risk factor for subsequent development of MDR-TB. Prompt detection of the patients with INH resistant strains would expedite the modification of treatment regimens and appropriate infection control measures could be taken in time to diminish the risk of further development and transmission of MDR-TB. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  9. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    NASA Astrophysics Data System (ADS)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  10. Improved Phenoxyalkylbenzimidazoles with Activity against Mycobacterium tuberculosis Appear to Target QcrB

    PubMed Central

    2017-01-01

    The phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure–activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria. We isolated resistant mutants against PAB compounds, which had mutations in either Rv1339, of unknown function, or qcrB, a component of the cytochrome bc1 oxidase of the electron transport chain. QcrB mutant strains were resistant to all PAB compounds, whereas Rv1339 mutant strains were only resistant to a subset, suggesting that QcrB is the target. The discovery of the target for PAB compounds will allow for the improved design of novel compounds to target intracellular M. tuberculosis. PMID:29035551

  11. Mycobacterium tuberculosis promotes genomic instability in macrophages

    PubMed Central

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-01-01

    BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354

  12. Mycobacterium tuberculosis promotes genomic instability in macrophages.

    PubMed

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-03-01

    Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.

  13. Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice.

    PubMed

    Srivastava, Vikas; Jain, Anamika; Srivastava, Brahm S; Srivastava, Ranjana

    2008-05-01

    In sequel to previous report [Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS. Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection. Microbiology 2007;153:659-66], the genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice were identified in an in vivo expression system based on kanamycin resistance. A promoter library of M. tuberculosis was constructed in a promoter trap shuttle vector pLL192 containing an artificial bicistronic operon composed of promoterless green fluorescent protein gene followed by kanamycin resistance gene. The library was introduced in M. bovis BCG and then infected in mice by intravenous route. Mice were treated twice daily with 40 mg/kg dose of kanamycin by intramuscular route for 21 days. Recombinant BCG recovered from the lungs were reinfected in mice to enrich clones surviving kanamycin treatment in the lung but sensitive to killing by kanamycin in vitro. After nucleotide sequencing of inserts from these clones, 20 genes belonging to fatty acids metabolism, membrane transport, nitric oxide defence and PE_PGRS/PPE family were identified. Real-time PCR analysis using RNA isolated from M. tuberculosis grown in vitro and from the lungs, confirmed upregulation of genes from 2 to 20-fold in vivo compared to growth in vitro. Several of these select 20 genes were also found upregulated ex vivo in macrophage-like cell line J774A.1, thus, suggesting a correlation in mycobacterial gene expression between ex vivo and in vivo conditions.

  14. Revisiting the susceptibility testing of Mycobacterium tuberculosis to ethionamide in solid culture medium.

    PubMed

    Lakshmi, Rajagopalan; Ramachandran, Ranjani; Kumar, D Ravi; Sundar, A Syam; Radhika, G; Rahman, Fathima; Selvakumar, N; Kumar, Vanaja

    2015-11-01

    Increase in the isolation of drug resistant phenotypes of Mycobacterium tuberculosis necessitates accuracy in the testing methodology. Critical concentration defining resistance for ethionamide (ETO), needs re-evaluation in accordance with the current scenario. Thus, re-evaluation of conventional minimum inhibitory concentration (MIC) and proportion sensitivity testing (PST) methods for ETO was done to identify the ideal breakpoint concentration defining resistance. Isolates of M. tuberculosis (n=235) from new and treated patients were subjected to conventional MIC and PST methods for ETO following standard operating procedures. With breakpoint concentration set at 114 and 156 µg/ml, an increase in specificity was observed whereas sensitivity was high with 80 µg/ml as breakpoint concentration. Errors due to false resistant and susceptible isolates were least at 80 µg/ml concentration. Performance parameters at 80 µg/ml breakpoint concentration indicated significant association between PST and MIC methods.

  15. Performance of the Abbott RealTime MTB RIF/INH resistance assay when used to test Mycobacterium tuberculosis specimens from Bangladesh.

    PubMed

    Kostera, Joshua; Leckie, Gregor; Abravaya, Klara; Wang, Hong

    2018-01-01

    The Abbott RealTime MTB RIF/INH Resistance Assay (RT MTB RIF/INH) is an assay for the detection of rifampicin (RIF)- and/or isoniazid (INH)-resistant Mycobacterium tuberculosis (MTB). The assay can be used to test sputum, bronchial alveolar lavage, and N-Acetyl-L-Cysteine (NALC)/NaOH pellets prepared from these samples. The assay can be used in direct testing mode, or in reflex mode following a MTB positive result produced by its companion assay, Abbott RT MTB. In this study, the direct testing mode was used to test paired sputum and NALC/NaOH pellets prepared from sputum collected from Bangladesh TB patients. One hundred and thirty two paired samples were tested. The RT MTB RIF/INH inhibition rate was 0%. One hundred and twenty-two paired samples had results above the assay limit of detection and were analyzed by comparing with results from phenotypic drug sensitivity testing, GeneXpert MTB/RIF (Xpert), and MTBDR plus (Hain). RT MTB RIF/INH results were in good agreement with those of GeneXpert and Hain. The ability of this assay to detect RIF and INH resistance may contribute to the global control of multidrug resistant tuberculosis.

  16. Clofazimine drug susceptibility testing for Mycobacterium tuberculosis: the case of using the right diluent.

    PubMed

    Sng, Li-Hwei; Peh, Justine Woei Ling; Lee Kee, Melody Tai; Ya'akob, Nurhazirah Bte Mohd; Ong, Rick Twee-Hee; Wong, Christopher W; Chee, Cynthia Bin Eng; Wang, Yee Tang

    2018-06-08

    Accurate and reliable drug susceptibility testing (DST) is essential for the effective treatment and control of tuberculosis. With the increase in drug-resistant organisms, newer and less conventional antimicrobial agents are used for treatment. Recently, we found an unprecedented rise in the number of clofazimine-resistant Mycobacterium tuberculosis isolates in our laboratory. An investigation found that this phenomenon was due to a change in the method of drug preparation. We performed studies to assess the impact of water and dimethyl sulfoxide (DMSO) as a final diluent for clofazimine drug testing. Based on our findings, the use of DMSO as a solvent for M. tuberculosis DST was optimised using the BACTEC MGIT 960 platform. Copyright © 2018 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  17. Mycobacterial diversity causing multi- and extensively drug-resistant tuberculosis in Djibouti, Horn of Africa.

    PubMed

    Millán-Lou, M I; Ollé-Goig, J E; Tortola, M T; Martin, C; Samper, S

    2016-02-01

    On detecting a high prevalence of multidrug-resistant tuberculosis (TB) in Djibouti, 32 Mycobacterium tuberculosis isolates of patients hospitalised in the TB referral centre of the capital were genotyped. A high variety of M. tuberculosis lineages, including lineage 1, Indo-Oceanic, lineage 2, East-Asian, lineage 3, East-African Indian and lineage 4, Euro-American, were detected.

  18. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  19. Multi- and Extensively Drug Resistant Mycobacterium tuberculosis in South Africa: a Molecular Analysis of Historical Isolates.

    PubMed

    Maningi, Nontuthuko E; Daum, Luke T; Rodriguez, John D; Said, Halima M; Peters, Remco P H; Sekyere, John Osei; Fischer, Gerald W; Chambers, James P; Fourie, P Bernard

    2018-05-01

    Modern advances in genomics provide an opportunity to reinterpret historical bacterial culture collections. In this study, genotypic antibiotic resistance profiles of Mycobacterium tuberculosis isolates from a historical 20-year-old multidrug-resistant tuberculosis (MDR-TB) culture collection in South Africa are described. DNA samples extracted from the phenotypically MDR-TB isolates ( n = 240) were assayed by Hain line probe assay (LPA) for the confirmation of MDR-TB and by Illumina Miseq whole-genome sequencing (WGS) for the characterization of mutations in eight genes ( rpoB , katG , inhA , rpsL , pncA , embB , gyrA , and rrs ) that are known to code for resistance to commonly used anti-TB agents. LPA identified 71.3% of the TB isolates as MDR-TB, 18.3% as rifampin (RIF) monoresistant, 2% as isoniazid (INH) monoresistant, and 8.3% as susceptible to both RIF and INH (RIF+INH). In a subset of 42 randomly selected isolates designated as RIF+INH resistant by Löwenstein-Jensen (LJ) culture in 1993, LPA and WGS results confirmed MDR-TB. In all five INH-monoresistant isolates by LPA and in all but one (the wild type) of the 34 successfully sequenced RIF-monoresistant isolates, WGS revealed matching mutations. Only 26% of isolates designated as susceptible by LPA, however, were found to be wild type by WGS. Novel mutations were found in the rpoB (Thr480Ala, Gln253Arg, Val249Met, Val251Tyr, Val251Phe), katG (Trp477STOP, Gln88STOP, Trp198STOP, Trp412STOP), embB (Thr11Xaa, Gln59Pro), and pncA (Thr100Ile, Thr159Ala, Ala134Arg, Val163Ala, Thr153Ile, DelGpos7, Phe106Ser) genes. Three MDR-TB isolates showed mutations in both the gyrA and rrs genes, suggesting that extensively drug-resistant tuberculosis existed in South Africa well before its formal recognition in 2006. Copyright © 2018 American Society for Microbiology.

  20. Rifampicin resistance in mycobacterium tuberculosis patients using GeneXpert at Livingstone Central Hospital for the year 2015: a cross sectional explorative study.

    PubMed

    Masenga, Sepiso K; Mubila, Harrison; Hamooya, Benson M

    2017-09-22

    Since the recent introduction of GeneXepert for the detection of Tuberculosis (TB) drug resistance mutations in both primary resistance and acquired resistance in Zambia, little has been documented in literature on the issue of rifampicin resistance especially in the face of a high National TB burden. The study aimed to determine the prevalence of rifampicin resistance in tuberculosis patients at Livingstone Central Hospital for the year 2015. This was a cross sectional study conducted at Livingstone Central Hospital where we reviewed 152 records (from January 1, 2015 to 31st December, 2015) involving patients who presented with clinically suspected TB or documented TB, whose samples were sent to the laboratory for GeneXpert Mycobacterium tuberculosis/rifampicin testing. Statistical evaluations used a one-sample test of proportion and Fisher's exact test. The age of participants ranged from 8 months to 73 years old (median = 34). Of the participants with complete data on gender, 99 (66%) and 52 (34%) were males and females respectively. The TB co-infection with HIV prevalence was 98.3% (p < 0.001). Prevalence of rifampicin resistance was 5.9% and there was no statistical significant difference between being male or female (p = 0.721). We were able to show from our study, evidence of rifampicin resistance at Livingstone Central Hospital. Hence, there was need for further in-depth research and appropriate interventions (i.e close follow-up and patient care for drug resistance positive patients).

  1. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins.

    PubMed

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C; Rutten, Victor

    2016-01-01

    The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis

  2. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis.

    PubMed

    Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G

    2017-02-01

    To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.

  3. Utility of Phenotypic and Genotypic Testing in the Study of Mycobacterium tuberculosis Resistance to First-Line Anti-Tuberculosis drugs.

    PubMed

    Alba Álvarez, Luz María; García García, José María; Pérez Hernández, M Dolores; Martínez González, Susana; Palacios Gutiérrez, Juan José

    2017-04-01

    To determine the utility of molecular techniques in the diagnosis of resistance and the extent of resistance to first-line drugs in our region. From 2004 to 2013, 1,889 strains of Mycobacterium tuberculosis complex isolated in Asturias, Spain, were studied using phenotypic (Clinical and Laboratory Standards Institute guidelines) and molecular (INNOLiPA RIF-TB © ; GenotypeMDRplus © ; GenotypeMDRsl © ) sensitivity tests. 1,759 strains (94.52%) were sensitive to all first-line drugs, and 102 strains (5.48%) showed some resistance: 81 strains (4.35%) were resistant to 1 single drug, 14 (0.75%) were polyresistant, and 7 (0.37%) were multiresistant (resistant to rifampicin and isoniazid). In total, 137 resistances were identified: 60 to isoniazid (3.22%), 7 to rifampicin (0.37%), 9 to pyrazinamide (0.48%), 11 to ethambutol (0.59%), and 50 to streptomycin (2.68%). Of the mutations detected, 75.9% (63/83) correlated with resistance, while 24.09% of mutations detected (20/83) were not associated with resistance; 16 of these involved a silent mutation at codon 514 of the rpoB gene. Between 0 and 90% of strains, depending on the drug under consideration, were resistant even when no gene mutations were detected using marketed systems. Molecular techniques are very useful, particularly for obtaining rapid results, but these must be confirmed with standard phenotypic sensitivity testing. The rate of resistance in our region is low and multi-drug resistantcases (0.37%) are sporadic. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    PubMed Central

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  5. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus.

    PubMed

    Behar, Samuel M; Carpenter, Stephen M; Booty, Matthew G; Barber, Daniel L; Jayaraman, Pushpa

    2014-12-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy.

    PubMed

    Trauner, Andrej; Liu, Qingyun; Via, Laura E; Liu, Xin; Ruan, Xianglin; Liang, Lili; Shi, Huimin; Chen, Ying; Wang, Ziling; Liang, Ruixia; Zhang, Wei; Wei, Wang; Gao, Jingcai; Sun, Gang; Brites, Daniela; England, Kathleen; Zhang, Guolong; Gagneux, Sebastien; Barry, Clifton E; Gao, Qian

    2017-04-19

    Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations.

  7. Mycobacterium tuberculosis: Success through dormancy

    PubMed Central

    Gengenbacher, Martin; Kaufmann, Stefan H. E.

    2012-01-01

    Tuberculosis (TB) remains a major health threat, killing near to 2 million individuals around this globe, annually. The sole vaccine developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable due to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the crosstalk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, Mtb’s enormous success is based on three capacities: First, reprogramming of macrophages after primary infection/phagocytosis in order to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host–pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy and highlight gaps in our understanding to be addressed in future research. PMID:22320122

  8. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient to a dairy cow in New Zealand.

    PubMed

    Dawson, Kara L; Bell, Anita; Kawakami, R Pamela; Coley, Kathryn; Yates, Gary; Collins, Desmond M

    2012-09-01

    Mycobacterium orygis, previously called the oryx bacillus, is a member of the Mycobacterium tuberculosis complex and has been reported only recently as a cause of human tuberculosis in patients of South Asian origin. We present the first case documenting the transmission of this organism from a human to a cow.

  9. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    PubMed

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB.

    PubMed

    Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun

    2016-01-01

    Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular epidemiology study of Mycobacterium tuberculosis and its susceptibility to anti-tuberculosis drugs in Indonesia.

    PubMed

    Lisdawati, Vivi; Puspandari, Nelly; Rif'ati, Lutfah; Soekarno, Triyani; M, Melatiwati; K, Syamsidar; Ratnasari, Lies; Izzatun, Nur; Parwati, Ida

    2015-08-22

    Genotyping of Mycobacterium tuberculosis helps to understand the molecular epidemiology of tuberculosis and to address evolutionary questions about the disease spread. Certain genotypes also have implications for the spread of infection and treatment. Indonesia is a very diverse country with a population with multiple ethnicities and cultures and a history of many trade and tourism routes. This study describes the first attempt to map the molecular epidemiology of TB in the Indonesian archipelago. From 2008 to 2011, 404 clinical specimens from sputum-smear (SS+) TB patients, age ≥15 years, were collected from 16 TB referral primary health centers (PHC) in 16 provincial capitals in Indonesia. Susceptibility testing to first line drugs was conducted for 262 samples using the agar proportion method as per WHO guidelines. Spoligotyping was done on all samples. Ninety-three of the 404 samples (23 %) were from the Beijing family, making it the predominant family in the country. However, the geographic distribution of the family varied by region with 86/294 (29.3 %) in the western region, 6/72 (8.3 %) in the central region, and 2/72 (2.8 %) in the eastern region (p < 0.001). The predominant genotype in the central and eastern regions was from the East-African-Indian (EAI) family, comprising 15.3 % (11/72), and 26.3 % (10/38) of the isolates, respectively. Drug susceptibility to first-line anti-TB drugs was tested in 262 isolates. 162 (61.8 %) isolates were susceptible to all TB drugs, 70 (26.7 %) were mono-resistant 16 (6.1 %) were poly-resistant, and 14 (5.4 %) were multi-drug resistant (MDR). The proportion of Beijing family isolates in the susceptible, mono-resistant, poly-resistant, and MDR groups was 33/162 (20.4 %), 28/70 (40.0 %), 6/16 (37.5 %), and 3/14 (21.4 %), respectively. Overall, resistance of the Beijing family isolates to any of the first line TB drugs was significantly higher than non-Beijing families [37/71 (52.1 %) vs. 63/191 (33.0 %) (p-value = 0

  12. Characterization of Mycobacterium tuberculosis isolates from Hebei, China: genotypes and drug susceptibility phenotypes.

    PubMed

    Li, Yanan; Cao, Xinrui; Li, Shiming; Wang, Hao; Wei, Jianlin; Liu, Peng; Wang, Jing; Zhang, Zhi; Gao, Huixia; Li, Machao; Wan, Kanglin; Dai, Erhei

    2016-03-03

    Tuberculosis remains a major public health problem in China. The Hebei province is located in the Beijing-Tianjin-Hebei integration region; however little information about the genetic diversity of Mycobacterium tuberculosis was available in this area. This study describes the first attempt to map the molecular epidemiology of MTB strains isolated from Hebei. Spoligotyping and 15-locus MIRU-VNTR were performed in combination to yield specific genetic profiles of 1017 MTB strains isolated from ten cities in the Hebei province in China during 2014. Susceptibility testing to first line anti-TB drugs was also conducted for all strains using the L-J proportion method. Based on the SpolDB4.0 database, the predominant spoligotype belonged to the Beijing family (90.5%), followed by T family (6.3%). Using 15-locus MIRU-VNTR clustering analysis, 846 different patterns were identified, including 84 clusters (2-17 strains per cluster) and 764 individual types. Drug susceptibility pattern showed that 347 strains (34.1%) were resistant to at least one of the first line drugs, including 134 (13.2%) multi-drug resistance strains. Statistical analysis indicated that drug resistance was associated with treatment history. The Beijing family was associated with genetic clustering. However, no significant difference was observed between the Beijing and non-Beijing family in gender, age, treatment history and drug resistance. The Mycobacterium tuberculosis strains in Hebei exhibit high genetic diversity. The Beijing family is the most prevalent lineage in this area. Spoligotyping in combination with 15-locus MIRU-VNTR is a useful tool to study the molecular epidemiology of the MTB strains in Hebei.

  13. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for futuremore » therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.« less

  14. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs.

    PubMed

    Li, Z; Kelley, C; Collins, F; Rouse, D; Morris, S

    1998-04-01

    The molecular mechanisms associated with the pathogenesis of tuberculosis are not well understood. The present study evaluated the role of catalase-peroxidase as a potential virulence factor for Mycobacterium tuberculosis. Growth and persistence of M. tuberculosis H37Rv in intravenously infected BALB/ c mice were compared with katG-deleted, isoniazid-resistant M. tuberculosis H37RVINHR. Transformation of M. tuberculosis H37Rv (TBkatG) or Mycobacterium intracellulare (MACkatG) genes into M. tuberculosis H37RvINHR restored its catalase-peroxidase activities and the ability of the recombinants to persist in spleens of mice and guinea pigs. Transformation with the TBkatG gene with the codon 463 R-->L mutation also restored catalase-peroxidase activity and enhanced persistence. However, transformants with the codon 275 T-->P mutant expressed low levels of enzymatic activity and failed to persist in guinea pig spleen, although they did survive in mouse tissues. These results indicate that KatG contributes to the ability of M. tuberculosis to grow and survive within the infected host tissues.

  15. Isoniazid and rifampicin heteroresistant Mycobacterium tuberculosis isolated from tuberculous meningitis patients in India.

    PubMed

    Gupta, Renu; Thakur, Rajeev; Kushwaha, Suman; Jalan, Nupur; Rawat, Pumanshi; Gupta, Piyush; Aggarwal, Amitesh; Gupta, Meena; Manchanda, Vikas

    2018-01-01

    Heteroresistant Mycobacterium tuberculosis (mixture of susceptible and resistant subpopulations) is thought to be a preliminary stage to full resistance and timely detection, initiation of correct treatment is vital for successful anti tubercular therapy. The aim of this study was to detect multi drug resistant (MDR) and heteroresistant M. tuberculosis with the associated gene mutations from patients of tuberculous meningitis. A total of 197 M. tuberculosis isolates from 478 patients of TBM were isolated from July 2012 to July 2015 and subjected to drug susceptibility testing (DST) by BACTEC MGIT and Genotype MTBDR line probe assay (LPA). Heteroresistance was defined as presence of both WT and mutant genes in LPA. Of 197 M. tuberculosis isolates, 11 (5.6%) were MDR, 23 (11.6%), 1 (0.5%) were mono resistant to isoniazid (INH) and rifampicin (RMP) respectively. Heteroresistance was detected in 8 (4%), 2 (1%) isolates to INH and RMP respectively. INH heteroresistant strains had WT bands with mutation band S315T1 whereas RMP heteroresistant strains had WT bands with mutation band S531L. The prevalence of MDR M. tuberculosis was 5.6% in TBM patients with the most common mutation being ΔWT band with S315T1 for INH and ΔWT band with S531T for RMP. MGIT DST was found to be more sensitive for detecting overall resistance in M. tuberculosis but inclusion of LPA not only reduced time for early initiation of appropriate treatment but also enabled detection of heteroresistance in 8 (4%), 2 (1%) isolates for INH and RMP respectively. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  16. Discovery of Novel MDR-Mycobacterium tuberculosis Inhibitor by New FRIGATE Computational Screen

    PubMed Central

    Vértessy, Beáta; Pütter, Vera; Grolmusz, Vince; Schade, Markus

    2011-01-01

    With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C. PMID:22164290

  17. Variations in the occurrence of specific rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolates from patients of different ethnic groups in Kuwait.

    PubMed

    Ahmad, Suhail; Al-Mutairi, Noura M; Mokaddas, Eiman

    2012-05-01

    Frequency of resistance-conferring mutations vary among isoniazid- and ethambutol-resistant Mycobacterium tuberculosis isolates obtained from patients of various ethnic groups. This study was aimed to determine the occurrence of specific rpoB mutations in rifampicin-resistant M. tuberculosis isolates from tuberculosis patients of various ethnic groups in Kuwait. Rifampicin-resistant M. tuberculosis isolates (n=119) from South Asian (n=55), Southeast Asian (n=23), Middle Eastern (n=39) and other (n=2) patients and 107 rifampicin-susceptible isolates were tested. Mutations in rpoB were detected by DNA sequencing. Polymorphisms at katG463 and gyrA95 were detected by PCR-RFLP for genetic group assignment. None of rifampicin-susceptible but 116 of 119 rifampicin-resistant isolates showed rpoB mutation(s). Mutations among isolates from South Asian patients were distributed at rpoB516 (20%), rpoB526 (24%) and rpoB531 (27%) while 78 and 51 per cent of isolates from Southeast Asian and Middle Eastern patients, respectively, contained a mutated rpoB531. All isolates with rpoB N-terminal and cluster II mutations were obtained from Middle Eastern and South Asian patients. Most isolates from South Asian (84%) and Southeast Asian (70%) patients belonged to genetic group I while nearly all remaining isolates belonged to genetic group II. Isolates from Middle Eastern patients were distributed among genetic group I (46%), genetic group II (33%) and genetic group III (21%). The occurrence of specific rpoB mutations varied considerably in rifampicin-resistant M. tuberculosis isolates obtained from patients of different ethnic groups within the same country. The present data have important implications for designing region-specific rapid methods for detecting majority of rifampicin-resistant strains.

  18. Use of Gas Chromatographic Fatty Acid and Mycolic Acid Cleavage Product Determination To Differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis

    PubMed Central

    Chou, S.; Chedore, P.; Kasatiya, S.

    1998-01-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37°C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content. PMID:9466781

  19. Use of gas chromatographic fatty acid and mycolic acid cleavage product determination to differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis.

    PubMed

    Chou, S; Chedore, P; Kasatiya, S

    1998-02-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37 degrees C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content.

  20. One-tube loop-mediated isothermal amplification combined with restriction endonuclease digestion and ELISA for colorimetric detection of resistance to isoniazid, ethambutol and streptomycin in Mycobacterium tuberculosis isolates.

    PubMed

    Lee, Mei-Feng; Chen, Yen-Hsu; Hsu, Hui-Jine; Peng, Chien-Fang

    2010-10-01

    In this study, we designed a simple and rapid colorimetric detection method, a one-tube loop-mediated isothermal amplification (LAMP)-PCR-hybridization-restriction endonuclease-ELISA [one-tube LAMP-PCR-HY-RE-ELISA] system, to detect resistance to isoniazid, ethambutol and streptomycin in strains of Mycobacterium tuberculosis isolated from clinical specimens. The clinical performance of this method for detecting isoniazid-resistant, ethambutol-resistant and streptomycin-resistant isolates of M. tuberculosis showed 98.9%, 94.3% and 93.8%, respectively. This assay is rapid and convenient that can be performed within one working day. One-tube LAMP-PCR-HY-RE-ELISA system was designed based on hot spot point mutations in target drug-resistant genes, using LAMP-PCR, hybridization, digestion with restriction endonuclease and colorimetric method of ELISA. In this study, LAMP assay was used to amplify DNA from drug-resistant M. tuberculosis, and ELISA was used for colorimetrical determination. This assay will be a useful tool for rapid diagnosis of mutant codons in strains of M. tuberculosis for isoniazid at katG 315 and katG 463, ethambutol at embB 306 and embB 497, and streptomycin at rpsL 43. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  1. Multidrug-resistant Pulmonary Tuberculosis Among Young Korean Soldiers in a Communal Setting

    PubMed Central

    Lee, Sei Won; Kim, Kwang Hyun; Min, Kyung Hoon

    2009-01-01

    The goal of this study was to evaluate the prevalence of first-line anti-tuberculosis drug resistance and risk factors associated with multidrug-resistant tuberculosis (MDR TB) among young soldiers in the Korean military, which has a strict tuberculosis control program. All patients with culture-confirmed pulmonary tuberculosis during their service at the Armed Forces Capital Hospital from January 2001 to December 2006 were enrolled in the study. Drug resistant Mycobacterium tuberculosis was isolated from 18 patients (12.2%) and multidrug-resistant M. tuberculosis was isolated from 12 patients (8.1%). Previous treatment of tuberculosis and the presence of a cavity on the patient's chest computed tomography scan were associated with MDR TB; military rank, smoking habits, and positive acid-fast bacilli smears were not associated with MDR TB. In a multiple logistic regression analysis, previous treatment of tuberculosis was a significant independent risk factor for MDR TB (odds ratio 6.12, 95% confidence interval 1.53-24.46). The prevalence of drug resistant tuberculosis among young soldiers in the Korean military was moderately high and the majority of resistant cases were found in patients who had undergone previous treatment of tuberculosis. Based on our results, we suggest that relapsed tuberculosis cases within communal settings should be cautiously managed until the drug susceptibility tests report is completed, even if previous treatment results were satisfactory. PMID:19654938

  2. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins

    PubMed Central

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C.; Rutten, Victor

    2016-01-01

    The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis

  3. [Advances in the research of an animal model of wound due to Mycobacterium tuberculosis infection].

    PubMed

    Chen, Ling; Jia, Chiyu

    2015-12-01

    Tuberculosis ranks as the second deadly infectious disease worldwide. The incidence of tuberculosis is high in China. Refractory wound caused by Mycobacterium tuberculosis infection ranks high in misdiagnosis, and it is accompanied by a protracted course, and its pathogenic mechanism is still not so clear. In order to study its pathogenic mechanism, it is necessary to reproduce an appropriate animal model. Up to now the study of the refractory wound caused by Mycobacterium tuberculosis infection is just beginning, and there is still no unimpeachable model for study. This review describes two models which may reproduce a wound similar to the wound caused by Mycobacterium tuberculosis infection, so that they could be used to study the pathogenesis and characteristics of a tuberculosis wound in an animal.

  4. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis.

    PubMed

    Wang, Li; Deng, Xiangying; Liu, Haican; Zhao, Lanhua; You, Xiaolong; Dai, Pei; Wan, Kanglin; Zeng, Yanhua

    2016-11-01

    Mycobacterium tuberculosis is an obligate pathogenic bacterial species in the family of Mycobacteriaceae and attracts excessive immune responses which cause pathology of the lungs in active tuberculosis. The lack of more sensitive and effective diagnosis reagents advocates a further recognition for the fast diagnostic and immunological measures for tuberculosis. Here, two 12-mer peptides with core sequences of SVSVGMKPSPRP (CS1) and TMGFTAPRFPHY (CS2) were screened from a phage display random peptide library using the purified mixed tuberculosis-positive serum as a target. Enzyme-linked immunosorbent assay (ELISA) and dot immunobinding assay verified that positive phages exhibited strong binding affinity to mixed tuberculosis-positive serum. BLAST analysis showed that the two sequences may be mimotopes of the Mycobacterium tuberculosis The diagnostic potential for two synthetic mimotope peptides CS1 and CS2 was evaluated using different panels of serum samples (n = 181) by ELISA, and the diagnostic parameters were calculated. CS1 and CS2 achieved sensitivity of 89.41% and 85.88%, and specificities were 90.63% and 87.50%, respectively. We hypothesized that the diagnostic based on CS1 and CS2 may become a promising strategy to enhance the detection of Mycobacterium tuberculosis infection due to higher specificity and sensitivity. Therefore, CS1 and CS2 may possess potentials to provide an experimental basis for the diagnosis of tuberculosis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. First Insights into the Phylogenetic Diversity of Mycobacterium tuberculosis in Nepal

    PubMed Central

    Malla, Bijaya; Stucki, David; Borrell, Sonia; Feldmann, Julia; Maharjan, Bhagwan; Shrestha, Bhawana

    2012-01-01

    Background Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. Methods and Findings We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42–4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43–5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. Conclusions We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian

  6. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines.

