Science.gov

Sample records for resistant starch type

  1. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. PMID:26041205

  2. Resistant starches and health.

    PubMed

    Kendall, Cyril W C; Emam, Azadeh; Augustin, Livia S A; Jenkins, David J A

    2004-01-01

    It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine. PMID:15287678

  3. Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4.

    PubMed

    Metzler-Zebeli, Barbara U; Schmitz-Esser, Stephan; Mann, Evelyne; Grüll, Dietmar; Molnar, Timea; Zebeli, Qendrim

    2015-12-01

    Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS. PMID:26431973

  4. Adaptation of the Cecal Bacterial Microbiome of Growing Pigs in Response to Resistant Starch Type 4

    PubMed Central

    Schmitz-Esser, Stephan; Mann, Evelyne; Grüll, Dietmar; Molnar, Timea; Zebeli, Qendrim

    2015-01-01

    Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS. PMID:26431973

  5. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    PubMed

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-01

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials. PMID:26877007

  6. The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) decreases intestinal inflammation in some settings. We tested the hypothesis that gut inflammation will be reduced with dietary supplementation with RS in rural Malawian children. Eighteen stunted 3-5-year-old children were supplemented with 8.5 g/day of RS type 2 for 4 weeks. ...

  7. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation.

    PubMed

    Dongowski, Gerhard; Jacobasch, Gisela; Schmiedl, Detlef

    2005-11-16

    Microbial metabolism is essential in maintaining a healthy mucosa in the large bowel, preferentially through butyrate specific mechanisms. This system depends on starch supply. Two structurally different resistant starches type 3 (RS3) have been investigated with respect to their resistance to digestion, fermentability, and their effects on the composition and turnover of bile acids in rats. RSA (a mixture of retrograded maltodextrins and branched high molecular weight polymers), which is more resistant than RSB (a retrograded potato starch), increased the rate of fermentation accompanied by a decrease of pH in cecum, colon, and feces. Because they were bound to RS3, less bile acids were reabsorbed, resulting in a higher turnover through the large bowel. Because of the rise of volume, the bile acid level was unchanged and the formation of secondary bile acids was partly suppressed. The results proved a strong relation between RS3, short chain fatty acid production, and microflora. However, butyrate specific benefits are only achieved by an intake of RS3 that result in good fermentation properties, which depend on the kind of the resistant starch structures. PMID:16277431

  8. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions.

    PubMed

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography-mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management. PMID:27356770

  9. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions

    PubMed Central

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography–mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management. PMID:27356770

  10. Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study.

    PubMed

    Nunes, Fernando M; Lopes, Edgar S; Moreira, Ana S P; Simões, Joana; Coimbra, Manuel A; Domingues, Rosário M

    2016-05-01

    Starch is one of the main components of human diet. During food processing, starch is submitted to high temperatures in the presence or absence of water. Thus, the main goal of this work was to identify structural modifications caused by dry heating in starch polysaccharides (amylose and amylopectin) and structurally related oligosaccharides, maltotetraose (M4) and glucosyl-maltotriose (GM3), simulating processing conditions. The structural modifications were evaluated by methylation analysis, electrospray mass spectrometry (ESI-MS), tandem mass spectrometry (ESI-MS/MS) and anionic chromatography after in vitro enzymatic digestion. Dry heating promoted dehydration, depolymerization, as well as changes in Glc glycosidic linkage positions and anomeric configuration. In oligosaccharides, polymerization was also observed. All these changes resulted in a lower in vitro digestibility, suggesting that dry heating of starch polysaccharides and related oligosaccharides may be associated with the formation of type 4 resistant starch and maltodextrins, non-digestible carbohydrates that are responsible for beneficial effects in human intestinal tract. PMID:26877020

  11. Efficacy of increased resistant starch consumption in human type 2 diabetes

    PubMed Central

    Bodinham, C L; Smith, L; Thomas, E L; Bell, J D; Swann, J R; Costabile, A; Russell-Jones, D; Umpleby, A M; Robertson, M D

    2014-01-01

    Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1. PMID:24671124

  12. Resistant Starch: Promise for Improving Human Health12

    PubMed Central

    Birt, Diane F.; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J.; Rowling, Matthew; Schalinske, Kevin; Scott, M. Paul; Whitley, Elizabeth M.

    2013-01-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized. PMID:24228189

  13. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models.

    PubMed

    Lesmes, Uri; Beards, Emma J; Gibson, Glenn R; Tuohy, Kieran M; Shimoni, Eyal

    2008-07-01

    This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon. PMID:18543927

  14. Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects

    PubMed Central

    Martínez, Inés; Kim, Jaehyoung; Duffy, Patrick R.; Schlegel, Vicki L.; Walter, Jens

    2010-01-01

    Background To systematically develop dietary strategies based on resistant starch (RS) that modulate the human gut microbiome, detailed in vivo studies that evaluate the effects of different forms of RS on the community structure and population dynamics of the gut microbiota are necessary. The aim of the present study was to gain a community wide perspective of the effects of RS types 2 (RS2) and 4 (RS4) on the fecal microbiota in human individuals. Methods and Findings Ten human subjects consumed crackers for three weeks each containing either RS2, RS4, or native starch in a double-blind, crossover design. Multiplex sequencing of 16S rRNA tags revealed that both types of RS induced several significant compositional alterations in the fecal microbial populations, with differential effects on community structure. RS4 but not RS2 induced phylum-level changes, significantly increasing Actinobacteria and Bacteroidetes while decreasing Firmicutes. At the species level, the changes evoked by RS4 were increases in Bifidobacterium adolescentis and Parabacteroides distasonis, while RS2 significantly raised the proportions of Ruminococcus bromii and Eubacterium rectale when compared to RS4. The population shifts caused by RS4 were numerically substantial for several taxa, leading for example, to a ten-fold increase in bifidobacteria in three of the subjects, enriching them to 18–30% of the fecal microbial community. The responses to RS and their magnitudes varied between individuals, and they were reversible and tightly associated with the consumption of RS. Conclusion Our results demonstrate that RS2 and RS4 show functional differences in their effect on human fecal microbiota composition, indicating that the chemical structure of RS determines its accessibility by groups of colonic bacteria. The findings imply that specific bacterial populations could be selectively targeted by well designed functional carbohydrates, but the inter-subject variations in the response to RS

  15. Characterization of enzyme-resistant starch in maize amylose-extender mutant starches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the human digestive system, a type of starch known as resistant starch (RS) can not be digested. RS is not absorbed in the small intestine, and is passed to the large intestine where it is fermented by bacteria to produce short-chain fatty acids, which have anti-cancer and anti-inflammatory prop...

  16. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    PubMed

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation. PMID:23291029

  17. Gene cloning, functional expression and characterisation of a novel type I pullulanase from Paenibacillus barengoltzii and its application in resistant starch production.

    PubMed

    Liu, Jingjing; Liu, Yu; Yan, Feng; Jiang, Zhengqiang; Yang, Shaoqing; Yan, Qiaojuan

    2016-05-01

    A novel pullulanase gene (PbPulA) from Paenibacillus barengoltzii was cloned. PbPulA has an open reading frame of 2028 bp encoding 675 amino acids. It was heterologously expressed in Escherichia coli as an intracellular soluble protein. The recombinant pullulanase (PbPulA) was purified to homogeneity with a molecular mass of about 75 kDa on SDS-PAGE. PbPulA was optimally active at pH 5.5 and 50 °C. It was stable within pH 5.5-10.5. The enzyme exhibited strict substrate specificity towards pullulan, but showed relatively low activity towards amylopectin and no activity towards other tested polysaccharides. The Km and Vmax values of the enzyme on pullulan were 2.94 mg/mL and 280.5 μmol/min/mg, respectively. The addition of PbPulA in gelatinized rice and maize starches significantly increased the resistant starch type 3 (RS3) yields. Final yields from rice and maize starches were 10.82 g/100 g and 11.41 g/100 g, respectively. These properties make PbPulA useful in starch industries. PMID:26763762

  18. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  19. Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double-blind controlled crossover intervention

    PubMed Central

    Nichenametla, Sailendra N.; Weidauer, Lee A.; Wey, Howard E.; Beare, Tianna M.; Specker, Bonny L.; Dey, Moul

    2014-01-01

    A metabolic health crisis is evident as cardiovascular diseases (CVD) remain the leading cause of mortality in the US. Effects of resistant starch type 4 (RS4), a prebiotic fiber, in comprehensive management of metabolic syndrome (MetS) remain unknown. This study examined the effects of a blinded exchange of resistant starch type-4 (RS4)-enriched flour (30% v/v) with regular/control flour (CF) diet on multiple MetS comorbidities. In a double-blind (participants-investigators), placebo-controlled, cluster crossover intervention (n=86, age ≥18, 2–12week interventions, 2week washout) in the US, individuals were classified as having MetS (With-MetS) or not (No-MetS) following International Diabetes Federation (IDF)-criteria. RS4 consumption compared with CF resulted in 7.2% (p=0.002) lower mean total cholesterol (TC), 5.5% (p=0.04) lower non-HDL, and a 12.8% (p<0.001) lower HDL cholesterol in the With-MetS group. No-MetS individuals had a 2.6% (p=0.02) smaller waist circumference and 1.5% (p=0.03) lower percent body fat following RS4 intervention compared to CF. A small but significant 1% increase in fat-free mass was observed in all participants combined (p=0.02). No significant effect of RS4 was observed for glycemic variables and blood pressures. RS4 consumption improved dyslipidemia and body composition. Incorporation of RS4 in routine diets could offer an effective strategy for public metabolic-CVD health promotion. The clinicaltrials.gov-reference NCT01887964. PMID:24478107

  20. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively. PMID:24299776

  1. High pressure intensification of cassava resistant starch (RS3) yields.

    PubMed

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content. PMID:25794725

  2. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.

    PubMed

    Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo

    2016-01-01

    Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch. PMID:27447598

  3. The potential of resistant starch as a prebiotic.

    PubMed

    Zaman, Siti A; Sarbini, Shahrul R

    2016-06-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry. PMID:25582732

  4. Synthesis of resistant starches in plants.

    PubMed

    Morell, Matthew K; Konik-Rose, Christine; Ahmed, Regina; Li, Zhongyi; Rahman, Sadiq

    2004-01-01

    The increased incidence in many countries in lifestyle diseases such as colorectal cancer, cardiovascular disease, and diabetes has led to an enhanced interest in disease-prevention measures that can be delivered to target populations through diet. Resistant starch (RS) is emerging as an important dietary component that has the potential to reduce the incidence of bowel health disorders. However, the range of crop species that can serve as effective sources of RS is limited. In this paper the state of knowledge of the starch biosynthesis pathway is reviewed and opportunities to manipulate crop genetics in order to generate additional sources of RS are discussed. The need for a "whole of chain" approach to delivery of RS to the consumer is highlighted because of the impact that different food-processing technologies can have in maintaining, enhancing, or destroying the RS potential of a raw material or food. PMID:15287674

  5. Preparation, structure, and digestibility of crystalline A- and B-type aggregates from debranched waxy starches.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2014-05-25

    Highly crystalline A- and B-type aggregates were prepared from short linear α-1,4 glucans generated from completely debranched waxy maize and waxy potato starches by manipulating the chain length and crystallization conditions including starch solids concentration and crystallization temperature. The A-type crystalline products were more resistant to enzyme digestion than the B-type crystalline products, and the digestibility of the A- and B-type allomorphs was not correlated with the size of the aggregates formed. Annealing increased the peak melting temperature of the B-type crystallites, making it similar to that of the A-type crystallites, but did not improve the enzyme resistance of the B-type crystalline products. The possible reason for these results was due to the compact morphology as well as the denser packing pattern of double helices in A-type crystallites. Our observations counter the fact that most B-type native starches are more enzyme-resistant than A-type native starches. Crystalline type per se does not seem to be the key factor that controls the digestibility of native starch granules; the resistance of native starches with a B-type X-ray diffraction pattern is probably attributed to the other structural features in starch granules. PMID:24708989

  6. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch.

    PubMed

    Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M

    2014-07-15

    The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). PMID:24594151

  7. Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...

  8. Resistant-starch Formation in High-amylose Maize Starch During Kernel Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to understand the resistant-starch (RS) formation during the kernel development of high-amylose maize, GEMS-0067 line. RS content of the starch, determined using AOAC Method 991.43 for total dietary fiber, increased with kernel maturation and the increase in amylose/...

  9. Resistant starch in Micronesian banana cultivars offers health benefits.

    PubMed

    Thakorlal, J; Perera, C O; Smith, B; Englberger, L; Lorens, A

    2010-04-01

    Resistant Starch (RS) is a type of starch that is resistant to starch hydrolyzing enzymes in the stomach and thus behaves more like dietary fibre. RS has been shown to have beneficial effects in disease prevention including modulation of glycaemic index diabetes, cholesterol lowering capability and weight management, which are critically important for many people in the Federated States of Micronesia. Green bananas are known to contain substantial concentrations of RS and are a common part of the Micronesian diet. Therefore the aim of this study was to determine the RS content in banana cultivars from Pohnpei, Micronesia: Daiwang, Inahsio, Karat, Utin Kerenis and Utin Ruk, for which no such information was available. Utin Kerenis, Inahsio and Utin Ruk were found to contain the highest amounts of RS. The fate of RS after incorporation into a food product (i.e., pancakes) was also studied and a significant reduction in the RS content was found for each cultivar after cooking. Microscopy of the banana samples indicated that the overall morphology of the cultivars was similar. In conclusion, green banana, including these varieties, should be promoted in Micronesia and other places for their rich RS content and related health benefits including diabetes control. Further research is needed to more clearly determine the effects of cooking and food processing on RS. PMID:20968236

  10. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes

    PubMed Central

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-01-01

    Abstract To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes. A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system. In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P < 0.05). In patients with type 2 diabetes, mean blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4–8.4 vs 7.4 ± 1.6, 95% CI 6.9–7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9–17.4 vs 18.7 ± 4.0, 95% CI 17.6–20.1, P < 0.001; hyperglycemia: 4.9 ± 5.7, 95% CI 3.1–6.6 vs 6.3 ± 6.4, 95% CI 4.3–8.3 mmol/L × day, P = 0.021). However, AUC measurements for hypoglycemia (glucose <3.9 mmol/l) were not statistically significant. A PPB-R-203-based diet reduced postprandial hyperglycemia in patients with type 2 diabetes without increasing the risk of hypoglycemia or glucose excursion. PMID:26287417

  11. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes.

    PubMed

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-08-01

    To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes.A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system.In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P < 0.05). In patients with type 2 diabetes, mean blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4-8.4 vs 7.4 ± 1.6, 95% CI 6.9-7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9-17.4 vs 18.7 ± 4.0, 95% CI 17.6-20.1, P < 0.001; hyperglycemia: 4.9 ± 5.7, 95% CI 3.1-6.6 vs 6.3 ± 6.4, 95% CI 4.3-8.3 mmol/L × day, P = 0.021). However, AUC measurements for hypoglycemia (glucose <3.9 mmol/l) were not statistically significant.A PPB-R-203-based diet reduced postprandial hyperglycemia in patients with type 2 diabetes without increasing the risk of hypoglycemia or glucose excursion. PMID:26287417

  12. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

  13. Cooking behavior and starch digestibility of NUTRIOSE® (resistant starch) enriched noodles from sweet potato flour and starch.

    PubMed

    Menon, Renjusha; Padmaja, G; Sajeev, M S

    2015-09-01

    The effect of a resistant starch source, NUTRIOSE® FB06 at 10%, 15% and 20% in sweet potato flour (SPF) and 5% and 10% in sweet potato starch (SPS) in reducing the starch digestibility and glycaemic index of noodles was investigated. While NUTRIOSE (10%) significantly reduced the cooking loss in SPF noodles, this was enhanced in SPS noodles and guar gum (GG) supplementation reduced CL of both noodles. In vitro starch digestibility (IVSD) was significantly reduced in test noodles compared to 73.6g glucose/100g starch in control SPF and 65.9 g in SPS noodles. Resistant starch (RS) was 54.96% for NUTRIOSE (15%)+GG (1%) fortified SPF noodles and 53.3% for NUTRIOSE (5%)+GG (0.5%) fortified SPS noodles, as against 33.8% and 40.68%, respectively in SPF and SPS controls. Lowest glycaemic index (54.58) and the highest sensory scores (4.23) were obtained for noodles with 15% NUTRIOSE+1% GG. PMID:25842330

  14. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study.

    PubMed

    McCleary, Barry V; McNally, Marian; Rossiter, Patricia

    2002-01-01

    Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high. PMID:12374410

  15. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    PubMed Central

    Kittipongpatana, Ornanong S.

    2015-01-01

    Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454

  16. Resistant starch contents of native and heat-moisture treated jackfruit seed starch.

    PubMed

    Kittipongpatana, Ornanong S; Kittipongpatana, Nisit

    2015-01-01

    Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20-25%, together with temperatures 80-110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm(-1) suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in T g and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454

  17. Characterization of Maize Amylose-Extender (ae) Mutant Starches. Part I: Relationship Between Resistant Starch Contents and Molecular Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endosperm starches were isolated from kernels of seven maize amylose-extender (ae) lines. The resistant starch (RS) contents, measured using AOAC method 991.43, showed that three new ae-mutant starch lines developed by the USDA-ARS Germplasm Enhancement (GEM) and Truman State University had larger R...

  18. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  19. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  20. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  1. Resistant Starch and Starch-Derived Oligosaccharides as Prebiotics

    NASA Astrophysics Data System (ADS)

    Adam-Perrot, A.; Gutton, L.; Sanders, L.; Bouvier, S.; Combe, C.; van den Abbeele, R.; Potter, S.; Einerhand, A. W. C.

    Dietary fiber has long been recommended as part of a healthy diet based on the observations made by Burkitt and Trowell (1975). Since then, epidemiological evidence has consistently shown that populations consuming higher levels of foods containing fiber have decreased risk of a variety of chronic health disorders such as cardiovascular disease, type II diabetes, and certain cancers. Average fiber intake in the United States is approximately 13 g/day for women and 18 g/day for men (National Academy of Sciences, 2006). The FDA recommends a minimum of 20-35 g/day for a healthy adult depending on calorific intake. In many EU countries including France, Germany and the UK (see Figure 9.1 ), fiber intakes are much lower than authorities recommend for men and women (Buttriss and Stokes, 2008; Gray, 2006). Thus, there is a need to increase fiber consumption and many newly isolated or developed fibers can easily be added to beverages and processed foods. The reasons for such low compliance is somewhat complex, however the most basic rationale for not consuming fiber-rich foods is perceived bad taste and mouthfeel and the availability of conventional food items containing fiber.

  2. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

    PubMed

    Lee, Chang Joo; Moon, Tae Wha

    2015-07-10

    The objective of this study was to investigate the structural characteristics of slowly digestible starch (SDS) and resistant starch (RS) fractions isolated from heat-moisture treated waxy potato starch. The waxy potato starch with 25.7% moisture content was heated at 120°C for 5.3h. Scanning electron micrographs of the cross sections of RS and SDS+RS fractions revealed a growth ring structure. The branch chain-length distribution of debranched amylopectin from the RS fraction had a higher proportion of long chains (DP ≥ 37) than the SDS+RS fraction. The X-ray diffraction intensities of RS and SDS+RS fractions were increased compared to the control. The SDS+RS fraction showed a lower gelatinization enthalpy than the control while the RS fraction had a higher value than the SDS+RS fraction. In this study we showed the RS fraction is composed mainly of crystalline structure and the SDS fraction consists of weak crystallites and amorphous regions. PMID:25857975

  3. Resistant starch and dietary fibers from cereal by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains (DDG) are a cereal byproduct from ethanol distillation process. On a dry weight basis, DDG is composed of 13% fat, 30% protein, 33% fiber, with the remainder various carbohydrates. Only 6-8% of starch in DDG is in resistant form (dietary fiber). Because only about 6% of DD...

  4. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat. PMID:21885815

  5. Is there variation in resistant starch among high amylose rice varieties?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) is the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and is partially or entirely fermented in the colon by the microbiota. RS in food lowers postprandial glucose concentration and has potential in ...

  6. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch.

