Science.gov

Sample records for resistant pseudomonas aeruginosa

  1. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  2. Transferable imipenem resistance in Pseudomonas aeruginosa.

    PubMed Central

    Watanabe, M; Iyobe, S; Inoue, M; Mitsuhashi, S

    1991-01-01

    We isolated an imipenem-resistant strain, GN17203, of Pseudomonas aeruginosa. The strain produced a beta-lactamase that hydrolyzed imipenem. The beta-lactamase was encoded by a 31-MDa plasmid, pMS350, which belongs to incompatibility group P-9. The plasmic conferred resistance to beta-lactams, gentamicin, and sulfonamide and was transferable by conjugation to P. aeruginosa but not to Escherichia coli. The molecular weight of the purified enzyme was estimated to be 28,000, and the isoelectric point was 9.0. The enzyme showed a broad substrate profile, hydrolyzing imipenem, oxyiminocephalosporins, 7-methoxycephalosporins, and penicillins. The enzyme activity was inhibited by EDTA, iodine, p-chloromercuribenzoate, CuSO4, and HgCl2 but not by clavulanic acid or sulbactam. Images PMID:1901695

  3. Chlorinated phenol-induced physiological antibiotic resistance in Pseudomonas aeruginosa.

    PubMed

    Muller, Jocelyn Fraga; Ghosh, Sudeshna; Ikuma, Kaoru; Stevens, Ann M; Love, Nancy G

    2015-11-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump. The current study describes increases in the antibiotic resistance of PAO1 upon exposure to PCP and other chlorinated organics, including triclosan. Only exposure to chlorinated phenols induced the mexAB-oprM-mediated antibiotic-resistant phenotype. Thus, chlorinated phenols have the potential to contribute to transient phenotypic increases of antibiotic resistance that are relevant when both compounds are present in the environment. PMID:26403431

  4. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa. PMID:17893761

  5. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    PubMed Central

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  6. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  7. Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzeri to antibacterial agents

    PubMed Central

    Russell, A. D.; Mills, A. P.

    1974-01-01

    A comparison has been made of the sensitivities to various antibiotic and non-antibiotic substances of some strains of Pseudomonas aeruginosa and P. stutzeri, the latter including strains isolated from eye and other cosmetic products and from other sources. Whereas P. aeruginosa strains showed a high resistance to cetrimide and to benzalkonium chloride, the P. stutzeri strains were generally more sensitive to these and to chlorhexidine. The P. stutzeri strains were also more sensitive to the various antibiotics tested. The loss of the ability to transfer an R factor by two strains of P. aeruginosa caused no significant change in their drug sensitivity pattern. PMID:4369876

  8. Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates

    PubMed Central

    Pai, Hyunjoo; Kim, Jong-Won; Kim, Jungmin; Lee, Ji Hyang; Choe, Kang Won; Gotoh, Naomasa

    2001-01-01

    In order to define the contributions of the mechanisms for carbapenem resistance in clinical strains of Pseudomonas aeruginosa, we investigated the presence of OprD, the expressions of the MexAB-OprM and MexEF-OprN systems, and the production of the β-lactamases for 44 clinical strains. All of the carbapenem-resistant isolates showed the loss of or decreased levels of OprD. Three strains overexpressed the MexAB-OprM efflux system by carrying mutations in mexR. These three strains had the amino acid substitution in MexR protein, Arg (CGG) → Gln (CAG), at the position of amino acid 70. None of the isolates, however, expressed the MexEF-OprN efflux system. For the characterization of β-lactamases, at least 13 isolates were the depressed mutants, and 12 strains produced secondary β-lactamases. Based on the above resistance mechanisms, the MICs of carbapenem for the isolates were analyzed. The MICs of carbapenem were mostly determined by the expression of OprD. The MICs of meropenem were two- to four-fold increased for the isolates which overexpressed MexAB-OprM in the background of OprD loss. However, the elevated MICs of meropenem for some individual isolates could not be explained. These findings suggested that other resistance mechanisms would play a role in meropenem resistance in clinical isolates of P. aeruginosa. PMID:11158744

  9. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    PubMed

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  10. Genes related to chromate resistance by Pseudomonas aeruginosa PAO1.

    PubMed

    Rivera, Sonia L; Vargas, Eréndira; Ramírez-Díaz, Martha I; Campos-García, Jesús; Cervantes, Carlos

    2008-08-01

    Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms. PMID:18446454

  11. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  12. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  13. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  14. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  15. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies.

    PubMed

    El Zowalaty, Mohamed E; Al Thani, Asmaa A; Webster, Thomas J; El Zowalaty, Ahmed E; Schweizer, Herbert P; Nasrallah, Gheyath K; Marei, Hany E; Ashour, Hossam M

    2015-01-01

    Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines. PMID:26439366

  16. Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms.

    PubMed

    Vikram, Amit; Bomberger, Jennifer M; Bibby, Kyle J

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms. PMID:25824217

  17. Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms

    PubMed Central

    Vikram, Amit; Bomberger, Jennifer M.

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms. PMID:25824217

  18. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  19. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  20. [In-vitro antibiotic resistance of hospital and non-hospital strains of Pseudomonas aeruginosa].

    PubMed

    Ceddia, T; Marinucci, M C; Parravano, N

    1979-03-30

    The AA report about the resistence towards antibiotics of 42 stocks of Pseudomonas aeruginosa isolated from hospitalized patients and of 18 stocks isolated from non hospitalized patients. The most active antibiotics are Gentamicine, Neomicine and Streptomicine. Interestingly towards Tobramicine no resistence has been detected. The stocks isolated from hospitalized patients have generally shown a higher resistence. PMID:121701

  1. Metallo‐beta‐lactamases among imipenem‐resistant Pseudomonas aeruginosa in a brazilian university hospital

    PubMed Central

    Franco, Maria Renata Gomes; Caiaffa‐Filho, Hélio Hehl; Burattini, Marcelo Nascimento; Rossi, Flávia

    2010-01-01

    INTRODUCTION: Imipenem‐resistant Pseudomonas aeruginosa resulting from metallo‐β‐lactamases has been reported to be an important cause of nosocomial infection and is a critical therapeutic problem worldwide, especially in the case of bacteremia. OBJECTIVES: To determine the frequency of metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa isolates and to compare methods of phenotypic and molecular detection. METHODS: During 2006, 69 imipenem‐resistant Pseudomonas aeruginosa samples were isolated from blood and tested for metallo‐β‐lactamase production using phenotypic methods. Minimal Inhibitory Concentratrions (MIC) (µg/mL) was determined with commercial microdilution panels. Pulsed Field Gel Electrophoresis (PFGE) was performed among metallo‐β‐lactamase producers. RESULTS: Of all the blood isolates, 34.5% were found to be imipenem‐resistant Pseudomonas aeruginosa. Positive phenotypic tests for metallo‐β‐lactamases ranged from 28%‐77%, and Polymerase Chain Reaction (PCR) were positive in 30% (of note, 81% of those samples were blaSPM‐1 and 19% were blaVIM‐2). Ethylenediamine tetracetic acid (EDTA) combinations for the detected enzymes had low kappa values; thus, care should be taken when use it as a phenotypic indicator of MBL. Despite a very resistant antibiogram, four isolates demonstrated the worrisome finding of a colistin MIC in the resistant range. PFGE showed a clonal pattern. CONCLUSION: Metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa were detected in 30.4% of imipenem‐resistant Pseudomonas aeruginosa isolates. This number might have been higher if other genes were included. SPM‐1 was the predominant enzyme found. Phenotypic tests with low kappa values could be misleading when testing for metallo‐β‐lactamases. Polymerase Chain Reaction detection remains the gold standard. PMID:21049207

  2. Antimicrobial resistance and molecular typing of pseudomonas aeruginosa isolated from surgical wounds in Lagos, Nigeria.

    PubMed

    Smith, Stella; Ganiyu, Olaniyi; John, Rachael; Fowora, Muinah; Akinsinde, Kehinde; Odeigah, Peter

    2012-01-01

    The aim of the study was to determine the resistance patterns of Pseudomonas aeruginosa isolates recovered from patients with surgical wounds in hospitals and also to investigate their epidemiological relatedness using molecular typing techniques. Twenty Pseudomonas sp. isolated from surgical wounds were subjected to antibiotic susceptibility testing by disk diffusion, plasmid profile, SDS-PAGE and PCR using the parC, gyr A gene and RAPD using the 1254 primer. The isolates showed resistance to 12 different antibiotics with six being 100% resistant. Plasmids were detected in 16 (80%) of the isolates. The RAPD-PCR using the primer 1254, SDS-PAGE classified the 20 Pseudomonas spp. into 5 and 6 types respectively. Pseudomona aeruginosa strains isolated from surgical wounds were generally resistant to a broad range of antibiotics and this is rather worrisome. The typing techniques classified the 20 isolates into 5 and 6 groups. PMID:22837123

  3. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  4. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms

    PubMed Central

    Lister, Philip D.; Wolter, Daniel J.; Hanson, Nancy D.

    2009-01-01

    Summary: Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces. PMID:19822890

  5. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

    PubMed Central

    Meletis, G; Exindari, M; Vavatsi, N; Sofianou, D; Diza, E

    2012-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species. PMID:23935307

  6. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa

    PubMed Central

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  7. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa.

    PubMed

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  8. Bacteriophage can lyse antibiotic-resistant Pseudomonas aeruginosa isolated from canine diseases

    PubMed Central

    FURUSAWA, Takaaki; IWANO, Hidetomo; HIGUCHI, Hidetoshi; YOKOTA, Hiroshi; USUI, Masaru; IWASAKI, Tomohito; TAMURA, Yutaka

    2016-01-01

    Pseudomonas aeruginosa is a pathogen frequently identified as the cause of diverse infections or chronic disease. This microbe has natural resistance to several kinds of antibiotics, because of the species’ outer membrane, efflux pumps and growth as a biofilm. This bacterium can acquire increased resistance with specific point mutations. Bacteriophage (phage), however, can lyse these bacteria. Therefore, in the present study, we assessed the host range of phages isolates and their ability to lyse antibiotic-resistant P. aeruginosa. Present phages could lyse many strains of P. aeruginosa (28/39), including strains with high resistance to fluoroquinolones (4/6). In conclusion, application of phages for antibiotic-resistant bacteria is greatly effective. To avoid pervasive antibiotic-resistant bacteria, further development of phage usage for disease treatment is required. PMID:26876365

  9. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  10. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  11. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology.

    PubMed

    Potron, Anaïs; Poirel, Laurent; Nordmann, Patrice

    2015-06-01

    Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here. PMID:25857949

  12. Draft Genome Sequence of a Clinically Isolated Extensively Drug-Resistant Pseudomonas aeruginosa Strain

    PubMed Central

    Manivannan, Bhavani; Mahalingam, Niranjana; Jadhao, Sudhir; Mishra, Amrita; Nilawe, Pravin

    2016-01-01

    We present the draft genome assembly of an extensively drug-resistant (XDR) Pseudomonas aeruginosa strain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance. PMID:27013045

  13. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa

    PubMed Central

    Oglesby-Sherrouse, Amanda G.; Djapgne, Louise; Nguyen, Angela T.; Vasil, Adriana I.; Vasil, Michael L.

    2014-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment of such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, non-siderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by sub-inhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  14. Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more.

    PubMed

    Poole, Keith

    2014-12-01

    Pseudomonas aeruginosa is a notoriously antimicrobial-resistant organism that is increasingly refractory to antimicrobial chemotherapy. While the usual array of acquired resistance mechanisms contribute to resistance development in this organism a multitude of endogenous genes also play a role. These include a variety of multidrug efflux loci that contribute to both intrinsic and acquired antimicrobial resistance. Despite their roles in resistance, however, it is clear that these efflux systems function in more than just antimicrobial efflux. Indeed, recent data indicate that they are recruited in response to environmental stress and, therefore, function as components of the organism's stress responses. In fact, a number of endogenous resistance-promoting genes are linked to environmental stress, functioning as part of known stress responses or recruited in response to a variety of environmental stress stimuli. Stress responses are, thus, important determinants of antimicrobial resistance in P. aeruginosa. As such, they represent possible therapeutic targets in countering antimicrobial resistance in this organism. PMID:25388098

  15. Correlation between lipopolysaccharide structure and permeability resistance in beta-lactam-resistant Pseudomonas aeruginosa.

    PubMed Central

    Godfrey, A J; Hatlelid, L; Bryan, L E

    1984-01-01

    Four beta-lactam-resistant permeability mutants of Pseudomonas aeruginosa PAO503 were studied. The resistance phenotypes were correlated to changes within the lipopolysaccharide. Two of the mutants, PCC1 and PCC19, were shown to differentiate between beta-lactams on the basis of relative hydrophobicity. The more hydrophilic antibiotics were less effective at inhibiting these strains. This phenotype was correlated to the presence of mannose, in measurable quantities, in lipopolysaccharide isolated from these strains. The other two strains, PCC23 and PCC100, differentiated between cephem antibiotics on the basis of electrical charge. The presence of a positive charge markedly increased the relative efficiency of an antibiotic. This correlation did not hold for penam derivatives, with the lower-molecular-weight, dianionic molecules being the most effective. Mutants of this type were changed in the amount of "side chain" sugars or, to minor extent, in their outer membrane protein profiles. Images PMID:6435513

  16. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  17. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections.

    PubMed

    Rubin, J; Walker, R D; Blickenstaff, K; Bodeis-Jones, S; Zhao, S

    2008-09-18

    Infections with antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to determine antimicrobial susceptibility of 106 strains of Pseudomonas aeruginosa isolated from dogs with otitis and pyoderma from 2003 to 2006 in the United States. Three antimicrobial panels, including 6 classes and 32 antimicrobial agents, were used. A wide range of susceptibility patterns were noted with some isolates being resistant to between 8 and 28 (mean 16) of the antimicrobials tested. Among the beta-lactams, all isolates were resistant to ampicillin, cefoxitin, cefpodoxime, cephalothin and cefazolin followed by amoxicillin/clavulanic acid (99%), ceftiofur (97%), ceftriaxone (39%), cefotaxime (26%), and cefotaxime/clavulanic acid (20%), whereas less than 7% of isolates were resistant to ceftazidime/clavulanic acid, ceftazidime, piperacillin/tazobactam or cefepime. Two isolates were resistant to the carbapenems. Among the quinolones and fluoroquinolones, the most isolates were resistant to naladixic acid (96%), followed by orbifloxacin (52%), difloxacin (43%), enrofloxacin (31%), marbofloxacin (27%), gatifloxacin (23%), levofloxacin (21%), and ciprofloxacin (16%). Among the aminoglycosides, the most resistance was seen to kanamycin (90%), followed by streptomycin (69%), gentamicin (7%), and amikacin (3%). Of the remaining antimicrobials 100% of the isolates were resistant to chloramphenicol followed by tetracycline (98%), trimethoprim/sulfamethoxazole (57%), and sulfisoxazole (51%). Point mutations were present in gyrA, gyrB, parC, and/or parE genes among 34 of the 102 naladixic acid-resistant isolates. Two isolates contained class 1 integrons carrying aadA gene conferring streptomycin and spectinomycin resistance. The findings suggest that many antimicrobial agents commonly used in companion animals may not constitute appropriate therapy for canine pseudomonas infections. PMID:18395369

  18. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs

    PubMed Central

    Lutz, Jonathan K.; Lee, Jiyoung

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen in recreational waters and the primary cause of hot tub folliculitis and otitis externa. The aim of this surveillance study was to determine the background prevalence and antimicrobial resistance profile of P. aeruginosa in swimming pools and hot tubs. A convenience sample of 108 samples was obtained from three hot tubs and eight indoor swimming pools. Water and swab samples were processed using membrane filtration, followed by confirmation with polymerase chain reaction. Twenty-three samples (21%) were positive for P. aeruginosa, and 23 isolates underwent susceptibility testing using the microdilution method. Resistance was noted to several antibiotic agents, including amikacin (intermediate), aztreonam, ceftriaxone, gentamicin, imipenem, meropenem (intermediate), ticarcillin/clavulanic acid, tobramycin (intermediate), and trimethoprim/sulfamethoxazole. The results of this surveillance study indicate that 96% of P. aeruginosa isolates tested from swimming pools and hot tubs were multidrug resistant. These results may have important implications for cystic fibrosis patients and other immune-suppressed individuals, for whom infection with multidrug-resistant P. aeruginosa would have greater impact. Our results underlie the importance of rigorous facility maintenance, and provide prevalence data on the occurrence of antimicrobial resistant strains of this important recreational water-associated and nosocomial pathogen. PMID:21556203

  19. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites.

    PubMed

    Kaszab, Edit; Kriszt, Balázs; Atzél, Béla; Szabó, Gabriella; Szabó, István; Harkai, Péter; Szoboszlay, Sándor

    2010-01-01

    The main aim of this paper was the comprehensive estimation of the occurrence rate and the antibiotic-resistance conditions of opportunistic pathogen Pseudomonas aeruginosa in hydrocarbon-contaminated environments. From 2002 to 2007, 26 hydrocarbon-contaminated sites of Hungary were screened for the detection of environmental isolates. Altogether, 156 samples were collected and examined for the determination of appearance, representative cell counts, and antibiotic-resistance features of P. aeruginosa. The detected levels of minimal inhibitory concentrations of ten different drugs against 36 environmental strains were compared to the results of a widely used reference strain ATCC 27853 and four other clinical isolates of P. aeruginosa. Based on our long-term experiment, it can be established that species P. aeruginosa was detectable in case of 61.5% of the investigated hydrocarbon-contaminated sites and 35.2% of the examined samples that shows its widespread occurrence in polluted soil-groundwater systems. In the course of the antibiotic-resistance assay, our results determined that 11 of the examined 36 environmental strains had multiple drug-resistance against several clinically effective antimicrobial classes: cephalosporins, wide spectrum penicillins, carbapenems, fluoroquinolones, and aminoglycosides. The fact that these multiresistant strains were isolated from 8 different hydrocarbon-contaminated sites, mainly from outskirts, confirms that multiple drug-resistance of P. aeruginosa is widespread not only in clinical, but also in natural surroundings as well. PMID:19597862

  20. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital.

    PubMed

    Lagatolla, Cristina; Tonin, Enrico A; Monti-Bragadin, Carlo; Dolzani, Lucilla; Gombac, Francesca; Bearzi, Claudia; Edalucci, Elisabetta; Gionechetti, Fabrizia; Rossolini, Gian Maria

    2004-03-01

    Acquired metallo-beta-lactamases (MBLs) can confer broad-spectrum beta-lactam resistance (including carbapenems) not reversible by conventional beta-lactamase inhibitors and are emerging resistance determinants of remarkable clinical importance. In 2001, multidrug-resistant Pseudomonas aeruginosa carrying bla(VIM) MBL genes were found to be widespread (approximately 20% of all P. aeruginosa isolates and 70% of the carbapenem-resistant isolates) at Trieste University Hospital. Clonal diversity and heterogeneity of resistance determinants (either bla(VIM-1)-like or bla(VIM-2)-like) were detected among MBL producers. This evidence is the first that acquired MBLs can rapidly emerge and establish a condition of endemicity in certain epidemiologic settings. PMID:15109432

  1. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard

    2015-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid l-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. PMID:26552982

  2. Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network

    PubMed Central

    Slekovec, Céline; Plantin, Julie; Cholley, Pascal; Thouverez, Michelle; Talon, Daniel; Bertrand, Xavier; Hocquet, Didier

    2012-01-01

    The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination. PMID:23284623

  3. Development of resistance to chemical disinfection by Pseudomonas aeruginosa during long-term space flight

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1999-01-01

    Two long-term experiments have been conducted aboard the Mir Space Station to evaluate the development of resistance by Pseudomonas aeruginosa to chemical disinfection by polyiodide quaternary ammonium strong base resin disinfectants. The first preliminary experiment was launched aboard STS 79 and a second more extensive experiment aboard STS 86. During both experiments, after two months in a microgravity environment, aqueous suspensions of P. aeruginosa contained viable bacteria after having the iodinated resin added to them. In the second experiment identical ground based controls did not exhibit a similar phenomenon. Also in the second experiment, individual colonies from the surviving bacteria were evaluated for resistance to aqueous iodine disinfection. Compared to individual colonies from the original inoculum no resistance was observed. The data are consistent with slow development of a resistant biofilm in the bacterial suspensions flown aboard the Mir Space Station.

  4. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

    PubMed Central

    Fazeli, Nastaran; Momtaz, Hassan

    2014-01-01

    Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections. PMID:25763199

  5. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis

    PubMed Central

    Liu, Qianqian; Li, Xiaoqing; Li, Wenzhang; Du, Xinmiao; He, Jian-Qing; Tao, Chuanmin; Feng, Yulin

    2015-01-01

    Treatment of infectious diseases caused by the carbapenem-resistant Pseudomonas aeruginosa (CRPA) is becoming more challenging with each passing year. We conducted a meta-analysis to assess the impact of carbapenem resistance on mortality of patients with P. aeruginosa infection. We searched PUBMED, Web of science, EMBASE, Google Scholar and the Cochrane Library up to December 25, 2014, to identify published cohort or case-control studies. 17 studies, including 6660 patients carrying P. aeruginosa, were identified. The pooling analysis indicated that patients infected with CRPA had significantly higher mortality than those infected with carbapenem-susceptible P. aeruginosa (CSPA) (crude OR = 1.64; 95%CI = 1.40, 1.93; adjusted OR = 2.38; 95%CI = 1.53, 3.69). The elevated risk of mortality in patients with CRPA infection was not lessened when stratified by study design, sites of infection, or type of carbapenem, except that the estimate effect vanished in CRPA high-incidence region, South America (crude OR = 1.12; 95%CI = 0.64, 1.99). Begg’s (z = 0.95, p = 0.34) and Egger’s test (t = 1.23, p = 0.24) showed no evidence of publication bias. Our results suggest that carbapenem resistance may increase the mortality of patients with P. aeruginosa infection, whether under univariate or multivariate analysis. PMID:26108476

  6. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles

    PubMed Central

    Bayroodi, Elnaz; Jalal, Razieh

    2016-01-01

    Background and Objectives: Bacterial resistance to conventional antibiotics has become a widespread public health problem. The aim of this study was to investigate the influence of zinc oxide nanoparticles (ZnO NPs) on the antibacterial activity of several conventional antibiotics against Pseudomonas aeruginosa. Materials and Methods: ZnO NPs were prepared by solvothermal method and dispersed in glycerol with the help of ammonium citrate as a dispersant. The antibacterial effects of the resulting ZnO nanofluid, ceftazidime, tobramycin, and ciprofloxacin were investigated against two P. aeruginosa strains, including one clinical isolate and P. aeruginosa ATCC 9027 using microdilution method. For the evaluation of the combined effect of ZnO nanofluid and antibiotics, the fractional inhibitory concentration indices were calculated and isobolograms were plotted. Results: Clinical strain in comparison to standard strain of P. aeruginosa showed more resistance to ZnO nanofluid and the antibiotics. ZnO nanofluid acted synergistically with ceftazidime and tobramycin against both strains. Combination of ZnO nanofluid and ciprofloxacin displayed synergistic and partial synergistic activity against clinical and standard strains of P. aeruginosa, respectively. Conclusion: The results suggest that bacterial resistance to antimicrobials could be reduced by the synergistic action of ZnO NPs. PMID:27307973

  7. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  8. Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of pseudomonas aeruginosa.

    PubMed

    Wang, Huafu; Tu, Faping; Gui, Zhihong; Lu, Xianghong; Chu, Weihua

    2013-06-01

    Pseudomonas aeruginosa produces multiple virulence factors that have been associated with quorum sensing. The aim of this study was to evaluate the prevalence of drug resistant profiles and quorum sensing related virulence factors. Pseudomonas aeruginosa were collected from different patients hospitalized in China, the isolates were tested for their susceptibility to different common antimicrobial drugs and detected QS-related virulence factors. We identified 170 isolates displaying impaired phenotypic activity, approximately 80 % of the isolates were found to exhibit the QS-dependent phenotypes, among them, 12 isolates were defective in AHLs production, and therefore considered QS-deficient strains. Resistance was most often observed to Cefazolin (81.2 %), followed by trimethoprim-sulfamethoxazole (73.5 %), ceftriaxone (62.4 %) and Cefotaxime, Levofloxacin, Ciprofloxacin (58.8 %), and to a lesser extent Meropenem (20.0 %), Cefepime (18.8 %), and Cefoperazone/sulbactam (2.4 %) The QS-deficient isolates that were negative for virulence factor production were generally less susceptible to the antimicrobials. The results showed a high incidences of antibiotic resistance and virulence properties in P. aeruginosa, and indicate that the clinical use of QS-inhibitory drugs that appear superior to conventional antimicrobials by not exerting any selective pressure on resistant strains. PMID:24426103

  9. Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa

    PubMed Central

    Mugabe, Clement; Halwani, Majed; Azghani, Ali O.; Lafrenie, Robert M.; Omri, Abdelwahab

    2006-01-01

    Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated. To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides into liposomes significantly increased their antibacterial activity against the resistant strains used in this study (MICs of ≥32 versus ≤8 μg/ml). TEM observations showed that liposomes interact intimately with the outer membrane of P. aeruginosa, leading to the membrane deformation. The flow cytometry and lipid mixing assays confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The maximum fusion rate was 54.3% ± 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% ± 1.9% for a drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics' penetration into the bacterial cells (3.2 ± 2.3 versus 24.2 ± 6.2 gold particles/bacterium, P ≤ 0.001). Our data suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells. PMID:16723560

  10. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa.

    PubMed

    Mugabe, Clement; Halwani, Majed; Azghani, Ali O; Lafrenie, Robert M; Omri, Abdelwahab

    2006-06-01

    Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated. To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides into liposomes significantly increased their antibacterial activity against the resistant strains used in this study (MICs of > or =32 versus < or =8 microg/ml). TEM observations showed that liposomes interact intimately with the outer membrane of P. aeruginosa, leading to the membrane deformation. The flow cytometry and lipid mixing assays confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The maximum fusion rate was 54.3% +/- 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% +/- 1.9% for a drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics' penetration into the bacterial cells (3.2 +/- 2.3 versus 24.2 +/- 6.2 gold particles/bacterium, P < or = 0.001). Our data suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells. PMID:16723560

  11. Antibiotic and metal resistance in a ST395 Pseudomonas aeruginosa environmental isolate: A genomics approach.

    PubMed

    Teixeira, Pedro; Tacão, Marta; Alves, Artur; Henriques, Isabel

    2016-09-15

    We analyzed the resistome of Pseudomonas aeruginosa E67, an epiphytic isolate from a metal-contaminated estuary. The aim was to identify genetic determinants of resistance to antibiotics and metals, assessing possible co-selection mechanisms. Identification was based on phylogenetic analysis and average nucleotide identity value calculation. MLST affiliated E67 to ST395, previously described as a high-risk clone. Genome analysis allowed identifying genes probably involved in resistance to antibiotics (e.g. beta-lactams, aminoglycosides and chloramphenicol) and metals (e.g. mercury and copper), consistent with resistance phenotypes. Several genes associated with efflux systems, as well as genetic determinants contributing to gene motility, were identified. Pseudomonas aeruginosa E67 possesses an arsenal of resistance determinants, probably contributing to adaptation to a polluted ecosystem. Association to mobile structures highlights the role of these platforms in multi-drug resistance. Physical links between metal and antibiotic resistance genes were not identified, suggesting a predominance of cross-resistance associated with multidrug efflux pumps. PMID:27371958

  12. Complete genome sequences of three Pseudomonas aeruginosa isolates with phenotypes of polymyxin B adaptation and inducible resistance.

    PubMed

    Boyle, Brian; Fernandez, Lucia; Laroche, Jerome; Kukavica-Ibrulj, Irena; Mendes, Caio M F; Hancock, Robert W; Levesque, Roger C

    2012-01-01

    Clinical "superbug" isolates of Pseudomonas aeruginosa were previously observed to be resistant to several antibiotics, including polymyxin B, and/or to have a distinct, reproducible adaptive polymyxin resistance phenotype, identified by observing "skipped" wells (appearance of extra turbid wells) during broth microdilution testing. Here we report the complete assembled draft genome sequences of three such polymyxin resistant P. aeruginosa strains (9BR, 19BR, and 213BR). PMID:22207740

  13. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics.

    PubMed

    Estahbanati, Hamid Karimi; Kashani, Parnian Pour; Ghanaatpisheh, Fahimeh

    2002-06-01

    Pseudomonas aeruginosa plays a prominent role as an etiological agent involved in serious infections in burned patients. In this study P. aeruginosa infections were analyzed at the Motahari Burn Center in Tehran (from 22 December 1998 to April 1999) to estimate their frequency, antibiotic susceptibility and serotypes. One hundred and eighty-four positive cultures and 205 bacterial strains were isolated among swabs or biopsy specimens during the study period. Pseudomonas was found to be the most common (57%) followed by Acinetobacter (17%), Escherichia coli (12%), Staphylococcus aureus (8%) and other organisms (6%). The frequency of P. aeruginosa resistance to gentamicin, ceftizoxime, carbenicillin, cephalothin and ceftazidime was over 90%. The antibiotics to which P. aeruginosa was most sensitive were amikacin and tetracyclin. The "O" serotypes isolated from the 117 Pseudomona aeroginosa isolates were serotypes O:2, O:5, O:6, O:8, O:11, O:12 and O:16. The most common serotype was O:6 (20/17%) followed by O:11 (18/15%) and O:5 (14/12%). The serotype most resistant was O:16 (8%) and the most sensitive was O:8 (2%). Since treatment of infection with available antibiotics according to the results attained proved to be difficult, prevention of infection in the burned patients is considered as an appropriate means of conquering overcoming infection problems. The sum of frequencies of serotypes O:6, O:11, O:5 and O:16 was more than 60%, therefore vaccination of burn patients with polyvalent antiserum to these serotypes could possibly produce immunity in more than half of the burned patients. PMID:12052372

  14. Photodynamic inactivation of antibiotic resistant strain of Pseudomonas aeruginosa in vivo

    NASA Astrophysics Data System (ADS)

    Hashimoto, M. C. E.; Toffoli, D. J.; Prates, R. A.; Courrol, Lilia C.; Ribeiro, M. S.

    2009-06-01

    Burns are frequently contamined by pathogenic microorganisms and the widespread occurrence of antibiotic resistant strains of Pseudomonas aeruginosa in hospitals is a matter of growing concern. Hypocrellin B (HB) is a new generation photosensitizer extracted from the fungus Hypocrella bambusae with absorption bands at 460, 546 and 584 nm. Lanthanide ions change the HB molecular structure and a red shift in the absorption band is observed as well as an increase in the singlet oxygen quantum yield. In this study, we report the use of HB:La+3 to kill resistant strain of P. aeruginosa infected burns. Burns were produced on the back of mice and wounds were infected subcutaneously with 1x109 cfu/mL of P. aeruginosa. Three-hours after inoculation, the animals were divided into 4 groups: control, HB:La+3, blue LED and HB:La+3+blue LED. PDT was performed using 10μM HB:La+3 and 500mW light-emitting diode (LED) emitting at λ=470nm+/-20nm during 120s. The animals of all groups were killed and the infected skin was removed for bacterial counting. Mice with photosensitizer alone, light alone or untreated infected wounds presented 1x108 cfu/g while mice PDT-treated showed a reduction of 2 logs compared to untreated control. These results suggest that HB:La+3 associated to blue LED is effective in diminishing antibiotic resistant strain P. aeruginosa in infected burns.