    PubMed

    Shah, Preksha; Mistry, Jaymisha; Reche, Pedro A; Gatherer, Derek; Flower, Darren R

    2018-05-01

    Effective control of Mycobacterium tuberculosis is a global necessity. In 2015, tuberculosis (TB) caused more deaths than HIV. Considering the increasing prevalence of multi-drug resistant forms of M. tuberculosis, the need for effective TB vaccines becomes imperative. Currently, the only licensed TB vaccine is Bacillus Calmette-Guérin (BCG). Yet, BCG has many drawbacks limiting its efficacy and applicability. We applied advanced computational procedures to derive a universal TB vaccine and one targeting East Africa. Our approach selects an optimal set of highly conserved, experimentally validated epitopes, with high projected population coverage (PPC). Through rigorous data analysis, five different potential vaccine combinations were selected each with PPC above 80% for East Africa and above 90% for the World. Two potential vaccines only contained CD8+ epitopes, while the others included both CD4+ and CD8+ epitopes. Our prime vaccine candidate was a putative seven-epitope ensemble comprising: SRGWSLIKSVRLGNA, KPRIITLTMNPALDI, AAHKGLMNIALAISA, FPAGGSTGSL, MLLAVTVSL, QSSFYSDW and KMRCGAPRY, with a 97.4% global PPC and a 92.7% East African PPC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A Systematic Follow-Up of Mycobacterium tuberculosis Drug-Resistance and Associated Genotypic Lineages in the French Departments of the Americas over a Seventeen-Year Period

    PubMed Central

    Millet, Julie; Berchel, Mylène; Bomer, Anne-Gaël; Schuster, Franziska; Paasch, Delaina; Cadelis, Gilbert

    2014-01-01

    The population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland France and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995–December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed—T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)—two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage. PMID:24738068

  8. A systematic follow-up of Mycobacterium tuberculosis drug-resistance and associated genotypic lineages in the French Departments of the Americas over a seventeen-year period.

    PubMed

    Millet, Julie; Streit, Elisabeth; Berchel, Mylène; Bomer, Anne-Gaël; Schuster, Franziska; Paasch, Delaina; Vanhomwegen, Jessica; Cadelis, Gilbert; Rastogi, Nalin

    2014-01-01

    THE population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland france and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995-December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed--T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)--two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage.

  9. Inhibiting Mycobacterium tuberculosis within and without.

    PubMed

    Cole, Stewart T

    2016-11-05

    Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors.This article is

  10. Dataset of potential targets for Mycobacterium tuberculosis H37Rv through comparative genome analysis.

    PubMed

    Asif, Siddiqui M; Asad, Amir; Faizan, Ahmad; Anjali, Malik S; Arvind, Arya; Neelesh, Kapoor; Hirdesh, Kumar; Sanjay, Kumar

    2009-12-31

    Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.

  11. Transmission of Mycobacterium tuberculosis in China: A Population-Based Molecular Epidemiologic Study

    PubMed Central

    Yang, Chongguang; Shen, Xin; Peng, Ying; Lan, Rushu; Zhao, Yuling; Long, Bo; Luo, Tao; Sun, Guomei; Li, Xia; Qiao, Ke; Gui, Xiaohong; Wu, Jie; Xu, Jiying; Li, Fabin; Li, Dingyue; Liu, Feiying; Shen, Mei; Hong, Jianjun; Mei, Jian; DeRiemer, Kathryn; Gao, Qian

    2015-01-01

    Background. Understanding the transmission of Mycobacterium tuberculosis is essential for the development of efficient tuberculosis control strategies. China has the second-largest tuberculosis burden in the world. Recent transmission and infection with M. tuberculosis, particularly drug-resistant strains, may account for many new tuberculosis cases. Methods. We performed a population-based molecular epidemiologic study of pulmonary tuberculosis in China during 1 July 2009 to 30 June 2012. We defined clusters as cases with identical variable number tandem repeat genotype patterns and identified the risk factors associated with clustering, by logistic regression. Relative transmission rates were estimated by the sputum smear status and drug susceptibility status of tuberculosis patients. Results. Among 2274 culture-positive tuberculosis patients with genotyped isolates, there were 705 (31.0%) tuberculosis patients in 287 clusters. Multidrug-resistant (MDR) tuberculosis (adjusted odds ratio [aOR], 1.86; 95% confidence interval [CI], 1.25–2.63) and infection with a Beijing family strain (aOR, 1.56; 95% CI, 1.23–2.96) were associated with clustering. Eighty-four of 280 (30.0%) clusters had a putative source case that was sputum smear negative, and 30.6% of their secondary cases were attributed to transmission by sputum smear–negative patients. The relative transmission rate for sputum smear negative compared with sputum smear–positive patients was 0.89 (95% CI, .68–1.10), and was 1.51 (95% CI, 1.00–2.24) for MDR tuberculosis vs drug-susceptible tuberculosis. Conclusions. Recent transmission of M. tuberculosis, including MDR strains, contributes substantially to tuberculosis disease in China. Sputum smear–negative cases were responsible for at least 30% of the secondary cases. Interventions to reduce the transmission of M. tuberculosis should be implemented in China. PMID:25829000

  12. Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China.

    PubMed

    Chen, Qiuyang; Pang, Yu; Liang, Qingfu; Lin, Shufang; Wang, Yufeng; Lin, Jian; Zhao, Yong; Wei, Shuzhen; Zheng, Jinfeng; Zheng, Suhua

    2014-03-01

    Of 75 MDR isolates from Fujian Province, the sensitivity of RIF, INH, EMB, SM, OFLX and KAN resistance by DNA sequencing was 96.0%, 96.0%, 66.7%, 66.0%, 84.2% and 75.0%, respectively. We also identified that minority mutations in the mixed Mycobacterium tuberculosis population may be responsible for two "false-negative" results. In addition, Beijing genotype is still the predominant sublineage in the MDR TB cases from Fujian. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Kuwait and Dubai.

    PubMed

    Ahmad, Suhail; Mokaddas, Eiman; Fares, Esther

    2002-11-01

    Mutations conferring resistance to rifampin in rifampin-resistant clinical Mycobacterium tuberculosis isolates occur mostly in the 81 bp rifampin-resistance-determining region (RRDR) of the rpoB gene. In this study, 29 rifampin-resistant and 12 -susceptible clinical M. tuberculosis isolates were tested for characterization of mutations in the rpoB gene by line probe (INNO-LiPA Rif. TB) assay and the results were confirmed and extended by DNA sequencing of the PCR amplified target DNA. The line probe assay identified all 12 susceptible strains as rifampin-sensitive and the DNA sequence of RRDR in the amplified rpoB gene from two isolates matched perfectly with the wild-type sequence. The line probe assay identified 28 resistant isolates as rifampin-resistant with specific detection of mutation in 22 isolates including one isolate that exhibited hetro-resistance containing both the wild-type pattern as well as a specific mutation within RRDR while one of the rifampin-resistant strain was identified as rifampin-susceptible. DNA sequencing confirmed these results and, in addition, led to the specific detection of mutations in 5 rifampin-resistant isolates in which specific base changes within RRDR could not be determined by the line probe assay. These analyses identified 8 different mutations within RRDR of the rpoB gene including one novel mutation (S522W) that has not been reported so far. The genotyping performed on the isolates carrying similar mutations showed that majority of these isolates were unique as they exhibited varying DNA banding patterns. Correlating the ethnic origin of the infected TB patients with the occurrence of specific mutations at three main codon positions (516, 526 and 531) in the rpoB gene showed that most patients (11 of 15) from South Asian region contained mutations at codon 526 while majority of isolates from patients (6 of 11) of Middle Eastern origin contained mutations at codon 531.

  14. The Colour Test for drug susceptibility testing of Mycobacterium tuberculosis strains.

    PubMed

    Toit, K; Mitchell, S; Balabanova, Y; Evans, C A; Kummik, T; Nikolayevskyy, V; Drobniewski, F

    2012-08-01

    Tartu, Estonia. To assess the performance and feasibility of the introduction of the thin-layer agar MDR/XDR-TB Colour Test (Colour Test) as a non-commercial method of drug susceptibility testing (DST). The Colour Test combines the thin-layer agar technique with a simple colour-coded quadrant format, selective medium to reduce contamination and colorimetric indication of bacterial growth to simplify interpretation. DST patterns for isoniazid (INH), rifampicin (RMP) and ciprofloxacin (CFX) were determined using the Colour Test for 201 archived Mycobacterium tuberculosis isolates. Susceptibilities were compared to blinded DST results obtained routinely using the BACTEC™ Mycobacteria Growth Indicator Tube™ (MGIT) 960 to assess performance characteristics. In all, 98% of the isolates produced interpretable results. The average time to positivity was 13 days, and all results were interpretable. The Colour Test detected drug resistance with 98% sensitivity for INH, RMP and CFX and 99% for multidrug-resistant tuberculosis. Specificities were respectively 100% (95%CI 82-100), 88% (95%CI 69-97) and 91% (95%CI 83-96) and 90% (95%CI 74-98). Agreement between the Colour Test and BACTEC MGIT 960 were respectively 98%, 96%, 94% and 97%. The Colour Test could be an economical, accurate and simple technique for testing tuberculosis strains for drug resistance. As it requires little specialist equipment, it may be particularly useful in resource-constrained settings with growing drug resistance rates.

  15. Tuberculous spondylitis in Russia and prominent role of multidrug-resistant clone Mycobacterium tuberculosis Beijing B0/W148.

    PubMed

    Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Mushkin, Alexander; Manicheva, Olga; Vishnevsky, Boris; Zhuravlev, Viacheslav; Narvskaya, Olga

    2015-04-01

    Extrapulmonary and, in particular, spinal tuberculosis (TB) constitutes a minor but significant part of the total TB incidence. In spite of this, almost no studies on the genetic diversity and drug resistance of Mycobacterium tuberculosis isolates from spinal TB patients have been published to date. Here, we report results of the first Russian and globally largest molecular study of M. tuberculosis isolates recovered from patients with tuberculous spondylitis (TBS). The majority of 107 isolates were assigned to the Beijing genotype (n = 80); the other main families were T (n = 11), Ural (n = 7), and LAM (n = 4). Multidrug resistance (MDR) was more frequently found among Beijing (90.5%) and, intriguingly, Ural (71.4%) isolates than other genotypes (5%; P < 0.001). The extremely drug-resistant (XDR) phenotype was exclusively found in the Beijing isolates (n = 7). A notable prevalence of the rpoB531 and katG315 mutations in Beijing strains that were similarly high in both TBS (this study) and published pulmonary TB (PTB) samples from Russia shows that TBS and PTB Beijing strains follow the same paradigm of acquisition of rifampin (RIF) and isoniazid (INH) resistance. The 24-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) subtyping of 80 Beijing isolates further discriminated them into 24 types (Hunter Gaston index [HGI] = 0.83); types 100-32 and 94-32 represented the largest groups. A genotype of Russian successful clone B0/W148 was identified in 30 of 80 Beijing isolates. In conclusion, this study highlighted a crucial impact of the Beijing genotype and the especially prominent role of its MDR-associated successful clone B0/W148 cluster in the development of spinal MDR-TB in Russian patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. A Prospective Study of Tuberculosis Drug Susceptibility in Sabah, Malaysia, and an Algorithm for Management of Isoniazid Resistance

    PubMed Central

    Rashid Ali, Muhammad Redzwan S.; Parameswaran, Uma; William, Timothy; Bird, Elspeth; Wilkes, Christopher S.; Lee, Wai Khew; Yeo, Tsin Wen; Anstey, Nicholas M.; Ralph, Anna P.

    2015-01-01

    Introduction. The burden of tuberculosis is high in eastern Malaysia, and rates of Mycobacterium tuberculosis drug resistance are poorly defined. Our objectives were to determine M. tuberculosis susceptibility and document management after receipt of susceptibility results. Methods. Prospective study of adult outpatients with smear-positive pulmonary tuberculosis (PTB) in Sabah, Malaysia. Additionally, hospital clinicians accessed the reference laboratory for clinical purposes during the study. Results. 176 outpatients were enrolled; 173 provided sputum samples. Mycobacterial culture yielded M. tuberculosis in 159 (91.9%) and nontuberculous Mycobacterium (NTM) in three (1.7%). Among outpatients there were no instances of multidrug resistant M. tuberculosis (MDR-TB). Seven people (4.5%) had isoniazid resistance (INH-R); all were switched to an appropriate second-line regimen for varying durations (4.5–9 months). Median delay to commencement of the second-line regimen was 13 weeks. Among 15 inpatients with suspected TB, 2 had multidrug resistant TB (one extensively drug resistant), 2 had INH-R, and 4 had NTM. Conclusions. Current community rates of MDR-TB in Sabah are low. However, INH-resistance poses challenges, and NTM is an important differential diagnosis in this setting, where smear microscopy is the usual diagnostic modality. To address INH-R management issues in our setting, we propose an algorithm for the treatment of isoniazid-resistant PTB. PMID:25838829

  17. A prospective study of tuberculosis drug susceptibility in sabah, malaysia, and an algorithm for management of isoniazid resistance.

    PubMed

    Rashid Ali, Muhammad Redzwan S; Parameswaran, Uma; William, Timothy; Bird, Elspeth; Wilkes, Christopher S; Lee, Wai Khew; Yeo, Tsin Wen; Anstey, Nicholas M; Ralph, Anna P

    2015-01-01

    Introduction. The burden of tuberculosis is high in eastern Malaysia, and rates of Mycobacterium tuberculosis drug resistance are poorly defined. Our objectives were to determine M. tuberculosis susceptibility and document management after receipt of susceptibility results. Methods. Prospective study of adult outpatients with smear-positive pulmonary tuberculosis (PTB) in Sabah, Malaysia. Additionally, hospital clinicians accessed the reference laboratory for clinical purposes during the study. Results. 176 outpatients were enrolled; 173 provided sputum samples. Mycobacterial culture yielded M. tuberculosis in 159 (91.9%) and nontuberculous Mycobacterium (NTM) in three (1.7%). Among outpatients there were no instances of multidrug resistant M. tuberculosis (MDR-TB). Seven people (4.5%) had isoniazid resistance (INH-R); all were switched to an appropriate second-line regimen for varying durations (4.5-9 months). Median delay to commencement of the second-line regimen was 13 weeks. Among 15 inpatients with suspected TB, 2 had multidrug resistant TB (one extensively drug resistant), 2 had INH-R, and 4 had NTM. Conclusions. Current community rates of MDR-TB in Sabah are low. However, INH-resistance poses challenges, and NTM is an important differential diagnosis in this setting, where smear microscopy is the usual diagnostic modality. To address INH-R management issues in our setting, we propose an algorithm for the treatment of isoniazid-resistant PTB.

  18. Rv2744c Is a PspA Ortholog That Regulates Lipid Droplet Homeostasis and Nonreplicating Persistence in Mycobacterium tuberculosis

    PubMed Central

    Armstrong, Richard M.; Adams, Katherine L.; Zilisch, Joseph E.; Bretl, Daniel J.; Sato, Hiromi; Anderson, David M.

    2016-01-01

    ABSTRACT Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant cause of morbidity and mortality worldwide, despite the availability of a live attenuated vaccine and anti-TB antibiotics. The vast majority of individuals infected with M. tuberculosis develop an asymptomatic latent infection in which the bacterium survives within host-generated granulomatous lesions in a physiologically altered metabolic state of nonreplicating persistence. The granuloma represents an adverse environment, as M. tuberculosis is exposed to various stressors capable of disrupting the essential constituents of the bacterium. In Gram-negative and Gram-positive bacteria, resistance to cell envelope stressors that perturb the plasma membrane is mediated in part by proteins comprising the phage shock protein (Psp) system. PspA is an important component of the Psp system; in the presence of envelope stress, PspA localizes to the inner face of the plasma membrane, homo-oligomerizes to form a large scaffold-like complex, and helps maintain plasma membrane integrity to prevent a loss of proton motive force. M. tuberculosis and other members of the Mycobacterium genus are thought to encode a minimal functional unit of the Psp system, including an ortholog of PspA. Here, we show that Rv2744c possesses structural and physical characteristics that are consistent with its designation as a PspA family member. However, although Rv2744c is upregulated under conditions of cell envelope stress, loss of Rv2744c does not alter resistance to cell envelope stressors. Furthermore, Rv2744c localizes to the surface of lipid droplets in Mycobacterium spp. and regulates lipid droplet number, size, and M. tuberculosis persistence during anaerobically induced dormancy. Collectively, our results indicate that Rv2744c is a bona fide ortholog of PspA that may function in a novel role to regulate lipid droplet homeostasis and nonreplicating persistence (NRP) in M. tuberculosis

  19. Mycobacterium tuberculosis strains of the Beijing genotype are rarely observed in tuberculosis patients in South America.

    PubMed

    Ritacco, Viviana; López, Beatriz; Cafrune, Patricia I; Ferrazoli, Lucilaine; Suffys, Philip N; Candia, Norma; Vásquez, Lucy; Realpe, Teresa; Fernández, Jorge; Lima, Karla V; Zurita, Jeannete; Robledo, Jaime; Rossetti, Maria L; Kritski, Afranio L; Telles, Maria A; Palomino, Juan C; Heersma, Herre; van Soolingen, Dick; Kremer, Kristin; Barrera, Lucía

    2008-08-01

    The frequency of the Beijing genotype of Mycobacterium tuberculosis as a cause of tuberculosis (TB) in South America was determined by analyzing genotypes of strains isolated from patients that had been diagnosed with the disease between 1997 and 2003 in seven countries of the subcontinent. In total, 19 of the 1,202 (1.6%) TB cases carried Beijing isolates, including 11 of the 185 patients from Peru (5.9%), five of the 512 patients from Argentina (1.0%), two of the 252 Brazilian cases (0.8%), one of the 166 patients from Paraguay (0.6%) and none of the samples obtained from Chile (35), Colombia (36) and Ecuador (16). Except for two patients that were East Asian immigrants, all cases with Beijing strains were native South Americans. No association was found between carrying a strain with the Beijing genotype and having drug or multi-drug resistant disease. Our data show that presently transmission of M. tuberculosis strains of the Beijing genotype is not frequent in Latin America. In addition, the lack of association of drug resistant TB and infection with M. tuberculosis of the Beijing genotype observed presently demands efforts to define better the contribution of the virulence and lack of response to treatment to the growing spread of Beijing strains observed in other parts of the world.

  20. Mycobacteriophages: an important tool for the diagnosis of Mycobacterium tuberculosis (review).

    PubMed

    Fu, Xiaoyan; Ding, Mingxing; Zhang, Ning; Li, Jicheng

    2015-07-01

    The prevention and control of tuberculosis (TB) on a global scale has become increasingly important with the emergence of multidrug‑resistant TB. Mycobacterium tuberculosis phages have been identified as an important investigative tool. Phage genomes exhibit a significant level of diversity and mosaic genome architecture, however, they are simple structures, which are amenable to genetic manipulation. Based on these characteristics, the phages may be used to construct a shuttle plasmid, which is an indispensable tool in the investigation of TB. Furthermore, they may be used for rapid diagnosis and assessing drug susceptibility of TB, including phage amplified assessment and reporter phage technology. With an improved understanding of mycobacteriophages, further clarification of the pathogenesis of TB, and of the implications for its diagnosis and therapy, may be elucidated.

  1. Evaluation of the results of Mycobacterium tuberculosis direct test (MTD) and Mycobacterial culture in urine samples

    PubMed Central

    Sener, Asli Gamze; Kurultay, Nukhet; Afsar, Ilhan

    2008-01-01

    Tuberculosis remains a public health problem in Turkey. Rapid detection of Mycobacterium tuberculosis plays a key role in control of infection. In this article, the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test (MTD) was evaluated for detection of M. tuberculosis in urine samples. The performance of the MTD was very good and appropriate for routine laboratory diagnosis. PMID:24031287

  2. Clustering of Mycobacterium tuberculosis strains from foreign-born patients in Korea.

    PubMed

    Jeon, Christie Y; Kang, Heeyoon; Kim, Mihye; Murray, Megan B; Kim, Heejin; Cho, Eun Hee; Park, Young Kil

    2011-12-01

    Information on drug resistance and transmission patterns of tuberculosis (TB) in foreign-born patients is lacking in Asia where immigration is increasing. We examined the drug-resistance profiles of 288 Mycobacterium tuberculosis isolates from foreign-born patients in South Korea, and assessed for potential transmission in the host country by analysing their IS6110 genotypes, as well as those of 4780 strains from native Korean TB patients. The prevalence of multidrug-resistant (MDR) TB was 9.7% and 42% among new and previously treated patients, respectively. Chinese nationality was associated with MDR TB (OR(China)=3.0, 95% CI 1.1-9.3). Of the 288 strains, 51 (17.7%) formed 31 clusters, of which 22 were identical to strains from native Koreans. A number of strains belonged to the K family, subtypes known to occur endemically in Korea. MDR TB was common, and clustering patterns showed potential cross-cultural transmission among foreign-born TB patients. Further molecular epidemiological studies of all isolates in the area are needed to determine the extent of international TB transmission in Asia. © 2011 SGM

  3. Molecular Characteristics and Drug Susceptibility of Mycobacterium tuberculosis Isolates from Patients Co-infected with Human Immunodeficiency Virus in Beijing, China.

    PubMed

    Liu, Jie; Wang, Hui Zhu; Lian, Lu Lu; Yu, Yan Hua; Zhao, Xiu Qin; Guo, Cai Ping; Liu, Hai Can; Liu, Shu Mei; Zhao, Hui; Zeng, Zhao Ying; Zhao, Xiu Ying; Wan, Kang Lin

    2015-03-01

    70 clinical Mycobacterium tuberculosis strains isolated from AIDS patients in two HIV/AIDS referral hospitals in Beijing were used in this study. M. tuberculosis and non-tuberculosis mycobacterium (NTM) were identified by using multi-locus PCR. M. tuberculosis was genotyped by using 15-locus MIRU-VNTR technique and spoligotyping afterwards. Meanwhile, the drug susceptibilities of the strains to the four first-line anti TB drugs (rifampin, isoniazid, streptomycin, and ethambutol) and the four second-line anti-TB drugs (capreomycin, kanamycin, ofloxacin, and ethionanide) were tested with proportional method. In this study, M. tuberculosis and NTM strains isolated from AIDS patients with TB-like symptoms were identified and genotyping analysis indicated that Beijing genotype was the predominant genotype. In addition, the prevalence of drug-resistant TB, especially the prevalence of XDR-TB, was higher than that in TB patients without HIV infection. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. [Multidrug-Resistant Tuberculosis by Strains of Beijing Family, in Patients from Lisbon, Portugal: Preliminary Report].

    PubMed

    Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel

    2017-03-31

    Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.

  5. Mycobacterium tuberculosis and non-tuberculous mycobacteria isolates from HIV-infected patients in Guangxi, China.

    PubMed

    Lan, R; Yang, C; Lan, L; Ou, J; Qiao, K; Liu, F; Gao, Q

    2011-12-01

    Tuberculosis (TB) remains the leading cause of death among human immunodeficiency virus (HIV) infected persons. The prevalence of infection with Mycobacterium tuberculosis and non-tuberculous mycobacteria (NTM) in HIV-infected patients in China is unknown. To estimate the prevalence of M. tuberculosis and NTM in HIV-infected patients in Guangxi Province, determine their drug resistance profiles, and evaluate the genotype patterns of M. tuberculosis strains. Samples were collected from two HIV designated hospitals in Guangxi Province between 2005 and 2008. HIV-infected patients who were culture-positive for mycobacteria were included. Drug susceptibility testing was performed for mycobacterial isolates. NTM species was identified by sequencing, and M. tuberculosis isolates were genotyped using the variable number of tandem repeats method. M. tuberculosis and NTM were identified in respectively 117 (53%) and 102 (47%) HIV-infected patients. Drug resistance was found in 27% and multi-drug-resistant TB (MDR-TB) in 11% of the patients with TB. Previous treatment for TB was significantly associated with MDR-TB. Twenty (17%) TB patients belonged to eight VNTR-defined clusters. The high frequency of NTM among HIV-infected patients raises concerns about accurate species identification before the determination of appropriate treatment. The potential for TB transmission exists among HIV-infected patients. Intensified screening and effective treatment of TB-HIV co-infected patients is urgently needed.

  6. Identification of katG Mutations Associated with High-Level Isoniazid Resistance in Mycobacterium tuberculosis▿ †

    PubMed Central

    Ando, Hiroki; Kondo, Yuji; Suetake, Toshinori; Toyota, Emiko; Kato, Seiya; Mori, Toru; Kirikae, Teruo

    2010-01-01

    Isoniazid (INH) is an effective first-line antituberculosis drug. KatG, a catalase-peroxidase, converts INH to an active form in Mycobacterium tuberculosis, and katG mutations are major causes of INH resistance. In the present study, we sequenced katG of 108 INH-resistant M. tuberculosis clinical isolates. Consequently, 9 novel KatG mutants with a single-amino-acid substitution were found. All of these mutants had significantly lower INH oxidase activities than the wild type, and each mutant showed various levels of activity. Isolates having mutations with relatively low activities showed high-level INH resistance. On the basis of our results and known mutations associated with INH resistance, we developed a new hybridization-based line probe assay for rapid detection of INH-resistant M. tuberculosis isolates. PMID:20211896

  7. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    PubMed

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  8. Outbreak of Drug-Resistant Mycobacterium tuberculosis Among Homeless People in Atlanta, Georgia, 2008-2015

    PubMed Central

    VanderEnde, Daniel S.; Holland, David P.; Haddad, Maryam B.; Yarn, Benjamin; Yamin, Aliya S.; Mohamed, Omar; Sales, Rose-Marie F.; DiMiceli, Lauren E.; Burns-Grant, Gail; Reaves, Erik J.; Gardner, Tracie J.; Ray, Susan M.

    2017-01-01

    Objectives: Our objective was to describe and determine the factors contributing to a recent drug-resistant tuberculosis (TB) outbreak in Georgia. Methods: We defined an outbreak case as TB diagnosed from March 2008 through December 2015 in a person residing in Georgia at the time of diagnosis and for whom (1) the genotype of the Mycobacterium tuberculosis isolate was consistent with the outbreak strain or (2) TB was diagnosed clinically without a genotyped isolate available and connections were established to another outbreak-associated patient. To determine factors contributing to transmission, we interviewed patients and reviewed health records, homeless facility overnight rosters, and local jail booking records. We also assessed infection control measures in the 6 homeless facilities involved in the outbreak. Results: Of 110 outbreak cases in Georgia, 86 (78%) were culture confirmed and isoniazid resistant, 41 (37%) occurred in people with human immunodeficiency virus coinfection (8 of whom were receiving antiretroviral treatment at the time of TB diagnosis), and 10 (9%) resulted in TB-related deaths. All but 8 outbreak-associated patients had stayed overnight or volunteered extensively in a homeless facility; all these facilities lacked infection control measures. At least 9 and up to 36 TB cases outside Georgia could be linked to this outbreak. Conclusions: This article highlights the ongoing potential for long-lasting and far-reaching TB outbreaks, particularly among populations with untreated human immunodeficiency virus infection, mental illness, substance abuse, and homelessness. To prevent and control TB outbreaks, health departments should work with overnight homeless facilities to implement infection control measures and maintain searchable overnight rosters. PMID:28257261

  9. Use of immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex from liquid culture

    PubMed Central

    Považan, Anika; Vukelić, Anka; Savković, Tijana; Kurucin, Tatjana

    2012-01-01

    A new, simple immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in liquid cultures has been developed. The principle of the assay is binding of the Mycobacterium tuberculosis complex specific antigen to the monoclonal antibody conjugated on the test strip. The aim of this study is evaluation of the performance of immunochromatographic assay in identification of Mycobacterium tuberculosis complex in primary positive liquid cultures of BacT/Alert automated system. A total of 159 primary positive liquid cultures were tested using the immunochromatographic assay (BD MGIT TBc ID) and the conventional subculture, followed by identification using biochemical tests. Of 159 positive liquid cultures, using the conventional method, Mycobacterium tuberculos is was identified in 119 (74.8%), nontuberculous mycobacteria were found in 4 (2.5%), 14 (8.8%) cultures were contaminated and 22 (13.8%) cultures were found to be negative. Using the immunochromatographic assay, Mycobacterium tuberculosis complex was detected in 118 (74.2%) liquid cultures, and 41 (25.8%) tests were negative. Sensitivity, specificity, positive and negative predictive values of the test were 98.3%; 97.5%; 99.15%; 95.12%, respectively. The value of kappa test was 0.950, and McNemar test was 1.00. The immunochromatographic assay is a simple and rapid test which represents a suitable alternative to the conventional subculture method for the primary identification of Mycobacterium tuberculosis complex in liquid cultures of BacT/Alert automated system. PMID:22364301

  10. Detection and discrimination of Mycobacterium tuberculosis complex.

    PubMed

    Issa, Rahizan; Mohd Hassan, Nurul Akma; Abdul, Hatijah; Hashim, Siti Hasmah; Seradja, Valentinus H; Abdul Sani, Athirah

    2012-01-01

    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate

    PubMed Central

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Wu, Ting-Di; Peixoto, Antonio; Levillain, Florence; Lugo-Villarino, Geanncarlo; Gerquin-Kern, Jean-Luc; de Carvalho, Luiz Pedro Sório; Poquet, Yannick; Neyrolles, Olivier

    2013-01-01

    Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant inactivated in AnsP1 revealed the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus. PMID:24077180

  12. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    PubMed

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  13. Extensively drug-resistant tuberculosis (XDR-TB) in Morocco.

    PubMed

    Ennassiri, Wifak; Jaouhari, Sanae; Cherki, Wafa; Charof, Reda; Filali-Maltouf, Abdelkarim; Lahlou, Ouafae

    2017-12-01

    Extensively drug-resistant tuberculosis (XDR-TB) has recently been identified as a major global health threat. The aim of this study was to evaluate the presence of XDR-TB among Mycobacterium tuberculosis isolates in Morocco and its association with demographic, clinical and epidemiological features. A total of 524 patients from the Moroccan National Tuberculosis Reference Laboratory, representative of all of the geographic regions, were subject to first-line drug susceptibility testing (DST). Subsequently, 155 isolates found to be multidrug-resistant tuberculosis (MDR-TB) underwent second-line DST. Moreover, to enhance our understanding of the genetic basis of these drug-resistant strains, drug resistance-associated mutations were investigated in isolates either identified as pre-XDR- and XDR-TB or suspected resistant using the GenoType ® MTBDRsl V1.0 assay. In this study, 4 (2.6%) XDR-TB and 18 (11.6%) pre-XDR-TB isolates were identified. Agreement between the MTBDRsl assay results and phenotypic DST was 95.2% for ofloxacin, 81.0% for kanamycin and 95.2% for amikacin. To the best of our knowledge, this is the first study to evaluate the frequency of XDR-TB in Morocco. These results highlight the need to reinforce the TB management policy in Morocco with regard to control and detection strategies in order to prevent further spread of XDR-TB isolates. Copyright © 2017. Published by Elsevier Ltd.