    PubMed

    Jiang, Huan; Miao, Ming; Ye, Fan; Jiang, Bo; Zhang, Tao

    2014-04-01

    In this study, partial 4-α-glucanotransferase (4αGT) treatment was used to modulate the fine structure responsible for the slow digestion and resistant property of starch. Normal corn starch modified using 4αGT for 4h showed an increase of slowly digestible starch from 9.40% to 20.92%, and resistant starch from 10.52 to 17.63%, respectively. The 4αGT treatment decreased the content of amylose from 32.6% to 26.8%. The molecular weight distribution and chain length distribution of 4αGT-treated starch showed a reduction of molecular weight and a great number of short (DP<13) and long (DP>30) chains through cleaving and reorganization of starch molecules. Both the short and long chain fractions of modified amylopectin were attributed to the low in vitro digestibility. The viscosity was inversely related to the digestibility of the 4αGT-treated starch. These results suggested that the 4αGT modified starch synthesized the novel amylopectin clusters with slow digestible and resistant character. PMID:24463262

  7. Development of functional milk desserts enriched with resistant starch based on consumers' perception.

    PubMed

    Ares, Florencia; Arrarte, Eloísa; De León, Tania; Ares, Gastón; Gámbaro, Adriana

    2012-10-01

    Sensory characteristics play a key role in determining consumers' acceptance of functional foods. In this context, the aim of the present work was to apply a combination of sensory and consumer methodologies to the development of chocolate milk desserts enriched with resistant starch. Chocolate milk desserts containing modified waxy maize starch were formulated with six different concentrations of two types of resistant starch (which are part of insoluble dietary fiber). The desserts were evaluated by trained assessors using Quantitative Descriptive Analysis. Moreover, consumers scored their overall liking and willingness to purchase and answered an open-ended question. Resistant starch caused significant changes in the sensory characteristics of the desserts and a significant decrease in consumers' overall liking and willingness to purchase. Consumer data was analyzed applying survival analysis on overall liking scores, considering the risk on consumers liking and willing to purchase the functional products less than their regular counterparts. The proposed methodologies proved to be useful to develop functional foods taking into account consumers' perception, which could increase their success in the market. PMID:23144240

  8. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  9. Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis.

    PubMed

    Navarro, S D; Mauro, M O; Pesarini, J R; Ogo, F M; Oliveira, R J

    2015-01-01

    Resistant starch is formed from starch and its degradation products and is not digested or absorbed in the intestine; thus, it is characterized as a fiber. Because fiber intake is associated with the prevention of DNA damage and cancer, the potential antigenotoxic, antimutagenic, and anticarcinogenic capabilities of resistant starch from green banana flour were evaluated. Animals were treated with 1,2-dimethylhydrazine and their diet was supplemented with 10% green banana flour according to the following resistant starch protocols: pretreatment, simultaneous treatment, post-treatment, and pre + continuous treatment. The results demonstrated that resistant starch is not genotoxic, mutagenic, or carcinogenic. The results suggest that resistant starch acts through desmutagenesis and bio-antimutagenesis, as well as by reducing aberrant crypt foci, thereby improving disease prognosis. These findings imply that green banana flour has therapeutic properties that should be explored for human dietary applications. PMID:25867310

  10. Dietary resistant starch and chronic inflammatory bowel diseases.

    PubMed

    Jacobasch, G; Schmiedl, D; Kruschewski, M; Schmehl, K

    1999-11-01

    These studies were performed to test the benefit of resistant starch on ulcerative colitis via prebiotic and butyrate effects. Butyrate, propionate, and acetate are produced in the colon of mammals as a result of microbial fermentation of resistant starch and other dietary fibers. Butyrate plays an important role in the colonic mucosal growth and epithelial proliferation. A reduction in the colonic butyrate level induces chronic mucosal atrophy. Short-chain fatty acid enemas increase mucosal generation, crypt length, and DNA content of the colonocytes. They also ameliorate symptoms of ulcerative colitis in human patients and rats injected with trinitrobenzene sulfonic acid (TNBS). Butyrate, and also to a lesser degree propionate, are substrates for the aerobic energy metabolism, and trophic factors of the colonocytes. Adverse butyrate effects occur in normal and neoplastic colonic cells. In normal cells, butyrate induces proliferation at the crypt base, while inhibiting proliferation at the crypt surface. In neoplastic cells, butyrate inhibits DNA synthesis and arrests cell growth in the G1 phase of the cell cycle. The improvement of the TNBS-induced colonic inflammation occurred earlier in the resistant starch (RS)-fed rats than in the RS-free group. This benefit coincided with activation of colonic epithelial cell proliferation and the subsequent restoration of apoptosis. The noncollagenous basement membrane protein laminin was regenerated initially in the RS-fed group, demonstrating what could be a considered lower damage to the intestinal barrier function. The calculation of intestinal short-chain fatty acid absorption confirmed this conclusion. The uptake of short-chain fatty acids in the colon is strongly inhibited in the RS-free group, but only slightly reduced in the animals fed with RS. Additionally, RS enhanced the growth of intestinal bacteria assumed to promote health. Further studies involving patients suffering from ulcerative colitis are necessary to

  11. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats.

    PubMed

    Brites, Carla M; Trigo, Maria J; Carrapiço, Belmira; Alviña, Marcela; Bessa, Rui J

    2011-04-01

    White wheat bread is a poor source of dietary fiber, typically containing less than 2%. A demand exists for the development of breads with starch that is slowly digestible or partially resistant to the digestive process. The utilization of maize flour and resistant starch is expected to reduce the release and absorption of glucose and, hence, lower the glycemic index of bread. This study was undertaken to investigate the hypothesis that a diet of maize bread, as produced and consumed in Portugal, would have beneficial metabolic effects on rats compared to white wheat bread. We also hypothesized that the effect of resistant starch on glycemic response could be altered by the use of different formulations and breadmaking processes for wheat and maize breads. Resistant starch (RS) was incorporated into formulations of breads at 20% of the inclusion rate of wheat and maize flours. Assays were conducted with male Wistar rats (n = 36), divided into four groups and fed either wheat bread, RS-wheat bread, maize bread, and RS-maize bread to evaluate feed intake, body weight gain, fecal pH, and postprandial blood glucose response (glycemic response). Blood triglycerides, total cholesterol concentrations, and liver weights were also determined. The maize bread group presented higher body weight gain and cholesterol level, lower fecal pH, and postprandial blood glucose response than the wheat bread group. The RS-wheat bread group showed significant reductions in feed intake, fecal pH, postprandial blood glucose response, and total cholesterol. The RS-maize group displayed significant reductions of body weight gain, fecal pH, and total cholesterol levels; however, for the glycemic response, only a reduction in fasting level was observed. These results suggest that maize bread has a lower glycemic index than wheat bread, and the magnitude of the effect of RS on glycemic response depends of type of bread. PMID:21530804

  12. Production of resistant starch by enzymatic debranching in legume flours.

    PubMed

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. PMID:24299889

  13. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors.

    PubMed

    Raeis-Hosseini, Niloufar; Lee, Jang-Sik

    2016-03-23

    Implementation of biocompatible materials in resistive switching memory (ReRAM) devices provides opportunities to use them in biomedical applications. We demonstrate a robust, nonvolatile, flexible, and transparent ReRAM based on potato starch. We also introduce a biomolecular memory device that has a starch-chitosan composite layer. The ReRAM behavior can be controlled by mixing starch with chitosan in the resistive switching layer. Whereas starch-based biomemory devices which show abrupt changes in current level; the memory device with mixed biopolymers undergoes gradual changes. Both devices exhibit uniform and robust programmable memory properties for nonvolatile memory applications. The explicated source of the bipolar resistive switching behavior is assigned to formation and rupture of carbon-rich filaments. The gradual set/reset behavior in the memory device based on a starch-chitosan mixture makes it suitable for use in neuromorphic devices. PMID:26919221

  14. Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa†

    PubMed Central

    Shetty, Kalidas; Crawford, Don L.; Pometto, Anthony L.

    1986-01-01

    p-Fluorophenylalanine-resistant mutants of starch-degrading Bacillus polymyxa ATCC 842, generated by ethyl methanesulfonate mutagenesis followed by incubation with caffeine, overproduced small amounts of l-phenylalanine (l-phe) from starch. A β-2-thienylalanine-resistant mutant (BTR-7) derived from p-fluorophenylalanine mutant (C-4000 FPR-4) and resistant to both p-fluorophenylalanine and β-2-thienylalanine produced 0.5 g of l-phe and 0.15 g of l-tyrosine per liter from 10 g of starch per liter when growing in a minimal medium. trans-Cinnamic acid (CA) was also excreted by both mutants, indicating the possibility of l-phenylalanine ammonia-lyase-induced deamination of l-phe to CA. The amount of l-phe-derived CA detected in BTR-7 was less compared with mutant C-4000 FPR-4. CA production was induced in the parent only when l-phe was used as a sole nitrogen source. Time of CA production in the two mutants could be delayed by addition of other nitrogen sources, an indication of possible l-phenylalanine ammonia-lyase inhibition or repression. The presence of l-phenylalanine ammonia-lyase in B. polymyxa mutant C-4000 FPR-4 was confirmed by assays of cell-free extracts from cells grown in starch minimal medium containing l-phe as the sole nitrogen source. Preliminary studies of the regulation of deoxy-d-arabino-heptulosonate-7-phosphate synthase and prephenate dehydratase in the wild-type strain showed that deoxy-d-arabino-heptulosonate-7-phosphate synthase was subject to feedback inhibition by l-phe, l-tyrosine, and l-tryptophan. Inhibition by each amino acid was to a similar extent singly or in combination at a 0.5 mM level of each amino acid. Prephenate dehydratase was feedback inhibited by l-phe, but not by l-tyrosine or l-tryptophan or both. In the double analog-resistant mutant BTR-7, deoxy-d-arabino-heptulosonate-7-phosphate synthase had specific activity similar to that in the wild type, and the enzyme was still subject to feedback inhibition. However

  15. Development and Characterization of Spaghetti with High Resistant Starch Content Supplemented with Banana Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasta products, such as spaghetti, are relatively healthy foods traditionally manufactured from durum wheat semolina and water. Nutritionally improved spaghetti products with additional health benefits can be produced by supplementing durum wheat with suitable food additives, such as banana starch....

  16. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme.

    PubMed

    Reddy, Chagam Koteswara; Pramila, S; Haripriya, Sundaramoorthy

    2015-03-01

    Pullulanase enzyme (40 U/g, 10 h) was used for enzymatic hydrolysis of potato starch which was autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h) and lyophilized. Comparison of morphological, pasting, textural and thermal properties among native hydrolysed starch (V2) and gelatinized hydrolysed starch (V3) prepared using pullulanase enzyme on potato starch (V1) were studied. The round, elliptical, irregular and oval shape with smooth surface of V1 was replaced with amorphous mass of cohesive structure leading to loss of granular appearance in V2 and V3. The percentage of amylose and resistant starch content of V2 (27.16 %) and (24.16 %); V3 (51.44 %) and (29.35 %) was higher when compared to V1 (22.17 %) and (3.62 %). The swelling power of V1 observed at 60 °C (0.85 %) and 95 °C (8.64 %) were significantly different from V2 at 60 °C (4.97 %) and 95 °C (7.66 %) and that of V3 at 60 °C (5.82 %) and 95 °C (7.5 %). Significance difference in water solubility (7.62 %) and absorption capacity (6.11 %) was noted in V3 when compared with V1 and V2 owing to amylose/amylopectin content. Increase in water solubility and absorption capacity along with decrease in swelling power of V2 and V3 was noted due to hydrolytic and thermal process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P < 0.05). PMID:25745229

  17. Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors.

    PubMed

    Situ, Wenbei; Chen, Ling; Wang, Xueyu; Li, Xiaoxi

    2014-04-23

    For the delivery of bioactive components to the colon, an oral colon-specific controlled release system coated with a resistant starch-based film through aqueous dispersion coating process was developed. Starch was modified by a high-temperature-pressure reaction, enzymatic debranching, and retrogradation, resulting in a dramatic increase in the resistibility against enzymatic digestion (meaning the formation of resistant starch, specifically RS3). This increase could be associated with an increase in the relative crystallinity, a greater amount of starch molecular aggregation structure, and the formation of a compact mass fractal structure, resulting from the treatment. The microparticles coated with this RS3 film showed an excellent controlled release property. In streptozotocin (STZ)-induced type II diabetic rats, the RS3 film-coated insulin-loaded microparticles exhibited the ability to steadily decrease the plasma glucose level initially and then maintain the plasma glucose level within the normal range for total 14-22 h with different insulin dosages after oral administration; no glycopenia or glycemic fluctuation was observed. Therefore, the potential of this new RS3 film-coated microparticle system has been demonstrated for the accurate delivery of bioactive polypeptides or protein to the colon. PMID:24684664

  18. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    SciTech Connect

    Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  19. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    PubMed

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level. PMID:21261261

  20. Banana resistant starch and its effects on constipation model mice.

    PubMed

    Wang, Juan; Huang, Ji Hong; Cheng, Yan Feng; Yang, Gong Ming

    2014-08-01

    Banana resistant starch (BRS) was extracted to investigate the structural properties of BRS, its effects on the gastrointestinal transit, and dejecta of normal and experimentally constipated mice. The mouse constipation model was induced by diphenoxylate administration. The BRS administered mice were divided into three groups and gavaged with 1.0, 2.0, or 4.0 g/kg body weight BRS per day. The small intestinal movement, time of the first black dejecta, dejecta granules, weight and their moisture content, body weight, and food intake of mice were studied. Results showed that the BRS particles were oval and spindly and some light cracks and pits were in the surface. The degree of crystallinity of BRS was 23.13%; the main diffraction peaks were at 2(θ) 15.14, 17.38, 20.08, and 22.51. The degree of polymerization of BRS was 81.16 and the number-average molecular weight was 13147.92 Da, as determined by the reducing terminal method. In animal experiments, BRS at the dose of 4.0 g/kg body weight per day was able to increase the gastrointestinal propulsive rate, and BRS at the doses of 2.0 and 4.0 g/kg body weight per day was found to shorten the start time of defecation by observing the first black dejecta exhaust. However, there were no influences of BRS on the dejecta moisture content, the dejecta granules and their weight, body weight, or daily food intake in mice. BRS was effective in accelerating the movement of the small intestine and in shortening the start time of defecation, but did not impact body weight and food intake. Therefore, BRS had the potential to be useful for improving intestinal motility during constipation. PMID:25046686

  1. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges.

    PubMed

    Lemlioglu-Austin, Dilek; Turner, Nancy D; McDonough, Cassandra M; Rooney, Lloyd W

    2012-01-01

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content. PMID:22986923

  2. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study

    PubMed Central

    Moore, Mary E.; Dige, Anders; Lærke, Helle Nygaard; Agnholt, Jørgen; Bach Knudsen, Knud Erik; Hermansen, Kjeld; Marco, Maria L.; Gregersen, Søren; Dahlerup, Jens F.

    2016-01-01

    Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health

  3. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.

    PubMed

    Yu, Xurun; Wang, Jin; Zhang, Jing; Wang, Leilei; Wang, Zhong; Xiong, Fei

    2015-12-01

    Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X-ray diffraction analysis revealed that bracken starch exhibited a typical C-type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch. PMID:26551243

  4. Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice.

    PubMed

    Zeng, Y W; Sun, D; Du, J; Pu, X Y; Yang, S M; Yang, X M; Yang, T; Yang, J Z

    2016-01-01

    An F3 population consisting of 117 F2:3 families derived from a cross between two varieties of rice, Gongmi No. 3 and Diantun 502, with a large difference in their resistant starch and total alkaloid content, was used for quantitative trait locus (QTL) mapping. Two QTLs of resistant starch for rice (qRS7-1, qRS7-2) were identified in a linkage group on chromosome 7, which could explain phenotypic variance from 7.6 to 17.3%, due to additive effects for resistant starch from Gongmi No. 3 or over-dominance effects for qRS7-2 of the marker interval (RM3404-RM478) on chromosome 7 from Gongmi No. 3, accounting for 13.8-17.3% of the phenotypic variance. Two QTLs of total alkaloids for brown rice (qALb7-1, qALb7-2) were identified in the same linkage group, which could explain phenotypic variance from 7.7 and 19.3%, respectively, due to dominance or over-dominance effects for total alkaloids on chromosome 7 from Diantun 502. To our knowledge, these are the first QTLs to be identified, which are related to resistant starch and total alkaloid content in rice. These results are beneficial for understanding the genetic basis of, as well as for developing markers linked with, resistant starch and total alkaloids of functional components for marker-assisted selection breeding in rice. PMID:27525873

  5. Effect of resistant starch on genotoxin-induced apoptosis, colonic epithelium, and lumenal contents in rats.

    PubMed

    Le Leu, Richard K; Brown, Ian L; Hu, Ying; Young, Graeme P

    2003-08-01

    The effect of different doses of a type-2 resistant starch (RS) in the form of high amylose cornstarch (HAS) on the intralumenal environment and the acute-apoptotic response to a genotoxic carcinogen (AARGC) in the colon was assessed to determine if changes in lumenal conditions were associated with an enhanced apoptotic response to DNA damage. The control diet was a modified form of the AIN-76 diet containing fully digestible starch but no dietary fibre. HAS was added to the control diet at the expense of digestible starch to give 10% HAS, 20% HAS and 30% HAS. Rats were fed the different experimental diets for a period of 4 weeks, after which a single injection of azoxymethane was given to induce DNA damage in the colonic epithelium; 6 h later AARGC was measured. Other measures included fecal and cecal short chain fatty acids (SCFA) and pH, and cell proliferation in the colonic epithelium. In HAS-supplemented rats, fermentation events were significantly increased in both cecum and feces. There was a progressive decrease in pH in both the cecum and feces as the amount of HAS in the diet increased. SCFA concentrations, including butyrate, were significantly elevated by HAS with higher levels being observed in the cecum than in the feces. There was a significant increase in colonic AARGC with HAS doses of 20 and 30% (P < 0.01) but not with 10% HAS. Cell proliferation was not affected by any dose of HAS. Correlations with AARGC, independent of dietary group, were seen for fecal SCFAs and pH, suggesting that fermentation events, might explain the effect of RS on AARGC. Altering amounts of dietary RS changes fermentative activity in the colon. Increased RS is associated with enhanced AARGC. Changes in amount of fermentable substrate are capable of changing the biological response to DNA damage. PMID:12807738

  6. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    PubMed

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. PMID:27596411

  7. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    PubMed

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. PMID:25439920

  8. Resistant starch for modulation of gut microbiota: Promising adjuvant therapy for chronic kidney disease patients?

    PubMed

    Moraes, Cristiane; Borges, Natália A; Mafra, Denise

    2016-08-01

    The gut microbiota has been extensively studied in all health science fields because its imbalance is linked to many disorders, such as inflammation and oxidative stress, thereby contributing to cardiovascular disease, obesity, diabetes and chronic kidney disease (CKD) complications. Novel therapeutic strategies that aim to reduce the complications caused by this imbalance have increased in recent years. Studies have shown that prebiotic supplementation can beneficially modulate the gut microbiota in CKD patients. Prebiotics consist of non-digestible dietary soluble fiber, which acts as a substrate for the gut microbiota. Resistant starch (RS) is a type of dietary fiber that can reach the large bowel and act as a substrate for microbial fermentation; for these reasons, it has been considered to be a prebiotic. Few studies have analyzed the effects of RS on the gut microbiota in CKD patients. This review discusses recent information about RS and the potential role of the gut microbiota, with a particular emphasis on CKD patients. PMID:26830416

  9. The effect of fermentation and addition of vegetable oil on resistant starch formation in wholegrain breads.

    PubMed

    Buddrick, Oliver; Jones, Oliver A H; Hughes, Jeff G; Kong, Ing; Small, Darryl M

    2015-08-01

    Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. PMID:25766816

  10. Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes12

    PubMed Central

    Slavin, Joanne L.

    2013-01-01

    Vegetables are universally promoted as healthy. Dietary Guidelines for Americans 2010 recommend that you make half of your plate fruits and vegetables. Vegetables are diverse plants that vary greatly in energy content and nutrients. Vegetables supply carbohydrates, dietary fiber, and resistant starch in the diet, all of which have been linked to positive health outcomes. Fiber lowers the incidence of cardiovascular disease and obesity. In this paper, the important role of white vegetables in the human diet is described, with a focus on the dietary fiber and resistant starch content of white vegetables. Misguided efforts to reduce consumption of white vegetables will lower intakes of dietary fiber and resistant starch, nutrients already in short supply in our diets. PMID:23674804

  11. Suppression of azoxymethane-induced colon cancer development in rats by dietary resistant starch.

    PubMed

    Le Leu, Richard K; Brown, Ian L; Hu, Ying; Esterman, Adrian; Young, Graeme P

    2007-10-01

    Resistant starch is a complex carbohydrate that reaches the colon where it can be fermented by the colonic microflora resulting in production of short chain fatty acids (SCFA), in particular butyrate. RS effects on colorectal tumourigenesis are contrasting and protection remains controversial. Butyrate has an important role as the preferred metabolic fuel and regulator of colonocyte proliferation, differentiation and apoptosis and may play a role in cancer prevention. Thus variation in butyrate production from different substrates might explain the variation in effect of RS. This study evaluated the hypothesis that feeding dietary resistant starch (as high amylose maize starch) would protect against azoxymethane (AOM)-colon carcinogenesis and favourably influence the colonic luminal environment. Male Sprague-Dawley rats (n = 90) were provided one of three diets: Control (without added dietary fibre or RS), 10% HAS (contained 100 g/kg raw high amylose maize starch) or 20% HAS (contained 200 g/kg high amylose maize starch). Rats were fed their experimental diets for four weeks after which they were injected with AOM (15 mg/kg) during the fifth and six week. Colons were resected (25 weeks post second injection) for evaluation of tumour formation, apoptosis, proliferating cell nuclear antigen (PCNA) labelling index and short chain fatty acid levels. Feeding resistant starch significantly reduced the incidence (p < 0.01) and multiplicity (p < 0.05) of adenocarcinomas in the colon compared to the Control diet. Both doses of HAS resulted in similar protection against colon tumourigenesis. Feeding RS significantly increased total SCFA concentrations, including butyrate in the distal colon. Apoptosis (p < 0.01) was also enhanced while PCNA labelling index was reduced (p < 0.01) in the distal colon with resistant starch feeding. The protective effect of consumption of RS as dietary high-amylose cornstarch against colon cancer development appears to be related to active

  12. Effect of Dietary-Resistant Starch on Inhibition of Colonic Preneoplasia and Wnt Signaling in Azoxymethane-Induced Rodent Models.

    PubMed

    Nelson, Bridget; Cray, Nicole; Ai, Yongfeng; Fang, Yinan; Liu, Peng; Whitley, Elizabeth M; Birt, Diane

    2016-01-01

    Dietary fiber has been reported to prevent preneoplastic colon lesions. The aim of this study was to determine the effect of resistant starches, novel dietary fibers, on the development of colonic preneoplasia and Wnt signaling in azoxymethane (AOM)-treated rats and mice fed resistant starches at 55% of the diet after AOM treatment. Another objective was to determine the effect of resistant starches on the development of preneoplasia in rats treated with antibiotics (Ab), administered between AOM treatment and resistant starch feeding. Diets containing resistant starches, high-amylose (HA7), high-amylose-octenyl succinic anhydride (OS-HA7), or high-amylose-stearic acid (SA-HA7) were compared with control cornstarch (CS). The resistant starch content of the diets did not alter the yield of colonic lesions but animals treated with AOM and fed the diet with the highest resistant starch content, SA-HA7 developed the highest average aberrant crypt foci (ACF) per animal. Mice fed the OS-HA7 diet had decreased expression of some upstream Wnt genes in the colonic crypts. This study suggests that further research is needed to determine if resistant starch impacts colon carcinogenesis in rodents. PMID:27367460

  13. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches.

    PubMed

    Kim, Bum-Su; Kim, Hyun-Seok; Hong, Jung-Sun; Huber, Kerry C; Shim, Jae-Hoon; Yoo, Sang-Ho

    2013-06-01

    Structural modification of rice and barley starches with Neisseria polysaccharea amylosucrase (NpAS) was conducted, and relationship between structural characteristics and resistant starch (RS) contents of NpAS-treated starches was investigated. Pre-gelatinised rice and barley starches were treated with NpAS. NpAS-treated starches were characterised with respect to morphology, X-ray diffraction pattern, amylopectin branch-chain distribution, and RS content, and their structural characteristics were correlated to RS contents. Regardless of amylose contents of native starches, NpAS-treated (relative to native) starches possessed lower and higher proportions of shorter (DP 6-12) and intermediate (DP 13-36) amylopectin (AP) branch-chains, respectively. RS contents were higher for NpAS-treated starches relative to native starches, and maximum RS contents were obtained for NpAS-treated starches of waxy rice and barley genotypes. Amylose contents were not associated with RS contents of NpAS-treated starches. However, shorter and intermediate AP branch-chain portions were negatively and positively correlated to RS contents of NpAS-treated starches, respectively. PMID:23411202

  14. Resistant starch does not affect zinc homeostasis in rural Malawian children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. This was a small controlled clinical trial to dete...

  15. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon

    PubMed Central

    Ze, Xiaolei; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2012-01-01

    The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. PMID:22343308

  16. Peculiarities of enhancing resistant starch in ruminants using chemical methods: opportunities and challenges.

    PubMed

    Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim

    2013-06-01

    High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826

  17. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    PubMed Central

    Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim

    2013-01-01

    High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826

  18. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform. PMID:27249052

  19. Sensory characteristics of high-amylose maize-resistant starch in three food products

    PubMed Central

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2013-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g, 13.10 g/100 g, and 8.94 g/100 g RS, respectively, based on lyophilized dry weight. The HAM-RS2-enriched muffin had higher moisture content and was perceived as being significantly moister than the control according to the sensory evaluation. The addition of HAM-RS2 to muffins significantly enhanced all sensory characteristics and resulted in a higher mean overall likeability score. The HAM-RS2-enriched focaccia bread appeared significantly darker in color, was more dense, and had the perception of a well-done crust versus the control. A grainer texture was observed with the chicken curry containing HAM-RS2 which did not significantly affect overall likeability. We concluded that the addition of HAM-RS2 may not significantly alter consumer's acceptability in most food products. PMID:24804020

  20. Consumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans

    PubMed Central

    Al-Tamimi, Enas K.; Seib, Paul A.; Snyder, Brian S.; Haub, Mark D.

    2010-01-01

    Objective. The objective was to compare the postprandial glycemic and insulinemic responses to nutrition bars containing either cross-linked RS type 4 (RS4XL) or standard wheat starch in normoglycemic adults (n = 13; age = 27 ± 5 years; BMI = 25 ± 3 kg/m2). Methods. Volunteers completed three trials during which they consumed a glucose beverage (GLU), a puffed wheat control bar (PWB), and a bar containing cross-linked RS4 (RS4XL) matched for available carbohydrate content. Serial blood samples were collected over two hours and glucose and insulin concentrations were determined and the incremental area under the curve (iAUC) was calculated. Results. The RS4XL peak glucose and insulin concentrations were lower than the GLU and PWB (P < .05). The iAUC for glucose and insulin were lower following ingestion of RS4 compared with the GLU and PWB trials. Conclusions. These data illustrate, for the first time, that directly substituting standard starch with RS4XL, while matched for available carbohydrates, attenuated postprandial glucose and insulin levels in humans. It remains to be determined whether this response was due to the dietary fiber and/or resistant starch aspects of the RS4XL bar. PMID:20798767

  1. Development, relative retention, and productivity of red flour beetle on resistant starches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development, relative retention, and fecundity of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), on six different types of starches, flour, and flour plus yeast was investigated in the laboratory. The viability of T. castaneum eggs was checked initially by placin...

  2. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  3. Greater satiety response with resistant starch and corn bran in human subjects.

    PubMed

    Willis, Holly J; Eldridge, Alison L; Beiseigel, Jeannemarie; Thomas, William; Slavin, Joanne L

    2009-02-01

    Some studies suggest high-fiber foods are more satiating than foods with little or no fiber. However, we hypothesized that certain types of dietary fiber may enhance satiety more than others. Healthy men and women (N = 20) participated in this acute, randomized double-blind, crossover study comparing the effects of 4 fibers and a low-fiber (LF) treatment on satiety. On 5 separate visits, fasting subjects consumed either a LF muffin (1.6 g fiber) or 1 of 4 high-fiber muffins (8.0-9.6 g fiber) for breakfast. The subjects used 4 questions on 100 mm visual analogue scales to rate satiety at baseline and at regular intervals for 180 minutes after muffin consumption. Responses were analyzed as area under the curve and significant differences from baseline. Satiety differed among treatments. Resistant starch and corn bran had the most impact on satiety, whereas polydextrose had little effect and behaved like the LF treatment. Results from this study indicate that not all fibers influence satiety equally. PMID:19285600

  4. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior.

    PubMed

    Lyte, Mark; Chapel, Ashley; Lyte, Joshua M; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J

    2016-01-01

    The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control

  5. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior

    PubMed Central

    Lyte, Mark; Chapel, Ashley; Lyte, Joshua M.; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J.

    2016-01-01

    The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control

  6. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.).

    PubMed

    Yang, Ruifang; Sun, Chunlong; Bai, Jianjiang; Luo, Zhixiang; Shi, Biao; Zhang, Jianming; Yan, Wengui; Piao, Zhongze

    2012-01-01

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs. PMID:22937009

  7. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    PubMed

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers. PMID:24792982

  8. Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Haripriya, Sundaramoorthy

    2013-06-01

    The objective of this study was to evaluate the production, physico-chemical and functional properties of Resistant starch (RS) from red kidney bean starch by enzymatic method. Native and gelatinized starch were subjected to enzymatic hydrolysis (pullulanase, 40 U/g/10 h), autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h), and lyophilized. The enzymatic hydrolysis and thermal treatment of starch increased the formation of RS which showed an increase in water absorption and water solubility indexes and a decrease in swelling power due to hydrolytic and thermal process. The process for obtaining RS changed the crystallinity pattern from C to B and increased the crystallinity due to the retrogradation process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P<0.05). PMID:23618263

  9. Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men123

    PubMed Central

    Maki, Kevin C.; Pelkman, Christine L.; Finocchiaro, E. Terry; Kelley, Kathleen M.; Lawless, Andrea L.; Schild, Arianne L.; Rains, Tia M.

    2012-01-01

    This study evaluated the effects of 2 levels of intake of high-amylose maize type 2 resistant starch (HAM-RS2) on insulin sensitivity (SI) in participants with waist circumference ≥89 (women) or ≥102 cm (men). Participants received 0 (control starch), 15, or 30 g/d (double-blind) of HAM-RS2 in random order for 4-wk periods separated by 3-wk washouts. Minimal model SI was assessed at the end of each period using the insulin-modified i.v. glucose tolerance test. The efficacy evaluable sample included 11 men and 22 women (mean ± SEM) age 49.5 ± 1.6 y, with a BMI of 30.6 ± 0.5 kg/m2 and waist circumference 105.3 ± 1.3 cm. A treatment main effect (P = 0.018) and a treatment × sex interaction (P = 0.033) were present. In men, least squares geometric mean analysis for SI did not differ after intake of 15 g/d HAM-RS2 (6.90 × 10−5 pmol−1 · L−1 × min−1) and 30 g/d HAM-RS2 (7.13 × 10−5 pmol−1 · L−1 × min−1), but both were higher than after the control treatment (4.66 × 10−5 pmol−1 · L−1 × min−1) (P < 0.05). In women, there was no difference among the treatments (overall least squares ln-transformed mean ± pooled SEM = 1.80 ± 0.08; geometric mean = 6.05 × 10−5 pmol−1 · L−1 × min−1). These results suggest that consumption of 15–30 g/d of HAM-RS2 improves SI in men. Additional research is needed to understand the mechanisms that might account for the treatment × sex interaction observed. PMID:22357745

  10. Rheological, physical, and sensory attributes of gluten-free rice cakes containing resistant starch.

    PubMed

    Tsatsaragkou, Kleopatra; Papantoniou, Maria; Mandala, Ioanna

    2015-02-01

    In this study the effect of resistant starch (RS) addition on gluten-free cakes from rice flour and tapioca starch physical and sensorial properties was investigated. Increase in RS concentration made cake batters less elastic (drop of G'(ω), G''(ω) values) and thinner (viscosity decreased). Cakes specific volume increased with an increase in RS level and was maximized for 15 g/100 g RS, although porosity values were significantly unaffected by RS content. Crumb grain analysis exhibited a decrease in surface porosity, number of pores and an increase in average pore diameter as RS concentration increased. During storage, cake crumb remained softer in formulations with increasing amounts of RS. Sensory evaluation of cakes demonstrated the acceptance of all formulations, with cake containing 20 g/100 g RS mostly preferred. Gluten-free cakes with improved quality characteristics and high nutritional value can be manufactured by the incorporation of RS. PMID:25604540

  11. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  12. [Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].

    PubMed

    Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an

    2016-03-01

    A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV. PMID:27400508

  13. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  14. Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    PubMed Central

    So, Po-Wah; Yu, Wei-Sheng; Kuo, Yu-Ting; Wasserfall, Clive; Goldstone, Anthony P.; Bell, Jimmy D.; Frost, Gary

    2007-01-01

    Background Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation. PMID:18074032

  15. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children

    PubMed Central

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( P<0.0001).  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt ( P<0.05).  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale) sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( P<0.05) including increased fecal acetate ( P=0.02), and butyrate ( P=0.089) from resistant starch (RS) fermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  16. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children.

    PubMed

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( P<0.0001).  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt ( P<0.05).  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale) sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( P<0.05) including increased fecal acetate ( P=0.02), and butyrate ( P=0.089) from resistant starch (RS) fermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  17. Films from resistant starch-pectin dispersions intended for colonic drug delivery.

    PubMed

    Meneguin, Andréia Bagliotti; Cury, Beatriz Stringhetti Ferreira; Evangelista, Raul Cesar

    2014-01-01

    Free films were obtained by the solvent casting method from retrograded starch-pectin dispersions at different polymer proportions and concentrations with and without plasticizer. Film forming dispersions were characterized according to their hardness, birefringence and rheological properties. The polymer dispersions showed a predominantly viscous behavior (G″>G') and the absence of plasticizers lead to building of stronger structures, while the occurrence of Maltese crosses in the retrograded dispersions indicates the occurrence of a crystalline organization. Analyses of the films included mechanical properties, thickness, superficial and cross sectional morphology, water vapor permeability, liquid uptake ability, X-ray diffractometry, in vitro dissolution and enzymatic digestion. The high resistant starch content (65.8-96.8%) assured the resistance of materials against enzymatic digestion by pancreatin. Changes in the X-ray diffraction patterns indicated a more organized and crystalline structure of free films in relation to isolated polymers. Increasing of pectin proportion and pH values favored the dissolution and liquid uptake of films. Films prepared with lower polymer concentration presented better barrier function (WVP and mechanical properties). PMID:24274490

  18. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods.

    PubMed

    Simsek, Sebnem; El, Sedef Nehir

    2012-10-15

    The aim of the study was the production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Starch was isolated from taro corms with 98% purity, and 10.4±0.5% amylose content. By application of heating, autoclaving, enzymatic debranching, retrogradation, and drying processes to taro starch for two times, resistant starch (RS) content was increased 16 fold (35.1±1.9%, dry basis). The expected glycemic index (eGI) of taro starch and taro resistant starch was determined as 60.6±0.5 and 51.9±0.9, respectively and the decrease in the glycemic index of taro resistant starch was found as statistically significant (P<0.05). The in vitro binding of bile acids by taro starch and taro resistant starch relative to cholesterol decreasing drug cholestyramine were 5.2±0.2% and 7.6±1.7%, respectively. PMID:22939332

  19. Inheritance of low pasting temperature in sweetpotato starch and the dosage effect of wild-type alleles.

    PubMed

    Katayama, Kenji; Tamiya, Seiji; Sakai, Tetsufumi; Kai, Yumi; Ohara-Takada, Akiko; Kuranouchi, Toshikazu; Yoshinaga, Masaru

    2015-09-01

    Sweetpotato (Ipomoea batatas (L.) Lam.), which is an outcrossing hexaploid, is one of the most important starch-producing crops in the world. During the last decade, new sweetpotato cultivars, e.g. 'Quick Sweet', which have approximately 20°C lower pasting temperature, slower retrogradation and higher digestibility of raw starch than ordinary cultivars, have been developed in Japan. Genetic analysis of these variants with low pasting temperature starch was conducted in this study. Using 8 variants and 15 normal clones, 26 families were generated. The results from analyzing these progenies suggested that this trait is a qualitative character controlled by one recessive allele (designated spt), which is inherited in a hexasomic manner. A dosage effect of the wild-type Spt allele was found for starch pasting temperature, although the effect was not linear. These results will aid breeders to develop sweetpotato cultivars with a range of starch pasting temperatures. PMID:26366119

  20. Inheritance of low pasting temperature in sweetpotato starch and the dosage effect of wild-type alleles

    PubMed Central

    Katayama, Kenji; Tamiya, Seiji; Sakai, Tetsufumi; Kai, Yumi; Ohara-Takada, Akiko; Kuranouchi, Toshikazu; Yoshinaga, Masaru

    2015-01-01

    Sweetpotato (Ipomoea batatas (L.) Lam.), which is an outcrossing hexaploid, is one of the most important starch-producing crops in the world. During the last decade, new sweetpotato cultivars, e.g. ‘Quick Sweet’, which have approximately 20°C lower pasting temperature, slower retrogradation and higher digestibility of raw starch than ordinary cultivars, have been developed in Japan. Genetic analysis of these variants with low pasting temperature starch was conducted in this study. Using 8 variants and 15 normal clones, 26 families were generated. The results from analyzing these progenies suggested that this trait is a qualitative character controlled by one recessive allele (designated spt), which is inherited in a hexasomic manner. A dosage effect of the wild-type Spt allele was found for starch pasting temperature, although the effect was not linear. These results will aid breeders to develop sweetpotato cultivars with a range of starch pasting temperatures. PMID:26366119

  1. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats.

    PubMed

    Kieffer, Dorothy A; Piccolo, Brian D; Vaziri, Nosratola D; Liu, Shuman; Lau, Wei L; Khazaeli, Mahyar; Nazertehrani, Sohrab; Moore, Mary E; Marco, Maria L; Martin, Roy J; Adams, Sean H

    2016-05-01

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function. PMID:26841824

  2. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes.

    PubMed

    Teixeira, Natália de Carvalho; Queiroz, Valéria Aparecida Vieira; Rocha, Maria Clara; Amorim, Aline Cristina Pinheiro; Soares, Thayana Oliveira; Monteiro, Marlene Azevedo Magalhães; de Menezes, Cícero Beserra; Schaffert, Robert Eugene; Garcia, Maria Aparecida Vieira Teixeira; Junqueira, Roberto Gonçalves

    2016-04-15

    The resistant starch (RS) contents in 49 sorghum genotypes and the effects of heat treatment using dry and wet heat on the grain and flour from two sorghum genotypes were investigated. The results showed a wide variation in the RS contents of the genotypes analyzed. The RS mean values were grouped into six distinct groups and ranged from 0.31±0.33 g/100 g to 65.66±5.46 g/100 g sorghum flour on dry basis. Dry heat causes minor losses in the RS content with retentions of up to 97.19±1.92% of this compound, whereas wet heat retained at most 6.98±0.43% of the RS. The SC 59 and (SSN76)FC6608 RED KAFIR BAZINE (ASA N23) cultivars, which have an average RS content of 65.51 g/100 g, were appropriate for human consumption, and the use of dry heat is presented as a better alternative for the preservation of RS in heat-treated grains. PMID:26616952

  3. Effect of granule size on the properties of lotus rhizome C-type starch.

    PubMed

    Lin, Lingshang; Huang, Jun; Zhao, Lingxiao; Wang, Juan; Wang, Zhifeng; Wei, Cunxu

    2015-12-10

    Lotus rhizome C-type starch was separated into different size fractions. Starch morphologies changed from irregular to elongated, ellipsoid, oval, and spherical with decreasing granule size. The small- and very-small-sized fractions had a centric hilum, and the other size fractions had an eccentric hilum. The different size fractions all showed C-type crystallinity, pseudoplasticity and shear-thinning rheological properties. The range of amylose content was 25.6 to 26.6%, that of relative crystallinity was 23.9 to 25.8%, that of swelling power was 29.0 to 31.4 g/g, and that of gelatinization enthalpy was 12.4 to 14.2J/g. The very-small-sized fraction had a significantly lower short-range ordered degree and flow behavior index and higher scattering peak intensity, water solubility, gelatinization peak temperature, gelatinization conclusion temperature, consistency coefficient, hydrolysis degrees, and digestion rate than the large-sized fraction. Granule size significantly positively influenced short-range ordered structure and swelling power and negatively influenced scattering peak intensity, water solubility, hydrolysis and digestion of starch (p<0.01). PMID:26428146

  4. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  5. Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor

    SciTech Connect

    Fujio, Y.; Ogato, M.; Ueda, S.

    1985-08-01

    Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/l broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate. 10 references.

  6. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  7. Influence of starch source on sporulation and enterotoxin production by Clostridium perfringens type A.

    PubMed

    Labbe, R; Somers, E; Duncan, C

    1976-03-01

    Of 16 different starch preparations tested, Clostridium perfringes NCTC 8798 yielded maximum sporulation and enterotoxin formation when ICN-soluble starch was included in Duncan and Strong sporulation medium. In general soluble starches were better than potato, corn, or arrowroot starch with regard to these two parameters. PMID:180885

  8. Measurement of resistant starch content in cooked rice and analysis of gelatinization and retrogradation characteristics.

    PubMed

    Nakayoshi, Yuuki; Nakamura, Sumiko; Kameo, Yoji; Shiiba, Daisuke; Katsuragi, Yoshihisa; Ohtsubo, Ken'ichi

    2015-01-01

    Digestion-resistant starch (RS) has many physiologic functions. The RS content is measured by enzymatically degrading flour samples according to the method of the Association of Official Analytical Chemists. Experiments have been performed with wheat, corn, and other grains, but there are no data for cooked rice grains in the form ingested by humans. Thus, we investigated a method to measure RS that is suitable for cooked rice grains using rice cultivars that are reported to differentially increase postprandial blood glucose in humans. Using a method for cooking individual rice grains and optimized enzyme reaction conditions, we established an RS measurement method. We also found that the amylopectin crystal condition affects the RS content measured using our method. PMID:25996617

  9. Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels.

    PubMed

    Liu, Dongli; Parker, Mary L; Wellner, Nikolaus; Kirby, Andrew R; Cross, Kathryn; Morris, Victor J; Cheng, Fang

    2013-09-12

    Starch granule structure within wild-type and ae high-amylose mutant maize kernels has been mapped in situ using light, electron and atomic force microscopy, and both Raman and infra-red spectroscopy. The population of wild-type starch granules is found to be homogenous. The ae mutant granule population is heterogeneous. Heterogeneity in chemical and physical structure is observed within individual granules, between granules within cells, and spatially within the kernel. The highest level of heterogeneity is observed in the region where starch is first deposited during kernel development. Light microscopy demonstrates structural diversity through use of potassium iodide/iodine staining and polarised microscopy. Electron and atomic force microscopy, and infra-red and Raman spectroscopy defined the nature of the structural changes within granules. The methodology provides novel information on the changes in starch structure resulting from kernel development. PMID:23911471

  10. Enzymatic properties and regulation of ZPU1, the maize pullulanase-type starch debranching enzyme.

    PubMed

    Wu, Chunyuan; Colleoni, Christophe; Myers, Alan M; James, Martha G

    2002-10-01

    Starch debranching enzymes (DBE) are required for mobilization of carbohydrate reserves and for the normal structural organization of storage glucan polymers. Two isoforms, the pullulanase-type DBEs and the isoamylase-type DBEs, are both highly conserved in plants. To address DBE functions in starch assembly and breakdown, this study characterized the biochemical activity of ZPU1, a pullulanase-type DBE that is the product of the maize Zpu1 gene. Assays showed directly that recombinant ZPU1 (ZPU1r) expressed in Escherichia coli functions as a pullulanase-type enzyme, and 1H-NMR spectroscopy demonstrated that ZPU1r specifically hydrolyzes alpha(1-->6) branch linkages. Preferred substrates for ZPU1r hydrolytic activity were determined, as were pH, temperature, and thermal stability optima. Kinetic properties of ZPU1r with respect to two substrates, beta-limit dextrin and pullulan, were determined. ZPU1 activity was increased by incubation with thioredoxin h, and native activity was decreased in mutants that accumulate soluble sugars, suggesting potential regulatory mechanisms. PMID:12234486

  11. Resistant starch is more effective than cholestyramine as a lipid-lowering agent in the rat.

    PubMed

    Younes, H; Levrat, M A; Demigné, C; Rémésy, C

    1995-09-01

    Amylase-resistant starch (RS) represents a substrate for the bacterial flora of the colon, and the question arises as whether RS shares with soluble fibers common mechanisms for their lipid-lowering effects. It is uncertain whether a cholesterol-lowering effect depends basically on an enhanced rate of steroid excretion or whether colonic fermentations also play a role in this effect. In the present study, the effect of RS (25% raw potato starch), of a steroid sequestrant (0.8% cholestyramine), or both were compared on bile acid excretion and lipid metabolism in rats fed semipurified diets. RS diets led to a marked rise in cecal size and the cecal pool of short-chain fatty acids (SCFA), as well as SCFA absorption; cholestyramine did not noticeably affect cecal fermentation. Whereas cholestyramine was particularly effective at enhancing bile acid excretion, RS was more effective in lowering plasma cholesterol (-32%) and triglycerides (-29%). The activity of 3-hydroxy-3-methylglutaryl-CoA reductase was increased fivefold by cholestyramine and twofold by RS. This induction in rats fed RS diets was concomittant to a depressed fatty acid synthase activity. In rats fed the RS diet, there was a lower concentration of cholesterol in all lipoprotein fractions, especially the (d = 1.040-1.080) fraction high-density lipoprotein (HDL1), while those fed cholestyramine had only a significant reduction of HDL1 cholesterol. In contrast to cholestyramine, RS also depressed the concentration of triglycerides in the triglyceride-rich lipoprotein fraction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8577229

  12. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet

    PubMed Central

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host. PMID:27303373

  13. Effect of storage time on in vitro digestion rate and resistant starch content of tortillas elaborated from commercial corn masas.

    PubMed

    Agama-Acevedo, Edith; Rendón-Villalobos, Rodolfo; Tovar, Juscelino; Trejo-Estrada, Sergio Rubén; Bello-Pérez, Luis Arturo

    2005-03-01

    Tortilla samples were elaborated by four small commercial factories in Mexico, employing masas prepared with the traditional nixtamalization process. Samples were stored at 4 degrees C for up to 72 hours and their chemical composition and in vitro starch digestibility features were evaluated. Chemical composition did not change with the storage time, but soluble carbohydrates decreased slightly during storage. A significant decrease in available starch content upon storage was observed, concomitant with increased resistant starch (RS) levels. These changes are possibly due to retrogradation. Retrograded resistant starch (RRS) values increased with storage time; in some samples, RRS represented more than 75% of total RS whereas in others it only accounted for 25%. The digestion rate (DR) in the freshly prepared tortillas was similar for the various samples, but after 72 h storage some differences among tortillas were found. Also, when a single tortilla sample was compared throughout the different storage times, lower DRs were determined in samples subjected to prolonged storage, which is related to the concomitant. increase in RRS. The differences found among the various tortilla samples may be due to minor variations in the commercial processing conditions and to the use of different corn varieties. PMID:16187683

  14. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  15. Characterization of chemically modified waxy, partially waxy, and wild type tetraploid wheat starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheats (Triticum turgidum L. var. durum) contain two Granule Bound Starch Synthase (GBSS) genes (wx-A1and wx-B1) controlling amylose synthesis; the other major starch polymer in durum wheat is amylopectin. Starches with little or no amylose are “waxy.” A GBSS null (non-producing) gene results ...

  16. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance.

    PubMed

    Zhang, Yanhua; Ding, Longlong; Gu, Jiyou; Tan, Haiyan; Zhu, Libin

    2015-01-22

    A Highly efficient method was developed for preparing starch-based wood adhesives with high performance, using H2O2, a silane coupling agent and an olefin monomer as an oxidant, cross-linking agent and comonomer, respectively. The effects of various parameters on the shear adhesive strength were investigated in the dry state (DS) and wet state (WS). The results indicated that the bonding strength of starch-based wood adhesives could reach 7.88 MPa in dry state and 4.09 MPa in wet state. The oxidation could reduce the content of the hydroxyl transforming into carboxyl and aldehyde groups, and the graft copolymerization enhanced the thermal stability, which improved the bonding strength and water resistance. The starch-based adhesive and the fractures in the bonded joints were analyzed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The improved properties were attributed to the modified of microstructure of the graft-copolymerized starch-based adhesive. PMID:25439864

  17. Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein.

    PubMed

    Tousen, Yuko; Abe, Fumiko; Ishida, Tatsuya; Uehara, Mariko; Ishimi, Yoshiko

    2011-10-01

    Daidzein is metabolized to equol in the gastrointestinal tract by gut microflora. Equol has greater estrogenic activity than genistein and daidzein, with its production shown to be promoted by dietary fiber. It is known that resistant starch (RS) is not absorbed in the proximal intestine and acts as dietary fiber in the colon. In this study, we investigated the combined effects of daidzein and RS intake on equol production, bone mineral density, and intestinal microflora in ovariectomized (OVX) mice. Female mice of the ddY strain, aged 8 weeks, were either sham operated (n = 6) or OVX. The OVX mice were randomly divided into 5 groups: OVX control (n = 6), OVX fed 0.1% daidzein-supplemented diet (OVX + Dz, n = 8), OVX fed 0.1% daidzein- and 12% RS-supplemented diet (OVX + Dz + RS, n = 8), OVX fed 12% RS-supplemented diet (OVX + RS, n = 8), and OVX who received daily subcutaneous administration of 17 β-estradiol (n = 6). After 6 weeks, urinary equol concentration was significantly higher in the OVX + Dz + RS group than in the OVX + Dz group. The bone mineral density of the whole tibia was higher in the OVX + Dz +RS group compared with the OVX + Dz group. The occupation ratios of Bifidobacterium spp in the cecal microflora in groups fed RS were significantly higher than those in the other groups. The present study demonstrated that RS may increase the bioavailability of daidzein. PMID:21550090

  18. Changes in Bowel Microbiota Induced by Feeding Weanlings Resistant Starch Stimulate Transcriptomic and Physiological Responses

    PubMed Central

    Young, Wayne; Roy, Nicole C.; Lee, Julian; Lawley, Blair; Otter, Don; Henderson, Gemma; McCann, Mark J.

    2012-01-01

    The ability to predictably engineer the composition of bowel microbial communities (microbiota) using dietary components is important because of the reported associations of altered microbiota composition with medical conditions. In a synecological study, weanling conventional Sprague-Dawley rats (21 days old) were fed a basal diet (BD) or a diet supplemented with resistant starch (RS) at 5%, 2.5%, or 1.25% for 28 days. Pyrosequencing of 16S rRNA genes and temporal temperature gradient electrophoresis (TTGE) profiles in the colonic digesta showed that rats fed RS had altered microbiota compositions due to blooms of Bacteroidetes and Actinobacteria. The altered microbiota was associated with changes in colonic short-chain fatty acid (SCFA) concentrations, colonic-tissue gene expression (Gsta2 and Ela1), and host physiology (serum metabolite profiles and colonic goblet cell numbers). Comparisons between germ-free and conventional rats showed that transcriptional and serum metabolite differences were mediated by the microbiota and were not the direct result of diet composition. Altered transcriptomic and physiological responses may reflect the young host's attempts to maintain homeostasis as a consequence of exposure to a new collection of bacteria and their associated biochemistry. PMID:22798356

  19. Influence of resistant starches on chemical and functional properties of tarhana.

    PubMed

    Bayrakçı, Hilal Arslan; Bilgiçli, Nermin

    2015-08-01

    Two different commercial resistant starches (RSa and RSb) were used in tarhana formulation on the basis of its replacement with wheat flour at 15, 30 and 45 % levels. Color values, some chemical, functional and sensory properties of tarhana were determined. Tarhana containing 30-45 % RSa gave lower darkness and yellowness compared to other samples. Increasing levels of RSa/RSb in tarhana formulation decreased protein and Fe, K, Mg, P and Zn content of the final products. Development in acidity was negatively affected above 30 % RS addition level. Although long fermentation period of tarhana dough, RS content of the tarhana samples changed between 5.4 and 26.2 %. Control tarhana was found to have 0.9 % RS content. Cooked viscosity decreased in tarhana soup with RS addition from 1,454 cP (control) to 166 cP. RSb showed more remarkable effect on cooked viscosity than RSa. High levels of RSa improved foaming capacity, foam stability, water and oil absorption capacity of the tarhana samples. RSa successfully incorporated into tarhana formulation up to 30 % level with minimum adverse effect on chemical and sensory properties. PMID:26243962

  20. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    PubMed

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. PMID:26642841

  1. Characterization of banana starches obtained from cultivars grown in Brazil.

    PubMed

    de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

    2016-08-01

    The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications. PMID:27180297

  2. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    PubMed

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion. PMID:22917081

  3. Crystalline and structural properties of acid-modified lotus rhizome C-type starch.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Yang, Yang; Zhang, Fengmin; Wei, Cunxu

    2014-02-15

    The crystalline and structural properties of acid-modified C-type starch from lotus rhizomes were investigated using a combination of techniques. The degradation of granule during hydrolysis began from the end distant from the hilum and then propagated into the center of granule, accompanied by loss of birefringence. The crystallinity changed from C-type to A-type via CA-type during hydrolysis. At the early stage of hydrolysis, the amylose content substantially reduced, the peak and conclusion gelatinization temperatures increased, and the enthalpy decreased. During hydrolysis, the double helix content gradually increased and the amorphous component decreased, the lamellar peak intensity firstly increased and then decreased accompanied by hydrolysis of amorphous and crystalline regions. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs. PMID:24507349

  4. Effects of resistant starch on behaviour, satiety-related hormones and metabolites in growing pigs.

    PubMed

    Souza da Silva, C; Haenen, D; Koopmans, S J; Hooiveld, G J E J; Bosch, G; Bolhuis, J E; Kemp, B; Müller, M; Gerrits, W J J

    2014-09-01

    Resistant starch (RS) has been suggested to prolong satiety in adult pigs. The present study investigated RS-induced changes in behaviour, satiety-related hormones and metabolites in catheterized growing pigs to explore possible underlying mechanisms for RS-induced satiety. In a cross-over design with two 14-day periods, 10 pigs (initial BW: 58 kg) were assigned to two treatments comprising diets containing either 35% pregelatinized starch (PS) or 34% retrograded starch (RS). Diets were isoenergetic on gross energy. Pigs were fed at 2.8× maintenance. Postprandial plasma response of satiety-related hormones and metabolites was measured at the end of each period using frequent blood sampling. Faecal and urinary energy losses were measured at the end of each period. Behaviour was scored 24 h from video recordings using scan sampling. Energy digestibility and metabolizability were ~6% lower in RS compared with PS diet (P<0.001), and metabolizable energy (ME) intake was ~3% lower in RS-fed than in PS-fed pigs (P<0.001). RS-fed pigs showed less feeder-directed (P=0.001) and drinking (P=0.10) behaviours than PS-fed pigs throughout the day. Postprandial peripheral short-chain fatty acid (SCFA) levels were higher in RS-fed than in PS-fed pigs (P<0.001). Postprandial glucose and insulin responses were lower in RS-fed than in PS-fed pigs (P<0.001). Triglyceride levels were higher in RS-fed than in PS-fed pigs (P<0.01), and non-esterified fatty acid levels did not differ between diets (P=0.90). Glucagon-like peptide-1 (GLP-1) levels were lower in RS-fed than in PS-fed pigs (P<0.001), and peptide tyrosine tyrosine (PYY) levels did not differ between diets (P=0.90). Blood serotonin levels were lower (P<0.001), whereas monoamine oxidase activity (P<0.05) and tryptophan (P<0.01) levels were higher in RS-fed than in PS-fed pigs. Despite a lower ME intake, RS seemed to prolong satiety, based on behavioural observations. Possible underlying mechanisms for RS-induced satiety include

  5. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters.

    PubMed

    Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F

    1999-01-29

    To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol

  6. Distinct Functional Properties of Isoamylase-Type Starch Debranching Enzymes in Monocot and Dicot Leaves1[C][W][OPEN

    PubMed Central

    Facon, Maud; Lin, Qiaohui; Azzaz, Abdelhamid M.; Hennen-Bierwagen, Tracie A.; Myers, Alan M.; Putaux, Jean-Luc; Roussel, Xavier; D’Hulst, Christophe; Wattebled, Fabrice

    2013-01-01

    Isoamylase-type starch debranching enzymes (ISA) play important roles in starch biosynthesis in chloroplast-containing organisms, as shown by the strict conservation of both catalytically active ISA1 and the noncatalytic homolog ISA2. Functional distinctions exist between species, although they are not understood yet. Numerous plant tissues require both ISA1 and ISA2 for normal starch biosynthesis, whereas monocot endosperm and leaf exhibit nearly normal starch metabolism without ISA2. This study took in vivo and in vitro approaches to determine whether organism-specific physiology or evolutionary divergence between monocots and dicots is responsible for distinctions in ISA function. Maize (Zea mays) ISA1 was expressed in Arabidopsis (Arabidopsis thaliana) lacking endogenous ISA1 or lacking both native ISA1 and ISA2. The maize protein functioned in Arabidopsis leaves to support nearly normal starch metabolism in the absence of any native ISA1 or ISA2. Analysis of recombinant enzymes showed that Arabidopsis ISA1 requires ISA2 as a partner for enzymatic function, whereas maize ISA1 was active by itself. The electrophoretic mobility of recombinant and native maize ISA differed, suggestive of posttranslational modifications in vivo. Sedimentation equilibrium measurements showed recombinant maize ISA1 to be a dimer, in contrast to previous gel permeation data that estimated the molecular mass as a tetramer. These data demonstrate that evolutionary divergence between monocots and dicots is responsible for the distinctions in ISA1 function. PMID:24027240

  7. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    NASA Astrophysics Data System (ADS)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  8. Functions of Heteromeric and Homomeric Isoamylase-Type Starch-Debranching Enzymes in Developing Maize Endosperm1[W][OA

    PubMed Central

    Kubo, Akiko; Colleoni, Christophe; Dinges, Jason R.; Lin, Qiaohui; Lappe, Ryan R.; Rivenbark, Joshua G.; Meyer, Alexander J.; Ball, Steven G.; James, Martha G.; Hennen-Bierwagen, Tracie A.; Myers, Alan M.

    2010-01-01

    Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism. PMID:20448101

  9. Resistant starch does not affect zinc homeostasis in rural Malawian children☆,☆☆

    PubMed Central

    Thakwalakwa, Chrissie; Ordiz, M. Isabel; Maleta, Ken; Westcott, Jamie; Ryan, Kelsey; Hambidge, K. Michael; Miller, Leland V.; Young, Graeme; Mortimer, Elissa; Manary, Mark J.; Krebs, Nancy F.

    2015-01-01

    Objective This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. Methods This was a small controlled clinical trial to determine the effects of added dietary RS on zinc homeostasis among 17 stunted children, aged 3–5 years consuming a plant-based diet and at risk for perturbed zinc homeostasis. Dual zinc stable isotope studies were performed before and after 28 d of intervention with RS, so that each child served as their own control. The RS was incorporated into fried wheat flour dough and given under direct observation twice daily for 28 d. Changes in zinc homeostatic measures were compared using paired Student's t-tests and linear regression analysis. Results Children had a mean height-for-age Z-score of −3.3, and consumed animal source foods ≤twice per month. Their habitual diet contained a phytate:zinc molar ratio of 34:1. Children avidly consumed the RS without complaints. EFZ was 0.8±0.4 mg/d (mean±SD) both before and after the intervention. Fractional absorption of zinc was 0.38±0.08 and 0.35±0.06 before and after the RS intervention respectively. NAZ was 1.1±0.5 and 0.6±0.7 before and after the RS intervention. This reduction of NAZ corresponded with diminished dietary zinc intake on the study day following intervention with RS. Regression analysis indicated no change in zinc absorption relative to dietary intake as a result of the RS intervention. Conclusion Consumption of RS did not improve zinc homeostasis in rural African children without zinc deficiency. RS was well tolerated in this setting. PMID:25744509

  10. Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion.

    PubMed

    Teng, Anju; Witt, Torsten; Wang, Kai; Li, Ming; Hasjim, Jovin

    2016-03-30

    The objective of the present study is to understand the changes in starch structures during digestion and the structures contributing to slow digestion properties. The molecular, crystalline, and granular structures of native waxy maize, normal maize, high-amylose maize, and normal potato starch granules were monitored using SEC, XRD, DSC, and SEM. The amylose and amylopectin molecules of all four starches were hydrolyzed to smaller dextrins, with some having linear molecular structure. Neither the A- nor B-type crystallinity was resistant to enzyme hydrolysis. Starch crystallites with melting temperature above 120°C appeared in waxy and normal maize starches after digestion, suggesting that the linear dextrins retrograded into thermally stable crystalline structure. These crystallites were also observed for high-amylose maize starch before and after digestion, contributing to its low enzyme digestibility. On the contrary, the enzyme-resistant granular structure of native normal potato starch was responsible for its low susceptibility to enzyme hydrolysis. PMID:26794941

  11. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules.

    PubMed

    Li, Ji-Hong; Guiltinan, Mark J; Thompson, Donald B

    2007-12-10

    In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation. PMID:17765880

  12. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures.

    PubMed

    Neder-Suárez, David; Amaya-Guerra, Carlos A; Quintero-Ramos, Armando; Pérez-Carrillo, Esther; Alanís-Guzmán, María G de J; Báez-González, Juan G; García-Díaz, Carlos L; Núñez-González, María A; Lardizábal-Gutiérrez, Daniel; Jiménez-Castro, Jorge A

    2016-01-01

    Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS) content in cornstarch were evaluated. The cornstarch was conditioned at 20%-40% moisture contents and extruded in the range 90-130 °C and at screw speeds in the range 200-360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g) after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time. PMID:27537864

  13. Feeding a diet containing resistant potato starch influences gastrointestinal tract traits and growth performance of weaned pigs.

    PubMed

    Heo, J M; Agyekum, A K; Yin, Y L; Rideout, T C; Nyachoti, C M

    2014-09-01

    The aim was to evaluate the effects of feeding resistant potato starch (RPS) as a natural source of resistant starch to weaned pigs for 28 d immediately after weaning. Sixty piglets (Yorkshire-Landrace × Duroc) weaned at 21 ± 2 d (1:1 male:female) with an initial BW of 7.2 ± 0.78 kg were assigned in a completely randomized design to 1 of 5 dietary treatments to give 6 observations per treatment and 2 pigs per pen. Dietary treatments consisted of a negative control corn-soybean meal-wheat-wheat middlings-based diet (NC; no antimicrobial agents added) or the NC supplemented with RPS either as powder or in capsules and each included at 0.5 or 1.0% as a top-dressing on each day. Diets were formulated to meet 1998 NRC specifications. Pigs were offered the experimental diets on an ad libitum basis for 28 d and water was available at all times. The ADG, ADFI, and G:F were determined weekly. Fecal score was determined daily for 14 d after weaning. At the conclusion of study, 1 pig from each pen was randomly selected and euthanized (n = 6 per treatment) to determine visceral organ weight, digesta pH, VFA, and ammonia N (NH3-N) concentrations. Resistant potato starch supplementation improved (P < 0.001) fecal score, and pigs offered 1.0% RPS had more solid feces (P < 0.05) than those offered 0.5% RPS during the first 14 d after weaning, independent of the form of RPS. Resistant potato starch supplementation decreased (P < 0.05) ileal and cecal digesta pH regardless of the levels of RPS or mode of delivery. The total VFA concentrations in cecal digesta were greater (P < 0.05) but the molar proportion of branched-chain fatty acids were lower (P < 0.05) for pigs fed the RPS-containing diets compared with those fed the NC, irrespective of the RPS levels or the form of RPS. However, there were no differences (P > 0.10) in visceral organ weights, growth performance, and digestibilities of DM, CP, Ca, and P among treatments. The results of this experiment indicate that

  14. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis

    PubMed Central

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS–PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: kcat = 343 and 727 s−1, Km = 0.25 and 0.16 mg mL−1, kcat/Km (specificity constant) = 1374 and 4510 mg mL−1 s−1, respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme. PMID:24293795

  15. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    PubMed

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion. PMID:22059442

  16. Resistance domain in type II superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1980-01-05

    We show that traveling domains with a finite resistance can exist in type II superconductors in the presence of a transport current. An experiment in which this effect generates an alternating electric field and current is proposed.

  17. In vivo degradation of alginate in the presence and in the absence of resistant starch.

    PubMed

    Jonathan, Melliana; Souza da Silva, Carol; Bosch, Guido; Schols, Henk; Gruppen, Harry

    2015-04-01

    This study evaluated the intestinal degradability of alginate during 74 days intake in pigs as models for humans. Diets contained pregelatinized starch, retrograded starch, alginate, or a mix of retrograded starch and alginate. Faeces were collected on day 1, 3, 7, 14, 39 and 74. Clear trends in intestinal alginate degradation were observed. Up to day 39, the total tract digestibility of alginate was limited (0.52 ± 0.10), and was lower with the inclusion of retrograded starch in the diet (0.34 ± 0.02). More than 90% of the faecal alginate was insoluble in water, which may explain the low digestibility of the alginate. The digestibility of mannuronic acid (M) was 2-3 times higher than that of guluronic acid (G). The changes of G:M ratio and the relative amounts of alginate oligosaccharides between day 39 and 74 indicated that the microbiota needed more than 39 days to adapt to alginate. This study demonstrated that in-depth analyses of dietary fibres are valuable in understanding the fate of the dietary fibres in the large intestine as it was shown that degradation of a dietary fibre depends not only on the properties of the fibre itself, but also on the other dietary fibres present in the diet and the adaptation time. PMID:25442531

  18. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    PubMed

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. PMID:23911484

  19. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-10-13

    In the present study, we introduce a simple method to prepare inclusion complexes by "inserting" guest molecules into preformed "empty" V-type amylose helices. Ascorbyl palmitate (AscP) was used as a model guest material to investigate the effect of solvent environment, complexation temperature, annealing and guest concentration on inclusion complex formation. High complexation temperature was not necessary for encapsulating guest molecules in amylose helices, avoiding thermal degradation of guest compounds. This method would also avoid the wasting of guest materials because uncomplexed guest can be reused. It was found in the study that intermediate ethanol and acetone concentrations (generally 40-60%, v/v) at room temperature were appropriate for the complexation between V-amylose and AscP. Annealing, i.e. heat treatment in ethanol solutions at elevated temperatures (45-70 °C), was able to significantly increase the crystallinity of V-amylose and V-starch to as high as 65% and facilitate greater complexation evidenced from higher enthalpies, probably due to more regularly arranged helical cavities in larger crystalline phase. The complexation between V-amylose and AscP was also found to be enhanced with AscP concentration, while the dissociation temperature experienced a slight decrease. PMID:25037350

  20. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  1. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    PubMed

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. PMID:23497862

  2. Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch.

    PubMed

    Sun, Y; Yu, K; Zhou, L; Fang, L; Su, Y; Zhu, W

    2016-03-01

    The present study investigated metabolomic and transcriptomic responses in the livers of pigs to evaluate the effects of resistant starch on the body's metabolism at the extraintestinal level. Thirty-six Duroc× Landrace × Large White growing barrows (70 d of age) were randomly allocated to either the corn starch (CS) group or the raw potato starch (RPS) group with a randomized complete block design; each group consisted of 6 replicates (pens), with 3 pigs per pen. Pigs in the CS group were offered a corn-soybean-based diet, whereas pigs in the RPS group were put on a diet in which 230 (growing) or 280 g/kg (finishing) purified CS was replaced with purified RPS during a 100-d trial. The livers of pigs were collected for metabolome and gene expression analysis. Gas chromatography-mass spectrometry analysis showed that compared with the CS diet, the RPS diet decreased ( < 0.05) cholesterol and palmitic acid as well as increased ( < 0.05) 3-hydroxybutyric acid, which indicated the reduction of adipose weight and fatty acid biosynthesis and the elevation of fatty acid β-oxidation. In addition, 2-ketoglutaric acid and glucose-6-phosphate were increased (< 0.05) although pyruvic acid was decreased ( < 0.05) in the RPS group, indicating the upregulated capacity of glucose phosphorylation and glycolysis. Microarray analysis showed that the mRNA expression of (), (), and () were downregulated ( < 0.05) whereas (), (), and () were upregulated ( < 0.05) in the RPS diet, indicating a decrease in fatty acid intake and synthesis and an increase in fatty acid oxidation and glycerophospholipid synthesis. The results demonstrated that the long-term consumption of RPS could modulate hepatic lipid metabolism by decreasing fatty acid synthesis as well as increasing lipid oxidation and glycerophospholipid synthesis. PMID:27065270

  3. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

    PubMed Central

    Sun, Yue; Zhou, Liping; Fang, Lingdong; Su, Yong; Zhu, Weiyun

    2015-01-01

    Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups with a randomized block design. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified CS was replaced with purified RPS during a 100-day trial. Real-time PCR assay showed that RPS significantly decreased the number of total bacteria in the colonic digesta. MiSeq sequencing of the V3-V4 region of the 16S rRNA genes showed that RPS significantly decreased the relative abundance of Clostridium, Treponema, Oscillospira, Phascolarctobacterium, RC9 gut group, and S24-7-related operational taxonomic units (OTUs), and increased the relative abundance of Turicibacter, Blautia, Ruminococcus, Coprococcus, Marvinbryantia, and Ruminococcus bromii-related OTUs in colonic digesta and mucosa. Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome. Our findings suggest that long-term intake of high resistant starch (RS) diet may result in both positive and negative roles in gut health. PMID:26379652

  4. Including dietary fiber and resistant starch to increase satiety and reduce aggression in gestating sows.

    PubMed

    Sapkota, A; Marchant-Forde, J N; Richert, B T; Lay, D C

    2016-05-01

    Aggression during mixing of pregnant sows impacts sow welfare and productivity. The aim of this study was to increase satiety and reduce aggression by including dietary fiber and fermentable carbohydrates. Sows were housed in individual stalls 7 to 14 d after breeding (moving day was considered d 0 of treatment) and were fed (at 0700 h) with a CONTROL (corn-soybean meal based with no additional fiber sources), RSTARCH (10.8% resistant starch), BEETPULP (27.2% sugar beet pulp), SOYHULLS (19.1% soybean hulls), or INCSOY (14.05% soybean hulls) for 21 d (5 sows/diet × 5 diets × 8 replications = 200 sows). The CONTROL diet was targeted to contain 185 g(d∙sow) NDF and the other diets were targeted to contain 350 g(d∙sow) NDF. The INCSOY diet was fed at 2.2 kg/(d∙sow) and the other diets were fed at 2 kg(d∙sow). On d 22, sows were mixed in groups of 5 (at 1200 h). Behaviors in stalls (on d 1, 7, 14, and 21) and after mixing (d 22 and 23), heart rate (on d 1, 7, 14, and 21), blood metabolites (on d 2, 8, 15, 22, and 25), and the effects of diets on production were collected and analyzed. Sows stood more ( < 0.01) and rested less ( < 0.001) over time irrespective of the diet. Sows on BEETPULP stood more ( < 0.01) and sows on SOYHULLS rested more ( < 0.01). Sham chewing increased over days irrespective of the diet. Chewing behavior (bar and feeder) increased with days on diet ( < 0.001) and was lowest in sows on the SOYHULLS diet ( = 0.045). When mixed, biting frequency in the first hour was highest for sows on the CONTROL diet (236.5 ± 62.6) and lowest for sows on the RSTARCH diet (90.5 ± 30.5). Skin lesions increased ( < 0.001) 24 h after mixing sows irrespective of diet. Blood urea nitrogen (BUN) concentration was lowest in sows fed BEETPULP and SOYHULLS ( < 0.001). Serum glucose concentration was highest in sows fed RSTARCH and BEETPULP ( = 0.04), but there was no day effect ( = 0.62) or diet × day interaction ( = 0.60). The NEFA was greatest in sows fed

  5. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties.

    PubMed

    Ambigaipalan, P; Hoover, R; Donner, E; Liu, Q

    2014-01-15

    Pulse (faba bean [FB], black bean [BB] and pinto bean [PB]) starches were heat-moisture treated (HMT) at 80, 100 and 120°C for 12h at a moisture content of ∼23%. Structural changes on HMT were monitored by microscopy, HPAEC-PAD, ATR-FTIR, WAXS, DSC and susceptibility towards acid and enzyme hydrolysis. Amylopectin chain length distribution remained unchanged in all starches on HMT. In all starches, HMT increased crystallinity and gelatinisation temperatures. The gelatinization enthalpy remained unchanged in some starches, whereas it decreased slightly in other starches on HMT. Slowly digestible starch content decreased at all temperatures of HMT, whereas resistant starch content increased at HMT80 and HMT100 (HMT80>HMT100), but decreased at HMT120. Birefringence, B-type crystallites and acid hydrolysis decreased on HMT. The extent of the above changes varied amongst starch sources and genotypes. HMT altered the X-ray pattern from A+B→A. The results of this study showed that structural reorganisation of starch chains during HMT temperature was influenced by starch chain flexibility, starch chain interactions and crystalline stability of the native granules. PMID:24054228

  6. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety.

    PubMed

    Raatz, Susan K; Idso, Laura; Johnson, LuAnn K; Jackson, Matthew I; Combs, Gerald F

    2016-10-01

    Resistant starch (RS) has unique digestive and absorptive properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking method and service temperature. Potatoes of three common commercial varieties (Yukon Gold, Dark Red Norland, and Russet Burbank) were subjected to two methods of cooking (baking or boiling) and three service temperatures: hot (65°C), chilled (4°C) and reheated (4°C for 6d; reheated to 65°C) and analyzed the starch content by modification of a commercially available assay. Results showed that RS content (g/100g) varied by cooking method and service temperature but not variety. Baked potatoes had higher RS contents than boiled; chilled potatoes had more RS than either hot or reheated. These results may assist in dietary choices for reducing chronic disease risk. PMID:27132853

  7. A standardized method for preparation of potatoes and analysis of their resistant starch content: Variation by cooking method and service temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of resistant starch (RS) may lead to reduced glycemia, improved satiety, and beneficial changes in gut microbiota due to its unique digestive and absorptive properties. We developed a standardized protocol for preparation of potatoes in order to assess their RS content and modified a com...

  8. Chemical composition and starch digestibility of tortillas prepared with non-conventional commercial nixtamalized maize flours.

    PubMed

    Hernández-Salazar, M; Agama-Acevedo, E; Sáyago-Ayerdi, S G; Tovar, J; Bello-Pérez, L A

    2006-01-01

    Non-conventional nixtamalized maize flours elaborated by a factory in Mexico were used for tortilla preparation. Tortillas were stored at 4 degrees C for up to 72 h and the total starch, available starch, resistant starch and retrograded resistant starch were assessed. The traditional white tortilla, used as a control, showed higher protein and fat contents than blue maize tortilla, whereas a maize-bean mixed tortilla had the highest protein, ash and fat contents. Lower total starch was obtained in the maize-bean tortilla than in white and blue maize tortillas. The available starch content in all tortillas decreased with the cold-storage, although the change was more marked for blue-maize tortillas. The maize-bean mixed tortillas exhibited the lowest in vitro digestibility, which is consistent with the relatively high resistant starch levels in the bean. Differences in resistant starch content were found between the two maize tortillas, which might be related to the softer texture of blue-maize tortilla. The starch digestibility features of these new types of nixtamalized maize flours open up the possibility of producing tortillas with variable nutritional properties. PMID:16849122

  9. Functionality of Chemically Modified Wild-Type, Partial Waxy and Waxy Starches from Tetraploid Wheats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial waxy (reduced-amylose) and fully waxy (amylose-free) tetraploid wheats (Triticum turgidum L. var durum) were developed by introgression of null alleles at the Wx-A1 and Wx-B1 loci from common hexaploid wheat (T. aestivum L.). Purified starches were obtained from each genotype, and chemicall...

  10. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    SciTech Connect

    Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-12-04

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-week study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  11. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification.

    PubMed

    Jo, A Ra; Kim, Ha Ram; Choi, Seung Jun; Lee, Joon Seol; Chung, Mi Nam; Han, Seon Kyeong; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-01

    Sweet potato Daeyumi starch was dually modified using glycogen branching enzyme (BE) from Streptococcus mutans and amylosucrase (AS) from Neisseria polysaccharea to prepare slowly digestible starch (SDS). Dually modified starches had higher SDS and resistant starch (RS) contents than control starch. The branched chain length distributions of the BE-modified starches indicated an increase in short side-chains [degree of polymerization (DP)≤12] compared with native starch. AS treatment of the BE-modified starches decreased the proportion of short side-chains and increased the proportion of long side-chains (DP≥25) and molecular mass. It also resulted in a B-type X-ray diffraction pattern and an increased relative crystallinity. Regarding thermal properties, the BE-modified starches showed no endothermic peak, whereas the BEAS-modified starches had a broader melting temperature range and lower melting enthalpy compared to native starch. The combined enzymatic treatment resulted in novel glucan polymers with slow digestion properties. PMID:27083356

  12. Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties.

    PubMed

    Kim, Ji Hyung; Kim, Ha Ram; Choi, Seung Jun; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-22

    We investigated dual modification of normal and waxy rice starch, focusing on digestibility. Amylosucrase (AS) was applied to maximize the slowly digestible and resistant starch fractions. AS-modified starches were adjusted to 25-40% moisture levels and heated at 100 °C for 40 min. AS-modified starches exhibited a B-type crystalline structure, and hydrothermal treatment (HTT) significantly (p < 0.05) increased the relative crystallinity with moisture level. The thermal transition properties of modified starches were also affected by the moisture level. The contents of rapidly digestible starch fraction in AS-modified normal and waxy starches (43.3 ± 3.9 and 18.1 ± 0.6%) decreased to 13.0 ± 1.0 and 0.3 ± 0.3% after HTT, accordingly increasing the low digestible fractions. Although the strengthened crystalline structures of AS-modified starches by HTT were not stable enough to maintain their rigidity under cooking, application of AS and HTT was more effective in waxy rice starch than normal rice starch when lowering digestibility. PMID:27228544

  13. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  14. Effects of alginate and resistant starch on feeding patterns, behaviour and performance in ad libitum-fed growing pigs.

    PubMed

    Souza da Silva, C; Bosch, G; Bolhuis, J E; Stappers, L J N; van Hees, H M J; Gerrits, W J J; Kemp, B

    2014-12-01

    This study assessed the long-term effects of feeding diets containing either a gelling fibre (alginate (ALG)), or a fermentable fibre (resistant starch (RS)), or both, on feeding patterns, behaviour and growth performance of growing pigs fed ad libitum for 12 weeks. The experiment was set up as a 2×2 factorial arrangement: inclusion of ALG (yes or no) and inclusion of RS (yes or no) in the control diet, resulting in four dietary treatments, that is, ALG-RS- (control), ALG+RS-, ALG-RS+, and ALG+RS+. Both ALG and RS were exchanged for pregelatinized potato starch. A total of 240 pigs in 40 pens were used. From all visits to an electronic feeding station, feed intake and detailed feeding patterns were calculated. Apparent total tract digestibility of energy, dry matter (DM), and CP was determined in week 6. Pigs' postures and behaviours were scored from live observations in weeks 7 and 12. Dietary treatments did not affect final BW and average daily gain (ADG). ALG reduced energy and DM digestibility (P<0.01). Moreover, ALG increased average daily DM intake, and reduced backfat thickness and carcass gain : digestible energy (DE) intake (P<0.05). RS increased feed intake per meal, meal duration (P<0.05) and inter-meal intervals (P=0.05), and reduced the number of meals per day (P<0.01), but did not affect daily DM intake. Moreover, RS reduced energy, DM and CP digestibility (P<0.01). Average daily DE intake was reduced (P<0.05), and gain : DE intake tended to be increased (P=0.07), whereas carcass gain : DE intake was not affected by RS. In week 12, ALG+RS- increased standing and walking, aggressive, feeder-directed, and drinking behaviours compared with ALG+RS+ (ALG×RS interaction, P<0.05), with ALG-RS- and ALG-RS+ in between. No other ALG×RS interactions were found. In conclusion, pigs fed ALG compensated for the reduced dietary DE content by increasing their feed intake, achieving similar DE intake and ADG as control pigs. Backfat thickness and carcass efficiency

  15. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    PubMed

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. PMID:26163566

  16. Resistance exercise in type 1 diabetes.

    PubMed

    Yardley, Jane E; Sigal, Ronald J; Perkins, Bruce A; Riddell, Michael C; Kenny, Glen P

    2013-12-01

    It is relatively well known that moderate-intensity aerobic exercise increases the risk of hypoglycemia in individuals with type 1 diabetes. Conversely, brief high-intensity (anaerobic) activity can cause post-exercise hyperglycemia. Recent evidence has indicated that including small amounts of anaerobic activity, either in the form of short sprints or as resistance exercise (weight lifting), during aerobic exercise sessions may decrease the drop in blood glucose levels associated with moderate-intensity aerobic exercise. This review discusses the recent developments in the area of exercise and type 1 diabetes, with a particular focus on the effects of resistance exercise. Practical exercise recommendations, as well as suggestions for the future direction of research in this area, are also provided. PMID:24321724

  17. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress.

    PubMed

    Sánchez, Teresa; Dufour, Dominique; Moreno, Isabel Ximena; Ceballos, Hernán

    2010-04-28

    Functional properties of normal and waxy starches from maize, rice, potato, and cassava as well as the modified waxy maize starch COLFLO 67 were compared. The main objective of this study is to position the recently discovered spontaneous mutation for amylose-free cassava starch in relation to the other starches with well-known characteristics. Paste clarity, wavelength of maximum absorption (lambda(max)), pasting properties, swelling power, solubility, and dispersed volume fraction measurements and gel stability (acid and alkaline resistance, shear, refrigeration, and freeze/thaw stability) were evaluated in the different types and sources of starch included in this study. lambda(max) in the waxy cassava starch was reduced considerably in comparison with that of normal cassava starch (535 vs 592 nm). RVA peak viscosity of waxy cassava starch was larger than in normal cassava starch (1119 vs 937 cP) and assumed a position intermediate between the waxy potato and maize starches. Acid, alkaline, and shear stability of waxy cassava starch were similar to normal cassava except for alkaline pH, at which it showed a low effect. Gels from normal root and tuber starches after refrigeration and freeze/thaw had lower syneresis than cereal starches. Gels from waxy starches (except for potato) did not present any syneresis after 5 weeks of storage at 4 degrees C. Waxy cassava starch was the only one not showing any syneresis after 5 weeks of storage at -20 degrees C. Natural waxy cassava starch is, therefore, a promising ingredient to formulate refrigerated or frozen food. PMID:20356303

  18. Formation of Elongated Starch Granules in High-amylose Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEMS-0067 maize starch contains up to 32% elongated starch granules much higher than amylose-extender (ae) single-mutant maize starch (~7%) and normal (non-mutant) maize starch (0%). These elongated granules are highly resistant to enzymatic hydrolysis at 95-100 C, which function as resistant starc...

  19. Metabolic consequences of resistive-type exercise

    NASA Technical Reports Server (NTRS)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  20. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components. PMID:21513356

  1. Starches, Sugars and Obesity

    PubMed Central

    Aller, Erik E. J. G.; Abete, Itziar; Astrup, Arne; Martinez, J. Alfredo; van Baak, Marleen A.

    2011-01-01

    The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages. PMID:22254101

  2. Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch

    PubMed Central

    Zhou, June; Keenan, Michael J.; Keller, Jeffrey; Fernandez-Kim, Sun Ok; Pistell, Paul J.; Tulley, Richard T.; Raggio, Anne M.; Shen, Li; Zhang, Hanjie; Martin, Roy J.; Blackman, Marc R.

    2013-01-01

    Health benefits of resistant starch (RS), a dietary fermentable fiber, have been well documented in young, but not in old populations. As the essential step of more comprehensive evaluations of RS on healthy aging, we examined the effects of dietary RS on tolerance, colonic fermentation, and cytokine expression in aged mice. Healthy older (18–20 months) C57BL/6J male mice were fed control, 18% RS, or 36% RS diets for 10 weeks. Body weight gain, body composition, and fat pad weights did not differ among the three groups after 10 weeks, indicating good tolerance of the RS diet. Fermentation indicators (cecum weights, and cecal proglucagon and PYY mRNA expression) were enhanced in a RS dose dependent manner (P<0.01). Serum concentrations of soluble cytokine receptors (sTNF-Rb; sIL-4R; sIL-2Rα sVEGFR1; and sRAGE) and TNFα expression (gene and protein) in visceral fat did not differ significantly among groups. Adiponectin protein concentrations, but not gene expression, were greater in epididymal fat of the 36% RS versus control groups (P<0.05). Conclusion: in aged mice, dietary RS is well tolerated, fermented in the colon, and stimulates colonic expression of proglucagon and PYY mRNA, and adiponectin protein in visceral fat. PMID:22174009

  3. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour.

    PubMed

    Sarawong, Chonthira; Schoenlechner, Regine; Sekiguchi, Ken; Berghofer, Emmerich; Ng, Perry K W

    2014-01-15

    Green banana flour was extruded through a co-rotating twin-screw extruder with constant barrel temperature. The objectives of this study were to determine the effect of extrusion cooking variables (feed moisture, FM, 20% and 50%; screw speed, SS, 200 and 400rpm) and storing of the extruded flours at 4°C for 24h on the physicochemical properties, resistant starch (RS), pasting properties and antioxidant capacities. Extrusion cooking at higher FM and lower SS increased the amylose content, which was expressed in highest RS content. Water adsorption index (WAI) and pasting properties were increased, while water solubility index (WSI), total phenolic content (TPC) and antioxidant activities (FRAP, ABTS(+), DPPH) in free and bound phenolics were decreased compared to the other extruded samples. Storing the extruded flours at 4°C for 24h prior to oven drying was the main factor leading to a further increase in the content of amylose, RS, TPC and WSI values, as well as pasting properties - in particular peak viscosity. Compared to native banana flour, extrusion cooking caused significant changes in all studied properties of the extruded flours, except for soluble DF and antioxidant capacity (ABTS(+) and DPPH) of bound phenolics. PMID:24054209

  4. Impact of amylose content on starch physicochemical properties in transgenic sweet potato.

    PubMed

    Zhou, Wenzhi; Yang, Jun; Hong, Yan; Liu, Guiling; Zheng, Jianli; Gu, Zhengbiao; Zhang, Peng

    2015-05-20

    The intrinsic relationship between amylose content and starch physicochemical properties was studied using six representative starch samples (amylose content 0-65%) produced from transgenic sweet potato (cultivar Xushu22). The transgenic lines (waxy and high-amylose) and wild-type (WT) sweet potatoes were analyzed for amylose content, particle size and chain length distribution, X-ray diffraction analysis, thermal characteristics, pasting and rheological property. Compared to the WT starch, the waxy and high-amylose starches showed larger average granule sizes and had fewer short chains and more medium and long chains. X-ray diffractogram analysis revealed that high-amylose starches show a type-B crystal form with a markedly decreased degree of crystallinity in contrast to the type-A crystal form of the WT and waxy starches. In the high-amylose sweet potato starches, the rise of setback value and the reduction of breakdown value led to the high shear resistance as indicated by the higher G', G", and tanδ from the oscillation test. ΔH was not found to be decreased with the reduction of crystallinity. The shear stress resistance of starch gel after gelatinization was also enhanced as amylose content increased. Principal component analysis also confirmed that the amylose content greatly influenced the starch structure and properties, e.g., storage modulus, setback value, and average chain length. Thus, our study not only shed light on how amylose content affects starch properties but also identified novel starches that are available for various applications. PMID:25817686

  5. Impact of Short Term Consumption of Diets High in Either Non-Starch Polysaccharides or Resistant Starch in Comparison with Moderate Weight Loss on Indices of Insulin Sensitivity in Subjects with Metabolic Syndrome

    PubMed Central

    Lobley, Gerald E.; Holtrop, Grietje; Bremner, David M.; Calder, A. Graham; Milne, Eric; Johnstone, Alexandra M.

    2013-01-01

    This study investigated if additional non-starch polysaccharide (NSP) or resistant starch (RS), above that currently recommended, leads to better improvement in insulin sensitivity (IS) than observed with modest weight loss (WL). Obese male volunteers (n = 14) were given an energy-maintenance (M) diet containing 27 g NSP and 5 g RS daily for one week. They then received, in a cross-over design, energy-maintenance intakes of either an NSP-enriched diet (42 g NSP, 2.5 g RS) or an RS-enriched diet (16 g NSP, 25 g RS), each for three weeks. Finally, a high protein (30% calories) WL diet was provided at 8 MJ/day for three weeks. During each dietary intervention, endogenous glucose production (EGP) and IS were assessed. Fasting glycaemia was unaltered by diet, but plasma insulin and C-peptide both decreased with the WL diet (p < 0.001), as did EGP (−11%, p = 0.006). Homeostatis model assessment of insulin resistance improved following both WL (p < 0.001) and RS (p < 0.05) diets. Peripheral tissue IS improved only with WL (57%–83%, p < 0.005). Inclusion of additional RS or NSP above amounts currently recommended resulted in little or no improvement in glycaemic control, whereas moderate WL (approximately 3 kg fat) improved IS. PMID:23752495

  6. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

    PubMed

    Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M

    2000-09-01

    The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III. PMID:10947962

  7. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-01

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch. PMID:22231495

  8. Starch-Lignin Baked Foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-kraft lignin foams were prepared by a baking process. Replacing up to 20% of the starch with lignin has no effect on foam density or overall morphology. At 10% replacement, lignin marginally increases water resistance and modulus of elasticity but decreases strain at maximum stress. At 20% re...

  9. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors.

    PubMed

    Silvi, S; Rumney, C J; Cresci, A; Rowland, I R

    1999-03-01

    The effect of sucrose and resistant starch ('CrystaLean'--a retrograded, amylose starch) on human gut microflora and associated parameters was studied in human flora-associated (HFA) rats, colonized with microfloras from UK or Italian subjects, to determine whether such floras were affected differently by dietary carbohydrates. Consumption of the resistant starch diet resulted in significant changes in four of the seven main groups of bacteria enumerated. In both the UK and Italian flora-associated rats, numbers of lactobacilli and bifidobacteria were increased 10-100-fold, and there was a concomitant decrease in enterobacteria when compared with sucrose-fed rats. The induced changes in caecal microflora of both HFA rat groups were reflected in changes in bacterial enzyme activities and caecal ammonia concentration. Although it had little effect on caecal short-chain fatty acid concentration, CrystaLean markedly increased the proportion of n-butyric acid in both rat groups and was associated with a significant increase in cell proliferation in the proximal colon of the Italian flora-associated rats. CrystaLean appeared to play a protective role in the colon environment, lowering caecal ammonia concentration, caecal pH and beta-glucuronidase activity. PMID:10196757

  10. Self-assembly of short linear chains to A- and B-type starch spherulites and their enzymatic digestibility.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2013-11-13

    A novel process combining enzymatic debranching, melting, and crystallization was developed to produce spherulites from short linear α-1,4-linked glucans (short-chain amylose, SCA) with controlled enzyme digestibility. SCA was obtained by completely debranching waxy maize starch at 50 °C and 25% solids in 0.01 M sodium acetate buffer. The mixture was then heated to 180 °C followed by cooling and crystallization to form well-developed spherulites. Multiple analytical techniques including light microscopy, scanning electron microscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and synchrotron small-angle X-ray scattering (SAXS) covered over 5 orders of length scale and were applied to study the morphology and structure of the spherulites. Spherulites crystallized at low temperatures (4 and 25 °C) had a large size (5-10 μm), a B-type starch X-ray diffraction pattern, a lower melting temperature (70-110 °C), and a higher digestibility (Englyst method) compared to the spherulites crystallized at 50 °C, which had a small size (1-5 μm), an A-type diffraction pattern, a higher melting temperature (100-140 °C), and a lower digestibility. Intact spherulites along with small fragments were observed after digestion with a mixture of α-amyase and amyloglucosidase, indicating that digestion was not homogeneous and preferentially occurred in weak spherulites. A second exposure of the undigested residues to the amylases showed a similar digestive pattern as with the parent spherulites, suggesting that the spherulites were hydrolyzed by enzymes at essentially a constant digestion rate between 20 min and 3 h. PMID:24099235

  11. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch.

    PubMed

    Shah, Asima; Masoodi, Farooq Ahmad; Gani, Adil; Ashwar, Bilal Ahmad

    2016-12-01

    Starches isolated from three different varieties of oat were modified with dual autoclaving-retrogradation treatment to make modified food starches with high contents of type 3 resistant starch (RS3). FT-IR spectroscopy showed increase in the ratio of intensity of 1047cm(-1)/1022cm(-1) on treatment. Morphology of the oat starches changed into a continuous network with increased values for onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc). XRD showed an additional peak at 13° and increase in peak intensity at 20° inclusive of the major X-ray diffraction peaks which reflects formation of amylose-lipid complex from dual autoclaving-retrogradation cycle. Peaks at 13° and 20° are the typical peaks of the V-type pattern. Rheological analysis suggested that retrogradated oat starches showed shear thickening behavior as revealed from Herschel-Bulkely model and frequency sweep. PMID:27374592

  12. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  13. Physicochemical and functional properties of ozone-oxidized starch.

    PubMed

    Chan, Hui T; Bhat, Rajeev; Karim, Alias A

    2009-07-01

    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch. PMID:19489606

  14. BD-Type Write-Once Disk with Pollutant-Free Material and Starch Substrate

    NASA Astrophysics Data System (ADS)

    Hosoda, Yasuo; Higuchi, Takanobu; Shida, Noriyoshi; Imai, Tetsuya; Iida, Tetsuya; Kuriyama, Kazumi; Yokogawa, Fumihiko

    2005-05-01

    We realized an inorganic write-once disk for an optical recording system of the Blu-ray disk format. We developed a new Al alloy for the reflective layer and a Nb-compound oxide nitride material for the dielectric layer. By adopting these materials for the reflective layer and the dielectric layer of our write-once disk, we achieved complete exclusion of toxic substances specified in the pollutant release and transfer register (PRTR) law. That is, this disk did not contain any substances specified in the PRTR law. We confirmed this disk to be compatible with 1× to 2× recording at the user capacity of 25.0 GB. The bottom jitter values of both 1× and 2× were less than 6.0%. In addition, we developed another kind of substrate, which was made of a natural polymer derived from corn starch. The bottom jitter value was 6.0% at the user capacity of 25.0 GB with the limit equalizer.

  15. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats.

    PubMed

    Hu, Ying; Le Leu, Richard K; Christophersen, Claus T; Somashekar, Roshini; Conlon, Michael A; Meng, Xing Q; Winter, Jean M; Woodman, Richard J; McKinnon, Ross; Young, Graeme P

    2016-04-01

    This study evaluated whether dietary resistant starch (RS) and green tea extract (GTE), which have anti-inflammatory and anticancer properties, protect against colitis-associated colorectal cancer (CAC) using a rat model, also investigated potential mechanisms of action of these agents including their effects on the gut microbiota. Rats were fed a control diet or diets containing 10% RS, 0.5% GTE or a combination of the two (RS + GTE). CAC was initiated with 2 weekly azoxymethane (AOM) injections (10mg/kg) followed by 2% dextran sodium sulphate in drinking water for 7 days after 2 weeks on diets. Rats were killed 20 weeks after the first AOM. Colon tissues and tumours were examined for histopathology by H&E, gene/protein expression by PCR and immunohistochemistry and digesta for analyses of fermentation products and microbiota populations. RS and RS + GTE (but not GTE) diets significantly (P< 0.05) decreased tumour multiplicity and adenocarcinoma formation, relative to the control diet. Effects of RS + GTE were not different from RS alone. RS diet caused significant shifts in microbial composition/diversity, with increases in Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium as primary contributors to the shift. RS-containing diets increased short chain fatty acids (SCFA) and expression of the SCFA receptor GPR43 mRNA, and reduced inflammation (COX-2, NF-kB, TNF-α and IL-1β mRNA) and cell proliferation P< 0.05. GTE had no effect. This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC. PMID:26905582

  16. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    PubMed

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice. PMID:27197747

  17. Effectiveness of resistant starch, compared to guar gum, in depressing plasma cholesterol and enhancing fecal steroid excretion.

    PubMed

    Levrat, M A; Moundras, C; Younes, H; Morand, C; Demigné, C; Rémésy, C

    1996-10-01

    Amylase-resistant starch (RS) represents a substrate that can be administered in substantial amounts in the diet, in contrast to gel-forming polysaccharides, such as guar gum (GG). The aim of this work was thus to compare the effects of GG and RS on cholesterol metabolism in rats adapted to 0.4% cholesterol diets, using dietary GG or RS levels (8 or 20%, respectively) that led to a similar development of fermentations, as assessed by the degree of enlargement of the cecum. The RS diet elicited a marked rise in the cecal pool of short-chain fatty acids, especially acetic and butyric acid, whereas the GG diet favored high-propionic acid fermentations. Both polysaccharides markedly altered the cholesterol excretion, from 50% of ingested cholesterol in controls, up to about 70% in rats adapted to the RS or GG diets. With these diets, the fecal excretion of bile acids was enhanced (67 and 144% with the RS and GG diets, respectively). RS and GG diets were effective in lowering plasma cholesterol (about -40%) and triglycerides (-36%). There was practically no effect of the diets on cholesterol in d > 1.040 lipoproteins (high density lipoproteins), whereas RS (and to a larger extent, GG) were very effective to depress cholesterol in d < 1.040 lipoproteins (especially in triglyceride-rich lipoproteins). Fermentable polysaccharides counteracted the accumulation of cholesterol in the liver, especially cholesterol esters. In parallel, liver acyl CoA:cholesterol acyltransferase was depressed in rats fed the RS or GG diets, whereas only the GG diet counteracted the downregulation of 3-hydroxy-3-methylglutaryl-CoA by cholesterol. These data suggest that RS may be practically as effective as a gel-forming gum, such as GG, on steroid excretion and on cholesterol metabolism. PMID:8898306

  18. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch.

    PubMed

    Nakamura, Sumiko; Katsura, Junji; Kato, Kiyoko; Ohtsubo, Ken'ichi

    2016-01-01

    We searched for the easy and simple method to measure the novel indicators which reflect not only AAC, but also (RS) based on pasting properties using RVA. Novel indexes such as SB/Con and Max/Fin (Maximum viscosity/Minimum viscosity) ratios had a very high correlation with proportion of intermediate and long chains of amylopectin; Fb1+2+3 (DP ≧ 13). In Japonica polished rice, estimation formulae for AAC and RS content were developed using novel indexes based on pasting properties by RVA, and these equations showed determination coefficients of 0.89 and 0.80 for calibration and 0.71 and 0.75 for validation test. We developed the estimation formulae for AAC and RS content for Japonica starch samples. These equations showed determination coefficients of 0.86 and 1.00 for calibration and 0.76 and 0.83 for validation test, which showed that these equations can be applied to the unknown rice samples. PMID:26399277

  19. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications. PMID:26572335

  20. Chemostat Enrichments of Human Feces with Resistant Starch Are Selective for Adherent Butyrate-Producing Clostridia at High Dilution Rates

    PubMed Central

    Sharp, Richard; Macfarlane, George T.

    2000-01-01

    Resistant starch (RS) enrichments were made using chemostats inoculated with human feces from two individuals at two dilution rates (D = 0.03 h−1 and D = 0.30 h−1) to select for slow- and fast-growing amylolytic communities. The fermentations were studied by analysis of short-chain fatty acids, amylase and α-glucosidase activities, and viable counts of the predominant culturable populations and the use of 16S rRNA-targeted oligonucleotide probes. Considerable butyrate was produced at D = 0.30 h−1, which corresponded with reduced branched-chain fatty acid formation. At both dilution rates, high levels of extracellular amylase activity were produced, while α-glucosidase was predominantly cell associated. Bacteroides and bifidobacteria predominated at the low dilution rate, whereas saccharolytic clostridia became more important at D = 0.30 h−1. Microscopic examination showed that within 48 h of inoculation, one particular bacterial morphotype predominated in RS enrichments at D = 0.30 h−1. This organism attached apically to RS granules and formed rosette-like structures which, with glycocalyx formation, agglomerated to form biofilm networks in the planktonic phase. Attempts to isolate this bacterium in pure culture were repeatedly unsuccessful, although a single colony was eventually obtained. On the basis of its 16S rDNA sequence, this RS-degrading, butyrate-producing organism was identified as being a previously unidentified group I Clostridium sp. A 16S rRNA-targeted probe was designed using this sequence and used to assess the abundance of the population in the enrichments. At 240 h, its contributions to total rRNA in the chemostats were 5 and 23% at D = 0.03 and 0.30 h−1, respectively. This study indicates that bacterial populations with significant metabolic potential can be overlooked using culture-based methodologies. This may provide a paradigm for explaining the discrepancy between the low numbers of butyrate-producing bacteria that are

  1. Genomic DNA sequence of a rice gene coding for a pullulanase-type of starch debranching enzyme.

    PubMed

    Francisco, P B; Zhang, Y; Park, S Y; Ogata, N; Yamanouchi, H; Nakamura, Y

    1998-09-01

    A genomic DNA containing a rice (Oryza sativa L., cv. Norin-8) gene coding for a pullulanase-type starch debranching enzyme (EC 3.2.1. 41) was sequenced (EMBL/GenBank/DDBJ accession number AB012915). Along the 15, 248 bp DNA, the pullulanase gene is split into 26 exons. The four pullulanase consensus regions are positioned in the middle portion of the sequence and are separated by long introns and 1-3 exons. Comparison of the rice cv. Norin-8 pullulanase genomic structure with that of barley pullulanase (limit dextrinase) (F. Lok et al., EMBL/GenBank/DDBJ accession number AF022725) indicates that most of the pullulanase exons are highly conserved. Alignment of the nucleotide bases of rice exon 8 with those of barley exon 8-intron 8-exon 9 fragment suggests that the 85 bp internal sequence of rice exon 8 was originally an intron, a possibility further indicated by the absence in barley and spinach (A. Renz et al., EMBL/GenBank/DDBJ accession number X83969) pullulanases of amino acid residues encoded by the 85 bp fragment. PMID:9748665

  2. Preparation and characterization of starch-based loose-fill packaging foams

    NASA Astrophysics Data System (ADS)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  3. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure.

    PubMed

    Liu, Hang; Wang, Lijing; Cao, Rong; Fan, Huanhuan; Wang, Min

    2016-06-25

    High hydrostatic pressure (HHP), a non-thermal processing technology, was applied at 120, 240, 360, 480, and 600MPa to assess its effect on the in vitro digestibility, physicochemical, and structural properties of common buckwheat starch (CBS). HHP treatment resulted in CBS granules with more rough surfaces. With the increasing pressure level, amylose content, pasting temperature, and thermal stability substantially increased and relative crystallinity, hardness, swelling power, and viscosity decreased. At 120-480MPa, HHP did not affect the 'A'-type crystalline pattern of CBS. However, at 600MPa, HHP contributed to a similar 'B'-type pattern. Compared with native starch, HHP-modified CBS samples had lower in vitro hydrolysis, reduced content of rapidly digestible starch, and increased levels of slowly digestible starch and resistant starch. These results revealed that the in vitro digestibility, physicochemical, and structural properties of CBS are effectively modified by HHP. PMID:27083786

  4. [Starch aspiration].

    PubMed

    Volk, O; Neidhöfer, M; Schregel, W

    1999-06-01

    Starch is a white, neutral smelling, insoluble and harmless powder. The case of a 24-year old worker with a pronounced bronchospasm and arterial hypoxaemia after a collapse and aspiration during working in a silo filled with corn starch will be reported. Medication consisted mainly in mucolytics. Intensive airway clearing consisted of repeated bronchoscopies, bedding, tapotement and vibration massage. The patient has made a complete recovery in 3 days. PMID:10429779

  5. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms.

    PubMed

    Naidoo, K; Amonsou, E O; Oyeyinka, S A

    2015-07-10

    Amadumbe, commonly known as taro, is an indigenous underutilised tuber to Southern Africa. In this study, starch functional properties and in vitro starch digestibility of processed products from wild and cultivated amadumbe were determined. Starch extracts from both amadumbe types had similar contents of total starch (approx. 95%). Wild and cultivated amadumbe starch granules were polygonal and very small in size (2.7 ± 0.9 μm). Amylose content of wild amadumbe (20%) was about double that of cultivated (12%). By DSC, the peak gelatinisation temperatures of wild and cultivated amadumbe starches were 81 and 85°C, respectively. The slowly digestible starch (SDS); 20% and resistant starch (RS); 64% contents of wild amadumbe appeared slightly higher than those of cultivated. Processing amadumbe into boiled and baked products did not substantially affect SDS and RS contents. Estimated glycaemic index of processed products ranged from 40 to 44%. Thus, amadumbe, both wild and cultivated, present some potential in the formulation of products for diabetics and weight management. PMID:25857954

  6. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

    PubMed Central

    Ze, Xiaolei; Ben David, Yonit; Laverde-Gomez, Jenny A.; Dassa, Bareket; Sheridan, Paul O.; Duncan, Sylvia H.; Louis, Petra; Henrissat, Bernard; Juge, Nathalie; Koropatkin, Nicole M.; Bayer, Edward A.

    2015-01-01

    ABSTRACT Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate “resistant” starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockerins possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an “amylosome.” PMID:26419877

  7. Resistant starch reduces colonic and urinary p-cresol in rats fed a tyrosine-supplemented diet, whereas konjac mannan does not.

    PubMed

    Chen, Bixiao; Morioka, Sahya; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2016-10-01

    The effect of resistant starch (RS) and konjac mannan (KM) to maintain and improve the large intestinal environment was compared. Wistar SPF rats were fed the following diets for 4 weeks: negative control diet (C diet), tyrosine-supplemented positive control diet (T diet), and luminacoid supplemented diets containing either high-molecular konjac mannan A (KMAT diet), low-molecular konjac mannan B (KMBT diet), high-amylose cornstarch (HAST diet), or heat-moisture-treated starch (HMTST diet). The luminacoid-fed group had an increased content of short-chain fatty acids in the cecum. HAS caused a significant decrease in p-cresol content in the cecum, whereas KM did not. Urinary p-cresol was reduced in the HAST group compared with the T group, but not the KM fed groups. Deterioration in the large intestinal environment was only improved completely in the HAST and HMTST groups, suggesting that RS is considerably more effective than KM in maintaining the large intestinal environment. PMID:27296718

  8. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-01

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization. PMID:27312641

  9. Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products.

    PubMed

    Nasrin, Taslima Ayesha Aktar; Anal, Anil Kumar

    2015-08-01

    Oil in water emulsions were produced by the mixture of culled banana resistant starch (CBRS) & soy protein isolate (SPI), mixture of Hylon VII & SPI and SPI with 7.5 and 5 % (w/w) Menhaden fish oil. The emulsions were further freeze- dried obtaining 33 and 50 % oil load microcapsules. The range of particles diameter was 4.11 to 7.25 μm and viscosity was 34.6 to 146.48 cP of the emulsions. Compressibility index (CI), Hasner ratio (HR) and angle of repose (AR) was significantly (p < 0.01) lower of the microcapsules made with starch and protein (CBRS & SPI and Hylon VII & SPI) than that made with protein (SPI) only. Microcapsules composed of CBRS & SPI with 33 % oil load had maximum microencapsulation efficiency (82.49 %) and highest oxidative stability. Muffin made with emulsions containing mixture of CBRS & SPI exhibited less fishy flavour than that containing mixture of Hylon VII & SPI. PMID:26243933

  10. Effects of a highly resistant rice starch and pre-incubation temperatures on the physicochemical properties of surimi gel from grass carp (Ctenopharyn Odon Idellus).

    PubMed

    Yang, Zhen; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2014-02-15

    The effects of a specific rice starch (SRS), containing highly resistant starch (RSIII), on gel properties of grass carp (Ctenopharyngodon idella) and the influence of five levels of SRS (0%, 2%, 4%, 6%, and 8%w/w) on gel physicochemical properties at three different pre-incubation temperatures (4 °C, 25 °C, and 40 °C) were investigated. Gels with increasing amounts of SRS addition showed lower expressible water contents and cooking loss values than did control gels. SDS gel electrophoresis revealed no changes in protein patterns, regardless of different SRS-added levels at the same pre-incubation temperature, but an evident decrease in the MHC when the pre-incubation temperature increased. The texture properties, colour attributes, SEM were optimal in the treatments containing 4%w/w SRS at the pre-incubation temperature 25 °C. Thus, the optimum SRS addition level and pre-incubation temperature are proposed to be 4%w/w and 25 °C, respectively. PMID:24128470

  11. Electricity. Electrical Appliance Serviceman (Major Resistive Type).

    ERIC Educational Resources Information Center

    Moughan, John P.; And Others

    Two types of materials comprise the curriculum guide: descriptive information about student, job and individualized instruction techniques for use by the instructor and a set of 10 learning activity packages for the student. Together, these form a work unit which, when successfully completed by the student, provides the necessary skills for an…

  12. No Latex Starch Utilization in Euphorbia esula L.

    PubMed

    Nissen, S J; Foley, M E

    1986-06-01

    Utilization of leaf, stem, root, and latex starch was monitored in Euphorbia esula L. plants. Leaf, stem, and root starch decreased rapidly during a 52 day light starvation period while latex starch did not. Scanning electron and light microscope studies provided additional evidence that no changes in latex starch granules had occurred. Amylase activity (6.6 units per milligram protein) could be isolated from latex. However, latex starch granules were extremely resistant to enzymic hydrolysis by latex amylases, Bacillus subtilis alpha-amylase, and by amyloglucosidase from Aspergillus niger. Results indicate that latex starch grains do not function as utilizable carbohydrate in this species under these conditions. PMID:16664883

  13. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch.

    PubMed

    Zeng, Feng; Ma, Fei; Kong, Fansheng; Gao, Qunyu; Yu, Shujuan

    2015-04-01

    Waxy rice starch was subjected to annealing (ANN) and heat-moisture treatment (HMT). These starches were also treated by a combination of ANN and HMT. The impact of single and dual modifications (ANN-HMT and HMT-ANN) on the molecular weight (M(w)), crystalline structure, thermal properties, and the digestibility were investigated. The relative crystallinity and short-range order on the granule surface increased on ANN, whereas decreased on HMT. All treated starches showed lower M(w) than that of the native starch. Gelatinization onset temperature, peak temperature and conclusion temperature increased for both single and dual treatments. Increased slowly digestible starch content was found on HMT and ANN-HMT. However, resistant starch levels decreased in all treated starches as compared with native starch. The results would imply that hydrothermal treatment induced structural changes in waxy rice starch significantly affected its digestibility. PMID:25442528

  14. Can resistant starch and/or aspirin prevent the development of colonic neoplasia? The Concerted Action Polyp Prevention (CAPP) 1 Study.

    PubMed

    Mathers, John C; Mickleburgh, Ian; Chapman, Pam C; Bishop, D Tim; Burn, John

    2003-02-01

    Loss of function of the adenomatous polyposis coli (APC) tumour suppressor gene through truncating mutations or other means is an early event in most colo-rectal cancer (CRC). The APC gene encodes a large multifunctional protein that plays key roles in several cellular processes, including the wnt signalling pathway where an intact APC protein is essential for down regulation of beta-catenin. The APC protein also plays a role in regulation of cell proliferation, differentiation, apoptosis, cell-cell adhesion, cell migration and chromosomal stability during mitosis. Acquisition of a non-functional APC gene can occur by inheritance (in the disease familial adenomatous polyposis (FAP)) or by a sporadic event in a somatic cell. Whilst there is strong epidemiological evidence that variation in diet is a major determinant of variation in CRC incidence, conventional adenoma recurrence trials in sporadic cases of the disease have been relatively unsuccessful in identifying potentially protective food components. Since the genetic basis of CRC in FAP and in sporadic CRC is similar, intervention trials in FAP gene carriers provide an attractive strategy for investigation of potential chemo-preventive agents, since smaller numbers of subjects and shorter time frames are needed. The Concerted Action Polyp Prevention (CAPP) 1 Study is using a 2 x 2 factorial design to test the efficacy of resistant starch (30 g raw potato starch-Hylon VII (1:1, w/w)/d) and aspirin (600 mg/d) in suppressing colo-rectal adenoma formation in young subjects with FAP. Biopsies of macroscopically-normal rectal mucosa are also being collected for assay of putative biomarkers of CRC risk. PMID:12740057

  15. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs.

    PubMed

    Haenen, Daniëlle; Souza da Silva, Carol; Zhang, Jing; Koopmans, Sietse Jan; Bosch, Guido; Vervoort, Jacques; Gerrits, Walter J J; Kemp, Bas; Smidt, Hauke; Müller, Michael; Hooiveld, Guido J E J

    2013-12-01

    Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge of its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and β-oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor γ was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet. PMID:24132577

  16. The Other Double Helix--The Fascinating Chemistry of Starch

    NASA Astrophysics Data System (ADS)

    Hancock, Robert D.; Tarbet, Bryon J.

    2000-08-01

    Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.

  17. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    PubMed

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. PMID:26253678

  18. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers

    PubMed Central

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu

    2015-01-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. PMID:26253678

  19. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  20. Mapping a Type 1 FHB resistance on chromosome 4AS of Triticum macha and deployment in combination with two Type 2 resistances.

    PubMed

    Burt, C; Steed, A; Gosman, N; Lemmens, M; Bird, N; Ramirez-Gonzalez, R; Holdgate, S; Nicholson, P

    2015-09-01

    Markers closely flanking a Type 1 FHB resistance have been produced and the potential of combining this with Type 2 resistances to improve control of FHB has been demonstrated. Two categories of resistance to Fusarium head blight (FHB) in wheat are generally recognised: resistance to initial infection (Type 1) and resistance to spread within the head (Type 2). While numerous sources of Type 2 resistance have been reported, relatively fewer Type 1 resistances have been characterised. Previous study identified a Type 1 FHB resistance (QFhs.jic-4AS) on chromosome 4A in Triticum macha. Little is known about the effect of combining Type 1 and Type 2 resistances on overall FHB symptoms or accumulation of the mycotoxin deoxynivalenol (DON). QFhs.jic-4AS was combined independently with two Type 2 FHB resistances (Fhb1 and one associated with the 1BL/1RS translocation). While combining Type 1 and Type 2 resistances generally reduced visual symptom development, the effect on DON accumulation was marginal. A lack of polymorphic markers and a limited number of recombinants had originally prevented accurate mapping of the QFhs.jic-4AS resistance. Using an array of recently produced markers in combination with new populations, the position of QFhs.jic-4AS has been determined to allow this resistance to be followed in breeding programmes. PMID:26040404

  1. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  2. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  3. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  4. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  5. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  6. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  7. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  8. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  9. Predicting erythropoietin resistance in hemodialysis patients with type 2 diabetes

    PubMed Central

    2013-01-01

    Background Resistance to ESAs (erythropoietin stimulating agents) is highly prevalent in hemodialysis patients with diabetes and associated with an increased mortality. The aim of this study was to identify predictors for ESA resistance and to develop a prediction model for the risk stratification in these patients. Methods A post-hoc analysis was conducted of the 4D study, including 1015 patients with type 2 diabetes undergoing hemodialysis. Determinants of ESA resistance were identified by univariate logistic regression analyses. Subsequently, multivariate models were performed with stepwise inclusion of significant predictors from clinical parameters, routine laboratory and specific biomarkers. Results In the model restricted to clinical parameters, male sex, shorter dialysis vintage, lower BMI, history of CHF, use of ACE-inhibitors and a higher heart rate were identified as independent predictors of ESA resistance. In regard to routine laboratory markers, lower albumin, lower iron saturation, higher creatinine and higher potassium levels were independently associated with ESA resistance. With respect to specific biomarkers, higher ADMA and CRP levels as well as lower Osteocalcin levels were predictors of ESA resistance. Conclusions Easily obtainable clinical parameters and routine laboratory parameters can predict ESA resistance in diabetic hemodialysis patients with good discrimination. Specific biomarkers did not meaningfully further improve the risk prediction of ESA resistance. Routinely assessed data can be used in clinical practice to stratify patients according to the risk of ESA resistance, which may help to assign appropriate treatment strategies. Clinical trial registration The study was registered at the German medical authority (BfArM; registration number 401 3206). The sponsor protocol ID and clinical trial unique identified number was CT-981-423-239. The results of the study are published and available at http

  10. Is insulin resistance the principal cause of type 2 diabetes?

    PubMed

    Gerich, J E

    1999-09-01

    The data presented from these recent studies raise serious doubt concerning the commonly held view that insulin resistance is the principal cause of type 2 diabetes: first of all they provide evidence that insulin resistance may not be the primary genetic factor for type 2 diabetes; secondly, they demonstrate that at least under certain circumstances insulin resistance is not essential for diabetes to occur, and then finally, they indicate that insulin resistance may not be the predominant factor determining the degree of hyperglycaemia. Although these studies suggest that the role of insulin resistance relative to that of beta-cell dysfunction in the pathogenesis of type 2 diabetes has been generally overestimated, one should not be left with the impression that insulin resistance is not important. It is certainly an important factor in determining the degree of hyperglycaemia or glucose intolerance present at a given level of beta-cell function. The improvement in glycaemic control after weight loss which lessens insulin resistance or after the administration of pharmacologic agents that improve insulin sensitivity clearly argue that insulin resistance is important in this regard. In addition to influencing the severity of glucose intolerance, insulin resistance is probably also important in determining the time of onset of diabetes. It may do this simply by altering the balance between the body's demand for insulin and the ability of the pancreas to provide insulin. It might adversely affect beta-cell function in addition to increasing the demand for insulin. This concept is schematically represented in figure 3. It is well established that beta-cell function normally deteriorates as a function of age [41]. Although the prevalence of type 2 diabetes increases as a function of age, this by itself obviously does not result in diabetes in the great majority of people. In such individuals their insulin sensitivity is sufficient to maintain the balance between the

  11. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch.

    PubMed

    Wang, Zhiwei; Liao, Tianqi; Zhou, Zhongkai; Wang, Yuyang; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-09-01

    To study the mechanism underlying the liver damage induced by deep-fried oil (DO) consumption and the beneficial effects from resistant starch (RS) supplement, differential gene expression and pathway network were analyzed based on RNA sequencing data from rats. The up/down regulated genes and corresponding signaling pathways were used to construct a novel local gene network (LGN). The topology of the network showed characteristics of small-world network, with some pathways demonstrating a high degree. Some changes in genes led to a larger probability occurrence of disease or infection with DO intake. More importantly, the main pathways were found to be almost the same between the two LGNs (30 pathways overlapped in total 48) with gene expression profile. This finding may indicate that RS supplement in DO-containing diet may mainly regulate the genes that related to DO damage, and RS in the diet may provide direct signals to the liver cells and modulate its effect through a network involving complex gene regulatory events. It is the first attempt to reveal the mechanism of the attenuation of liver dysfunction from RS supplement in the DO-containing diet using differential gene expression and pathway network. PMID:27363782

  12. The removal of stickies with modified starch and chitosan--highly cationic and hydrophobic types compared with unmodified ones.

    PubMed

    Petzold, Gudrun; Petzold-Welcke, Katrin; Qi, Haisong; Stengel, Knut; Schwarz, Simona; Heinze, Thomas

    2012-11-01

    The removal of dissolved and colloidal substances (DCS) in paper cycling water, so called stickies, with tailored natural polymers, having cationic as well as hydrophobic groups, was investigated using model suspensions made by the recycling of paper. The sticky content, characterized by the turbidity, the anionic charge, and the total organic carbon content (TOC) was increased by the addition of latex. The dynamic surface tension was established as useful tool for the characterization of the sticky content. The sticky removal using the starch derivatives (with benzyl- as well as ethyl-substituents), from very low up to high cationic charge and N-(benzyl)chitosan was compared. Depending on the properties of the derivatives two possible mechanisms can be found: "charge dominated removal" or "removal dominated by hydrophobicity." It seems that turbidity and TOC are lowered especially due to charge interaction whereas the increase of the surface tension is mainly caused by the hydrophobic character of the modified natural polymers. PMID:22944437

  13. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on alpha-amylase activity and in vitro digestibility of starch in raw and processed flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...

  14. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell. PMID:26104674

  15. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications. PMID:26787952

  16. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs.

    PubMed

    Topping, D L; Gooden, J M; Brown, I L; Biebrick, D A; McGrath, L; Trimble, R P; Choct, M; Illman, R J

    1997-04-01

    Young male pigs consumed a diet of fatty minced beef, safflower oil, skim milk powder, sucrose, cornstarch and wheat bran. Starch provided 50% of total daily energy either as low amylose cornstarch, high amylose (amylomaize) cornstarch or as a 50/50 mixture of corn and high amylose starch. Neither feed intake nor body weight gain as affected by dietary starch. Final plasma cholesterol concentrations were significantly higher than initial values in pigs fed the 50/50 mixture of corn and high amylose starch. Biliary concentrations of lithocholate and deoxycholate were lower in pigs fed high amylose starch. Large bowel length correlated positively with the dietary content of high amylose starch. Concentrations of butyrate in portal venous plasma were significantly lower in pigs fed high amylose starch than in those fed cornstarch. Neither large bowel digesta mass nor the concentrations of total or individual volatile fatty acids were affected by diet. However, the pool of propionate in the proximal colon and the concentration of propionate in feces were higher in pigs fed amylose starch. Concentrations of starch were uniformly low along the large bowel and were unaffected by starch type. In pigs with cecal cannula, digesta starch concentrations were higher with high amylose starch than with cornstarch. Electron micrographic examination of high amylose starch granules from these animals showed etching patterns similar to those of granules obtained from human ileostomy effluent. It appears that high amylose starch contributes to large bowel bacterial fermentation in the pig but that its utilization may be relatively rapid. PMID:9109613

  17. Probing starch-iodine interaction by atomic force microscopy.

    PubMed

    Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

    2014-01-01

    We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex. PMID:24338992

  18. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing.

    PubMed

    Liu, Hang; Guo, Xudan; Li, Wuxia; Wang, Xiaofang; Lv, Manman; Peng, Qiang; Wang, Min

    2015-11-01

    Heat-moisture treatment (HMT) and annealing (ANN) were applied in the test to investigate how they can affect the physicochemical properties and in vitro digestibility of common buckwheat starch (CBS). In the practice, these two modification methods did not change typical 'A'-type X-ray diffraction pattern of CBS. However, the gelatinization temperature, amylose content, and relative crystallinity increased and peak viscosity value and gelatinization enthalpy of CBS declined significantly. Both the solubility and swelling power, which were temperature dependent, progressively decreased along with the treatments. Remarkable increase in slowly digested starch and resistant starch level was found at the same time. Besides, the decreases of rapidly digested starch and total hydrolysis content by using HMT were greater than by using ANN. The results indicated that the ANN and HMT efficiently modified physicochemical properties and in vitro digestibility of CBS and were able to improve its thermal stability, healthy benefits and application value. PMID:26256346

  19. Frictional Resistance of Three Types of Ceramic Brackets

    PubMed Central

    Williams, Claire L

    2013-01-01

    ABSTRACT Objectives To investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation. Material and Methods Four bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons). Results Self ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05). Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01). Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001). Conclusions Compared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets. PMID:24478913

  20. Genotypic Testing for Human Immunodeficiency Virus Type 1 Drug Resistance

    PubMed Central

    Shafer, Robert W.

    2002-01-01

    There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs. PMID:11932232

  1. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.

    PubMed

    Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B

    2016-09-20

    Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. PMID:27261733

  2. Relationship of cooked rice nutritionally-important starch fractions with other physicochemical properties.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen rice cultivars representing 5 cytosine-thymine repeat (CTn) microsatellite genetic marker groups were analyzed for their cooked rice nutritionally-important starch fractions (rapidly digestible, slowly digestible, and resistant starch), basic grain quality indices (apparent amylose, crude pr...

  3. ISOLATION AND CHARACTERIZATION OF TWO GENES THAT ENCODE ACTIVE GLUCOAMYLASE WITHOUT A STARCH BINDING DOMAIN FROM A TYPE II RHIZOPUS ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucoamylase obtained from Rhizopus sp. is frequently preferred for certain applications of starch modification or saccharification. The predominant enzyme, which contains a starch binding domain on the amino terminus, has been previously characterized from several species. Additionally, the cDNA ...

  4. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm.

    PubMed

    Toyosawa, Yoshiko; Kawagoe, Yasushi; Matsushima, Ryo; Crofts, Naoko; Ogawa, Masahiro; Fukuda, Masako; Kumamaru, Toshihiro; Okazaki, Yozo; Kusano, Miyako; Saito, Kazuki; Toyooka, Kiminori; Sato, Mayuko; Ai, Yongfeng; Jane, Jay-Lin; Nakamura, Yasunori; Fujita, Naoko

    2016-03-01

    Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production. PMID:26747287

  5. The effects of feeding resistant starch on apparent total tract macronutrient digestibility, faecal characteristics and faecal fermentative end-products in healthy adult dogs.

    PubMed

    Beloshapka, Alison N; Alexander, Lucille G; Buff, Preston R; Swanson, Kelly S

    2014-01-01

    The benefits of whole grain consumption have been studied in human subjects, but little research exists on their effects in dogs. The objective of the present study was to test the effects of resistant starch (RS) in the diet of healthy adult dogs. Twelve adult Miniature Schnauzer dogs (eight males, four females; mean age: 3·3 (1·6) years; mean body weight: 8·4 (1·2) kg; mean body condition score: D/ideal) were randomly allotted to one of three treatment groups, which consisted of different amounts of RS supplied in a biscuit format. Dogs received either 0, 10 or 20 g biscuits per d (estimated to be 0, 2·5 or 5 g RS per d) that were fed within their daily energetic allowance. A balanced Latin square design was used, with each treatment period lasting 21 d (days 0-17 adaptation; days 18-21 fresh and total faecal collection). All dogs were fed the same diet to maintain body weight throughout the study. Dogs fed 5 g RS per d had lower (P = 0·03) fat digestibility than dogs fed 0 gRS per d, but DM, organic matter and crude protein digestibilities were not affected. Faecal fermentative end-products, including SCFA and branched-chain fatty acids, ammonia, phenols and indoles, and microbial populations were not affected. The minor changes observed in the present study suggest the RS doses provided to the dogs were too low. Further work is required to assess the dose of RS required to affect gut health. PMID:26101607

  6. Characterization of starch from two ecotypes of andean achira roots (Canna edulis).

    PubMed

    Cisneros, Fausto H; Zevillanos, Roberto; Cisneros-Zevallos, Luis

    2009-08-26

    Starches from two ecotypes of achira roots (Canna edulis Ker-Gawler) were characterized and compared to commercial potato and corn starches. This included scanning electron microscopy (SEM) of starch granules and amylose content determination of starch. Starch solutions or gels were tested by rotational viscometry, Rapid Visco Analyzer (RVA), and texture analysis. Some starch samples were subjected to various treatments: pH reduction, autoclaving at high temperature, and high shear before testing by rotational viscometry. Achira starch showed some unusual properties, such as very large oblong granules (approximately 45-52 microm major axis and approximately 33-34 microm minor axis) and relatively high amylose content (approximately 33-39%). The San Gaban achira ecotype formed high-consistency gels upon cooling, both in RVA study (5% starch) and in texture analysis (8% starch), compared to other starch gels and also exhibited higher thermal resistance to viscosity breakdown. PMID:19627148

  7. Plant-crafted starches for bioplastics production.

    PubMed

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. PMID:27516287

  8. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption.

    PubMed

    Wang, Jinmei; Sun, Hong; Li, Junjie; Dong, Dianyu; Zhang, Yabin; Yao, Fanglian

    2015-03-01

    Non-fouling materials bind water molecules via either hydrogen bonding or ionic solvation to form a hydration layer which is responsible for their resistance to protein adsorption. Three ionic starch-based polymers, namely a cationic starch (C-Starch), an anionic starch (A-Starch) and a zwitterionic starch (Z-Starch), were synthesized via etherification reactions to incorporate both hydrogen bonding and ionic solvation hydration groups into one molecule. Further, C-, A- and Z-Starch hydrogels were prepared via chemical crosslinking. The non-fouling properties of these hydrogels were tested with different proteins in solutions with different ionic strengths. The C-Starch hydrogel had low protein resistance at all ionic strengths; the A-Starch hydrogel resisted protein adsorption at ionic strengths of more than 10mM; and the Z-Starch hydrogel resisted protein adsorption at all ionic strengths. In addition, the A- and Z-Starch hydrogels both resisted cell adhesion. This work provides a new path for developing non-fouling materials using the integration of polysaccharides with anionic or zwitterionic moieties to regulate the protein resistance of materials. PMID:25498650

  9. Draft Genome Sequence of Neisseria gonorrhoeae Sequence Type 1407, a Multidrug-Resistant Clinical Isolate.

    PubMed

    Anselmo, A; Ciammaruconi, A; Carannante, A; Neri, A; Fazio, C; Fortunato, A; Palozzi, A M; Vacca, P; Fillo, S; Lista, F; Stefanelli, P

    2015-01-01

    Gonorrhea may become untreatable due to the spread of resistant or multidrug-resistant strains. Cefixime-resistant gonococci belonging to sequence type 1407 have been described worldwide. We report the genome sequence of Neisseria gonorrhoeae strain G2891, a multidrug-resistant isolate of sequence type 1407, collected in Italy in 2013. PMID:26272575

  10. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch.

    PubMed

    Zeng, Feng; Chen, Fuquan; Kong, Fansheng; Gao, Qunyu; Aadil, Rana Muhammad; Yu, Shujuan

    2015-11-15

    Debranched waxy rice starch was subjected to repeated crystallization (RC) treatment, and its physicochemical properties and digestion pattern were investigated. The A-type crystalline pattern of native starch was crystallized to a complex of B- and V-type patterns by debranching and RC treatment. Among the treated starches, the relative crystallinity of debranched starch reached its maximum (29.6%) after eight repetitions of crystallization. Changes in weight-average molar mass among treated starch samples were not significantly different. The repeated-crystallized starches showed higher thermal transition temperatures and melting enthalpy than that of debranched starch. As a result, slowly digestible starch (SDS) content of repeated-crystallized starches reached a very high level (57.8%). Results showed that RC treatment induced structural changes of waxy rice starch result in a great amount of SDS. PMID:25977036

  11. Starch metabolism in leaves.

    PubMed

    Orzechowski, Sławomir

    2008-01-01

    Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants. PMID:18787712

  12. Investigation of resistive losses in type II superconductors

    NASA Astrophysics Data System (ADS)

    Benapfl, Brendan W.

    For low-TC materials, the superconducting transition temperature (TC) is depressed by the application of a magnetic field. In contrast, one of the remarkable features of cuprate high-TC materials is that the superconducting transition is broadened by the application of a magnetic field. Tinkham presented a model for the field-dependent resistive transition of high-T C materials, arising from "phase slippage at a complicated network of channels." Coffey & Clem did not include this field-broadening effect in their sophisticated model for the field and temperature dependence of the surface resistance in type-II superconductors. From the model by Lee & Stroud, treating Josephson Junction-coupled superconducting segments, it is concluded that doped, layered superconductors are certain to have a field-broadened superconducting transition. This effect can be identified by measurements of the resistivity as a function of temperature, magnetic field strength, angle of field with respect to the crystal axis as well as with respect to an induced current density. The iron pnictide materials such as Ba0.6K0.4Fe2As2 (BaK122) have chemical layers with different compositions, differentiating them from elemental type-II superconductors such as niobium, and also from cuprates, by the absence of copper. Experimental data on BaK122 indicate a field-broadened transition in conjunction with a field-depressed superconducting transition temperature. In this work, techniques associated with Electron Spin Resonance (ESR) spectroscopy were used to measure the temperature and field-induced changes in the surface resistance of single-crystal BaK122 samples. In addition, polycrystalline foils of niobium and a NbTi (70/30) alloy were measured using the same techniques to provide comparison. Measurements were taken as a function of applied magnetic field, temperature, rf field intensity, and angle of the applied field with respect to the rf-induced current. BaK122 sample field-dependent surface

  13. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  14. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

  15. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Yada, Rickey Y; Liu, Qiang

    2016-12-10

    This study aimed to investigate effects of starch-protein interactions on physicochemical properties and in vitro starch digestibility of composite potato starch/protein blends (0, 5, 10, or 15% protein) during processing (cooking, cooling and reheating). The effect on recrystallization and short-range ordering in starch was studied by light microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The results show that protein in the blend proportionally restricted starch granule swelling during cooking and facilitated amylopectin recrystallization during cold-storage. The facilitating effect of protein diminished with increasing blend ratio. Resistant starch content in the processed blends was positively correlated to intensity ratio of 1053/1035cm(-1) in FTIR spectra arising from slow retrogradation of amylopectin (r(2)>0.88, P≤0.05), whose formation was favored by the presence of protein in the blends and further enhanced by cooling of cooked blends. As a conclusion, starch-protein interaction reduced starch digestibility of the processed blends. PMID:27577912

  16. Reinforcement of injectable calcium phosphate cement by gelatinized starches.

    PubMed

    Liu, Huiling; Guan, Ying; Wei, Donglei; Gao, Chunxia; Yang, Huilin; Yang, Lei

    2016-04-01

    Current injectable calcium phosphate bone cements (CPC) encounter the problems of low strength, high brittleness, and low cohesion in aqueous environment, which greatly hinder their clinical applications for loading-bearing bone substitution and minimally invasive orthopedic surgeries. Here, a strategy of using gelatinized starches to reinforce injectable CPC was investigated. Four types of starches, namely corn starch, crosslinked starch, cationic starch, and Ca-modified starch, were studied for their influence on CPC mechanical properties, injectability, setting times, anticollapsibility, and cytocompatibility. Gelatinized starch significantly improved compressive strength and modulus as well as strain energy density of CPC to different extents. Specifically, both corn starch and Ca-modified starch revealed sixfold and more than twofold increases in the compressive strength and modulus of CPC, respectively. The addition of gelatinized starches with proper contents increased the injectability and anticollapsibility of CPC. In addition, osteoblast proliferation tests on leaching solution of modified cements showed that gelatinized starches had no adverse effect on cell proliferation, and all cement samples resulted in better osteoblast proliferation compared to phosphate-buffered solution control. The mechanisms behind the reinforcing effect of different starches were preliminarily studied. Two possible mechanisms, reinforcement by the second phase of gelatinized starch and strong interlocking of apatite crystals, were proposed based on the results of starch zeta potential and viscosity, cement microstructure, and resultant mechanical properties. In conclusion, incorporating gelatinized starches could be an effective, facile, and bio-friendly strategy to reinforce injectable CPC and improve its mechanical stability, and thus, should be further studied and developed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 615-625, 2016. PMID

  17. Physicochemical properties of rhizome starch from a traditional Chinese medicinal plant of Anemone altaica.

    PubMed

    Man, Jianmin; Cai, Jinwen; Cai, Canhui; Huai, Huyin; Wei, Cunxu

    2012-06-20

    This study investigated the physicochemical properties of rhizome starch of A. altaica for the first time. The results were compared to those obtained from two common starches (potato and rice). The rhizome had a starch content of 49.8%. Isolated starch granules were mostly oval in shape with a central Maltese cross and an average long axis of 6.25 μm. The starch contained 35.5% amylose and had lower gelatinization and pasting temperatures than rice and potato starches and a swelling power comparable to potato. Altaica starch had high breakdown and setback viscosities. X-ray diffraction revealed B-type starch with relative degree of crystallinity of 17.5%. Starch possessed a high susceptibility to hydrolysis by acid, porcine pancreatic α-amylase and Aspergillus niger amyloglucosidase when compared with potato and rice starches. PMID:24750760

  18. P type porous silicon resistivity and carrier transport

    SciTech Connect

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  19. Pseudohypoparathyroidism type 1a and insulin resistance in a child.

    PubMed

    Nwosu, Benjamin U; Lee, Mary M

    2009-06-01

    Background. A 5-year-old white girl with a history of hypothyroidism in infancy presented to the endocrinology clinic of a tertiary hospital. Her physical examination noted a stocky physique, broad chest, short neck and short digits. Two years later, skin examination revealed subcutaneous nodules and acanthosis nigricans.Investigations. Measurement of levels of serum phosphate, parathyroid hormone, ionized calcium and insulin; measurement of peak growth hormone by the arginine-levodopa stimulation test; calculation of homeostasis model assessment of insulin resistance; assessment of bone age; DNA analysis of the GNAS gene.Diagnosis. Pseudohypoparathyroidism type 1a in a patient with Albright hereditary osteodystrophy, characterized by hypocalcemia, hypothyroidism, growth-hormone deficiency and insulin resistance.Management. The child continued to take levothyroxine 25 microg once daily, and at 5 years of age she was started on 40 mg/kg elemental calcium as calcium carbonate daily, and calcitriol (active vitamin D) 0.25 microg twice daily. Lifestyle modifications were also recommended for weight control. At 6 years and 4 months of age, treatment with growth hormone was initiated at a dose of 0.3 mg/kg weekly. PMID:19465898

  20. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  1. Helminth Infection Promotes Colonization Resistance via Type 2 Immunity

    PubMed Central

    Ramanan, Deepshika; Bowcutt, Rowann; Lee, Soo Ching; Tang, Mei San; Kurtz, Zachary D.; Ding, Yi; Honda, Kenya; Gause, William C.; Blaser, Martin J.; Bonneau, Richard A.; Lim, Yvonne AL; Loke, P’ng; Cadwell, Ken

    2016-01-01

    Increasing incidence of inflammatory bowel diseases such as Crohn’s disease (CD) in developed nations is associated with changes to the environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the CD susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization with an inflammatory Bacteroides species. Colonization resistance to Bacteroides was dependent on type-2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota, and that deworming treatment reduced Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis whereby certain individuals are genetically susceptible to the consequences of a changing microbial environment. PMID:27080105

  2. Helminth infection promotes colonization resistance via type 2 immunity.

    PubMed

    Ramanan, Deepshika; Bowcutt, Rowann; Lee, Soo Ching; Tang, Mei San; Kurtz, Zachary D; Ding, Yi; Honda, Kenya; Gause, William C; Blaser, Martin J; Bonneau, Richard A; Lim, Yvonne A L; Loke, P'ng; Cadwell, Ken

    2016-04-29

    Increasing incidence of inflammatory bowel diseases, such as Crohn's disease, in developed nations is associated with changes to the microbial environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the Crohn's disease susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization by an inflammatory Bacteroides species. Resistance to Bacteroides colonization was dependent on type 2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota and that deworming treatment reduced levels of Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis in which certain individuals are genetically susceptible to the consequences of a changing microbial environment. PMID:27080105

  3. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  4. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    PubMed

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined. PMID:19572519

  5. High throughput screening of starch structures using carbohydrate microarrays.

    PubMed

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  6. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  7. Mapping four new QTL associated with type I FHB resistance in winter wheat line INW0412

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) has become one of the most damaging wheat diseases in humid and semi-humid regions around the world. Breeding efforts have focused on resistance mechanisms that limit the spread once a spike is infected, or type II resistance. But resistance to initial infection, type I re...

  8. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type B and Type BE..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test;...

  9. Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films.

    PubMed

    López, O V; Versino, F; Villar, M A; García, M A

    2015-12-10

    Biocomposites films based on thermoplastic corn starch (TPS) containing 0.5% w/w fibrous residue from Pachyrhizus ahipa starch extraction (PASR) were obtained by melt-mixing and compression molding. PASR is mainly constituted by remaining cell walls and natural fibers, revealed by Scanning Electron Microscopy (SEM). Chemical composition of the residue indicated that fiber and starch were the principal components. Biocomposites thermo-stability was determined by Thermo-Gravimetric Analysis. A continuous PASR-TPS interface was observed by SEM, as a result of a good adhesion of the fibrous residue to starch matrix. Likewise, films containing PASR presented fewer superficial cracks than TPS ones, whereas their fracture surfaces were more irregular. Besides, the presence of PASR increased starch films roughness, due to fibers agglomerates. Films reinforced with PASR showed significantly lower water vapor permeability (WVP). In addition, PARS filler increased maximum tensile strength and Young's modulus of TPS films, thus leading to more resistant starch matrixes. PMID:26428131

  10. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    PubMed

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. PMID:23768605