  15. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts.

    PubMed

    Kaszab, Edit; Szoboszlay, Sándor; Dobolyi, Csaba; Háhn, Judit; Pék, Nikoletta; Kriszt, Balázs

    2011-01-01

    The aim of our work was to determine the presence of Pseudomonas aeruginosa in compost raw materials, immature and mature compost, and compost-treated soil. Twenty-five strains of P. aeruginosa were isolated from a raw material (plant straw), immature and mature compost and compost-treated soil samples. The strains were identified using the PCR method for the detection of species specific variable regions of 16S rDNA. Strains were examined for the presence of five different virulence-related gene sequences (exoA, exoU, exoT, exoS and exoY) and their antibiotic resistance profiles were determined. Based on our results, species P. aeruginosa can reach significant numbers (up to 10(6) MPN/g sample) during composting and 92.0% of the isolated strains carrying at least two gene sequences encoding toxic proteins. Various types of drug resistance were detected among compost originating strains, mainly against third generation Cephalosporins and Carbapenems. Six isolates were able to resist two different classes of antibiotics (third generation Cephalosporins and Carbapenems, wide spectrum Penicillins or Aminoglycosides, respectively). Based on our results, composts can be a source of P. aeruginosa and might be a concern to individuals susceptible to this opportunistic pathogen. PMID:20817443

  16. Resistance of Pseudomonas aeruginosa Isolates to Hydrogel Contact Lens Disinfection Correlates with Cytotoxic Activity

    PubMed Central

    Lakkis, Carol; Fleiszig, Suzanne M. J.

    2001-01-01

    One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37°C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22°C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear. PMID:11283074

  17. Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection

    PubMed Central

    Pastar, Irena; Nusbaum, Aron G.; Gil, Joel; Patel, Shailee B.; Chen, Juan; Valdes, Jose; Stojadinovic, Olivera; Plano, Lisa R.; Tomic-Canic, Marjana; Davis, Stephen C.

    2013-01-01

    Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections. PMID:23451098

  18. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa

    PubMed Central

    2013-01-01

    Background Pseudomonas aeruginosa is an important opportunistic human pathogen and is extremely difficult to treat due to its high intrinsic and adaptive antibiotic resistance, ability to form biofilms in chronic infections and broad arsenal of virulence factors, which are finely regulated. TypA is a GTPase that has recently been identified to modulate virulence in enteric Gram-negative pathogens. Results Here, we demonstrate that mutation of typA in P. aeruginosa resulted in reduced virulence in phagocytic amoebae and human macrophage models of infection. In addition, the typA mutant was attenuated in rapid cell attachment to surfaces and biofilm formation, and exhibited reduced antibiotic resistance to ß-lactam, tetracycline and antimicrobial peptide antibiotics. Quantitative RT-PCR revealed the down-regulation, in a typA mutant, of important virulence-related genes such as those involved in regulation and assembly of the Type III secretion system, consistent with the observed phenotypes and role in virulence of P. aeruginosa. Conclusions These data suggest that TypA is a newly identified modulator of pathogenesis in P. aeruginosa and is involved in multiple virulence-related characteristics. PMID:23570569

  19. Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils.

    PubMed

    Pitondo-Silva, André; Gonçalves, Guilherme Bartolomeu; Stehling, Eliana Guedes

    2016-08-01

    Pseudomonas aeruginosa is an opportunistic pathogen, which can have several virulence factors that confer on it the ability to cause severe, acute and chronic infections. Thus, the simultaneous occurrence of resistance to antibiotics and heavy metals associated with the presence of virulence genes is a potential threat to human health and environmental balance. This study aimed to investigate the resistance profile to heavy metals and the correlation of this phenotype of resistance to antimicrobials and to investigate the pathogenic potential of 46 P. aeruginosa isolates obtained from the soil of five Brazilian regions. The bacteria were evaluating for antimicrobial and heavy metal resistance, as well as the presence of plasmids and virulence genes. The isolates showed resistance to four different antibiotics and the majority (n = 44) had resistance to aztreonam or ticarcillin, furthermore, 32 isolates showed concomitant resistance to both of these antibiotics. A high prevalence of virulence genes was found, which highlights the pathogenic potential of the studied environmental isolates. Moreover, a high frequency of heavy metal resistance genes was also detected, however, the phenotypic results indicated that other genes and/or mechanisms should be related to heavy metal resistance. PMID:27197940

  20. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital.

    PubMed

    Koutsogiannou, Maria; Drougka, Eleanna; Liakopoulos, Apostolos; Jelastopulu, Eleni; Petinaki, Efthimia; Anastassiou, Evangelos D; Spiliopoulou, Iris; Christofidou, Myrto

    2013-02-01

    An outbreak of multidrug-resistant Pseudomonas aeruginosa (MDRPA) infections in a university hospital is described. Phenotypic and genotypic analysis of 240 isolates revealed that 152 patients, mainly in the intensive care unit (ICU), were colonized or infected with MDRPA, the majority with O11. All metallo-β-lactamase (MBL)-positive isolates carried the bla(VIM-2) or bla(VIM-1) gene. One or more type III secretion system toxin genes were detected in most isolates. Five dominant pulsed-field gel electrophoresis (PFGE) types were characterized, associated with ST235, ST111, ST253, ST309, and ST639. PMID:23241381

  1. Diversity of Molecular Mechanisms Conferring Carbapenem Resistance to Pseudomonas aeruginosa Isolates from Saudi Arabia

    PubMed Central

    Jeannot, Katy; El-Mahdy, Taghrid S.; Samaha, Hassan A.; Shibl, Atef M.; Plésiat, Patrick; Courvalin, Patrice

    2016-01-01

    Background. This study described various molecular and epidemiological characters determining antibiotic resistance patterns in Pseudomonas aeruginosa isolates. Methods. A total of 34 carbapenem-resistant P. aeruginosa clinical isolates were isolated from samples collected at a tertiary hospital in Riyadh, Saudi Arabia, from January to December 2011. Susceptibility testing, serotyping, molecular characterization of carbapenem resistance, and pulsed-field gel electrophoresis (PFGE) were performed. Results. All isolates were resistant to ceftazidime, and more than half were highly resistant (minimum inhibitory concentration (MIC) > 256 mg/L). Fifteen isolates had MIC values ≥64 mg/L for any of the carbapenems examined. Vietnamese extended-spectrum β-lactamase (VEB-1) (n = 16/34) and oxacillinase (OXA-10) (n = 14/34) were the most prevalent extended-spectrum β-lactamase and penicillinase, respectively. Verona imipenemase (VIM-1, VIM-2, VIM-4, VIM-11, and VIM-28) and imipenemase (IMP-7) variants were found in metallo-β-lactamase producers. A decrease in outer membrane porin gene (oprD) expression was seen in nine isolates, and an increase in efflux pump gene (MexAB) expression was detected in five isolates. Six serotypes (O:1, O:4, O:7, O:10, O:11, and O:15) were found among the 34 isolates. The predominant serotype was O:11 (16 isolates), followed by O:15 (nine isolates). PFGE analysis of the 34 carbapenem-resistant P. aeruginosa isolates revealed 14 different pulsotypes. Conclusions. These results revealed diverse mechanisms conferring carbapenem resistance to P. aeruginosa isolates from Saudi Arabia. PMID:27597874

  2. Diversity of Molecular Mechanisms Conferring Carbapenem Resistance to Pseudomonas aeruginosa Isolates from Saudi Arabia.

    PubMed

    Al-Agamy, Mohamed H; Jeannot, Katy; El-Mahdy, Taghrid S; Samaha, Hassan A; Shibl, Atef M; Plésiat, Patrick; Courvalin, Patrice

    2016-01-01

    Background. This study described various molecular and epidemiological characters determining antibiotic resistance patterns in Pseudomonas aeruginosa isolates. Methods. A total of 34 carbapenem-resistant P. aeruginosa clinical isolates were isolated from samples collected at a tertiary hospital in Riyadh, Saudi Arabia, from January to December 2011. Susceptibility testing, serotyping, molecular characterization of carbapenem resistance, and pulsed-field gel electrophoresis (PFGE) were performed. Results. All isolates were resistant to ceftazidime, and more than half were highly resistant (minimum inhibitory concentration (MIC) > 256 mg/L). Fifteen isolates had MIC values ≥64 mg/L for any of the carbapenems examined. Vietnamese extended-spectrum β-lactamase (VEB-1) (n = 16/34) and oxacillinase (OXA-10) (n = 14/34) were the most prevalent extended-spectrum β-lactamase and penicillinase, respectively. Verona imipenemase (VIM-1, VIM-2, VIM-4, VIM-11, and VIM-28) and imipenemase (IMP-7) variants were found in metallo-β-lactamase producers. A decrease in outer membrane porin gene (oprD) expression was seen in nine isolates, and an increase in efflux pump gene (MexAB) expression was detected in five isolates. Six serotypes (O:1, O:4, O:7, O:10, O:11, and O:15) were found among the 34 isolates. The predominant serotype was O:11 (16 isolates), followed by O:15 (nine isolates). PFGE analysis of the 34 carbapenem-resistant P. aeruginosa isolates revealed 14 different pulsotypes. Conclusions. These results revealed diverse mechanisms conferring carbapenem resistance to P. aeruginosa isolates from Saudi Arabia. PMID:27597874

  3. Characterization of Pseudomonas aeruginosa isolates from dogs and cats in Japan: current status of antimicrobial resistance and prevailing resistance mechanisms.

    PubMed

    Harada, Kazuki; Arima, Sayuri; Niina, Ayaka; Kataoka, Yasushi; Takahashi, Toshio

    2012-02-01

    Seventy-three Pseudomonas aeruginosa isolates were collected from dogs and cats in Japan to investigate antimicrobial susceptibility and resistance mechanisms to anti-pseudomonal agents. Resistance rates against orbifloxacin, enrofloxacin, ciprofloxacin, cefotaxime, aztreonam and gentamicin were 34.2, 31.5, 20.5, 17.8, 12.3 and 4.1%, respectively. The degree of resistance to cefotaxime, orbifloxacin, and enrofloxacin was greatly affected by efflux pump inhibitors, indicating overexpression of efflux pump contributes to these resistances. Notably, orbifloxacin and enrofloxacin resistance was observed even in isolates without mutations in the target sites. This is the first report on cephalosporin- and fluoroquinolone-resistant isolates of P. aeruginosa from Japanese companion animals. PMID:22188523

  4. Successful Management of Multidrug-Resistant Pseudomonas aeruginosa Pneumonia after Kidney Transplantation in a Dog

    PubMed Central

    PARK, Kyung-Mee; NAM, Hyun-Suk; WOO, Heung-Myong

    2013-01-01

    ABSTRACT An 8-year-old male mongrel dog that had undergone renal transplantation was presented 25 days later with an acute cough, anorexia and exercise intolerance. During the investigation, neutrophilic leukocytosis was noted, and thoracic radiographs revealed caudal lung lobe infiltration. While being treated with two broad-spectrum antibiotics, clinical signs worsened. Pneumonia due to infection with multidrug-resistant (MDR) Pseudomonas (P.) aeruginosa, sensitive only to imipenem and amikacin, was confirmed by bacteria isolation. After treatment with imipenem-cilastatin without reducing the immunosuppressant dose, clinical signs completely resolved. During the 2-year follow-up period, no recurrence was observed. To the best of authors’ knowledge, this is the first report of pneumonia caused by MDR P. aeruginosa in a renal recipient dog and successful management of this disease. PMID:23842146

  5. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    PubMed Central

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. PMID:26507235

  6. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon.

    PubMed Central

    Poole, K; Krebes, K; McNally, C; Neshat, S

    1993-01-01

    An outer membrane protein of 50 kDa (OprK) was overproduced in a siderophore-deficient mutant of Pseudomonas aeruginosa capable of growth on iron-deficient minimal medium containing 2,2'-dipyridyl (0.5 mM). The expression of OprK in the mutant (strain K385) was associated with enhanced resistance to a number of antimicrobial agents, including ciprofloxacin, nalidixic acid, tetracycline, chloramphenicol, and streptonigrin. OprK was inducible in the parent strain by growth under severe iron limitation, as provided, for example, by the addition of dipyridyl or ZnSO4 to the growth medium. The gene encoding OprK (previously identified as ORFC) forms part of an operon composed of three genes (ORFABC) implicated in the secretion of the siderophore pyoverdine. Mutants defective in ORFA, ORFB, or ORFC exhibited enhanced susceptibility to tetracycline, chloramphenicol, ciprofloxacin, streptonigrin, and dipyridyl, consistent with a role for the ORFABC operon in multiple antibiotic resistance in P. aeruginosa. Sequence analysis of ORFC (oprK) revealed that its product is homologous to a class of outer membrane proteins involved in export. Similarly, the products of ORFA and ORFB exhibit homology to previously described bacterial export proteins located in the cytoplasmic membrane. These data suggest that ORFA-ORFB-oprK (ORFC)-dependent drug efflux contributes to multiple antibiotic resistance in P. aeruginosa. We propose, therefore, the designation mexAB (multiple efflux) for ORFAB. Images PMID:8226684

  7. Angiopoietin-2 enhances survival in experimental sepsis induced by multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Tzepi, Ira-Maria; Giamarellos-Bourboulis, Evangelos J; Carrer, Dionyssia-Pinelopi; Tsaganos, Thomas; Claus, Ralf A; Vaki, Ilia; Pelekanou, Aimilia; Kotsaki, Antigone; Tziortzioti, Vassiliki; Topouzis, Stavros; Bauer, Michael; Papapetropoulos, Andreas

    2012-11-01

    Levels of circulating angiopoietin-2 (Ang-2) increase in sepsis, raising the possibility that Ang-2 acts as a modulator in the sepsis cascade. To investigate this, experimental sepsis was induced in male C57BL6 mice by a multidrug-resistant isolate of Pseudomonas aeruginosa; survival was determined along with neutrophil tissue infiltration and release of proinflammatory cytokines. Survival was significantly increased either by pretreatment with recombinant Ang-2 2 h before or treatment with recombinant Ang-2 30 min after bacterial challenge. Likewise, Ang-2 pretreatment protected against sepsis-related death elicited by Escherichia coli; however, Ang-2 failed to provide protection in lipopolysaccharide (LPS)-challenged mice. The survival advantage of Ang-2 in response to P. aeruginosa challenge was lost in tumor necrosis factor (TNF)-deficient mice or neutropenic mice. Infiltration of the liver by neutrophils was elevated in the Ang-2 group compared with saline-treated animals. Serum TNF-α levels were reduced by Ang-2, whereas those of interleukin (IL)-6 and IL-10 remained unchanged. This was accompanied by lower release of TNF-α by stimulated splenocytes. When applied to U937 cells in vitro, heat-killed P. aeruginosa induced the secretion of IL-6 and TNF-α; low levels of exogenous TNF-α synergized with P. aeruginosa. This synergistic effect was abolished after the addition of Ang-2. These results put in evidence a striking protective role of Ang-2 in experimental sepsis evoked by a multidrug-resistant isolate of P. aeruginosa attributed to modulation of TNF-α production and changes in neutrophil migration. The protective role of Ang-2 is shown when whole microorganisms are used and not LPS, suggesting complex interactions with the host immune response. PMID:22859861

  8. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: a meta-analysis of cohort studies

    PubMed Central

    Zhang, Yu; Chen, Xiao-Li; Huang, Ai-Wei; Liu, Su-Ling; Liu, Wei-Jiang; Zhang, Ni; Lu, Xu-Zai

    2016-01-01

    Whether carbapenem resistance is associated with mortality in patients with Pseudomonas aeruginosa bacteremia is controversial. To address this issue, we conducted a systematic review and meta-analysis based on cohort studies. We searched PubMed and Embase databases to identify articles (up to April 2015). The DerSimonian and Laird random-effect model was used to generate a summary estimate of effect. Associations were evaluated in subgroups based on different patient characteristics and study quality criteria. Seven studies with a total of 1613 patients were finally included, of which 1 study had a prospective design, and the other 6 were retrospective. Our meta-analysis showed patients with carbapenem-resistant P. aeruginosa bacteremia were at a higher risk of death compared with those with carbapenem-susceptible P. aeruginosa bloodstream infections (pooled odds ratio (OR) from three studies reporting adjusted ORs: 3.07, 95% confidence interval (CI), 1.60–5.89; pooled OR from 4 studies only reporting crude ORs: 1.46, 95% CI, 1.10–1.94). The results were robust across a number of stratified analyses and a sensitivity analysis. We also calculated that 8%–18.4% of deaths were attributable to carbapenem resistance in four studies assessing the outcome with 30-day mortality, and these were 3% and 14.6%, respectively, in two studies using 7-day mortality or mortality during bacteremia as an outcome of interest. Carbapenem resistance had a deleterious impact on the mortality of P. aeruginosa bacteremia; however, the results should be interpreted cautiously because only three studies reporting adjusted ORs were included. More large-scale, well-designed prospective cohorts, as well as mechanistic studies, are urgently needed in the future. PMID:27004762

  9. The Transcriptional Regulator CzcR Modulates Antibiotic Resistance and Quorum Sensing in Pseudomonas aeruginosa

    PubMed Central

    Dieppois, Guennaëlle; Ducret, Véréna; Caille, Olivier; Perron, Karl

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes. PMID:22666466

  10. Prevalence and Susceptibility Pattern of Multi Drug Resistant Clinical Isolates of Pseudomonas aeruginosa in Karachi

    PubMed Central

    Khan, Fouzia; Khan, Adnan; Kazmi, Shahana Urooj

    2014-01-01

    Objective: To determine the frequency and susceptibility pattern of multi-drug resistant (MDR) Pseudomonas aeruginosa isolated from clinical specimens in Karachi. Methods: This cross sectional study was conducted in Microbiology Department, University of Karachi, from January 2012 to January 2013. Clinical specimens were collected from different hospitals of Karachi. Clinical isolates were identified by standard and specific microbiological methods. The antibiotic susceptibility pattern was determined by Kirby Bauer Disc diffusion method. Clinical and Laboratory Standards Institute (CLSI) guidelines were used to determine the results. Results: The frequency of MDR P. aeruginosa isolated from different clinical specimens was found to be 30%. Amikacin was found to be the most effective antibiotic, followed by Co-trimaxazole and Quinolones. Conclusion: Antibiotic resistant P. aeruginosa are emerging as a critical human health issue. There is an urgent need to resolve the issue by taking some preventive measures. Combined efforts of health care professionals and researchers are required to educate people about the proper use of antibiotics and other infection control measures. PMID:25225505

  11. Antibacterial Activity of Hibicuslide C on Multidrug-Resistant Pseudomonas aeruginosa Isolates.

    PubMed

    Lee, Heejeong; Choi, Hyemin; Lee, Je Chul; Lee, Yoo Chul; Woo, Eun-Rhan; Lee, Dong Gun

    2016-10-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is frequently related to natural resistance to many drugs. In this work, the inhibition of growth against P. aeruginosa and multidrug-resistant P. aeruginosa (MDRPA) isolated from patients at Kyungpook National University was confirmed for hibicuslide C, essential oil components from Abutilon theophrasti. Hibicuslide C has antifungal activity with membrane disruption and apoptotic response against Candida albicans. However, its antibacterial activity was not reported yet. Cells treated with hibicuslide C was showed that its antipseudomonal activity is related to gDNA fragmentation and damage by TUNEL and gDNA electrophoresis. Furthermore, hibicuslide C worked synergistically with fluoroquinolones and rifampicin against MDRPA regardless of the ATP-associated mechanism. The antibiofilm activity possessed sole-resulting tissue culture plate method; besides that, the antibiofilm activity of other antibiotics was supported in particular MDRPA. The essential oil components like hibicuslide C may have antipseudomonal activity and, furthermore, increase in bacterial antibiotic susceptibility. PMID:27368232

  12. Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277.

    PubMed

    Silveira, Melise Chaves; Albano, Rodolpho Mattos; Asensi, Marise Dutra; Carvalho-Assef, Ana Paula D'Alincourt

    2016-08-01

    Multidrug-resistant Pseudomonas aeruginosa clone ST277 is disseminated in Brazil where it is mainly associated with the presence of metallo-β-lactamase SPM-1. Furthermore, it carries the class I integron In163 and a 16S rRNA methylase rmtD that confers aminoglycoside resistance. To analyze the genetic characteristics that might be responsible for the success of this endemic clone, genomes of four P. aeruginosa strains that were isolated in distinct years and in different Brazilian states were sequenced. The strains differed regarding the presence of the genes blaSPM-1 and rmtD. Genomic comparisons that included genomes of other clones that have spread worldwide from this species were also performed. These analyses revealed a 763,863bp region in the P. aeruginosa chromosome that concentrates acquired genetic structures comprising two new genomic islands (PAGI-13 and PAGI-14), a mobile element that could be used for ST277 fingerprinting and a recently reported Integrative and Conjugative Element (ICE) associated to blaSPM-1. The genetic elements rmtD and In163 are inserted in PAGI-13 while PAGI-14 has genes encoding proteins related to type III restriction system and phages. The data reported in this study provide a basis for a clearer understanding of the genetic content of clone ST277 and illustrate the mechanisms that are responsible for the success of these endemic clones. PMID:27108807

  13. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Dieppois, Guennaëlle; Ducret, Véréna; Caille, Olivier; Perron, Karl

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes. PMID:22666466

  14. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa

    PubMed Central

    Toll-Riera, Macarena; Heilbron, Karl

    2016-01-01

    Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings. PMID:26763710

  15. Multi drug resistant Pseudomonas aeruginosa: Pathogen burden and associated antibiogram in a tertiary care hospital of Pakistan.

    PubMed

    Ullah, Waheed; Qasim, Muhammad; Rahman, Hazir; Bari, Fazli; Khan, Saadullah; Rehman, Zia Ur; Khan, Zahid; Dworeck, Tamara; Muhammad, Noor

    2016-08-01

    Pseudomonas aeruginosa is an important pathogen of both community and hospital acquired infections, and a major threat to public health for continuous emergence of multi-drug resistance. Current prevalence and pattern of multidrug resistance in the clinical isolates of P. aeruginosa is reported here. Samples were collected from September 2013 to January 2014 tertiary care hospital, Peshawar. Samples were subjected to phenotypic and molecular based detection of P. aeruginosa and were further processed for multidrug resistance pattern. Out of 3700 samples, 102 were identified as MDR P. aeruginosa. Prevalence of MDR isolates were found in pus (34.3%), wounds (28.4%), urine (19.6%), blood (14.7%) and sputum (2.9%) respectively. Isolates were more resistant to Sulphamethoxazole/Trimethoprim (98.04%), Amoxycillin/Clavulanic acid, Doxycycline and Chloramphenicol (95.1%) each, while least resistant to Imipenem (43.1%), Cefoperazone/Sulbactam (50.98%) and Amikacin (53.9%). Extensive MDR pattern was observed in P. aeruginosa was found as (n = 17, 16.6%) isolates were resistant to all four classes of antibiotics. Increased burden of MDR P. aeruginosa was documented in the study. Moreover, some isolates were even resistant to four classes of antibiotics. Findings of the study will be helpful to devise an appropriate antibiotic treatment strategy against MDR P. aeruginosa to cope the chances of evolving resistant pathogens. PMID:27317858

  16. Correlation between meropenem and doripenem use density and the incidence of carbapenem-resistant Pseudomonas aeruginosa.

    PubMed

    Shigemi, Akari; Matsumoto, Kazuaki; Yaji, Keiko; Shimodozono, Yoshihiro; Takeda, Yasuo; Miyanohara, Hiroaki; Kawamura, Hideki; Orita, Michiyo; Tokuda, Koichi; Nishi, Junichiro; Yamada, Katsushi

    2009-12-01

    Optimal use of carbapenems is an important issue in the prevention of resistance in Pseudomonas aeruginosa. In this study, we investigated the correlation between antimicrobial use density (AUD) of carbapenems and imipenem/cilastatin (IPM/CS) or meropenem (MEPM) susceptibility of P. aeruginosa strains. The AUD of five carbapenems [IPM/CS, panipenem/betamipron, biapenem, MEPM and doripenem (DRPM)] was examined every 6 months between 2006 and 2008. The AUD was calculated using the defined daily doses methodology developed by the World Health Organisation. A minimum inhibitory concentration of IPM/CS or MEPM of < or =4 mg/L was considered to be sensitive. There was a significant negative correlation between MEPM susceptibility and the total AUD of MEPM and DRPM [r=-0.823, 95% confidence interval (CI) -0.035 to -0.980; P=0.044]. Furthermore, there was a significant correlation between MEPM susceptibility and IPM/CS susceptibility (r=0.839, 95% CI 0.084 to 0.981; P=0.037). Cross-resistance was therefore investigated and only 5.6% of MEPM-insensitive strains were susceptible to IPM/CS, although 43.3% of IPM/CS-insensitive strains were susceptible to MEPM. These results suggest that curtailing the use of MEPM and DRPM may curb the emergence not only of MEPM-resistant strains but also IPM/CS-resistant strains. PMID:19748231

  17. Identification of Genes Involved in Pseudomonas aeruginosa Biofilm-Specific Resistance to Antibiotics

    PubMed Central

    Zhang, Li; Fritsch, Meredith; Hammond, Lisa; Landreville, Ryan; Slatculescu, Cristina; Colavita, Antonio; Mah, Thien-Fah

    2013-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic susceptibility, we previously identified 3 genes or operons of P. aeruginosa UCBPP-PA14 (ndvB, PA1875–1877 and tssC1) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756–0757 (encoding a putative two-component regulatory system), PA2070 and PA5033 (encoding hypothetical proteins of unknown function) display increased expression in biofilm cells and also have a role in biofilm-specific antibiotic resistance. Furthermore, deletion of each of PA0756, PA2070 and PA5033 resulted in a significant reduction of lethality in Caenorhabditis elegans, indicating a role for these genes in both biofilm-specific antibiotic resistance and persistence in vivo. Together, these data suggest that these genes are potential targets for antimicrobial agents. PMID:23637868

  18. New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides

    PubMed Central

    Sautrey, Guillaume; Zimmermann, Louis; Deleu, Magali; Delbar, Alicia; Souza Machado, Luiza; Jeannot, Katy; Van Bambeke, Françoise; Buyck, Julien M.; Decout, Jean-Luc

    2014-01-01

    The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3′,6-di-O-[(2″-naphthyl)propyl]neamine (3′,6-di2NP), 3′,6-di-O-[(2″-naphthyl)butyl]neamine (3′,6-di2NB), and 3′,6-di-O-nonylneamine (3′,6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691–7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 μg/ml), The most active one (3′,6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3′,6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa. PMID:24867965

  19. Optimal Meropenem Concentrations To Treat Multidrug-Resistant Pseudomonas aeruginosa Septic Shock

    PubMed Central

    Cotton, Frédéric; Roisin, Sandrine; Vincent, Jean-Louis; Jacobs, Frédérique

    2012-01-01

    A patient with septic shock due to extensively drug resistant (XDR) Pseudomonas aeruginosa was cured by optimizing the meropenem (MEM) regimen to obtain at least 40% of the time between two administrations in which drug levels were four times higher than the MIC of the pathogen. As the standard drug dose did not achieve these optimal concentrations, the MEM regimen was progressively increased up to 12 g/day (3 g every 6 h in a 3-h extended infusion), which eventually resulted in sepsis resolution. High MEM dosage may represent a valuable therapeutic option for infection due to multidrug-resistant (MDR) strains, and drug monitoring would allow rapid regimen adjustment in clinical practice. PMID:22290984

  20. PcrV antibody protects multi-drug resistant Pseudomonas aeruginosa induced acute lung injury.

    PubMed

    Wang, Qin; Li, Huayin; Zhou, Jian; Zhong, Ming; Zhu, Duming; Feng, Nana; Liu, Fanglei; Bai, Chunxue; Song, Yuanlin

    2014-03-01

    Blocking PcrV, an essential component of the Type III secretion system (TTSS), has demonstrated efficacy against Pseudomonas aeruginosa infections. However, most of the results came from laboratory strains. Whether it is applicable to clinically isolated multi-drug resistant (MDR) strains is unknown. In this study we investigated the expression level of TTSS in clinically isolated MDR P. aeruginosa strains and the effects of anti-PcrV antibody on MDR isolate induced acute lung injury (ALI). The expression level of TTSS was quantified in 53 isolates including 25 MDR strains and 28 susceptible strains. We investigated the effect of anti-PcrV antibody through a murine model induced by instillation of a MDR strain into the left lung through trachea. Our results showed that the expression level of TTSS in MDR strains is comparable to susceptible strains. Anti-PcrV ensured the survival of challenged mice, reduced the bacteria numbers and attenuated lung inflammation and injury. This study proved that anti-PcrV may be a potentially effective strategy against MDR P. aeruginosa induced ALI. PMID:24418353

  1. Outer membrane protein shifts in biocide-resistant Pseudomonas aeruginosa PAO1.

    PubMed

    Winder, C L; Al-Adham, I S; Abdel Malek, S M; Buultjens, T E; Horrocks, A J; Collier, P J

    2000-08-01

    Benzisothiazolone (BIT), N-methylisothiazolone (MIT) and 5-chloro-N-methylisothiazolone (CMIT) are highly effective biocidal agents and are used as preservatives in a variety of cosmetic preparations. The isothiazolones have proven efficacy against many fungal and bacterial species including Pseudomonas aeruginosa. However, some species are beginning to exhibit resistance towards this group of compounds after extended exposure. This experiment induced resistance in cultures of Ps. aeruginosa exposed to incrementally increasing sub-minimum inhibitory concentrations (MICs) of the isothiazolones in their pure chemical forms. The induced resistance was observed as a gradual increase in MIC with each new passage. The MICs for all three test isothiazolones and a thiol-interactive control compound (thiomersal) increased by approximately twofold during the course of the experiment. The onset of resistance was also observed by reference to the altered presence of an outer membrane protein, designated the T-OMP, in SDS-PAGE preparations. T-OMP was observed to disappear from the biocide-exposed preparations and reappear when the resistance-induced cultures were passaged in the absence of biocide. This reappearance of T-OMP was not accompanied by a complete reversal of induced resistance, but by a small decrease in MIC. The induction of resistance towards one biocide resulted in the development of cross-resistance towards other members of the group and the control, thiomersal. It has been suggested that the disappearance of T-OMP from these preparations is associated with the onset of resistance to the isothiazolones in their Kathon form (CMIT and MIT). PMID:10971761

  2. [Evaluation of a hospital outbreak related to carbapenem-resistant Pseudomonas aeruginosa].