  14. PPE Surface Proteins Are Required for Heme Utilization by Mycobacterium tuberculosis

    PubMed Central

    Mitra, Avishek; Speer, Alexander; Lin, Kan; Ehrt, Sabine

    2017-01-01

    ABSTRACT Iron is essential for replication of Mycobacterium tuberculosis, but iron is efficiently sequestered in the human host during infection. Heme constitutes the largest iron reservoir in the human body and is utilized by many bacterial pathogens as an iron source. While heme acquisition is well studied in other bacterial pathogens, little is known in M. tuberculosis. To identify proteins involved in heme utilization by M. tuberculosis, a transposon mutant library was screened for resistance to the toxic heme analog gallium(III)-porphyrin (Ga-PIX). Inactivation of the ppe36, ppe62, and rv0265c genes resulted in resistance to Ga-PIX. Growth experiments using isogenic M. tuberculosis deletion mutants showed that PPE36 is essential for heme utilization by M. tuberculosis, while the functions of PPE62 and Rv0265c are partially redundant. None of the genes restored growth of the heterologous M. tuberculosis mutants, indicating that the proteins encoded by the genes have separate functions. PPE36, PPE62, and Rv0265c bind heme as shown by surface plasmon resonance spectroscopy and are associated with membranes. Both PPE36 and PPE62 proteins are cell surface accessible, while the Rv0265c protein is probably located in the periplasm. PPE36 and PPE62 are, to our knowledge, the first proline-proline-glutamate (PPE) proteins of M. tuberculosis that bind small molecules and are involved in nutrient acquisition. The absence of a virulence defect of the ppe36 deletion mutant indicates that the different iron acquisition pathways of M. tuberculosis may substitute for each other during growth and persistence in mice. The emerging model of heme utilization by M. tuberculosis as derived from this study is substantially different from those of other bacteria. PMID:28119467

  15. Resistant and sensitive strains of Mycobacterium tuberculosis found in repeated surveys among a South Indian rural population*

    PubMed Central

    Narain, Raj; Chandrasekhar, P.; Satyanarayanachar, R. A.; Lal, Pyare

    1968-01-01

    The findings in a highly selected group of patients, such as those attending clinics or sanatoria, cannot be used as the basis for assessing the true prevalence of strains of Mycobacterium tuberculosis with acquired or primary resistance or of sensitive strains in a community. The present report describes the prevalence of such strains as found in 3 successive surveys in a sizeable random sample of villages in a South Indian district. Changes in the status of cases with such strains from an earlier survey to a later one and the status at an earlier round of cases found at a later one are also described. The prevalence of tuberculous infection among household contacts of cases with acquired resistance to isoniazid was significantly higher than that among contacts of cases with primary resistance or of those with sensitive cultures. This is probably due to the longer duration of sputum positivity of the former at the time of diagnosis. But infectivity, as judged by the incidence of new infections among household contacts, was generally less for cases with acquired or primary resistance than for cases with sensitive cultures, though the difference was not statistically significant. A large number of culture-positive cases, especially those with primary resistance, had no radiological evidence of active pulmonary tuberculosis. The prevalence of primary resistance was very high among certain categories of cases, and the differences between cases with primary resistance and those with acquired resistance were many and large. It is suggested that this could be due to some of the primary resistant cultures being those of atypical mycobacteria, despite positivity in the niacin test. There was a significant increase in the number of cases with acquired resistance to isoniazid at the third survey round owing to irregular treatment with that drug after the second round. The prevalence of primary resistance at the 3 rounds was almost the same. PMID:4978410

  16. Surveillance of drug resistance for tuberculosis control: why and how?

    PubMed

    Chaulet, P; Boulahbal, F; Grosset, J

    1995-12-01

    The resistance of Mycobacterium tuberculosis to antibiotics, which reflects the quality of the chemotherapy applied in the community, is one of the elements of epidemiological surveillance used in national tuberculosis programmes. Measurement of drug resistance poses problems for biologists in standardization of laboratory methods and quality control. The definition of rates of acquired and primary drug resistance also necessitates standardization in the methods used to collect information transmitted by clinicians. Finally, the significance of the rates calculated depends on the choice of the patients sample on which sensitivity tests have been performed. National surveys of drug resistance therefore require multidisciplinary participation in order to select the only useful indicators: rates of primary resistance and of acquired resistance. These indicators, gathered in representative groups of patients over a long period, are a measurement of the impact of modern chemotherapy regimens on bacterial ecology.

  17. Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis.

    PubMed

    Thanna, Sandeep; Knudson, Susan E; Grzegorzewicz, Anna; Kapil, Sunayana; Goins, Christopher M; Ronning, Donald R; Jackson, Mary; Slayden, Richard A; Sucheck, Steven J

    2016-07-07

    Tuberculosis (TB) and its drug resistant forms kills more people than any other infectious disease. This fact emphasizes the need to identify new drugs to treat TB. 2-Aminothiophenes (2AT) have been reported to inhibit Pks13, a validated anti-TB drug target. We synthesized a library of 42 2AT compounds. Among these, compound 33 showed remarkable potency against Mycobacterium tuberculosis (Mtb) H37RV (MIC = 0.23 μM) and showed an impressive potency (MIC = 0.20-0.44 μM) against Mtb strains resistant to isoniazid, rifampicin and fluoroquinolones. The site of action for the compound 33 is presumed to be Pks13 or an earlier enzyme in the mycolic acid biosynthetic pathway. This inference is based on structural similarity of the compound 33 with known Pks13 inhibitors, which is corroborated by mycolic acid biosynthesis studies showing that the compound strongly inhibits the biosynthesis of all forms of mycolic acid in Mtb. In summary, these studies suggest 33 represents a promising anti-TB lead that exhibits activity well below toxicity to human monocytic cells.

  18. Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii

    PubMed Central

    Wang, Joyce; McIntosh, Fiona; Radomski, Nicolas; Dewar, Ken; Simeone, Roxane; Enninga, Jost; Brosch, Roland; Rocha, Eduardo P.; Veyrier, Frédéric J.; Behr, Marcel A.

    2015-01-01

    By phylogenetic analysis, Mycobacterium kansasii is closely related to Mycobacterium tuberculosis. Yet, although both organisms cause pulmonary disease, M. tuberculosis is a global health menace, whereas M. kansasii is an opportunistic pathogen. To illuminate the differences between these organisms, we have sequenced the genome of M. kansasii ATCC 12478 and its plasmid (pMK12478) and conducted side-by-side in vitro and in vivo investigations of these two organisms. The M. kansasii genome is 6,432,277 bp, more than 2 Mb longer than that of M. tuberculosis H37Rv, and the plasmid contains 144,951 bp. Pairwise comparisons reveal conserved and discordant genes and genomic regions. A notable example of genomic conservation is the virulence locus ESX-1, which is intact and functional in the low-virulence M. kansasii, potentially mediating phagosomal disruption. Differences between these organisms include a decreased predicted metabolic capacity, an increased proportion of toxin–antitoxin genes, and the acquisition of M. tuberculosis-specific genes in the pathogen since their common ancestor. Consistent with their distinct epidemiologic profiles, following infection of C57BL/6 mice, M. kansasii counts increased by less than 10-fold over 6 weeks, whereas M. tuberculosis counts increased by over 10,000-fold in just 3 weeks. Together, these data suggest that M. kansasii can serve as an image of the environmental ancestor of M. tuberculosis before its emergence as a professional pathogen, and can be used as a model organism to study the switch from an environmental opportunistic pathogen to a professional host-restricted pathogen. PMID:25716827

  19. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis.

    PubMed

    Nusrath Unissa, Ameeruddin; Hassan, Sameer; Indira Kumari, Venkatesan; Revathy, Ravi; Hanna, Luke Elizabeth

    2016-06-01

    Rifampicin (RIF) an essential first-line anti-tuberculosis (TB) drug, resistance to RIF is a potential threat to TB control program and widely considered as surrogate marker for detection of multi-drug resistant-TB (MDR-TB), molecular understanding of which is the utmost need of the hour. Mutations at RIF resistance-determining region (RRDR) of 81-bp in the rpoB gene coding for β subunit or RpoB protein is the major cause of RIF resistance in Mycobacterium tuberculosis (MTB). Mutation at positions 526 and 531 are generally associated with high-level RIF resistance and at codons 516, 521 and 533 with low-level resistance. Thus, in order to understand the interactions between the clinical mutants (MTs) of RpoB and RIF which are responsible for mediating both levels of RIF resistance from MTB. In the present study, models of wild type (WT) and seven MTs (D516V, L521M, H526D, H526R, H526Y, S531L and L533P) of RpoB from MTB were generated using crystal structure of 2A68 and 4KBM as templates, for deducing 3 domains structure. Molecular docking between RpoB proteins and RIF was carried out, which showed higher values for WT compared to MTs. The high score in WT may be due to the presence of favorable interactions with RIF and MT-L521M which lacks in other MTs. Molecular dynamics (MD) simulation was performed for over 10 nanoseconds, which suggest the root mean square deviation (RMSD) was more and root mean square fluctuation (RMSF) was less in WT compared to MTs. The ligand RMSD exhibited very unique deviation with the MT-D516V compared to other MTs and WT. The RMSF for MTs such as H526R-H526D, L521M and D516V were higher for residues such as 152, 265, 352, 402, 513, 552, and 577 compared to WT. Hydrogen bond interactions at RIF binding site after MD simulations were found comparatively lower in WT than MTs. Similarly, the binding energy of WT was observed to be lesser in comparison to MTs. All MTs demonstrated certain (2Å) degree of structural deviation from the WT

  20. Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages.

    PubMed

    Bakala N'goma, J C; Schué, M; Carrière, F; Geerlof, A; Canaan, S

    2010-12-01

    Phospholipase Cs (PLCs) contribute importantly to the virulence and pathogenicity of several bacteria. It has been reported in previous studies that mutations in the four predicted plc genes of Mycobacterium tuberculosis inhibit the growth of these bacteria during the late phase of infection in mice. These enzymes have not yet been fully characterised, mainly because they are not easy to produce in large quantities. With a view to elucidating the role of all Mycobacterium tuberculosis phospholipase Cs (PLC-A, PLC-B, PLC-C and PLC-D), a large amount of active, soluble recombinant PLCs, were expressed and purified using Mycobacterium smegmatis as expression system. These enzymes showed different pH activity profiles. PLC-C was found to be the most active of the four recombinant PLCs under acidic conditions. All the enzymes tested induced cytotoxic effects on mouse macrophage RAW 264.7 cell lines, via direct or indirect enzymatic hydrolysis of cell membrane phospholipids. These results open new prospects for characterising biochemical and structural features of Mycobacterium tuberculosis PLCs, which might lead to the identification of novel anti-tuberculosis drug targets. All mycobacterial phospholipase Cs can now be studied in order to determine their role in the virulence and pathogenicity of bacteria of this kind. 2010 Elsevier B.V. All rights reserved.

  1. Extensively drug-resistant tuberculosis in a young child after travel to India.

    PubMed

    Salazar-Austin, Nicole; Ordonez, Alvaro A; Hsu, Alice Jenh; Benson, Jane E; Mahesh, Mahadevappa; Menachery, Elizabeth; Razeq, Jafar H; Salfinger, Max; Starke, Jeffrey R; Milstone, Aaron M; Parrish, Nicole; Nuermberger, Eric L; Jain, Sanjay K

    2015-12-01

    Extensively drug-resistant (XDR) tuberculosis is becoming increasingly prevalent worldwide, but little is known about XDR tuberculosis in young children. In this Grand Round we describe a 2-year-old child from the USA who developed pneumonia after a 3 month visit to India. Symptoms resolved with empirical first-line tuberculosis treatment; however, a XDR strain of Mycobacterium tuberculosis grew in culture. In the absence of clinical or microbiological markers, low-radiation exposure pulmonary CT imaging was used to monitor treatment response, and guide an individualised drug regimen. Management was complicated by delays in diagnosis, uncertainties about drug selection, and a scarcity of child-friendly formulations. Treatment has been successful so far, and the child is in remission. This report of XDR tuberculosis in a young child in the USA highlights the risks of acquiring drug-resistant tuberculosis overseas, and the unique challenges in management of tuberculosis in this susceptible population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.

    PubMed

    Uddin, Reaz; Siddiqui, Quratulain Nehal; Azam, Syed Sikander; Saima, Bibi; Wadood, Abdul

    2018-03-01

    Among the resistant isolates of tuberculosis (TB), the multidrug resistance tuberculosis (MDR-TB) and extensively drug resistant tuberculosis (XDR-TB) are the areas of growing concern for which the front-line antibiotics are no more effective. As a result, the search of new therapeutic targets against TB is an imperative need of time. On the other hand, the target identification is an a priori step in drug discovery based research. Furthermore, the availability of the complete proteomic data of extensively drug resistant Mycobacterium tuberculosis (XDR-MTB) made it possible to carry out in silico analysis for the discovery of new drug targets. In the current study, we aimed to prioritize the potential drug targets among the hypothetical proteins of XDR-TB via subtractive genomics approach. In the subtractive genomics, we stepwise reduced the complete proteome of XDR-MTB to only two hypothetical proteins and evidently proposed them as new therapeutic targets. The 3D structure of one of the two target proteins was predicted via homology modeling and later on, validated by various analysis tools. Our study suggested that the domains identified and the motif hits found in the sequences of the shortlisted drug targets are crucial for the survival of the XDR-MTB. To the best of our knowledge, the current study is the first attempt in which the complete proteomic data of XDR-MTB was subjected to the computational subtractive genomics approach and therefore, would provide an opportunity to identify the unique therapeutic targets against deadly XDR-MTB. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis▿

    PubMed Central

    Caws, Maxine; Tho, Dau Quang; Duy, Phan Minh; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Torok, Mili Estee; Chau, Tran Thi Hong; Van Vinh Chau, Nguyen; Chinh, Nguyen Tran; Farrar, Jeremy

    2007-01-01

    PCR-restriction fragment length poymorphism (PCR-RFLP) is a simple, robust technique for the rapid identification of isoniazid-resistant Mycobacterium tuberculosis. One hundred consecutive isolates from a Vietnamese tuberculosis hospital were tested by MspA1I PCR-RFLP for the detection of isoniazid-resistant katG_315 mutants. The test had a sensitivity of 80% and a specificity of 100% against conventional phenotypic drug susceptibility testing. The positive and negative predictive values were 1 and 0.86, respectively. None of the discrepant isolates had mutant katG_315 codons by sequencing. The test is cheap (less than $1.50 per test), specific, and suitable for the rapid identification of isoniazid resistance in regions with a high prevalence of katG_315 mutants among isoniazid-resistant M. tuberculosis isolates. PMID:17428939

  4. Replication of Mycobacterium tuberculosis in retinal pigment epithelium.

    PubMed

    Nazari, Hossein; Karakousis, Petros C; Rao, Narsing A

    2014-06-01

    Mycobacterium tuberculosis is an important cause of posterior uveitis in tuberculosis-endemic regions. Clinical and histopathologic evidence suggests that retinal pigment epithelium (RPE) can harbor M tuberculosis. However, the mechanism of M tuberculosis phagocytosis and its growth in RPE is not clear. To investigate M tuberculosis phagocytosis, replication, and cytopathic effects in RPE cells compared with macrophages. Human fetal RPE and monocytic leukemia macrophage (THP-1) cell lines were cultured, and RPE and THP-1 cells were exposed to avirulent M tuberculosis H37Ra. Mycobacteria were added to RPE and THP-1 cells with a 5:1 multiplicity of infection. Nonphagocytized M tuberculosis was removed after 12 hours of exposure (day 0). Cells were harvested at days 0, 1, and 5 to count live and dead cells and intracellular mycobacteria. Toll-like receptor 2 (TLR2) and TLR4 expression was determined by immunohistochemistry; intracellular bacillary load, following TLR2 and TLR4 blockade. Number of intracellular M tuberculosis, cell survival, and TLR2 and TLR4 expression in RPE and THP-1 cells following exposure to M tuberculosis. At day 0, an equal number of intracellular M tuberculosis was observed per THP-1 and RPE cells (0.45 and 0.35 M tuberculosis per RPE and THP-1 cells, respectively). Mean (SD) number of intracellular M tuberculosis at day 5 was 1.9 (0.03) and 3.3 (0.01) per RPE and THP-1 cells, respectively (P < .001). Viability of infected RPE was significantly greater than that of THP-1 cells at day 5 (viable cells: 17 [8%] THP-1 vs 73% [4%] RPE; P < .05). Expression of TLR2 and TLR4 was detected in both cell types after 12 hours of exposure. Inhibition of TLR2 and TLR4 reduced intracellular M tuberculosis counts in RPE but not in THP-1 cells. Mycobacterium tuberculosis is phagocytized by RPE to a similar extent as in macrophages. However, RPE cells are better able to control bacillary growth and RPE cell survival is greater than that of THP-1 cells

  5. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    PubMed

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis*

    PubMed Central

    Phetsuksiri, Benjawan; Jackson, Mary; Scherman, Hataichanok; McNeil, Michael; Besra, Gurdyal S.; Baulard, Alain R.; Slayden, Richard A.; DeBarber, Andrea E.; Barry, Clifton E.; Baird, Mark S.; Crick, Dean C.; Brennan, Patrick J.

    2016-01-01

    The thiourea isoxyl (thiocarlide; 4,4′-diisoamyloxydiphenylthiourea) is known to be an effective anti-tuberculosis drug, active against a range of multidrug-resistant strains of Mycobacterium tuberculosis and has been used clinically. Little was known of its mode of action. We now demonstrate that isoxyl results in a dose-dependent decrease in the synthesis of oleic and, consequently, tuberculostearic acid in M. tuberculosis with complete inhibition at 3 μg/ml. Synthesis of mycolic acid was also affected. The anti-bacterial effect of isoxyl was partially reversed by supplementing growth medium with oleic acid. The specificity of this inhibition pointed to a Δ9-stearoyl desaturase as the drug target. Development of a cell-free assay for Δ9-desaturase activity allowed direct demonstration of the inhibition of oleic acid synthesis by isoxyl. Interestingly, sterculic acid, a known inhibitor of Δ9-desaturases, emulated the effect of isoxyl on oleic acid synthesis but did not affect mycolic acid synthesis, demonstrating the lack of a relationship between the two effects of the drug. The three putative fatty acid desaturases in the M. tuberculosis genome, desA1, desA2, and desA3, were cloned and expressed in Mycobacterium bovis BCG. Cell-free assays and whole cell labeling demonstrated increased Δ9-desaturase activity and oleic acid synthesis only in the desA3-overexpressing strain and an increase in the minimal inhibitory concentration for isoxyl, indicating that DesA3 is the target of the drug. These results validate membrane-bound Δ9-desaturase, DesA3, as a new therapeutic target, and the thioureas as anti-tuberculosis drugs worthy of further development. PMID:14559907

  7. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection

    PubMed Central

    Di Liberto, Diana; Locati, Massimo; Caccamo, Nadia; Vecchi, Annunciata; Meraviglia, Serena; Salerno, Alfredo; Sireci, Guido; Nebuloni, Manuela; Caceres, Neus; Cardona, Pere-Joan; Dieli, Francesco; Mantovani, Alberto

    2008-01-01

    D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6−/− mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6−/− infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6−/− mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection. PMID:18695004

  8. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    PubMed

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  9. Population structure and circulating genotypes of drug-sensitive and drug-resistant Mycobacterium tuberculosis clinical isolates in São Paulo state, Brazil.

    PubMed

    Martins, Maria Conceição; Giampaglia, Carmen M Saraiva; Oliveira, Rosângela S; Simonsen, Vera; Latrilha, Fábio Oliveira; Moniz, Letícia Lisboa; Couvin, David; Rastogi, Nalin; Ferrazoli, Lucilaine

    2013-03-01

    São Paulo is the most populous Brazilian state and reports the largest number of tuberculosis cases in the country annually (over 18,500). This study included 193 isolates obtained during the 2nd Nationwide Survey on Mycobacterium tuberculosis Drug Resistance that was conducted in São Paulo state and 547 isolates from a laboratory based study of drug resistance that were analyzed by the Mycobacteria Reference Laboratory at the Institute Adolfo Lutz. Both studies were conducted from 2006 to 2008 and sought to determine the genetic diversity and pattern of drug resistance of M. tuberculosis isolates (MTC) circulating in São Paulo. The patterns obtained from the spoligotyping analysis demonstrated that 51/740 (6.9%) of the isolates corresponded to orphan patterns and that 689 (93.1%) of the isolates distributed into 144 shared types, including 119 that matched a preexisting shared type in the SITVIT2 database and 25 that were new isolates. A total of 77/144 patterns corresponded to unique isolates, while the remaining 67 corresponded to clustered patterns (n=612 isolates clustered into groups of 2-84 isolates each). The evolutionarily ancient PGG1 lineages (Beijing, CAS1-DEL, EAI3-IND, and PINI2) were rarely detected in São Paulo and comprised only 13/740, or 1.76%, of the total isolates; all of the remaining 727/740, or 98.24%, of the MTC isolates from São Paulo state were from the recent PGG2/3 evolutionary isolates belonging to the LAM, T, S, X, and Haarlem lineages, i.e., the Euro-American group. This study provides the first overview of circulating genotypes of M. tuberculosis in São Paulo state and demonstrates that the clustered shared types containing seven or more M. tuberculosis isolates that are spread in São Paulo state included both resistant and susceptible isolates. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  11. Dramatic reduction of culture time of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Ghodbane, Ramzi; Raoult, Didier; Drancourt, Michel

    2014-02-01

    Mycobacterium tuberculosis culture, a critical technique for routine diagnosis of tuberculosis, takes more than two weeks. Here, step-by-step improvements in the protocol including a new medium, microaerophlic atmosphere or ascorbic-acid supplement and autofluorescence detection dramatically shortened this delay. In the best case, primary culture and rifampicin susceptibility testing were achieved in 72 hours when specimens were inoculated directly on the medium supplemented by antibiotic at the beginning of the culture.

  12. Epidemiology of Rifampicin Resistant Tuberculosis and Common Mutations in rpoB Gene of Mycobacterium tuberculosis: A Retrospective Study from Six Districts of Punjab (India) Using Xpert MTB/RIF Assay.

    PubMed

    Kaur, Ramandeep; Jindal, Neerja; Arora, Shilpa; Kataria, Shajla

    2016-01-01

    Xpert MTB/RIF assay has revolutionized the diagnosis of tuberculosis (TB) by simultaneously detecting the bacteria and resistance to rifampicin (RIF), a surrogate marker for multidrug-resistant TB (MDR-TB) in <2 h. The RIF resistance pattern in Malwa region of Punjab, India, is not documented. Here, we report the epidemiology of RIF-resistant TB and mutations in rpoB gene of Mycobacterium tuberculosis (MTB). A total of 1612 specimens received between October 2013 and February 2015 were tested by Xpert MTB/RIF assay following manufacturer's instructions. The results thus obtained were analyzed using SPSS version 20.0.0 (SPSS Inc., Chicago, IL, USA) statistical software. RIF resistance was statistically higher in previously treated patients in comparison to the new patients (P = 0.006) and in patients with acid fast-Bacilli (AFB) positive smears to AFB-negative smears (P = 0.048). RIF resistance mutations in 130 specimens revealed frequency of E 73/130 (56%), B 28/130 (21.5%), D 18/130 (13.8%), A 11/130 (8.4%), and C 1/130 (0.7%) while in one specimen, mutation combination, i.e., mutations associated with more than one probe (A and B both) was present. Xpert MTB/RIF assay is a user-friendly screening tool for detection of MTB and RIF resistance from suspected TB/MDR cases in a shorter period of time. It could also serve as a useful technique to have simultaneous preliminary information regarding the mutation pattern of RIF resistance in MTB isolates.

  13. Novel Mycobacterium tuberculosis complex pathogen, M. mungi.

    PubMed

    Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C

    2010-08-01

    Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.

  14. Pili of Mycobacterium tuberculosis: current knowledge and future prospects.

    PubMed

    Ramsugit, Saiyur; Pillay, Manormoney

    2015-08-01

    Many pathogenic bacteria express filamentous appendages, termed pili, on their surface. These organelles function in several important bacterial processes, including mediating bacterial interaction with, and colonization of the host, signalling events, locomotion, DNA uptake, electric conductance, and biofilm formation. In the last decade, it has been established that the tuberculosis-causing bacterium, Mycobacterium tuberculosis, produces two pili types: curli and type IV pili. In this paper, we review studies on M. tuberculosis pili, highlighting their structure and biological significance to M. tuberculosis pathogenesis, and discuss their potential as targets for therapeutic intervention and diagnostic test development.

  15. [The present situation, treatment and prognosis of drug-resistant pulmonary tuberculosis. Cooperative Study Unit of Chemotherapy of Tuberculosis of the National Sanitoria in Japan].

    PubMed

    Sato, K; Nagai, H; Kurashima, A; Mori, M; Katayama, T

    1995-10-01

    We studied 266 patients with drug-resistant pulmonary tuberculosis at national sanatoria in Japan. The patients included 218 men (mean age, 58 years) and 48 women (mean age, 62 years). The levels of isoniazid and rifampicin resistance were determined at 1 mcg/mL and 50 mcg/mL, respectively. The results were as follows. (1) Most patients with drug-resistant pulmonary tuberculosis were middle-aged or past middle-aged. (2) There were many cases of drug-resistant pulmonary tuberculosis in previously treated tuberculosis patients with active disease and several cases in previously untreated pulmonary tuberculosis patients. However, in some previously untreated patients active tuberculosis was convert relatively easily to inactive tuberculosis. (3) Concerning life style, bachelors who drank heavily were more likely to develop drug-resistant pulmonary tuberculosis. (4) Most cases of drug-resistant pulmonary tuberculosis had at least one cavity on chest radiographs. (5) Several patients with drug-resistant tuberculosis left the hospital against the advice of their attending doctors; therefore, it was difficult to treat their illnesses. (6) In more than half the cases in which Mycobacterium tuberculosis was resistant to isoniazid and rifampicin, tolerance to streptomycin and ethanbutol was also seen. (7) When patients with drug-resistant pulmonary tuberculosis continued to have tuberculous bacilli in their sputum after 3 months of chemotherapy, there was a tendency for them to expectorate tuberculous bacilli in their sputum. For these drug-resistant tuberculosis patients, we must pay attention not only to the medical aspects but also to the social aspects of their disease.

  16. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  17. Identification of Mycobacterium tuberculosis and rifampin resistance in clinical specimens using the Xpert MTB/RIF assay.

    PubMed

    Kim, Cheol-Hong; Hyun, In Gyu; Hwang, Yong Il; Kim, Dong-Gyu; Lee, Chang Youl; Lee, Myung Goo; Jung, Ki-Suck; Woo, Heungjeong; Hyun, Jeongwon; Kim, Hyun Soo; Park, Myung Jae

    2015-01-01

    The Xpert MTB/RIF assay is a novel real-time polymerase chain reaction technique for the detection of the Mycobacterium tuberculosis (MTB) complex and rifampin (RIF) resistance. We evaluated the performance of this assay in identifying MTB and resistance to RIF in clinical specimens. We analyzed clinical specimens from 383 patients with suspected TB who were hospitalized at a secondary hospital in Korea. Specimens were processed using the Xpert MTB/RIF assay, acid-fast bacilli smear and culture, and drug susceptibility test (DST). Among the 444 clinical samples analyzed, the Xpert MTB/RIF assay identified MTB in 56 (13.8%) of 405 respiratory specimens, but did not detect MTB in the remaining 39 non-respiratory specimens. Of the 65 pulmonary TB patients, 52 (80.0%) were confirmed by using mycobacterial culture as a reference standard. The sensitivity, specificity, PPV, and NPV of the Xpert MTB/RIF assay were 73.85%, 99.03%, 94.12%, and 94.72%, respectively. Among five patients with RIF resistance determined by the Xpert MTB/RIF assay, four (80%) were confirmed as suffering from multidrug-resistant (MDR) TB by DST. The Xpert MTB/RIF assay appears to be an accurate, simple, and useful technique for detecting MTB, especially in respiratory specimens. However, RIF resistance, if detected, should be verified with DST. © 2015 by the Association of Clinical Scientists, Inc.

  18. Drug-Resistant Tuberculosis among Children, China, 2006–2015

    PubMed Central

    Tao, Ning-ning; He, Xiao-chun; Zhang, Xian-xin; Liu, Yao; Yu, Chun-bao

    2017-01-01

    Microbial drug resistance has become a major public health concern worldwide. To acquire epidemiologic data on drug-resistant tuberculosis (DR TB) among children, a major cause of illness and death for this population, we conducted a retrospective study of 2006–2015 data from 36 TB prevention and control institutions in Shandong Province, China. A total of 14,223 new TB cases, among which children (<18 years of age) accounted for only 5.5%, were caused by culture-confirmed Mycobacterium tuberculosis. Among children with TB, 18.9% had DR TB and 6.9% had multidrug-resistant TB. Over the past decade, the percentage of DR TB; multidrug-resistant TB; and overall first-line drug resistance for isoniazid, rifampin, ethambutol, and streptomycin among children increased significantly (at least 12%). Understanding the long-term trends of DR TB among children can shed light on the performance of TB control programs, thereby contributing to global TB control. PMID:29047424

  19. Rapid, Standardized Method for Determination of Mycobacterium tuberculosis Drug Susceptibility by Use of Mycolic Acid Analysis▿

    PubMed Central

    Parrish, Nicole; Osterhout, Gerard; Dionne, Kim; Sweeney, Amy; Kwiatkowski, Nicole; Carroll, Karen; Jost, Kenneth C.; Dick, James

    2007-01-01

    Multidrug-resistant (MDR) Mycobacterium tuberculosis and extrensively drug-resistant (XDR) M. tuberculosis are emerging public health threats whose threats are compounded by the fact that current techniques for testing the susceptibility of M. tuberculosis require several days to weeks to complete. We investigated the use of high-performance liquid chromatography (HPLC)-based quantitation of mycolic acids as a means of rapidly determining drug resistance and susceptibility in M. tuberculosis. Standard susceptibility testing and determination of the MICs of drug-susceptible (n = 26) and drug-resistant M. tuberculosis strains, including MDR M. tuberculosis strains (n = 34), were performed by using the Bactec radiometric growth system as the reference method. The HPLC-based susceptibilities of the current first-line drugs, isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA), were determined. The vials were incubated for 72 h, and aliquots were removed for HPLC analysis by using the Sherlock mycobacterial identification system. HPLC quantitation of total mycolic acid peaks (TMAPs) was performed with treated and untreated cultures. At 72 h, the levels of agreement of the HPLC method with the reference method were 99.5% for INH, EMB, and PZA and 98.7% for RIF. The inter- and intra-assay reproducibilities varied by drug, with an average precision of 13.4%. In summary, quantitation of TMAPs is a rapid, sensitive, and accurate method for antibiotic susceptibility testing of all first-line drugs currently used against M. tuberculosis and offers the potential of providing susceptibility testing results within hours, rather than days or weeks, for clinical M. tuberculosis isolates. PMID:17913928

  20. Mixed-Strain Mycobacterium tuberculosis Infections and the Implications for Tuberculosis Treatment and Control

    PubMed Central

    van Helden, Paul D.; Wilson, Douglas; Colijn, Caroline; McLaughlin, Megan M.; Abubakar, Ibrahim; Warren, Robin M.

    2012-01-01

    Summary: Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections. PMID:23034327

  1. Evidence of presence of Mycobacterium tuberculosis in bovine tissue samples by multiplex PCR: possible relevance to reverse zoonosis.

    PubMed

    Mittal, M; Chakravarti, S; Sharma, V; Sanjeeth, B S; Churamani, C P; Kanwar, N S

    2014-04-01

    Bovine tuberculosis, caused by Mycobacterium bovis, remains one of the most important zoonotic health concerns worldwide. The transmission of Mycobacterium tuberculosis from humans to animals also occurs especially in countries where there is close interaction of humans with the animals. In the present study, thirty bovine lung tissue autopsy samples from an organized dairy farm located in North India were screened for the presence of Mycobacterium tuberculosis complex by smear microscopy, histopathological findings and PCR. Differential diagnosis of M. tuberculosis and M. bovis was made based on the deletion of mce-3 operon in M. bovis. The present study found eight of these samples positive for M. tuberculosis by multiplex PCR. Sequencing was performed on two PCR-positive representative samples and on annotation, and BLAST analysis confirmed the presence of gene fragment specific to Mycobacterium tuberculosis. The presence of M. tuberculosis in all the positive samples raises the possibility of human-to-cattle transmission and possible adaptation of this organism in bovine tissues. This study accentuates the importance of screening and differential diagnosis of Mycobacterium tuberculosis complex in humans and livestock for adopting effective TB control and eradication programmes. © 2014 Blackwell Verlag GmbH.

  2. Disseminated Mycobacterium tuberculosis Infection in a Dog

    PubMed Central

    Martinho, Anna Paula Vitirito; Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Perrotti, Isabella Belletti Mutt; Mangia, Simone Henriques; Megid, Jane; Vulcano, Luiz Carlos; Lara, Gustavo Henrique Batista; Santos, Adolfo Carlos Barreto; Leite, Clarice Queico Fujimura; de Carvalho Sanches, Osimar; Paes, Antonio Carlos

    2013-01-01

    An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. PMID:23339199

  3. Transmission of Extensively Drug-Resistant Tuberculosis in South Africa

    PubMed Central

    Shah, N. Sarita; Auld, Sara C.; Brust, James C.M.; Mathema, Barun; Ismail, Nazir; Moodley, Pravi; Mlisana, Koleka; Allana, Salim; Campbell, Angela; Mthiyane, Thuli; Morris, Natashia; Mpangase, Primrose; van der Meulen, Hermina; Omar, Shaheed V.; Brown, Tyler S.; Narechania, Apurva; Shaskina, Elena; Kapwata, Thandi; Kreiswirth, Barry; Gandhi, Neel R.

    2017-01-01

    BACKGROUND Drug-resistant tuberculosis threatens recent gains in the treatment of tuberculosis and human immunodeficiency virus (HIV) infection worldwide. A widespread epidemic of extensively drug-resistant (XDR) tuberculosis is occurring in South Africa, where cases have increased substantially since 2002. The factors driving this rapid increase have not been fully elucidated, but such knowledge is needed to guide public health interventions. METHODS We conducted a prospective study involving 404 participants in KwaZulu-Natal Province, South Africa, with a diagnosis of XDR tuberculosis between 2011 and 2014. Interviews and medical-record reviews were used to elicit information on the participants’ history of tuberculosis and HIV infection, hospitalizations, and social networks. Mycobacterium tuberculosis isolates underwent insertion sequence (IS)6110 restriction-fragment– length polymorphism analysis, targeted gene sequencing, and whole-genome sequencing. We used clinical and genotypic case definitions to calculate the proportion of cases of XDR tuberculosis that were due to inadequate treatment of multidrug-resistant (MDR) tuberculosis (i.e., acquired resistance) versus those that were due to transmission (i.e., transmitted resistance). We used social-network analysis to identify community and hospital locations of transmission. RESULTS Of the 404 participants, 311 (77%) had HIV infection; the median CD4+ count was 340 cells per cubic millimeter (interquartile range, 117 to 431). A total of 280 participants (69%) had never received treatment for MDR tuberculosis. Genotypic analysis in 386 participants revealed that 323 (84%) belonged to 1 of 31 clusters. Clusters ranged from 2 to 14 participants, except for 1 large cluster of 212 participants (55%) with a LAM4/KZN strain. Person-to-person or hospital-based epidemiologic links were identified in 123 of 404 participants (30%). CONCLUSIONS The majority of cases of XDR tuberculosis in KwaZulu-Natal, South Africa

  4. Whole genome analysis of an MDR Beijing/W strain of Mycobacterium tuberculosis with large genomic deletions associated with resistance to isoniazid.

    PubMed

    Zhang, Qiufen; Wan, Baoshan; Zhou, Aiping; Ni, Jinjing; Xu, Zhihong; Li, Shuxian; Tao, Jing; Yao, YuFeng

    2016-05-15

    Mycobacterium tuberculosis (M.tb) is one of the most prevalent bacterial pathogens in the world. With geographical wide spread and hypervirulence, Beijing/W family is the most successful M.tb lineage. China is a country of high tuberculosis (TB) and high multiple drug-resistant TB (MDR-TB) burden, and the Beijing/W family strains take the largest share of MDR strains. To study the genetic basis of Beijing/W family strains' virulence and drug resistance, we performed the whole genome sequencing of M.tb strain W146, a clinical Beijing/W genotype MDR isolated from Wuxi, Jiangsu province, China. Compared with genome sequence of M.tb strain H37Rv, we found that strain W146 lacks three large fragments and the missing of furA-katG operon confers isoniazid resistance. Besides the missing of furA-katG operon, strain W146 harbored almost all known drug resistance-associated mutations. Comparison analysis of single nucleotide polymorphisms (SNPs) and indels between strain W146 and Beijing/W genotype strains and non-Beijing/W genotype strains revealed that strain W146 possessed some unique mutations, which may be related to drug resistance, transmission and pathogenicity. These findings will help to understand the large sequence polymorphisms (LSPs) and the transmission and drug resistance related genetic characteristics of the Beijing/W genotype of M.tb. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. CD8 T cells and Mycobacterium tuberculosis infection

    PubMed Central

    Lin, Philana Ling; Flynn, JoAnne L.

    2015-01-01

    Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection, and in humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection. PMID:25917388

  6. A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions.

    PubMed

    Bainomugisa, Arnold; Duarte, Tania; Lavu, Evelyn; Pandey, Sushil; Coulter, Chris; Marais, Ben J; Coin, Lachlan M

    2018-06-15

    A better understanding of the genomic changes that facilitate the emergence and spread of drug-resistant Mycobacterium tuberculosis strains is currently required. Here, we report the use of the MinION nanopore sequencer (Oxford Nanopore Technologies) to sequence and assemble an extensively drug-resistant (XDR) isolate, which is part of a modern Beijing sub-lineage strain, prevalent in Western Province, Papua New Guinea. Using 238-fold coverage obtained from a single flow-cell, de novo assembly of nanopore reads resulted into one contiguous assembly with 99.92 % assembly accuracy. Incorporation of complementary short read sequences (Illumina) as part of consensus error correction resulted in a 4 404 064 bp genome with 99.98 % assembly accuracy. This assembly had an average nucleotide identity of 99.7 % relative to the reference genome, H37Rv. We assembled nearly all GC-rich repetitive PE/PPE family genes (166/168) and identified variants within these genes. With an estimated genotypic error rate of 5.3 % from MinION data, we demonstrated identification of variants to include the conventional drug resistance mutations, and those that contribute to the resistance phenotype (efflux pumps/transporter) and virulence. Reference-based alignment of the assembly allowed detection of deletions and insertions. MinION sequencing provided a fully annotated assembly of a transmissible XDR strain from an endemic setting and showed its utility to provide further understanding of genomic processes within Mycobacterium tuberculosis.

  7. Mycobacterium bovis infection of cattle and white-tailed deer: Translational research of relevance to human tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances with the s...

  8. Novel Mutations in pncA Gene of Pyrazinamide Resistant Clinical Isolates of Mycobacterium tuberculosis.

    PubMed

    Kahbazi, Manijeh; Sarmadian, Hossein; Ahmadi, Azam; Didgar, Farshideh; Sadrnia, Maryam; Poolad, Toktam; Arjomandzadegan, Mohammad

    2018-04-16

    In clinical isolates of Mycobacterium tuberculosis (MTB), resistance to pyrazinamide occurs by mutations in any positions of the pncA gene (NC_000962.3) especially in nucleotides 359 and 374. In this study we examined the pncA gene sequence in clinical isolates of MTB. Genomic DNA of 33 clinical isolates of MTB was extracted by the Chelex100 method. The polymerase chain reactions (PCR) were performed using specific primers for amplification of 744 bp amplicon comprising the coding sequences (CDS) of the pncA gene. PCR products were sequenced by an automated sequencing Bioscience system. Additionally, semi Nested-allele specific (sNASP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were carried out for verification of probable mutations in nucleotides 359 and 374. Sequencing results showed that from 33 MTB clinical isolates, nine pyrazinamide-resistant isolates have mutations. Furthermore, no mutation was detected in 24 susceptible strains in the entire 561 bp of the pncA gene. Moreover, new mutations of G→A at position 3 of the pncA gene were identified in some of the resistant isolates. Results showed that the sNASP method could detect mutations in nucleotide 359 and 374 of the pncA gene, but the PCR-RFLP method by the SacII enzyme could not detect these mutations. In conclusion, the identification of new mutations in the pncA gene confirmed the probable occurrence of mutations in any nucleotides of the pncA gene sequence in resistant isolates of MTB.

  9. Human tuberculosis due to Mycobacterium bovis in the United States, 1995-2005.

    PubMed

    Hlavsa, Michele C; Moonan, Patrick K; Cowan, Lauren S; Navin, Thomas R; Kammerer, J Steve; Morlock, Glenn P; Crawford, Jack T; Lobue, Philip A

    2008-07-15

    Understanding the epidemiology of human Mycobacterium bovis tuberculosis (TB) in the United States is imperative; this disease can be foodborne or airborne, and current US control strategies are focused on TB due to Mycobacterium tuberculosis and airborne transmission. The National TB Genotyping Service's work has allowed systematic identification of M. tuberculosis-complex isolates and enabled the first US-wide study of M. bovis TB. Results of spacer oligonucleotide and mycobacterial interspersed repetitive units typing were linked to corresponding national surveillance data for TB cases reported for the period 2004-2005 and select cases for the period 1995-2003. We also used National TB Genotyping Service data to evaluate the traditional antituberculous drug resistance-based case definition of M. bovis TB. Isolates from 165 (1.4%) of 11,860 linked cases were identified as M. bovis. Patients who were not born in the United States, Hispanic patients, patients <15 years of age, patients reported to be HIV infected, and patients with extrapulmonary disease each had increased adjusted odds of having M. bovis versus M. tuberculosis TB. Most US-born, Hispanic patients with TB due to M. bovis (29 [90.6%] of 32) had extrapulmonary disease, and their overall median age was 9.5 years. The National TB Genotyping Service's data indicated that the pyrazinamide-based case definition's sensitivity was 82.5% (95% confidence interval; 75.3%-87.9%) and that data identified 14 errors in pyrazinamide-susceptibility testing or reporting. The prevalence of extrapulmonary disease in the young, US-born Hispanic population suggests recent transmission of M. bovis, possibly related to foodborne exposure. Because of its significantly different epidemiologic profile, compared with that of M. tuberculosis TB, we recommend routine surveillance of M. bovis TB. Routine surveillance and an improved understanding of M. bovis TB transmission dynamics would help direct the development of additional

  10. High prevalence of Mycobacterium tuberculosis bacteraemia among a cohort of HIV-infected patients with severe sepsis in Lusaka, Zambia.

    PubMed

    Muchemwa, Levy; Shabir, Lakhi; Andrews, Ben; Bwalya, Mwango

    2017-05-01

    Tuberculosis is recognised as one of the leading causes of severe sepsis among HIV-infected patients. Most patients with Mycobacterium tuberculosis bacteraemia have advanced HIV disease with CD4 counts less than 100 cells/μl and its presentation is non-specific in most instances. This was a cross-sectional study which was done by analyzing data from 201 adult HIV-infected patients who met the inclusion criteria for severe sepsis. The prevalence of Mycobacterium tuberculosis bactraemia in the study population was 34.8%. Severe sepsis caused by other etiologies was observed in 33 (16.4%) of the participants. Concomitant infection of Mycobacterium tuberculosis bactraemia with other organisms is not uncommon in patients with severe sepsis. This cohort of HIV-infected patients had severe immunosuppression with a median CD4 count of 51 (20-136) cells/μl with moderate anaemia, mean haemoglobin 8.0 (3.0) g/dl, and were generally underweight with a mean mid upper arm circumference (MUAC) of 21.0 (3.4) cm. Mycobacterium tuberculosis bacteraemia is very common in HIV-infected patients with advanced HIV disease who present with severe sepsis. Mycobacterium tuberculosis bacteraemia co-infection with aerobic organisms is not uncommon. Factors that were independently associated with Mycobacterium tuberculosis bacteraemia in our study population were MUAC and sodium level.

  11. The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection

    PubMed Central

    Kozakiewicz, Lee; Phuah, Jiayao; Flynn, JoAnne

    2014-01-01

    Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB. PMID:23468112

  12. Intragranulomatous necrosis in pulmonary granulomas is not related to resistance against Mycobacterium tuberculosis infection in experimental murine models induced by aerosol.

    PubMed

    Guirado, Evelyn; Gordillo, Sergi; Gil, Olga; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ausina, Vicenç; Cardona, Pere-Joan

    2006-04-01

    Intragranulomatous necrosis is a primary feature in the natural history of human tuberculosis (TB). Unfortunately, this phenomenon is not usually seen in the experimental TB murine model. Artificial induction of this necrosis in pulmonary granulomas (INPG) may be achieved through aerosol inoculation of lipopolysaccharide (LPS) 3 weeks after Mycobacterium tuberculosis infection. At week 9 post-infection, the centre of primary granulomas became larger, showing eosinophilic necrosis. Interestingly, INPG induction was related to mice strains C57BL/6 and 129/Sv, but not to BALB/c and DBA/2. Furthermore, the same pattern was obtained with the induction of infection using a clinical M. tuberculosis strain (UTE 0335R) that naturally induces INPG. In all the mice strains tested, the study of pulmonary mRNA expression revealed a tendency to increase or to maintain the expression of RANTES, interferon-gamma, tumour necrosis factor and iNOS, in both LPS- and UTE 0335R-induced INPG, thus suggesting that this response must be necessary but not sufficient for inducing INPG. Our work supports that INPG induction is a local phenomenon unrelated to the resistant (C57BL/6 and BALB/c) or susceptible (129/Sv and DBA/2) background of mice strains against M. tuberculosis infection.

  13. Characterisation of Mycobacterium tuberculosis isolates lacking IS6110 in Viet Nam.

    PubMed

    Huyen, M N T; Tiemersma, E W; Kremer, K; de Haas, P; Lan, N T N; Buu, T N; Sola, C; Cobelens, F G J; van Soolingen, D

    2013-11-01

    The molecular diagnosis of tuberculosis (TB) in Viet Nam is often based on the detection of insertion sequence (IS) 6110 in Mycobacterium tuberculosis. However, 8-11% of M. tuberculosis strains in South-East Asia do not contain this target and this undermines the validity of these molecular tests. We quantified the frequency of M. tuberculosis strains lacking IS6110 in rural Viet Nam and studied their epidemiological and clinical characteristics. Consecutively diagnosed adult TB patients in rural Southern Viet Nam submitted two sputum samples for culture, IS6110 restriction fragment length polymorphism (RFLP) spoligotyping and 15-loci variable number tandem repeat typing. Polymerase chain reaction (PCR) was performed to confirm the absence of IS6110 elements in strains lacking IS6110 hybridisation in RFLP. Among 2664 TB patient isolates examined, 109 (4.1%) had no IS6110 element. Compared to other strains, these no-copy strains were less often resistant to anti-tuberculosis drugs, particularly to streptomycin (adjusted OR 0.2, 95%CI 0.1-0.5), and showed significant geographic variation. No associations with TB history or demographic factors were found. Strains without the IS6110 target pose a problem in Viet Nam as regards false-negative molecular TB diagnosis in PCR. Compared to other strains circulating in Viet Nam, no-copy strains are more susceptible to anti-tuberculosis drugs.

  14. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  15. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  16. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  17. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  18. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  19. Whole Genome Sequencing Based Characterization of Extensively Drug-Resistant Mycobacterium tuberculosis Isolates from Pakistan

    PubMed Central

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  20. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan.

    PubMed

    Ali, Asho; Hasan, Zahra; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G; Hasan, Rumina

    2015-01-01

    Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded

  1. Failure of BACTEC™ MGIT 960™ to detect Mycobacterium tuberculosis complex within a 42-day incubation period.

    PubMed

    Mahomed, Sharana; Dlamini-Mvelase, Nomonde R; Dlamini, Moses; Mlisana, Koleka

    2017-01-01

    For the optimal recovery of Mycobacterium tuberculosis from the BACTEC™ Mycobacterium Growth Indicator Tube 960™ system, an incubation period of 42-56 days is recommended by the manufacturer. Due to logistical reasons, it is common practice to follow an incubation period of 42 days. We undertook a retrospective study to document positive Mycobacterium Growth Indicator Tube cultures beyond the 42-day incubation period. In total, 98/110 (89%) were positive for M. tuberculosis complex. This alerted us to M. tuberculosis growth detection failure at 42 days.

  2. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti.

    PubMed

    Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine; Vergnaud, Gilles

    2014-01-01

    Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.

  3. Progenitor “Mycobacterium canettii” Clone Responsible for Lymph Node Tuberculosis Epidemic, Djibouti

    PubMed Central

    Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine

    2014-01-01

    Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important. PMID:24520560

  4. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  5. Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig.

    PubMed

    Ahmad, Zahoor; Klinkenberg, Lee G; Pinn, Michael L; Fraig, Mostafa M; Peloquin, Charles A; Bishai, William R; Nuermberger, Eric L; Grosset, Jacques H; Karakousis, Petros C

    2009-10-01

    The marked reduction in the potent early bactericidal activity of isoniazid during the initial phase of antituberculosis (anti-TB) therapy has been attributed not only to the depletion of logarithmically growing bacilli but also to the emergence of isoniazid resistance. We studied the anti-TB activity of isoniazid and its ability to select for drug-resistant mutant strains in guinea pigs, in which the histopathology of TB closely resembles that of human TB. Prior mouse passage did not appear to enhance the virulence of Mycobacterium tuberculosis in guinea pigs. The human-equivalent dose of isoniazid was determined to be 60 mg/kg. Although isoniazid therapy caused rapid killing of bacilli in guinea pig lungs during the first 14 days of administration and rescued guinea pigs from acute death, its activity was dramatically reduced thereafter. This reduction in activity was not associated with the emergence of isoniazid-resistant mutant strains but, rather, with the selection of phenotypically tolerant "persisters."

  6. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis.

    PubMed

    Jyoti, Md Anirban; Nam, Kung-Woo; Jang, Woong Sik; Kim, Young-Hee; Kim, Su-Kyung; Lee, Byung-Eui; Song, Ho-Yeon

    2016-04-01

    In order to protect against Mycobacterium tuberculosis (MTB) infection, novel drugs and new targets should be screened from the vast source of plants. We investigated the potentiality of the herbal plant of Artemisia capillaris extract (AC) against Mycobacterium tuberculosis. In this study, we isolated ursolic acid and hydroquinone by bio-activity guided fractionation from the methanol extracts of AC, and tested the inhibitory effects against several strains of MTB. Anti-mycobacterial evaluation of these compounds was carried out using the MGIT™ 960 and resazurin assay. Mycobacterial morphological changes due to the treatment of these compounds were further evaluated by Transmission electron microscopy (TEM). Ursolic acid (UA) and hydroquinone (HQ) inhibited the growth of both susceptible and resistant strains of M. tuberculosis. The MIC (minimum inhibitory concentration) values of both UA and HQ were 12.5 μg/ml against the susceptible strains of M. tuberculosis. Also both UA and HQ showed 12.5-25 μg/ml of MIC values against MDR/XDR MTB strains. However, against clinical strains of MTB, UA was found sensitive against those strains that are sensitive against both INH and RFP but resistant against those strains that are resistant to INH. On the other hand HQ was sensitive against all clinical strains. TEM image-analysis of the strain H37Ra after treatment with UA revealed cell wall lysis, whereas HQ-treated cells showed deformed cytoplasmic morphology. All these results indicate that AC extracts containing UA and HQ possess promising chemotherapeutic potency against MTB for future use. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    PubMed Central

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  8. Correlates between Models of Virulence for Mycobacterium tuberculosis among Isolates of the Central Asian Lineage: a Case for Lysozyme Resistance Testing?

    PubMed Central

    Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena

    2015-01-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  9. Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002-2012.

    PubMed

    Spinato, Joanna; Boivin, Élyse; Bélanger-Trudelle, Émilie; Fauchon, Huguette; Tremblay, Cécile; Soualhine, Hafid

    2016-07-26

    The increasing emergence of drug-resistant tuberculosis presents a threat to the effective control of tuberculosis (TB). Rapid detection of drug-resistance is more important than ever to address this scourge. The purpose of this study was to genotypically characterize the first-line antitubercular drug-resistant isolates collected over 11 years in Quebec. The main mutations found in our resistant strains collection (n = 225) include: the S315T substitution in katG (50.2 %), the -15 C/T mutation in the inhA promoter (29 %); the S531L substitution in rpoB (43 %); the deletion 8 bp 446 / + R140S in pncA (72.9 %); the M306I (35.7 %) and M306V (21.4 %) substitutions in embB. Ten of the mutations in katG and 4 mutations identified in pncA were previously undescribed. Screening of mutations conferring resistance to first-line antituberculous drugs using DNA-sequencing approach seems to be feasible and would drastically shorten the time to determine the resistance profile compared to the proportion method.

  10. Targeting phenotypically tolerant Mycobacterium tuberculosis

    PubMed Central

    Gold, Ben; Nathan, Carl

    2016-01-01

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in a clinical setting. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of post-treatment relapse. Some promising drugs to treat tuberculosis, such as rifampicin and bedaquiline, only kill nonreplicating M. tuberculosis in vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores. However, few of these compounds were tested under conditions that would exclude the impact of adsorbed compound acting during the recovery phase of

  11. Site-directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C.

    PubMed Central

    Chauhan, Radha; Mande, Shekhar C

    2002-01-01

    Mycobacterium tuberculosis alkylhydroperoxidase C (AhpC) belongs to the peroxiredoxin family, but unusually contains three cysteine residues in its active site. It is overexpressed in isoniazid-resistant strains of M. tuberculosis. We demonstrate that AhpC is capable of acting as a general antioxidant by protecting a range of substrates including supercoiled DNA. Active-site Cys to Ala mutants show that all three cysteine residues are important for activity. Cys-61 plays a central role in activity and Cys-174 also appears to be crucial. Interestingly, the C174A mutant is inactive, but double mutant C174/176A shows significant revertant activity. Kinetic parameters indicate that the C176A mutant is active, although much less efficient. We suggest that M. tuberculosis AhpC therefore belongs to a novel peroxiredoxin family and might follow a unique disulphide-relay reaction mechanism. PMID:12084012

  12. [Molecular epidemiologic study on Mycobacterium tuberculosis from drug resistance monitoring sites of Guangdong Province, 2015].

    PubMed

    Huang, X C; Guo, H X; Wu, Z H; Guo, C X; Wei, W J; Li, H C; Sun, Q; Zhang, C C; Li, Z Y; Chen, T; Zhong, Q; Zhou, L

    2017-05-12

    Objective: To understand the characteristics of Mycobacterium tuberculosis (MTB) in epidemiology and distribution from Guangdong Province, and to explore the risk factors associated with drug resistance. Methods: A total of 225 clinical strains of MTB collected from 5 drug resistance monitoring sites of Guangdong Province in 2015 were tested by Regions of Difference 105 (RD105) deletion test and 15 loci mycobacterial interspersed repetitive units (MIRU) were used for genotyping. Gene clustering was analyzed using BioNumerics7.6. Drug susceptibility test was tested by proportion method. The statistical analysis used chi-square test and multivariate logistic regression. Results: There were 158 (70.2%) Beijing family strains from the 225 cases. Hunter-gaston index of MIRU loci varied from each other. The MTBs from Guangdong Province were categorized into 2 gene clusters by clustering analysis in which the rate of cluster of complexⅠwas significantly higher than complexⅡ(χ(2) values were 9.331, P values were 0.020). It was found by multivariate logistic regression that Qub11b was associated with resistance to rifampicin and isoniazid ( P values were 0.013, 0.012 respectively.), ETR F with resistance to isoniazid, streptomycin, ethambutol and ofloxacin ( P values were 0.039, 0.040, 0.023 and 0.003 respectively), Mtub21 with resistance to capreomycin ( P values were 0.040), and QUB26 with resistance to ethionamide ( P values were 0.047). Conclusions: The genes of MTB from Guangdong Province were of polymorphisms and the distribution of strains were stable. QUB11b, ETR F, Mtub21 and QUB26 could be related to biomarkers for predicting drug resistance.

  13. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    PubMed

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  14. Prevalence and molecular characteristics of drug-resistant Mycobacterium tuberculosis in Hunan, China.

    PubMed

    Zhao, Li-li; Chen, Yan; Chen, Zhong-nan; Liu, Hai-can; Hu, Pei-lei; Sun, Qing; Zhao, Xiu-qin; Jiang, Yi; Li, Gui-lian; Tan, Yun-hong; Wan, Kang-lin

    2014-06-01

    To determine the prevalence and molecular characteristics of drug-resistant tuberculosis in Hunan province, drug susceptibility testing and spoligotyping methods were performed among 171 M. tuberculosis isolates. In addition, the mutated characteristics of 12 loci, including katG, inhA, rpoB, rpsL, nucleotides 388 to 1084 of the rrs gene [rrs(388-1084)], embB, pncA, tlyA, eis, nucleotides 1158 to 1674 of the rrs gene [rrs(1158-1674)], gyrA, and gyrB, among drug-resistant isolates were also analyzed by DNA sequencing. Our results indicated that the prevalences of isoniazid (INH), rifampin (RIF), streptomycin (SM), ethambutol (EMB), pyrazinamide (PZA), capreomycin (CAP), kanamycin (KAN), amikacin (AKM), and ofloxacin (OFX) resistance in Hunan province were 35.7%, 26.9%, 20.5%, 9.9% 15.2%, 2.3%, 1.8%, 1.2%, and 10.5%, respectively. The previously treated patients presented significantly increased risks for developing drug resistance. The majority of M. tuberculosis isolates belonged to the Beijing family. Almost all the drug resistance results demonstrated no association with genotype. The most frequent mutations of drug-resistant isolates were katG codon 315 (katG315), inhA15, rpoB531, rpoB526, rpoB516, rpsL43, rrs514, embB306, pncA96, rrs1401, gyrA94, and gyrA90. These results contribute to the knowledge of the prevalence of drug resistance in Hunan province and also expand the molecular characteristics of drug resistance in China. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Development of Low-Cost Inverted Microscope to Detect Early Growth of Mycobacterium tuberculosis in MODS Culture

    PubMed Central

    Zimic, Mirko; Velazco, Abner; Comina, Germán; Coronel, Jorge; Fuentes, Patricia; Luna, Carmen G.; Sheen, Patricia; Gilman, Robert H.; Moore, David A. J.

    2010-01-01

    Background The microscopic observation drug susceptibility (MODS) assay for rapid, low-cost detection of tuberculosis and multidrug resistant tuberculosis depends upon visualization of the characteristic cording colonies of Mycobacterium tuberculosis in liquid media. This has conventionally required an inverted light microscope in order to inspect the MODS culture plates from below. Few tuberculosis laboratories have this item and the capital cost of $5,000 for a high-end microscope could be a significant obstacle to MODS roll-out. Methodology We hypothesized that the precise definition provided by costly high-specification inverted light microscopes might not be necessary for pattern recognition. Significance In this work we describe the development of a low-cost artesenal inverted microscope that can operate in both a standard or digital mode to effectively replace the expensive commercial inverted light microscope, and an integrated system that could permit a local and remote diagnosis of tuberculosis. PMID:20351778

  16. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment

    PubMed Central

    JACOBS, WILLIAM R.

    2016-01-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819

  17. Pathogenic Gene Screening of Mycobacterium tuberculosis by Literature Data Mining and Information Pathway Enrichment Analysis.

    PubMed

    Xu, Guangyu; Wen, Simin; Pan, Yuchen; Zhang, Nan; Wang, Yuanyi

    2018-05-01

    Recent studies have unraveled mutations which have led to changes in the original conformation of functional proteins targeted by frontline drugs against Mycobacterium tuberculosis. These mutations are likely responsible for the emergence of drug-resistant strains of M. tuberculosis. Identification of new therapeutic targets is fundamental to the development of novel anti-TB drugs. Boost evolution analysis of interactome data with use of high-throughput biological experimental technologies provides opportunities for identification of pathogenic genes and for screening out novel therapeutic targets. In this study, we identified 584 proven pathogenic genes of M. tuberculosis and new pathogenic genes via bibliometrics and relevant websites such as PubMed, KEGG, and DOOR websites. We identified 13 new genes that are most likely to be pathogenic. This study may contribute to the discovery of new pathogenic genes and help unravel new functions of known pathogenic genes of M. tuberculosis.

  18. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader.

    PubMed

    Rock, Jeremy M; Lang, Ulla F; Chase, Michael R; Ford, Christopher B; Gerrick, Elias R; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M; Lamers, Meindert H

    2015-06-01

    The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3'-5' exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain-mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.

  19. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader

    PubMed Central

    Rock, Jeremy M.; Lang, Ulla F.; Chase, Michael R.; Ford, Christopher B.; Gerrick, Elias R.; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M.; Lamers, Meindert H.