    PubMed

    Cekin, Yeşim; Karagöz, Alper; Kızılateş, Filiz; Cekin, Ayhan Hilmi; Oztoprak Çuvalcı, Nefise; Bülbüller, Nurullah; Durmaz, Rıza

    2013-10-01

    Pseudomonas aeruginosa is an important nosocomial pathogen that causes opportunistic infections and hospital outbreaks. During October 2012, carbapenem-resistant P.aeruginosa strains with similar antibiotic resistance patterns, were isolated from specimens sent from the intensive care and plastic surgery units in our hospital. Thus a hospital outbreak was suspected. The microbiology laboratory database was retrospectively searched and all strains of P.aeruginosa isolated during the four month period, starting with the initial carbapenem-resistant strain in August 2012, was evaluated as a hospital outbreak. The aim of this study was to define the outbreak by investigating the clonal relationship between the strains, to detect the potential environmental sources and to evaluate the period of the outbreak, risk factors and the efficiency of infection control measures. The study was conducted between August-November 2012. Twenty patients with carbapenem-resistant P.aeruginosa (CRPA) positive cultures were included in the study. The control group consisted of 22 patients with carbapenem-susceptible P.aeruginosa (CSPA) positive cultures. The clonal relationship between 26 CRPA strains was studied by pulsed-field gel electrophoresis (PFGE). The PFGE results indicated that CRPA strains in our hospital were not related to a single clone, however, there were four major clones composed of four to eight strains. Logistic regression analysis indicated that the risk increased 15.7 fold (95% CI: 1.19-207.76) by the use of carbapenem, 76.8 fold (95% CI: 2.03-2901.30) by surgical procedures and 0.787 fold (95% CI: 0.63-0.97) by the duration of hospital stay. Surveillance cultures from health-care personel and the environment performed in course of the outbreak, yielded no growth of a strain with the similar antibiotic resistance pattern. The spread of CRPA has been controlled by the use of effective precautionary measures, regressing the isolate number to 0-1 strain/month. Since

  3. Phylogenetic study of metallo-β-lactamase producing multidrug resistant Pseudomonas aeruginosa isolates from burn patients.

    PubMed

    Jena, Jayanti; Debata, Nagen Kumar; Sahoo, Rajesh Kumar; Subudhi, Enketeswara

    2015-12-01

    The present study was carried out to understand the clonal relationship using enterobacteriaceae repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) among metallo-β-lactamase (MBL) producing multidrug resistant Pseudomonas aeruginosa isolates from burn victims and their susceptibility to commonly used anti-pseudomonal agents. In the present study 94 non-duplicate P. aeruginosa strains from the wound samples of burn patients were included. Identification of the isolates was done by biochemical methods and antibiotic sensitivity was done by disc diffusion method following CLSI (Clinical Laboratory Standard Institute) guidelines. By using imipenem (IPM)-EDTA disk diffusion/double disc synergy method carbapenem resistant organisms were tested for MBL. To define the clonal relationship ERIC-PCR was used. Of the 94 isolates, 18 (19.14%) were found resistant to IPM and MBL production was shown 11 (11.70%) by the IPM-EDTA disc diffusion method. From dendrogram of the ERIC-PCR profile four major clusters were obtained (A, B, C and D). Cluster B contained the majority of the isolates (6 strains 1, 4, 8, 9, 10 and 11). This study using ERIC-PCR of randomly collected isolates exhibits high genetic diversity which rules out cross contamination frequency. PMID:26188888

  4. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa.

    PubMed

    Tomaras, Andrew P; Crandon, Jared L; McPherson, Craig J; Banevicius, Mary Anne; Finegan, Steven M; Irvine, Rebecca L; Brown, Matthew F; O'Donnell, John P; Nicolau, David P

    2013-09-01

    Multidrug resistance in Gram-negative bacteria has become so threatening to human health that new antibacterial platforms are desperately needed to combat these deadly infections. The concept of siderophore conjugation, which facilitates compound uptake across the outer membrane by hijacking bacterial iron acquisition systems, has received significant attention in recent years. While standard in vitro MIC and resistance frequency methods demonstrate that these compounds are potent, broad-spectrum antibacterial agents whose activity should not be threatened by unacceptably high spontaneous resistance rates, recapitulation of these results in animal models can prove unreliable, partially because of the differences in iron availability in these different methods. Here, we describe the characterization of MB-1, a novel siderophore-conjugated monobactam that demonstrates excellent in vitro activity against Pseudomonas aeruginosa when tested using standard assay conditions. Unfortunately, the in vitro findings did not correlate with the in vivo results we obtained, as multiple strains were not effectively treated by MB-1 despite having low MICs. To address this, we also describe the development of new in vitro assays that were predictive of efficacy in mouse models, and we provide evidence that competition with native siderophores could contribute to the recalcitrance of some P. aeruginosa isolates in vivo. PMID:23774440

  5. Low-level resistance and clonal diversity of Pseudomonas aeruginosa among chronically colonized cystic fibrosis patients.

    PubMed

    Ferreira, Alex Guerra; Leão, Robson Souza; Carvalho-Assef, Ana Paula D'alincourt; da Silva, Érica Aparecida dos Santos Ribeiro; Firmida, Monica de Cássia; Folescu, Tania Wrobel; Paixão, Vilma Almeida; Santana, Maria Angélica; de Abreu e Silva, Fernando Antonio; Barth, Afonso Luís; Marques, Elizabeth Andrade

    2015-12-01

    A prospective study was conducted in Brazil to evaluate antimicrobial resistance patterns and molecular epidemiology of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients with chronic lung infection. All isolates were obtained between May 2009 and June 2010 from 75 patients seen in four reference centers in Brazil: HCPA (20 patients) and HEOM (15 patients), located in southern and northeastern Brazil, respectively; IFF (20 patients) and HUPE (20 patients), both in southwestern Brazil. Antimicrobial susceptibility testing, PCR for detection of carpapenemases, and pulsed-field gel electrophoresis (PFGE) were performed in 274 isolates. A total of 224 PFGE types were identified and no clones were found circulating among the centers or within the same center. Despite the chronic infection, most patients were colonized by intermittent clones. Only three patients (4%) maintained the same clone during the study. The resistance rates were lower than 30% for the majority of antimicrobials tested in all centers and only 17% of isolates were multiresistant. Isolates (n = 54) with reduced susceptibility to imipenem and/or meropenem presented negative results for blaSPM-1, blaIMP-1, blaVIM , and blaKPC genes. Our results indicate an unexpected low level of antimicrobial resistance and a high genotypic diversity among P. aeruginosa from Brazilian chronic CF patients. PMID:26522829

  6. DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa.

    PubMed Central

    Yonezawa, M; Takahata, M; Matsubara, N; Watanabe, Y; Narita, H

    1995-01-01

    The mutations in the quinolone resistance-determining region of the gyrA gene from clinical isolates of Pseudomonas aeruginosa were determined by DNA sequencing. The strains were isolated in 1989 and 1993. No mutations were detected in the clinical isolates in 1989, while five types of mutations were identified in the isolates in 1993. These mutations were as follows: group 1, a Thr residue to an Ile residue at position 83 (Thr-83-Ile); group 2, Asp-87-Asn; group 3, Thr-83-Ile and Asp-87-Gly; group 4, Thr-83-Ile and Asp-87-Asn; group 5, Thr-83-Ile and Asp-87-His. Three types of double mutations (groups 3, 4, and 5) have not been described previously. These mutations were homologous to the Ser-83-Leu, Asp-87-Asn, and Asp-87-Gly changes observed in Escherichia coli. Thus, DNA gyrase A subunit mutations are implicated in resistance to quinolones in P. aeruginosa as well as E. coli. PMID:8540700

  7. [Incidence of alginate-coding gene in carbapenem-resistant Pseudomonas aeruginosa strains].

    PubMed

    Bogiel, Tomasz; Kwiecińska-Piróg, Joanna; Kozuszko, Sylwia; Gospodarek, Eugenia

    2011-01-01

    Pseudomonas aeruginosa rods are one of the most common isolated opportunistic nosocomial pathogens. Strains usually are capable to secret a capsule-like polysaccharide called alginate important for evasion of host defenses, especially during chronic pulmonary disease of patients with cystic fibrosis. Most genes for alginate biosynthesis and lysis are encoded by the operon. The aim of our study was to evaluate the incidence of algD sequence, generally use for alginate-coding gene detection, in 120 P. aeruginosa strains resistant to carbapenems. All isolates were obtained in the Department of Clinical Microbiology University Hospital no. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Examined strains demonstrated resistance to carbenicillin (90,0%), ticarcillin (89,2%) and ticarcillin clavulanate (86,7%). All strains were susceptible to colistin. The majority of examined strains was susceptible to ceftazidime and cefepime (40,8% each) and norfloxacin (37,5%). Presence of algD gene - noted in 112 (93,3%) strains proves that not every strain is capable to produce alginate. It was also found out that differences in algD genes incidence in case of different clinical material that strains were isolated from were not statistically important. PMID:22184909

  8. Investigation of an epidemic of multi-drug resistant Pseudomonas aeruginosa.

    PubMed

    Murray, S A; Snydman, D R

    1982-01-01

    Inter- and intrahospital epidemics of nosocomial infections due to gram-negative bacilli resistant to many antimicrobials have been well-documented. Prospective studies on the use of isolation along with epidemiologic analysis and appropriate environmental control have been lacking. In the six-month period from November 1978 to April 1979 Pseudomonas aeruginosa (MDR) resistant to all antibiotics except amikacin was isolated from 15 patients. This organism had not previously been seen in our hospital. Epidemiologic assessment of infected patients revealed that nine of 15 patients had contact either with a previously infected case or contaminated area. All strains of P. aeruginosa were identical by pyocin typing and antibiogram. The organism was present in an environmental reservoir, the urine graduated cylinder, and was found in three of eight receptacles (p = 0.002 vs. other environmental cultures). A case control study of patient risk factors showed aminoglycoside use, other antibiotic use, surgery, intravenous lines, Foley catheter use and mechanical ventilation to be no more frequent in cases than controls. The use of aminoglycosides in only 40% of cases suggests that antibiotic pressure was not the sole factor in perpetuating the epidemic. PMID:6924644

  9. Muropeptides in Pseudomonas aeruginosa and their Role as Elicitors of β-Lactam-Antibiotic Resistance.

    PubMed

    Lee, Mijoon; Dhar, Supurna; De Benedetti, Stefania; Hesek, Dusan; Boggess, Bill; Blázquez, Blas; Mathee, Kalai; Mobashery, Shahriar

    2016-06-01

    Muropeptides are a group of bacterial natural products generated from the cell wall in the course of its turnover. These compounds are cell-wall recycling intermediates and are also involved in signaling within the bacterium. However, the identity of these signaling molecules remains elusive. The identification and characterization of 20 muropeptides from Pseudomonas aeruginosa is described. The least abundant of these metabolites is present at 100 and the most abundant at 55,000 molecules per bacterium. Analysis of these muropeptides under conditions of induction of resistance to a β-lactam antibiotic identified two signaling muropeptides (N-acetylglucosamine-1,6-anhydro-N-acetylmuramyl pentapeptide and 1,6-anhydro-N-acetylmuramyl pentapeptide). Authentic synthetic samples of these metabolites were shown to activate expression of β-lactamase in the absence of any β-lactam antibiotic, thus indicating that they serve as chemical signals in this complex biochemical pathway. PMID:27111486

  10. Dynamics of Mutations during Development of Resistance by Pseudomonas aeruginosa against Five Antibiotics.

    PubMed

    Feng, Yanfang; Jonker, Martijs J; Moustakas, Ioannis; Brul, Stanley; Ter Kuile, Benno H

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically during intensive care. Antibiotic-resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance to five medically relevant antibiotics upon exposure to stepwise increasing concentrations. At several time points during the acquisition of resistance, samples were taken for whole-genome sequencing. The increase in the MIC of ciprofloxacin was linked to specific mutations in gyrA, parC, and gyrB, appearing sequentially. In the case of tobramycin, mutations in fusA, HP02880, rplB, and capD were induced. The MICs of the beta-lactam compounds meropenem and ceftazidime and the combination of piperacillin and tazobactam correlated linearly with beta-lactamase activity but not always with individual mutations. The genes that were mutated during the development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reversed, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions or a somewhat lower growth rate. In all cases except ciprofloxacin, the increase in resistance seems to be the result of complex interactions among several cellular systems rather than individual mutations. PMID:27139485

  11. High level of resistance to aztreonam and ticarcillin in Pseudomonas aeruginosa isolated from soil of different crops in Brazil.

    PubMed

    Pitondo-Silva, André; Martins, Vinicius Vicente; Fernandes, Ana Flavia Tonelli; Stehling, Eliana Guedes

    2014-03-01

    Pseudomonas aeruginosa can be found in water, soil, plants and, human and animal fecal samples. It is an important nosocomial pathogenic agent characterized by an intrinsic resistance to multiple antimicrobial agents and the ability to develop high-level (acquired) multidrug resistance through some mechanisms, among them, by the acquisition of plasmids and integrons, which are mobile genetic elements. In this study, 40 isolates from Brazilian soil were analyzed for antibiotic resistance, presence of integrons and plasmidial profile. The results demonstrated that the vast majority of the isolates have shown resistance for aztreonam (92.5%, n=37) and ticarcillin (85%, n=34), four isolates presented plasmids and eight isolates possess the class 1 integron. These results demonstrated that environmental isolates of P. aeruginosa possess surprising antibiotic resistance profile to aztreonam and ticarcillin, two antimicrobial agents for clinical treatment of cystic fibrosis patients and other infections occurred by P. aeruginosa. PMID:24369293

  12. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  13. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  14. Molecular surveillance for carbapenemase genes in carbapenem-resistant Pseudomonas aeruginosa in Australian patients with cystic fibrosis.

    PubMed

    Tai, Anna S; Kidd, Timothy J; Whiley, David M; Ramsay, Kay A; Buckley, Cameron; Bell, Scott C

    2015-02-01

    The aim of this study was to assess the prevalence of acquired carbapenemase genes amongst carbapenem non-susceptible Pseudomonas aeruginosa isolates in Australian patients with cystic fibrosis (CF). Cross-sectional molecular surveillance for acquired carbapenemase genes was performed on CF P. aeruginosa isolates from two isolate banks comprising: (i) 662 carbapenem resistant P. aeruginosa isolates from 227 patients attending 10 geographically diverse Australian CF centres (2007-2009), and (ii) 519 P. aeruginosa isolates from a cohort of 173 adult patients attending one Queensland CF clinic in 2011. All 1189 P. aeruginosa isolates were tested by polymerase chain reaction (PCR) protocols targeting ten common carbapenemase genes, as well the Class 1 integron intI1 gene and the aadB aminoglycoside resistance gene. No carbapenemase genes were identified among all isolates tested. The intI1 and aadB genes were frequently detected and were significantly associated with the AUST-02 strain (OR 24.6, 95% CI 9.3-65.6; p < 0.0001) predominantly from Queensland patients. Despite the high prevalence of carbapenem resistance in P. aeruginosa in Australian patients with CF, no acquired carbapenemase genes were detected in the study, suggesting chromosomal mutations remain the key resistance mechanism in CF isolates. Systematic surveillance for carbapenemase-producing P. aeruginosa in CF by molecular surveillance is ongoing. PMID:25551306

  15. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    PubMed

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  16. Use of Ceftolozane/Tazobactam in the Treatment of Multidrug-resistant Pseudomonas aeruginosa Bloodstream Infection in a Pediatric Leukemia Patient.

    PubMed

    Aitken, Samuel L; Kontoyiannis, Dimitrios P; DePombo, April M; Bhatti, Micah M; Tverdek, Frank P; Gettys, Suzanne C; Nicolau, David P; Nunez, Cesar A

    2016-09-01

    Multidrug-resistant Pseudomonas aeruginosa is of increasing concern in pediatric patients. Ceftolozane/tazobactam is a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Pseudomonas; however, no data exist on its use in children. This report summarizes the treatment of a multidrug-resistant P. aeruginosa bloodstream infection in a pediatric leukemia patient with ceftolozane/tazobactam and provides the first description of its pharmacokinetics in pediatrics. PMID:27254038

  17. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa.

    PubMed

    Guo, Qiaoyun; Wei, Yu; Xia, Bin; Jin, Yongxin; Liu, Chang; Pan, Xiaolei; Shi, Jing; Zhu, Feng; Li, Jinlong; Qian, Lei; Liu, Xinqi; Cheng, Zhihui; Jin, Shouguang; Lin, Jianping; Wu, Weihui

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules. PMID:26751736

  18. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa

    PubMed Central

    Guo, Qiaoyun; Wei, Yu; Xia, Bin; Jin, Yongxin; Liu, Chang; Pan, Xiaolei; Shi, Jing; Zhu, Feng; Li, Jinlong; Qian, Lei; Liu, Xinqi; Cheng, Zhihui; Jin, Shouguang; Lin, Jianping; Wu, Weihui

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules. PMID:26751736

  19. Pseudomonas aeruginosa isolates of distinct sub-genotypes exhibit similar potential of antimicrobial resistance by drugs exposure.

    PubMed

    Liu, Zhen-Hong; Xu, Yan; Duo, Li-Bo; Liu, Yu; Xu, Zhao-Zhen; Burns, Jane L; Liu, Gui-Rong; Yang, Bao-Feng; Liu, Shu-Lin

    2013-04-01

    Pseudomonas aeruginosa, a wide-spread opportunistic pathogen, often complicates clinical treatments due to its resistance to a large variety of antimicrobials, especially in immune compromised patients, occasionally leading to death. However, the resistance to antimicrobials varies greatly among the P. aeruginosa isolates, which raises a question on whether some sub-lineages of P. aeruginosa might have greater potential to develop antimicrobial resistance than others. To explore this question, we divided 160 P. aeruginosa isolates collected from cities of USA and China into distinct genotypes using I-CeuI, a special endonuclease that had previously been proven to reveal phylogenetic relationships among bacteria reliably due to the highly conserved 26-bp recognition sequence. We resolved 10 genotypes by I-CeuI analysis and further divided them into 82 sub-genotypes by endonuclease cleavage with SpeI. Eight of the 10 genotypes contained both multi-drug resistant (MDR) and less resistant isolates based on comparisons of their antimicrobial resistance profiles (ARPs). When the less resistant or susceptible isolates from different genotypes were exposed to eight individual antimicrobials, they showed similar potential to become resistant with minor exceptions. This is to our knowledge the first report to examine correlations between phylogenetic sub-lineages of P. aeruginosa and their potential to become resistant to antimicrobials. This study further alerts the importance and urgency of antimicrobial abuse control. PMID:23224438

  20. New options of antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Nakamura, I; Yamaguchi, T; Tsukimori, A; Sato, A; Fukushima, S; Matsumoto, T

    2015-01-01

    Several antibiotic combinations have demonstrated increased activity against multidrug-resistant Pseudomonas aeruginosa (MDRP) in vitro compared with a single antibiotic. The aim of this study was to investigate the activity against MDRP of some aminoglycosides in combination with monobactam, piperacillin (PIPC), and carbapenem. Clinical isolates of MDRP were collected between November 2010 and October 2012 from patients in Tokyo Medical University Hospital, Tokyo (1,015 beds). Our new method was designed to evaluate three concentrations around the breakpoint of each drug using the Checkerboard method. The aminoglycosides tested were amikacin (AMK), tobramycin (TOB), and arbekacin (ABK). Ciprofloxacin, PIPC, and biapenem (BIPM), which have been reported to demonstrate combination effects, were also tested. Sixty-six MDRP strains were identified from the 2,417 P. aeruginosa strains. Of the 66, 27 tested positive for metallo-β-lactamase (MBL). Aztreonam (AZT) with AMK or ABK was the most effective against MDRP. PIPC with AMK or ABK were somewhat effective. AZT with AMK or ABK were more effective against MBL-positive strains than MBL-negative strains. However, PIPC with AMK or ABK were more effective against MBL-negative strains than MBL-positive strains. Combination activities showed differences between MBL-positive and MBL-negative strains. PMID:25070493

  1. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material.

    PubMed Central

    Nickel, J C; Ruseska, I; Wright, J B; Costerton, J W

    1985-01-01

    When disks of urinary catheter material were exposed to the flow of artificial urine containing cells of Pseudomonas aeruginosa, a thick adherent biofilm, composed of these bacteria and of their exopolysaccharide products, developed on the latex surface within 8 h. After this colonization, sterile artificial urine containing 1,000 micrograms of tobramycin per ml was flowed past this established biofilm, and a significant proportion of the bacterial cells within the biofilm were found to be still viable after 12 h of exposure to this very high concentration of aminoglycoside antibiotic. Planktonic (floating) cells taken from the test system just before the exposure of the biofilm to the antibiotic were completely killed by 50 micrograms of tobramycin per ml. The MIC of tobramycin for cells taken from the seeding cultures before colonization of the catheter material, and for surviving cells recovered directly from the tobramycin-treated biofilm, was found to be 0.4 micrograms/ml when dispersed cells were assayed by standard methods. These data indicate that growth within thick adherent biofilms confers a measure of tobramycin resistance on cells of P. aeruginosa. Images PMID:3923925

  2. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.

    PubMed

    Mathlouthi, Najla; Areig, Zaynab; Al Bayssari, Charbel; Bakour, Sofiane; Ali El Salabi, Allaaeddin; Ben Gwierif, Salha; Zorgani, Abdulaziz A; Ben Slama, Karim; Chouchani, Chedly; Rolain, Jean-Marc

    2015-06-01

    The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem (minimum inhibitory concentrations ≥16 μg/ml). The blaVIM-2 gene was detected in 19 P. aeruginosa isolates. All imipenem-resistant P. aeruginosa isolates showed the presence of OprD mutations. Acquired OXA-carbapenemase-encoding genes were present in all A. baumannii isolates: blaOXA-23 (n=19) and blaOXA-24 (n=3). Finally, a total of 13 and 17 different sequence types were assigned to the 21 P. aeruginosa and the 22 A. baumannii carbapenem-resistant isolates, respectively. This study is the first report describing imipenem-resistant P. aeruginosa and A. baumannii isolated from patients in Libya. We report the first case of co-occurrence of blaVIM-2 with oprD porin loss in identical isolates of P. aeruginosa in Libya and demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates. We also report the first identification of multidrug-resistant A. baumannii isolates harboring blaOXA-23-like, blaOXA-24-like, and blaOXA-48-like genes in Libya. PMID:25587875

  3. High-level amikacin resistance in Pseudomonas aeruginosa associated with a 3'-phosphotransferase with high affinity for amikacin.

    PubMed

    Torres, C; Perlin, M H; Baquero, F; Lerner, D L; Lerner, S A

    2000-08-01

    This work describes the characterization of the phosphotransferase enzymatic activity responsible for amikacin resistance in two clinical Pseudomona aeruginosa strains, isolated from a hospital that used amikacin as first-line aminoglycoside. Amikacin-resistant P. aeruginosa PA40 and PA43 (MIC: 128 mg/l) were shown to have APH activity with a substrate profile similar to that of APH(3')-VI. The enzyme from P. aeruginosa PA40 was purified to > 70% homogeneity. The Km of amikacin for this enzyme was 1.4 microM, the Vmax/Km ratio for amikacin was higher than for the other aminoglycosides tested and PCR and DNA sequencing ruled out the presence of aph(3')-IIps. Amikacin resistance in this strain was, therefore, associated with APH(3')-VI and the high affinity of this enzyme for amikacin could explain the high-level resistance that we observed. PMID:10929874

  4. In vivo challenging of polymyxins and levofloxacin eye drop against multidrug-resistant Pseudomonas aeruginosa keratitis.

    PubMed

    Tajima, Kazuki; Miyake, Taku; Koike, Naohito; Hattori, Takaaki; Kumakura, Shigeto; Yamaguchi, Tetsuo; Matsumoto, Tetsuya; Fujita, Koji; Kuroda, Masahiko; Ito, Norihiko; Goto, Hiroshi

    2014-06-01

    The purposes of this study were to establish a rabbit multidrug-resistant Pseudomonas aeruginosa (MDRP) keratitis model, and test the efficacy of levofloxacin, colistin methanesulfate (CL-M), colistin sulfate (CL-S) and polymyxin B (PL-B) against MDRP infection. In a rabbit eye, making a 2-mm circular corneal excision, and MDRP strain #601 or representative P. aeruginosa strain IID1210 were instilled into the corneal concavity. IID1210 was used to confirm this model developed P. aeruginosa keratitis. After MDRP keratitis developed, we treated the eyes with levofloxacin, CL-M, CL-S or PL-B eye drops. The infected eyes were evaluated by clinical score, histopathological examination and viable bacterial count (CFU). Rabbits developed MDRP keratitis reproducibly after instilled the bacteria into the corneal lesion. MDRP produced severe keratitis similarly with IID1210, as shown by slit lamp examination and clinical score. In MDRP keratitis models, clinical scores and viable bacterial counts were significantly lower in levofloxacin- and CL-M-treated groups compared with PBS-treated group, but the magnitudes of reduction were not remarkable. However, clinical scores were dramatically lowered in CL-S- and PL-B-treated groups compared with PBS-treated group. CL-S- and PL-B-treated group were kept corneal translucency and little influx of polymorphonuclear neutrophils in histopathological examination. In addition, both CL-S- and PL-B-treated groups were not detected viable bacteria in infected cornea. Using our MDRP keratitis model, we showed that topical levofloxacin and CL-M are not adequately effective, while CL-S and PL-B are efficacious in controlling MDRP keratitis. Especially, PL-B, which is commercially available eye drop, might be most effective against MDRP. PMID:24726376

  5. Screening of antibiotics resistance to Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii by an advanced expert system.

    PubMed

    Nakamura, Tatsuya; Takahashi, Hakuo

    2005-12-01

    The VITEK2 advanced expert system (AES) gives information about the antibiotics-resistance mechanisms based on the biological validation derived from the VITEK2 susceptibility result. In this study, we investigated whether or not this system correctly categorized the beta-lactamase resistance mechanism data derived from the VITEK2 susceptibility result using the testing card, AST-N025, with Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We used 131 strains, and their phenotypes were determined according to the biological and genetic screening. The AES analysis result matched the phenotype testing in 120 (91.6%) of the 131 strains. Incorrect findings were found in six strains, including three strains of Serratia marcescens. The resistance mechanism could not be determined in five strains, including three strains of Providencia rettgeri. The analysis of those phenotypes agreed in 34 (97.1%) among 35 strains with extended spectrum beta-lactamase (ESBL), and in 27 (96.4%) among 28 strains with high-level cephalosporinase. The agreement ratio in the phenotype was very high as we expected. The incorrect and nondeterminable samples were strains with relatively high cephalosporinase that has variation of outer membrane protein. The AES was able to detect the phenotype for carbapenemase. The AES is a clinically useful system that allows taking prompt measures to treat patients because it can provide information about the resistance mechanism in less than half a day after starting the analysis. PMID:16369735

  6. RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa.

    PubMed

    Tartor, Y H; El-Naenaeey, E Y

    2016-01-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen responsible for causing a wide variety of acute and chronic infections with significant levels of morbidity and mortality. These infections are very hard to eradicate because of the expression of numerous virulence factors and the intrinsic resistance against antibiotics. Herein, this study analyzed antimicrobial susceptibility of PA isolated from broiler chickens and cattle as well as expression of five significant exotoxin genes (exoU, exoS, toxA, lasB, and phzM) and ecfX as internal control. Genomic DNA was amplified employing oprL gene for species specific detection of PA. The highest resistance was found to ampicillin, erythromycin, followed by, chloramphenicol, trimethoprim/ sulfamethoxazole and tetracycline, intermediately sensitive to ceftazidime, cefoperazone, and highly sensitive to gentamicin, levofloxacin, imipenem, ciprofloxacin and colistin. It appears that exoU+ and increased resistance to SXT may be co-selected traits. Vast majority of PA isolates expressed exoS (78.6%), exoU (71.4%) and both in more virulent strains. The ubiquity of toxA, lasB, exoU and exoS among PA clinical isolates is consistent with an important role for these virulence factors in chicken respiratory diseases and cattle mastitis that can be highlighted as potential therapeutic targets for treatment of infections caused by heterogeneous and resistant PA strains. PMID:26828988

  7. Therapeutic potential of the antimicrobial peptide OH-CATH30 for antibiotic-resistant Pseudomonas aeruginosa keratitis.