    2015-01-01

    The DNA replication machinery is an important target for antibiotic development for increasingly drug resistant bacteria including Mycobacterium tuberculosis1. While blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In E. coli, the proofreading subunit of the replisome, the ε-exonuclease, is essential for high fidelity DNA replication2; however, we find that it is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase, DnaE1, encodes a novel editing function that proofreads DNA replication, mediated by an intrinsic 3′-5′ exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by greater than 3,000 fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP-domain mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader. PMID:25894501

  20. Mycobacterium tuberculosis causing tuberculous lymphadenitis in Maputo, Mozambique.

    PubMed

    Viegas, Sofia Omar; Ghebremichael, Solomon; Massawo, Leguesse; Alberto, Matos; Fernandes, Fabíola Couto; Monteiro, Eliane; Couvin, David; Matavele, José Maiane; Rastogi, Nalin; Correia-Neves, Margarida; Machado, Adelina; Carrilho, Carla; Groenheit, Ramona; Källenius, Gunilla; Koivula, Tuija

    2015-11-21

    The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98%) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7%) cases, was the main cause of TBLN and 66.7% of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n = 19; 43.2%). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.

  1. Managing a case of extensively drug-resistant (XDR) pulmonary tuberculosis in Singapore.

    PubMed

    Phua, Chee Kiang; Chee, Cynthia B E; Chua, Angeline P G; Gan, Suay Hong; Ahmed, Aneez D B; Wang, Yee Tang

    2011-03-01

    Extensively drug-resistant tuberculosis (XDR-TB) is an emerging global health risk. We present the first case report of XDR-TB in Singapore. A 41-year-old Indonesian lady with previously treated pulmonary tuberculosis presented with chronic cough. Her sputum was strongly acid-fast bacilli positive and grew Mycobacterium tuberculosis complex resistant to first and second-line TB medications. She received 5 months of intensive multidrug treatment without sputum smear conversion. She then underwent resection of the diseased lung. The total cost incurred amounted to over S$100,000. She achieved sputum smear/culture conversion post-surgery, but will require further medical therapy for at least 18 months. XDRTB is poorly responsive to therapy and extremely expensive to manage. Its prevention by strict compliance to therapy is paramount.

  2. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  3. Preventing Transmission of Mycobacterium tuberculosis in Health Care Settings.

    PubMed

    Punjabi, Chitra D; Perloff, Sarah R; Zuckerman, Jerry M

    2016-12-01

    Patients with tuberculosis (TB) pose a risk to other patients and health care workers, and outbreaks in health care settings occur when appropriate infection control measures are not used. In this article, we discuss strategies to prevent transmission of Mycobacterium tuberculosis within health care settings. All health care facilities should have an operational TB infection control plan that emphasizes the use of a hierarchy of controls (administrative, environmental, and personal respiratory protection). We also discuss resources available to clinicians who work in the prevention and investigation of nosocomial transmission of M tuberculosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Case report of a false positive result of the Xpert® MTB/RIF assay for rifampicin resistance in Mycobacterium tuberculosis complex.

    PubMed

    Claessens, Jolien; Mathys, Vanessa; Derdelinckx, Inge; Saegeman, Veroniek

    2017-06-01

    In the present case, we report a false positive result for the detection of rifampicin (RIF) resistance by the Xpert ® MTB/RIF assay, version G4.Miliary Mycobacterium tuberculosis infection (miliary TB) was suspected in a 50-year old Angolan woman. Imaging of the thorax and abdomen displayed diffuse lesions. The Xpert ® MTB/RIF assay conducted on the broncho-alveolar lavage (BAL) fluid was positive for TB and positive for RIF resistance. Confirmatory molecular tests and the phenotypic drug susceptibility determination supported the diagnosis of TB but not RIF resistance. The patient was treated successfully with a conventional therapeutic scheme. Because, the Xpert ® MTB/RIF assay allows the simultaneous detection of TB and RIF resistance, the World Health Organisation (WHO) recommends its use as initial diagnostic test, over microscopy, culture and phenotypic drug susceptibility testing. Even though specificity of the Xpert ® MTB/RIF assay version G4 is high, false positive test results remain possible and have to be considered for the interpretation of the RIF resistance detection by Xpert ® MTB/RIF assay.

  5. Mycobacterium Tuberculosis Pyomyositis in an Infant

    PubMed Central

    Malik, ZA; Shehab, M

    2013-01-01

    Mycobacterium tuberculosis is endemic to many parts of the world. It may have variable clinical presentations, especially in the pediatric age group. Presented here is the case of a 9-month old infant who was referred for infectious disease opinion when his thigh induration failed to improve after surgical drainage and a course of oral antibiotic therapy. Mycobacterial PCR on the operative sample fluid was found to be positive; and mycobacterial culture grew M. tuberculosis. He received 9 months of treatment with anti-TB medications, with excellent results and complete recovery. This is the first report of TB pyomyositis in an infant; and highlights the need to have a high index of suspicion for unusual organisms when conventional therapy fails to demonstrate expected results. PMID:23919207

  6. Mycobacterium tuberculosis pyomyositis in an infant.

    PubMed

    Malik, Za; Shehab, M

    2013-04-01

    Mycobacterium tuberculosis is endemic to many parts of the world. It may have variable clinical presentations, especially in the pediatric age group. Presented here is the case of a 9-month old infant who was referred for infectious disease opinion when his thigh induration failed to improve after surgical drainage and a course of oral antibiotic therapy. Mycobacterial PCR on the operative sample fluid was found to be positive; and mycobacterial culture grew M. tuberculosis. He received 9 months of treatment with anti-TB medications, with excellent results and complete recovery. This is the first report of TB pyomyositis in an infant; and highlights the need to have a high index of suspicion for unusual organisms when conventional therapy fails to demonstrate expected results.

  7. Delamanid for multidrug-resistant pulmonary tuberculosis.

    PubMed

    Gler, Maria Tarcela; Skripconoka, Vija; Sanchez-Garavito, Epifanio; Xiao, Heping; Cabrera-Rivero, Jose L; Vargas-Vasquez, Dante E; Gao, Mengqiu; Awad, Mohamed; Park, Seung-Kyu; Shim, Tae Sun; Suh, Gee Young; Danilovits, Manfred; Ogata, Hideo; Kurve, Anu; Chang, Joon; Suzuki, Katsuhiro; Tupasi, Thelma; Koh, Won-Jung; Seaworth, Barbara; Geiter, Lawrence J; Wells, Charles D

    2012-06-07

    Delamanid (OPC-67683), a nitro-dihydro-imidazooxazole derivative, is a new antituberculosis medication that inhibits mycolic acid synthesis and has shown potent in vitro and in vivo activity against drug-resistant strains of Mycobacterium tuberculosis. In this randomized, placebo-controlled, multinational clinical trial, we assigned 481 patients (nearly all of whom were negative for the human immunodeficiency virus) with pulmonary multidrug-resistant tuberculosis to receive delamanid, at a dose of 100 mg twice daily (161 patients) or 200 mg twice daily (160 patients), or placebo (160 patients) for 2 months in combination with a background drug regimen developed according to World Health Organization guidelines. Sputum cultures were assessed weekly with the use of both liquid broth and solid medium; sputum-culture conversion was defined as a series of five or more consecutive cultures that were negative for growth of M. tuberculosis. The primary efficacy end point was the proportion of patients with sputum-culture conversion in liquid broth medium at 2 months. Among patients who received a background drug regimen plus 100 mg of delamanid twice daily, 45.4% had sputum-culture conversion in liquid broth at 2 months, as compared with 29.6% of patients who received a background drug regimen plus placebo (P=0.008). Likewise, as compared with the placebo group, the group that received the background drug regimen plus 200 mg of delamanid twice daily had a higher proportion of patients with sputum-culture conversion (41.9%, P=0.04). The findings were similar with assessment of sputum-culture conversion in solid medium. Most adverse events were mild to moderate in severity and were evenly distributed across groups. Although no clinical events due to QT prolongation on electrocardiography were observed, QT prolongation was reported significantly more frequently in the groups that received delamanid. Delamanid was associated with an increase in sputum-culture conversion at 2

  8. Extended spectrum of antibiotic susceptibility for tuberculosis, Djibouti.

    PubMed

    Bouzid, Fériel; Astier, Hélène; Osman, Djaltou Aboubaker; Javelle, Emilie; Hassan, Mohamed Osman; Simon, Fabrice; Garnotel, Eric; Drancourt, Michel

    2018-02-01

    In the Horn of Africa, there is a high prevalence of tuberculosis that is reported to be partly driven by multidrug-resistant (MDR) Mycobacterium tuberculosis strictu sensu strains. We conducted a prospective study to investigate M. tuberculosis complex species causing tuberculosis in Djibouti, and their in vitro susceptibility to standard anti-tuberculous antibiotics in addition to clofazimine, minocycline, chloramphenicol and sulfadiazine. Among the 118 mycobacteria isolates from 118 successive patients with suspected pulmonary tuberculosis, 111 strains of M. tuberculosis, five Mycobacterium canettii, one 'Mycobacterium simulans' and one Mycobacterium kansasii were identified. Drug-susceptibility tests performed on the first 78 isolates yielded nine MDR M. tuberculosis isolates. All isolates were fully susceptible to clofazimine, minocycline and chloramphenicol, and 75 of 78 isolates were susceptible to sulfadiazine. In the Horn of Africa, patients with confirmed pulmonary tuberculosis caused by an in vitro susceptible strain may benefit from anti-leprosy drugs, sulfamides and phenicol antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Novel Inhibitors of Mycobacterium tuberculosis dTDP-6-deoxy-L-lyxo-4-hexulose Reductase (RmlD) Identified by Virtual Screening

    PubMed Central

    Wang, Yi; Hess, Tamara Noelle; Jones, Victoria; Zhou, Joe Zhongxiang; McNeil, Michael R.; McCammon, J. Andrew

    2011-01-01

    The complex and highly impermeable cell wall of Mycobacterium tuberculosis (Mtb) is largely responsible for the ability of the mycobacterium to resist the action of chemical therapeutics. An L-rhamnosyl residue, which occupies an important anchoring position in the Mtb cell wall, is an attractive target for novel anti-tuberculosis drugs. In this work, we report a virtual screening (VS) study targeting Mtb dTDP-deoxy-L-lyxo-4-hexulose reductase (RmlD), the last enzyme in the L-rhamnosyl synthesis pathway. Through two rounds of VS, we have identified four RmlD inhibitors with half inhibitory concentrations of 0.9-25 μM, and whole-cell minimum inhibitory concentrations of 20-200 μg/ml. Compared with our previous high throughput screening targeting another enzyme involved in L-rhamnosyl synthesis, virtual screening produced higher hit rates, supporting the use of computational methods in future anti-tuberculosis drug discovery efforts. PMID:22014548

  10. Drug Resistance in Newly Presenting and Previously Treated Tuberculosis Patients in Guangxi Province, People's Republic of China.

    PubMed

    Luo, Dan; Zhao, Jinming; Lin, Mei; Liu, Feiying; Huang, Shuhai; Zhang, Yingkun; Huang, Minying; Li, Juan; Zhou, Yang; Lan, Rushu; Zhao, Yanlin

    2017-05-01

    Drug-resistant Mycobacterium tuberculosis strains are a major threat to the control of tuberculosis (TB), but the prevalence of drug-resistant TB is still unknown in the southern ethnic region of China. A cluster-randomized sampling method was used to include the study population. Isolates were tested for resistance to 6 antituberculosis drugs, and genotyped to identify Beijing strains. Overall, 11.3% (139/1229) of new cases and 33.0% (126/382) of retreated cases had drug-resistant tuberculosis. Multiple previous TB treatment episodes and multiple treatment interruptions were risk factors for both drug-resistant and multidrug-resistant TB among retreated cases. A total of 53.2% of the patients were infected with a Beijing strain of M tuberculosis. Infection with a Beijing strain was significantly associated with drug resistance among new cases (odds ratio, 1.44; 95% CI, 1.01-2.07). Novel strategies to rapid diagnosis and effective treatment are urgently needed to prevent the development of drug resistance.

  11. Drug Penetration Gradients Associated with Acquired Drug Resistance in Tuberculosis Patients.

    PubMed

    Dheda, Keertan; Lenders, Laura; Magombedze, Gesham; Srivastava, Shashikant; Raj, Prithvi; Arning, Erland; Ashcraft, Paula; Bottiglieri, Teodoro; Wainwright, Helen; Pennel, Timothy; Linegar, Anthony; Moodley, Loven; Pooran, Anil; Pasipanodya, Jotam G; Sirgel, Frederick A; van Helden, Paul D; Wakeland, Edward; Warren, Robin M; Gumbo, Tawanda

    2018-06-07

    Acquired resistance is an important driver of multidrug-resistant tuberculosis, even with good treatment adherence. However, exactly what initiates the resistance, and how it arises remains poorly understood. To identify the relationship between drug concentrations and drug susceptibility readouts (MICs) in the tuberculosis cavity. We recruited patients with medically incurable tuberculosis who were undergoing therapeutic lung resection whilst on treatment with the cocktail of second line anti-tuberculosis drugs. On the day of surgery antibiotic concentrations were measured in the blood and at seven pre-specified biopsy sites within each cavity. Mycobacterium tuberculosis was grown from each biopsy site, MICs of each drug identified, and whole genome sequencing performed. Spearman correlation coefficients between drug concentration and MIC were calculated. Fourteen patients treated for a median of 13 (range: 5-31) months were recruited. MICs and drug resistance-associated single nucleotide variants differed between the different geospatial locations within each cavity, and with pretreatment and serial sputum isolates, consistent with ongoing acquisition of resistance. However, pre-treatment sputum MIC had an accuracy of only 49.48% in predicting cavitary MICs. There were large concentration-distance gradients for each antibiotic. The location-specific concentrations inversely correlated with MICs (p<0.05), and therefore acquired resistance. Moreover, pharmacokinetic/pharmacodynamic exposures known to amplify drug-resistant subpopulations were encountered in all positions. These data inform interventional strategies relevant to drug delivery, dosing, and diagnostics to prevent the development of acquired resistance. The role of high intracavitary penetration as a biomarker of antibiotic efficacy, when assessing new regimens, requires clarification.

  12. Use of whole genome sequencing in surveillance of drug resistant tuberculosis.

    PubMed

    McNerney, Ruth; Zignol, Matteo; Clark, Taane G

    2018-05-01

    The threat of resistance to anti-tuberculosis drugs is of global concern. Current efforts to monitor resistance rely on phenotypic testing where cultured bacteria are exposed to critical concentrations of the drugs. Capacity for such testing is low in TB endemic countries. Drug resistance is caused by mutations in the Mycobacterium tuberculosis genome and whole genome sequencing to detect these mutations offers an alternative means of assessing resistance. Areas covered: The challenges of assessing TB drug resistance are discussed. Progress in elucidating the M. tuberculosis resistome and evidence of the accuracy of next generation sequencing for detecting resistance is reviewed. Expert Commentary: There are considerable advantages to using next generation sequencing for TB drug resistance surveillance. Accuracy is high for detecting resistance to the major first-line drugs but is currently lower for the second-line drugs due to our incomplete knowledge regarding resistance causing mutations. With the advances in sequencing technology and the opportunity to replace phenotypic drug susceptibility testing with safer and more cost effective methods it would appear that the question is when to implement. Current bottlenecks are sample extraction to allow whole genome sequencing directly from sputum and the lack of bioinformatics expertise in some TB endemic countries.

  13. The Activity of a Hexameric M17 Metallo-Aminopeptidase Is Associated With Survival of Mycobacterium tuberculosis

    PubMed Central

    Correa, Andre F.; Bastos, Izabela M. D.; Neves, David; Kipnis, Andre; Junqueira-Kipnis, Ana P.; de Santana, Jaime M.

    2017-01-01

    Mycobacterium tuberculosis is one of the most prevalent human pathogens causing millions of deaths in the last years. Moreover, tuberculosis (TB) treatment has become increasingly challenging owing to the emergence of multidrug resistant M. tuberculosis strains. Thus, there is an immediate need for the development of new anti-TB drugs. Proteases appear to be a promising approach and may lead to shortened and effective treatments for drug-resistant TB. Although the M. tuberculosis genome predicts more than 100 genes encoding proteases, only a few of them have been studied. Aminopeptidases constitute a set of proteases that selectively remove amino acids from the N-terminus of proteins and peptides and may act as virulence factors, essential for survival and maintenance of many microbial pathogens. Here, we characterized a leucine aminopeptidase of M. tuberculosis (MtLAP) as a cytosolic oligomeric metallo-aminopeptidase. Molecular and enzymatic properties lead us to classify MtLAP as a typical member of the peptidase family M17. Furthermore, the aminopeptidase inhibitor bestatin strongly inhibited MtLAP activity, in vitro M. tuberculosis growth and macrophage infection. In murine model of TB, bestatin treatment reduced bacterial burden and lesion in the lungs of infected mice. Thus, our data suggest that MtLAP participates in important metabolic pathways of M. tuberculosis necessary for its survival and virulence and consequently may be a promising target for new anti-TB drugs. PMID:28396657

  14. Predominance of modern Mycobacterium tuberculosis strains and active transmission of Beijing sublineage in Jayapura, Indonesia Papua.

    PubMed

    Chaidir, Lidya; Sengstake, Sarah; de Beer, Jessica; Oktavian, Antonius; Krismawati, Hana; Muhapril, Erfin; Kusumadewi, Inri; Annisa, Jessi; Anthony, Richard; van Soolingen, Dick; Achmad, Tri Hanggono; Marzuki, Sangkot; Alisjahbana, Bachti; van Crevel, Reinout

    2016-04-01

    Mycobacterium tuberculosis genotype distribution is different between West and Central Indonesia, but there are no data on the most Eastern part, Papua. We aimed to identify the predominant genotypes of M. tuberculosis responsible for tuberculosis in coastal Papua, their transmission, and the association with patient characteristics. A total of 199 M. tuberculosis isolates were collected. Spoligotyping was applied to describe the population structure of M. tuberculosis, lineage identification was performed using a combination of lineage-specific markers, and genotypic clusters were identified using a combination of 24-locus-MIRU-VNTR and spoligotyping. A high degree of genetic diversity was observed among isolates based on their spoligopatterns. Strains from modern lineage 4 made up almost half of strains (46.9%), being more abundant than the ancient lineage 1 (33.7%), and modern lineage 2 (19.4%). Thirty-five percent of strains belonged to genotypic clusters, especially strains in the Beijing genotype. Previous TB treatment and mutations associated with drug resistance were more common in patients infected with strains of the Beijing genotype. Papua shows a different distribution of M. tuberculosis genotypes compared to other parts of Indonesia. Clustering and drug resistance of modern strains recently introduced to Papua may contribute to the high tuberculosis burden in this region. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  16. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  17. Rapid Identification of Mycobacteria and Drug-Resistant Mycobacterium tuberculosis by Use of a Single Multiplex PCR and DNA Sequencing

    PubMed Central

    Pérez-Osorio, Ailyn C.; Boyle, David S.; Ingham, Zachary K.; Ostash, Alla; Gautom, Romesh K.; Colombel, Craig; Houze, Yolanda

    2012-01-01

    Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampinr), isoniazidr, and pyrazinamider TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampinr TB identification; 60.6% and 100% for isoniazidr TB identification; and 75.0% and 98.1% for pyrazinamider TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced. PMID:22162548

  18. Clinical Evaluation of the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test for Rapid Diagnosis of Tuberculosis Lymphadenitis

    PubMed Central

    Kerleguer, A.; Fabre, M.; Bernatas, J. J.; Gerome, P.; Nicand, E.; Herve, V.; Koeck, J. L.

    2004-01-01

    This prospective study evaluated the performance of the Amplified Mycobacterium Tuberculosis Direct Test (MTD) for the diagnosis of lymph node tuberculosis in Djibouti, Republic of Djibouti. Of 197 specimens sampled from 153 patients, 123 were from 95 tuberculous patients. The sensitivity and specificity of MTD were 93 and 100%, respectively. The sensitivity of culture was 89%. PMID:15583341

  19. Molecular identification of Mycobacterium tuberculosis in cattle.

    PubMed

    Sweetline Anne, N; Ronald, B S M; Kumar, T M A Senthil; Kannan, P; Thangavelu, A

    2017-01-01

    Bovine tuberculosis continued to be a re-emerging problem in some countries especially in endemic areas due to the fact that human and animal health surveillance system is not adopted to diagnose the infection. This crisis can be attributed due to sharing of the same habitat especially in rural areas. In the present study, a total of 148 samples were collected from cattle for isolation over a period of 3 years from cattle with and without lesions, of which 67 isolates were obtained by culture. Fifty one isolates were identified as Mycobacterium tuberculosis complex (MTBC) by IS6110 PCR of which 43 (84.3%) were identified as M. tuberculosis and 08 (15.6%) were identified as M. bovis by using 12.7kb fragment multiplex PCR. Among this, 31 isolates which were positive for IS6110 PCR were subjected to spoligotyping and revealed 28 isolates belonging to MANU1 strain of M. tuberculosis. This study clearly indicates that high prevalence of M. tuberculosis than M. bovis in bovine was identified by means of culture and by molecular methods M. tuberculosis can affect cattle producing lesion in contradiction to the earlier thoughts. This study speculates that M. tuberculosis MANU1 strain infection in cattle could be due to spill over from human or other non specific hosts in tuberculosis endemic areas. Though bovine tuberculosis due to M. tuberculosis in cattle is not considered a serious threat worldwide, in countries where human TB is endemic, M. tuberculosis infection of cattle needs to be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mycobacterium tuberculosis infection within parotid gland Warthin tumor.

    PubMed

    Ozcan, Cengiz; Apa, Duygu Düşmez; Aslan, Gönül; Gülhan, Stk; Görür, Kemal

    2008-11-01

    Tuberculosis of the parotid gland is extremely unusual. Tuberculosis comprises 2.5% to 10% of parotid gland lesions. Two clinical forms of parotid gland tuberculosis infection exist. One is a diffuse parenchymatous disease (either primary or secondary to nodal disease), resembling common infection. The second is a chronic, slow-growing, painless, and firm parotid mass mimicking a neoplasm. Most of these patients were diagnosed after parotid gland surgery and histopathologic evaluation. Warthin tumor is a well-known benign neoplasm of the salivary glands. It is the second most common tumor of the parotid gland. Mycobacterium tuberculosis within Warthin tumor is also unusual. Five cases with parotid gland tuberculosis within Warthin tumor were reported in the literature. In this report, we present a new patient with parotid gland tuberculosis within the Warthin tumor. This type parotid gland pathology is an extremely rare entity, and to the best of our knowledge, this is the second documented case using polymerase chain reaction. We also discussed the possible mechanisms of development of infection within Warthin tumor.

  1. [Application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance].

    PubMed

    Jin, Yang-Hui; Shi, Shi-Yuan; Zheng, Qi; Shen, Jian; Ying, Xiao-Zhang; Wang, Yi-Fan

    2017-09-25

    To investigate the application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance. The 109 pus specimens were obtained from patients who were primaryly diagnosed as spinal tuberculosis. All of the pus specimens were detected by acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay to definite the differences in sensitivity and specificity of mycobacterium tuberculosis among detecting methods. Pus specimens obtained by different methods were deteceded by MTB/RIF test to analyze the self-influence on Xpert MTB/RIF test. The result of liquid fast culturing by BACTEC MGIT 960 was used as the gold standard; and the value of Xpert MTB/RIF assay in detecting rifampin resistance was analyzed. The sensitivity of acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay were 25.92%, 48.15%, 77.78%, respectively. The sensitivity of pus specimens obtained from open surgery, ultrasound positioning puncture and biopsy the sensitivity were 83.78%, 76.47%, 44.68% respectively deteceded by MTB/RIF test. According to the gold standard of the results of liquid fast culturing by BACTEC MGIT 960 assay, the sensitivity and specificity of Xpert MTB/RIF assay in detecting rifampin resistance were 80%(4/5) and 90.70%(39/43), respectively. Xpert MTB/RIF assay has higher value in diagnosis of spinal tuberculosi, and also can detect rifampin resistance. The number of mycobacterium tuberculosis in pus specimens has a great influence in the sensitivity of Xpert MTB/RIF assay.

  2. Distinct Clinical and Epidemiological Features of Tuberculosis in New York City Caused by the RDRio Mycobacterium tuberculosis Sublineage

    PubMed Central

    Weisenberg, Scott A.; Gibson, Andrea L.; Huard, Richard C.; Kurepina, Natalia; Bang, Heejung; Lazzarini, Luiz C O.; Chiu, Yalin; Li, Jiehui; Ahuja, Shama; Driscoll, Jeff; Kreiswirth, Barry N.; Ho, John L.

    2011-01-01

    Background Genetic tracking of Mycobacterium tuberculosis is a cornerstone of tuberculosis (TB) control programs. The RDRio M. tuberculosis sublineage was previously associated with TB in Brazil. We investigated 3847 M. tuberculosis isolates and registry data from New York City (NYC) (2001–2005) to: 1) affirm the position of RDRio strains within the M. tuberculosis phylogenetic structure, 2) determine its prevalence, and 3) define transmission, demographic, and clinical characteristics associated with RDRio TB. Methods Isolates classified as RDRio or non-RDRio M. tuberculosis by multiplex PCR were further classified as clustered (≥2 isolates) or unique based primarily upon IS6110-RFLP patterns and lineage-specific cluster proportions were calculated. The secondary case rate of RDRio was compared with other prevalent M. tuberculosis lineages. Genotype data were merged with the data from the NYC TB Registry to assess demographic and clinical characteristics. Results RDRio strains were found to: 1) be restricted to the Latin American-Mediterranean family, 2) cause approximately 8% of TB cases in NYC, and 3) be associated with heightened transmission as shown by: i) a higher cluster proportion compared to other prevalent lineages, ii) a higher secondary case rate, and iii) cases in children. Furthermore, RDRio strains were significantly associated with US-born Black or Hispanic race, birth in Latin American and Caribbean countries, and isoniazid resistance. Conclusions The RDRio genotype is a single M. tuberculosis strain population that is emerging in NYC. The findings suggest that expanded RDRio case and exposure identification could be of benefit due to its association with heightened transmission. PMID:21835266

  3. Mycobacterium tuberculosis two-component systems and implications in novel vaccines and drugs.

    PubMed

    Zhou, PeiFu; Long, QuanXin; Zhou, YeXin; Wang, HongHai; Xie, JianPing

    2012-01-01

    Communication is vital for nearly all organisms to survive and thrive. For some particularly successful intracellular pathogens, a robust and precise signal transduction system is imperative for handling the complex, volatile, and harsh niche. The communication network of the etiology of tuberculosis, Mycobacterium tuberculosis (M.tb), namely two-component system (TCS), the eukaryotic-like Ser/Thr protein kinases(STPKs) system, the protein tyrosine kinase(PTK) system and the extracytoplasmic function σ(ECF-σ) system, determine how the pathogen responds to environmental fluctuations. At least 12 pair TCSs and four orphan proteins (three response regulators, Rv2884, Rv0260c, Rv0818, and one putative sensory transduction protein, Rv3143) can be found in the M.tb H37Rv genome. They regulate various aspects of M.tb, including virulence, dormancy, persistence, and drug resistance. This review focuses on the physiological roles of TCSs and the network of M.tb TCSs from a systems biology perspective. The implications of TCSs for better vaccine and new drug targets against tuberculosis are also examined.

  4. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    PubMed

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  5. Recent transmission of drug-resistant Mycobacterium tuberculosis in a prison population in southern Brazil.

    PubMed

    Reis, Ana Julia; David, Simone Maria Martini de; Nunes, Luciana de Souza; Valim, Andreia Rosane de Moura; Possuelo, Lia Gonçalves

    2016-01-01

    We conducted a cross-sectional, retrospective study, characterized by classical and molecular epidemiology, involving M. tuberculosis isolates from a regional prison in southern Brazil. Between January of 2011 and August of 2014, 379 prisoners underwent sputum smear microscopy and culture; 53 (13.9%) were diagnosed with active tuberculosis. Of those, 8 (22.9%) presented with isoniazid-resistant tuberculosis. Strain genotyping was carried out by 15-locus mycobacterial interspersed repetitive unit-variable-number tandem-repeat analysis; 68.6% of the patients were distributed into five clusters, and 87.5% of the resistant cases were in the same cluster. The frequency of drug-resistant tuberculosis cases and the rate of recent transmission were high. Our data suggest the need to implement an effective tuberculosis control program within the prison system. RESUMO Estudo transversal, retrospectivo, com isolados de M. tuberculosis de pacientes de um presídio regional no sul do Brasil, caracterizado através de epidemiologia clássica e molecular. Entre janeiro de 2011 e agosto de 2014, 379 detentos foram submetidos a baciloscopia e cultura, sendo 53 (13,9%) diagnosticados com tuberculose ativa. Desses, 8 (22,9%) apresentavam tuberculose resistente a isoniazida. A genotipagem das cepas foi realizada por 15-locus mycobacterial interspersed repetitive units-variable number of tandem repeat analysis; 68,6% dos pacientes estavam distribuídos em cinco clusters, e 87,5% dos casos resistentes estavam em um mesmo cluster. Verificou-se uma frequência elevada de casos de resistência e alta taxa de transmissão recente. Estes dados sugerem a necessidade da implantação de um programa efetivo de controle da tuberculose no sistema prisional.

  6. Genetic Diversity and Dynamic Distribution of Mycobacterium tuberculosis Isolates Causing Pulmonary and Extrapulmonary Tuberculosis in Thailand

    PubMed Central

    Srilohasin, Prapaporn; Tokunaga, Katsushi; Nishida, Nao; Prammananan, Therdsak; Smittipat, Nat; Mahasirimongkol, Surakameth; Chaiyasirinroje, Boonchai; Yanai, Hideki; Palittapongarnpim, Prasit

    2014-01-01

    This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies. PMID:25297330

  7. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    PubMed

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  8. Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia.

    PubMed

    Ameni, Gobena; Vordermeier, Martin; Firdessa, Rebuma; Aseffa, Abraham; Hewinson, Glyn; Gordon, Stephen V; Berg, Stefan

    2011-06-01

    A preliminary study to characterise mycobacteria infecting tuberculous cattle from two different management systems in central Ethiopia was carried out. Approximately 27% of isolates from grazing cattle were Mycobacterium tuberculosis, while cattle in a more intensive-production system were exclusively infected with M. bovis. The practice of local farmers discharging chewed tobacco directly into the mouths of pastured cattle was identified as a potential route of human-to-cattle transmission of M. tuberculosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    PubMed Central

    Coll, Francesc; Preston, Mark; Guerra-Assunção, José Afonso; Hill-Cawthorn, Grant; Harris, David; Perdigão, João; Viveiros, Miguel; Portugal, Isabel; Drobniewski, Francis; Gagneux, Sebastien; Glynn, Judith R.; Pain, Arnab; Parkhill, Julian; McNerney, Ruth; Martin, Nigel; Clark, Taane G.

    2014-01-01

    Summary Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. PMID:24637013

  10. MIRU-VNTR typing of drug-resistant tuberculosis isolates in Greece.

    PubMed

    Rovina, Nikoletta; Karabela, Simona; Constantoulakis, Pantelis; Michou, Vassiliki; Konstantinou, Konstantinos; Sgountzos, Vassileios; Roussos, Charis; Poulakis, Nikolaos

    2011-08-01

    The increasing immigration rate in Greece from countries with a high prevalence of Mycobacterium tuberculosis (MTB) and multidrug-resistant tuberculosis (MDR-TB) may have an impact οn the number of MDR-TB cases in Greece. The aim of this study was to genotypically characterize the MTB isolates from patients with pulmonary drug-resistant tuberculosis (DR-TB) in Greece, and to determine whether there is any association between the prevalent genotypes and drug resistance. Fifty-three drug-resistant MTB strains isolated from culture specimens of clinical material from native Greeks and immigrant patients with pulmonary tuberculosis were genotyped using the mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method. The phylogenetically distinct groups of isolates identified were: the Beijing (34%), the LAM (11%), the Haarlem (24.5%), the Uganda I (9.4%), the Ural (3.8%), the Delhi/CAS (9.4%) and the Cameroon (3.8%) families. Greek patients were more likely to have monoresistant and polyresistant TB with the most prevalent isolates belonging to the Haarlem family. Among foreign-born patients with MDR-TB, the most prevalent genotypes belonged to the Beijing family. MIRU-VNTR rapidly obtained clinically useful genotyping data, by characterizing clonal MTB heterogeneity in the isolated strains. Our results underline the need for more effective antituberculosis control programs in order to control the expansion of DR-TB in Greece.

  11. Draft genome sequence of Mycobacterium tuberculosis strain B9741 of Beijing B0/W lineage from HIV positive patient from Siberia.

    PubMed

    Shur, K V; Zaychikova, M V; Mikheecheva, N E; Klimina, K M; Bekker, O B; Zhdanova, S N; Ogarkov, O B; Danilenko, V N

    2016-12-01

    We report a draft genome sequence of Mycobacterium tuberculosis strain B9741 belonging to Beijing B0/W lineage isolated from a HIV patient from Siberia, Russia. This clinical isolate showed MDR phenotype and resistance to isoniazid, rifampin, streptomycin and pyrazinamide. We analyzed SNPs associated with virulence and resistance. The draft genome sequence and annotation have been deposited at GenBank under the accession NZ_LVJJ00000000.

  12. Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development.

    PubMed

    Wang, Xiaoyu; Zhao, Xiaokang; Wang, Hao; Huang, Xue; Duan, Xiangke; Gu, Yinzhong; Lambert, Nzungize; Zhang, Ke; Kou, Zhenhao; Xie, Jianping

    2018-06-11

    Bacterial toxin-antitoxin (TA) systems are emerging important regulators of multiple cellular physiological events and candidates for novel antibiotic targets. To explore the role of Mycobacterium tuberculosis function, unknown toxin gene Rv2872 was heterologously expressed in Mycobacterium smegmatis (MS_Rv2872). Upon induction, MS_Rv2872 phenotype differed significantly from the control, such as increased vancomycin resistance, retarded growth, cell wall, and biofilm structure. This phenotype change might result from the RNase activity of Rv2872 as purified Rv2872 toxin protein can cleave the products of several key genes involved in abovementioned phenotypes. In summary, toxin Rv2872 was firstly reported to be a endonuclease involved in antibiotic stress responses, cell wall structure, and biofilm development.

  13. Molecular epidemiology and clinical characteristics of drug-resistant Mycobacterium tuberculosis in a tuberculosis referral hospital in China.

    PubMed

    Wang, Qi; Lau, Susanna K P; Liu, Fei; Zhao, Yanlin; Li, Hong Min; Li, Bing Xi; Hu, Yong Liang; Woo, Patrick C Y; Liu, Cui Hua

    2014-01-01

    Despite the large number of drug-resistant tuberculosis (TB) cases in China, few studies have comprehensively analyzed the drug resistance-associated gene mutations and genotypes in relation to the clinical characteristics of M. tuberculosis (Mtb) isolates. We thus analyzed the phenotypic and genotypic drug resistance profiles of 115 Mtb clinical isolates recovered from a tuberculosis referral hospital in Beijing, China. We also performed genotyping by 28 loci MIRU-VNTR analysis. Socio-demographic and clinical data were retrieved from medical records and analyzed. In total, 78 types of mutations (including 42 previously reported and 36 newly identified ones) were identified in 115 Mtb clinical isolates. There was significant correlation between phenotypic and genotypic drug resistance rates for first-line anti-TB drugs (P<0.001). Genotyping revealed 101 MIRU-VNTR types, with 20 isolates (17.4%) being clustered and 95 isolates (82.6%) having unique genotypes. Higher proportion of re-treatment cases was observed among patients with clustered isolates than those with unique MIRU-VNTR genotypes (75.0% vs. 41.1%). Moreover, clinical epidemiological links were identified among patients infected by Mtb strains belonging to the same clusters, suggesting a potential of transmission among patients. Our study provided information on novel potential drug resistance-associated mutations in Mtb. In addition, the genotyping data from our study suggested that enforcement of the implementation of genotyping in diagnostic routines would provide important information for better monitor and control of TB transmission.

  14. Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential tool for determining drug-resistance and strain lineage.

    PubMed

    Chatterjee, Anirvan; Nilgiriwala, Kayzad; Saranath, Dhananjaya; Rodrigues, Camilla; Mistry, Nerges

    2017-12-01

    Amplification of drug resistance in Mycobacterium tuberculosis (M.tb) and its transmission are significant barriers in controlling tuberculosis (TB) globally. Diagnostic inaccuracies and delays impede appropriate drug administration, which exacerbates primary and secondary drug resistance. Increasing affordability of whole genome sequencing (WGS) and exhaustive cataloguing of drug resistance mutations is poised to revolutionise TB diagnostics and facilitate personalized drug therapy. However, application of WGS for diagnostics in high endemic areas is yet to be demonstrated. We report WGS of 74 clinical TB isolates from Mumbai, India, characterising genotypic drug resistance to first- and second-line anti-TB drugs. A concordance analysis between phenotypic and genotypic drug susceptibility of a subset of 29 isolates and the sensitivity of resistance prediction to the 4 drugs was calculated, viz. isoniazid-100%, rifampicin-100%, ethambutol-100% and streptomycin-85%. The whole genome based phylogeny showed almost equal proportion of East Asian (27/74) and Central Asian (25/74) strains. Interestingly we also found a clonal group of 9 isolates, of which 7 patients were found to be from the same geographical location and accessed the same health post. This provides the first evidence of epidemiological linkage for tracking TB transmission in India, an approach which has the potential to significantly improve chances of End-TB goals. Finally, the use of Mykrobe Predictor, as a standalone drug resistance and strain typing tool, requiring just few minutes to analyse raw WGS data into tabulated results, implies the rapid clinical applicability of WGS based TB diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan

    PubMed Central

    Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina

    2008-01-01

    Background The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. Methods M. tuberculosis strains isolated (2003–2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Results Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types. Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Conclusion Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the

  16. Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan.

    PubMed

    Tanveer, Mahnaz; Hasan, Zahra; Siddiqui, Amna R; Ali, Asho; Kanji, Akbar; Ghebremicheal, Solomon; Hasan, Rumina

    2008-12-24

    The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of Mycobacterium tuberculosis strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of M. tuberculosis isolates from different regions of the country. M. tuberculosis strains isolated (2003-2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped. Of 926 M. tuberculosis strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (M. tuberculosis specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types.Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family. Our results show variation of prevalent M. tuberculosis strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan.

  17. On the nature of Mycobacterium tuberculosis-latent bacilli.

    PubMed

    Cardona, P-J; Ruiz-Manzano, J

    2004-12-01

    Mycobacterium tuberculosis-latent bacilli are microorganisms that adapt to stressful conditions generated by the infected host against them. By slowing metabolism or becoming dormant, they may counterbalance these conditions and appear as silent to the immune system. Moreover, the dynamic turnover of the infected cells provokes a constant reactivation of the latent bacilli when the environmental conditions are favourable, or an activation after being dormant in necrotic and fibrotic lesions for a long period of time. Since there is no in vivo nor in vitro evidence for quick resuscitation of dormant bacilli, the current authors strongly favour the possibility that latent tuberculosis infection can be maintained for no longer than approximately 10 yrs, which is, nowadays, a time period very close to that considered for "primary" tuberculosis. This concept may also be helpful for newer epidemiological considerations regarding the real impact of reinfection in tuberculosis.

  18. Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains▿†

    PubMed Central

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-01-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525

  19. Risk factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil

    PubMed Central

    Fregona, Geisa; Cosme, Lorrayne Belique; Moreira, Cláudia Maria Marques; Bussular, José Luis; Dettoni, Valdério do Valle; Dalcolmo, Margareth Pretti; Zandonade, Eliana; Maciel, Ethel Leonor Noia

    2017-01-01

    ABSTRACT OBJECTIVE To analyze the prevalence and factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil. METHODS This is a cross-sectional study of cases of tuberculosis tested for first-line drugs (isoniazid, rifampicin, pyrazinamide, ethambutol, and streptomycin) in Espírito Santo between 2002 and 2012. We have used laboratory data and registration of cases of tuberculosis – from the Sistema Nacional de Agravos de Notificação and Sistema para Tratamentos Especiais de Tuberculose. Individuals have been classified as resistant and non-resistant and compared in relation to the sociodemographic, clinical, and epidemiological variables. Some variables have been included in a logistic regression model to establish the factors associated with resistance. RESULTS In the study period, 1,669 individuals underwent anti-tuberculosis drug susceptibility testing. Of these individuals, 10.6% showed resistance to any anti-tuberculosis drug. The rate of multidrug resistance observed, that is, to rifampicin and isoniazid, has been 5%. After multiple analysis, we have identified as independent factors associated with resistant tuberculosis: history of previous treatment of tuberculosis [recurrence (OR = 7.72; 95%CI 4.24–14.05) and re-entry after abandonment (OR = 3.91; 95%CI 1.81–8.43)], smoking (OR = 3.93; 95%CI 1.98–7.79), and positive culture for Mycobacterium tuberculosis at the time of notification of the case (OR = 3.22; 95%CI 1.15–8.99). CONCLUSIONS The partnership between tuberculosis control programs and health teams working in the network of Primary Health Care needs to be strengthened. This would allow the identification and monitoring of individuals with a history of previous treatment of tuberculosis and smoking. Moreover, the expansion of the offer of the culture of tuberculosis and anti-tuberculosis drug susceptibility testing would provide greater diagnostic capacity for the resistant types in Espírito Santo. PMID:28489185

  20. Stability, denaturation and refolding of Mycobacterium tuberculosis MfpA, a DNA mimicking protein that confers antibiotic resistance

    PubMed Central

    Khrapunov, Sergei; Brenowitz, Michael

    2011-01-01

    MfpA from Mycobacterium tuberculosis is a founding member of the pentapeptide repeat class of proteins (PRP) that is believed to confer bacterial resistance to the drug fluoroquinolone by mimicking the size, shape and surface charge of duplex DNA. We show that phenylalanine side chain stacking stabilizes the N-terminus of MfpA’s pentapeptide thus extending the DNA mimicry analogy. The Lumry-Eyring model was applied to multiple spectral measures of MfpA denaturation revealing that the MfpA dimer dissociates to monomers which undergo a structural transition that leads to aggregation. MfpA retains high secondary and tertiary structure content under denaturing conditions. Dimerization stabilizes MfpA’s pentapeptide repeat fold. The high Arrhenius activation energy of the barrier to aggregate formation rationalizes its stability. The mechanism of MfpA denaturation and refolding is a ‘double funnel’ energy landscape where the ‘native’ and ‘aggregate’ funnels are separated by the high barrier that is not overcome during in vitro refolding. PMID:21605934

  1. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    PubMed Central

    Lee, Yie-Vern; Wahab, Habibah A.

    2015-01-01

    Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL. PMID:25649791

  2. Regulatory RNA in Mycobacterium tuberculosis, back to basics.

    PubMed

    Schwenk, Stefan; Arnvig, Kristine B

    2018-06-01

    Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.

  3. Medical devices; immunology and microbiology devices; classification of nucleic acid-based devices for the detection of Mycobacterium tuberculosis complex and the genetic mutations associated with antibiotic resistance. Final order.

    PubMed

    2014-10-22

    The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.

  4. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  5. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice.

    PubMed

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-04-23

    Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.

  6. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice

    PubMed Central

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-01-01

    Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332

  7. Detection and Characteristics of Rifampicin-Resistant Isolates of Mycobacterium tuberculosis.

    PubMed

    Cherednichenko, A G; Dymova, M A; Solodilova, O A; Petrenko, T I; Prozorov, A I; Filipenko, M L

    2016-03-01

    Genotyping and analysis the drug resistance of 59 isolates of M. tuberculosis obtained from patients living in Altai Territory were performed using a BACTEC MGIT 960 fluorometric system by means of VNTR typing (variable number tandem repeat), PCR-RFLP analysis, and sequence analysis. The occurrence frequency was highest for isolates of the Beijing family (n=30, 50.8%). Analysis of mutation spectrum in the rpoB gene associated with rifampicin resistance revealed the major mutation (codon 531 of the rpoB gene) in 93% samples, which allows us to use rapid test systems.

  8. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid

    PubMed Central

    Houghton, Joanna; Davis, Elaine O.

    2012-01-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTMP synthase. We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively. PMID:22034487

  9. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid.

    PubMed

    Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O

    2012-02-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  10. Drug susceptibility testing of Mycobacterium Avium subsp. Avium isolates from naturally infected domestic pigeons to avian tuberculosis.

    PubMed

    Parvandar, Kaveh; Mayahi, Mansour; Mosavari, Nader; Pajoohi, Reza Aref

    2016-12-01

    Avian tuberculosis is one of the most important infections affecting most species of birds. Several mycobacterial species have been identified causing avian tuberculosis, and the organisms confirmed most frequently are Mycobacterium avium and Mycobacterium genavense. Any species of birds can be infected with M. avium. Generally, domesticated fowl or captive wild birds are affected more frequently than those living in the wild. M. avium can not only infect all species of birds, but can also infect some domesticated mammals to cause disease, usually with localized lesion. In immunocompetent individuals, M. avium complex isolates produce localized soft tissue infections, including chronic pulmonary infections in the elderly and cervical lymphadenitis in children, but rarely any disseminated disease. In patients infected with HIV and AIDS or in other immunocompromised individuals, M. avium complex isolates frequently cause severe systemic infections. The importance of avian tuberculosis and the risk of its zoonotic spread motivated our interest to determine the drug susceptibility testing of M. avium subsp. avium isolates from naturally infected domestic pigeons to avian tuberculosis. Based on their clinical signs, 80 pigeons suspected with avian tuberculosis were subjected to the study. Out of the 51 identified isolates, 20 M. avium subsp. avium were subjected to the test. Drug susceptibly testing was performed according to the guidelines by Centers for Disease Control and Prevention and using proportional method. In the drug susceptibility testing, all isolates were resistant to streptomycin, kanamycin, ethionamide, and thiophene carboxylic acid hydrazide. Additionally, 3, 2, and 1 isolates were susceptible to isoniazid, rifampin, and ethambutol, respectively. To date, no study has documented the drug susceptibility testing of M. avium isolates from infected birds to avian tuberculosis. Pigeons are extensively kept in urban and rural areas for homing and racing

  11. Identification of the likely translational start of Mycobacterium tuberculosis GyrB.

    PubMed

    Karkare, Shantanu; Brown, Amanda C; Parish, Tanya; Maxwell, Anthony

    2013-07-15

    Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A₂B₂ complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations. We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity. We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa).

  12. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing

    PubMed Central

    Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P.; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G.; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M.; Davidow, Amy; Denkinger, Claudia M.; Persing, David; Kwiatkowski, Robert; Jones, Martin

    2017-01-01

    ABSTRACT The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. PMID:28851844

  13. LPA or GeneXpert in the diagnosis of multidrug-resistant tuberculosis.

    PubMed

    Mindru, Roxana; Spinu, Victor; Popescu, Oana

    2016-01-01

    Facing a constant increase of multidrug-resistant tuberculosis (MDR-TB), there is large need for routine use of new diagnostic tests, based on molecular techniques that allow both a rapid diagnosis for TB complex and rapid identification of resistance mutations. The resistances are due to genetic factors: accumulation of changes within the genome structure, acquisition or loss of genes, spontaneous mutations in chromosomal genes, and changes that induce selection of resistant strains during a suboptimal treatment. The bacteriology laboratory plays a crucial role in the making of the diagnosis, monitoring and preventing TB transmission. World Health Organization offers consistent recommendations in favour of use of Xpert MTB/RIF, GeneXpert platform, as initial diagnostic test in adults and children suspected of TB, because it can simultaneously determine the presence of Mycobacterium tuberculosis and the Rifampicin resistance, which is a surrogate marker of MDR strains. The very high sensibility and specificity, also in the smear negative samples, as well as the short time needed for the results, make Xpert MTB/RIF a valuable tool in the fight against TB. Other recommended tests are: LPA, which identifies M. Tuberculosis complex, the Rifancim and Isoniazid resistance; MTBDR plus or, for second line anti-TB drugs, the MTBDRsl.

  14. New hydrazides derivatives of isoniazid against Mycobacterium tuberculosis: Higher potency and lower hepatocytotoxicity.

    PubMed

    Castelo-Branco, Frederico Silva; de Lima, Evanoel Crizanto; Domingos, Jorge Luiz de Oliveira; Pinto, Angelo C; Lourenço, Maria Cristina S; Gomes, Karen Machado; Costa-Lima, Mariana Marques; Araujo-Lima, Carlos Fernando; Aiub, Claudia Alessandra Fortes; Felzenszwalb, Israel; Costa, Thadeu Estevam M M; Penido, Carmen; Henriques, Maria G; Boechat, Nubia

    2018-02-25

    Tuberculosis (TB) is one of the leading causes of death worldwide. The emergence of multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) and TB-HIV co-infection are major public health challenges. The anti-TB drugs of first choice were developed more than 4 decades ago and present several adverse effects, making the treatment of TB even more complicated and the development of new chemotherapeutics for this disease imperative. In this work, we synthesized two series of new acylhydrazides and evaluated their activity against different strains of Mtb. Derivatives of isoniazid (INH) showed important anti-Mtb activity, some being more potent than all anti-TB drugs of first choice. Moreover, three compounds proved to be more potent than INH against resistant Mtb. The Ames test showed favorable results for two of these substances compared to INH, one of which presented expressly lower toxicity to HepG2 cells than that of INH. This result shows that this compound has the potential to overcome one of the main adverse effects of this drug. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa.

    PubMed

    Hlokwe, Tiny Motlatso; Said, Halima; Gcebe, Nomakorinte

    2017-10-10

    Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB) in human and Mycobacterium bovis commonly causes tuberculosis in animals. Transmission of tuberculosis caused by both pathogens can occur from human to animals and vice versa. In the current study, M. tuberculosis, as confirmed by polymerase chain reaction (PCR) using primers targeting 3 regions of difference (RD4, RD9 and RD12) on the genomes, was isolated from cattle originating from two epidemiologically unrelated farms in the Eastern Cape (E.C) Province of South Africa. Although the isolates were genotyped with variable number of tandem repeat (VNTR) typing, no detailed epidemiological investigation was carried out on the respective farms to unequivocally confirm or link humans as sources of TB transmission to cattle, a move that would have embraced the 'One Health' concept. In addition, strain comparison with human M. tuberculosis in the database from the E.C Province and other provinces in the country did not reveal any match. This is the first report of cases of M. tuberculosis infection in cattle in South Africa. The VNTR profiles of the M. tuberculosis strains identified in the current study will form the basis for creating M. tuberculosis VNTR database for animals including cattle for future epidemiological studies. Our findings however, call for urgent reinforcement of collaborative efforts between the veterinary and the public health services of the country.

  16. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance.

    PubMed

    Filippova, Ekaterina V; Kieser, Karen J; Luan, Chi-Hao; Wawrzak, Zdzislaw; Kiryukhina, Olga; Rubin, Eric J; Anderson, Wayne F

    2016-06-01

    Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  17. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  18. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography.

    PubMed

    Bunker, Richard D; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J; Pentelute, Bradley L; Lott, J Shaun; Kent, Stephen B H; Baker, Edward N

    2015-04-07

    Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.

  19. Complete Genome Sequence of the Clinical Beijing-Like Strain Mycobacterium tuberculosis 323 Using the PacBio Real-Time Sequencing Platform

    PubMed Central

    Rodríguez, Juan Germán; Pino, Camilo; Tauch, Andreas

    2015-01-01

    We report here the whole-genome sequence of the multidrug-resistant Beijing-like strain Mycobacterium tuberculosis 323, isolated from a 15-year-old female patient who died shortly after the initiation of second-line drug treatment. This strain is representative of the Beijing-like isolates from Colombia, where this lineage is becoming a public health concern. PMID:25931600

  20. Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors

    PubMed Central

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K.; Ekins, Sean

    2014-01-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. PMID:25534741

  1. Lysine succinylation of Mycobacterium tuberculosis isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics.

    PubMed

    Zhou, Mingliang; Xie, Longxiang; Yang, Zhaozhen; Zhou, Jiahai; Xie, Jianping

    2017-04-01

    Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants' mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5 Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.

  2. Antigen 85C Inhibition Restricts Mycobacterium tuberculosis Growth through Disruption of Cord Factor Biosynthesis

    PubMed Central

    Warrier, Thulasi; Tropis, Marielle; Werngren, Jim; Diehl, Anne; Gengenbacher, Martin; Schlegel, Brigitte; Schade, Markus; Oschkinat, Hartmut; Daffe, Mamadou; Hoffner, Sven; Eddine, Ali Nasser

    2012-01-01

    The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids. Inhibition of these enzymes through substrate analogs hinders growth of mycobacteria, but a link to mycolic acid synthesis has not been established. In this study, we characterized a novel inhibitor of Ag85C, 2-amino-6-propyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (I3-AG85). I3-AG85 was isolated from a panel of four inhibitors that exhibited structure- and dose-dependent inhibition of M. tuberculosis division in broth culture. I3-AG85 also inhibited M. tuberculosis survival in infected primary macrophages. Importantly, it displayed an identical MIC against the drug-susceptible H37Rv reference strain and a panel of extensively drug-resistant/multidrug-resistant M. tuberculosis strains. Nuclear magnetic resonance analysis indicated binding of I3-AG85 to Ag85C, similar to its binding to the artificial substrate octylthioglucoside. Quantification of mycolic acid-linked lipids of the M. tuberculosis envelope showed a specific blockade of TDM synthesis. This was accompanied by accumulation of trehalose monomycolate, while the overall mycolic acid abundance remained unchanged. Inhibition of Ag85C activity also disrupted the integrity of the M. tuberculosis envelope. I3-AG85 inhibited the division of and reduced TDM synthesis in an M. tuberculosis strain deficient in Ag85C. Our results indicate that Ag85 proteins are promising targets for novel antimycobacterial drug design. PMID:22290959

  3. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  4. Development of an automated MODS plate reader to detect early growth of Mycobacterium tuberculosis.

    PubMed

    Comina, G; Mendoza, D; Velazco, A; Coronel, J; Sheen, P; Gilman, R H; Moore, D A J; Zimic, M

    2011-06-01

    In this work, an automated microscopic observation drug susceptibility (MODS) plate reader has been developed. The reader automatically handles MODS plates and after autofocussing digital images are acquired of the characteristic microscopic cording structures of Mycobacterium tuberculosis, which are the identification method utilized in the MODS technique to detect tuberculosis and multidrug resistant tuberculosis. In conventional MODS, trained technicians manually move the MODS plate on the stage of an inverted microscope while trying to locate and focus upon the characteristic microscopic cording colonies. In centres with high tuberculosis diagnostic demand, sufficient time may not be available to adequately examine all cultures. An automated reader would reduce labour time and the handling of M. tuberculosis cultures by laboratory personnel. Two hundred MODS culture images (100 from tuberculosis positive and 100 from tuberculosis negative sputum samples confirmed by a standard MODS reading using a commercial microscope) were acquired randomly using the automated MODS plate reader. A specialist analysed these digital images with the help of a personal computer and designated them as M. tuberculosis present or absent. The specialist considered four images insufficiently clear to permit a definitive reading. The readings from the 196 valid images resulted in a 100% agreement with the conventional nonautomated standard reading. The automated MODS plate reader combined with open-source MODS pattern recognition software provides a novel platform for high throughput automated tuberculosis diagnosis. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  5. Pulmonary disease due to Mycobacterium tuberculosis in a horse: zoonotic concerns and limitations of antemortem testing

    USDA-ARS?s Scientific Manuscript database

    A case of pulmonary tuberculosis caused by Mycobacterium tuberculosis was diagnosed in a horse. Clinical evaluation performed prior to euthanasia did not suggest tuberculosis, but postmortem examination provided pathological and bacteriological evidence of disease. In the lungs, multiple tuberculoid...

  6. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    PubMed Central

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  7. The Use of Functional Genomics in Conjunction with Metabolomics for Mycobacterium tuberculosis Research

    PubMed Central

    Swanepoel, Conrad C.

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1) metabolism, (2) growth and replication, (3) pathogenicity, and (4) drug resistance, from the perspective of systems biology. PMID:24771957

  8. Prevalence of Mycobacterium tuberculosis strain genotypes in Taiwan reveals a close link to ethnic and population migration.

    PubMed

    Dou, Horng-Yunn; Chen, Yih-Yuan; Kou, Shu-Chen; Su, Ih-Jen

    2015-06-01

    Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan. Copyright © 2014. Published by Elsevier B.V.

  9. Characteristics of Drug Resistant Tuberculosis in Sanatoria of North Korea

    PubMed Central

    2017-01-01

    Although several reports about drug-resistant tuberculosis (TB) in North Korea have been published, a nationwide surveillance on this disease remains to be performed. This study aims to analyze the drug resistance patterns of Mycobacterium tuberculosis among the patients in the sanatoria of North Korea, especially during the period when second-line drugs (SLDs) had not yet been officially supplied to this country. The Eugene Bell Foundation (EBF) transferred 947 sputum specimens obtained from 667 patients from 2007 to 2009 to the Clinical Research Center, Masan National Tuberculosis Hospital (MNTH), South Korea. Four hundred ninety-two patients were culture positive for TB (73.8%). Drug susceptibility test (DST) was performed for the bacilli isolated from 489 patients. Over 3 quarters of the cases (76.9%) were multidrug-resistant (MDR)-TB. Additionally, 2 patients had extremely drug-resistant (XDR)-TB. Very high resistance to first-line drugs and low resistance to fluoroquinolones (FQs) and injectable drugs (IDs) except for streptomycin (S) were detected. A small but significant regional variation in resistance pattern was observed. Big city regions had higher rate of MDR-TB, higher resistance to FQs and IDs than relatively isolated regions. In conclusion, significant number of drug-resistant TB was detected in North Korean sanatoria, and small but significant regional variations in resistance pattern were noticeable. However, the data in this study do not represent the nationwide drug resistance pattern in North Korea. Further large-scale evaluations are necessary to estimate the resistance pattern of TB in North Korea. PMID:28581266

  10. Characteristics of Drug Resistant Tuberculosis in Sanatoria of North Korea.

    PubMed

    Jung, Jihee; Jegal, Yangjin; Ki, Moran; Shin, Young Jeon; Kim, Cheon Tae; Shim, Tae Sun; Sung, Nackmoon

    2017-07-01

    Although several reports about drug-resistant tuberculosis (TB) in North Korea have been published, a nationwide surveillance on this disease remains to be performed. This study aims to analyze the drug resistance patterns of Mycobacterium tuberculosis among the patients in the sanatoria of North Korea, especially during the period when second-line drugs (SLDs) had not yet been officially supplied to this country. The Eugene Bell Foundation (EBF) transferred 947 sputum specimens obtained from 667 patients from 2007 to 2009 to the Clinical Research Center, Masan National Tuberculosis Hospital (MNTH), South Korea. Four hundred ninety-two patients were culture positive for TB (73.8%). Drug susceptibility test (DST) was performed for the bacilli isolated from 489 patients. Over 3 quarters of the cases (76.9%) were multidrug-resistant (MDR)-TB. Additionally, 2 patients had extremely drug-resistant (XDR)-TB. Very high resistance to first-line drugs and low resistance to fluoroquinolones (FQs) and injectable drugs (IDs) except for streptomycin (S) were detected. A small but significant regional variation in resistance pattern was observed. Big city regions had higher rate of MDR-TB, higher resistance to FQs and IDs than relatively isolated regions. In conclusion, significant number of drug-resistant TB was detected in North Korean sanatoria, and small but significant regional variations in resistance pattern were noticeable. However, the data in this study do not represent the nationwide drug resistance pattern in North Korea. Further large-scale evaluations are necessary to estimate the resistance pattern of TB in North Korea. © 2017 The Korean Academy of Medical Sciences.

  11. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis

    PubMed Central

    Williamson, Benjamin H.; Kerns, Robert J.; Berger, James M.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) infects one-third of the world’s population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone–gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone–enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance. PMID:26792525

  12. Mycobacterium tuberculosis Infection of Domesticated Asian Elephants, Thailand

    PubMed Central

    Angkawanish, Taweepoke; Sirimalaisuwan, Anucha; Kaewsakhorn, Thattawan; Boonsri, Kittikorn; Rutten, Victor P.M.G.

    2010-01-01

    Four Asian elephants were confirmed to be infected with Mycobacterium tuberculosis by bacterial culture, other diagnostic procedures, and sequencing of 16S–23S rDNA internal transcribed spacer region, 16S rRNA, and gyrase B gene sequences. Genotyping showed that the infectious agents originated from 4 sources in Thailand. To identify infections, a combination of diagnostic assays is essential. PMID:21122228

  13. Emerging Technologies for Monitoring Drug-Resistant Tuberculosis at the Point-of-Care

    PubMed Central

    Mani, Vigneshwaran; Wang, ShuQi; Inci, Fatih; De Libero, Gennaro; Singhal, Amit; Demirci, Utkan

    2014-01-01

    Infectious diseases are the leading cause of death worldwide. Among them, tuberculosis (TB) remains a major threat to public health, exacerbated by the emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb). MDR-Mtb strains are resistant to first-line anti-TB drugs such as isoniazid and rifampicin; whereas XDR-Mtb strains are resistant to additional drugs including at least to any fluoroquinolone and at least one of the second-line anti-TB injectable drugs such as kanamycin, capreomycin, or amikacin. Clinically, these strains have significantly impacted the management of TB in high-incidence developing countries, where systemic surveillance of TB drug resistance is lacking. For effective management of TB on-site, early detection of drug resistance is critical to initiate treatment, to reduce mortality, and to thwart drug-resistant TB transmission. In this review, we discuss the diagnostic challenges to detect drug-resistant TB at the point-of-care (POC). Moreover, we present the latest advances in nano/microscale technologies that can potentially detect TB drug resistance to improve on-site patient care. PMID:24882226

  14. Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis.