    PubMed

    Li, Sheng-An; Liu, Jie; Xiang, Yang; Wang, Yan-Jie; Lee, Wen-Hui; Zhang, Yun

    2014-06-01

    The therapeutic potential of antimicrobial peptides (AMPs) has been evaluated in many infectious diseases. However, the topical application of AMPs for ocular bacterial infection has not been well investigated. The AMP OH-CATH30, which was identified in the king cobra, exhibits potent antimicrobial activity. In this study, we investigated the therapeutic potential of OH-CATH30 for Pseudomonas aeruginosa keratitis. Ten isolates of P. aeruginosa from individuals with keratitis were susceptible to OH-CATH30 but not to cefoperazone, ciprofloxacin, gentamicin, and levofloxacin. The microdilution checkerboard assay showed that OH-CATH30 exhibited synergistic activity with ciprofloxacin and levofloxacin against antibiotic-resistant P. aeruginosa. Meanwhile, P. aeruginosa did not develop resistance to OH-CATH30, even after exposure at 0.5× the MIC for up to 25 subcultures. Furthermore, treatment with OH-CATH30, alone or in combination with levofloxacin, significantly improved the clinical outcomes of rabbit keratitis induced by antibiotic-resistant P. aeruginosa. Taken together, our data indicate that the topical application of OH-CATH30 is efficacious against drug-resistant P. aeruginosa keratitis. In addition, our study highlights the potential application of AMPs in treating ocular bacterial infections. PMID:24637683

  8. Profile of Virulence Factors in the Multi-Drug Resistant Pseudomonas aeruginosa Strains of Human Urinary Tract Infections (UTI)

    PubMed Central

    Habibi, Asghar; Honarmand, Ramin

    2015-01-01

    Background: Putative virulence factors are responsible for the pathogenicity of UTIs caused by Pseudomonas aeruginosa (P. aeruginosa). Resistance of P. aeruginosa to commonly used antibiotics is caused by the extreme overprescription of those antibiotics. Objectives: The goal of the present study was to investigate the prevalence of virulence factors and the antibiotic resistance patterns of P. aeruginosa isolates in UTI cases in Iran. Patients and Methods: Two hundred and fifty urine samples were collected from patients who suffered from UTIs. Samples were cultured immediately, and those that were P. aeruginosa-positive were analyzed for the presence of virulence genes using polymerase chain reaction (PCR) testing. Antimicrobial susceptibility testing (AST) was performed using the disk diffusion method. Results: Of the 250 urine samples analyzed, 8 samples (3.2%) were positive for P. aeruginosa. The prevalence of P. aeruginosa in male and female patients was 2.7% and 3.5%, respectively, (P = 0.035). In patients less than 10 years old, it was 4.2%, and in patients more than 55 years old, it was 4.2%. These were the most commonly infected groups. The highest levels of resistance were seen against ampicillin (87.5%), norfloxacin (62.5%), gentamycin (62.5%), amikacin (62.5%), and aztreonam (62.5%), while the lowest were seen for meropenem (0%), imipenem (12.5%), and polymyxin B (12.5%). LasB (87.5%), pclH (75%), pilB (75%), and exoS (75%) were the most commonly detected virulence factors in the P. aeruginosa isolates. Conclusions: It is logical to first prescribe meropenem, imipenem, and polymyxin B in cases of UTIs caused by P. aeruginosa. Medical practitioners should be aware of the presence of levels of antibiotic resistance in hospitalized UTI patients in Iran. PMID:26756017

  9. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa

    PubMed Central

    Shen, Jilu; Pan, Yaping; Fang, Yaping

    2015-01-01

    We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa. PMID:26440806

  10. Draft genome sequence of blaVeb-1, blaoxa-10 producing multi-drug resistant (MDR) Pseudomonas aeruginosa strain VRFPA09 recovered from bloodstream infection.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib NarahariRao

    2015-01-01

    Pseudomonas aeruginosa (P. aeruginosa) bacteremia causes significant mortality rate due to emergence of multidrug resistant (MDR) nosocomial infections. We report the draft genome sequence of P. aeruginosa strain VRFPA09, a human bloodstream isolate, phenotypically proven as MDR strain. Whole genome sequencing on VRFPA09, deciphered betalactamase encoding blav(eb-1) and bla(OXA-10) genes and multiple drug resistance, virulence factor encoding genes. PMID:26413042

  11. Multi-drug resistant Pseudomonas aeruginosa keratitis and its effective treatment with topical colistimethate

    PubMed Central

    Chatterjee, Samrat; Agrawal, Deepshikha

    2016-01-01

    The purpose was to evaluate the clinical outcome in multi-drug resistant Pseudomonas aeruginosa (MDR-PA) bacterial keratitis and report the successful use of an alternative antibiotic, topical colistimethate in some of them. The medical records of 12 culture-proven MDR-PA keratitis patients, all exhibiting in vitro resistance by Kirby–Bauer disc diffusion method to ≥ three classes of routinely used topical antibiotics were reviewed. Eight patients were treated with 0.3% ciprofloxacin or ofloxacin, 1 patient with 5% imipenem/cilastatin and 3 patients with 1.6% colistimethate. The outcomes in 8 eyes treated with only fluoroquinolones were evisceration in 4 eyes, therapeutic corneal graft in 1 eye, phthisis bulbi in 1 eye, and no improvement in 2 eyes. The eye treated with imipenem/cilastin required a therapeutic corneal graft. All the three eyes treated with 1.6% colistimethate healed. Colistimethate may prove to be an effective alternative antibiotic in the treatment of MDR-PA keratitis. PMID:27050354

  12. Chemotaxis by Pseudomonas aeruginosa.

    PubMed Central

    Moulton, R C; Montie, T C

    1979-01-01

    Chemotaxis by Pseudomonas aeruginosa RM46 has been studied, and conditions required for chemotaxis have been defined, by using the Adler capillary assay technique. Several amino acids, organic acids, and glucose were shown to be attractants of varying effectiveness for this organism. Ethylenediaminetetraacetic acid was absolutely required for chemotaxis, and magnesium was also necessary for a maximum response. Serine taxis was greatest when the chemotaxis medium contained 1.5 X 10(-5) M ethylenediaminetetraacetic acid and 0.005 M magnesium chloride. It was not necessary to include methionine in the chemotaxis medium. The strength of the chemotactic responses to glucose and to citrate was dependent on prior growth of the bacteria on glucose and citrate, respectively. Accumulation in response to serine was inhibited by the addition of succinate, citrate, malate, glucose, pyruvate, or methionine to the chemotaxis medium. Inhibition by succinate was not dependent on the concentration of attractant in the capillary. However, the degree to which glucose and citrate inhibited serine taxis was dependent on the carbon source utilized for growth. Further investigation of this inhibition may provide information about the mechanisms of chemotaxis in P. aeruginosa. PMID:104961

  13. Protective Role of Catalase in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide

    PubMed Central

    Elkins, James G.; Hassett, Daniel J.; Stewart, Philip S.; Schweizer, Herbert P.; McDermott, Timothy R.

    1999-01-01

    The role of the two known catalases in Pseudomonas aeruginosa in protecting planktonic and biofilm cells against hydrogen peroxide (H2O2) was investigated. Planktonic cultures and biofilms formed by the wild-type strain PAO1 and the katA and katB catalase mutants were compared for their susceptibility to H2O2. Over the course of 1 h, wild-type cell viability decreased steadily in planktonic cells exposed to a single dose of 50 mM H2O2, whereas biofilm cell viability remained at approximately 90% when cells were exposed to a flowing stream of 50 mM H2O2. The katB mutant, lacking the H2O2-inducible catalase KatB, was similar to the wild-type strain with respect to H2O2 resistance. The katA mutant possessed undetectable catalase activity. Planktonic katA mutant cultures were hypersusceptible to a single dose of 50 mM H2O2, while biofilms displayed a 10-fold reduction in the number of culturable cells after a 1-h exposure to 50 mM H2O2. Catalase activity assays, activity stains in nondenaturing polyacrylamide gels, and lacZ reporter genes were used to characterize the oxidative stress responses of planktonic cultures and biofilms. Enzyme assays and catalase activity bands in nondenaturing polyacrylamide gels showed significant KatB catalase induction occurred in biofilms after a 20-min exposure to H2O2, suggesting that biofilms were capable of a rapid adaptive response to the oxidant. Reporter gene data obtained with a katB::lacZ transcriptional reporter strain confirmed katB induction and that the increase in total cellular catalase activity was attributable to KatB. Biofilms upregulated the reporter in the constant presence of 50 mM H2O2, while planktonic cells were overwhelmed by a single 50 mM dose and were unable to make detectable levels of β-galactosidase. The results of this study demonstrated the following: the constitutively expressed KatA catalase is important for resistance of planktonic and biofilm P. aeruginosa to H2O2, particularly at high H2O2

  14. Alteration of some cellular function in amikacin resistant Pseudomonas aeruginosa transfected macrophages: a time dependent approach

    PubMed Central

    Chakraborty, Subhankari Prasad; KarMahapatra, Santanu; Das, Sabyasachi; Roy, Somenath

    2011-01-01

    Objective To evaluate the free radical generation and antioxidant enzymes status in murine peritoneal macrophage during in vitro amikacin resistant Pseudomonas aeruginosa (ARPA) treatment with different time interval. Methods Peritoneal macrophages were treated with 1×108 CFU/mL ARPA cell suspension in vitro for different time interval (1, 2, 3, 6, 12, and 24 h) and super oxide anion generation, NO generation, reduced glutathione level and antioxidant enzymes status were analyzed. Results Super oxide anion generation and NO generation got peak at 12 h, indicating maximal free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during ARPA transfection. Reduced glutathione level and antioxidant enzymes status were decreased significantly (P<0.05) with increasing time of ARPA transfection. All the changes in peritoneal macrophages after 12 h in vitro ARPA transfection had significant difference (P<0.05). Conclusions From this study, it may be summarized that in vitro ARPA infection not only generates excess free radical but also affects the antioxidant system and glutathione cycle in murine peritoneal macrophage. PMID:23569818

  15. [Assessment of 2 automated microdilution techniques compared to an agar dilution method in determining sensitivity to fosfomycin in strains of carbapenem-resistant Pseudomonas aeruginosa].

    PubMed

    Gil-Romero, Yolanda; Regodón-Domínguez, Marta; Wilhelmi de Cal, Isabel; López-Fabal, Fátima; Gómez-Garcés, José Luis

    2016-01-01

    Carbapenems-resistance in Pseudomonas aeruginosa isolates has been widely reported. Fosfomycin has been shown to act synergistically with other antimicrobials. The agar dilution method was approved for susceptibility testing for fosfomycin and Pseudomonas aeruginosa. However, broth microdilution methods are the basis of systems currently used in clinical microbiology laboratories. The results of this study indicate that these methods are acceptable as susceptibility testing methods for fosfomycin against these organisms. PMID:26620604

  16. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa

    PubMed Central

    Hassan Abdel-Rhman, Shaymaa; Mostafa El-Mahdy, Areej; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm. PMID:26844228

  17. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period

    PubMed Central

    Yayan, Josef; Ghebremedhin, Beniam; Rasche, Kurt

    2015-01-01

    Background Pseudomonas aeruginosa is a common cause of community-acquired and nosocomial-acquired pneumonia. The development of resistance of P. aeruginosa to antibiotics is increasing globally due to the overuse of antibiotics. This article examines, retrospectively, the antibiotic resistance in patients with community-acquired versus nosocomial-acquired pneumonia caused by P. aeruginosa or multidrug-resistant (MDR) P. aeruginosa. Methods Data from patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa and MDR P. aeruginosa were collected from the hospital charts at the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, between January 2004 and August 2014. An antibiogram was created from all study patients with community-acquired and nosocomial-acquired pneumonia caused by P. aeruginosa or MDR P. aeruginosa. Results A total of 168 patients with mean age 68.1 ± 12.8 (113 [67.3% males and 55 [32.7%] females) were identified; 91 (54.2%) had community-acquired and 77 (45.8%) had nosocomial-acquired pneumonia caused by P. aeruginosa. Patients with community-acquired versus nosocomial-acquired pneumonia had a mean age of 66.4 ± 13.8 vs. 70.1 ± 11.4 years [59 vs. 54 (64.8% vs. 70.1%) males and 32 vs. 23 (35.2% vs. 29.9%) females]. They included 41 (24.4%) patients with pneumonia due to MDR P. aeruginosa: 27 (65.9%) community-acquired and 14 (34.1%) nosocomial-acquired cases. P. aeruginosa and MDR P. aeruginosa showed a very high resistance to fosfomycin (community-acquired vs. nosocomial-acquired) (81.0% vs. 84.2%; 0 vs. 85.7%). A similar resistance pattern was seen with ciprofloxacin (35.2% vs. 24.0%; 70.4% vs. 61.5%), levofloxacin (34.6% vs. 24.5%; 66.7% vs. 64.3%), ceftazidime (15.9% vs. 30.9; 33.3% vs. 61.5%), piperacillin (24.2% vs. 29.9%; 44.4% vs. 57.1%), imipenem (28.6% vs. 27.3%; 55.6% vs. 50.0%), piperacillin and tazobactam (23.1% vs. 28.6%; 44.4% vs. 50.0%), tobramycin (28.0% vs. 17.2%; 52.0% vs. 27

  18. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa.

    PubMed

    Kirienko, Natalia V; Ausubel, Frederick M; Ruvkun, Gary

    2015-02-10

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa. PMID:25624506

  19. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa

    PubMed Central

    Kirienko, Natalia V.; Ausubel, Frederick M.; Ruvkun, Gary

    2015-01-01

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa. PMID:25624506

  20. Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies.

    PubMed

    Gómez-Zorrilla, Silvia; Juan, Carlos; Cabot, Gabriel; Camoez, Mariana; Tubau, Fe; Oliver, Antonio; Dominguez, M Angeles; Ariza, Javier; Peña, Carmen

    2016-05-01

    The biological cost of multidrug resistance in Pseudomonas aeruginosa (PA) remains unclear. This study aimed to evaluate the relationship between pathogenicity and the resistance profile of different PA strains, including the most common epidemic high-risk clones. Nine PA strains were studied, including two reference strains, PAO1 and PA14 [both susceptible to all antipseudomonals (multiS)], and seven clinical strains comprising three clinical multiS strains, a non-clonal multidrug-resistant (MDR) strain and the high-risk MDR clones ST111, ST235 and ST175. In vitro studies were performed to investigate growth rate, type III secretion system (TTSS) genotype, cytotoxicity and invasiveness. Additionally, a peritonitis/sepsis model was used in C57BL/6 mice. The in vitro bacterial duplication time was shorter in clinical multiS strains than in MDR-PA (0.42±0.08h vs. 0.55±0.14h; P=0.023). Among the clinical strains, exoU(+) genotype was observed only in the epidemic clone ST235. In the animal model, the probability of mortality at 48h was 70% for clinical multiS strains vs. 7.5% for clinical MDR-PA (P<0.001, log-rank). The high-risk clone ST235 was the only MDR strain that was able to cause mortality. Bacterial concentrations in peritoneal fluid were higher in mice inoculated with multiS strains compared with MDR-PA [log CFU/mL, 8.95 (IQR 3.42-9.32) vs. 1.98 (IQR 1.08-2.80); P<0.001]. These data indicate that MDR profiles are associated with a reduction in virulence of PA in a murine model. Further studies are needed to elucidate the clinical implications of these results. PMID:27079153

  1. PmrB Mutations Promote Polymyxin Resistance of Pseudomonas aeruginosa Isolated from Colistin-Treated Cystic Fibrosis Patients

    PubMed Central

    Brannon, Mark K.; Dasgupta, Nandini; Pier, Miyuki; Sgambati, Nicole; Miller, Amanda K.; Selgrade, Sara E.; Miller, Samuel I.; Denton, Miles; Conway, Steven P.; Johansen, Helle K.; Høiby, Niels

    2012-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates of this organism (MICs of 8 to 64 mg/liter). To explore the role of PmrAB in high-level clinical polymyxin resistance, P. aeruginosa isolates from chronically colistin-treated cystic fibrosis patients, most with colistin MICs of >512 mg/liter, were analyzed. These cystic fibrosis isolates contained probable gain-of-function pmrB alleles that conferred polymyxin resistance to strains with a wild-type or pmrAB deletion background. Double mutant pmrB alleles that contained mutations in both the periplasmic and dimerization-phosphotransferase domains markedly augmented polymyxin resistance. Expression of mutant pmrB alleles induced transcription from the promoter of the arnB operon and stimulated addition of 4-amino-l-arabinose to lipid A, consistent with the known role of this lipid A modification in polymyxin resistance. For some highly polymyxin-resistant clinical isolates, repeated passage without antibiotic selection pressure resulted in loss of resistance, suggesting that secondary suppressors occur at a relatively high frequency and account for the instability of this phenotype. These results indicate that pmrB gain-of-function mutations can contribute to high-level polymyxin resistance in clinical strains of P. aeruginosa. PMID:22106224

  2. Pseudomonas aeruginosa biofilms in disease.

    PubMed

    Mulcahy, Lawrence R; Isabella, Vincent M; Lewis, Kim

    2014-07-01

    Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804-1813, 2010; Breathnach et al., J Hosp Infect 82:19-24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255-264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78-81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439-440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections. PMID:24096885

  3. ESBL and MBL in Cefepime Resistant Pseudomonas aeruginosa: An Update from a Rural Area in Northern India

    PubMed Central

    Biswas, Debasis; Kakati, Barnali; Singh, Malvika

    2016-01-01

    Introduction Cefepime, a fourth generation cephalosporin, is widely used for the empirical treatment of serious infections in critically ill hospitalized patients. Pseudomonas aeruginosa (P. aeruginosa), one of the commonest bacteria causing nosocomial infections has a propensity to develop antibiotic resistance quite promptly. Aim We undertook this study to assess the efficacy of cefepime against current clinical isolates of P. aeruginosa and to study existence of different beta-lactamase enzymes among cefepime resistant P. aeruginosa isolates. Materials and Methods Total of 618 isolates of P. aeruginosa recovered consecutively from various clinical samples of a tertiary care hospital were analysed. Their Antimicrobial sensitivity profile against piperacilin (100μg), piperacillin/tazobactam (100μg/10μg), ceftazidime (30μg), cefoperazone (75μg), cefepime (30μg), ciprofloxacin (5μg), gentamycin (10μg), amikacin (30μg) and imipenem (10μg) (Himedia) was tested by Kirby-Bauer disc diffusion method (Clinical and Laboratory Standards Institute guidelines). We further looked for ESBL, MBL and ESBL + MBL co producers among the cefepime resistant isolates by two different methods (combined double disc synergy test, imipenem-EDTA combined disc test and vitek2). Results Among 618 consecutive clinical isolates of P. aeruginosa, we observed resistance to cefepime in 457 (74%) isolates. We observed resistance to ciprofloxacin (n=506, 82%) in maximum number of isolates followed by that to Gentamycin (n=475, 77%), amikacin (n=366, 60%), and cefoperazone (n=350, 56.6%). Among all our cefepime resistant P. aeruginosa isolates only 27(6%) were ESBL producers, 18(4%) MBL producers and 2(0.4%) were ESBL+ MBL co-producers. All the ESBL and MBL isolates were also tested by VITEK 2 advanced expert system (bioMırieux Vitek Systems Inc, Hazelwood, MO, France) which revealed a 100% concordance with the phenotypic method tested. Conclusion This paper highlights the need to

  4. Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates

    PubMed Central

    Charretier, Yannick; Köhler, Thilo; Cecchini, Tiphaine; Bardet, Chloé; Cherkaoui, Abdessalam; Llanes, Catherine; Bogaerts, Pierre; Chatellier, Sonia; Charrier, Jean-Philippe; Schrenzel, Jacques

    2015-01-01

    Both acquired and intrinsic mechanisms play a crucial role in Pseudomonas aeruginosa antibiotic resistance. Many clinically relevant resistance mechanisms result from changes in gene expression, namely multidrug efflux pump overproduction, AmpC β-lactamase induction or derepression, and inactivation or repression of the carbapenem-specific porin OprD. Changes in gene expression are usually assessed using reverse-transcription quantitative real-time PCR (RT-qPCR) assays. Here, we evaluated label-free Selected Reaction Monitoring (SRM)-based mass spectrometry to directly quantify proteins involved in antibiotic resistance. We evaluated the label-free SRM using a defined set of P. aeruginosa isolates with known resistance mechanisms and compared it with RT-qPCR. Referring to efflux systems, we found a more robust relative quantification of antibiotic resistance mechanisms by SRM than RT-qPCR. The SRM-based approach was applied to a set of clinical P. aeruginosa isolates to detect antibiotic resistance proteins. This multiplexed SRM-based approach is a rapid and reliable method for the simultaneous detection and quantification of resistance mechanisms and we demonstrate its relevance for antibiotic resistance prediction. PMID:25713571

  5. Label-free SRM-based relative quantification of antibiotic resistance mechanisms in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Charretier, Yannick; Köhler, Thilo; Cecchini, Tiphaine; Bardet, Chloé; Cherkaoui, Abdessalam; Llanes, Catherine; Bogaerts, Pierre; Chatellier, Sonia; Charrier, Jean-Philippe; Schrenzel, Jacques

    2015-01-01

    Both acquired and intrinsic mechanisms play a crucial role in Pseudomonas aeruginosa antibiotic resistance. Many clinically relevant resistance mechanisms result from changes in gene expression, namely multidrug efflux pump overproduction, AmpC β-lactamase induction or derepression, and inactivation or repression of the carbapenem-specific porin OprD. Changes in gene expression are usually assessed using reverse-transcription quantitative real-time PCR (RT-qPCR) assays. Here, we evaluated label-free Selected Reaction Monitoring (SRM)-based mass spectrometry to directly quantify proteins involved in antibiotic resistance. We evaluated the label-free SRM using a defined set of P. aeruginosa isolates with known resistance mechanisms and compared it with RT-qPCR. Referring to efflux systems, we found a more robust relative quantification of antibiotic resistance mechanisms by SRM than RT-qPCR. The SRM-based approach was applied to a set of clinical P. aeruginosa isolates to detect antibiotic resistance proteins. This multiplexed SRM-based approach is a rapid and reliable method for the simultaneous detection and quantification of resistance mechanisms and we demonstrate its relevance for antibiotic resistance prediction. PMID:25713571

  6. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from urine samples of Urinary Tract Infections patients in Karachi, Pakistan

    PubMed Central

    Shah, Dania Aijaz; Wasim, Shehnaz; Essa Abdullah, Farhan

    2015-01-01

    Objective: The aim of this study was to evaluate the antibiotic resistance pattern of Psedomonas aeruginosa and its prevalence in patients with urinary tract infections (UTI) for effective treatment in a developing country like Pakistan. Methods: This is an observational study conducted for a period of ten months which ended on December 2013 at the Dr. Essa Laboratory and Diagnostic Centre in Karachi. A total of 4668 urine samples of UTI patients were collected and standard microbiological techniques were performed to identify the organisms in urine cultures. Antibiotic susceptibility testing was performed by Kirby-Bauer technique for twenty five commonly used antimicrobials and then analyzed on SPSS version 17. Results: P. aeruginosa was isolated in 254 cultures (5.4%). The most resistant drugs included Ceclor(100%) and Cefizox (100%) followed by Amoxil/Ampicillin (99.6%), Ceflixime (99.6%), Doxycycline (99.6%), Cefuroxime (99.2%), Cephradine (99.2%), Cotrimoxazole (99.2%), Nalidixic acid (98.8%), Pipemidic acid (98.6%) and Augmentin (97.6%). Conclusion: Emerging resistant strains of Pseudomonas aeruginosa are potentially linked to injudicious use of drugs leading to ineffective empirical therapy and in turn, appearance of even more resistant strains of the bacterium. Therefore, we recommend culture and sensitivity testing to determine the presence of P.aeruginosa prior to specific antimicrobial therapy. PMID:26101487

  7. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates.

    PubMed

    García-Contreras, Rodolfo; Martínez-Vázquez, Mariano; Velázquez Guadarrama, Norma; Villegas Pañeda, Alejandra Guadalupe; Hashimoto, Takahiro; Maeda, Toshinari; Quezada, Héctor; Wood, Thomas K

    2013-06-01

    The quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil inhibit the pathogenicity of the Pseudomonas aeruginosa laboratory strains PA01 and PA14; however, there is no report studying the effectiveness of these compounds for clinical isolates. Therefore, the effect of both quorum quenchers on the production of pyocyanin, elastase and alkaline protease of eight clinical strains from children was evaluated. Although both compounds were in general effective for the attenuation of these factors, three strains resistant to C-30 were found. For 5-fluorouracil, PA01 and some clinical isolates showed resistance for at least one phenotype. PMID:23620228

  8. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007.

    PubMed

    Choudhary, Sangeeta; Sar, Pinaki

    2016-07-01

    A uranium (U)-resistant and -accumulating Pseudomonas aeruginosa strain was characterized to assess the response of toxic metals toward its growth and expression of metal resistance determinants. The bacterium showed MIC (minimum inhibitory concentration) values of 6, 3, and 2 mM for Zn, Cu, and Cd, respectively; with resistance phenotype conferred by periplasmic Cu sequestering copA and RND type heavy metal efflux czcA genes. Real-time PCR-based expression analysis revealed significant upregulation of both these genes upon exposure to low concentrations of metals for short duration, whereas the global stress response gene sodA encoding superoxide dismutase enzyme was upregulated only at higher metal concentrations or longer exposure time. It could also be inferred that copA and czcA are involved in providing resistance only at low metal concentrations, whereas involvement of "global stress response" phenomenon (expression of sodA) at higher metal concentration or increased exposure was evident. This study provides significant understanding of the adaptive response of bacteria surviving in metal and radionuclide contaminated environments along with the development of real-time PCR-based quantification method of using metal resistance genes as biomarker for monitoring relevant bacteria in such habitats. PMID:26662317

  9. Transposon mutagenesis of Pseudomonas aeruginosa exoprotease genes.

    PubMed Central

    Stapleton, M J; Jagger, K S; Warren, R L

    1984-01-01

    Transposon Tn5 was used to generate protease-deficient insertion mutants of Pseudomonas aeruginosa. The presence of Tn5 in the chromosome of P. aeruginosa was demonstrated by transduction and DNA-DNA hybridization. The altered protease production and kanamycin resistance were cotransduced into a wild-type P. aeruginosa strain. A radiolabeled probe of Tn5 DNA hybridized to specific BamHI fragments isolated from the insertion mutants. Two independently isolated Tn5 insertion mutants had reduced protease production, partially impaired elastase activity, and no immunologically reactive alkaline protease. Images PMID:6317657

  10. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  11. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment ▿

    PubMed Central

    Macià, María D.; Pérez, José L.; Molin, Soeren; Oliver, Antonio

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently tagged PAO1 and PAOMS (mutator [mutS] derivative) strains. Two-day-old biofilms were treated with ciprofloxacin (CIP) for 4 days (t4) at 2 μg/ml, which correlated with the mutant prevention concentration (MPC) and provided an AUC/MIC ratio of 384 that should predict therapeutic success. Biofilms were monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One-step resistant mutants (MexCD-OprJ or MexEF-OprN overexpression) were selected for both strains, while two-step resistant mutants (additional GyrA or GyrB mutation) were readily selected only from the mutator strain. CLSM analysis of competition experiments revealed that PAOMS, even when inoculated at a 0.01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting that the increased antibiotic tolerance driven by the special biofilm physiology and architecture may raise the effective MPC, favoring gradual mutational resistance development, especially in mutator strains. Moreover, the amplification of mutator populations under antibiotic treatment by coselection with resistance mutations is for the first time demonstrated in situ for P. aeruginosa biofilms. PMID:21859941

  12. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections

    PubMed Central

    Goudarzi, Mehdi; Fazeli, Maryam; Azad, Mehdi; Seyedjavadi, Sima Sadat; Mousavi, Reza

    2015-01-01

    Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin). Results. The antibiogram revealed that 47 (33.6%) of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4%) isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC) ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6%) was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa. PMID:26266047

  13. Target-Based Resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a Novel Bacterial Type II Topoisomerase Inhibitor

    PubMed Central

    Nayar, Asha S.; Dougherty, Thomas J.; Reck, Folkert; Thresher, Jason; Gao, Ning; Shapiro, Adam B.

    2014-01-01

    In a previous report (T. J. Dougherty, A. Nayar, J. V. Newman, S. Hopkins, G. G. Stone, M. Johnstone, A. B. Shapiro, M. Cronin, F. Reck, and D. E. Ehmann, Antimicrob Agents Chemother 58:2657–2664, 2014), a novel bacterial type II topoisomerase inhibitor, NBTI 5463, with activity against Gram-negative pathogens was described. First-step resistance mutations in Pseudomonas aeruginosa arose exclusively in the nfxB gene, a regulator of the MexCD-OprJ efflux pump system. The present report describes further resistance studies with NBTI 5463 in both Pseudomonas aeruginosa and Escherichia coli. Second-step mutations in P. aeruginosa arose at aspartate 82 of the gyrase A subunit and led to 4- to 8-fold increases in the MIC over those seen in the parental strain with a first-step nfxB efflux mutation. A third-step mutant showed additional GyrA changes, with no changes in topoisomerase IV. Despite repeated efforts, resistance mutations could not be selected in E. coli. Genetic introduction of the Asp82 mutations observed in P. aeruginosa did not significantly increase the NBTI MIC in E. coli. However, with the aspartate 82 mutation present, it was possible to select second-step mutations in topoisomerase IV that did lead to MIC increases of 16- and 128-fold. As with the gyrase aspartate 82 mutation, the mutations in topoisomerase IV did not by themselves raise the NBTI MIC in E. coli. Only the presence of mutations in both targets of E. coli led to an increase in NBTI MIC values. This represents a demonstration of the value of balanced dual-target activity in mitigating resistance development. PMID:25348539

  14. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor

    PubMed Central

    Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2015-01-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the

  15. Sequence Types 235, 111, and 132 Predominate among Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates in Croatia

    PubMed Central

    Izdebski, Radosław; Butic, Iva; Jelic, Marko; Abram, Maja; Koscak, Iva; Baraniak, Anna; Hryniewicz, Waleria; Gniadkowski, Marek; Tambic Andrasevic, Arjana

    2014-01-01

    A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 isolates produced VIM-1 or VIM-2 metallo-β-lactamases or PER-1 or GES-7 extended-spectrum β-lactamases. PMID:25070098

  16. Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa

    PubMed Central

    Rajkovic, Andrei; Erickson, Sarah; Witzky, Anne; Branson, Owen E.; Seo, Jin; Gafken, Philip R.; Frietas, Michael A.; Whitelegge, Julian P.; Faull, Kym F.; Navarre, William; Darwin, Andrew J.

    2015-01-01

    ABSTRACT Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. PMID:26060278

  17. Detection of Quorum Sensing Activity in the Multidrug-Resistant Clinical Isolate Pseudomonas aeruginosa Strain GB11

    PubMed Central

    Cheng, Huey Jia; Ee, Robson; Cheong, Yuet Meng; Tan, Wen-Si; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs), was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11. PMID:25019635

  18. Bundled strategies against infection after liver transplantation: Lessons from multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Sato, Asahi; Kaido, Toshimi; Iida, Taku; Yagi, Shintaro; Hata, Koichiro; Okajima, Hideaki; Takakura, Shunji; Ichiyama, Satoshi; Uemoto, Shinji

    2016-04-01

    Infection is a life-threatening complication after liver transplantation (LT). A recent outbreak of multidrug-resistant Pseudomonas aeruginosa triggered changes in our infection control measures. This study investigated the usefulness of our bundled interventions against postoperative infection after LT. This before-and-after analysis enrolled 130 patients who underwent living donor or deceased donor LT between January 2011 and October 2014. We initiated 3 measures after January 2013: (1) we required LT candidates to be able to walk independently; (2) we increased the hand hygiene compliance rate and contact precautions; and (3) we introduced procalcitonin (PCT) measurement for a more precise determination of empirical antimicrobial treatment. We compared factors affecting the emergence of drug-resistant microorganisms, such as the duration of antimicrobial and carbapenem therapy and hospital stay, and outcomes such as bacteremia and death from infection between before (n = 77) and after (n = 53) the LT suspension period. The utility of PCT measurement was also evaluated. Patients' backgrounds were not significantly different before and after the protocol revision. Incidence of bacteremia (44% versus 25%; P = 0.02), detection rate of multiple bacteria (18% versus 4%; P = 0.01), and deaths from infections (12% versus 2%; P =  0.04) significantly decreased after the protocol revision. Duration of antibiotic (42.3 versus 25.1 days; P =  0.002) and carbapenem administration (15.1 versus 5.2 days; P < 0.001) and the length of postoperative hospital stay (85.4 versus 63.5 days; P =  0.048) also decreased after the protocol revision. PCT mean values were significantly higher in the bacteremia group (10.10 ng/mL), compared with the uneventful group (0.65 ng/mL; P =  0.002) and rejection group (2.30 ng/mL; P =  0.02). One-year overall survival after LT significantly increased in the latter period (71% versus 94%; P =  0

  19. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  20. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems.

    PubMed Central

    Senda, K; Arakawa, Y; Nakashima, K; Ito, H; Ichiyama, S; Shimokata, K; Kato, N; Ohta, M

    1996-01-01

    A total of 3,700 Pseudomonas aeruginosa isolates were collected from 17 general hospitals in Japan from 1992 to 1994. Of these isolates, 132 carbapenem-resistant strains were subjected to DNA hybridization analysis with the metallo-beta-lactamase gene (blaIMP)-specific probe. Fifteen strains carrying the metallo-beta-lactamase gene were identified in five hospitals in different geographical areas. Three strains of P. aeruginosa demonstrated high-level imipenem resistance (MIC, > or = 128 micrograms/ml), two strains exhibited low-level imipenem resistance (MIC, < or = 4 micrograms/ml), and the rest of the strains were in between. These results revealed that the acquisition of a metallo-beta-lactamase gene alone does not necessarily confer elevated resistance to carbapenems. In several strains, the metallo-beta-lactamase gene was carried by large plasmids, and carbapenem resistance was transferred from P. aeruginosa to Escherichia coli by electroporation in association with the acquisition of the large plasmid. Southern hybridization analysis and genomic DNA fingerprinting profiles revealed different genetic backgrounds for these 15 isolates, although considerable similarity was observed for the strains isolated from the same hospital. These findings suggest that the metallo-beta-lactamase-producing P. aeruginosa strains are not confined to a unique clonal lineage but proliferated multifocally by plasmid-mediated dissemination of the metallo-beta-lactamase gene in strains of different genetic backgrounds. Thus, further proliferation of metallo-beta-lactamase-producing strains with resistance to various beta-lactams may well be inevitable in the future, which emphasizes the need for early recognition of metallo-beta-lactamase-producing strains, rigorous infection control, and restricted clinical use of broad-spectrum beta-lactams including carbapenems. PMID:8834878

  1. Structural Analysis of the Role of Pseudomonas aeruginosa Penicillin-Binding Protein 5 in β-Lactam Resistance

    PubMed Central

    Smith, Jeffrey D.; Kumarasiri, Malika; Zhang, Weilie; Hesek, Dusan; Lee, Mijoon; Toth, Marta; Vakulenko, Sergei; Fisher, Jed F.

    2013-01-01

    Penicillin-binding protein 5 (PBP5) is one of the most abundant PBPs in Pseudomonas aeruginosa. Although its main function is that of a cell wall dd-carboxypeptidase, it possesses sufficient β-lactamase activity to contribute to the ability of P. aeruginosa to resist the antibiotic activity of the β-lactams. The study of these dual activities is important for understanding the mechanisms of antibiotic resistance by P. aeruginosa, an important human pathogen, and to the understanding of the evolution of β-lactamase activity from the PBP enzymes. We purified a soluble version of P. aeruginosa PBP5 (designated Pa sPBP5) by deletion of its C-terminal membrane anchor. Under in vitro conditions, Pa sPBP5 demonstrates both dd-carboxypeptidase and expanded-spectrum β-lactamase activities. Its crystal structure at a 2.05-Å resolution shows features closely resembling those of the class A β-lactamases, including a shortened loop spanning residues 74 to 78 near the active site and with respect to the conformations adopted by two active-site residues, Ser101 and Lys203. These features are absent in the related PBP5 of Escherichia coli. A comparison of the two Pa sPBP5 monomers in the asymmetric unit, together with molecular dynamics simulations, revealed an active-site flexibility that may explain its carbapenemase activity, a function that is absent in the E. coli PBP5 enzyme. Our functional and structural characterizations underscore the versatility of this PBP5 in contributing to the β-lactam resistance of P. aeruginosa while highlighting how broader β-lactamase activity may be encoded in the structural folds shared by the PBP and serine β-lactamase classes. PMID:23629710

  2. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA.

    PubMed

    Naik, Milind Mohan; Dubey, Santosh Kumar

    2011-02-01

    A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid. PMID:20661573

  3. Dissemination of transposon Tn6001 in carbapenem-non-susceptible and extensively drug-resistant Pseudomonas aeruginosa in Taiwan

    PubMed Central

    Tseng, Sung-Pin; Tsai, Jui-Chang; Teng, Lee-Jene; Hsueh, Po-Ren

    2009-01-01

    Objectives To investigate the prevalence of metallo-β-lactamases (MBLs) and Tn6001 in carbapenem-non-susceptible Pseudomonas aeruginosa (CNSPA). The CNSPA included extensively drug-resistant P. aeruginosa (XDRPA) and non-XDRPA isolates in Taiwan. Methods A total of 308 CNSPA isolates collected at a medical centre from 2000 to 2005 and 26 XDRPA collected from six medical centres in different regions of Taiwan in 2003 were included. MBL genes and Tn6001 were detected by PCR. Clonal relatedness was determined by PFGE. Results Of the 308 CNSPA isolates, 30 (10%) were XDRPA, including 27 (9%) colistin-only-susceptible (COS) and 3 (1%) colistin-only-intermediate (COI) P. aeruginosa. blaVIM-3 was found in 16 (53%) isolates of the XDRPA (n = 30), whereas only 72 (26%) of the non-XDRPA (n = 278) carried the gene. In450 was higher in COS P. aeruginosa (12/27; 44%) than in non-XDRPA isolates (53/278; 19%). Tn6001 was highest in COS P. aeruginosa (11/27; 41%), followed by COI P. aeruginosa (1/3; 33%), and lowest in non-XDRPA (46/278; 17%). Of 26 XDRPA from six medical centres, higher prevalences of blaVIM-3 (16/26; 62%), In450 (16/26; 62%) and Tn6001 (12/26; 46%) were found. Genotyping by PFGE revealed 60 pulsotypes. Hybridization of a blaVIM-3-specific probe following PFGE suggested that the mobile element Tn6001 might have transferred horizontally. Conclusions Tn6001 and In450 play an important role in the dissemination of CNSPA and XDRPA. The prevalence of these genetic constituents was higher in XDRPA than in non-XDRPA isolates, suggesting that the mobile element Tn6001 might have transferred horizontally. PMID:19773253

  4. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication.

    PubMed

    Guérin-Méchin, Laurence; Leveau, Jean-Yves; Dubois-Brissonnet, Florence

    2004-01-01

    To emphasise the role of outer and inner membranes in the resistance of Pseudomonas aeruginosa to bactericidal activity of various disinfectants, spheroplasts and whole cells were compared. Spheroplasts are more sensitive than whole cells to quaternary ammonium compounds such as didecyl dimethyl ammonium bromide (DDAB) and C16-benzalkonium chloride. The outer membrane acts as a barrier to prevent these disinfectants from entering the cell. It seems to have no influence on activities of smaller molecules such as C12, C14-benzalkonium chlorides and sodium dichloroisocyanurate. For tri-sodium phosphate, the presence of outer membrane emphasized the action of the molecule. Moreover, resistance of DDAB-adapted spheroplasts to bactericidal activity of DDAB is higher than the resistance of non-adapted spheroplasts. This suggests that the inner membrane could also play a role in resistance to DDAB. PMID:15160607

  5. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain

    NASA Astrophysics Data System (ADS)

    Formosa, C.; Grare, M.; Jauvert, E.; Coutable, A.; Regnouf-de-Vains, J. B.; Mourer, M.; Duval, R. E.; Dague, E.

    2012-08-01

    Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.

  6. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine

    PubMed Central

    Mai-Prochnow, Anne; Bradbury, Mark; Ostrikov, Kostya; Murphy, Anthony B.

    2015-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP. PMID:26114428

  7. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland.

    PubMed

    Boss, Renate; Overesch, Gudrun; Baumgartner, Andreas

    2016-07-01

    A total of 44 samples of salmon, pangasius (shark catfish), shrimps, and oysters were tested for the presence of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus, which are indicator organisms commonly used in programs to monitor antibiotic resistance. The isolated bacterial strains, confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, were tested against a panel of 29 antimicrobial agents to obtain MICs. Across the four sample types, Enterococcus faecalis (59%) was most common, followed by E. coli (55%), P. aeruginosa (27%), and S. aureus (9%). All bacterial species were resistant to some antibiotics. The highest rates of resistance were in E. faecalis to tetracycline (16%), in E. coli to ciprofloxacin (22%), and in S. aureus to penicillin (56%). Antibiotic resistance was found among all sample types, but salmon and oysters were less burdened than were shrimps and pangasius. Multidrug-resistant (MDR) strains were exclusively found in shrimps and pangasius: 17% of pangasius samples (MDR E. coli and S. aureus) and 64% of shrimps (MDR E. coli, E. faecalis, and S. aureus). Two of these MDR E. coli isolates from shrimps (one from an organic sample) were resistant to seven antimicrobial agents. Based on these findings, E. coli in pangasius, shrimps, and oysters, E. faecalis in pangasius, shrimps, and salmon, and P. aeruginosa in pangasius and shrimps are potential candidates for programs monitoring antimicrobial resistance. Enrichment methods for the detection of MDR bacteria of special public health concern, such as methicillin-resistant S. aureus and E. coli producing extended-spectrum β-lactamases and carbapenemases, should be implemented. PMID:27357045

  8. Draft Genome Sequence of a Clinically Isolated Extensively Drug-Resistant Pseudomonas aeruginosa Strain.

    PubMed

    Manivannan, Bhavani; Mahalingam, Niranjana; Jadhao, Sudhir; Mishra, Amrita; Nilawe, Pravin; Pradeep, Bulagonda Eswarappa

    2016-01-01

    We present the draft genome assembly of an extensively drug-resistant (XDR)Pseudomonas aeruginosastrain isolated from a patient with a history of genito urinary tuberculosis. The draft genome is 7,022,546 bp with a G+C content of 65.48%. It carries 7 phage genomes, genes for quorum sensing, biofilm formation, virulence, and antibiotic resistance. PMID:27013045

  9. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains.

    PubMed

    Lee, Changhan; Wigren, Edvard; Trček, Janja; Peters, Verena; Kim, Jihong; Hasni, Muhammad Sharif; Nimtz, Manfred; Lindqvist, Ylva; Park, Chankyu; Curth, Ute; Lünsdorf, Heinrich; Römling, Ute

    2015-11-01

    Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere-like 24-meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide-distributed clone C strains. PMID:26014207

  10. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants.

    PubMed

    Abdallah, Marwan; Khelissa, Oussama; Ibrahim, Ali; Benoliel, Corinne; Heliot, Laurent; Dhulster, Pascal; Chihib, Nour-Eddine

    2015-12-01

    Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus on food-contact-surfaces represents a significant risk for the public health. In this context, the present study investigates the relationship between the environmental conditions of biofilm formation and the resistance to disinfectants. Therefore, a static biofilm reactor, called NEC-Biofilm System, was established in order to study the effect of growth temperature (20, 30 and 37°C), and of the surface type (stainless steel and polycarbonate), on biofilm resistance to disinfectants. These conditions were selected to mimic the biofilm formation on abiotic surfaces of food processing industries. The antibiofilm assays were performed on biofilms grown during 24 h. The results showed that the growth temperature influenced significantly the biofilm resistance to disinfectants. These data also revealed that the growth temperature has a significant effect on the biofilm structure of both bacteria. Furthermore, the increase of the biofilm growth temperature increased significantly the algD transcript level in sessile P. aeruginosa cells, whereas the icaA one was not affected in S. aureus cells. Overall, our findings show that the biofilm structure and matrix cannot fully explain the biofilm resistance to disinfectant agents. Nevertheless, it underlines the intimate link between environmental conditions, commonly met in food sectors, and the biofilm resistance to disinfectants. PMID:26233298

  11. Polymyxin Resistance of Pseudomonas aeruginosa phoQ Mutants Is Dependent on Additional Two-Component Regulatory Systems

    PubMed Central

    Gutu, Alina D.; Sgambati, Nicole; Strasbourger, Pnina; Brannon, Mark K.; Jacobs, Michael A.; Haugen, Eric; Kaul, Rajinder K.; Johansen, Helle Krogh; Høiby, Niels

    2013-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistant phoQ mutant defined 41 novel loci required for resistance, including two regulatory systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-l-arabinose addition to lipid A, consistent with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-l-arabinose addition to lipid A, indicating that this modification alone is not sufficient for PhoPQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa isolated from polymyxin-treated cystic fibrosis patients harbored mutant alleles of colRS and cprS; when expressed in a ΔphoQ background, these mutant alleles enhanced polymyxin resistance. These results define ColRS and CprRS as two-component systems regulating polymyxin resistance in P. aeruginosa, indicate that addition of 4-amino-l-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate that colRS and cprS mutations can contribute to high-level clinical resistance. PMID:23459479

  12. Mutational Activation of the AmgRS Two-Component System in Aminoglycoside-Resistant Pseudomonas aeruginosa

    PubMed Central

    Lau, Calvin Ho-Fung; Fraud, Sebastien; Jones, Marcus; Peterson, Scott N.; Poole, Keith

    2013-01-01

    The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa. PMID:23459488

  13. Linking System-Wide Impacts of RNA Polymerase Mutations to the Fitness Cost of Rifampin Resistance in Pseudomonas aeruginosa

    PubMed Central

    Preston, Gail M.

    2014-01-01

    ABSTRACT Fitness costs play a key role in the evolutionary dynamics of antibiotic resistance in bacteria by generating selection against resistance in the absence of antibiotics. Although the genetic basis of antibiotic resistance is well understood, the precise molecular mechanisms linking the genetic basis of resistance to its fitness cost remain poorly characterized. Here, we examine how the system-wide impacts of mutations in the RNA polymerase (RNAP) gene rpoB shape the fitness cost of rifampin resistance in Pseudomonas aeruginosa. Rifampin resistance mutations reduce transcriptional efficiency, and this explains 76% of the variation in fitness among rpoB mutants. The pleiotropic consequence of rpoB mutations is that mutants show altered relative transcript levels of essential genes. We find no evidence that global transcriptional responses have an impact on the fitness cost of rifampin resistance as revealed by transcriptome sequencing (RNA-Seq). Global changes in the transcriptional profiles of rpoB mutants compared to the transcriptional profile of the rifampin-sensitive ancestral strain are subtle, demonstrating that the transcriptional regulatory network of P. aeruginosa is robust to the decreased transcriptional efficiency associated with rpoB mutations. On a smaller scale, we find that rifampin resistance mutations increase the expression of RNAP due to decreased termination at an attenuator upstream from rpoB, and we argue that this helps to minimize the cost of rifampin resistance by buffering against reduced RNAP activity. In summary, our study shows that it is possible to dissect the molecular mechanisms underpinning variation in the cost of rifampin resistance and highlights the importance of genome-wide buffering of relative transcript levels in providing robustness against resistance mutations. PMID:25491352

  14. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    PubMed Central

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca; Kukavica-Ibrulj, Irena; Boyle, Brian; Laroche, Jérôme; Pirnay, Jean-Paul; Lévesque, Roger C.

    2015-01-01

    ABSTRACT The O-specific antigen (OSA) in Pseudomonas aeruginosa lipopolysaccharide is highly varied by sugar identity, side chains, and bond between O-repeats. These differences classified P. aeruginosa into 20 distinct serotypes. In the past few decades, O12 has emerged as the predominant serotype in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P. aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a “serotype island” ranging from 62 kb to 185 kb containing the P. aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrAC248T), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P. aeruginosa PA7. Acquisition and recombination of the “serotype island” resulted in displacement of the native OSA gene cluster and expression of the O12 serotype in the recipients. Serotype switching by recombination has apparently occurred multiple times involving bacteria of various genomic backgrounds. In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. PMID:26396243

  15. Doripenem versus Pseudomonas aeruginosa In Vitro: Activity against Characterized Isolates, Mutants, and Transconjugants and Resistance Selection Potential

    PubMed Central

    Mushtaq, Shazad; Ge, Yigong; Livermore, David M.

    2004-01-01

    Doripenem is a broad-spectrum parenteral carbapenem under clinical development in Japan and North America. Its activities against (i) Pseudomonas aeruginosa isolates with graded levels of intrinsic efflux-type resistance, (ii) mutants with various combinations of AmpC and OprD expression, (iii) PU21 transconjugants with class A and D β-lactamases, and (iv) P. aeruginosa isolates with metallo-β-lactamases were tested by the agar dilution method of the National Committee for Clinical Laboratory Standards. Selection of resistant P. aeruginosa mutants was investigated in single- and multistep procedures. Doripenem MICs for isolates without acquired resistance mostly were 0.12 to 0.5 μg/ml, whereas meropenem MICs were 0.25 to 0.5 μg/ml and imipenem MICs were 1 to 2 μg/ml. The MICs of doripenem, meropenem, ertapenem, and noncarbapenems for isolates with increased efflux-type resistance were elevated, whereas the MICs of imipenem were less affected. The MICs of doripenem were increased by the loss of OprD but not by derepression of AmpC; nevertheless, and as with other carbapenems, the impermeability-determined resistance caused by the loss of OprD corequired AmpC activity and was lost in OprD− mutants also lacking AmpC. The TEM, PSE, PER, and OXA enzymes did not significantly protect P. aeruginosa PU21 against the activity of doripenem, whereas MICs of ≥16 μg/ml were seen for clinical isolates with VIM and IMP metallo-β-lactamases. Resistant mutants seemed to be harder to select with doripenem than with other carbapenems (or noncarbapenems), and the fold increases in the MICs were smaller for the resistant mutants. Single-step doripenem mutants were mostly resistant only to carbapenems and had lost OprD; multistep mutants had broader resistance, implying the presence of additional mechanisms, putatively including up-regulated efflux. Most mutants selected with aminoglycosides and quinolones had little or no cross-resistance to carbapenems, including doripenem

  16. Comparison of transcriptomes of wild-type and isothiazolone-resistant Pseudomonas aeruginosa by using RNA-seq.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2016-06-01

    Isothiazolone biocides (such as Kathon) are widely used in a variety of industrial and domestic applications. However, the mechanisms through which bacteria develop resistance to these biocides are not completely clear. A better understanding of these mechanisms can contribute to optimal use of these biocides. In this study, transcription profiles of a Kathon-resistant strain of Pseudomonas aeruginosa (Pa-R) and the wild-type strain were determined using RNA sequencing (RNA-Seq) with the Illumina HiSeq 2000 platform. RNA-Seq generated 18,657,896 sequence reads aligned to 7093 genes. In all, 1550 differently expressed genes (DEGs, log2 ratio ≥1, false discovery rate (FDR) ≤0.001) were identified, of which 482 were up-regulated and 1068 were down-regulated. Most Kathon-induced genes were involved in metabolic and cellular processes. DEGs significantly enriched nitrogen metabolism and oxidative phosphorylation pathways. In addition, Pa-R showed cross-resistance to triclosan and ciprofloxacin and showed repressed pyocyanin production. These results may improve our understanding of the resistance mechanisms of P. aeruginosa against isothiazolones, and provide insight into the development of more efficient isothiazolones. PMID:27072374

  17. Pseudomonas aeruginosa in Healthcare Settings

    MedlinePlus

    ... becoming more difficult to treat because of increasing antibiotic resistance. Selecting the right antibiotic usually requires that a ... to help educate people about Pseudomonas infections, and antibiotic resistance, and to encourage prevention activities and healthy behaviors ...

  18. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase.

    PubMed

    Cornaglia, G; Mazzariol, A; Lauretti, L; Rossolini, G M; Fontana, R

    2000-11-01

    A total of 8 Pseudomonas aeruginosa isolates was collected from 7 different patients in different wards of the University Hospital of Verona, Italy, from February 1997 to February 1998. The high level of resistance to carbapenems (imipenem minimum inhibitory concentration was always >128 microg/mL) and other broad-spectrum beta-lactams and the rate of imipenem hydrolysis and its inhibition by ethylenediamine-tetra-acetic acid were all suggestive of production of a carbapenem-hydrolyzing metallo-beta-lactamase. A specific DNA probe derived from the recently cloned bla(VIM-1) gene hybridized to all the isolates. A genomic DNA fingerprinting profile revealed clonal relatedness for 7 of 8 isolates. A description of this hospital outbreak is reported, the occurrence of which confirms that proliferation of metallo-beta-lactamase-producing strains multiply resistant to beta-lactams is already a reality outside Japan. These findings emphasize the need for early recognition of similar isolates. PMID:11073738

  19. The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance, and viability

    PubMed Central

    Yakhnina, Anastasiya A.; McManus, Heather R.; Bernhardt, Thomas G.

    2015-01-01

    SUMMARY The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non-essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, PaAmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity, and antibiotic resistance. Importantly, the phenotype of amidase-defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; PaAmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of PaAmiB can be bypassed in mutants activated for a Cpx-like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage. PMID:26032134

  20. Epidemiology of VIM-1-imipenem resistant Pseudomonas aeruginosa in Iran: A systematic review and meta-analysis

    PubMed Central

    Sedighi, Mansour; Salehi-Abargouei, Amin; Oryan, Golfam; Faghri, Jamshid

    2014-01-01

    Background: Pseudomonas aeruginosa is an opportunistic human pathogen which causes serious problems, especially in people who have immunodeficiency. Metallo beta-lactamase (MBL) resistance in this bacterium has led some difficulties in treating bacterial infections. MBLs are being reported with increasing frequency worldwide. The aim of the present systematic review and meta-analysis was to collect data about the relative frequency (RF) of VIM-1-imipenem resistant P. aeruginosa (VIM-1-IRPA) in different regions of Iran and report an overall prevalence if possible. Materials and Methods: PubMed, ISI web of science, Scopus and Google Scholar were searched using following key terms: “P. aeruginosa,” “imipenem,” “VIM-1” and “Iran” were. Articles/abstracts, which used clinical specimens and had done polymerase chain reaction to detect the VIM-1 gene of MBL genes, were included in this review. STATA SE version 11.2 (StataCorp, College Station, TX, USA) was used for statistical analysis. Results: Out of 5457 results found, 10 articles were eligible to be included in our systematic review and meta-analysis. These studies were carried out in Tehran, Isfahan, Kurdistan, Ahvaz, Markazi and Northwest of Iran (Orumieh and Tabriz). Pooled estimation of 1972 P. aeruginosa samples showed that 13% (95% confidence interval = 10.5-16.5%]) of strains were VIM-1 positive. VIM-1-IRPA RF in different studies varied from 0% to 19.5% in Isfahan and Markazi provinces, respectively. We found a moderate heterogeneity (Chochran Q-test, P = 0.032, I-squared = 50.7%) of VIM-1-IRPA RF among studies. Conclusion: According to the results of this study VIM-1-IRPA RF in Iran is in low-level Prevention strategies to reduce the prevalence rates of VIM-1 positive strains in Iran are needed. PMID:25535506

  1. Hospital Isolates of Serratia marcescens Transferring Ampicillin, Carbenicillin, and Gentamicin Resistance to Other Gram-Negative Bacteria Including Pseudomonas aeruginosa

    PubMed Central

    Olexy, Vera M.; Bird, Thomas J.; Grieble, Hans G.; Farrand, Stephen K.

    1979-01-01

    Thirteen independent isolates of Serratia marcescens associated with nosocomial urinary tract infections were obtained from the clinical microbiology laboratory at Hines Veterans Administration Hospital. The isolates were resistant to at least ampicillin, carbenicillin, gentamicin, and tobramycin. They could be divided into two groups on the basis of their antibiotypes. Group I (9 strains) showed resistance to 13 antibiotics, including 3 beta-lactams, 6 aminoglycosides, tetracycline, sulfonamide, trimethoprim, and polymyxin B. Group II (4 strains) was resistant to 11 antibiotics, including 3 beta-lactams, 5 aminoglycosides, sulfonamide, trimethoprim, and polymyxin B. Donors from both groups transferred resistance traits to Escherichia coli. Transconjugants from matings with group II donors all acquired resistance to nine antibiotics, including the three beta-lactams, five aminoglycosides, and sulfonamide. Transconjugants from matings with group I donors were of varied antibiotypes, inheriting resistance to up to 11 of the 13 antibiotics. Resistances to trimethoprim and polymyxin B were never observed to transfer. E. coli transconjugants of each group were capable of transferring multiple-antibiotic resistance to several other members of the family Enterobacteriaceae. All group II S. marcescens and E. coli donors and all group I S. marcescens donors transferred carbenicillin, streptomycin, kanamycin, gentamicin, tobramycin, and sisomicin resistance to Pseudomonas aeruginosa. The results suggest that these S. marcescens strains harbor R factors of a broader host range than previously reported. PMID:106772

  2. Genomic analysis of Pseudomonas aeruginosa PA96, the host of carbapenem resistance plasmid pOZ176.

    PubMed

    Déraspe, Maxime; Alexander, David C; Xiong, Jianhui; Ma, Jennifer H; Low, Donald E; Jamieson, Frances B; Roy, Paul H

    2014-07-01

    Pseudomonas aeruginosa PA96 is a clinical isolate from Guangzhou, China, that is multiresistant to antibiotics. We previously described the 500-kb IncP-2 plasmid, pOZ176 that encodes many resistance genes including the IMP-9 carbapenemase. Whole-genome sequencing of PA96 enabled characterization of its genomic islands, virulence factors, and chromosomal resistance genes. We filled gaps using PCR and used optical mapping to confirm the correct contig order. We automatically annotated the core genome and manually annotated the genomic islands. The genome is 6 444 091 bp and encodes 5853 ORFs. From the whole-genome sequence, we constructed a physical map and constructed a phylogenetic tree for comparison with sequenced P. aeruginosa strains. Analysis of known core genome virulence factors and resistance genes revealed few differences with other strains, but the major virulence island is closer to that of DK2 than to PA14. PA96 most closely resembles the environmental strain M18, and notably shares a common serotype, pyoverdin type, flagellar operon, type IV pilin, and several genomic islands with M18. PMID:24673340

  3. Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria.

    PubMed

    El-Naggar, Moustafa Y; Gohar, Yousry M; Sorour, Magdy A; Waheeb, Marian G

    2016-02-28

    This study proposes an alternative approach for the use of chitosan silver-based dressing for the control of foot infection with multidrug-resistant bacteria. Sixty-five bacterial isolates were isolated from 40 diabetic patients. Staphylococcus aureus (37%) and Pseudomonas aeruginosa (18.5%) were the predominant isolates in the ulcer samples. Ten antibiotics were in vitro tested against diabetic foot clinical bacterial isolates. The most resistant S. aureus and P. aeruginosa isolates were then selected for further study. Three chitosan sources were tested individually for chelating silver nanoparticles. Squilla chitosan silver nanoparticles (Sq. Cs-Ag(0)) showed the maximum activity against the resistant bacteria when mixed with amikacin that showed the maximum synergetic index. This, in turn, resulted in the reduction of the amikacin MIC value by 95%. For evaluation of the effectiveness of the prepared dressing using Artemia salina as the toxicity biomarker, the LC50 was found to be 549.5, 18,000, and 10,000 μg/ml for amikacin, Sq. Cs-Ag(0), and dressing matrix, respectively. Loading the formula onto chitosan hydrogel dressing showed promising antibacterial activities, with responsive healing properties for the wounds in normal rats of those diabetic rats (polymicrobial infection). It is quite interesting to note that no emergence of any side effect on either kidney or liver biomedical functions was noticed. PMID:26597531

  4. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Tai, Kenneth P.; Kamdar, Karishma; Yamaki, Jason; Le, Valerie V.; Tran, Dat; Tran, Patti; Selsted, Michael E.; Ouellette, André J.; Wong-Beringer, Annie

    2014-01-01

    Antibiotic-resistant bacterial pathogens threaten public health. Because many anti-biotics target specific bacterial enzymes or reactions, corresponding genes may mutate under selection and lead to antibiotic resistance. Accordingly, antimicrobials that selectively target overall microbial cell integrity may offer alternative approaches to therapeutic design. Naturally occurring mammalian α- and θ-defensins are potent, non-toxic microbicides that may be useful for treating infections by antibiotic-resistant pathogens, because certain defensin peptides disrupt bacterial but not mammalian cell membranes. To test this concept, clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), including vancomycin heteroresistant strains, and ciprofloxacin-resistant Pseudomonas aeruginosa (CipR-PA) were tested for sensitivity to α-defensins Crp-4, RMAD-4, and HNPs 1–3, and to RTD-1, a macaque θ-defensin-1. In vitro, 3 µM Crp-4, RMAD-4, and RTD-1 reduced MRSA cell survival by 99%, regardless of vancomycin susceptibility. For PA clinical isolates that differ in fluoroquinolone resistance and virulence phenotype, peptide efficacy was independent of strain ciprofloxacin resistance, site of isolation, or virulence factor expression. Thus, Crp-4, RMAD-4, and RTD-1 are effective in vitro antimicrobials against clinical isolates of MRSA and CipR-PA, perhaps providing templates for development of α- and θ-defensin-based microbicides against antibiotic resistant or virulent infectious agents. PMID:24345876

  5. Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas aeruginosa

    PubMed Central

    Winkler, Marisa L.; Papp-Wallace, Krisztina M.; Hujer, Andrea M.; Domitrovic, T. Nicholas; Hujer, Kristine M.; Hurless, Kelly N.; Tuohy, Marion; Hall, Geraldine

    2014-01-01

    Pseudomonas aeruginosa is a notoriously difficult-to-treat pathogen that is a common cause of severe nosocomial infections. Investigating a collection of β-lactam-resistant P. aeruginosa clinical isolates from a decade ago, we uncovered resistance to ceftazidime-avibactam, a novel β-lactam/β-lactamase inhibitor combination. The isolates were systematically analyzed through a variety of genetic, biochemical, genomic, and microbiological methods to understand how resistance manifests to a unique drug combination that is not yet clinically released. We discovered that avibactam was able to inactivate different AmpC β-lactamase enzymes and that blaPDC regulatory elements and penicillin-binding protein differences did not contribute in a major way to resistance. By using carefully selected combinations of antimicrobial agents, we deduced that the greatest barrier to ceftazidime-avibactam is membrane permeability and drug efflux. To overcome the constellation of resistance determinants, we show that a combination of antimicrobial agents (ceftazidime/avibactam/fosfomycin) targeting multiple cell wall synthetic pathways can restore susceptibility. In P. aeruginosa, efflux, as a general mechanism of resistance, may pose the greatest challenge to future antibiotic development. Our unexpected findings create concern that even the development of antimicrobial agents targeted for the treatment of multidrug-resistant bacteria may encounter clinically important resistance. Antibiotic therapy in the future must consider these factors. PMID:25451057

  6. Synergistic Activity of Colistin and Ceftazidime against Multiantibiotic-Resistant Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model

    PubMed Central

    Gunderson, Brent W.; Ibrahim, Khalid H.; Hovde, Laurie B.; Fromm, Timothy L.; Reed, Michael D.; Rotschafer, John C.

    2003-01-01

    Despite the marketing of a series of new antibiotics for antibiotic-resistant gram-positive bacteria, no new agents for multiple-antibiotic-resistant gram-negative infections will be available for quite some time. Clinicians will need to find more effective ways to utilize available agents. Colistin is an older but novel antibiotic that fell into disfavor with clinicians some time ago yet still retains a very favorable antibacterial spectrum, especially for Pseudomonas and Acinetobacter spp. Time-kill curves for two strains of multiantibiotic-resistant Pseudomonas aeruginosa were generated after exposure to colistin alone or in combination with ceftazidime or ciprofloxacin in an in vitro pharmacodynamic model. MICs of colistin, ceftazidime, ciprofloxacin, piperacillin-tazobactam, imipenem, and tobramycin were 0.125, ≥32, >4, >128/4, 16, and >16 mg/liter, respectively. Colistin showed rapid, apparently concentration-dependent bactericidal activity at concentrations between 3 and 200 mg/liter. We were unable to detect increased colistin activity at concentrations above 18 mg/liter due to extremely rapid killing. The combination of colistin and ceftazidime was synergistic (defined as at least a 2-log10 drop in CFU per milliliter from the count obtained with the more active agent) at 24 h. Adding ciprofloxacin to colistin did not enhance antibiotic activity. These data suggest that the antibacterial effect of colistin combined with ceftazidime can be maximized at a peak concentration of ≤18 mg/liter. PMID:12604520

  7. Flagellin and pilin immunization against multi-drug resistant Pseudomonas aeruginosa protects mice in the burn wound sepsis model.