    PubMed

    Eldholm, Vegard; Pettersson, John H-O; Brynildsrud, Ola B; Kitchen, Andrew; Rasmussen, Erik Michael; Lillebaek, Troels; Rønning, Janne O; Crudu, Valeriu; Mengshoel, Anne Torunn; Debech, Nadia; Alfsnes, Kristian; Bohlin, Jon; Pepperell, Caitlin S; Balloux, Francois

    2016-11-29

    The "Beijing" Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is spreading globally and has been associated with accelerated disease progression and increased antibiotic resistance. Here we performed a phylodynamic reconstruction of one of the L2 sublineages, the central Asian clade (CAC), which has recently spread to western Europe. We find that recent historical events have contributed to the evolution and dispersal of the CAC. Our timing estimates indicate that the clade was likely introduced to Afghanistan during the 1979-1989 Soviet-Afghan war and spread further after population displacement in the wake of the American invasion in 2001. We also find that drug resistance mutations accumulated on a massive scale in Mtb isolates from former Soviet republics after the fall of the Soviet Union, a pattern that was not observed in CAC isolates from Afghanistan. Our results underscore the detrimental effects of political instability and population displacement on tuberculosis control and demonstrate the power of phylodynamic methods in exploring bacterial evolution in space and time.

  15. In vitro effects of citrus oils against Mycobacterium tuberculosis and non-tuberculous Mycobacteria of clinical importance.

    PubMed

    Crandall, Philip G; Ricke, Steven C; O'Bryan, Corliss A; Parrish, Nicole M

    2012-01-01

    We evaluated the in vitro activity of citrus oils against Mycobacterium tuberculosis and other non-tuberculous Mycobacterium species. Citrus essential oils were tested against a variety of Mycobacterium species and strains using the BACTEC radiometric growth system. Cold pressed terpeneless Valencia oil (CPT) was further tested using the Wayne model of in vitro latency. Exposure of M. tuberculosis and M. bovis BCG to 0.025 % cold pressed terpeneless Valencia orange oil (CPT) resulted in a 3-log decrease in viable counts versus corresponding controls. Inhibition of various clinical isolates of the M. avium complex and M. abscessus ranged from 2.5 to 5.2-logs. Some species/strains were completely inhibited in the presence of CPT including one isolate each of the following: the M. avium complex, M. chelonae and M. avium subsp. paratuberculosis. CPT also inhibited the growth of BCG more than 99 % in an in vitro model of latency which mimics anaerobic dormancy thought to occur in vivo. The activity of CPT against drug-resistant strains of the M. avium complex and M. abscessus suggest that the mechanism of action for CPT is different than that of currently available drugs. Inhibition of latently adapted bacilli offers promise for treatment of latent infections of MTB. These results suggest that the antimycobacterial properties of CPT warrant further study to elucidate the specific mechanism of action and clarify the spectrum of activity.

  16. Evidence of transmission of Mycobacterium tuberculosis by random amplified polymorphic DNA (RAPD) fingerprinting in Taipei City, Taiwan.

    PubMed Central

    Harn, H J; Shen, K L; Ho, L I; Yu, K W; Liu, G C; Yueh, K C; Lee, J H

    1997-01-01

    AIMS: To determine, by strain identification of Mycobacterium tuberculosis, whether transmission has occurred between individuals or whether new strains are present. METHODS: A rapid protocol for random amplified polymorphic DNA (RAPD) analysis was developed. This protocol was applied to 64 strains of M tuberculosis that had been confirmed by culture and microbiological methods. RESULTS: There are five groups of M tuberculosis prevalent in Taipei city, Taiwan. The major types are groups I and III. Groups I and II had been prevalent until the end of last year when, according to our group analysis, they had been eradicated. However, group III was continuously present from the middle of 1995 to the middle of 1996, and group IV was present at the end of both years, which indicated that both groups were transmitted continuously. These clustered strains had demographic characteristics consistent with a finding of transmission tuberculosis. Also, there were 13 of 64 strains with unique RAPD fingerprints that were inferred to be due primarily to the reactivation of infection. In the drug resistance analysis, the major type represented included group III and part of group IV. CONCLUSIONS: Our preliminary data imply, not only that the prevalence of M tuberculosis in Taipei city is due to transmission rather than reactivation, but that drug resistance also may play a role in tuberculosis transmission. Images PMID:9378819

  17. [Protective immunity against Mycobacterium tuberculosis].

    PubMed

    Kawamura, Ikuo

    2006-11-01

    Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.

  18. PolyTB: a genomic variation map for Mycobacterium tuberculosis.

    PubMed

    Coll, Francesc; Preston, Mark; Guerra-Assunção, José Afonso; Hill-Cawthorn, Grant; Harris, David; Perdigão, João; Viveiros, Miguel; Portugal, Isabel; Drobniewski, Francis; Gagneux, Sebastien; Glynn, Judith R; Pain, Arnab; Parkhill, Julian; McNerney, Ruth; Martin, Nigel; Clark, Taane G

    2014-05-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan.

    PubMed

    Huang, Tsi-Shu; Kunin, Calvin M; Yan, Bo-Shiun; Chen, Yao-Shen; Lee, Susan Shin-Jung; Syu, Wan

    2012-03-01

    This study was designed to determine the susceptibility of clinical isolates of multidrug-resistant (MDR) and non-MDR Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and trimethoprim/sulfamethoxazole over a 12 year period in Taiwan. We examined a total of 117 clinical isolates of M. tuberculosis collected from Southern Taiwan, 116 from 1995 to 2006 and an extensively drug-resistant (XDR) isolate in 2009. These included 28 isolates susceptible to all four first-line agents, 52 MDR isolates and 36 isolates with a mixed combination of drug resistance patterns other than MDR and 1 XDR isolate. Sulfamethoxazole inhibited 80% growth of all 117 isolates regardless of their susceptibility to the first-line agents at an MIC(90) of 9.5 mg/L. The concentration required to inhibit 99% growth was 38 mg/L. There were no significant changes in the MIC(50) or MIC(90) of sulfamethoxazole over a 12 year period. All 117 isolates were resistant to trimethoprim at >8 mg/L. The combination of trimethoprim/sulfamethoxazole at a ratio of 1:19 had no additive or synergistic effects. Sulfamethoxazole inhibited the growth of clinical isolates of M. tuberculosis at achievable concentrations in plasma after oral administration. Susceptibility to sulfamethoxazole remained constant over a 12 year period. Trimethoprim was inactive against M. tuberculosis and trimethoprim/sulfamethoxazole provided no additional activity. Although the current and prior studies demonstrate that sulfamethoxazole is active against M. tuberculosis the search needs to continue for more active, lipid-soluble sulphonamides that are better absorbed into tissues and have improved therapeutic efficacy.

  20. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  1. Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿

    PubMed Central

    García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.

    2010-01-01

    We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097

  2. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae.

    PubMed

    Vedithi, Sundeep Chaitanya; Malhotra, Sony; Das, Madhusmita; Daniel, Sheela; Kishore, Nanda; George, Anuja; Arumugam, Shantha; Rajan, Lakshmi; Ebenezer, Mannam; Ascher, David B; Arnold, Eddy; Blundell, Tom L

    2018-03-22

    The rpoB gene encodes the β subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.

  3. T cell-based tracking of multidrug resistant tuberculosis infection after brief exposure.

    PubMed

    Richeldi, Luca; Ewer, Katie; Losi, Monica; Bergamini, Barbara M; Roversi, Pietro; Deeks, Jonathan; Fabbri, Leonardo M; Lalvani, Ajit

    2004-08-01

    Molecular epidemiology indicates significant transmission of Mycobacterium tuberculosis after casual contact with infectious tuberculosis cases. We investigated M. tuberculosis transmission after brief exposure using a T cell-based assay, the enzyme-linked-immunospot (ELISPOT) for IFN-gamma. After childbirth, a mother was diagnosed with sputum smear-positive multidrug-resistant tuberculosis. Forty-one neonates and 47 adults were present during her admission on the maternity unit; 11 weeks later, all underwent tuberculin skin testing (TST) and ELISPOT. We correlated test results with markers of exposure to the index case. The participants, who were asymptomatic and predominantly had no prior tuberculosis exposure, had 6.05 hours mean exposure (range: 0-65 hours) to the index case. Seventeen individuals, including two newborns, were ELISPOT-positive, and ELISPOT results correlated significantly with three of four predefined measures of tuberculosis exposure. For each hour sharing room air with the index case, the odds of a positive ELISPOT result increased by 1.05 (95% CI: 1.02-1.09, p = 0.003). Only four adults were TST-positive and TST results did not correlate with exposure. Thus, ELISPOT, but not TST, suggested quite extensive nosocomial transmission of multidrug-resistant M. tuberculosis after brief exposure. These results help to explain the apparent importance of casual contact for tuberculosis transmission, and may have implications for prevention.

  4. Genetic diversity of the Mycobacterium tuberculosis complex in San Luis Potosí, México.

    PubMed

    López-Rocha, Estela; Juárez-Álvarez, Julio; Riego-Ruiz, Lina; Enciso-Moreno, Leonor; Ortega-Aguilar, Francisco; Hernández-Nieto, Julián; Enciso-Moreno, José A; López-Revilla, Rubén

    2013-05-01

    Although epidemiologic and socioeconomic criteria and biomedical risk factors indicate high-priority for tuberculosis (TB) control in Mexico, molecular epidemiology studies of the disease in the country are scarce. Complete sociodemographic and clinical data were obtained from 248 of the 432 pulmonary TB (PTB) cases confirmed from 2006 to 2010 on the population under epidemiological surveillance in the state of San Luis Potosí, México. From most PTB cases with complete data Mycobacterium tuberculosis complex (MTC) isolates were recovered and their spoligotypes, lineages and families, geographic distribution and drug resistance determined. Pulmonary tuberculosis incidence ranged from 2.4 to 33.4 (cases per 100,000 inhabitants) in the six state sanitary jurisdictions that were grouped in regions of low (jurisdictions I-II-III), intermediate (jurisdictions IV-V) and high incidence (jurisdiction VI) with 6.2, 17.3 and 33.4 rates, respectively. Most patients were poor, 50-years-median-age males and housewives. Among the 237 MTC spoligotyped isolates, 232 corresponded to M. tuberculosis (104 spoligotypes in 24 clusters) and five to M. bovis. The predominant Euro-American lineage was distributed all over the state, the East-Asian lineage (Beijing family) in the capital city, the Indo-Oceanic (Manila family) in eastern localities, and M. bovis in rural localities. In San Luis Potosí TB affects mainly poor male adults and is caused by M. tuberculosis and to a minor extent by M. bovis. There is great genotypic diversity among M. tuberculosis strains, the Euro-American lineage being much more prevalent than the Indo-Oceanic and East-Asian lineages. The frequency of resistant strains is relatively low and not associated to any particular lineage.

  5. Goats challenged with different members of the Mycobacterium tuberculosis complex display different clinical pictures.

    PubMed

    Bezos, J; Casal, C; Díez-Delgado, I; Romero, B; Liandris, E; Álvarez, J; Sevilla, I A; Juan, L de; Domínguez, L; Gortázar, C

    2015-10-15

    Tuberculosis (TB) in goats (Capra hircus) is due to infection with members of the Mycobacterium tuberculosis complex (MTC), mainly Mycobacterium bovis and Mycobacterium caprae. We report a comparative experimental infection of goats with M. bovis, M. caprae and M. tuberculosis strains. We hypothesized that goats experimentally infected with different members of the MTC would display different clinical pictures. Three groups of goats were challenged with either M. bovis SB0134 (group 1, n=5), M. caprae SB0157 (group 2, n=5) and M. tuberculosis SIT58 (group 3, n=4). The highest mean total lesion score was observed in M. bovis challenged goats (mean 15.2, range 9-19), followed by those challenged with M. caprae (10.8, 2-23). The lowest score was recorded in goats challenged with M. tuberculosis (3, 1-6). Culture results coincided with the lesion scores in yielding more positive pools (7/15) in M. bovis challenged goats. By contrast, only three pools were positive from goats challenged M. tuberculosis (3/12) and with M. caprae (3/15), respectively. Differences in the performance of the intradermal and gamma-interferon (IFN-γ) tests depending of the group were observed since all goats from group 1 were diagnosed using intradermal test and these goats reacted earlier to the IFN-γ assay in comparison to the other groups. This study confirmed that goats experimentally infected with different members of the MTC display different clinical pictures and this fact may have implications for MTC maintenance and bacterial shedding. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis.

    PubMed

    Salazar, L; Fsihi, H; de Rossi, E; Riccardi, G; Rios, C; Cole, S T; Takiff, H E

    1996-04-01

    The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.

  7. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Klepp, Laura; Vazquez, Camila; Rocha, Roxana Valeria; Blanco, Federico Carlos; López, Beatriz; Bigi, Fabiana; Sasiain, María del Carmen

    2014-01-01

    Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb), formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM) and from Haarlem (H) lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB. PMID:25105140

  8. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies

    PubMed Central

    Kato-Maeda, Midori; Metcalfe, John Z.; Flores, Laura

    2014-01-01

    Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed ‘molecular epidemiology’) to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools. PMID:21366420

  9. Mycobacterium smegmatis strain for detection of Mycobacterium tuberculosis by PCR used as internal control for inhibition of amplification and for quantification of bacteria.

    PubMed Central

    Kolk, A H; Noordhoek, G T; de Leeuw, O; Kuijper, S; van Embden, J D

    1994-01-01

    For the detection of Mycobacterium tuberculosis by PCR, the IS6110 sequence was used. A modified target was constructed by insertion of 56 nucleotides in the IS6110 insertion element of Mycobacterium bovis BCG. This modified insertion sequence was integrated into the genome of Mycobacterium smegmatis, a mycobacterium species which does not contain the IS6110 element. When DNA from the modified M. smegmatis 1008 strain was amplified with IS6110-specific primers INS1 and INS2, a band of 301 bp was seen on agarose gel, whereas the PCR product of M. tuberculosis complex DNA was a 245-bp fragment with these primers. The addition of a small number of M. smegmatis 1008 cells to clinical samples before DNA purification enables the detection of problems which may be due to the loss of DNA in the isolation procedure or to the presence of inhibitors. The presence of inhibitors of the amplification reaction can be confirmed by the addition of M. smegmatis 1008 DNA after the DNA isolation procedure. Furthermore, competition between the different target DNAs of M. smegmatis 1008 DNA and M. tuberculosis complex DNA enables the estimation of the number of IS6110 elements in the clinical sample. Images PMID:8051267

  10. Multidrug-resistant tuberculosis with a history of nontuberculous Mycobacteriosis: a brief report of two cases.

    PubMed

    Morimoto, Kozo; Yoshiyama, Takashi; Okumura, Masao; Hoshino, Yoshihiko; Yoshimori, Kozo; Ogata, Hideo; Kurashima, Atsuyuki; Gemma, Akihiko; Kudoh, Shoji

    2012-01-01

    We herein report two cases of multidrug-resistant tuberculosis (MDR-TB) in patients with a history of pulmonary nontuberculous mycobacteriosis (PNTM). A 50-year-old man was diagnosed with MDR-TB five years after receiving treatment for pulmonary Mycobacterium kansasii infection. In the second patient, a 72-year-old woman, the diagnosis of PNTM was confirmed twice with two bronchial washings; she was diagnosed with MDR-TB 29 months after presenting with PNTM. It is highly possible that these two patients were already infected with tuberculosis (TB) at the time of PNTM diagnosis and acquired resistance to anti-TB drugs as a result of undergoing treatment for PNTM.

  11. Comparison of the characteristics of Mycobacterium tuberculosis isolates from sputum and lung lesions in chronic tuberculosis patients.

    PubMed

    Hong, M-S; Kim, Y; Cho, E-J; Lee, J-S; Kwak, H-K; Kim, J-H; Kim, C-T; Cho, J-S; Park, S-K; Jeon, D; Choi, Y-I; Lee, H; Eum, S-Y

    2017-11-01

    Mycobacterium tuberculosis (Mtb) in sputum originates from lung cavities in tuberculosis (TB) patients. But drug susceptibility testing (DST) of sputum Mtb can not be conducted the same as in the lung because mutagenesis of bacilli may be happening in the lung during treatment and result in the possibility of the presence of heterogeneous drug-resistant subpopulations in the different lung lesions. This could be one of the reasons for low cure rates for multi-drug resistant (MDR)-TB. We studied the resected lungs of nine surgery patients with chronic TB. The isolates isolated from the sputum and different lung lesions of each patient were tested for phenotypic DST and genotyped using restriction fragment length polymorphism (RFLP) typing method. Genetic analysis to resistance to first and second line drugs was also performed. Five of nine patients were MDR-TB and three XDR-TB. DST results for ten anti-TB drugs were in accordance among different lung lesions in eight patients. However, only three of these eight patients showed the concordance of DST with sputum. Even though the isolates were heteroresistant, genotyping them by RFLP showed the clonal population in each individual patient. Six of eight followed-up patients achieved successful cure. In conclusion, the heteroresistance between sputum and lung lesions and a clonal population without mixed infection might provide useful information in establishing treatment regimen and surgery decision for MDR- and XDR-TB.

  12. Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches

    PubMed Central

    Niemann, Stefan; Supply, Philip

    2014-01-01

    Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252

  13. Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity.

    PubMed

    Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D

    2016-12-01

    Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.

  14. Mycobacterium leprae RecA is structurally analogous but functionally distinct from Mycobacterium tuberculosis RecA protein.

    PubMed

    Patil, K Neelakanteshwar; Singh, Pawan; Harsha, Sri; Muniyappa, K

    2011-12-01

    Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Infection caused by Mycobacterium tuberculosis.

    PubMed

    Peloquin, C A; Berning, S E

    1994-01-01

    To update readers on the clinical management of infections caused by Mycobacterium tuberculosis, to provide a general description of the organism, culture and susceptibility testing, and clinical manifestations of the disease, and to provide several aspects of the treatment of the disease, including historical perspective, current approaches, and research opportunities for the future. The current medical literature, including abstracts presented at recent international meetings, is reviewed. References were identified through MEDLINE, MEDLARS II, Current Contents, and published meeting abstracts. Data regarding the epidemiology, clinical manifestations, culture and susceptibility testing, and treatment of tuberculosis are cited. Specific attention has been focused on the clinical management of patients with noncontagious infection and potentially contagious active disease (TB) caused by M. tuberculosis. Information contributing to the discussion of the topics selected by the authors is reviewed. Data supporting and disputing specific conclusions are presented. The incidence of TB is increasing in the US, despite the fact that available technologies are capable of controlling the vast majority of existing cases. Fueling the fire is the problem of coinfection with HIV and M. tuberculosis. Very few drugs are available for the treatment of TB, and few of these approach the potency of isoniazid and rifampin. Preventive therapy of patients exposed to multiple-drug-resistant M. tuberculosis (MDR-TB) is controversial and of unknown efficacy. Treatment of active disease caused by MDR-TB requires up to four times longer, is associated with increased toxicity, and is far less successful than the treatment of drug-susceptible TB. Strategies for the management of such cases are presented. The rising incidence of TB in the US reflects a breakdown in the healthcare systems responsible for controlling the disease, which reflects the past budgetary reductions. Although TB control

  16. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci.

    PubMed

    O'Toole, Ronan F; Gautam, Sanjay S

    2017-10-01

    The genome sequence of Mycobacterium tuberculosis strain H37Rv is an important and valuable reference point in the study of M. tuberculosis phylogeny, molecular epidemiology, and drug-resistance mutations. However, it is becoming apparent that use of H37Rv as a sole reference genome in analysing clinical isolates presents some limitations to fully investigating M. tuberculosis virulence. Here, we examine the presence of single locus variants and the absence of entire genes in H37Rv with respect to strains that are responsible for cases and outbreaks of tuberculosis. We discuss how these polymorphisms may affect phenotypic properties of H37Rv including pathogenicity. Based on our observations and those of other researchers, we propose that use of a single reference genome, H37Rv, is not sufficient for the detection and characterisation of M. tuberculosis virulence-related loci. We recommend incorporation of genome sequences of other reference strains, in particular, direct clinical isolates, in such analyses in addition to H37Rv. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Use of Hydrogen Peroxide Vapor for Deactivation of Mycobacterium tuberculosis in a Biological Safety Cabinet and a Room▿

    PubMed Central

    Hall, Leslie; Otter, Jonathan A.; Chewins, John; Wengenack, Nancy L.

    2007-01-01

    Mycobacterium tuberculosis is an important human pathogen that is routinely cultured in clinical and research laboratories. M. tuberculosis can contaminate surfaces and is highly resistant to disinfection. We investigated whether hydrogen peroxide vapor (HPV) is effective for the deactivation of M. tuberculosis on experimentally contaminated surfaces in a biological safety cabinet (BSC) and a room. Biological indicators (BIs) consisting of an ∼3-log10 inoculum of M. tuberculosis on stainless steel discs and a 6-log10 inoculum of Geobacillus stearothermophilus were exposed to HPV in BSC time course experiments and at 10 locations during room experiments. In three separate BSC experiments, M. tuberculosis BIs were transferred to growth media at 15-min intervals during a 180-min HPV exposure period. No M. tuberculosis BIs grew following 30 min of HPV exposure. In three separate room experiments, M. tuberculosis and G. stearothermophilus BIs were exposed to HPV for 90, 120, and 150 min, respectively. BIs for both microorganisms were deactivated in all 10 locations following 90 min of HPV exposure. HPV provides an alternative to traditional decontamination methods, such as formaldehyde fumigation, for laboratories and other areas contaminated with M. tuberculosis. PMID:17166957

  19. Identification of a New DNA Region Specific for Members of Mycobacterium tuberculosis Complex

    PubMed Central

    Magdalena, Juana; Vachée, Anne; Supply, Philip; Locht, Camille

    1998-01-01

    The successful use of DNA amplification for the detection of tuberculous mycobacteria crucially depends on the choice of the target sequence, which ideally should be present in all tuberculous mycobacteria and absent from all other bacteria. In the present study we developed a PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system named SenX3-RegX3. The senX3-regX3 IR is composed of a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). In a survey of 116 Mycobacterium tuberculosis strains characterized by different IS6110 restriction fragment length polymorphisms, 2 Mycobacterium africanum strains, 3 Mycobacterium bovis strains (including 2 BCG strains), and 1 Mycobacterium microti strain, a specific PCR fragment was amplified in all cases. This collection included M. tuberculosis strains that lack IS6110 or mtp40, two target sequences that have previously been used for the detection of M. tuberculosis. No PCR fragment was amplified when DNA from other organisms was used, giving a sensitivity of 100% and a specificity of 100% in the confidence limit of this study. The numbers of MIRUs were found to vary among strains, resulting in six different groups of strains on the basis of the size of the amplified PCR fragment. However, the vast majority of the strains (approximately 90%) fell within the same group, containing two 77-bp MIRUs followed by one 53-bp MIRU. PMID:9542912

  20. [Resistance to first-line drugs and major genotypic lineages of Mycobacterium tuberculosis in the 3 French Department of the Americas: Profiles, evolution, and trends (1995-2011)].

    PubMed

    Millet, J; Berchel, M; Prudenté, F; Streit, E; Bomer, A-G; Schuster, F; Vanhomwegen, J; Paasch, D; Galbert, I; Valery, E; Aga, R; Rastogi, N

    2014-05-01

    This is the first overview on resistant and multidrug resistant isolates of Mycobacterium tuberculosis circulating in the French Department of the Americas (Guadeloupe, Martinique, and French Guiana) over 17 years (January 1995-December 2011). A total of 1,239 cases were studied: 1,199 new cases (primary and multidrug resistance of 11.8 and 1.6% respectively), and 40 persistent (defined as cases with a previous history of positive culture over 6 months interval and whose spoligotypes remain unchanged), in which significantly higher proportions of resistance to at least isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), and multidrug resistance (17.5%, P < 0.001) were observed as compared to new cases. The 281 spoligotypes obtained showed the presence of five major lineages, T (29.9%), LAM (23.9%), Haarlem (22.1%), EAI (7.1%), and X (6.7%). Two of these lineages, X and LAM, predominate among resistant and multidrug resistant isolates respectively (X: 10.5% of resistant isolates, P = 0.04; LAM: 42.3% of multidrug resistant isolates, P = 0.02). Four of the 19 major spoligo-profiles, corresponding to SIT 20, 64, 45, and 46, were significantly associated with drug resistance. Among them, genotype SIT 20, associated with monoresistance to isoniazid and multidrug resistance, would be actively and persistently in circulation, since 1999, in French Guiana, department in which one may also observe the presence of strains of M. tuberculosis phylogeographically associated to Guiana and Suriname (SIT 131 and SIT 1340).

  1. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium tuberculosis by DeepMelt Assay.

    PubMed

    Liang, Bin; Tan, Yaoju; Li, Zi; Tian, Xueshan; Du, Chen; Li, Hui; Li, Guoli; Yao, Xiangyang; Wang, Zhongan; Xu, Ye; Li, Qingge

    2018-02-01

    Detection of heteroresistance of Mycobacterium tuberculosis remains challenging using current genotypic drug susceptibility testing methods. Here, we described a melting curve analysis-based approach, termed DeepMelt, that can detect less-abundant mutants through selective clamping of the wild type in mixed populations. The singleplex DeepMelt assay detected 0.01% katG S315T in 10 5 M. tuberculosis genomes/μl. The multiplex DeepMelt TB/INH detected 1% of mutant species in the four loci associated with isoniazid resistance in 10 4 M. tuberculosis genomes/μl. The DeepMelt TB/INH assay was tested on a panel of DNA extracted from 602 precharacterized clinical isolates. Using the 1% proportion method as the gold standard, the sensitivity was found to be increased from 93.6% (176/188, 95% confidence interval [CI] = 89.2 to 96.3%) to 95.7% (180/188, 95% CI = 91.8 to 97.8%) compared to the MeltPro TB/INH assay. Further evaluation of 109 smear-positive sputum specimens increased the sensitivity from 83.3% (20/24, 95% CI = 64.2 to 93.3%) to 91.7% (22/24, 95% CI = 74.2 to 97.7%). In both cases, the specificity remained nearly unchanged. All heteroresistant samples newly identified by the DeepMelt TB/INH assay were confirmed by DNA sequencing and even partially by digital PCR. The DeepMelt assay may fill the gap between current genotypic and phenotypic drug susceptibility testing for detecting drug-resistant tuberculosis patients. Copyright © 2018 American Society for Microbiology.

  2. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    PubMed

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  3. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren.

    PubMed

    Ozeki, Yuriko; Igarashi, Masayuki; Doe, Matsumi; Tamaru, Aki; Kinoshita, Naoko; Ogura, Yoshitoshi; Iwamoto, Tomotada; Sawa, Ryuichi; Umekita, Maya; Enany, Shymaa; Nishiuchi, Yukiko; Osada-Oka, Mayuko; Hayashi, Tetsuya; Niki, Mamiko; Tateishi, Yoshitaka; Hatano, Masaki; Matsumoto, Sohkichi

    2015-01-01

    Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904-1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0-7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904-1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904-1. Our method provides a rapid and

  4. Hydrolysis of Clavulanate by Mycobacterium tuberculosis β-Lactamase BlaC Harboring a Canonical SDN Motif

    PubMed Central

    Soroka, Daria; Li de la Sierra-Gallay, Inès; Dubée, Vincent; Triboulet, Sébastien; van Tilbeurgh, Herman; Compain, Fabrice; Ballell, Lluis; Barros, David; Mainardi, Jean-Luc

    2015-01-01

    Combinations of β-lactams with clavulanate are currently being investigated for tuberculosis treatment. Since Mycobacterium tuberculosis produces a broad spectrum β-lactamase, BlaC, the success of this approach could be compromised by the emergence of clavulanate-resistant variants, as observed for inhibitor-resistant TEM variants in enterobacteria. Previous analyses based on site-directed mutagenesis of BlaC have led to the conclusion that this risk was limited. Here, we used a different approach based on determination of the crystal structure of β-lactamase BlaMAb of Mycobacterium abscessus, which efficiently hydrolyzes clavulanate. Comparison of BlaMAb and BlaC allowed for structure-assisted site-directed mutagenesis of BlaC and identification of the G132N substitution that was sufficient to switch the interaction of BlaC with clavulanate from irreversible inactivation to efficient hydrolysis. The substitution, which restored the canonical SDN motif (SDG→SDN), allowed for efficient hydrolysis of clavulanate, with a more than 104-fold increase in kcat (0.41 s−1), without affecting the hydrolysis of other β-lactams. Mass spectrometry revealed that acylation of BlaC and of its G132N variant by clavulanate follows similar paths, involving sequential formation of two acylenzymes. Decarboxylation of the first acylenzyme results in a stable secondary acylenzyme in BlaC, whereas hydrolysis occurs in the G132N variant. The SDN/SDG polymorphism defines two mycobacterial lineages comprising rapidly and slowly growing species, respectively. Together, these results suggest that the efficacy of β-lactam–clavulanate combinations may be limited by the emergence of resistance. β-Lactams active without clavulanate, such as faropenem, should be prioritized for the development of new therapies. PMID:26149997

  5. Delamanid (OPC-67683) for treatment of multi-drug-resistant tuberculosis.

    PubMed

    Sotgiu, Giovanni; Pontali, Emanuele; Centis, Rosella; D'Ambrosio, Lia; Migliori, Giovanni Battista

    2015-03-01

    The research and development of delamanid was carried out by Otsuka Pharmaceutical Development and Commercialization (Osaka, Tokyo, Japan). It belongs to the group of nitroimidazoles. It inhibits the synthesis of mycolic acids, crucial component of the cell wall of the Mycobacterium tuberculosis complex. It is insoluble in water and its activity was proven in several in vitro and in vivo studies. Its market approval was obtained in April 2014 in Europe. Its bactericidal activity was demonstrated in individuals with drug-susceptible and drug-resistant tuberculosis (MDR- and XDR-TB). The safety and tolerability profile was good; the notified increased QT interval was not clinically relevant. It was approved for adults but ongoing clinical trials and clinical experiences have been proving its efficacy in the pediatric population.

  6. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    PubMed Central

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  7. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats.

    PubMed

    Bezos, J; Casal, C; Álvarez, J; Roy, A; Romero, B; Rodríguez-Bertos, A; Bárcena, C; Díez, A; Juste, R; Gortázar, C; Puentes, E; Aguiló, N; Martín, C; de Juan, L; Domínguez, L

    2017-05-01

    The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO 2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO 2 . Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO 2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO 2 vaccine provides some protection against TB infection acquired from natural exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Novel species including Mycobacterium fukienense sp. is found from tuberculosis patients in Fujian Province, China, using phylogenetic analysis of Mycobacterium chelonae/abscessus complex.

    PubMed

    Zhang, Yuan Yuan; Li, Yan Bing; Huang, Ming Xiang; Zhao, Xiu Qin; Zhang, Li Shui; Liu, Wen En; Wan, Kang Lin

    2013-11-01

    To identify the novel species 'Mycobacterium fukienense' sp. nov of Mycobacterium chelonae/abscessus complex from tuberculosis patients in Fujian Province, China. Five of 27 clinical Mycobacterium isolates (Cls) were previously identified as M. chelonae/abscessus complex by sequencing the hsp65, rpoB, 16S-23S rRNA internal transcribed spacer region (its), recA and sodA house-keeping genes commonly used to describe the molecular characteristics of Mycobacterium. Clinical Mycobacterium isolates were classified according to the gene sequence using a clustering analysis program. Sequence similarity within clusters and diversity between clusters were analyzed. The 5 isolates were identified with distinct sequences exhibiting 99.8% homology in the hsp65 gene. However, a complete lack of homology was observed among the sequences of the rpoB, 16S-23S rRNA internal transcribed spacer region (its), sodA, and recA genes as compared with the M. abscessus. Furthermore, no match for rpoB, sodA, and recA genes was identified among the published sequences. The novel species, Mycobacterium fukienense, is identified from tuberculosis patients in Fujian Province, China, which does not belong to any existing subspecies of M. chelonea/abscessus complex. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. rBCG30-Induced Immunity and Cross-Protection against Mycobacterium leprae Challenge Are Enhanced by Boosting with the Mycobacterium tuberculosis 30-Kilodalton Antigen 85B

    PubMed Central

    Gillis, Thomas P.; Tullius, Michael V.

    2014-01-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. PMID:25001602

  10. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    PubMed

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing.

    PubMed

    Chakravorty, Soumitesh; Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M; Davidow, Amy; Denkinger, Claudia M; Persing, David; Kwiatkowski, Robert; Jones, Martin; Alland, David

    2017-08-29

    The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and

  12. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  13. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment.

    PubMed

    Lange, Christoph; Chesov, Dumitru; Heyckendorf, Jan; Leung, Chi C; Udwadia, Zarir; Dheda, Keertan

    2018-04-11

    The emergence of antimicrobial resistance against Mycobacterium tuberculosis, the leading cause of mortality due to a single microbial pathogen worldwide, represents a growing threat to public health and economic growth. The global burden of multidrug-resistant tuberculosis (MDR-TB) has recently increased by an annual rate of more than 20%. According to the World Health Organization approximately only half of all patients treated for MDR-TB achieved a successful outcome. For many years, patients with drug-resistant tuberculosis (TB) have received standardized treatment regimens, thereby accelerating the development of MDR-TB through drug-specific resistance amplification. Comprehensive drug susceptibility testing (phenotypic and/or genotypic) is necessary to inform physicians about the best drugs to treat individual patients with tailor-made treatment regimens. Phenotypic drug resistance can now often, but with variable sensitivity, be predicted by molecular drug susceptibility testing based on whole genome sequencing, which in the future could become an affordable method for the guidance of treatment decisions, especially in high-burden/resource-limited settings. More recently, MDR-TB treatment outcomes have dramatically improved with the use of bedaquiline-based regimens. Ongoing clinical trials with novel and repurposed drugs will potentially further improve cure-rates, and may substantially decrease the duration of MDR-TB treatment necessary to achieve relapse-free cure. © 2018 Asian Pacific Society of Respirology.

  14. INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE

    PubMed Central

    Grzegorzewicz, Anna E.; Pham, Ha; Gundi, Vijay A. K. B.; Scherman, Michael S.; North, Elton J.; Hess, Tamara; Jones, Victoria; Gruppo, Veronica; Born, Sarah E. M.; Korduláková, Jana; Chavadi, Sivagami Sundaram; Morisseau, Christophe; Lenaerts, Anne J.; Lee, Richard E.; McNeil, Michael R.; Jackson, Mary

    2011-01-01

    New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane. PMID:22344175

  15. Alveolar Epithelial Cells in Mycobacterium tuberculosis Infection: Active Players or Innocent Bystanders?

    PubMed

    Scordo, Julia M; Knoell, Daren L; Torrelles, Jordi B

    2016-01-01

    Tuberculosis (TB) is a disease that kills one person every 18 s. TB remains a global threat due to the emergence of drug-resistant Mycobacterium tuberculosis (M.tb) strains and the lack of an efficient vaccine. The ability of M.tb to persist in latency, evade recognition following seroconversion, and establish resistance in vulnerable populations warrants closer examination. Past and current research has primarily focused on examination of the role of alveolar macrophages and dendritic cells during M.tb infection, which are critical in the establishment of the host response during infection. However, emerging evidence indicates that the alveolar epithelium is a harbor for M.tb and critical during progression to active disease. Here we evaluate the relatively unexplored role of the alveolar epithelium as a reservoir and also its capacity to secrete soluble mediators upon M.tb exposure, which influence the extent of infection. We further discuss how the M.tb-alveolar epithelium interaction instigates cell-to-cell crosstalk that regulates the immune balance between a proinflammatory and an immunoregulatory state, thereby prohibiting or allowing the establishment of infection. We propose that consideration of alveolar epithelia provides a more comprehensive understanding of the lung environment in vivo in the context of host defense against M.tb. © 2015 S. Karger AG, Basel.

  16. Alveolar epithelial cells in Mycobacterium tuberculosis infection: Active Players or Innocent Bystanders

    PubMed Central

    Scordo, Julia M.; Knoell, Daren L.; Torrelles, Jordi B.

    2015-01-01

    Tuberculosis (TB) is a disease that kills one person every 18 seconds. TB remains a global threat due to the emergence of drug resistance Mycobacterium tuberculosis (M.tb) strains and the lack of an efficient vaccine. The ability of M.tb to persist in latency, evade recognition following sero-conversion and establish resistance in vulnerable populations warrants closer examination. Past and current research has primarily focused on examination of the role of alveolar macrophages and dendritic cells during M.tb infection, which are critical in the establishment of the host response during infection. However, emerging evidence indicates that the alveolar epithelium is a harbor for M.tb and critical during progression to active disease. Here we evaluate the relatively unexplored role of the alveolar epithelium as a reservoir and also its capacity to secrete soluble mediators upon M.tb exposure that influence the extent of infection. We further discuss how the M.tb-alveolar epithelia interaction instigate cell to cell crosstalk that regulates immune balance between a pro-inflammatory or immunoregulatory state thereby prohibiting or allowing the establishment of infection. We propose that consideration of the alveolar epithelia provides a more comprehensive understanding of the lung environment in vivo in the context of host defense against M.tb. PMID:26384325

  17. Rapid susceptibility testing of Mycobacterium avium complex and Mycobacterium tuberculosis isolated from AIDS patients

    NASA Technical Reports Server (NTRS)

    Dhople, Arvind M.

    1994-01-01

    In ominous projections issued by both U.S. Public Health Service and the World Health Organization, the epidemic of HIV infection will continue to rise more rapidly worldwide than predicted earlier. The AIDS patients are susceptible to diseases called opportunistic infections of which tuberculosis and Mycobacterium avium complex (MAC) infection are most common. This has created an urgent need to uncover new drugs for the treatment of these infections. In the seventies, NASA scientists at Goddard Space Flight Center, Greenbelt, MD, had adopted a biochemical indicator, adenosine triphosphate (ATP), to detect presence of life in extraterrestrial space. We proposed to develop ATP assay technique to determine sensitivity of antibacterial compounds against MAC and M. tuberculosis.

  18. Assessment of the probability of introducing Mycobacterium tuberculosis into Danish cattle herds.

    PubMed

    Foddai, Alessandro; Nielsen, Liza Rosenbaum; Krogh, Kaspar; Alban, Lis

    2015-11-01

    Tuberculosis is a zoonosis caused by Mycobacterium spp. International trade in cattle is regulated with respect to Mycobacterium bovis (M. bovis) but not Mycobacterium tuberculosis (M. tuberculosis), despite that cattle can become infected with both species. In this study we estimated the annual probability (PIntro) of introducing M. tuberculosis into the Danish cattle population, by the import of cattle and/or by immigrants working in Danish cattle herds. Data from 2013 with date, number, and origin of imported live cattle were obtained from the Danish cattle database. Information on immigrants working in Danish cattle herds was obtained through a questionnaire sent to Danish cattle farmers. The gained inputs were fed into three stochastic scenario trees to assess the PIntro for the current and alternative test-and-manage strategies, such as testing of imported animals and/or testing immigrant workers with the tuberculin skin test. We considered the population of Danish farmers and practitioners free of tuberculosis, because in Denmark, the incidence of the disease in humans is low and primarily related to immigrants and socially disadvantaged people. The median annual probability of introducing M. tuberculosis into the Danish cattle population due to imported live cattle was 0.008% (90% P.I.: 0.0007%; 0.03%), while the probability due to immigrant workers was 4.1% (90% P.I.: 0.8%; 12.1%). The median combined probability (PIntro) due to imported cattle plus workers was 4.1% (90% P.I.: 0.8%; 12.6%). Hence, on average at least one introduction each 24 (90% P.I.: 8; 125) years could be expected. Imported live cattle appeared to play a marginal role on the overall annual PIntro, because they represented only approximately 0.2% of the median annual probability. By testing immigrant workers the overall annual PIntro could be reduced to 0.2% (90% P.I.: 0.04%; 0.7%). Thus, testing of immigrant workers could be considered as a risk mitigation strategy to markedly reduce

  19. Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care.

    PubMed

    Mani, Vigneshwaran; Wang, ShuQi; Inci, Fatih; De Libero, Gennaro; Singhal, Amit; Demirci, Utkan

    2014-11-30

    Infectious diseases are the leading cause of death worldwide. Among them, tuberculosis (TB) remains a major threat to public health, exacerbated by the emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb). MDR-Mtb strains are resistant to first-line anti-TB drugs such as isoniazid and rifampicin; whereas XDR-Mtb strains are resistant to additional drugs including at least to any fluoroquinolone and one of the second-line anti-TB injectable drugs such as kanamycin, capreomycin, or amikacin. Clinically, these strains have significantly impacted the management of TB in high-incidence developing countries, where systemic surveillance of TB drug resistance is lacking. For effective management of TB on-site, early detection of drug resistance is critical to initiate treatment, to reduce mortality, and to thwart drug-resistant TB transmission. In this review, we discuss the diagnostic challenges to detect drug-resistant TB at the point-of-care (POC). Moreover, we present the latest advances in nano/microscale technologies that can potentially detect TB drug resistance to improve on-site patient care. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genetic diversity of the Mycobacterium tuberculosis Complex in San Luis Potosí, México

    PubMed Central

    2013-01-01

    Background Although epidemiologic and socioeconomic criteria and biomedical risk factors indicate high-priority for tuberculosis (TB) control in Mexico, molecular epidemiology studies of the disease in the country are scarce. Methods Complete sociodemographic and clinical data were obtained from 248 of the 432 pulmonary TB (PTB) cases confirmed from 2006 to 2010 on the population under epidemiological surveillance in the state of San Luis Potosí, México. From most PTB cases with complete data Mycobacterium tuberculosis complex (MTC) isolates were recovered and their spoligotypes, lineages and families, geographic distribution and drug resistance determined. Results Pulmonary tuberculosis incidence ranged from 2.4 to 33.4 (cases per 100,000 inhabitants) in the six state sanitary jurisdictions that were grouped in regions of low (jurisdictions I-II-III), intermediate (jurisdictions IV-V) and high incidence (jurisdiction VI) with 6.2, 17.3 and 33.4 rates, respectively. Most patients were poor, 50-years-median-age males and housewives. Among the 237 MTC spoligotyped isolates, 232 corresponded to M. tuberculosis (104 spoligotypes in 24 clusters) and five to M. bovis. The predominant Euro-American lineage was distributed all over the state, the East-Asian lineage (Beijing family) in the capital city, the Indo-Oceanic (Manila family) in eastern localities, and M. bovis in rural localities. Conclusions In San Luis Potosí TB affects mainly poor male adults and is caused by M. tuberculosis and to a minor extent by M. bovis. There is great genotypic diversity among M. tuberculosis strains, the Euro-American lineage being much more prevalent than the Indo-Oceanic and East-Asian lineages. The frequency of resistant strains is relatively low and not associated to any particular lineage. PMID:23635381

  1. Tuberculosis in Antelopes in a Zoo in Poland--Problem of Public Health.

    PubMed

    Krajewska, Monika; Załuski, Michał; Zabost, Anna; Orłowska, Blanka; Augustynowicz-Kopeć, Ewa; Anusz, Krzysztof; Lipiec, Marek; Weiner, Marcin; Szulowski, Krzysztof

    2015-01-01

    Bovine tuberculosis is an infectious disease that occurs in many species of both domestic and wild animals, as well as those held in captivity. The etiological factor is the acid resistant bacillus (Mycobacterium bovis or Mycobacterium caprae), which is characterized by the major pathogenicity among mycobacteria belonging to the Mycobacterium tuberculosis complex. The material from 8 antelopes from the zoo, suspected for tuberculosis were examined, and M. bovis strains were isolated from 6 of them. The spoligotyping method showing spoligo pattern 676763777777600. In Poland, this spoligotype has not been observed so far.

  2. Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti.

    PubMed

    Godreuil, S; Renaud, F; Choisy, M; Depina, J J; Garnotel, E; Morillon, M; Van de Perre, P; Bañuls, A L

    2010-07-01

    Djibouti is an East African country with a high tuberculosis incidence. This study was conducted over a 2-month period in Djibouti, during which 62 consecutive patients with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using mycobacterial interspersed repetitive-unit variable-number tandem-repeat typing and spoligotyping, was performed. The genetic and phylogenetic analysis revealed only three major families (Central Asian, East African Indian and T). The high diversity and linkage disequilibrium within each family suggest a long period of clonal evolution. A Bayesian approach shows that the phylogenetic structure observed in our sample of 62 isolates is very likely to be representative of the phylogenetic structure of the M. tuberculosis population in the total number of TB cases.

  3. Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU).

    PubMed

    Li, Chunyan; Li, Qiming; Zhang, Yuan; Gong, Zhen; Ren, Sai; Li, Ping; Xie, Jianping

    2017-03-01

    Lipids and lipases/esterases are essential for Mycobacterium tuberculosis (Mtb) survival and persistence, even virulence. Mycobacterium tuberculosis H37Rv Rv1076 (LipU), a member of lipase family, is homologous to the human Hormone Sensitive Lipase (HSL) based on the presence of conserved motif 'GXSXG'. To define the enzymatic characteristics of rv1076, the gene was cloned, and expressed in Escherichia coli. The protein was purified for enzymatic characterization. LipU showed high specific activity for the hydrolysis of short carbon chain substrates with optimal activity at 40°C/pH 8.0 and stability at low temperature and near-neutral pH. The specific activity, Km and Vmax of LipU was calculated to 176.7U/mg, 1.73μM and 62.24μM/min respectively. Ionic detergents can inhibit its activity. The active-site residues of LipU were determined to be Ser140, Asp244 and His269 by site-directed mutagenesis. The upregulation of Mycobacterium tuberculosis rv1076 under nutritive stress implicates a role in starvation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Inhibition of IL-17A by secukinumab shows no evidence of increased Mycobacterium tuberculosis infections

    PubMed Central

    Kammüller, Michael; Tsai, Tsen-Fang; Griffiths, Christopher EM; Kapoor, Nidhi; Kolattukudy, Pappachan E; Brees, Dominique; Chibout, Salah-Dine; Safi Jr, Jorge; Fox, Todd

    2017-01-01

    Secukinumab, a fully human monoclonal antibody that selectively neutralizes interleukin-17A (IL-17A), has been shown to have significant efficacy in the treatment of moderate to severe psoriasis, psoriatic arthritis and ankylosing spondylitis. Blocking critical mediators of immunity may carry a risk of increased opportunistic infections. Here we present clinical and in vitro findings examining the effect of secukinumab on Mycobacterium tuberculosis infection. We re-assessed the effect of secukinumab on the incidence of acute tuberculosis (TB) and reactivation of latent TB infection (LTBI) in pooled safety data from five randomized, double-blind, placebo-controlled, phase 3 clinical trials in subjects with moderate to severe plaque psoriasis. No cases of TB were observed after 1 year. Importantly, in subjects with a history of pulmonary TB (but negative for interferon-γ release and receiving no anti-TB medication) or positive for latent TB (screened by interferon-γ release assay and receiving anti-TB medication), no cases of active TB were reported. Moreover, an in vitro study examined the effect of the anti-tumor necrosis factor-α (TNFα) antibody adalimumab and secukinumab on dormant M. tuberculosis H37Rv in a novel human three-dimensional microgranuloma model. Auramine-O, Nile red staining and rifampicin resistance of M. tuberculosis were measured. In vitro, anti-TNFα treatment showed increased staining for Auramine-O, decreased Nile red staining and decreased rifampicin resistance, indicative of mycobacterial reactivation. In contrast, secukinumab treatment was comparable to control indicating a lack of effect on M. tuberculosis dormancy. To date, clinical and preclinical investigations with secukinumab found no evidence of increased M. tuberculosis infections. PMID:28868144

  5. Consequences of genomic diversity in Mycobacterium tuberculosis

    PubMed Central

    Coscolla, Mireia; Gagneux, Sebastien

    2014-01-01

    The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions. PMID:25453224

  6. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo

    PubMed Central

    Malm, Sven; Linguissi, Laure S. Ghoma; Tekwu, Emmanuel M.; Vouvoungui, Jeannhey C.; Kohl, Thomas A.; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K.; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine

    2017-01-01

    Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC. PMID:28221129

  7. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo.

    PubMed

    Malm, Sven; Linguissi, Laure S Ghoma; Tekwu, Emmanuel M; Vouvoungui, Jeannhey C; Kohl, Thomas A; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine; Niemann, Stefan

    2017-03-01

    Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.

  8. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.

    PubMed

    Pacl, Hayden T; Reddy, Vineel P; Saini, Vikram; Chinta, Krishna C; Steyn, Adrie J C

    2018-07-01

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.

  9. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  10. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis.

    PubMed

    Kaur, Divneet; Mathew, Shalu; Nair, Chinchu G S; Begum, Azitha; Jainanarayan, Ashwin K; Sharma, Mukta; Brahmachari, Samir K

    2017-12-21

    The problem of drug resistance and bacterial persistence in tuberculosis is a cause of global alarm. Although, the UN's Sustainable Development Goals for 2030 has targeted a Tb free world, the treatment gap exists and only a few new drug candidates are in the pipeline. In spite of large information from medicinal chemistry to 'omics' data, there has been a little effort from pharmaceutical companies to generate pipelines for the development of novel drug candidates against the multi drug resistant Mycobacterium tuberculosis. In the present study, we describe an integrated methodology; utilizing systems level information to optimize ligand selection to lower the failure rates at the pre-clinical and clinical levels. In the present study, metabolic targets (Rv2763c, Rv3247c, Rv1094, Rv3607c, Rv3048c, Rv2965c, Rv2361c, Rv0865, Rv0321, Rv0098, Rv0390, Rv3588c, Rv2244, Rv2465c and Rv2607) in M. tuberculosis, identified using our previous Systems Biology and data-intensive genome level analysis, have been used to design potential lead molecules, which are likely to be non-toxic. Various in silico drug discovery tools have been utilized to generate small molecular leads for each of the 15 targets with available crystal structures. The present study resulted in identification of 20 novel lead molecules including 4 FDA approved drugs (droxidropa, tetroxoprim, domperidone and nemonapride) which can be further taken for drug repurposing. This comprehensive integrated methodology, with both experimental and in silico approaches, has the potential to not only tackle the MDR form of Mtb but also the most important persister population of the bacterium, with a potential to reduce the failures in the Tb drug discovery. We propose an integrated approach of systems and structural biology for identifying targets that address the high attrition rate issue in lead identification and drug development We expect that this system level analysis will be applicable for identification of drug

  11. Interaction of Erp Protein of Mycobacterium tuberculosis with Rv2212 Enhances Intracellular Survival of Mycobacterium smegmatis.

    PubMed

    Ganaie, Arsheed Ahmad; Trivedi, Garima; Kaur, Amanpreet; Jha, Sidharth Shankar; Anand, Shashi; Rana, Vibhuti; Singh, Amit; Kumar, Shekhar; Sharma, Charu

    2016-10-15

    The Mycobacterium tuberculosis exported repetitive protein (RvErp) is a crucial virulence-associated factor as determined by its role in the survival and multiplication of mycobacteria in cultured macrophages and in vivo Although attempts have been made to understand the function of Erp protein, its exact role in Mycobacterium pathogenesis is still elusive. One way to determine this is by searching for novel interactions of RvErp. Using a yeast two-hybrid assay, an adenylyl cyclase (AC), Rv2212, was found to interact with RvErp. The interaction between RvErp and Rv2212 is direct and occurs at the endogenous level. The Erp protein of Mycobacterium smegmatis (MSMEG_6405, or MsErp) interacts neither with Rv2212 nor with Ms_4279, the M. smegmatis homologue of Rv2212. Deletion mutants of Rv2212 revealed its adenylyl cyclase domain to be responsible for the interaction. RvErp enhances Rv2212-mediated cyclic AMP (cAMP) production. Also, the biological significance of the interaction between RvErp and Rv2212 was demonstrated by the enhanced survival of M. smegmatis within THP-1 macrophages. Taken together, these studies address a novel mechanism by which Erp executes its function. RvErp is one of the important virulence factors of M. tuberculosis This study describes a novel function of RvErp protein of M. tuberculosis by identifying Rv2212 as its interacting protein. Rv2212 is an adenylyl cyclase (AC) and produces cAMP, one of the prime second messengers that regulate the intracellular survival of mycobacteria. Therefore, the significance of investigating novel interactions of RvErp is paramount in unraveling the mechanisms governing the intracellular survival of mycobacteria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Total hip replacement infected with Mycobacterium tuberculosis complicated by Addison disease and psoas muscle abscess: a case report.

    PubMed

    De Nardo, Pasquale; Corpolongo, Angela; Conte, Aristide; Gentilotti, Elisa; Narciso, Pasquale

    2012-01-10

    Prosthetic joint infection due to Mycobacterium tuberculosis is occasionally encountered in clinical practice. To the best of our knowledge, this is the first report of a prosthetic joint infection due to Mycobacterium tuberculosis complicated by psoas abscesses and secondary Addison disease. A 67-year-old immunocompetent Caucasian woman underwent total left hip arthroplasty because of osteoarthritis. After 18 months, she underwent arthroplasty revision for a possible prosthetic infection. Periprosthetic tissue specimens for bacteria were negative, and empirical antibiotic therapy was unsuccessful. She was then admitted to our department because of complications arising 22 months after arthroplasty. A physical examination revealed a sinus tract overlying her left hip and skin and mucosal pigmentation. Her levels of C-reactive protein, basal cortisol, adrenocorticotropic hormone, and sodium were out of normal range. Results of the tuberculin skin test and QuantiFERON-TB Gold test were positive. Computed tomography revealed a periprosthetic abscess and the inclusion of the left psoas muscle. Results of microbiological tests were negative, but polymerase chain reaction of a specimen taken from the hip fistula was positive for Mycobacterium tuberculosis. Our patient's condition was diagnosed as prosthetic joint infection and muscle psoas abscess due to Mycobacterium tuberculosis and secondary Addison disease. She underwent standard treatment with rifampicin, ethambutol, isoniazid, and pyrazinamide associated with hydrocortisone and fludrocortisone. At 15 months from the beginning of therapy, she was in good clinical condition and free of symptoms. Prosthetic joint infection with Mycobacterium tuberculosis is uncommon. A differential diagnosis of tuberculosis should be considered when dealing with prosthetic joint infection, especially when repeated smears and histology examination from infected joints are negative. Clinical outcomes of prosthetic joint infection by

  13. Interaction of Mycobacterium tuberculosis with human respiratory mucosa.

    PubMed

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Ratliff, T L; Wilson, R

    2002-01-01

    Endobronchial infection is associated with pulmonary tuberculosis in the majority of cases. We have investigated the adherence of Mycobacterium tuberculosis to the human respiratory mucosa. Organ cultures constructed with human tissue were infected with M. tuberculosis in the presence or absence of mycobacterial fibronectin attachment cell surface proteins and examined by scanning electron microscopy. M. tuberculosis adhered mainly to extracellular matrix (ECM) in areas of mucosal damage, but not to ciliated mucosa, intact extruded cells, basement membrane or collagen fibres. Bacteria also adhered to fibrous but not globular mucus and occasionally to healthy unciliated mucosa, open tight junctions and to extruded cells that had degenerated, exposing their contents. There was a significant reduction (p<0.05) in the number of bacteria adhering to ECM after pre-incubation of bacteria with fibronectin and after pre-incubation of the tissue with M. avium fibronectin attachment protein (FAP) and M. bovis antigen 85B protein, in a concentration dependent manner. The combined effect of FAP and antigen 85B protein was significantly greater than either protein alone. Bacterial adherence to fibrous mucus was not influenced by fibronectin. We conclude that M. tuberculosis adheres to ECM in areas of mucosal damage at least in part via FAP and antigen 85B protein.

  14. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    PubMed

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  15. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  16. A Mycobacterium tuberculosis Cytochrome bd Oxidase Mutant Is Hypersensitive to Bedaquiline

    PubMed Central

    Hartman, Travis E.

    2014-01-01

    ABSTRACT The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. PMID:25028424

  17. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  18. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy.

    PubMed

    Mieras, Liesbeth; Anthony, Richard; van Brakel, Wim; Bratschi, Martin W; van den Broek, Jacques; Cambau, Emmanuelle; Cavaliero, Arielle; Kasang, Christa; Perera, Geethal; Reichman, Lee; Richardus, Jan Hendrik; Saunderson, Paul; Steinmann, Peter; Yew, Wing Wai

    2016-06-08

    Post-exposure prophylaxis (PEP) for leprosy is administered as one single dose of rifampicin (SDR) to the contacts of newly diagnosed leprosy patients. SDR reduces the risk of developing leprosy among contacts by around 60 % in the first 2-3 years after receiving SDR. In countries where SDR is currently being implemented under routine programme conditions in defined areas, questions were raised by health authorities and professional bodies about the possible risk of inducing rifampicin resistance among the M. tuberculosis strains circulating in these areas. This issue has not been addressed in scientific literature to date. To produce an authoritative consensus statement about the risk that SDR would induce rifampicin-resistant tuberculosis, a meeting was convened with tuberculosis (TB) and leprosy experts. The experts carefully reviewed and discussed the available evidence regarding the mechanisms and risk factors for the development of (multi) drug-resistance in M. tuberculosis with a view to the special situation of the use of SDR as PEP for leprosy. They concluded that SDR given to contacts of leprosy patients, in the absence of symptoms of active TB, poses a negligible risk of generating resistance in M. tuberculosis in individuals and at the population level. Thus, the benefits of SDR prophylaxis in reducing the risk of developing leprosy in contacts of new leprosy patients far outweigh the risks of generating drug resistance in M. tuberculosis.

  19. Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by Recombinase Polymerase Amplification.

    PubMed

    Law, I L G; Loo, J F C; Kwok, H C; Yeung, H Y; Leung, C C H; Hui, M; Wu, S Y; Chan, H S; Kwan, Y W; Ho, H P; Kong, S K

    2018-03-01

    With the emergence of multi- and extensive-drug (MDR/XDR) resistant Mycobacterium tuberculosis (M. tb), tuberculosis (TB) persists as one of the world's leading causes of death. Recently, isothermal DNA amplification methods received much attention due to their ease of translation onto portable point-of-care (POC) devices for TB diagnosis. In this study, we aimed to devise a simple yet robust detection method for M. tb. Amongst the numerous up-and-coming isothermal techniques, Recombinase Polymerase Amplification (RPA) was chosen for a real-time detection of TB with or without MDR. In our platform, real-time RPA (RT-RPA) was integrated on a lab-on-a-disc (LOAD) with on-board power to maintain temperature for DNA amplification. Sputa collected from healthy volunteers were spiked with respective target M. tb samples for testing. A limit of detection of 10 2  colony-forming unit per millilitre in 15 min was achieved, making early detection and differentiation of M. tb strains highly feasible in extreme POC settings. Our RT-RPA LOAD platform has also been successfully applied in the differentiation of MDR-TB from H37Ra, an attenuated TB strain. In summary, a quantitative RT-RPA on LOAD assay with a high level of sensitivity was developed as a foundation for further developments in medical bedside and POC diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Risk factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil.

    PubMed

    Fregona, Geisa; Cosme, Lorrayne Belique; Moreira, Cláudia Maria Marques; Bussular, José Luis; Dettoni, Valdério do Valle; Dalcolmo, Margareth Pretti; Zandonade, Eliana; Maciel, Ethel Leonor Noia

    2017-04-27

    To analyze the prevalence and factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil. This is a cross-sectional study of cases of tuberculosis tested for first-line drugs (isoniazid, rifampicin, pyrazinamide, ethambutol, and streptomycin) in Espírito Santo between 2002 and 2012. We have used laboratory data and registration of cases of tuberculosis - from the Sistema Nacional de Agravos de Notificação and Sistema para Tratamentos Especiais de Tuberculose. Individuals have been classified as resistant and non-resistant and compared in relation to the sociodemographic, clinical, and epidemiological variables. Some variables have been included in a logistic regression model to establish the factors associated with resistance. In the study period, 1,669 individuals underwent anti-tuberculosis drug susceptibility testing. Of these individuals, 10.6% showed resistance to any anti-tuberculosis drug. The rate of multidrug resistance observed, that is, to rifampicin and isoniazid, has been 5%. After multiple analysis, we have identified as independent factors associated with resistant tuberculosis: history of previous treatment of tuberculosis [recurrence (OR = 7.72; 95%CI 4.24-14.05) and re-entry after abandonment (OR = 3.91; 95%CI 1.81-8.43)], smoking (OR = 3.93; 95%CI 1.98-7.79), and positive culture for Mycobacterium tuberculosis at the time of notification of the case (OR = 3.22; 95%CI 1.15-8.99). The partnership between tuberculosis control programs and health teams working in the network of Primary Health Care needs to be strengthened. This would allow the identification and monitoring of individuals with a history of previous treatment of tuberculosis and smoking. Moreover, the expansion of the offer of the culture of tuberculosis and anti-tuberculosis drug susceptibility testing would provide greater diagnostic capacity for the resistant types in Espírito Santo. Analisar a prevalência e fatores associados à tuberculose resistente