    PubMed

    Korpi, Fatemeh; Hashemi, Farhad B; Irajian, Gholamreza; Fatemi, Mohammad Javad; Laghaei, Parisa; Behrouz, Bahador

    2016-08-01

    Pseudomonas aeruginosa is a formidable pathogen and a major threat to burn patients. Antimicrobial therapy is often unsuccessful because P. aeruginosa can develop multi-drug resistance; thus, immunotherapy and vaccine can be a rational alternative. Flagella and type IV pili have been identified as important virulence factors in the colonization and pathogenesis of P. aeruginosa in burn wound infections. Immunogenicity and efficacy of mixed recombinant full-length type b flagellin (r-b-flagellin) and recombinant PilA (r-PilA) as candidate vaccines were assessed by measuring humoral and cellular responses, using an experimental burned mouse model. Primary immunization with "r-b-flagellin+r-PilA" followed by two booster shots was sufficient to generate a robust humoral response, which was predominantly a Th2 response consisting mainly of subtype IgG1 and low levels of IgG2a. Analysis of the cytokine response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by "r-b-flagellin+r-PilA". Opsonophagocytosis assays confirmed the enhanced killing of bacteria by anti "r-b-flagellin+r-PilA" immune sera. These antibodies were also able to reduce bacterial load in the site of original infection into the liver and spleen of challenged mice. The reduction of systemic bacterial spread resulted in an increased survival rate of challenged immunized mice. In conclusion, immunization with "r-b-flagellin+r-PilA" proteins provides a better protective response against P. aeruginosa infection in the burn mouse model. PMID:27210422

  8. Small Colony Variants and Single Nucleotide Variations in Pf1 Region of PB1 Phage-Resistant Pseudomonas aeruginosa

    PubMed Central

    Lim, Wee S.; Phang, Kevin K. S.; Tan, Andy H.-M.; Li, Sam F.-Y.; Ow, Dave S.-W.

    2016-01-01

    Phage therapy involves the application of lytic bacteriophages for treatment of clinical infections but bacterial resistance may develop over time. Isolated from nosocomial infections, small colony variants (SCVs) are morphologically distinct, highly virulent bacterial strains that are resistant to conventional antibiotics. In this study, SCVs was derived from Pseudomonas aeruginosa exposed to the lytic bacteriophage PB1 and these cells were resistant to subsequent phage infection by PB1. To elucidate the mechanism of the SCV phage resistance, we performed phenotypic assays, DNA microarrays and whole-genome sequencing. Compared with wild-type P. aeruginosa, the SCV isolate showed impaired biofilm formation, decreased twitching motility, reduced elastase and pyocyanin production. The SCV is also more susceptible to the antibiotic ciprofloxacin and exhibited higher syrface hydrophobicity than the wild-type, indicative of changes to cell surface lipopolysaccharide (LPS) composition. Consistent with these results, transcriptomic studies of SCV revealed up-regulation of genes involved in O-specific antigen (OSA) biosynthesis, suggesting the regulation of surface moieties may account for phage resistance. Western blot analysis showed a difference in OSA distribution between the two strains. Simultaneously, genes involved in aromatic and branched chain amino acid catabolism were down-regulated. Whole genome sequencing of the SCV revealed multiple single nucleotide variations within the Pf1 prophage region, a genetic locus known to play a crucial role in biofilm formation and to provide survival advantage via gene transfer to a subpopulation of cells. Insights into phenotypic and genetic changes in SCV gained here should help direct future studies to elucidate mechanisms underpinning phage resistance, leading to novel counter resistance measures. PMID:27014207

  9. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins

    PubMed Central

    Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, Véronique Yvette; Broutin, I.; Loeffert, S.; Fournier, D.

    2015-01-01

    Mutation-dependent overproduction of intrinsic β-lactamase AmpC is considered the main cause of resistance of clinical strains of Pseudomonas aeruginosa to antipseudomonal penicillins and cephalosporins. Analysis of 31 AmpC-overproducing clinical isolates exhibiting a greater resistance to ceftazidime than to piperacillin-tazobactam revealed the presence of 17 mutations in the β-lactamase, combined with various polymorphic amino acid substitutions. When overexpressed in AmpC-deficient P. aeruginosa 4098, the genes coding for 20/23 of these AmpC variants were found to confer a higher (2-fold to >64-fold) resistance to ceftazidime and ceftolozane-tazobactam than did the gene from reference strain PAO1. The mutations had variable effects on the MICs of ticarcillin, piperacillin-tazobactam, aztreonam, and cefepime. Depending on their location in the AmpC structure and their impact on β-lactam MICs, they could be assigned to 4 distinct groups. Most of the mutations affecting the omega loop, the R2 domain, and the C-terminal end of the protein were shared with extended-spectrum AmpCs (ESACs) from other Gram-negative species. Interestingly, two new mutations (F121L and P154L) were predicted to enlarge the substrate binding pocket by disrupting the stacking between residues F121 and P154. We also found that the reported ESACs emerged locally in a variety of clones, some of which are epidemic and did not require hypermutability. Taken together, our results show that P. aeruginosa is able to adapt to efficacious β-lactams, including the newer cephalosporin ceftolozane, through a variety of mutations affecting its intrinsic β-lactamase, AmpC. Data suggest that the rates of ESAC-producing mutants are ≥1.5% in the clinical setting. PMID:26248364

  10. Pharmacodynamic Profiling of a Siderophore-Conjugated Monocarbam in Pseudomonas aeruginosa: Assessing the Risk for Resistance and Attenuated Efficacy

    PubMed Central

    Kutschke, Amy; Ehmann, David E.; Patey, Sara A.; Crandon, Jared L.; Gorseth, Elise; Miller, Alita A.; McLaughlin, Robert E.; Blinn, Christina M.; Chen, April; Nayar, Asha S.; Dangel, Brian; Tsai, Andy S.; Rooney, Michael T.; Murphy-Benenato, Kerry E.; Eakin, Ann E.; Nicolau, David P.

    2015-01-01

    The objective of this study was to investigate the risk of attenuated efficacy due to adaptive resistance for the siderophore-conjugated monocarbam SMC-3176 in Pseudomonas aeruginosa by using a pharmacokinetic/pharmacodynamic (PK/PD) approach. MICs were determined in cation-adjusted Mueller-Hinton broth (MHB) and in Chelex-treated, dialyzed MHB (CDMHB). Spontaneous resistance was assessed at 2× to 16× the MIC and the resulting mutants sequenced. Efficacy was evaluated in a neutropenic mouse thigh model at 3.13 to 400 mg/kg of body weight every 3 h for 24 h and analyzed for association with free time above the MIC (fT>MIC). To closer emulate the conditions of the in vivo model, we developed a novel assay testing activity mouse whole blood (WB). All mutations were found in genes related to iron uptake: piuA, piuC, pirR, fecI, and pvdS. Against four P. aeruginosa isolates, SMC-3176 displayed predictable efficacy corresponding to the fT>MIC using the MIC in CDMHB (R2 = 0.968 to 0.985), with stasis to 2-log kill achieved at 59.4 to 81.1%. Efficacy did not translate for P. aeruginosa isolate JJ 4-36, as the in vivo responses were inconsistent with fT>MIC exposures and implied a threshold concentration that was greater than the MIC. The results of the mouse WB assay indicated that efficacy was not predictable using the MIC for JJ 4-36 and four additional isolates, against which in vivo failures of another siderophore-conjugated β-lactam were previously reported. SMC-3176 carries a risk of attenuated efficacy in P. aeruginosa due to rapid adaptive resistance preventing entry via the siderophore-mediated iron uptake systems. Substantial in vivo testing is warranted for compounds using the siderophore approach to thoroughly screen for this in vitro-in vivo disconnect in P. aeruginosa. PMID:26438502

  11. Prevalence of multidrug resistant and extended spectrum beta-lactamase producing Pseudomonas aeruginosa in a tertiary care hospital

    PubMed Central

    Shaikh, Sibhghatulla; Fatima, Jamale; Shakil, Shazi; Danish Rizvi, Syed Mohd.; Kamal, Mohammad Amjad

    2014-01-01

    Resistance to broad-spectrum beta-lactams, mediated by extended-spectrum beta-lactamase enzymes (ESBL), is an increasing problem worldwide. The present study was undertaken to determine the incidence of ESBL-production among the clinical isolates of Pseudomonas aeruginosa and their susceptibility to selected antimicrobials. A total of one eighty-seven clinical specimens were tested for the presence of ESBL production using the double-disc synergy test. Of these, 25.13% (n = 47) isolates of P. aeruginosa were observed as ESBL positive. The maximum number of ESBL-producing strains were found in sputum (41.67%; n = 24) followed by pus (28.36%; n = 19), cerebrospinal fluid and other body fluids (21.74%; n = 5), urine (20.45%; n = 9) and blood (13.79%; n = 4). ESBL producing isolates exhibited co-resistance to an array of antibiotics tested. Imipenem and meropenem can be suggested as the drugs of choice in our study. PMID:25561885

  12. Capsule production by Pseudomonas aeruginosa

    SciTech Connect

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  13. Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide.

    PubMed Central

    Gregoriou, M; Brown, P R; Tata, R

    1977-01-01

    Pseudomonas aeruginosa AI 3 was able to grow in medium containing acetanilide (N-phenylacetamide) as a carbon source when NH4+ was the nitrogen source but not when urea was the nitrogen source. AIU mutants isolated from strain AI 3 grew on either medium. Urease levels in bacteria grown in the presence of urea were 10-fold lower when NH4+ or acetanilide was also in the medium, but there were no apparent differences in urease or its synthesis between strain AI 3 and mutant AIU 1N. The first metabolic step in the acetanilide utlization is catalyzed by an amidase. Amidases in several AIU strains showed altered physiochemical properties. Urea inhibited amidase in a time-dependent reaction, but the rates of the inhibitory reaction with amidases from the AIU mutants were slower than with AI 3 amidase. The purified amidase from AIU 1N showed a marked difference in its pH/activity profile from that obtained with purified AI 3 amidase. These observations indicate that the ability of strain AIU 1N and the other mutants to grow on acetanilide/urea medium is associated with a mutation in the amidase structural gene; this was confirmed for strain AIU 1N by transduction. PMID:410788

  14. Clonal Dissemination, Emergence of Mutator Lineages and Antibiotic Resistance Evolution in Pseudomonas aeruginosa Cystic Fibrosis Chronic Lung Infection

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Moyà, Bartolomé; Figuerola, Joan; Togores, Bernat; Pérez, José L.; Oliver, Antonio

    2013-01-01

    Chronic respiratory infection by Pseudomonas aeruginosa is a major cause of mortality in cystic fibrosis (CF). We investigated the interplay between three key microbiological aspects of these infections: the occurrence of transmissible and persistent strains, the emergence of variants with enhanced mutation rates (mutators) and the evolution of antibiotic resistance. For this purpose, 10 sequential isolates, covering up to an 8-year period, from each of 10 CF patients were studied. As anticipated, resistance significantly accumulated overtime, and occurred more frequently among mutator variants detected in 6 of the patients. Nevertheless, highest resistance was documented for the nonmutator CF epidemic strain LES-1 (ST-146) detected for the first time in Spain. A correlation between resistance profiles and resistance mechanisms evaluated [efflux pump (mexB, mexD, mexF, and mexY) and ampC overexpression and OprD production] was not always obvious and hypersusceptibility to certain antibiotics (such as aztreonam or meropenem) was frequently observed. The analysis of whole genome macrorestriction fragments through Pulsed-Field Gel Electrophoresis (PFGE) revealed that a single genotype (clone FQSE-A) produced persistent infections in 4 of the patients. Multilocus Sequence typing (MLST) identified clone FQSE-A as the CF epidemic clone ST-274, but striking discrepancies between PFGE and MLST profiles were evidenced. While PFGE macrorestriction patterns remained stable, a new sequence type (ST-1089) was detected in two of the patients, differing from ST-274 by only two point mutations in two of the genes, each leading to a nonpreviously described allele. Moreover, detailed genetic analyses revealed that the new ST-1089 is a mutS deficient mutator lineage that evolved from the epidemic strain ST-274, acquired specific resistance mechanisms, and underwent further interpatient spread. Thus, presented results provide the first evidence of interpatient dissemination of mutator

  15. Genetic Markers of Widespread Extensively Drug-Resistant Pseudomonas aeruginosa High-Risk Clones

    PubMed Central

    Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Gago, Juan F.; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2012-01-01

    Recent reports have revealed the existence of widespread extensively drug-resistant (XDR) P. aeruginosa high-risk clones in health care settings, but there is still scarce information on their specific chromosomal (mutational) and acquired resistance mechanisms. Up to 20 (10.5%) of 190 bloodstream isolates collected from 10 Spanish hospitals met the XDR criteria. A representative number (15 per group) of isolates classified as multidrug-resistant (MDR) (22.6%), resistant to 1 to 2 classes (moderately resistant [modR]) (23.7%), or susceptible to all antibiotics (multiS) (43.2%) were investigated in parallel. Multilocus sequence typing (MLST) analysis revealed that all XDR isolates belonged to sequence type 175 (ST175) (n = 19) or ST111 (n = 1), both recognized as international high-risk clones. Clonal diversity was higher among the 15 MDR isolates (4 ST175, 2 ST111, and 8 additional STs) and especially high among the 15 modR (13 different STs) and multiS (14 STs) isolates. The XDR/MDR pattern in ST111 isolates correlated with the production of VIM-2, but none of the ST175 isolates produced acquired β-lactamases. In contrast, the analysis of resistance markers in 12 representative isolates (from 7 hospitals) of ST175 revealed that the XDR pattern was driven by the combination of AmpC hyperproduction, OprD inactivation (Q142X), 3 mutations conferring high-level fluoroquinolone resistance (GyrA T83I and D87N and ParC S87W), a G195E mutation in MexZ (involved in MexXY-OprM overexpression), and the production of a class 1 integron harboring the aadB gene (gentamicin and tobramycin resistance). Of particular interest, in nearly all the ST175 isolates, AmpC hyperproduction was driven by a novel AmpR-activating mutation (G154R), as demonstrated by complementation studies using an ampR mutant of PAO1. This work is the first to describe the specific resistance markers of widespread P. aeruginosa XDR high-risk clones producing invasive infections. PMID:23045355

  16. Responses of Pseudomonas aeruginosa to antimicrobials

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  17. Responses of Pseudomonas aeruginosa to antimicrobials.

    PubMed

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  18. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa

    PubMed Central

    Gupta, Kajal; Liao, Julie; Petrova, Olga E.; Cherny, K. E.; Sauer, Karin

    2014-01-01

    Biofilms are highly structured, surface-associated communities. A hallmark of biofilms is their extraordinary resistance to antimicrobial agents that is activated during early biofilm development of Pseudomonas aeruginosa and requires the regulatory hybrid SagS and BrlR, a member of the MerR family of multidrug efflux pump activators. However, little is known about the mechanism by which SagS contributes to BrlR activation or drug resistance. Here, we demonstrate that ΔsagS biofilm cells harbor the secondary messenger c-di-GMP at reduced levels similar to those observed in wild-type cells grown planktonically rather than as biofilms. Restoring c-di-GMP levels to wild-type biofilm-like levels restored brlR expression, DNA binding by BrlR, and recalcitrance to killing by antimicrobial agents of ΔsagS biofilm cells. We likewise found that increasing c-di-GMP levels present in planktonic cells to biofilm-like levels (≥55 pmol/mg) resulted in planktonic cells being significantly more resistant to antimicrobial agents, with increased resistance correlating with increased brlR, mexA, and mexE expression and BrlR production. In contrast, reducing cellular c-di-GMP levels of biofilm cells to ≤40 pmol/mg correlated with increased susceptibility and reduced brlR expression. Our findings suggest that a signaling pathway involving a specific c-di-GMP pool regulated by SagS contributes to the resistance of P. aeruginosa biofilms. PMID:24655293

  19. Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics

    PubMed Central

    Grabowicz, Marcin

    2015-01-01

    Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens. PMID:26596941

  20. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran.

    PubMed

    Shahcheraghi, Freshteh; Nikbin, Vajiheh-Sadat; Feizabadi, Mohammad Mehdi

    2009-03-01

    Drug susceptibility testing and PCR assay were used to determine the antibiotic susceptibility patterns and prevalence of genes encoding five different extended spectrum betalactamases (ESBLs) (PER, VEB, SHV, GES, and TEM) among 600 isolates of Pseudomonas aeruginosa cultured from patients at two hospitals in Tehran. Susceptibility of isolates to 12 different antibiotics was tested using disk diffusion method. The MICs for ceftazidime and imipenem were also determined using microbroth dilution assay. Isolates showing MICs >or=16 for ceftazidime were subjected to PCR targeting bla(SHV), bla(PER), bla(GES), bla(VEB), and bla(TEM) genes that encode ESBL. The rates of resistance were as follows: tetracycline (92%), carbenicillin (62%), cefotaxime (56%), ceftriaxon (53%), piperacilin (46%), gentamicin (31%), piperacilin/tazobactam (28%), ceftazidime (25%), amikacin (23%), ciprofloxacin (19.5%), and imipenem (6%). Thirty-nine percent of isolates (n = 234) showed MICs >or=16 microg/ml for ceftazidime, and 5.45% showed MICs >or=16 microg/ml for imepenem. The imipenem-resistant isolates showed high rate of susceptibility to colistin (89%) and polymixin B (95.5%). The frequency of bla(VEB), bla(SHV), bla(PER), bla(GES), and bla(TEM) among the ESBL isolates (MIC >or=16) were 24%, 22%, 17%, 0%, and 9%, respectively. Isolates containing bla(VEB) were resistant to almost all tested antibiotics except imepenem. This is the first report on the existence of bla(VEB), and bla(PER) in Iran. Colistin and polymixin B are highly potent against the imipenem-resistant isolates of P. aeruginosa. PMID:19265477

  1. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran

    PubMed Central

    Azimi, Somayeh; Kafil, Hossein Samadi; Baghi, Hossein Bannazadeh; Shokrian, Saeed; Najaf, Khadijeh; Asgharzadeh, Mohammad; Yousefi, Mehdi; Shahrivar, Firooz; Aghazadeh, Mohammad

    2016-01-01

    Background: Pseudomonas aeruginosa, as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of exo genes and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. Material and methods: 160 isolates of P. aeruginosa were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of exo genes was evaluated by allele-specific PCR (polymerase chain reaction). Chi-square test was used for statistical analysis. Results: The most effective antibiotics against isolates were colistin and polymyxin B. 87% of the isolates were biofilm producers of which 69% were strongly biofilm producers. 55% of the isolates carried exoY, 52% of the isolates carried exoU, and 26.3% and 5% carried exoS and exoT, respectively. Conclusion: Our findings showed different distribution of exo genes in clinical isolates of P. aeruginosa in Northwest Iran. ExoS and exoU were more prevalent in non-biofilm producers and exoY was more prevalent in biofilm producer isolates. These results might indicate the importance of exoY in biofilm production of Pseudomonas aeruginosa. PMID:26958458

  2. Developing an international Pseudomonas aeruginosa reference panel

    PubMed Central

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-01-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents. PMID:24214409

  3. IMP-43 and IMP-44 Metallo-β-Lactamases with Increased Carbapenemase Activities in Multidrug-Resistant Pseudomonas aeruginosa

    PubMed Central

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Shimojima, Masahiro

    2013-01-01

    Two novel IMP-type metallo-β-lactamase variants, IMP-43 and IMP-44, were identified in multidrug-resistant Pseudomonas aeruginosa isolates obtained in medical settings in Japan. Analysis of their predicted amino acid sequences revealed that IMP-43 had an amino acid substitution (Val67Phe) compared with IMP-7 and that IMP-44 had two substitutions (Val67Phe and Phe87Ser) compared with IMP-11. The amino acid residue at position 67 is located at the end of a loop close to the active site, consisting of residues 60 to 66 in IMP-1, and the amino acid residue at position 87 forms a hydrophobic patch close to the active site with other amino acids. An Escherichia coli strain expressing blaIMP-43 was more resistant to doripenem and meropenem but not to imipenem than one expressing blaIMP-7. An E. coli strain expressing blaIMP-44 was more resistant to doripenem, imipenem and meropenem than one expressing blaIMP-11. IMP-43 had more efficient catalytic activities against all three carbapenems than IMP-7, indicating that the Val67Phe substitution contributed to increased catalytic activities against carbapenems. IMP-44 had more efficient catalytic activities against all carbapenems tested than IMP-11, as well as increased activities compared with IMP-43, indicating that both the Val67Phe and Phe87Ser substitutions contributed to increased catalytic activities against carbapenems. PMID:23836174

  4. Extensively Drug-Resistant Pseudomonas aeruginosa Isolates Containing blaVIM-2 and Elements of Salmonella Genomic Island 2: a New Genetic Resistance Determinant in Northeast Ohio

    PubMed Central

    Perez, Federico; Hujer, Andrea M.; Marshall, Steven H.; Ray, Amy J.; Rather, Philip N.; Suwantarat, Nuntra; Dumford, Donald; O'Shea, Patrick; Domitrovic, T. Nicholas J.; Salata, Robert A.; Chavda, Kalyan D.; Chen, Liang; Kreiswirth, Barry N.; Vila, Alejandro J.; Haussler, Susanne; Jacobs, Michael R.

    2014-01-01

    Carbapenems are a mainstay of treatment for infections caused by Pseudomonas aeruginosa. Carbapenem resistance mediated by metallo-β-lactamases (MBLs) remains uncommon in the United States, despite the worldwide emergence of this group of enzymes. Between March 2012 and May 2013, we detected MBL-producing P. aeruginosa in a university-affiliated health care system in northeast Ohio. We examined the clinical characteristics and outcomes of patients, defined the resistance determinants and structure of the genetic element harboring the blaMBL gene through genome sequencing, and typed MBL-producing P. aeruginosa isolates using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR (rep-PCR), and multilocus sequence typing (MLST). Seven patients were affected that were hospitalized at three community hospitals, a long-term-care facility, and a tertiary care center; one of the patients died as a result of infection. Isolates belonged to sequence type 233 (ST233) and were extensively drug resistant (XDR), including resistance to all fluoroquinolones, aminoglycosides, and β-lactams; two isolates were nonsusceptible to colistin. The blaMBL gene was identified as blaVIM-2 contained within a class 1 integron (In559), similar to the cassette array previously detected in isolates from Norway, Russia, Taiwan, and Chicago, IL. Genomic sequencing and assembly revealed that In559 was part of a novel 35-kb region that also included a Tn501-like transposon and Salmonella genomic island 2 (SGI2)-homologous sequences. This analysis of XDR strains producing VIM-2 from northeast Ohio revealed a novel recombination event between Salmonella and P. aeruginosa, heralding a new antibiotic resistance threat in this region's health care system. PMID:25070102

  5. Characterization of exo-s, exo-u, and alg virulence factors and antimicrobial resistance in Pseudomonas aeruginosa isolated from migratory Egyptian vultures from India.

    PubMed

    Sharma, Pradeep; Faridi, Farah; Mir, Irfan A; Sharma, Sandeep K

    2014-01-01

    This study of Pseudomonas aeruginosa in fecal droppings of migratory Egyptian vultures (Neophron p. percnopterus) revealed eight positive samples (n=25) by a 16S rRNA gene-based PCR in two consecutive winter seasons. Disk diffusion sensitivity testing revealed three multiple antimicrobial resistant (MAR) isolates. Genotypic characterization showed mutually exclusive exo-s and exo-u virulence genes in five and three isolates, respectively, while the alg gene was present in all of the isolates. MAR isolates with virulence genes were detected in both seasons. The Egyptian vultures could potentially be vectors of pathogenic and MAR P. aeruginosa, thereby affecting regional control and preventive measures. PMID:25317261

  6. Molecular Mechanisms of Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Jalal, Shah; Ciofu, Oana; Høiby, Niels; Gotoh, Naomasa; Wretlind, Bengt

    2000-01-01

    Twenty P. aeruginosa isolates were collected from six cystic fibrosis (CF) patients, aged 27 to 33, in 1994 (9 isolates) and 1997 (11 isolates) at the CF Center, Copenhagen, Denmark, and were typed by pulse-field gel electrophoresis (PFGE) or ribotyping. Five of the patients had isolates with the same PFGE or ribotyping patterns in 1997 as in 1994, and ciprofloxacin had a two- to fourfold higher MIC for the isolates collected in 1997 than those from 1994. Genomic DNA was amplified for gyrA, parC, mexR, and nfxB by PCR and sequenced. Eleven isolates had mutations in gyrA, seven isolates had mutations at codon 83 (Thr to Ile), and four isolates had mutations at codon 87 (Asp to Asn or Tyr). Sixteen isolates had mutations in nfxB at codon 82 (Arg to Leu). Increased amounts of OprN were found in six isolates and OprJ in eight isolates as determined by immunoblotting. No isolates had mutations in parC or mexR. Six isolates had mutations in efflux pumps without gyrA mutations. The average number of mutations was higher in isolates from 1997 than in those from 1994. The results also suggested that efflux resistance mechanisms are more common in isolates from CF patients than in strains from urine and wounds from non-CF patients, in which mutations in gyrA and parC dominate (S. Jalal and B. Wretlind, Microb. Drug Resist. 4:257–261, 1998). PMID:10681343

  7. PhoQ Mutations Promote Lipid A Modification and Polymyxin Resistance of Pseudomonas aeruginosa Found in Colistin-Treated Cystic Fibrosis Patients▿†

    PubMed Central

    Miller, Amanda K.; Brannon, Mark K.; Stevens, Laurel; Johansen, Helle Krogh; Selgrade, Sara E.; Miller, Samuel I.; Høiby, Niels; Moskowitz, Samuel M.

    2011-01-01

    Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 to 64 mg/liter) in laboratory and clinical strains of this organism. To explore the role of PhoPQ in high-level clinical polymyxin resistance, P. aeruginosa strains with colistin MICs > 512 mg/liter that had been isolated from cystic fibrosis patients treated with inhaled colistin (polymyxin E) were analyzed. Probable loss-of-function phoQ alleles found in these cystic fibrosis strains conferred resistance to polymyxin. Partial and complete suppressor mutations in phoP were identified in some cystic fibrosis strains with resistance-conferring phoQ mutations, suggesting that additional loci can be involved in polymyxin resistance in P. aeruginosa. Disruption of chromosomal phoQ in the presence of an intact phoP allele stimulated 4-amino-l-arabinose addition to lipid A and induced transcription from the promoter of the pmrH (arnB) operon, consistent with the known role of this lipid A modification in polymyxin resistance. These results indicate that phoQ loss-of-function mutations can contribute to high-level polymyxin resistance in clinical strains of P. aeruginosa. PMID:21968359

  8. Ciprofloxacin-Eluting Nanofibers Inhibits Biofilm Formation by Pseudomonas aeruginosa and a Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Ahire, Jayesh J.; Neveling, Deon P.; Hattingh, Melanie; Dicks, Leon M. T.

    2015-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with hospital-acquired infections and are known to form biofilms. Ciprofloxacin (CIP), which is normally used to treat these infections, is seldom effective in killing cells in a biofilm. This is mostly due to slow or weak penetration of CIP to the core of biofilms. The problem is accentuated by the release of CIP below MIC (minimal inhibitory concentration) levels following a rapid (burst) release. The aim of this study was to develop a drug carrier that would keep CIP above MIC levels for an extended period. Ciprofloxacin was suspended into poly(D,L-lactide) (PDLLA) and poly(ethylene oxide) (PEO), and electrospun into nanofibers (CIP-F). All of the CIP was released from the nanofibers within 2 h, which is typical of a burst release. However, 99% of P. aeruginosa PA01 cells and 91% of S. aureus Xen 30 cells (a methicillin-resistant strain) in biofilms were killed when exposed to CIP-F. CIP levels remained above MIC for 5 days, as shown by growth inhibition of the cells in vitro. The nanofibers were smooth in texture with no bead formation, as revealed by scanning electron and atomic force microscopy. A single vibration peak at 1632 cm-1, recorded with Fourier transform infrared spectroscopy, indicated that CIP remained in crystal form when incorporated into PDLLA: PEO. No abnormalities in the histology of MCF-12A breast epithelial cells were observed when exposed to CIP-F. This is the first report of the inhibition of biofilm formation by CIP released from PDLLA: PEO nanofibers. PMID:25853255

  9. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa

    PubMed Central

    Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G.; Djordjevic, Steven P.

    2016-01-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  10. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa.

    PubMed

    Roy Chowdhury, Piklu; Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G; Djordjevic, Steven P

    2016-03-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5-aacA4-gcuE15-aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  11. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  12. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes (VIM and IMP) in Pseudomonas aeruginosa strains producing MBL enzyme, isolated from patients with secondary immunodeficiency

    PubMed Central

    Shirani, Kiana; Ataei, Behrouz; Roshandel, Fardad

    2016-01-01

    Background: One of the most common causes of hospital-acquired secondary infections in hospitalized patients is Pseudomonas aeruginosa. The aim of this study is to evaluate the expression of IMP and VIM in Pseudomonas aeruginosa strains (carbapenem resistant and producer MBL enzyme) in patients with secondary immunodeficiency. Materials and Methods: In a cross sectional study, 96 patients with secondary immunodeficiency hospitalized in the Al-Zahra hospital were selected. Carbapenem resistant strains isolated and modified Hodge test was performed in order to confirm the presence of the metallo carbapenemase enzyme. Under the standard conditions they were sent to the central laboratory for investigating nosocomial infection Multiplex PCR. Results: Of 96 samples 28.1% were IMP positive, 5.2% VIM positive and 3.1% both VIM and IMP positive. The prevalence of multidrug resistance in the IMP and/or VIM negative samples was 29%, while all 5 VIM positive samples have had multidrug resistance. Also the prevalence of multi-drug resistance in IMP positive samples were 96.3% and in IMP and VIM positive samples were 100%. According to Fisher’s test, the prevalence of multi-drug resistance based on gene expression has significant difference (P < 0.001). Conclusion: Based on the results of this study it can be concluded that, a significant percentage of patients with secondary immunodeficiency that suffer nosocomial infections with multidrug resistance, especially Pseudomonas aeruginosa, are probably MBL-producing gene positive. Therefore the cause of infection should be considered in the hospital care system to identify their features, the presence of genes involved in the development of multi-drug resistance and antibiotic therapy. PMID:27563634

  13. Resistome and pathogenomics of multidrug resistant (MDR) Pseudomonas aeruginosa VRFPA03, VRFPA05 recovered from alkaline chemical keratitis and post-operative endophthalmitis patient.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib NarahariRao

    2016-03-01

    Eye infections due to Pseudomonas aeruginosa is an important cause of ocular morbidity. We presents the whole genomic comparative analysis of two P. aeruginosa VRFPA03 and VRFPA05 isolated from alkaline chemical injury mediated keratitis and post-cataract surgery endophthalmitis patients, respectively. The blaDIM-1 gene in VRFPA03 and the blaGes-9 gene in VRFPA05 were identified and reported for the first time from an ocular isolate. The current study revealed novel integrons In1107 and In1108, comprised of multidrug-resistant genes. Ocular virulence factors mainly mediated by exoenzymes T, Y, and U and exotoxin A, elastase B, and phenazine-specific methyltransferase. Genomic analysis uncovered multiple known and unknown factors involved in P. aeruginosa mediated ocular infection, which may lead to drug discovery and diagnostic markers to improve human vision care. PMID:26692145

  14. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital.

    PubMed

    Rojo-Bezares, Beatriz; Cavalié, Laurent; Dubois, Damien; Oswald, Eric; Torres, Carmen; Sáenz, Yolanda

    2016-04-01

    Metallo-β-lactamases (MBLs), porin OprD, integrons, virulence factors and the clonal relationships were characterized in imipenem-resistant Pseudomonas aeruginosa (IRPA) isolates. Fifty-six IRPA strains were recovered from blood samples of different patients at a Toulouse teaching hospital from 2011 to 2013. Susceptibility testing of 14 antibiotics was performed by the disc diffusion method. Detection and characterization of MBLs, the oprD gene and integrons were studied by PCR and sequencing. Thirteen genes involved in the virulence of P. aeruginosa were analysed. Molecular typing of IRPA strains was performed by PFGE and multilocus sequence typing. In this study, 61 % of the IRPA isolates showed a multi-resistance phenotype. The MBL phenotype, detected in three isolates (5.4 %), was linked to the blaVIM-2 gene. The oprD gene was amplified in 55 (98.2 %) IRPA strains, and variations were observed in 54 of them. Insertion sequences (IS) truncating oprD were detected in eight IRPA strains, with the novel ISPa56 identified in two strains. Class 1 integrons were detected in 24 (42.9 %) IRPA strains. The blaVIM-2 gene was found inside the class 1 integron arrangements. The new integrons In1054 (intI1-aacA56-qacEΔ1-sul1) and In1160 (intI1-aacA4-aacC1d-ISKpn4-gcuE-qacEΔ1-sul1) have been described for the first time, to the best of our knowledge, in this study. A high clonal diversity was found in our strains. Among the variety of sequence types (STs) found, ST175, ST233, ST235, ST244 and ST654 were noteworthy as epidemic clones. In conclusion, 5.4 % of IRPA strains showed an MBL phenotype linked to the blaVIM-2 gene. The identified oprD high polymorphism could be implicated in the variable resistance to carbapenems in IRPA strains. The dissemination of high-risk clones is a cause of concern. PMID:26838942

  15. Rates of gastrointestinal tract colonization of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa in hospitals in Saudi Arabia.

    PubMed

    Abdalhamid, B; Elhadi, N; Alabdulqader, N; Alsamman, K; Aljindan, R

    2016-03-01

    Carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPAE) are globally a major medical issue, especially in intensive care units. The digestive tract is the main reservoir for these isolates; therefore, rectal swab surveillance is highly recommended. The purpose of this study was to detect the prevalence of gastrointestinal tract colonization of CRE and CRPAE in patients admitted to intensive care units in Saudi Arabia. This project also aimed to characterize carbapenem-hydrolyzing enzyme production in these isolates. From February to May 2015, 200 rectal swab specimens were screened by CHROMagar KPC. Organism identification and susceptibility testing were performed using the Vitek 2 system. One CRE and 13 CRPAE strains were identified, for a prevalence of 0.5% (1/200) and 6.5% (13/200) respectively. Strains showed high genetic diversity using enterobacterial repetitive intergenic consensus sequence-based PCR. NDM type and VIM type were detected by PCR in four and one CRPAE isolates respectively. ampC overexpression was detected in eight CRPAE isolates using Mueller-Hinton agar containing 1000 μg/mL cloxacillin. CTX-M-15 type was detected in 1 CRE by PCR. The prevalence of CRE strain colonization was lower than that of CRPAE isolates. The detection of NDM and VIM in the colonizing CRPAE strains is a major infection control concern. To our knowledge, this is the first study in Saudi Arabia and the gulf region focusing on digestive tract colonization of CRE and CRPAE organisms and characterizing the mechanisms of carbapenem resistance. PMID:26933499

  16. Rates of gastrointestinal tract colonization of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa in hospitals in Saudi Arabia

    PubMed Central

    Abdalhamid, B.; Elhadi, N.; Alabdulqader, N.; Alsamman, K.; Aljindan, R.

    2016-01-01

    Carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPAE) are globally a major medical issue, especially in intensive care units. The digestive tract is the main reservoir for these isolates; therefore, rectal swab surveillance is highly recommended. The purpose of this study was to detect the prevalence of gastrointestinal tract colonization of CRE and CRPAE in patients admitted to intensive care units in Saudi Arabia. This project also aimed to characterize carbapenem-hydrolyzing enzyme production in these isolates. From February to May 2015, 200 rectal swab specimens were screened by CHROMagar KPC. Organism identification and susceptibility testing were performed using the Vitek 2 system. One CRE and 13 CRPAE strains were identified, for a prevalence of 0.5% (1/200) and 6.5% (13/200) respectively. Strains showed high genetic diversity using enterobacterial repetitive intergenic consensus sequence-based PCR. NDM type and VIM type were detected by PCR in four and one CRPAE isolates respectively. ampC overexpression was detected in eight CRPAE isolates using Mueller-Hinton agar containing 1000 μg/mL cloxacillin. CTX-M-15 type was detected in 1 CRE by PCR. The prevalence of CRE strain colonization was lower than that of CRPAE isolates. The detection of NDM and VIM in the colonizing CRPAE strains is a major infection control concern. To our knowledge, this is the first study in Saudi Arabia and the gulf region focusing on digestive tract colonization of CRE and CRPAE organisms and characterizing the mechanisms of carbapenem resistance. PMID:26933499

  17. Bactericidal Effect of Tomatidine-Tobramycin Combination against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Is Enhanced by Interspecific Small-Molecule Interactions

    PubMed Central

    Boulanger, Simon; Mitchell, Gabriel; Bouarab, Kamal; Marsault, Éric; Cantin, André; Frost, Eric H.; Déziel, Eric

    2015-01-01

    This study investigated the antibacterial activity of the plant alkaloid tomatidine (TO) against Staphylococcus aureus grown in the presence of Pseudomonas aeruginosa. Since the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) is known to cause a respiratory deficiency in S. aureus and respiratory-deficient S. aureus are known to be hypersensitive to TO, we assessed kill kinetics of TO (8 μg/ml) against S. aureus in coculture with P. aeruginosa. Kill kinetics were also assessed using P. aeruginosa mutants deficient in the production of different exoproducts and quorum sensing-related compounds. After 24 h in coculture, TO increased the killing of S. aureus by 3.4 log10 CFU/ml in comparison to that observed in a coculture without TO. The effect of TO was abolished when S. aureus was in coculture with the lasR rhlR, pqsA, pqsL, or lasA mutant of P. aeruginosa. The bactericidal effect of TO against S. aureus in coculture with the pqsL mutant was restored by supplemental HQNO. In an S. aureus monoculture, the combination of HQNO and TO was bacteriostatic, indicating that the pqsL mutant produced an additional factor required for the bactericidal effect. The bactericidal activity of TO was also observed against a tobramycin-resistant methicillin-resistant S. aureus (MRSA) in coculture with P. aeruginosa, and the addition of tobramycin significantly suppressed the growth of both microorganisms. TO shows a strong bactericidal effect against S. aureus when cocultured with P. aeruginosa. The combination of TO and tobramycin may represent a new treatment approach for cystic fibrosis patients frequently cocolonized by MRSA and P. aeruginosa. PMID:26392496

  18. Relapsing tricuspid valve endocarditis by multidrug-resistant Pseudomonas aeruginosa in 11 years: tricuspid valve replacement with an aortic valve homograft.

    PubMed

    Kim, Min-Seok; Chang, Hyoung Woo; Lee, Seung-Pyo; Kang, Dong Ki; Kim, Eui-Chong; Kim, Ki-Bong

    2015-01-01

    Eleven years ago, a 27-year-old non-drug abuser woman was admitted to the hospital due to a burn injury. During the treatment, she was diagnosed with tricuspid valve infective endocarditis caused by multi-drug resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa). She underwent tricuspid valve replacement (TVR) using a bioprosthetic valve, followed by 6 weeks of meropenem antibiotic therapy. Ten years later, she was again diagnosed with prosthetic valve infective endocarditis caused by MDR P. aeruginosa. She underwent redo-TVR with a bioprosthetic valve and was treated with colistin and ciprofloxacin. Ten months later, she was again diagnosed with prosthetic valve infective endocarditis with MDR P. aeruginosa as a pathogen. She underwent a second redo-TVR with a tissue valve and was treated with colistin. Two months later, her fever recurred and she was again diagnosed with prosthetic valve infective endocarditis caused by MDR P. aeruginosa. She eventually underwent a third redo-TVR using an aortic valve homograft and was discharged from the hospital after additional 6 weeks' of antibiotic therapy. All the strains of P. aeruginosa isolated from each event of infective endocarditis were analyzed by repetitive deoxyribonucleic acid sequence-based polymerase chain reaction (rep-PCR) deoxyribonucleic acid (DNA) strain typing to determine the correlation of isolates. All of the pathogens in 11 years were similar enough to be classified as the same strain, and this is the first case report of TVR using an aortic valve homograft to treat relapsing endocarditis. PMID:26051245

  19. Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.

    2013-01-01

    Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation by P. aeruginosa. PMID:23318791

  20. Effect of metallo-β-lactamase production and multidrug resistance on clinical outcomes in patients with Pseudomonas aeruginosa bloodstream infection: a retrospective cohort study

    PubMed Central

    2013-01-01

    Background Blood stream infections (BSI) with Pseudomonas aeruginosa lead to poor clinical outcomes. The worldwide emergence and spread of metallo-β-lactamase (MBL) producing, often multidrug-resistant organisms may further aggravate this problem. Our study aimed to investigate the effect of MBL-producing P. aeruginosa (MBL-PA) and various other resistance phenotypes on clinical outcomes. Methods A retrospective cohort study was conducted in three German hospitals. Medical files from 2006 until 2012 were studied, and a number of 113 patients with P. aeruginosa BSI were included. The presence of VIM, IMP and NDM genes was detected using molecular techniques. Genetic relatedness was assessed through multilocus sequence typing (MLST). The effect of resistance patterns or MBL production on clinical outcomes was investigated by using multivariate Cox regression models. Results In-hospital mortality was significantly higher in patients with MBL-PA and multidrug-resistant P. aeruginosa. However, neither BSI with MBL-PA nor BSI with various resistance phenotypes of P. aeruginosa were independently associated with mortality or length of hospital stay. In multivariate models, the SAPS II score (HR 1.046), appropriate definitive treatment (HR range 0.25-0.26), and cardiovascular disease (HR range 0.44-0.46) were independent predictors of mortality. Concomitant infections were associated with an excess length of stay (HR < 1). Conclusions Medication with appropriate antimicrobial agents at any time during the course of infection remains the key for improving clinical outcomes in patients with P. aeruginosa BSI and should be combined with a strict implementation of routine infection control measures. PMID:24176052

  1. Current Concepts in Antimicrobial Therapy Against Resistant Gram-Negative Organisms: Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae, Carbapenem-Resistant Enterobacteriaceae, and Multidrug-Resistant Pseudomonas aeruginosa

    PubMed Central

    Kanj, Souha S.; Kanafani, Zeina A.

    2011-01-01

    The development of antimicrobial resistance among gram-negative pathogens has been progressive and relentless. Pathogens of particular concern include extended-spectrum β-lactamase–producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Classic agents used to treat these pathogens have become outdated. Of the few new drugs available, many have already become targets for bacterial mechanisms of resistance. This review describes the current approach to infections due to these resistant organisms and elaborates on the available treatment options. PMID:21364117

  2. Efficacy of Topically Delivered Moxifloxacin against Wound Infection by Pseudomonas aeruginosa and Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Jacobsen, F.; Fisahn, C.; Sorkin, M.; Thiele, I.; Hirsch, T.; Stricker, I.; Klaassen, T.; Roemer, A.; Fugmann, B.; Steinstraesser, L.

    2011-01-01

    Wound infection is a common risk for patients with chronic nonhealing wounds, causing high morbidity and mortality. Currently, systemic antibiotic treatment is the therapy of choice, despite often leading to several side effects and the risk of an insufficient tissue penetration due to impaired blood supply. If systemically delivered, moxifloxacin penetrates well into inflammatory blister fluid, muscle, and subcutaneous adipose tissues and might therefore be a possible option for the topical treatment of skin and infected skin wounds. In this study, topical application of moxifloxacin was investigated in comparison to mupirocin, linezolid, and gentamicin using a porcine wound infection and a rat burn infection model. Both animal models were performed either by an inoculation with methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa. Wound fluid, tissue, and blood samples were taken, and bacterial counts as well as the moxifloxacin concentration were determined for a 14-day follow-up. A histological comparison of the rat burn wound tissues was performed. Both strains were susceptible to moxifloxacin and gentamicin, whereas mupirocin and linezolid were effective only against MRSA. All antibiotics showed efficient reduction of bacterial counts, and except with MRSA, infected burn wounds reached bacterial counts below 105 CFU/g tissue. Additionally, moxifloxacin was observed to promote wound healing as determined by histologic analysis, while no induction of bacterial resistance was observed during the treatment period. The use of topical antibiotics for the treatment of infected wounds confers many benefits. Moxifloxacin is therefore an ideal candidate, due to its broad antibacterial spectrum, its high efficiency, and its potential to promote wound healing. PMID:21343458

  3. Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus.

    PubMed

    Jacobsen, F; Fisahn, C; Sorkin, M; Thiele, I; Hirsch, T; Stricker, I; Klaassen, T; Roemer, A; Fugmann, B; Steinstraesser, L

    2011-05-01

    Wound infection is a common risk for patients with chronic nonhealing wounds, causing high morbidity and mortality. Currently, systemic antibiotic treatment is the therapy of choice, despite often leading to several side effects and the risk of an insufficient tissue penetration due to impaired blood supply. If systemically delivered, moxifloxacin penetrates well into inflammatory blister fluid, muscle, and subcutaneous adipose tissues and might therefore be a possible option for the topical treatment of skin and infected skin wounds. In this study, topical application of moxifloxacin was investigated in comparison to mupirocin, linezolid, and gentamicin using a porcine wound infection and a rat burn infection model. Both animal models were performed either by an inoculation with methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa. Wound fluid, tissue, and blood samples were taken, and bacterial counts as well as the moxifloxacin concentration were determined for a 14-day follow-up. A histological comparison of the rat burn wound tissues was performed. Both strains were susceptible to moxifloxacin and gentamicin, whereas mupirocin and linezolid were effective only against MRSA. All antibiotics showed efficient reduction of bacterial counts, and except with MRSA, infected burn wounds reached bacterial counts below 10(5) CFU/g tissue. Additionally, moxifloxacin was observed to promote wound healing as determined by histologic analysis, while no induction of bacterial resistance was observed during the treatment period. The use of topical antibiotics for the treatment of infected wounds confers many benefits. Moxifloxacin is therefore an ideal candidate, due to its broad antibacterial spectrum, its high efficiency, and its potential to promote wound healing. PMID:21343458

  4. Specific Resistance to Pseudomonas aeruginosa Infection in Zebrafish Is Mediated by the Cystic Fibrosis Transmembrane Conductance Regulator ▿ †

    PubMed Central

    Phennicie, Ryan T.; Sullivan, Matthew J.; Singer, John T.; Yoder, Jeffrey A.; Kim, Carol H.

    2010-01-01

    Cystic fibrosis (CF) is a genetic disease caused by recessive mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is associated with prevalent and chronic Pseudomonas aeruginosa lung infections. Despite numerous studies that have sought to elucidate the role of CFTR in the innate immune response, the links between CFTR, innate immunity, and P. aeruginosa infection remain unclear. The present work highlights the zebrafish as a powerful model organism for human infectious disease, particularly infection by P. aeruginosa. Zebrafish embryos with reduced expression of the cftr gene (Cftr morphants) exhibited reduced respiratory burst response and directed neutrophil migration, supporting a connection between cftr and the innate immune response. Cftr morphants were infected with P. aeruginosa or other bacterial species that are commonly associated with infections in CF patients, including Burkholderia cenocepacia, Haemophilus influenzae, and Staphylococcus aureus. Intriguingly, the bacterial burden of P. aeruginosa was found to be significantly higher in zebrafish Cftr morphants than in controls, but this phenomenon was not observed with the other bacterial species. Bacterial burden in Cftr morphants infected with a P. aeruginosa ΔLasR mutant, a quorum sensing-deficient strain, was comparable to that in control fish, indicating that the regulation of virulence factors through LasR is required for enhancement of infection in the absence of Cftr. The zebrafish system provides a multitude of advantages for studying the pathogenesis of P. aeruginosa and for understanding the role that innate immune cells, such as neutrophils, play in the host response to acute bacterial infections commonly associated with cystic fibrosis. PMID:20732993

  5. Pseudomonas aeruginosa biofilm: potential therapeutic targets.

    PubMed

    Sharma, Garima; Rao, Saloni; Bansal, Ankiti; Dang, Shweta; Gupta, Sanjay; Gabrani, Reema

    2014-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell-cell and cell-surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review. PMID:24309094

  6. The Effect of Infection Control Nurses on the Occurrence of Pseudomonas aeruginosa Healthcare-Acquired Infection and Multidrug-Resistant Strains in Critically-Ill Children

    PubMed Central

    Xu, Wei; He, Linxi; Liu, Chunfeng; Rong, Jian; Shi, Yongyan; Song, Wenliang; Zhang, Tao; Wang, Lijie

    2015-01-01

    Background Healthcare-acquired Pseudomonas aeruginosa (P. aeruginosa) infections in the Pediatric Intensive Care Unit (PICU), which have a high incidence, increase treatment costs and mortality, and seriously threaten the safety of critically ill children. It is essential to seek convenient and effective methods to control and prevent healthcare-acquired infections (HAIs). This research was conducted to study the effect of infection control nurses on the occurrence of P. aeruginosa HAIs and multi-drug resistance (MDR) strains in PICU. Methods The clinical data was divided into two groups, with the age ranging from 1 month to 14 years. One group of the critically ill patients(N = 3,722) was admitted to PICU from 2007 to 2010, without the management of infection control nurses. The other group of the critically ill patients (N = 3,943) was admitted to PICU from 2011 to 2013, with the management of infection control nurses. Compare the mortality, morbidity and the incidence of acquired P. aeruginosa infections to evaluate the effect of infection control nurses. Results After implementation of the post of infection control nurses, the patient's overall mortality fell from 4.81% to 3.73%. Among the patients with endotracheal intubation more than 48 hours, the incidence of endotracheal intubation-related pneumonia decreased from 44.6% to 34.32%. The mortality of patients with endotracheal intubation decreased from 16.96% to 10.17%, and the morbidity of HAIs with P. aeruginosa decreased from 1.89% to 1.07%. The mutual different rate (MDR) dropped from 67.95% to 44.23%. There were remarkable differences in these rates between the two groups (p<0.05). Conclusion Implementing the post of infection control nurses is associated with effectively reducing the HAI rate, especially the incidence and morbidity of P. aeruginosa HAIs, reducing PICU mortality, improving P. aeruginosa drug resistance. PMID:26630032

  7. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa

    PubMed Central

    Morita, Yuji; Nakashima, Ken-ichi; Nishino, Kunihiko; Kotani, Kenta; Tomida, Junko; Inoue, Makoto; Kawamura, Yoshiaki

    2016-01-01

    The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important. PMID:27547203

  8. Multidrug-Resistant Pseudomonas aeruginosa Strain That Caused an Outbreak in a Neurosurgery Ward and Its aac(6′)-Iae Gene Cassette Encoding a Novel Aminoglycoside Acetyltransferase

    PubMed Central

    Sekiguchi, Jun-ichiro; Asagi, Tsukasa; Miyoshi-Akiyama, Tohru; Fujino, Tomoko; Kobayashi, Intetsu; Morita, Koji; Kikuchi, Yoshihiro; Kuratsuji, Tadatoshi; Kirikae, Teruo

    2005-01-01

    We characterized multidrug-resistant Pseudomonas aeruginosa strains isolated from patients involved in an outbreak of catheter-associated urinary tract infections that occurred in a neurosurgery ward of a hospital in Sendai, Japan. Pulsed-field gel electrophoresis of SpeI-, XbaI-, or HpaI-digested genomic DNAs from the isolates revealed that clonal expansion of a P. aeruginosa strain designated IMCJ2.S1 had occurred in the ward. This strain possessed broad-spectrum resistance to aminoglycosides, β-lactams, fluoroquinolones, tetracyclines, sulfonamides, and chlorhexidine. Strain IMCJ2.S1 showed a level of resistance to some kinds of disinfectants similar to that of a control strain of P. aeruginosa, ATCC 27853. IMCJ2.S1 contained a novel class 1 integron, In113, in the chromosome but not on a plasmid. In113 contains an array of three gene cassettes of blaIMP-1, a novel aminoglycoside resistance gene, and the aadA1 gene. The aminoglycoside resistance gene, designated aac(6′)-Iae, encoded a 183-amino-acid protein that shared 57.1% identity with AAC(6′)-Iq. Recombinant AAC(6′)-Iae protein showed aminoglycoside 6′-N-acetyltransferase activity by thin-layer chromatography. Escherichia coli expressing exogenous aac(6′)-Iae showed resistance to amikacin, dibekacin, isepamicin, kanamycin, netilmicin, sisomicin, and tobramycin but not to arbekacin, gentamicins, or streptomycin. Alterations of gyrA and parC at the amino acid sequence level were detected in IMCJ2.S1, suggesting that such mutations confer the resistance to fluoroquinolones observed for this strain. These results indicate that P. aeruginosa IMCJ2.S1 has developed multidrug resistance by acquiring resistance determinants, including a novel member of the aac(6′)-I family and mutations in drug resistance genes. PMID:16127047

  9. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene

    PubMed Central

    Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M.; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  10. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    PubMed

    Bi, Dexi; Xie, Yingzhou; Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  11. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    PubMed

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  12. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    PubMed Central

    Albrecht, Mark T; Wang, Wei; Shamova, Olga; Lehrer, Robert I; Schiller, Neal L

    2002-01-01

    Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS. PMID:11980587

  13. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel

    PubMed Central

    Arivett, Brock A.; Ream, Dave C.; Fiester, Steven E.; Kidane, Destaalem

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  14. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  15. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    PubMed Central

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR. PMID:25597392

  16. Iron availability shapes the evolution of bacteriocin resistance in Pseudomonas aeruginosa.

    PubMed

    Inglis, R Fredrik; Scanlan, Pauline; Buckling, Angus

    2016-08-01

    The evolution of bacterial resistance to conventional antimicrobials is a widely documented phenomenon with gravely important consequences for public health. However, bacteria also produce a vast repertoire of natural antimicrobials, presumably in order to kill competing species. Bacteriocins are a common class of protein-based antimicrobials that have been shown to have an important role in the ecology and evolution of bacterial communities. Relative to the evolution of antibiotic resistance, little is known about how novel resistance to these toxic compounds evolves. In this study, we present results illustrating that, although resistance is able to evolve, it remains critically dependent on the environmental context. Resistance to bacteriocins, in particular the pyocin S2, evolves readily when iron is present but less so when iron is limiting, because the receptor for this pyocin is also required for iron uptake during iron limitation. This suggests that although resistance to bacteriocins can easily evolve, environmental conditions will determine how and when resistance occurs. PMID:26905630

  17. Mutations in NalC induce MexAB-OprM overexpression resulting in high level of aztreonam resistance in environmental isolates of Pseudomonas aeruginosa.

    PubMed

    Braz, Vânia S; Furlan, João Pedro R; Fernandes, Ana Flavia T; Stehling, Eliana G

    2016-08-01

    Pseudomonas aeruginosa is an opportunistic pathogen with high resistance to a wide variety of antimicrobials. The multidrug resistance pump MexAB-OprM promotes the efflux of various antibiotics, mostly when mutations accumulate in the transcriptional regulators MexR, NalC and NalD, thereby causing MexAB-OprM overexpression. In this work, a characterization of 50 P. aeruginosa isolates obtained from Brazilian agricultural soils to determine the reasons of their resistance to aztreonam was done. The majority of the isolates showed higher aztreonam resistance than wild-type strain by MIC method. DNA sequence analysis of mexR, nalC and nalD genes from 13 of these isolates showed the amino acid substitution in NalC for all tested isolates, just one mutation was detected in MexR and none in NalD. Furthermore, an increase in the level of mexA expression by real-time RT-PCR analysis in eight isolates harboring mutations in NalC was found. Although there was not a relationship between MIC of aztreonam and the level of mexA expression, on the other hand, the results presented here suggest that novel mutations in NalC, including Arg97-Gly and Ala186-Thr, are related to MexAB-OprM overexpression causing aztreonam resistance in P. aeruginosa environmental isolates. PMID:27412168

  18. Pseudomonas aeruginosa High-Level Resistance to Polymyxins and Other Antimicrobial Peptides Requires cprA, a Gene That Is Disrupted in the PAO1 Strain

    PubMed Central

    Gutu, Alina D.; Rodgers, Nicole S.; Park, Jihye

    2015-01-01

    The arn locus, found in many Gram-negative bacterial pathogens, mediates resistance to polymyxins and other cationic antimicrobial peptides through 4-amino-l-arabinose modification of the lipid A moiety of lipopolysaccharide. In Pseudomonas aeruginosa, several two-component regulatory systems (TCSs) control the arn locus, which is necessary but not sufficient for these resistance phenotypes. A previous transposon mutagenesis screen to identify additional polymyxin resistance genes that these systems regulate implicated an open reading frame designated PA1559 in the genome of the P. aeruginosa PAO1 strain. Resequencing of this chromosomal region and bioinformatics analysis for a variety of P. aeruginosa strains revealed that in the sequenced PAO1 strain, a guanine deletion at the end of PA1559 results in a frameshift and truncation of a full-length open reading frame that also encompasses PA1560 in non-PAO1 strains, such as P. aeruginosa PAK. Deletion analysis in the PAK strain showed that this full-length open reading frame, designated cprA, is necessary for polymyxin resistance conferred by activating mutations in the PhoPQ, PmrAB, and CprRS TCSs. The cprA gene was also required for PmrAB-mediated resistance to other cationic antimicrobial peptides in the PAK strain. Repair of the mutated cprA allele in the PAO1 strain restored polymyxin resistance conferred by an activating TCS mutation. The deletion of cprA did not affect the arn-mediated lipid A modification, indicating that the CprA protein is necessary for a different aspect of polymyxin resistance. This protein has a domain structure with a strong similarity to the extended short-chain dehydrogenase/reductase family that comprises isomerases, lyases, and oxidoreductases. These results suggest a new avenue through which to pursue targeted inhibition of polymyxin resistance. PMID:26100714

  19. The influence of Imipenem resistant metallo-beta-lactamase positive and negative Pseudomonas aeruginosa nosocomial infections on mortality and morbidity

    PubMed Central

    Babu, Kolhal Veerappa Yogeesha; Visweswaraiah, Divakara Siddanakatte; Kumar, Arun

    2014-01-01

    Background: Metallo-beta-lactamase (MBL) mediated resistance to carbapenems is an emerging threat in Pseudomonas aeruginosa (PA) nosocomial infections. Limited data on role of Imipenem resistant MBL positive PA (IR-MBLP-PA) and IR-MBL negative-PA (IR-MBLN-PA) infections on mortality and morbidity initiated the present study. Objectives: The aim of this study is to determine the role of IR-MBLP-PA and IR-MBLN-PA infections on mortality and morbidity. Materials and Methods: Prospective observational study of 1 year with 110 PA nosocomial infections was conducted with Imipenem + ethylene-diamine-tetra-acetic acid combined disc test for MBL detection. Role of IR-MBLP-PA and IR-MBLN-PA infections on the outcome and morbidity were assessed in terms of crude mortality rate, Charlson's comorbidity score and mean duration of stay in intensive care unit (ICU) until cure and until death, number of episodes of complications and underlying disease. Results were analyzed by z test for proportions and Student t-test. Results: Relatively high crude mortality was observed among IR-MBLP-PA infections than IR-MBLN-PA (42.86% [6/14] vs. 20% [2/10], Z = 0.69, P = 0.49 NS). Ventilator-associated pneumonia was the underlying disease and a confounding factor in all deaths due to IR-MBLP-PA infections. IR-MBLP-PA infections resulted in rapid downhill course to death with short mean duration of stay in ICU until death than IR-MBLN-PA infections (3.167 ± 0.98 days vs. 16 ± 2.82, P < 0.001 highly significant [HS]) with more number of complications (5.85 ± 1.65 vs. 3.7 ± 1.31, P < 0.001 HS). With the exception of previous Imipenem therapy, association of higher Charlson's comorbidity score, severe underlying diseases, multidrug and pandrug resistance and pre-disposing risk factors with IR-MBLP-PA infections was not statistically significant. Conclusions: Higher mortality in IR-MBLP-PA than in IR-MBLN-PA was not significant indicating IR as an important predictor of mortality than MBL

  20. Genetic analyses of Pseudomonas aeruginosa isolated from healthy captive snakes: evidence of high inter- and intrasite dissemination and occurrence of antibiotic resistance genes.

    PubMed

    Colinon, Céline; Jocktane, Dominique; Brothier, Elisabeth; Rossolini, Gian Maria; Cournoyer, Benoit; Nazaret, Sylvie

    2010-03-01

    Faecal carriage of Pseudomonas aeruginosa was investigated by selective plating and PCR identification test, among healthy captive snakes from zoological and private collections from France as well as from wild snakes from Guinea. P. aeruginosa faecal carriage among captive snakes was high (72 out of 83 individuals), but low among wild specimen (3 out of 23 individuals). Genetic diversity analyses of the isolates, based on SpeI-PFGE profiles, evidenced five dominant clones or clonal complexes spreading among snakes within a site and between sites and persisting over time. Similar clones or clonal complexes were detected from mouth swabs of the owners and from water and preys used to feed the snakes, evidencing various sources of snake colonization and the first cases of P. aeruginosa cross-contamination between snakes and owners. These observations led to the conclusion that P. aeruginosa behaves as an opportunistic species within snakes in captivity and that colonization and dissemination occurs consecutively to processes similar to those identified within the hospital. Antibiotic susceptibility testing showed that most isolates had a wild-type resistance profile except for one persistent clone isolated from both snakes and preys that harboured multiple antimicrobial resistance genes mediated by an integron carrying the qacH, aadB, aadA2 and cmlA10 cassettes, and a tetA(C)-carrying transposon. Biocides or antibiotics used in the zoological garden could have led to the acquisition of this integron. PMID:20002132

  1. Antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments.

    PubMed

    Olga, Pappa; Apostolos, Vantarakis; Alexis, Galanis; George, Vantarakis; Athena, Mavridou

    2016-05-01

    A large number of antibiotic-resistantP. aeruginosaisolates are continuously discharged into natural water basins mainly through sewage. However, the environmental reservoirs of antibiotic resistance factors are poorly understood. In this study, the antibiotic resistance patterns of 245 isolates from various aquatic sites in Greece were analysed. Twenty-three isolates with resistance patterns cefotaxime-aztreonam-ceftazidime, cefotaxime-aztreonam-meropenem, cefotaxime-ceftazidime-meropenem, cefotaxime-ceftazidime-aztreonam-meropenem and cefotaxime-ceftazidime-cefepime-aztreonam-meropenem were screened phenotypically for the presence of extended spectrum β-lactamases (ESBLs), while 77 isolates with various resistant phenotypes were screened for the presence of class 1 and class 2 integrase genes. The aztreonam-resistant isolates and ESBL producers were the main resistant phenotypes in all habitats tested. In 13/77 isolates class 1 integron was detected, while all tested isolates were negative for the presence of the class 2 integrase gene. CTX-M group 9 β-lactamase was present in a small number of isolates (three isolates) highlighting the emergence of ESBL genes in aquatic environments. As a conclusion, it seems that Greek water bodies could serve as a potential reservoir of resistantP. aeruginosaisolates posing threats to human and animal health. PMID:26917780

  2. [Approach to directed therapy after knowledge of the isolate: carbapenemase-producing Enterobacteriaceae, multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii].

    PubMed

    Martínez, J A

    2016-09-01

    Directed treatment of infections due to multidrug-resistant Gram-negative bacilli is a difficult task, since it requires the use of a limited number of antibiotics that are often more toxic and possibly less efficacious than β-lactams and fluoroquinolones. Furthermore, there are very few controlled trials informing on the relative efficacy of different therapeutic strategies. As a general rule, it is recommended to use at least two active drugs or a combination with proven synergistic activity in vitro, because several observational studies have associated this practice with better outcomes and as a measure to potentially curb the emergence of further resistance. It is already available a new cephalosporin active against most strains of Pseudomonas aeruginosa resistant to ceftazidime due to derepression of ampC and in the near future an effective inhibitor of class A, class C and OXA-48 will be available which combined with ceftazidime is expected to mean a significant addition to the armamentarium against Gram-negative bacilli with these resistance determinants. PMID:27608310

  3. Transcriptional Analysis of MexAB-OprM Efflux Pumps System of Pseudomonas aeruginosa and Its Role in Carbapenem Resistance in a Tertiary Referral Hospital in India

    PubMed Central

    2015-01-01

    Carbapenem resistance presents severe threat to the treatment of multidrug resistant Pseudomonas aeruginosa infections. The study was undertaken to investigate the role of efflux pumps in conferring meropenem resistance and effect of single dose exposure of meropenem on transcription level of mexA gene in clinical isolates of P. aeruginosa from a tertiary referral hospital of India. Further, in this investigation an effort was made to assess whether different components of MexAB-OprM operon expresses in the same manner and the extent of contributions of those components in meropenem resistance in its natural host (P. aeruginosa) and in a heterologous host (E. coli). Out of 83 meropenem nonsusceptible isolates, 22 isolates were found to possess efflux pump activity phenotypically. Modified hodge test and multiplex PCR confirmed the absence of carbapenemase genes in those isolates. All of them were of multidrug resistant phenotype and were resistant to all the carbepenem drug tested. MexAB-OprM efflux pump was found to be overexpressed in all the study isolates. It could be observed that single dose exposure meropenem could give rise to trivial increase in transcription of mexA gene. Different constructs of MexAB-OprM (mexR-mexA-mexB-OprM; mexA-mexB-OprM; mexA-mexB) could be expressed in both its natural (P. aeruginosa PAO1) and heterologous host (E. coli JM107) but transcription level of mexA gene varied in both the hosts before and after single dose exposure of meropenem. Different components of the operon failed to enhance meropenem resistance in E. coli JM107 and P. aeruginosa PAO1. This study could prove that MexAB-OprM efflux pump can significantly contribute to meropenem resistance in hospital isolates of P. aeruginosa where an acquired resistant mechanism is absent. Thus, equal importance should be given for diagnosis of intrinsic resistance mechanism so as to minimize treatment failure. As meropenem could not enhance mexA transcriptions significantly, there

  4. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species. PMID:19942379

  5. Frequency of PER, VEB, SHV, TEM and CTX-M Genes in Resistant Strains of Pseudomonas aeruginosa Producing Extended Spectrum β-Lactamases

    PubMed Central

    Bokaeian, Mohmmad; Shahraki Zahedani, Shahram; Soltanian Bajgiran, Morteza; Ansari Moghaddam, Alireza

    2014-01-01

    Background: Pseudomonas aeruginosa is the most common pathogen causing nosocomial infections. Resistance of P. aeruginosa strains to broad-spectrum cephalosporins may be mediated by extended-spectrum β-lactamases (ESBLs). Objectives: We intended to investigate the prevalence of ESBLs and antimicrobial susceptibilities of P. aeruginosa isolated from patients in Zahedan, Iran. Materials and Methods: In this cross-sectional study, during 2012–2013, 116 P. aeruginosa isolates were collected from a teaching hospital in Zahedan, Iran. Susceptibility to eight antimicrobial agents was carried out by disk diffusion method. The ESBL producing strains were detected by combination disk test (CDT). ESBL positive isolates as well as other isolates showing minimum inhibitory concentrations (MICs) ≥ 4 μg/mL for ceftazidime, cefotaxime, ceftriaxone and aztreonam, were screened for the presence of the genes encoding blaTEM, blaSHV, blaPER-1 and blaVEB-1, by polymerase chain reaction (PCR). Results: Ciprofloxacin and piperacillin were the most efficient antipseudomonal agents. The results disclosed that 19 (16.37%) of the isolates were multidrug resistant and 8 (6.89%) were ESBL-positive. Of the 116 isolates, 30 (25.86%) were resistant to at least one of the antibiotics ceftazidime, ceftriaxone, cefotaxime or aztreonam and among these 30 (100%), 4 (13.3%), 2 (6.6%) and 2 (6.6%), amplified blaTEM, blaVEB-1, blaPER-1 and blaSHV, respectively. From the 30 TEM-positive isolates, 22 were ESBL-negative. Sequencing of the ESBL genes verified the accuracy of the PCR products. Conclusions: According to our results, blaTEM-116 was the most frequent isolated ESBL gene among the P. aeruginosa strains isolated from patients. PMID:25789123

  6. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics.

    PubMed

    Loughlin, M F; Jones, M V; Lambert, P A

    2002-04-01

    Our objective was to determine whether strains of Pseudomonas aeruginosa can adapt to growth in increasing concentrations of the disinfectant benzalkonium chloride (BKC), and whether co-resistance to clinically relevant antimicrobial agents occurs. Attempts were made to determine what phenotypic alterations accompanied resistance and whether these explained the mechanism of resistance. Strains were serially passaged in increasing concentrations of BKC in static nutrient broth cultures. Serotyping and genotyping were used to determine purity of the cultures. Two strains were examined for cross-resistance to other disinfectants and antibiotics by broth dilution MIC determination. Alterations in outer membrane proteins and lipopolysaccharide (LPS) expressed were examined by SDS-PAGE. Cell surface hydrophobicity and charge, uptake of disinfectant and proportion of specific fatty acid content of outer and cytoplasmic membranes were determined. Two P. aeruginosa strains showed a stable increase in resistance to BKC. Co-resistance to other quaternary ammonium compounds was observed in both strains; chloramphenicol and polymyxin B resistance were observed in one and a reduction in resistance to tobramycin observed in the other. However, no increased resistance to other biocides (chlorhexidine, triclosan, thymol) or antibiotics (ceftazidime, imipenem, ciprofloxacin, tobramycin) was detected. Characteristics accompanying resistance included alterations in outer membrane proteins, uptake of BKC, cell surface charge and hydrophobicity, and fatty acid content of the cytoplasmic membrane, although no evidence was found for alterations in LPS. Each of the two strains had different alterations in phenotype, indicating that such adaptation is unique to each strain of P. aeruginosa and does not result from a single mechanism shared by the whole species. PMID:11909837

  7. Efficacy of ciprofloxacin-clarithromycin combination against drug-resistant Pseudomonas aeruginosa mature biofilm using in vitro experimental model.

    PubMed

    Elkhatib, Walid; Noreddin, Ayman

    2014-12-01

    Pseudomonas aeruginosa is the main cause of mortality in cystic fibrosis patients and eradication of its biofilm represents a substantial problem clinically. In this study, biofilm of a cystic fibrosis strain P. aeruginosa PACI22 was established and confocal laser scanning microscopy was utilized for biofilm visualization. A quantitative time-kill biofilm model was implemented in vitro to assess the biocidal effect of ciprofloxacin, clarithromycin, and their combination at concentration levels ranged from 0.5× to 64× minimum biofilm inhibitory concentrations (MBIC) against the biofilm and the mean log bacterial densities (Log CFU/ml) retrieved from the biofilm were monitored by frequent sampling at 0, 3, 6, 9, 12, and 24 hr throughout the experiment. The results revealed that none of the tested antibiotics alone could completely eradicate the biofilm-ensconced bacteria at 0.5-64× MBIC values after 24 hr of treatment. Conversely, ciprofloxacin-clarithromycin combination at 32-64× MBIC entirely exterminated the biofilm. Furthermore, a substantial in vitro synergism between ciprofloxacin and clarithromycin against the biofilm was experimentally verified. This promising synergism affords scientific rationale for further in vivo investigations to evaluate the therapeutic potential of this combination for treatment of chronic pulmonary infections caused by P. aeruginosa biofilms. PMID:25050970

  8. Diverse Genetic Background of Multidrug-Resistant Pseudomonas aeruginosa from Mainland China, and Emergence of an Extensively Drug-Resistant ST292 Clone in Kunming.

    PubMed

    Fan, Xin; Wu, Yue; Xiao, Meng; Xu, Zhi-Peng; Kudinha, Timothy; Bazaj, Alda; Kong, Fanrong; Xu, Ying-Chun

    2016-01-01

    For a better understanding of the multidrug resistant Pseudomonas aeruginosa (MDR-PA) epidemiology in mainland China, a nationwide surveillance network of 27 tertiary hospitals was established. Non-duplicate MDR-PA isolates from 254 cases of nosocomial infections, were collected during the period August 2011 to July 2012. Minimum inhibitory concentrations (MICs) of nine antimicrobial agents were determined by broth micro-dilution method according to the CLSI guidelines [M7-A10]. Genotyping analysis was performed by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The presence of acquired carbapenemases was also determined by molecular approaches for 233 carbapenem-resistant isolates. Carbapenemase genes were detected in 19 (8.2%) isolates, with 13 of these isolates encoding IMP-type enzymes, five with VIM-2, and one with KPC-2. MLST analysis revealed significant genetic diversity among the MDR-PA isolates studied, and 91 STs (including 17 novel STs) were identified. However, a long-term outbreak of an emerging extensively drug-resistant (XDR) ST292/PFGE genotype A clone was detected in a hospital from Southwest China. This study has demonstrated that MDR-PA in mainland China have evolved from diverse genetic backgrounds. Evidence of clonal dissemination of the organism and nosocomial outbreaks in some regions, suggest a need to strengthen existing infection control measures. PMID:27198004

  9. Diverse Genetic Background of Multidrug-Resistant Pseudomonas aeruginosa from Mainland China, and Emergence of an Extensively Drug-Resistant ST292 Clone in Kunming

    PubMed Central

    Fan, Xin; Wu, Yue; Xiao, Meng; Xu, Zhi-Peng; Kudinha, Timothy; Bazaj, Alda; Kong, Fanrong; Xu, Ying-Chun

    2016-01-01

    For a better understanding of the multidrug resistant Pseudomonas aeruginosa (MDR-PA) epidemiology in mainland China, a nationwide surveillance network of 27 tertiary hospitals was established. Non-duplicate MDR-PA isolates from 254 cases of nosocomial infections, were collected during the period August 2011 to July 2012. Minimum inhibitory concentrations (MICs) of nine antimicrobial agents were determined by broth micro-dilution method according to the CLSI guidelines [M7-A10]. Genotyping analysis was performed by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The presence of acquired carbapenemases was also determined by molecular approaches for 233 carbapenem-resistant isolates. Carbapenemase genes were detected in 19 (8.2%) isolates, with 13 of these isolates encoding IMP-type enzymes, five with VIM-2, and one with KPC-2. MLST analysis revealed significant genetic diversity among the MDR-PA isolates studied, and 91 STs (including 17 novel STs) were identified. However, a long-term outbreak of an emerging extensively drug-resistant (XDR) ST292/PFGE genotype A clone was detected in a hospital from Southwest China. This study has demonstrated that MDR-PA in mainland China have evolved from diverse genetic backgrounds. Evidence of clonal dissemination of the organism and nosocomial outbreaks in some regions, suggest a need to strengthen existing infection control measures. PMID:27198004

  10. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-beta-lactamase producers in a Korean hospital.

    PubMed

    Kim, In-Suk; Lee, Nam Yong; Ki, Chang-Seok; Oh, Won Sup; Peck, Kyong Ran; Song, Jae-Hoon

    2005-01-01

    The types of metallo-beta-lactamases (MBLs), integrons, and genetic relatedness among Pseudomonas aeruginosa were investigated with a recent high prevalence of imipenem resistance in a Korean hospital. During 2000-2003, a total of 116 non-duplicate imipenem-resistant P. aeruginosa isolates were analyzed by PCR and DNA sequencing to detect of bla (IMP-1), bla (VIM-1), bla (VIM-2), bla (SPM-1), intI 1, intI 2, and intI 3 genes. Among them, MBL-producing isolates were evaluated for genetic relatedness using pulsed-field gel electrophoresis (PFGE) profiles. Of 116 isolates, 21 (18.1%) carried bla (VIM-2) gene with the intI 1 gene. Analysis of VIM-2 procuders by PFGE grouped 21 isolates into eight different clusters. Six of eight cluster I strains, all of four cluster II strains, and all of three cluster III strains were isolated in 2000, 2002, and 2003, respectively. Data concluded that P. aeruginosa carrying bla (VIM-2) with a class 1 integron was the only type among MBLs. A hospital outbreak by VIM-2 producers occurred annually, which could be at least a part of a recent high prevalence of imipenem resistance. PMID:16359195

  11. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  12. Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates.

    PubMed Central

    Kureishi, A; Diver, J M; Beckthold, B; Schollaardt, T; Bryan, L E

    1994-01-01

    The Pseudomonas aeruginosa DNA gyrase gyrA gene was cloned and sequenced from strain PAO1. An open reading frame of 2,769 bp was found; it coded for a protein of 923 amino acids with an estimated molecular mass of 103 kDa. The derived amino acid sequence shared 67% identity with Escherichia coli GyrA and 54% identity with Bacillus subtilis GyrA, although conserved regions were present throughout the sequences, particularly toward the N terminus. Complementation of an E. coli mutant with a temperature-sensitive gyrA gene with the PAO1 gyrA gene showed that the gene is expressed in E. coli and is able to functionally complement the E. coli DNA gyrase B subunit. Expression of PAO1 gyrA in E. coli or P. aeruginosa with mutationally altered gyrA genes caused a reversion to wild-type quinolone susceptibility, indicating that the intrinsic susceptibility of the PAO1 GyrA to quinolones is comparable to that of the E. coli enzyme. PCR was used to amplify 360 bp of P. aeruginosa gyrA encompassing the so-called quinolone resistance-determining region from ciprofloxacin-resistant clinical isolates from patients with cystic fibrosis. Mutations were found in three of nine isolates tested; these mutations caused the following alterations in the sequence of GyrA: Asp at position 87 (Asp-87) to Asn, Asp-87 to Tyr, and Thr-83 to Ile. The resistance mechanisms in the other six isolates are unknown. The results of the study suggested that mechanisms other than a mutational alteration in gyrA are the most common mechanism of ciprofloxacin resistance in P. aeruginosa from the lungs of patients with cystic fibrosis. Images PMID:7811002

  13. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa.

    PubMed

    Green, S K; Schroth, M N; Cho, J J; Kominos, S K; Vitanza-jack, V B

    1974-12-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  14. Agricultural Plants and Soil as a Reservoir for Pseudomonas aeruginosa

    PubMed Central

    Green, Sylvia K.; Schroth, Milton N.; Cho, John J.; Kominos, Spyros D.; Vitanza-Jack, Vilma B.

    1974-01-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  15. Pleiotropic effects of temperature-regulated 2-OH-lauroytransferase (PA0011) on Pseudomonas aeruginosa antibiotic resistance, virulence and type III secretion system.

    PubMed

    Wang, Bobo; Li, Bo; Liang, Ying; Li, Jing; Gao, Lang; Chen, Lin; Duan, Kangmin; Shen, Lixin

    2016-02-01

    Pseudomonas aeruginosa is an important human pathogen which adapts to changing environment, such as temperature variations and entering host by regulating their gene expression. Here, we report that gene PA0011 in P. aeruginosa PAO1, which encodes a 2-OH-lauroytransferase participating in lipid A biosynthesis, is involved in carbapenem resistance and virulence in a temperature-regulated manner in PAO1. The expression of PA0011 was higher at an environment temperature (21 °C) than that at a body temperature (37 °C). The inactivation of PA0011 rendered increased antibiotic susceptibility and decreased virulence both in vivo and in vitro. The impaired integrity and the decreased stability of the outer membrane were the cause of the increased susceptibility of PAO1(Δ0011) to carbapenem and many other common antibiotics. The reduced endotoxic activity of lipopolysaccharide (LPS) contributed to the decreased virulence both at 21 °C and 37 °C in PAO1 (Δ0011). In addition, we have found that PA0011 repressed the expression of TTSS virulence factors both at transcriptional and translational levels, similar to the effect of O antigen of LPS but unlike any effect of its homologue reported in other bacteria. The effect of PA0011 on resistance to many antibiotics including carbapenem and virulence in P. aeruginosa makes it a target for novel antimicrobial therapies. PMID:26596709

  16. [Macrolides, Pseudomonas aeruginosa and cystic fibrosis].

    PubMed

    Guillot, M; Amiour, M; El Hachem, C; Harchaoui, S; Ribault, V; Paris, C

    2006-10-01

    Long-term low dose azithromycin treatment in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection is safe and reduces the decline in lung function, the number of acute exacerbations and improves nutritional status; underlying efficacy mechanisms are multiple and synergistic. PMID:17370396

  17. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  18. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  19. Burn sepsis: bacterial interference with Pseudomonas aeruginosa.

    PubMed

    Levenson, S M; Gruber, D K; Gruber, C; Watford, A; Seifter, E

    1981-05-01

    The pathogenicity of several strains of Pseudomonas aeruginosa for burned rats (3 degrees scald burns, 20% body surface) following topical application of the bacteria to the burn within 1 hour after burning was established. Following this, it was demonstrated that purposeful infection of such 3 degrees scald burns of rats by a strain of Ps. aeruginosa of low virulence (JB-77) protects the rats from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa (VA-134) (p less than 0.001). This finding was confirmed in a similar experiment beginning with germfree rats. When the challenge with the highly virulent Ps. aeruginosa strain was 24 hours (rather than 48 hours) after the burning and topical contamination of the burn with the low virulence strain of Ps. aeruginosa, there was little protection (p N.S.). When burned rats were given the low virulence strain of Ps. aeruginosa by gavage right after burning, there was not protection to subsequent (48 hours) challenge by topical application of the highly virulent strain of Ps. aeruginosa to the burn (11/12 vs 12/12 dying). Our finding that purposeful infection of a 3 degrees burn of rats (conventional and also germfree) by a strain of Ps. aeruginosa of low virulence protects from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa is due, we believe, to direct bacterial interference between the two strains of pseudomonas. PMID:6785444

  20. Mutations in the Pseudomonas aeruginosa Needle Protein Gene pscF Confer Resistance to Phenoxyacetamide Inhibitors of the Type III Secretion System

    PubMed Central

    Bowlin, Nicholas O.; Williams, John D.; Knoten, Claire A.; Torhan, Matthew C.; Tashjian, Tommy F.; Li, Bing; Aiello, Daniel; Mecsas, Joan; Hauser, Alan R.; Peet, Norton P.; Bowlin, Terry L.

    2014-01-01

    The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates effector toxins into host cells, impeding the host's rapid innate immune response to infection. Inhibitors of T3SS may be useful as prophylactic or adjunctive therapeutic agents to augment the activity of antibiotics in P. aeruginosa infections, such as pneumonia and bacteremia. One such inhibitor, the phenoxyacetamide MBX 1641, exhibits very responsive structure-activity relationships, including striking stereoselectivity, in its inhibition of P. aeruginosa T3SS. These features suggest interaction with a specific, but unknown, protein target. Here, we identify the apparent molecular target by isolating inhibitor-resistant mutants and mapping the mutation sites by deep sequencing. Selection and sequencing of four independent mutants resistant to the phenoxyacetamide inhibitor MBX 2359 identified the T3SS gene pscF, encoding the needle apparatus, as the only locus of mutations common to all four strains. Transfer of the wild-type and mutated alleles of pscF, together with its chaperone and cochaperone genes pscE and pscG, to a ΔpscF P. aeruginosa strain demonstrated that each of the single-codon mutations in pscF is necessary and sufficient to provide secretion and translocation that is resistant to a variety of phenoxyacetamide inhibitor analogs but not to T3SS inhibitors with different chemical scaffolds. These results implicate the PscF needle protein as an apparent new molecular target for T3SS inhibitor discovery and suggest that three other chemically distinct T3SS inhibitors interact with one or more different targets or a different region of PscF. PMID:24468789

  1. MexXY multidrug efflux system of Pseudomonas aeruginosa

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention. PMID:23233851

  2. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria. PMID:25014900

  3. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.

    PubMed

    Jankauskaitė, V; Vitkauskienė, A; Lazauskas, A; Baltrusaitis, J; Prosyčevas, I; Andrulevičius, M

    2016-09-10

    A systematic analysis of antibacterial activity of individual nanoderivatives, e.g. GO nanosheets, Ag and Cu nanoparticles (NPs), as well as combinations of Cu-Ag NPs, and GO-Cu-Ag nanocomposites against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Methicillin-resistant Staphylococcus aureus (MRSA) was performed. Chemical properties of the GO, Cu and Ag NPs were determined employing X-ray photoelectron spectroscopy and X-Ray-excited Auger electron spectroscopy. Morphology of corresponding nanoderivatives was studied employing transmission electron microscopy and scanning electron microscopy. It was shown that combination of Cu and Ag NPs, as well as GO-Cu-Ag nanocomposite material possess enhanced antibacterial activity through a possible synergy between multiple toxicity mechanisms. MRSA showed highest resistance in all cases. PMID:27370911

  4. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.

    PubMed

    Cipollone, Rita; Frangipani, Emanuela; Tiburzi, Federica; Imperi, Francesco; Ascenzi, Paolo; Visca, Paolo

    2007-01-01

    Cyanide is a serious environmental pollutant and a biocontrol metabolite in plant growth-promoting Pseudomonas species. Here we report on the presence of multiple sulfurtransferases in the cyanogenic bacterium Pseudomonas aeruginosa PAO1 and investigate in detail RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) which converts cyanide to less toxic thiocyanate. RhdA is a cytoplasmic enzyme acting as the principal rhodanese in P. aeruginosa. The rhdA gene forms a transcriptional unit with the PA4955 and psd genes and is controlled by two promoters located upstream of PA4955 and rhdA. Both promoters direct constitutive RhdA expression and show similar patterns of activity, involving moderate down-regulation at the stationary phase or in the presence of exogenous cyanide. We previously observed that RhdA overproduction protects Escherichia coli against cyanide toxicity, and here we show that physiological RhdA levels contribute to P. aeruginosa survival under cyanogenic conditions. The growth of a DeltarhdA mutant is impaired under cyanogenic conditions and fully restored upon complementation with rhdA. Wild-type P. aeruginosa outcompetes the DeltarhdA mutant in cyanogenic coculture assays. Hence, RhdA could be regarded as an effector of P. aeruginosa intrinsic resistance to cyanide, insofar as it provides the bacterium with a defense mechanism against endogenous cyanide toxicity, in addition to cyanide-resistant respiration. PMID:17098912

  5. Update on the treatment of Pseudomonas aeruginosa pneumonia.

    PubMed

    El Solh, Ali A; Alhajhusain, Ahmad

    2009-08-01

    Pseudomonas aeruginosa is an important cause of nosocomial pneumonia associated with a high morbidity and mortality rate. This bacterium expresses a variety of factors that confer resistance to a broad array of antimicrobial agents. Empirical antibiotic therapy is often inadequate because cultures from initial specimens grow strains that are resistant to initial antibiotics. Surveillance data, hospital antibiogram and individualization of regimens based on prior antibiotic use may reduce the risk of inadequate therapy. The use of combination therapies for P. aeruginosa pneumonia has been a long-advocated practice, but the potential increased value of combination therapy over monotherapy remains controversial. Doripenem and biapenem are new carbapenems that have excellent activity against P. aeruginosa; however, they lack activity against strains that express resistance to the currently available carbapenems. The polymyxins remain the most consistently effective agents against multidrug-resistant P. aeruginosa. Strains that are panantibiotic-resistant are rare, but their incidence is increasing. Antibiotic combinations that yield some degree of susceptibility in vitro are the recourse, although the efficacy of these regimens has yet to be established in clinical studies. Experimental polypeptides may provide a new therapeutic approach. Among these, the anti-PcrV immunoglobulin G antibody that blocks the type III secretion system-mediated virulence of P. aeruginosa has recently entered Phase I/II clinical trials. PMID:19520717

  6. Pseudomonas aeruginosa colonization in patients with spinal cord injuries.

    PubMed Central

    Gilmore, D S; Bruce, S K; Jimenez, E M; Schick, D G; Morrow, J W; Montgomerie, J Z

    1982-01-01

    The prevalence of Pseudomonas aeruginosa colonization of patients with spinal cord injury was studied annually from 1976 to 1980. The urethra, perineum, rectum, drainage bag, and urine of patients on the spinal cord injury service were cultured. A total of 224 men and 32 women were studied. Most patients were managed with an external urinary collection system or padding, with or without intermittent catheterization. P. aeruginosa was cultured from one or more body sites (urethra, perineum, or rectum) in 65% of men and 18% of women. Drainage bags on the beds were frequently colonized with P. aeruginosa (73%). Significant bacteriuria with P. aeruginosa was present in 19% of the men and 13% of the women. P. aeruginosa colonization of body sites in men was closely associated with the use of an external urinary collection system. Significantly greater urethral and perineal colonization was found in men using an external urinary collection system. P. aeruginosa serotype 11 was the predominant serotype for the first 3 years, and the number of patients colonized with serotype 11 increased with length of hospital stay. The prevalence of serotype 11 significantly decreased in the last 2 years. The antibiotic susceptibility of the strains of P. aeruginosa isolated from these patients did not change in the 5 years, except that there was increasing susceptibility to carbenicillin in later years. This increasing susceptibility to carbenicillin was a reflection of a decreased prevalence of serotype 11 in these patients, since serotype 11 was more resistant than other serotypes to carbenicillin. PMID:6818251

  7. Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla-IMP and bla-VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals

    PubMed Central

    Aghamiri, Samira; Amirmozafari, Nour; Fallah Mehrabadi, Jalil; Fouladtan, Babak; Samadi Kafil, Hossein

    2014-01-01

    Beta-lactamase producing strains of Pseudomonas aeruginosa are important etiological agents of hospital infections. Carbapenems are among the most effective antibiotics used against Pseudomonas infections, but they can be rendered infective by group B β-lactamase, commonly called metallo-beta lactamase. In this study, the antimicrobial sensitivity patterns of P. aeruginosa strains isolated from 9 different hospitals in Tehran, Iran, as well as the prevalence of MBLs genes (bla-VIM and bla-IMP) were determined. A total of 212 strains of P. aeruginosa recovered from patients in hospitals in Tehran were confirmed by both biochemical methods and PCR. Their antimicrobial sensitivity patterns were determined by Kirby-Bauer disk diffusion method. Following MIC determination, imipenem resistant strains were selected by DDST method which was followed by PCR tests for determination of MBLs genes: bla-IMP and bla-VIM. The results indicated that, in the DDST phenotypic method, among the 100 imipenem resistant isolates, 75 strains were MBLs positive. The PCR test indicated that 70 strains (33%) carried bla-VIM gene and 20 strains (9%) harbored bla-IMP. The results indicated that the extent of antibiotic resistance among Pseudomonas aeruginosa is on the rise. This may be due to production of MBLs enzymes. Therefore, determination of antibiotic sensitivity patterns and MBLs production by these bacteria, can be important in control of clinical Pseudomonas infection. PMID:24944839

  8. Type II Topoisomerase Mutations in Fluoroquinolone-Resistant Clinical Strains of Pseudomonas aeruginosa Isolated in 1998 and 1999: Role of Target Enzyme in Mechanism of Fluoroquinolone Resistance

    PubMed Central

    Akasaka, Takaaki; Tanaka, Mayumi; Yamaguchi, Akihito; Sato, Kenichi

    2001-01-01

    The major mechanism of resistance to fluoroquinolones for Pseudomonas aeruginosa is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). We examined the mutations in quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE genes of recent clinical isolates. There were 150 isolates with reduced susceptibilities to levofloxacin and 127 with reduced susceptibilities to ciprofloxacin among 513 isolates collected during 1998 and 1999 in Japan. Sequencing results predicted replacement of an amino acid in the QRDR of DNA gyrase (GyrA or GyrB) for 124 of the 150 strains (82.7%); among these, 89 isolates possessed mutations in parC or parE which lead to amino acid changes. Substitutions of both Ile for Thr-83 in GyrA and Leu for Ser-87 in ParC were the principal changes, being detected in 48 strains. These replacements were obviously associated with reduced susceptibilities to levofloxacin, ciprofloxacin, and sparfloxacin; however, sitafloxacin showed high activity against isolates with these replacements. We purified GyrA (The-83 to Ile) and ParC (Ser-87 to Leu) by site-directed mutagenesis and compared the inhibitory activities of the fluoroquinolones. Sitafloxacin showed the most potent inhibitory activities against both altered topoisomerases among the fluoroquinolones tested. These results indicated that, compared with other available quinolones, sitafloxacin maintained higher activity against recent clinical isolates with multiple mutations in gyrA and parC, which can be explained by the high inhibitory activities of sitafloxacin against both mutated enzymes. PMID:11451683

  9. Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics.

    PubMed

    Ciofu, Oana; Jensen, Tim; Pressler, Tacjana; Johansen, Helle Krogh; Koch, Christian; Høiby, Niels

    1996-01-01

    OBJECTIVE: To assess the efficacy and safety of meropenem, administered on a compassionate basis to 62 cystic fibrosis (CF) patients (age: 24plus minus6 years) with hypersensitivity reactions to beta-lactam antibiotics and/or infection by bacteria resistant to other antibiotics. METHODS: Fifty-seven patients were chronically infected with Pseudomonas aeruginosa and 5 with Burkholderia cepacia. In total, 124 courses (1 to 6/patient) of meropenem, 2 g three times a day by intravenous infusion (10 to 15 min) for 14 days, were administered. RESULTS: During treatment for P. aeruginosa the mean increase in pulmonary function (as a percentage of the predictive values) was 5.6% for FEV1 (forced expiratory volume in the first second) and 8.6% for FVC (forced vital capacity). C-reactive protein and erythrocyte sedimentation rate (ESR) and leukocyte count decreased significantly. In courses administered for chronic infection with B. cepacia the post treatment FEV1 and FVC values were higher than the pre-treatment values, and all the inflammatory parameters decreased. The geometric means of minimal inhibitory concentration (MICs) (microg/mL) for P. aeruginosa (B. cepacia) were: tobramycin 6 (59), ciprofloxacin 1.2 (9.7), piperacillin 49 (16.3), ceftazidime 26 (23), aztreonam 26 (35), imipenem 6.4 (not determined) and meropenem 5.1 (4.8). No statistically significant increase in the MICs of meropenem for either pathogen occurred during therapy. Of the 124 courses, 115 were tolerated without any clinical complaint. The following side effects were observed: nausea (0.8%), itching (4%), rash (3.2%), drug fever (1.6%). CONCLUSIONS: Meropenem proved to be a valuable drug in the treatment of CF patients with chronic pulmonary infection with multiresistant P. aeruginosa and B. cepacia and with hypersensitivity reactions to other beta-lactam drugs. PMID:11866824

  10. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired