Science.gov

Sample records for resistant starch type

  1. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. PMID:26041205

  2. Resistant starches and health.

    PubMed

    Kendall, Cyril W C; Emam, Azadeh; Augustin, Livia S A; Jenkins, David J A

    2004-01-01

    It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine. PMID:15287678

  3. Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4.

    PubMed

    Metzler-Zebeli, Barbara U; Schmitz-Esser, Stephan; Mann, Evelyne; Grüll, Dietmar; Molnar, Timea; Zebeli, Qendrim

    2015-12-01

    Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS. PMID:26431973

  4. Adaptation of the Cecal Bacterial Microbiome of Growing Pigs in Response to Resistant Starch Type 4

    PubMed Central

    Schmitz-Esser, Stephan; Mann, Evelyne; Grüll, Dietmar; Molnar, Timea; Zebeli, Qendrim

    2015-01-01

    Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS. PMID:26431973

  5. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    PubMed

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-01

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials. PMID:26877007

  6. The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) decreases intestinal inflammation in some settings. We tested the hypothesis that gut inflammation will be reduced with dietary supplementation with RS in rural Malawian children. Eighteen stunted 3-5-year-old children were supplemented with 8.5 g/day of RS type 2 for 4 weeks. ...

  7. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation.

    PubMed

    Dongowski, Gerhard; Jacobasch, Gisela; Schmiedl, Detlef

    2005-11-16

    Microbial metabolism is essential in maintaining a healthy mucosa in the large bowel, preferentially through butyrate specific mechanisms. This system depends on starch supply. Two structurally different resistant starches type 3 (RS3) have been investigated with respect to their resistance to digestion, fermentability, and their effects on the composition and turnover of bile acids in rats. RSA (a mixture of retrograded maltodextrins and branched high molecular weight polymers), which is more resistant than RSB (a retrograded potato starch), increased the rate of fermentation accompanied by a decrease of pH in cecum, colon, and feces. Because they were bound to RS3, less bile acids were reabsorbed, resulting in a higher turnover through the large bowel. Because of the rise of volume, the bile acid level was unchanged and the formation of secondary bile acids was partly suppressed. The results proved a strong relation between RS3, short chain fatty acid production, and microflora. However, butyrate specific benefits are only achieved by an intake of RS3 that result in good fermentation properties, which depend on the kind of the resistant starch structures. PMID:16277431

  8. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions

    PubMed Central

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography–mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management. PMID:27356770

  9. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions.

    PubMed

    Upadhyaya, Bijaya; McCormack, Lacey; Fardin-Kia, Ali Reza; Juenemann, Robert; Nichenametla, Sailendra; Clapper, Jeffrey; Specker, Bonny; Dey, Moul

    2016-01-01

    Dietary modulation of the gut microbiota impacts human health. Here we investigated the hitherto unknown effects of resistant starch type 4 (RS4) enriched diet on gut microbiota composition and short-chain fatty acid (SCFA) concentrations in parallel with host immunometabolic functions in twenty individuals with signs of metabolic syndrome (MetS). Cholesterols, fasting glucose, glycosylated haemoglobin, and proinflammatory markers in the blood as well as waist circumference and % body fat were lower post intervention in the RS4 group compared with the control group. 16S-rRNA gene sequencing revealed a differential abundance of 71 bacterial operational taxonomic units, including the enrichment of three Bacteroides species and one each of Parabacteroides, Oscillospira, Blautia, Ruminococcus, Eubacterium, and Christensenella species in the RS4 group. Gas chromatography-mass spectrometry revealed higher faecal SCFAs, including butyrate, propionate, valerate, isovalerate, and hexanoate after RS4-intake. Bivariate analyses showed RS4-specific associations of the gut microbiota with the host metabolic functions and SCFA levels. Here we show that dietary RS4 induced changes in the gut microbiota are linked to its biological activity in individuals with signs of MetS. These findings have potential implications for dietary guidelines in metabolic health management. PMID:27356770

  10. Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study.

    PubMed

    Nunes, Fernando M; Lopes, Edgar S; Moreira, Ana S P; Simões, Joana; Coimbra, Manuel A; Domingues, Rosário M

    2016-05-01

    Starch is one of the main components of human diet. During food processing, starch is submitted to high temperatures in the presence or absence of water. Thus, the main goal of this work was to identify structural modifications caused by dry heating in starch polysaccharides (amylose and amylopectin) and structurally related oligosaccharides, maltotetraose (M4) and glucosyl-maltotriose (GM3), simulating processing conditions. The structural modifications were evaluated by methylation analysis, electrospray mass spectrometry (ESI-MS), tandem mass spectrometry (ESI-MS/MS) and anionic chromatography after in vitro enzymatic digestion. Dry heating promoted dehydration, depolymerization, as well as changes in Glc glycosidic linkage positions and anomeric configuration. In oligosaccharides, polymerization was also observed. All these changes resulted in a lower in vitro digestibility, suggesting that dry heating of starch polysaccharides and related oligosaccharides may be associated with the formation of type 4 resistant starch and maltodextrins, non-digestible carbohydrates that are responsible for beneficial effects in human intestinal tract. PMID:26877020

  11. Efficacy of increased resistant starch consumption in human type 2 diabetes

    PubMed Central

    Bodinham, C L; Smith, L; Thomas, E L; Bell, J D; Swann, J R; Costabile, A; Russell-Jones, D; Umpleby, A M; Robertson, M D

    2014-01-01

    Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1. PMID:24671124

  12. Resistant Starch: Promise for Improving Human Health12

    PubMed Central

    Birt, Diane F.; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J.; Rowling, Matthew; Schalinske, Kevin; Scott, M. Paul; Whitley, Elizabeth M.

    2013-01-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized. PMID:24228189

  13. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models.

    PubMed

    Lesmes, Uri; Beards, Emma J; Gibson, Glenn R; Tuohy, Kieran M; Shimoni, Eyal

    2008-07-01

    This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon. PMID:18543927

  14. Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects

    PubMed Central

    Martínez, Inés; Kim, Jaehyoung; Duffy, Patrick R.; Schlegel, Vicki L.; Walter, Jens

    2010-01-01

    Background To systematically develop dietary strategies based on resistant starch (RS) that modulate the human gut microbiome, detailed in vivo studies that evaluate the effects of different forms of RS on the community structure and population dynamics of the gut microbiota are necessary. The aim of the present study was to gain a community wide perspective of the effects of RS types 2 (RS2) and 4 (RS4) on the fecal microbiota in human individuals. Methods and Findings Ten human subjects consumed crackers for three weeks each containing either RS2, RS4, or native starch in a double-blind, crossover design. Multiplex sequencing of 16S rRNA tags revealed that both types of RS induced several significant compositional alterations in the fecal microbial populations, with differential effects on community structure. RS4 but not RS2 induced phylum-level changes, significantly increasing Actinobacteria and Bacteroidetes while decreasing Firmicutes. At the species level, the changes evoked by RS4 were increases in Bifidobacterium adolescentis and Parabacteroides distasonis, while RS2 significantly raised the proportions of Ruminococcus bromii and Eubacterium rectale when compared to RS4. The population shifts caused by RS4 were numerically substantial for several taxa, leading for example, to a ten-fold increase in bifidobacteria in three of the subjects, enriching them to 18–30% of the fecal microbial community. The responses to RS and their magnitudes varied between individuals, and they were reversible and tightly associated with the consumption of RS. Conclusion Our results demonstrate that RS2 and RS4 show functional differences in their effect on human fecal microbiota composition, indicating that the chemical structure of RS determines its accessibility by groups of colonic bacteria. The findings imply that specific bacterial populations could be selectively targeted by well designed functional carbohydrates, but the inter-subject variations in the response to RS

  15. Characterization of enzyme-resistant starch in maize amylose-extender mutant starches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the human digestive system, a type of starch known as resistant starch (RS) can not be digested. RS is not absorbed in the small intestine, and is passed to the large intestine where it is fermented by bacteria to produce short-chain fatty acids, which have anti-cancer and anti-inflammatory prop...

  16. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    PubMed

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation. PMID:23291029

  17. Gene cloning, functional expression and characterisation of a novel type I pullulanase from Paenibacillus barengoltzii and its application in resistant starch production.

    PubMed

    Liu, Jingjing; Liu, Yu; Yan, Feng; Jiang, Zhengqiang; Yang, Shaoqing; Yan, Qiaojuan

    2016-05-01

    A novel pullulanase gene (PbPulA) from Paenibacillus barengoltzii was cloned. PbPulA has an open reading frame of 2028 bp encoding 675 amino acids. It was heterologously expressed in Escherichia coli as an intracellular soluble protein. The recombinant pullulanase (PbPulA) was purified to homogeneity with a molecular mass of about 75 kDa on SDS-PAGE. PbPulA was optimally active at pH 5.5 and 50 °C. It was stable within pH 5.5-10.5. The enzyme exhibited strict substrate specificity towards pullulan, but showed relatively low activity towards amylopectin and no activity towards other tested polysaccharides. The Km and Vmax values of the enzyme on pullulan were 2.94 mg/mL and 280.5 μmol/min/mg, respectively. The addition of PbPulA in gelatinized rice and maize starches significantly increased the resistant starch type 3 (RS3) yields. Final yields from rice and maize starches were 10.82 g/100 g and 11.41 g/100 g, respectively. These properties make PbPulA useful in starch industries. PMID:26763762

  18. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  19. Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double-blind controlled crossover intervention

    PubMed Central

    Nichenametla, Sailendra N.; Weidauer, Lee A.; Wey, Howard E.; Beare, Tianna M.; Specker, Bonny L.; Dey, Moul

    2014-01-01

    A metabolic health crisis is evident as cardiovascular diseases (CVD) remain the leading cause of mortality in the US. Effects of resistant starch type 4 (RS4), a prebiotic fiber, in comprehensive management of metabolic syndrome (MetS) remain unknown. This study examined the effects of a blinded exchange of resistant starch type-4 (RS4)-enriched flour (30% v/v) with regular/control flour (CF) diet on multiple MetS comorbidities. In a double-blind (participants-investigators), placebo-controlled, cluster crossover intervention (n=86, age ≥18, 2–12week interventions, 2week washout) in the US, individuals were classified as having MetS (With-MetS) or not (No-MetS) following International Diabetes Federation (IDF)-criteria. RS4 consumption compared with CF resulted in 7.2% (p=0.002) lower mean total cholesterol (TC), 5.5% (p=0.04) lower non-HDL, and a 12.8% (p<0.001) lower HDL cholesterol in the With-MetS group. No-MetS individuals had a 2.6% (p=0.02) smaller waist circumference and 1.5% (p=0.03) lower percent body fat following RS4 intervention compared to CF. A small but significant 1% increase in fat-free mass was observed in all participants combined (p=0.02). No significant effect of RS4 was observed for glycemic variables and blood pressures. RS4 consumption improved dyslipidemia and body composition. Incorporation of RS4 in routine diets could offer an effective strategy for public metabolic-CVD health promotion. The clinicaltrials.gov-reference NCT01887964. PMID:24478107

  20. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively. PMID:24299776

  1. High pressure intensification of cassava resistant starch (RS3) yields.

    PubMed

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content. PMID:25794725

  2. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.

    PubMed

    Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo

    2016-01-01

    Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch. PMID:27447598

  3. The potential of resistant starch as a prebiotic.

    PubMed

    Zaman, Siti A; Sarbini, Shahrul R

    2016-06-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry. PMID:25582732

  4. Synthesis of resistant starches in plants.

    PubMed

    Morell, Matthew K; Konik-Rose, Christine; Ahmed, Regina; Li, Zhongyi; Rahman, Sadiq

    2004-01-01

    The increased incidence in many countries in lifestyle diseases such as colorectal cancer, cardiovascular disease, and diabetes has led to an enhanced interest in disease-prevention measures that can be delivered to target populations through diet. Resistant starch (RS) is emerging as an important dietary component that has the potential to reduce the incidence of bowel health disorders. However, the range of crop species that can serve as effective sources of RS is limited. In this paper the state of knowledge of the starch biosynthesis pathway is reviewed and opportunities to manipulate crop genetics in order to generate additional sources of RS are discussed. The need for a "whole of chain" approach to delivery of RS to the consumer is highlighted because of the impact that different food-processing technologies can have in maintaining, enhancing, or destroying the RS potential of a raw material or food. PMID:15287674

  5. Preparation, structure, and digestibility of crystalline A- and B-type aggregates from debranched waxy starches.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2014-05-25

    Highly crystalline A- and B-type aggregates were prepared from short linear α-1,4 glucans generated from completely debranched waxy maize and waxy potato starches by manipulating the chain length and crystallization conditions including starch solids concentration and crystallization temperature. The A-type crystalline products were more resistant to enzyme digestion than the B-type crystalline products, and the digestibility of the A- and B-type allomorphs was not correlated with the size of the aggregates formed. Annealing increased the peak melting temperature of the B-type crystallites, making it similar to that of the A-type crystallites, but did not improve the enzyme resistance of the B-type crystalline products. The possible reason for these results was due to the compact morphology as well as the denser packing pattern of double helices in A-type crystallites. Our observations counter the fact that most B-type native starches are more enzyme-resistant than A-type native starches. Crystalline type per se does not seem to be the key factor that controls the digestibility of native starch granules; the resistance of native starches with a B-type X-ray diffraction pattern is probably attributed to the other structural features in starch granules. PMID:24708989

  6. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch.

    PubMed

    Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M

    2014-07-15

    The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05). PMID:24594151

  7. Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...

  8. Resistant-starch Formation in High-amylose Maize Starch During Kernel Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to understand the resistant-starch (RS) formation during the kernel development of high-amylose maize, GEMS-0067 line. RS content of the starch, determined using AOAC Method 991.43 for total dietary fiber, increased with kernel maturation and the increase in amylose/...

  9. Resistant starch in Micronesian banana cultivars offers health benefits.

    PubMed

    Thakorlal, J; Perera, C O; Smith, B; Englberger, L; Lorens, A

    2010-04-01

    Resistant Starch (RS) is a type of starch that is resistant to starch hydrolyzing enzymes in the stomach and thus behaves more like dietary fibre. RS has been shown to have beneficial effects in disease prevention including modulation of glycaemic index diabetes, cholesterol lowering capability and weight management, which are critically important for many people in the Federated States of Micronesia. Green bananas are known to contain substantial concentrations of RS and are a common part of the Micronesian diet. Therefore the aim of this study was to determine the RS content in banana cultivars from Pohnpei, Micronesia: Daiwang, Inahsio, Karat, Utin Kerenis and Utin Ruk, for which no such information was available. Utin Kerenis, Inahsio and Utin Ruk were found to contain the highest amounts of RS. The fate of RS after incorporation into a food product (i.e., pancakes) was also studied and a significant reduction in the RS content was found for each cultivar after cooking. Microscopy of the banana samples indicated that the overall morphology of the cultivars was similar. In conclusion, green banana, including these varieties, should be promoted in Micronesia and other places for their rich RS content and related health benefits including diabetes control. Further research is needed to more clearly determine the effects of cooking and food processing on RS. PMID:20968236

  10. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes.

    PubMed

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-08-01

    To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes.A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system.In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P < 0.05). In patients with type 2 diabetes, mean blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4-8.4 vs 7.4 ± 1.6, 95% CI 6.9-7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9-17.4 vs 18.7 ± 4.0, 95% CI 17.6-20.1, P < 0.001; hyperglycemia: 4.9 ± 5.7, 95% CI 3.1-6.6 vs 6.3 ± 6.4, 95% CI 4.3-8.3 mmol/L × day, P = 0.021). However, AUC measurements for hypoglycemia (glucose <3.9 mmol/l) were not statistically significant.A PPB-R-203-based diet reduced postprandial hyperglycemia in patients with type 2 diabetes without increasing the risk of hypoglycemia or glucose excursion. PMID:26287417

  11. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes

    PubMed Central

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-01-01

    Abstract To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes. A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system. In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P < 0.05). In patients with type 2 diabetes, mean blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4–8.4 vs 7.4 ± 1.6, 95% CI 6.9–7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9–17.4 vs 18.7 ± 4.0, 95% CI 17.6–20.1, P < 0.001; hyperglycemia: 4.9 ± 5.7, 95% CI 3.1–6.6 vs 6.3 ± 6.4, 95% CI 4.3–8.3 mmol/L × day, P = 0.021). However, AUC measurements for hypoglycemia (glucose <3.9 mmol/l) were not statistically significant. A PPB-R-203-based diet reduced postprandial hyperglycemia in patients with type 2 diabetes without increasing the risk of hypoglycemia or glucose excursion. PMID:26287417

  12. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

  13. Cooking behavior and starch digestibility of NUTRIOSE® (resistant starch) enriched noodles from sweet potato flour and starch.

    PubMed

    Menon, Renjusha; Padmaja, G; Sajeev, M S

    2015-09-01

    The effect of a resistant starch source, NUTRIOSE® FB06 at 10%, 15% and 20% in sweet potato flour (SPF) and 5% and 10% in sweet potato starch (SPS) in reducing the starch digestibility and glycaemic index of noodles was investigated. While NUTRIOSE (10%) significantly reduced the cooking loss in SPF noodles, this was enhanced in SPS noodles and guar gum (GG) supplementation reduced CL of both noodles. In vitro starch digestibility (IVSD) was significantly reduced in test noodles compared to 73.6g glucose/100g starch in control SPF and 65.9 g in SPS noodles. Resistant starch (RS) was 54.96% for NUTRIOSE (15%)+GG (1%) fortified SPF noodles and 53.3% for NUTRIOSE (5%)+GG (0.5%) fortified SPS noodles, as against 33.8% and 40.68%, respectively in SPF and SPS controls. Lowest glycaemic index (54.58) and the highest sensory scores (4.23) were obtained for noodles with 15% NUTRIOSE+1% GG. PMID:25842330

  14. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study.

    PubMed

    McCleary, Barry V; McNally, Marian; Rossiter, Patricia

    2002-01-01

    Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high. PMID:12374410

  15. Resistant starch contents of native and heat-moisture treated jackfruit seed starch.

    PubMed

    Kittipongpatana, Ornanong S; Kittipongpatana, Nisit

    2015-01-01

    Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20-25%, together with temperatures 80-110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm(-1) suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in T g and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454

  16. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    PubMed Central

    Kittipongpatana, Ornanong S.

    2015-01-01

    Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged. PMID:25642454

  17. Characterization of Maize Amylose-Extender (ae) Mutant Starches. Part I: Relationship Between Resistant Starch Contents and Molecular Structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endosperm starches were isolated from kernels of seven maize amylose-extender (ae) lines. The resistant starch (RS) contents, measured using AOAC method 991.43, showed that three new ae-mutant starch lines developed by the USDA-ARS Germplasm Enhancement (GEM) and Truman State University had larger R...

  18. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  19. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  20. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  1. Resistant Starch and Starch-Derived Oligosaccharides as Prebiotics

    NASA Astrophysics Data System (ADS)

    Adam-Perrot, A.; Gutton, L.; Sanders, L.; Bouvier, S.; Combe, C.; van den Abbeele, R.; Potter, S.; Einerhand, A. W. C.

    Dietary fiber has long been recommended as part of a healthy diet based on the observations made by Burkitt and Trowell (1975). Since then, epidemiological evidence has consistently shown that populations consuming higher levels of foods containing fiber have decreased risk of a variety of chronic health disorders such as cardiovascular disease, type II diabetes, and certain cancers. Average fiber intake in the United States is approximately 13 g/day for women and 18 g/day for men (National Academy of Sciences, 2006). The FDA recommends a minimum of 20-35 g/day for a healthy adult depending on calorific intake. In many EU countries including France, Germany and the UK (see Figure 9.1 ), fiber intakes are much lower than authorities recommend for men and women (Buttriss and Stokes, 2008; Gray, 2006). Thus, there is a need to increase fiber consumption and many newly isolated or developed fibers can easily be added to beverages and processed foods. The reasons for such low compliance is somewhat complex, however the most basic rationale for not consuming fiber-rich foods is perceived bad taste and mouthfeel and the availability of conventional food items containing fiber.

  2. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

    PubMed

    Lee, Chang Joo; Moon, Tae Wha

    2015-07-10

    The objective of this study was to investigate the structural characteristics of slowly digestible starch (SDS) and resistant starch (RS) fractions isolated from heat-moisture treated waxy potato starch. The waxy potato starch with 25.7% moisture content was heated at 120°C for 5.3h. Scanning electron micrographs of the cross sections of RS and SDS+RS fractions revealed a growth ring structure. The branch chain-length distribution of debranched amylopectin from the RS fraction had a higher proportion of long chains (DP ≥ 37) than the SDS+RS fraction. The X-ray diffraction intensities of RS and SDS+RS fractions were increased compared to the control. The SDS+RS fraction showed a lower gelatinization enthalpy than the control while the RS fraction had a higher value than the SDS+RS fraction. In this study we showed the RS fraction is composed mainly of crystalline structure and the SDS fraction consists of weak crystallites and amorphous regions. PMID:25857975

  3. Resistant starch and dietary fibers from cereal by-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains (DDG) are a cereal byproduct from ethanol distillation process. On a dry weight basis, DDG is composed of 13% fat, 30% protein, 33% fiber, with the remainder various carbohydrates. Only 6-8% of starch in DDG is in resistant form (dietary fiber). Because only about 6% of DD...

  4. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon.

    PubMed

    Winter, Jean; Nyskohus, Laura; Young, Graeme P; Hu, Ying; Conlon, Michael A; Bird, Anthony R; Topping, David L; Le Leu, Richard K

    2011-11-01

    Population studies have shown that high red meat intake may increase colorectal cancer risk. Our aim was to examine the effect of different amounts and sources of dietary protein on induction of the promutagenic adduct O(6)-methyl-2-deoxyguanosine (O(6)MeG) in colonocytes, to relate these to markers of large bowel protein fermentation and ascertain whether increasing colonic carbohydrate fermentation modified these effects. Mice (n = 72) were fed 15% or 30% protein as casein or red meat or 30% protein with 10% high amylose maize starch as the source of resistant starch. Genetic damage in distal colonocytes was detected by immunohistochemical staining for O(6)MeG and apoptosis. Feces were collected for measurement of pH, ammonia, phenols, p-cresol, and short-chain fatty acids (SCFA). O(6)MeG and fecal p-cresol concentrations were significantly higher with red meat than with casein (P < 0.018), with adducts accumulating in cells at the crypt apex. DNA adducts (P < 0.01) and apoptosis (P < 0.001) were lower and protein fermentation products (fecal ammonia, P < 0.05; phenol, P < 0.0001) higher in mice fed resistant starch. Fecal SCFA levels were also higher in mice fed resistant starch (P < 0.0001). This is the first demonstration that high protein diets increase promutagenic adducts (O(6)MeG) in the colon and dietary protein type seems to be the critical factor. The delivery of fermentable carbohydrate to the colon (as resistant starch) seems to switch from fermentation of protein to that of carbohydrate and a reduction in adduct formation, supporting previous observations that dietary resistant starch opposes the mutagenic effects of dietary red meat. PMID:21885815

  5. Is there variation in resistant starch among high amylose rice varieties?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) is the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and is partially or entirely fermented in the colon by the microbiota. RS in food lowers postprandial glucose concentration and has potential in ...

  6. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch.

    PubMed

    Jiang, Huan; Miao, Ming; Ye, Fan; Jiang, Bo; Zhang, Tao

    2014-04-01

    In this study, partial 4-α-glucanotransferase (4αGT) treatment was used to modulate the fine structure responsible for the slow digestion and resistant property of starch. Normal corn starch modified using 4αGT for 4h showed an increase of slowly digestible starch from 9.40% to 20.92%, and resistant starch from 10.52 to 17.63%, respectively. The 4αGT treatment decreased the content of amylose from 32.6% to 26.8%. The molecular weight distribution and chain length distribution of 4αGT-treated starch showed a reduction of molecular weight and a great number of short (DP<13) and long (DP>30) chains through cleaving and reorganization of starch molecules. Both the short and long chain fractions of modified amylopectin were attributed to the low in vitro digestibility. The viscosity was inversely related to the digestibility of the 4αGT-treated starch. These results suggested that the 4αGT modified starch synthesized the novel amylopectin clusters with slow digestible and resistant character. PMID:24463262

  7. Development of functional milk desserts enriched with resistant starch based on consumers' perception.

    PubMed

    Ares, Florencia; Arrarte, Eloísa; De León, Tania; Ares, Gastón; Gámbaro, Adriana

    2012-10-01

    Sensory characteristics play a key role in determining consumers' acceptance of functional foods. In this context, the aim of the present work was to apply a combination of sensory and consumer methodologies to the development of chocolate milk desserts enriched with resistant starch. Chocolate milk desserts containing modified waxy maize starch were formulated with six different concentrations of two types of resistant starch (which are part of insoluble dietary fiber). The desserts were evaluated by trained assessors using Quantitative Descriptive Analysis. Moreover, consumers scored their overall liking and willingness to purchase and answered an open-ended question. Resistant starch caused significant changes in the sensory characteristics of the desserts and a significant decrease in consumers' overall liking and willingness to purchase. Consumer data was analyzed applying survival analysis on overall liking scores, considering the risk on consumers liking and willing to purchase the functional products less than their regular counterparts. The proposed methodologies proved to be useful to develop functional foods taking into account consumers' perception, which could increase their success in the market. PMID:23144240

  8. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  9. Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis.

    PubMed

    Navarro, S D; Mauro, M O; Pesarini, J R; Ogo, F M; Oliveira, R J

    2015-01-01

    Resistant starch is formed from starch and its degradation products and is not digested or absorbed in the intestine; thus, it is characterized as a fiber. Because fiber intake is associated with the prevention of DNA damage and cancer, the potential antigenotoxic, antimutagenic, and anticarcinogenic capabilities of resistant starch from green banana flour were evaluated. Animals were treated with 1,2-dimethylhydrazine and their diet was supplemented with 10% green banana flour according to the following resistant starch protocols: pretreatment, simultaneous treatment, post-treatment, and pre + continuous treatment. The results demonstrated that resistant starch is not genotoxic, mutagenic, or carcinogenic. The results suggest that resistant starch acts through desmutagenesis and bio-antimutagenesis, as well as by reducing aberrant crypt foci, thereby improving disease prognosis. These findings imply that green banana flour has therapeutic properties that should be explored for human dietary applications. PMID:25867310

  10. Dietary resistant starch and chronic inflammatory bowel diseases.

    PubMed

    Jacobasch, G; Schmiedl, D; Kruschewski, M; Schmehl, K

    1999-11-01

    These studies were performed to test the benefit of resistant starch on ulcerative colitis via prebiotic and butyrate effects. Butyrate, propionate, and acetate are produced in the colon of mammals as a result of microbial fermentation of resistant starch and other dietary fibers. Butyrate plays an important role in the colonic mucosal growth and epithelial proliferation. A reduction in the colonic butyrate level induces chronic mucosal atrophy. Short-chain fatty acid enemas increase mucosal generation, crypt length, and DNA content of the colonocytes. They also ameliorate symptoms of ulcerative colitis in human patients and rats injected with trinitrobenzene sulfonic acid (TNBS). Butyrate, and also to a lesser degree propionate, are substrates for the aerobic energy metabolism, and trophic factors of the colonocytes. Adverse butyrate effects occur in normal and neoplastic colonic cells. In normal cells, butyrate induces proliferation at the crypt base, while inhibiting proliferation at the crypt surface. In neoplastic cells, butyrate inhibits DNA synthesis and arrests cell growth in the G1 phase of the cell cycle. The improvement of the TNBS-induced colonic inflammation occurred earlier in the resistant starch (RS)-fed rats than in the RS-free group. This benefit coincided with activation of colonic epithelial cell proliferation and the subsequent restoration of apoptosis. The noncollagenous basement membrane protein laminin was regenerated initially in the RS-fed group, demonstrating what could be a considered lower damage to the intestinal barrier function. The calculation of intestinal short-chain fatty acid absorption confirmed this conclusion. The uptake of short-chain fatty acids in the colon is strongly inhibited in the RS-free group, but only slightly reduced in the animals fed with RS. Additionally, RS enhanced the growth of intestinal bacteria assumed to promote health. Further studies involving patients suffering from ulcerative colitis are necessary to

  11. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats.

    PubMed

    Brites, Carla M; Trigo, Maria J; Carrapiço, Belmira; Alviña, Marcela; Bessa, Rui J

    2011-04-01

    White wheat bread is a poor source of dietary fiber, typically containing less than 2%. A demand exists for the development of breads with starch that is slowly digestible or partially resistant to the digestive process. The utilization of maize flour and resistant starch is expected to reduce the release and absorption of glucose and, hence, lower the glycemic index of bread. This study was undertaken to investigate the hypothesis that a diet of maize bread, as produced and consumed in Portugal, would have beneficial metabolic effects on rats compared to white wheat bread. We also hypothesized that the effect of resistant starch on glycemic response could be altered by the use of different formulations and breadmaking processes for wheat and maize breads. Resistant starch (RS) was incorporated into formulations of breads at 20% of the inclusion rate of wheat and maize flours. Assays were conducted with male Wistar rats (n = 36), divided into four groups and fed either wheat bread, RS-wheat bread, maize bread, and RS-maize bread to evaluate feed intake, body weight gain, fecal pH, and postprandial blood glucose response (glycemic response). Blood triglycerides, total cholesterol concentrations, and liver weights were also determined. The maize bread group presented higher body weight gain and cholesterol level, lower fecal pH, and postprandial blood glucose response than the wheat bread group. The RS-wheat bread group showed significant reductions in feed intake, fecal pH, postprandial blood glucose response, and total cholesterol. The RS-maize group displayed significant reductions of body weight gain, fecal pH, and total cholesterol levels; however, for the glycemic response, only a reduction in fasting level was observed. These results suggest that maize bread has a lower glycemic index than wheat bread, and the magnitude of the effect of RS on glycemic response depends of type of bread. PMID:21530804

  12. Production of resistant starch by enzymatic debranching in legume flours.

    PubMed

    Morales-Medina, Rocío; Del Mar Muñío, María; Guadix, Emilia M; Guadix, Antonio

    2014-01-30

    Resistant starch (RS) was produced by enzymatic hydrolysis of flours from five different legumes: lentil, chickpea, faba bean, kidney bean and red kidney bean. Each legume was firstly treated thermally, then hydrolyzed with pullulanase for 24h at 50°C and pH 5 and lyophilized. At the end of each hydrolysis reaction, the RS amount ranged from 4.7% for red kidney beans to 7.5% for chickpeas. With respect to the curves of RS against hydrolysis time, a linear increase was observed initially and a plateau was generally achieved by the end of reaction. These curves were successfully modeled by a kinetic equation including three parameters: initial RS, RS at long operation time and a kinetic constant (k). Furthermore, the relative increase in hydrolysis, calculated using the kinetic parameters, was successfully correlated to the percentage of amylose. PMID:24299889

  13. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors.

    PubMed

    Raeis-Hosseini, Niloufar; Lee, Jang-Sik

    2016-03-23

    Implementation of biocompatible materials in resistive switching memory (ReRAM) devices provides opportunities to use them in biomedical applications. We demonstrate a robust, nonvolatile, flexible, and transparent ReRAM based on potato starch. We also introduce a biomolecular memory device that has a starch-chitosan composite layer. The ReRAM behavior can be controlled by mixing starch with chitosan in the resistive switching layer. Whereas starch-based biomemory devices which show abrupt changes in current level; the memory device with mixed biopolymers undergoes gradual changes. Both devices exhibit uniform and robust programmable memory properties for nonvolatile memory applications. The explicated source of the bipolar resistive switching behavior is assigned to formation and rupture of carbon-rich filaments. The gradual set/reset behavior in the memory device based on a starch-chitosan mixture makes it suitable for use in neuromorphic devices. PMID:26919221

  14. Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa†

    PubMed Central

    Shetty, Kalidas; Crawford, Don L.; Pometto, Anthony L.

    1986-01-01

    p-Fluorophenylalanine-resistant mutants of starch-degrading Bacillus polymyxa ATCC 842, generated by ethyl methanesulfonate mutagenesis followed by incubation with caffeine, overproduced small amounts of l-phenylalanine (l-phe) from starch. A β-2-thienylalanine-resistant mutant (BTR-7) derived from p-fluorophenylalanine mutant (C-4000 FPR-4) and resistant to both p-fluorophenylalanine and β-2-thienylalanine produced 0.5 g of l-phe and 0.15 g of l-tyrosine per liter from 10 g of starch per liter when growing in a minimal medium. trans-Cinnamic acid (CA) was also excreted by both mutants, indicating the possibility of l-phenylalanine ammonia-lyase-induced deamination of l-phe to CA. The amount of l-phe-derived CA detected in BTR-7 was less compared with mutant C-4000 FPR-4. CA production was induced in the parent only when l-phe was used as a sole nitrogen source. Time of CA production in the two mutants could be delayed by addition of other nitrogen sources, an indication of possible l-phenylalanine ammonia-lyase inhibition or repression. The presence of l-phenylalanine ammonia-lyase in B. polymyxa mutant C-4000 FPR-4 was confirmed by assays of cell-free extracts from cells grown in starch minimal medium containing l-phe as the sole nitrogen source. Preliminary studies of the regulation of deoxy-d-arabino-heptulosonate-7-phosphate synthase and prephenate dehydratase in the wild-type strain showed that deoxy-d-arabino-heptulosonate-7-phosphate synthase was subject to feedback inhibition by l-phe, l-tyrosine, and l-tryptophan. Inhibition by each amino acid was to a similar extent singly or in combination at a 0.5 mM level of each amino acid. Prephenate dehydratase was feedback inhibited by l-phe, but not by l-tyrosine or l-tryptophan or both. In the double analog-resistant mutant BTR-7, deoxy-d-arabino-heptulosonate-7-phosphate synthase had specific activity similar to that in the wild type, and the enzyme was still subject to feedback inhibition. However

  15. Development and Characterization of Spaghetti with High Resistant Starch Content Supplemented with Banana Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasta products, such as spaghetti, are relatively healthy foods traditionally manufactured from durum wheat semolina and water. Nutritionally improved spaghetti products with additional health benefits can be produced by supplementing durum wheat with suitable food additives, such as banana starch....

  16. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme.

    PubMed

    Reddy, Chagam Koteswara; Pramila, S; Haripriya, Sundaramoorthy

    2015-03-01

    Pullulanase enzyme (40 U/g, 10 h) was used for enzymatic hydrolysis of potato starch which was autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h) and lyophilized. Comparison of morphological, pasting, textural and thermal properties among native hydrolysed starch (V2) and gelatinized hydrolysed starch (V3) prepared using pullulanase enzyme on potato starch (V1) were studied. The round, elliptical, irregular and oval shape with smooth surface of V1 was replaced with amorphous mass of cohesive structure leading to loss of granular appearance in V2 and V3. The percentage of amylose and resistant starch content of V2 (27.16 %) and (24.16 %); V3 (51.44 %) and (29.35 %) was higher when compared to V1 (22.17 %) and (3.62 %). The swelling power of V1 observed at 60 °C (0.85 %) and 95 °C (8.64 %) were significantly different from V2 at 60 °C (4.97 %) and 95 °C (7.66 %) and that of V3 at 60 °C (5.82 %) and 95 °C (7.5 %). Significance difference in water solubility (7.62 %) and absorption capacity (6.11 %) was noted in V3 when compared with V1 and V2 owing to amylose/amylopectin content. Increase in water solubility and absorption capacity along with decrease in swelling power of V2 and V3 was noted due to hydrolytic and thermal process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P < 0.05). PMID:25745229

  17. Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors.

    PubMed

    Situ, Wenbei; Chen, Ling; Wang, Xueyu; Li, Xiaoxi

    2014-04-23

    For the delivery of bioactive components to the colon, an oral colon-specific controlled release system coated with a resistant starch-based film through aqueous dispersion coating process was developed. Starch was modified by a high-temperature-pressure reaction, enzymatic debranching, and retrogradation, resulting in a dramatic increase in the resistibility against enzymatic digestion (meaning the formation of resistant starch, specifically RS3). This increase could be associated with an increase in the relative crystallinity, a greater amount of starch molecular aggregation structure, and the formation of a compact mass fractal structure, resulting from the treatment. The microparticles coated with this RS3 film showed an excellent controlled release property. In streptozotocin (STZ)-induced type II diabetic rats, the RS3 film-coated insulin-loaded microparticles exhibited the ability to steadily decrease the plasma glucose level initially and then maintain the plasma glucose level within the normal range for total 14-22 h with different insulin dosages after oral administration; no glycopenia or glycemic fluctuation was observed. Therefore, the potential of this new RS3 film-coated microparticle system has been demonstrated for the accurate delivery of bioactive polypeptides or protein to the colon. PMID:24684664

  18. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    SciTech Connect

    Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  19. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    PubMed

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level. PMID:21261261

  20. Banana resistant starch and its effects on constipation model mice.

    PubMed

    Wang, Juan; Huang, Ji Hong; Cheng, Yan Feng; Yang, Gong Ming

    2014-08-01

    Banana resistant starch (BRS) was extracted to investigate the structural properties of BRS, its effects on the gastrointestinal transit, and dejecta of normal and experimentally constipated mice. The mouse constipation model was induced by diphenoxylate administration. The BRS administered mice were divided into three groups and gavaged with 1.0, 2.0, or 4.0 g/kg body weight BRS per day. The small intestinal movement, time of the first black dejecta, dejecta granules, weight and their moisture content, body weight, and food intake of mice were studied. Results showed that the BRS particles were oval and spindly and some light cracks and pits were in the surface. The degree of crystallinity of BRS was 23.13%; the main diffraction peaks were at 2(θ) 15.14, 17.38, 20.08, and 22.51. The degree of polymerization of BRS was 81.16 and the number-average molecular weight was 13147.92 Da, as determined by the reducing terminal method. In animal experiments, BRS at the dose of 4.0 g/kg body weight per day was able to increase the gastrointestinal propulsive rate, and BRS at the doses of 2.0 and 4.0 g/kg body weight per day was found to shorten the start time of defecation by observing the first black dejecta exhaust. However, there were no influences of BRS on the dejecta moisture content, the dejecta granules and their weight, body weight, or daily food intake in mice. BRS was effective in accelerating the movement of the small intestine and in shortening the start time of defecation, but did not impact body weight and food intake. Therefore, BRS had the potential to be useful for improving intestinal motility during constipation. PMID:25046686

  1. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges.

    PubMed

    Lemlioglu-Austin, Dilek; Turner, Nancy D; McDonough, Cassandra M; Rooney, Lloyd W

    2012-01-01

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content. PMID:22986923

  2. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study

    PubMed Central

    Moore, Mary E.; Dige, Anders; Lærke, Helle Nygaard; Agnholt, Jørgen; Bach Knudsen, Knud Erik; Hermansen, Kjeld; Marco, Maria L.; Gregersen, Søren; Dahlerup, Jens F.

    2016-01-01

    Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health

  3. Physicochemical Properties of Starch Isolated from Bracken (Pteridium aquilinim) Rhizome.

    PubMed

    Yu, Xurun; Wang, Jin; Zhang, Jing; Wang, Leilei; Wang, Zhong; Xiong, Fei

    2015-12-01

    Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X-ray diffraction analysis revealed that bracken starch exhibited a typical C-type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch. PMID:26551243

  4. Identification of QTLs for resistant starch and total alkaloid content in brown and polished rice.

    PubMed

    Zeng, Y W; Sun, D; Du, J; Pu, X Y; Yang, S M; Yang, X M; Yang, T; Yang, J Z

    2016-01-01

    An F3 population consisting of 117 F2:3 families derived from a cross between two varieties of rice, Gongmi No. 3 and Diantun 502, with a large difference in their resistant starch and total alkaloid content, was used for quantitative trait locus (QTL) mapping. Two QTLs of resistant starch for rice (qRS7-1, qRS7-2) were identified in a linkage group on chromosome 7, which could explain phenotypic variance from 7.6 to 17.3%, due to additive effects for resistant starch from Gongmi No. 3 or over-dominance effects for qRS7-2 of the marker interval (RM3404-RM478) on chromosome 7 from Gongmi No. 3, accounting for 13.8-17.3% of the phenotypic variance. Two QTLs of total alkaloids for brown rice (qALb7-1, qALb7-2) were identified in the same linkage group, which could explain phenotypic variance from 7.7 and 19.3%, respectively, due to dominance or over-dominance effects for total alkaloids on chromosome 7 from Diantun 502. To our knowledge, these are the first QTLs to be identified, which are related to resistant starch and total alkaloid content in rice. These results are beneficial for understanding the genetic basis of, as well as for developing markers linked with, resistant starch and total alkaloids of functional components for marker-assisted selection breeding in rice. PMID:27525873

  5. Effect of resistant starch on genotoxin-induced apoptosis, colonic epithelium, and lumenal contents in rats.

    PubMed

    Le Leu, Richard K; Brown, Ian L; Hu, Ying; Young, Graeme P

    2003-08-01

    The effect of different doses of a type-2 resistant starch (RS) in the form of high amylose cornstarch (HAS) on the intralumenal environment and the acute-apoptotic response to a genotoxic carcinogen (AARGC) in the colon was assessed to determine if changes in lumenal conditions were associated with an enhanced apoptotic response to DNA damage. The control diet was a modified form of the AIN-76 diet containing fully digestible starch but no dietary fibre. HAS was added to the control diet at the expense of digestible starch to give 10% HAS, 20% HAS and 30% HAS. Rats were fed the different experimental diets for a period of 4 weeks, after which a single injection of azoxymethane was given to induce DNA damage in the colonic epithelium; 6 h later AARGC was measured. Other measures included fecal and cecal short chain fatty acids (SCFA) and pH, and cell proliferation in the colonic epithelium. In HAS-supplemented rats, fermentation events were significantly increased in both cecum and feces. There was a progressive decrease in pH in both the cecum and feces as the amount of HAS in the diet increased. SCFA concentrations, including butyrate, were significantly elevated by HAS with higher levels being observed in the cecum than in the feces. There was a significant increase in colonic AARGC with HAS doses of 20 and 30% (P < 0.01) but not with 10% HAS. Cell proliferation was not affected by any dose of HAS. Correlations with AARGC, independent of dietary group, were seen for fecal SCFAs and pH, suggesting that fermentation events, might explain the effect of RS on AARGC. Altering amounts of dietary RS changes fermentative activity in the colon. Increased RS is associated with enhanced AARGC. Changes in amount of fermentable substrate are capable of changing the biological response to DNA damage. PMID:12807738

  6. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    PubMed

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. PMID:27596411

  7. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    PubMed

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. PMID:25439920

  8. Resistant starch for modulation of gut microbiota: Promising adjuvant therapy for chronic kidney disease patients?

    PubMed

    Moraes, Cristiane; Borges, Natália A; Mafra, Denise

    2016-08-01

    The gut microbiota has been extensively studied in all health science fields because its imbalance is linked to many disorders, such as inflammation and oxidative stress, thereby contributing to cardiovascular disease, obesity, diabetes and chronic kidney disease (CKD) complications. Novel therapeutic strategies that aim to reduce the complications caused by this imbalance have increased in recent years. Studies have shown that prebiotic supplementation can beneficially modulate the gut microbiota in CKD patients. Prebiotics consist of non-digestible dietary soluble fiber, which acts as a substrate for the gut microbiota. Resistant starch (RS) is a type of dietary fiber that can reach the large bowel and act as a substrate for microbial fermentation; for these reasons, it has been considered to be a prebiotic. Few studies have analyzed the effects of RS on the gut microbiota in CKD patients. This review discusses recent information about RS and the potential role of the gut microbiota, with a particular emphasis on CKD patients. PMID:26830416

  9. The effect of fermentation and addition of vegetable oil on resistant starch formation in wholegrain breads.

    PubMed

    Buddrick, Oliver; Jones, Oliver A H; Hughes, Jeff G; Kong, Ing; Small, Darryl M

    2015-08-01

    Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. PMID:25766816

  10. Carbohydrates, Dietary Fiber, and Resistant Starch in White Vegetables: Links to Health Outcomes12

    PubMed Central

    Slavin, Joanne L.

    2013-01-01

    Vegetables are universally promoted as healthy. Dietary Guidelines for Americans 2010 recommend that you make half of your plate fruits and vegetables. Vegetables are diverse plants that vary greatly in energy content and nutrients. Vegetables supply carbohydrates, dietary fiber, and resistant starch in the diet, all of which have been linked to positive health outcomes. Fiber lowers the incidence of cardiovascular disease and obesity. In this paper, the important role of white vegetables in the human diet is described, with a focus on the dietary fiber and resistant starch content of white vegetables. Misguided efforts to reduce consumption of white vegetables will lower intakes of dietary fiber and resistant starch, nutrients already in short supply in our diets. PMID:23674804

  11. Suppression of azoxymethane-induced colon cancer development in rats by dietary resistant starch.

    PubMed

    Le Leu, Richard K; Brown, Ian L; Hu, Ying; Esterman, Adrian; Young, Graeme P

    2007-10-01

    Resistant starch is a complex carbohydrate that reaches the colon where it can be fermented by the colonic microflora resulting in production of short chain fatty acids (SCFA), in particular butyrate. RS effects on colorectal tumourigenesis are contrasting and protection remains controversial. Butyrate has an important role as the preferred metabolic fuel and regulator of colonocyte proliferation, differentiation and apoptosis and may play a role in cancer prevention. Thus variation in butyrate production from different substrates might explain the variation in effect of RS. This study evaluated the hypothesis that feeding dietary resistant starch (as high amylose maize starch) would protect against azoxymethane (AOM)-colon carcinogenesis and favourably influence the colonic luminal environment. Male Sprague-Dawley rats (n = 90) were provided one of three diets: Control (without added dietary fibre or RS), 10% HAS (contained 100 g/kg raw high amylose maize starch) or 20% HAS (contained 200 g/kg high amylose maize starch). Rats were fed their experimental diets for four weeks after which they were injected with AOM (15 mg/kg) during the fifth and six week. Colons were resected (25 weeks post second injection) for evaluation of tumour formation, apoptosis, proliferating cell nuclear antigen (PCNA) labelling index and short chain fatty acid levels. Feeding resistant starch significantly reduced the incidence (p < 0.01) and multiplicity (p < 0.05) of adenocarcinomas in the colon compared to the Control diet. Both doses of HAS resulted in similar protection against colon tumourigenesis. Feeding RS significantly increased total SCFA concentrations, including butyrate in the distal colon. Apoptosis (p < 0.01) was also enhanced while PCNA labelling index was reduced (p < 0.01) in the distal colon with resistant starch feeding. The protective effect of consumption of RS as dietary high-amylose cornstarch against colon cancer development appears to be related to active

  12. Effect of Dietary-Resistant Starch on Inhibition of Colonic Preneoplasia and Wnt Signaling in Azoxymethane-Induced Rodent Models.

    PubMed

    Nelson, Bridget; Cray, Nicole; Ai, Yongfeng; Fang, Yinan; Liu, Peng; Whitley, Elizabeth M; Birt, Diane

    2016-01-01

    Dietary fiber has been reported to prevent preneoplastic colon lesions. The aim of this study was to determine the effect of resistant starches, novel dietary fibers, on the development of colonic preneoplasia and Wnt signaling in azoxymethane (AOM)-treated rats and mice fed resistant starches at 55% of the diet after AOM treatment. Another objective was to determine the effect of resistant starches on the development of preneoplasia in rats treated with antibiotics (Ab), administered between AOM treatment and resistant starch feeding. Diets containing resistant starches, high-amylose (HA7), high-amylose-octenyl succinic anhydride (OS-HA7), or high-amylose-stearic acid (SA-HA7) were compared with control cornstarch (CS). The resistant starch content of the diets did not alter the yield of colonic lesions but animals treated with AOM and fed the diet with the highest resistant starch content, SA-HA7 developed the highest average aberrant crypt foci (ACF) per animal. Mice fed the OS-HA7 diet had decreased expression of some upstream Wnt genes in the colonic crypts. This study suggests that further research is needed to determine if resistant starch impacts colon carcinogenesis in rodents. PMID:27367460

  13. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches.

    PubMed

    Kim, Bum-Su; Kim, Hyun-Seok; Hong, Jung-Sun; Huber, Kerry C; Shim, Jae-Hoon; Yoo, Sang-Ho

    2013-06-01

    Structural modification of rice and barley starches with Neisseria polysaccharea amylosucrase (NpAS) was conducted, and relationship between structural characteristics and resistant starch (RS) contents of NpAS-treated starches was investigated. Pre-gelatinised rice and barley starches were treated with NpAS. NpAS-treated starches were characterised with respect to morphology, X-ray diffraction pattern, amylopectin branch-chain distribution, and RS content, and their structural characteristics were correlated to RS contents. Regardless of amylose contents of native starches, NpAS-treated (relative to native) starches possessed lower and higher proportions of shorter (DP 6-12) and intermediate (DP 13-36) amylopectin (AP) branch-chains, respectively. RS contents were higher for NpAS-treated starches relative to native starches, and maximum RS contents were obtained for NpAS-treated starches of waxy rice and barley genotypes. Amylose contents were not associated with RS contents of NpAS-treated starches. However, shorter and intermediate AP branch-chain portions were negatively and positively correlated to RS contents of NpAS-treated starches, respectively. PMID:23411202

  14. Resistant starch does not affect zinc homeostasis in rural Malawian children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. This was a small controlled clinical trial to dete...

  15. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon

    PubMed Central

    Ze, Xiaolei; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2012-01-01

    The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. PMID:22343308

  16. Peculiarities of enhancing resistant starch in ruminants using chemical methods: opportunities and challenges.

    PubMed

    Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim

    2013-06-01

    High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826

  17. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    PubMed

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform. PMID:27249052

  18. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    PubMed Central

    Deckardt, Kathrin; Khol-Parisini, Annabella; Zebeli, Qendrim

    2013-01-01

    High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants. PMID:23736826

  19. Sensory characteristics of high-amylose maize-resistant starch in three food products

    PubMed Central

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2013-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g, 13.10 g/100 g, and 8.94 g/100 g RS, respectively, based on lyophilized dry weight. The HAM-RS2-enriched muffin had higher moisture content and was perceived as being significantly moister than the control according to the sensory evaluation. The addition of HAM-RS2 to muffins significantly enhanced all sensory characteristics and resulted in a higher mean overall likeability score. The HAM-RS2-enriched focaccia bread appeared significantly darker in color, was more dense, and had the perception of a well-done crust versus the control. A grainer texture was observed with the chicken curry containing HAM-RS2 which did not significantly affect overall likeability. We concluded that the addition of HAM-RS2 may not significantly alter consumer's acceptability in most food products. PMID:24804020

  20. Consumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans

    PubMed Central

    Al-Tamimi, Enas K.; Seib, Paul A.; Snyder, Brian S.; Haub, Mark D.

    2010-01-01

    Objective. The objective was to compare the postprandial glycemic and insulinemic responses to nutrition bars containing either cross-linked RS type 4 (RS4XL) or standard wheat starch in normoglycemic adults (n = 13; age = 27 ± 5 years; BMI = 25 ± 3 kg/m2). Methods. Volunteers completed three trials during which they consumed a glucose beverage (GLU), a puffed wheat control bar (PWB), and a bar containing cross-linked RS4 (RS4XL) matched for available carbohydrate content. Serial blood samples were collected over two hours and glucose and insulin concentrations were determined and the incremental area under the curve (iAUC) was calculated. Results. The RS4XL peak glucose and insulin concentrations were lower than the GLU and PWB (P < .05). The iAUC for glucose and insulin were lower following ingestion of RS4 compared with the GLU and PWB trials. Conclusions. These data illustrate, for the first time, that directly substituting standard starch with RS4XL, while matched for available carbohydrates, attenuated postprandial glucose and insulin levels in humans. It remains to be determined whether this response was due to the dietary fiber and/or resistant starch aspects of the RS4XL bar. PMID:20798767

  1. Development, relative retention, and productivity of red flour beetle on resistant starches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development, relative retention, and fecundity of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), on six different types of starches, flour, and flour plus yeast was investigated in the laboratory. The viability of T. castaneum eggs was checked initially by placin...

  2. A Putative Gene sbe3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancer, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world’s population. A japonica mutant ‘Jiang...

  3. Greater satiety response with resistant starch and corn bran in human subjects.

    PubMed

    Willis, Holly J; Eldridge, Alison L; Beiseigel, Jeannemarie; Thomas, William; Slavin, Joanne L

    2009-02-01

    Some studies suggest high-fiber foods are more satiating than foods with little or no fiber. However, we hypothesized that certain types of dietary fiber may enhance satiety more than others. Healthy men and women (N = 20) participated in this acute, randomized double-blind, crossover study comparing the effects of 4 fibers and a low-fiber (LF) treatment on satiety. On 5 separate visits, fasting subjects consumed either a LF muffin (1.6 g fiber) or 1 of 4 high-fiber muffins (8.0-9.6 g fiber) for breakfast. The subjects used 4 questions on 100 mm visual analogue scales to rate satiety at baseline and at regular intervals for 180 minutes after muffin consumption. Responses were analyzed as area under the curve and significant differences from baseline. Satiety differed among treatments. Resistant starch and corn bran had the most impact on satiety, whereas polydextrose had little effect and behaved like the LF treatment. Results from this study indicate that not all fibers influence satiety equally. PMID:19285600

  4. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior

    PubMed Central

    Lyte, Mark; Chapel, Ashley; Lyte, Joshua M.; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J.

    2016-01-01

    The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control

  5. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior.

    PubMed

    Lyte, Mark; Chapel, Ashley; Lyte, Joshua M; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J

    2016-01-01

    The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control

  6. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.).

    PubMed

    Yang, Ruifang; Sun, Chunlong; Bai, Jianjiang; Luo, Zhixiang; Shi, Biao; Zhang, Jianming; Yan, Wengui; Piao, Zhongze

    2012-01-01

    Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs. PMID:22937009

  7. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    PubMed

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers. PMID:24792982

  8. Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Haripriya, Sundaramoorthy

    2013-06-01

    The objective of this study was to evaluate the production, physico-chemical and functional properties of Resistant starch (RS) from red kidney bean starch by enzymatic method. Native and gelatinized starch were subjected to enzymatic hydrolysis (pullulanase, 40 U/g/10 h), autoclaved (121 °C/30 min), stored under refrigeration (4 °C/24 h), and lyophilized. The enzymatic hydrolysis and thermal treatment of starch increased the formation of RS which showed an increase in water absorption and water solubility indexes and a decrease in swelling power due to hydrolytic and thermal process. The process for obtaining RS changed the crystallinity pattern from C to B and increased the crystallinity due to the retrogradation process. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of starch molecules. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to the retrogradation and recrystallization (P<0.05). PMID:23618263

  9. Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men123

    PubMed Central

    Maki, Kevin C.; Pelkman, Christine L.; Finocchiaro, E. Terry; Kelley, Kathleen M.; Lawless, Andrea L.; Schild, Arianne L.; Rains, Tia M.

    2012-01-01

    This study evaluated the effects of 2 levels of intake of high-amylose maize type 2 resistant starch (HAM-RS2) on insulin sensitivity (SI) in participants with waist circumference ≥89 (women) or ≥102 cm (men). Participants received 0 (control starch), 15, or 30 g/d (double-blind) of HAM-RS2 in random order for 4-wk periods separated by 3-wk washouts. Minimal model SI was assessed at the end of each period using the insulin-modified i.v. glucose tolerance test. The efficacy evaluable sample included 11 men and 22 women (mean ± SEM) age 49.5 ± 1.6 y, with a BMI of 30.6 ± 0.5 kg/m2 and waist circumference 105.3 ± 1.3 cm. A treatment main effect (P = 0.018) and a treatment × sex interaction (P = 0.033) were present. In men, least squares geometric mean analysis for SI did not differ after intake of 15 g/d HAM-RS2 (6.90 × 10−5 pmol−1 · L−1 × min−1) and 30 g/d HAM-RS2 (7.13 × 10−5 pmol−1 · L−1 × min−1), but both were higher than after the control treatment (4.66 × 10−5 pmol−1 · L−1 × min−1) (P < 0.05). In women, there was no difference among the treatments (overall least squares ln-transformed mean ± pooled SEM = 1.80 ± 0.08; geometric mean = 6.05 × 10−5 pmol−1 · L−1 × min−1). These results suggest that consumption of 15–30 g/d of HAM-RS2 improves SI in men. Additional research is needed to understand the mechanisms that might account for the treatment × sex interaction observed. PMID:22357745

  10. Rheological, physical, and sensory attributes of gluten-free rice cakes containing resistant starch.

    PubMed

    Tsatsaragkou, Kleopatra; Papantoniou, Maria; Mandala, Ioanna

    2015-02-01

    In this study the effect of resistant starch (RS) addition on gluten-free cakes from rice flour and tapioca starch physical and sensorial properties was investigated. Increase in RS concentration made cake batters less elastic (drop of G'(ω), G''(ω) values) and thinner (viscosity decreased). Cakes specific volume increased with an increase in RS level and was maximized for 15 g/100 g RS, although porosity values were significantly unaffected by RS content. Crumb grain analysis exhibited a decrease in surface porosity, number of pores and an increase in average pore diameter as RS concentration increased. During storage, cake crumb remained softer in formulations with increasing amounts of RS. Sensory evaluation of cakes demonstrated the acceptance of all formulations, with cake containing 20 g/100 g RS mostly preferred. Gluten-free cakes with improved quality characteristics and high nutritional value can be manufactured by the incorporation of RS. PMID:25604540

  11. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.

    1998-01-01

    The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.

  12. [Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].

    PubMed

    Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an

    2016-03-01

    A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV. PMID:27400508

  13. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  14. Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    PubMed Central

    So, Po-Wah; Yu, Wei-Sheng; Kuo, Yu-Ting; Wasserfall, Clive; Goldstone, Anthony P.; Bell, Jimmy D.; Frost, Gary

    2007-01-01

    Background Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation. PMID:18074032

  15. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children

    PubMed Central

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( P<0.0001).  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt ( P<0.05).  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale) sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( P<0.05) including increased fecal acetate ( P=0.02), and butyrate ( P=0.089) from resistant starch (RS) fermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  16. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children.

    PubMed

    Aryana, Kayanush; Greenway, Frank; Dhurandhar, Nikhil; Tulley, Richard; Finley, John; Keenan, Michael; Martin, Roy; Pelkman, Christine; Olson, Douglas; Zheng, Jolene

    2015-01-01

    The rising prevalence of obesity and the vulnerability of the pediatric age group have highlighted the critical need for a careful consideration of effective, safe, remedial and preventive dietary interventions.  Amylose starch (RS2) from high-amylose maize (HAM) ferments in the gut and affects body weight.   One hundred and ten children, of 7-8 (n=91) or 13-14 (n=19) years of age scored the sensory qualities of a yogurt supplemented with either HAM-RS2 or an amylopectin starch.  The amylopectin starch yogurt was preferred to the HAM-RS2-enriched yogurt by 7-8 year old panelists ( P<0.0001).  Appearance, taste, and sandiness scores given by 13- to 14-year-old panelists were more favorable for the amylopectin starch yogurt than for HAM-RS2-enriched yogurt ( P<0.05).  HAM-RS2 supplementation resulted in acceptable (≥6 on a 1-9 scale) sensory and hedonic ratings of the yogurt in 74% of subjects.  Four children consumed a HAM-RS2-enriched yogurt for four weeks to test its fermentability in a clinical trial.  Three adolescents, but not the single pre-pubertal child, had reduced stool pH ( P=0.1) and increased stool short-chain fatty acids (SCFAs) ( P<0.05) including increased fecal acetate ( P=0.02), and butyrate ( P=0.089) from resistant starch (RS) fermentation and isobutyrate ( P=0.01) from protein fermentation post-treatment suggesting a favorable change to the gut microbiota.  HAM-RS2 was not modified by pasteurization of the yogurt, and may be a palatable way to increase fiber intake and stimulate colonic fermentation in adolescents.  Future studies are planned to determine the concentration of HAM-RS2 that offers the optimal safe and effective strategy to prevent excessive fat gain in children. PMID:26925221

  17. Films from resistant starch-pectin dispersions intended for colonic drug delivery.

    PubMed

    Meneguin, Andréia Bagliotti; Cury, Beatriz Stringhetti Ferreira; Evangelista, Raul Cesar

    2014-01-01

    Free films were obtained by the solvent casting method from retrograded starch-pectin dispersions at different polymer proportions and concentrations with and without plasticizer. Film forming dispersions were characterized according to their hardness, birefringence and rheological properties. The polymer dispersions showed a predominantly viscous behavior (G″>G') and the absence of plasticizers lead to building of stronger structures, while the occurrence of Maltese crosses in the retrograded dispersions indicates the occurrence of a crystalline organization. Analyses of the films included mechanical properties, thickness, superficial and cross sectional morphology, water vapor permeability, liquid uptake ability, X-ray diffractometry, in vitro dissolution and enzymatic digestion. The high resistant starch content (65.8-96.8%) assured the resistance of materials against enzymatic digestion by pancreatin. Changes in the X-ray diffraction patterns indicated a more organized and crystalline structure of free films in relation to isolated polymers. Increasing of pectin proportion and pH values favored the dissolution and liquid uptake of films. Films prepared with lower polymer concentration presented better barrier function (WVP and mechanical properties). PMID:24274490

  18. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods.

    PubMed

    Simsek, Sebnem; El, Sedef Nehir

    2012-10-15

    The aim of the study was the production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Starch was isolated from taro corms with 98% purity, and 10.4±0.5% amylose content. By application of heating, autoclaving, enzymatic debranching, retrogradation, and drying processes to taro starch for two times, resistant starch (RS) content was increased 16 fold (35.1±1.9%, dry basis). The expected glycemic index (eGI) of taro starch and taro resistant starch was determined as 60.6±0.5 and 51.9±0.9, respectively and the decrease in the glycemic index of taro resistant starch was found as statistically significant (P<0.05). The in vitro binding of bile acids by taro starch and taro resistant starch relative to cholesterol decreasing drug cholestyramine were 5.2±0.2% and 7.6±1.7%, respectively. PMID:22939332

  19. Inheritance of low pasting temperature in sweetpotato starch and the dosage effect of wild-type alleles.

    PubMed

    Katayama, Kenji; Tamiya, Seiji; Sakai, Tetsufumi; Kai, Yumi; Ohara-Takada, Akiko; Kuranouchi, Toshikazu; Yoshinaga, Masaru

    2015-09-01

    Sweetpotato (Ipomoea batatas (L.) Lam.), which is an outcrossing hexaploid, is one of the most important starch-producing crops in the world. During the last decade, new sweetpotato cultivars, e.g. 'Quick Sweet', which have approximately 20°C lower pasting temperature, slower retrogradation and higher digestibility of raw starch than ordinary cultivars, have been developed in Japan. Genetic analysis of these variants with low pasting temperature starch was conducted in this study. Using 8 variants and 15 normal clones, 26 families were generated. The results from analyzing these progenies suggested that this trait is a qualitative character controlled by one recessive allele (designated spt), which is inherited in a hexasomic manner. A dosage effect of the wild-type Spt allele was found for starch pasting temperature, although the effect was not linear. These results will aid breeders to develop sweetpotato cultivars with a range of starch pasting temperatures. PMID:26366119

  20. Inheritance of low pasting temperature in sweetpotato starch and the dosage effect of wild-type alleles

    PubMed Central

    Katayama, Kenji; Tamiya, Seiji; Sakai, Tetsufumi; Kai, Yumi; Ohara-Takada, Akiko; Kuranouchi, Toshikazu; Yoshinaga, Masaru

    2015-01-01

    Sweetpotato (Ipomoea batatas (L.) Lam.), which is an outcrossing hexaploid, is one of the most important starch-producing crops in the world. During the last decade, new sweetpotato cultivars, e.g. ‘Quick Sweet’, which have approximately 20°C lower pasting temperature, slower retrogradation and higher digestibility of raw starch than ordinary cultivars, have been developed in Japan. Genetic analysis of these variants with low pasting temperature starch was conducted in this study. Using 8 variants and 15 normal clones, 26 families were generated. The results from analyzing these progenies suggested that this trait is a qualitative character controlled by one recessive allele (designated spt), which is inherited in a hexasomic manner. A dosage effect of the wild-type Spt allele was found for starch pasting temperature, although the effect was not linear. These results will aid breeders to develop sweetpotato cultivars with a range of starch pasting temperatures. PMID:26366119

  1. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats.

    PubMed

    Kieffer, Dorothy A; Piccolo, Brian D; Vaziri, Nosratola D; Liu, Shuman; Lau, Wei L; Khazaeli, Mahyar; Nazertehrani, Sohrab; Moore, Mary E; Marco, Maria L; Martin, Roy J; Adams, Sean H

    2016-05-01

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function. PMID:26841824

  2. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes.

    PubMed

    Teixeira, Natália de Carvalho; Queiroz, Valéria Aparecida Vieira; Rocha, Maria Clara; Amorim, Aline Cristina Pinheiro; Soares, Thayana Oliveira; Monteiro, Marlene Azevedo Magalhães; de Menezes, Cícero Beserra; Schaffert, Robert Eugene; Garcia, Maria Aparecida Vieira Teixeira; Junqueira, Roberto Gonçalves

    2016-04-15

    The resistant starch (RS) contents in 49 sorghum genotypes and the effects of heat treatment using dry and wet heat on the grain and flour from two sorghum genotypes were investigated. The results showed a wide variation in the RS contents of the genotypes analyzed. The RS mean values were grouped into six distinct groups and ranged from 0.31±0.33 g/100 g to 65.66±5.46 g/100 g sorghum flour on dry basis. Dry heat causes minor losses in the RS content with retentions of up to 97.19±1.92% of this compound, whereas wet heat retained at most 6.98±0.43% of the RS. The SC 59 and (SSN76)FC6608 RED KAFIR BAZINE (ASA N23) cultivars, which have an average RS content of 65.51 g/100 g, were appropriate for human consumption, and the use of dry heat is presented as a better alternative for the preservation of RS in heat-treated grains. PMID:26616952

  3. Effect of granule size on the properties of lotus rhizome C-type starch.

    PubMed

    Lin, Lingshang; Huang, Jun; Zhao, Lingxiao; Wang, Juan; Wang, Zhifeng; Wei, Cunxu

    2015-12-10

    Lotus rhizome C-type starch was separated into different size fractions. Starch morphologies changed from irregular to elongated, ellipsoid, oval, and spherical with decreasing granule size. The small- and very-small-sized fractions had a centric hilum, and the other size fractions had an eccentric hilum. The different size fractions all showed C-type crystallinity, pseudoplasticity and shear-thinning rheological properties. The range of amylose content was 25.6 to 26.6%, that of relative crystallinity was 23.9 to 25.8%, that of swelling power was 29.0 to 31.4 g/g, and that of gelatinization enthalpy was 12.4 to 14.2J/g. The very-small-sized fraction had a significantly lower short-range ordered degree and flow behavior index and higher scattering peak intensity, water solubility, gelatinization peak temperature, gelatinization conclusion temperature, consistency coefficient, hydrolysis degrees, and digestion rate than the large-sized fraction. Granule size significantly positively influenced short-range ordered structure and swelling power and negatively influenced scattering peak intensity, water solubility, hydrolysis and digestion of starch (p<0.01). PMID:26428146

  4. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  5. Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor

    SciTech Connect

    Fujio, Y.; Ogato, M.; Ueda, S.

    1985-08-01

    Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/l broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate. 10 references.

  6. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistant starch (RS) has properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking me...

  7. Influence of starch source on sporulation and enterotoxin production by Clostridium perfringens type A.

    PubMed

    Labbe, R; Somers, E; Duncan, C

    1976-03-01

    Of 16 different starch preparations tested, Clostridium perfringes NCTC 8798 yielded maximum sporulation and enterotoxin formation when ICN-soluble starch was included in Duncan and Strong sporulation medium. In general soluble starches were better than potato, corn, or arrowroot starch with regard to these two parameters. PMID:180885

  8. Measurement of resistant starch content in cooked rice and analysis of gelatinization and retrogradation characteristics.

    PubMed

    Nakayoshi, Yuuki; Nakamura, Sumiko; Kameo, Yoji; Shiiba, Daisuke; Katsuragi, Yoshihisa; Ohtsubo, Ken'ichi

    2015-01-01

    Digestion-resistant starch (RS) has many physiologic functions. The RS content is measured by enzymatically degrading flour samples according to the method of the Association of Official Analytical Chemists. Experiments have been performed with wheat, corn, and other grains, but there are no data for cooked rice grains in the form ingested by humans. Thus, we investigated a method to measure RS that is suitable for cooked rice grains using rice cultivars that are reported to differentially increase postprandial blood glucose in humans. Using a method for cooking individual rice grains and optimized enzyme reaction conditions, we established an RS measurement method. We also found that the amylopectin crystal condition affects the RS content measured using our method. PMID:25996617

  9. Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels.

    PubMed

    Liu, Dongli; Parker, Mary L; Wellner, Nikolaus; Kirby, Andrew R; Cross, Kathryn; Morris, Victor J; Cheng, Fang

    2013-09-12

    Starch granule structure within wild-type and ae high-amylose mutant maize kernels has been mapped in situ using light, electron and atomic force microscopy, and both Raman and infra-red spectroscopy. The population of wild-type starch granules is found to be homogenous. The ae mutant granule population is heterogeneous. Heterogeneity in chemical and physical structure is observed within individual granules, between granules within cells, and spatially within the kernel. The highest level of heterogeneity is observed in the region where starch is first deposited during kernel development. Light microscopy demonstrates structural diversity through use of potassium iodide/iodine staining and polarised microscopy. Electron and atomic force microscopy, and infra-red and Raman spectroscopy defined the nature of the structural changes within granules. The methodology provides novel information on the changes in starch structure resulting from kernel development. PMID:23911471

  10. Enzymatic properties and regulation of ZPU1, the maize pullulanase-type starch debranching enzyme.

    PubMed

    Wu, Chunyuan; Colleoni, Christophe; Myers, Alan M; James, Martha G

    2002-10-01

    Starch debranching enzymes (DBE) are required for mobilization of carbohydrate reserves and for the normal structural organization of storage glucan polymers. Two isoforms, the pullulanase-type DBEs and the isoamylase-type DBEs, are both highly conserved in plants. To address DBE functions in starch assembly and breakdown, this study characterized the biochemical activity of ZPU1, a pullulanase-type DBE that is the product of the maize Zpu1 gene. Assays showed directly that recombinant ZPU1 (ZPU1r) expressed in Escherichia coli functions as a pullulanase-type enzyme, and 1H-NMR spectroscopy demonstrated that ZPU1r specifically hydrolyzes alpha(1-->6) branch linkages. Preferred substrates for ZPU1r hydrolytic activity were determined, as were pH, temperature, and thermal stability optima. Kinetic properties of ZPU1r with respect to two substrates, beta-limit dextrin and pullulan, were determined. ZPU1 activity was increased by incubation with thioredoxin h, and native activity was decreased in mutants that accumulate soluble sugars, suggesting potential regulatory mechanisms. PMID:12234486

  11. Resistant starch is more effective than cholestyramine as a lipid-lowering agent in the rat.

    PubMed

    Younes, H; Levrat, M A; Demigné, C; Rémésy, C

    1995-09-01

    Amylase-resistant starch (RS) represents a substrate for the bacterial flora of the colon, and the question arises as whether RS shares with soluble fibers common mechanisms for their lipid-lowering effects. It is uncertain whether a cholesterol-lowering effect depends basically on an enhanced rate of steroid excretion or whether colonic fermentations also play a role in this effect. In the present study, the effect of RS (25% raw potato starch), of a steroid sequestrant (0.8% cholestyramine), or both were compared on bile acid excretion and lipid metabolism in rats fed semipurified diets. RS diets led to a marked rise in cecal size and the cecal pool of short-chain fatty acids (SCFA), as well as SCFA absorption; cholestyramine did not noticeably affect cecal fermentation. Whereas cholestyramine was particularly effective at enhancing bile acid excretion, RS was more effective in lowering plasma cholesterol (-32%) and triglycerides (-29%). The activity of 3-hydroxy-3-methylglutaryl-CoA reductase was increased fivefold by cholestyramine and twofold by RS. This induction in rats fed RS diets was concomittant to a depressed fatty acid synthase activity. In rats fed the RS diet, there was a lower concentration of cholesterol in all lipoprotein fractions, especially the (d = 1.040-1.080) fraction high-density lipoprotein (HDL1), while those fed cholestyramine had only a significant reduction of HDL1 cholesterol. In contrast to cholestyramine, RS also depressed the concentration of triglycerides in the triglyceride-rich lipoprotein fraction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8577229

  12. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet

    PubMed Central

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host. PMID:27303373

  13. Effect of storage time on in vitro digestion rate and resistant starch content of tortillas elaborated from commercial corn masas.

    PubMed

    Agama-Acevedo, Edith; Rendón-Villalobos, Rodolfo; Tovar, Juscelino; Trejo-Estrada, Sergio Rubén; Bello-Pérez, Luis Arturo

    2005-03-01

    Tortilla samples were elaborated by four small commercial factories in Mexico, employing masas prepared with the traditional nixtamalization process. Samples were stored at 4 degrees C for up to 72 hours and their chemical composition and in vitro starch digestibility features were evaluated. Chemical composition did not change with the storage time, but soluble carbohydrates decreased slightly during storage. A significant decrease in available starch content upon storage was observed, concomitant with increased resistant starch (RS) levels. These changes are possibly due to retrogradation. Retrograded resistant starch (RRS) values increased with storage time; in some samples, RRS represented more than 75% of total RS whereas in others it only accounted for 25%. The digestion rate (DR) in the freshly prepared tortillas was similar for the various samples, but after 72 h storage some differences among tortillas were found. Also, when a single tortilla sample was compared throughout the different storage times, lower DRs were determined in samples subjected to prolonged storage, which is related to the concomitant. increase in RRS. The differences found among the various tortilla samples may be due to minor variations in the commercial processing conditions and to the use of different corn varieties. PMID:16187683

  14. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  15. Characterization of chemically modified waxy, partially waxy, and wild type tetraploid wheat starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheats (Triticum turgidum L. var. durum) contain two Granule Bound Starch Synthase (GBSS) genes (wx-A1and wx-B1) controlling amylose synthesis; the other major starch polymer in durum wheat is amylopectin. Starches with little or no amylose are “waxy.” A GBSS null (non-producing) gene results ...

  16. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance.

    PubMed

    Zhang, Yanhua; Ding, Longlong; Gu, Jiyou; Tan, Haiyan; Zhu, Libin

    2015-01-22

    A Highly efficient method was developed for preparing starch-based wood adhesives with high performance, using H2O2, a silane coupling agent and an olefin monomer as an oxidant, cross-linking agent and comonomer, respectively. The effects of various parameters on the shear adhesive strength were investigated in the dry state (DS) and wet state (WS). The results indicated that the bonding strength of starch-based wood adhesives could reach 7.88 MPa in dry state and 4.09 MPa in wet state. The oxidation could reduce the content of the hydroxyl transforming into carboxyl and aldehyde groups, and the graft copolymerization enhanced the thermal stability, which improved the bonding strength and water resistance. The starch-based adhesive and the fractures in the bonded joints were analyzed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The improved properties were attributed to the modified of microstructure of the graft-copolymerized starch-based adhesive. PMID:25439864

  17. Changes in Bowel Microbiota Induced by Feeding Weanlings Resistant Starch Stimulate Transcriptomic and Physiological Responses

    PubMed Central

    Young, Wayne; Roy, Nicole C.; Lee, Julian; Lawley, Blair; Otter, Don; Henderson, Gemma; McCann, Mark J.

    2012-01-01

    The ability to predictably engineer the composition of bowel microbial communities (microbiota) using dietary components is important because of the reported associations of altered microbiota composition with medical conditions. In a synecological study, weanling conventional Sprague-Dawley rats (21 days old) were fed a basal diet (BD) or a diet supplemented with resistant starch (RS) at 5%, 2.5%, or 1.25% for 28 days. Pyrosequencing of 16S rRNA genes and temporal temperature gradient electrophoresis (TTGE) profiles in the colonic digesta showed that rats fed RS had altered microbiota compositions due to blooms of Bacteroidetes and Actinobacteria. The altered microbiota was associated with changes in colonic short-chain fatty acid (SCFA) concentrations, colonic-tissue gene expression (Gsta2 and Ela1), and host physiology (serum metabolite profiles and colonic goblet cell numbers). Comparisons between germ-free and conventional rats showed that transcriptional and serum metabolite differences were mediated by the microbiota and were not the direct result of diet composition. Altered transcriptomic and physiological responses may reflect the young host's attempts to maintain homeostasis as a consequence of exposure to a new collection of bacteria and their associated biochemistry. PMID:22798356

  18. Influence of resistant starches on chemical and functional properties of tarhana.

    PubMed

    Bayrakçı, Hilal Arslan; Bilgiçli, Nermin

    2015-08-01

    Two different commercial resistant starches (RSa and RSb) were used in tarhana formulation on the basis of its replacement with wheat flour at 15, 30 and 45 % levels. Color values, some chemical, functional and sensory properties of tarhana were determined. Tarhana containing 30-45 % RSa gave lower darkness and yellowness compared to other samples. Increasing levels of RSa/RSb in tarhana formulation decreased protein and Fe, K, Mg, P and Zn content of the final products. Development in acidity was negatively affected above 30 % RS addition level. Although long fermentation period of tarhana dough, RS content of the tarhana samples changed between 5.4 and 26.2 %. Control tarhana was found to have 0.9 % RS content. Cooked viscosity decreased in tarhana soup with RS addition from 1,454 cP (control) to 166 cP. RSb showed more remarkable effect on cooked viscosity than RSa. High levels of RSa improved foaming capacity, foam stability, water and oil absorption capacity of the tarhana samples. RSa successfully incorporated into tarhana formulation up to 30 % level with minimum adverse effect on chemical and sensory properties. PMID:26243962

  19. Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein.

    PubMed

    Tousen, Yuko; Abe, Fumiko; Ishida, Tatsuya; Uehara, Mariko; Ishimi, Yoshiko

    2011-10-01

    Daidzein is metabolized to equol in the gastrointestinal tract by gut microflora. Equol has greater estrogenic activity than genistein and daidzein, with its production shown to be promoted by dietary fiber. It is known that resistant starch (RS) is not absorbed in the proximal intestine and acts as dietary fiber in the colon. In this study, we investigated the combined effects of daidzein and RS intake on equol production, bone mineral density, and intestinal microflora in ovariectomized (OVX) mice. Female mice of the ddY strain, aged 8 weeks, were either sham operated (n = 6) or OVX. The OVX mice were randomly divided into 5 groups: OVX control (n = 6), OVX fed 0.1% daidzein-supplemented diet (OVX + Dz, n = 8), OVX fed 0.1% daidzein- and 12% RS-supplemented diet (OVX + Dz + RS, n = 8), OVX fed 12% RS-supplemented diet (OVX + RS, n = 8), and OVX who received daily subcutaneous administration of 17 β-estradiol (n = 6). After 6 weeks, urinary equol concentration was significantly higher in the OVX + Dz + RS group than in the OVX + Dz group. The bone mineral density of the whole tibia was higher in the OVX + Dz +RS group compared with the OVX + Dz group. The occupation ratios of Bifidobacterium spp in the cecal microflora in groups fed RS were significantly higher than those in the other groups. The present study demonstrated that RS may increase the bioavailability of daidzein. PMID:21550090

  20. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    PubMed

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. PMID:26642841

  1. Characterization of banana starches obtained from cultivars grown in Brazil.

    PubMed

    de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

    2016-08-01

    The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications. PMID:27180297

  2. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    PubMed

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion. PMID:22917081

  3. Crystalline and structural properties of acid-modified lotus rhizome C-type starch.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Yang, Yang; Zhang, Fengmin; Wei, Cunxu

    2014-02-15

    The crystalline and structural properties of acid-modified C-type starch from lotus rhizomes were investigated using a combination of techniques. The degradation of granule during hydrolysis began from the end distant from the hilum and then propagated into the center of granule, accompanied by loss of birefringence. The crystallinity changed from C-type to A-type via CA-type during hydrolysis. At the early stage of hydrolysis, the amylose content substantially reduced, the peak and conclusion gelatinization temperatures increased, and the enthalpy decreased. During hydrolysis, the double helix content gradually increased and the amorphous component decreased, the lamellar peak intensity firstly increased and then decreased accompanied by hydrolysis of amorphous and crystalline regions. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs. PMID:24507349

  4. Effects of resistant starch on behaviour, satiety-related hormones and metabolites in growing pigs.

    PubMed

    Souza da Silva, C; Haenen, D; Koopmans, S J; Hooiveld, G J E J; Bosch, G; Bolhuis, J E; Kemp, B; Müller, M; Gerrits, W J J

    2014-09-01

    Resistant starch (RS) has been suggested to prolong satiety in adult pigs. The present study investigated RS-induced changes in behaviour, satiety-related hormones and metabolites in catheterized growing pigs to explore possible underlying mechanisms for RS-induced satiety. In a cross-over design with two 14-day periods, 10 pigs (initial BW: 58 kg) were assigned to two treatments comprising diets containing either 35% pregelatinized starch (PS) or 34% retrograded starch (RS). Diets were isoenergetic on gross energy. Pigs were fed at 2.8× maintenance. Postprandial plasma response of satiety-related hormones and metabolites was measured at the end of each period using frequent blood sampling. Faecal and urinary energy losses were measured at the end of each period. Behaviour was scored 24 h from video recordings using scan sampling. Energy digestibility and metabolizability were ~6% lower in RS compared with PS diet (P<0.001), and metabolizable energy (ME) intake was ~3% lower in RS-fed than in PS-fed pigs (P<0.001). RS-fed pigs showed less feeder-directed (P=0.001) and drinking (P=0.10) behaviours than PS-fed pigs throughout the day. Postprandial peripheral short-chain fatty acid (SCFA) levels were higher in RS-fed than in PS-fed pigs (P<0.001). Postprandial glucose and insulin responses were lower in RS-fed than in PS-fed pigs (P<0.001). Triglyceride levels were higher in RS-fed than in PS-fed pigs (P<0.01), and non-esterified fatty acid levels did not differ between diets (P=0.90). Glucagon-like peptide-1 (GLP-1) levels were lower in RS-fed than in PS-fed pigs (P<0.001), and peptide tyrosine tyrosine (PYY) levels did not differ between diets (P=0.90). Blood serotonin levels were lower (P<0.001), whereas monoamine oxidase activity (P<0.05) and tryptophan (P<0.01) levels were higher in RS-fed than in PS-fed pigs. Despite a lower ME intake, RS seemed to prolong satiety, based on behavioural observations. Possible underlying mechanisms for RS-induced satiety include

  5. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters.

    PubMed

    Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F

    1999-01-29

    To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol

  6. Distinct Functional Properties of Isoamylase-Type Starch Debranching Enzymes in Monocot and Dicot Leaves1[C][W][OPEN

    PubMed Central

    Facon, Maud; Lin, Qiaohui; Azzaz, Abdelhamid M.; Hennen-Bierwagen, Tracie A.; Myers, Alan M.; Putaux, Jean-Luc; Roussel, Xavier; D’Hulst, Christophe; Wattebled, Fabrice

    2013-01-01

    Isoamylase-type starch debranching enzymes (ISA) play important roles in starch biosynthesis in chloroplast-containing organisms, as shown by the strict conservation of both catalytically active ISA1 and the noncatalytic homolog ISA2. Functional distinctions exist between species, although they are not understood yet. Numerous plant tissues require both ISA1 and ISA2 for normal starch biosynthesis, whereas monocot endosperm and leaf exhibit nearly normal starch metabolism without ISA2. This study took in vivo and in vitro approaches to determine whether organism-specific physiology or evolutionary divergence between monocots and dicots is responsible for distinctions in ISA function. Maize (Zea mays) ISA1 was expressed in Arabidopsis (Arabidopsis thaliana) lacking endogenous ISA1 or lacking both native ISA1 and ISA2. The maize protein functioned in Arabidopsis leaves to support nearly normal starch metabolism in the absence of any native ISA1 or ISA2. Analysis of recombinant enzymes showed that Arabidopsis ISA1 requires ISA2 as a partner for enzymatic function, whereas maize ISA1 was active by itself. The electrophoretic mobility of recombinant and native maize ISA differed, suggestive of posttranslational modifications in vivo. Sedimentation equilibrium measurements showed recombinant maize ISA1 to be a dimer, in contrast to previous gel permeation data that estimated the molecular mass as a tetramer. These data demonstrate that evolutionary divergence between monocots and dicots is responsible for the distinctions in ISA1 function. PMID:24027240

  7. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    NASA Astrophysics Data System (ADS)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  8. Functions of Heteromeric and Homomeric Isoamylase-Type Starch-Debranching Enzymes in Developing Maize Endosperm1[W][OA

    PubMed Central

    Kubo, Akiko; Colleoni, Christophe; Dinges, Jason R.; Lin, Qiaohui; Lappe, Ryan R.; Rivenbark, Joshua G.; Meyer, Alexander J.; Ball, Steven G.; James, Martha G.; Hennen-Bierwagen, Tracie A.; Myers, Alan M.

    2010-01-01

    Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism. PMID:20448101

  9. Resistant starch does not affect zinc homeostasis in rural Malawian children☆,☆☆

    PubMed Central

    Thakwalakwa, Chrissie; Ordiz, M. Isabel; Maleta, Ken; Westcott, Jamie; Ryan, Kelsey; Hambidge, K. Michael; Miller, Leland V.; Young, Graeme; Mortimer, Elissa; Manary, Mark J.; Krebs, Nancy F.

    2015-01-01

    Objective This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. Methods This was a small controlled clinical trial to determine the effects of added dietary RS on zinc homeostasis among 17 stunted children, aged 3–5 years consuming a plant-based diet and at risk for perturbed zinc homeostasis. Dual zinc stable isotope studies were performed before and after 28 d of intervention with RS, so that each child served as their own control. The RS was incorporated into fried wheat flour dough and given under direct observation twice daily for 28 d. Changes in zinc homeostatic measures were compared using paired Student's t-tests and linear regression analysis. Results Children had a mean height-for-age Z-score of −3.3, and consumed animal source foods ≤twice per month. Their habitual diet contained a phytate:zinc molar ratio of 34:1. Children avidly consumed the RS without complaints. EFZ was 0.8±0.4 mg/d (mean±SD) both before and after the intervention. Fractional absorption of zinc was 0.38±0.08 and 0.35±0.06 before and after the RS intervention respectively. NAZ was 1.1±0.5 and 0.6±0.7 before and after the RS intervention. This reduction of NAZ corresponded with diminished dietary zinc intake on the study day following intervention with RS. Regression analysis indicated no change in zinc absorption relative to dietary intake as a result of the RS intervention. Conclusion Consumption of RS did not improve zinc homeostasis in rural African children without zinc deficiency. RS was well tolerated in this setting. PMID:25744509

  10. Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion.

    PubMed

    Teng, Anju; Witt, Torsten; Wang, Kai; Li, Ming; Hasjim, Jovin

    2016-03-30

    The objective of the present study is to understand the changes in starch structures during digestion and the structures contributing to slow digestion properties. The molecular, crystalline, and granular structures of native waxy maize, normal maize, high-amylose maize, and normal potato starch granules were monitored using SEC, XRD, DSC, and SEM. The amylose and amylopectin molecules of all four starches were hydrolyzed to smaller dextrins, with some having linear molecular structure. Neither the A- nor B-type crystallinity was resistant to enzyme hydrolysis. Starch crystallites with melting temperature above 120°C appeared in waxy and normal maize starches after digestion, suggesting that the linear dextrins retrograded into thermally stable crystalline structure. These crystallites were also observed for high-amylose maize starch before and after digestion, contributing to its low enzyme digestibility. On the contrary, the enzyme-resistant granular structure of native normal potato starch was responsible for its low susceptibility to enzyme hydrolysis. PMID:26794941

  11. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules.

    PubMed

    Li, Ji-Hong; Guiltinan, Mark J; Thompson, Donald B

    2007-12-10

    In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation. PMID:17765880

  12. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures.

    PubMed

    Neder-Suárez, David; Amaya-Guerra, Carlos A; Quintero-Ramos, Armando; Pérez-Carrillo, Esther; Alanís-Guzmán, María G de J; Báez-González, Juan G; García-Díaz, Carlos L; Núñez-González, María A; Lardizábal-Gutiérrez, Daniel; Jiménez-Castro, Jorge A

    2016-01-01

    Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS) content in cornstarch were evaluated. The cornstarch was conditioned at 20%-40% moisture contents and extruded in the range 90-130 °C and at screw speeds in the range 200-360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g) after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time. PMID:27537864

  13. Feeding a diet containing resistant potato starch influences gastrointestinal tract traits and growth performance of weaned pigs.

    PubMed

    Heo, J M; Agyekum, A K; Yin, Y L; Rideout, T C; Nyachoti, C M

    2014-09-01

    The aim was to evaluate the effects of feeding resistant potato starch (RPS) as a natural source of resistant starch to weaned pigs for 28 d immediately after weaning. Sixty piglets (Yorkshire-Landrace × Duroc) weaned at 21 ± 2 d (1:1 male:female) with an initial BW of 7.2 ± 0.78 kg were assigned in a completely randomized design to 1 of 5 dietary treatments to give 6 observations per treatment and 2 pigs per pen. Dietary treatments consisted of a negative control corn-soybean meal-wheat-wheat middlings-based diet (NC; no antimicrobial agents added) or the NC supplemented with RPS either as powder or in capsules and each included at 0.5 or 1.0% as a top-dressing on each day. Diets were formulated to meet 1998 NRC specifications. Pigs were offered the experimental diets on an ad libitum basis for 28 d and water was available at all times. The ADG, ADFI, and G:F were determined weekly. Fecal score was determined daily for 14 d after weaning. At the conclusion of study, 1 pig from each pen was randomly selected and euthanized (n = 6 per treatment) to determine visceral organ weight, digesta pH, VFA, and ammonia N (NH3-N) concentrations. Resistant potato starch supplementation improved (P < 0.001) fecal score, and pigs offered 1.0% RPS had more solid feces (P < 0.05) than those offered 0.5% RPS during the first 14 d after weaning, independent of the form of RPS. Resistant potato starch supplementation decreased (P < 0.05) ileal and cecal digesta pH regardless of the levels of RPS or mode of delivery. The total VFA concentrations in cecal digesta were greater (P < 0.05) but the molar proportion of branched-chain fatty acids were lower (P < 0.05) for pigs fed the RPS-containing diets compared with those fed the NC, irrespective of the RPS levels or the form of RPS. However, there were no differences (P > 0.10) in visceral organ weights, growth performance, and digestibilities of DM, CP, Ca, and P among treatments. The results of this experiment indicate that

  14. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis

    PubMed Central

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS–PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: kcat = 343 and 727 s−1, Km = 0.25 and 0.16 mg mL−1, kcat/Km (specificity constant) = 1374 and 4510 mg mL−1 s−1, respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme. PMID:24293795

  15. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    PubMed

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion. PMID:22059442

  16. In vivo degradation of alginate in the presence and in the absence of resistant starch.

    PubMed

    Jonathan, Melliana; Souza da Silva, Carol; Bosch, Guido; Schols, Henk; Gruppen, Harry

    2015-04-01

    This study evaluated the intestinal degradability of alginate during 74 days intake in pigs as models for humans. Diets contained pregelatinized starch, retrograded starch, alginate, or a mix of retrograded starch and alginate. Faeces were collected on day 1, 3, 7, 14, 39 and 74. Clear trends in intestinal alginate degradation were observed. Up to day 39, the total tract digestibility of alginate was limited (0.52 ± 0.10), and was lower with the inclusion of retrograded starch in the diet (0.34 ± 0.02). More than 90% of the faecal alginate was insoluble in water, which may explain the low digestibility of the alginate. The digestibility of mannuronic acid (M) was 2-3 times higher than that of guluronic acid (G). The changes of G:M ratio and the relative amounts of alginate oligosaccharides between day 39 and 74 indicated that the microbiota needed more than 39 days to adapt to alginate. This study demonstrated that in-depth analyses of dietary fibres are valuable in understanding the fate of the dietary fibres in the large intestine as it was shown that degradation of a dietary fibre depends not only on the properties of the fibre itself, but also on the other dietary fibres present in the diet and the adaptation time. PMID:25442531

  17. Resistance domain in type II superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1980-01-05

    We show that traveling domains with a finite resistance can exist in type II superconductors in the presence of a transport current. An experiment in which this effect generates an alternating electric field and current is proposed.

  18. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    PubMed

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. PMID:23911484

  19. Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose.

    PubMed

    Kong, Lingyan; Ziegler, Gregory R

    2014-10-13

    In the present study, we introduce a simple method to prepare inclusion complexes by "inserting" guest molecules into preformed "empty" V-type amylose helices. Ascorbyl palmitate (AscP) was used as a model guest material to investigate the effect of solvent environment, complexation temperature, annealing and guest concentration on inclusion complex formation. High complexation temperature was not necessary for encapsulating guest molecules in amylose helices, avoiding thermal degradation of guest compounds. This method would also avoid the wasting of guest materials because uncomplexed guest can be reused. It was found in the study that intermediate ethanol and acetone concentrations (generally 40-60%, v/v) at room temperature were appropriate for the complexation between V-amylose and AscP. Annealing, i.e. heat treatment in ethanol solutions at elevated temperatures (45-70 °C), was able to significantly increase the crystallinity of V-amylose and V-starch to as high as 65% and facilitate greater complexation evidenced from higher enthalpies, probably due to more regularly arranged helical cavities in larger crystalline phase. The complexation between V-amylose and AscP was also found to be enhanced with AscP concentration, while the dissociation temperature experienced a slight decrease. PMID:25037350

  20. Starch poisoning

    MedlinePlus

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  1. Metabolomic and transcriptomic responses induced in the livers of pigs by the long-term intake of resistant starch.

    PubMed

    Sun, Y; Yu, K; Zhou, L; Fang, L; Su, Y; Zhu, W

    2016-03-01

    The present study investigated metabolomic and transcriptomic responses in the livers of pigs to evaluate the effects of resistant starch on the body's metabolism at the extraintestinal level. Thirty-six Duroc× Landrace × Large White growing barrows (70 d of age) were randomly allocated to either the corn starch (CS) group or the raw potato starch (RPS) group with a randomized complete block design; each group consisted of 6 replicates (pens), with 3 pigs per pen. Pigs in the CS group were offered a corn-soybean-based diet, whereas pigs in the RPS group were put on a diet in which 230 (growing) or 280 g/kg (finishing) purified CS was replaced with purified RPS during a 100-d trial. The livers of pigs were collected for metabolome and gene expression analysis. Gas chromatography-mass spectrometry analysis showed that compared with the CS diet, the RPS diet decreased ( < 0.05) cholesterol and palmitic acid as well as increased ( < 0.05) 3-hydroxybutyric acid, which indicated the reduction of adipose weight and fatty acid biosynthesis and the elevation of fatty acid β-oxidation. In addition, 2-ketoglutaric acid and glucose-6-phosphate were increased (< 0.05) although pyruvic acid was decreased ( < 0.05) in the RPS group, indicating the upregulated capacity of glucose phosphorylation and glycolysis. Microarray analysis showed that the mRNA expression of (), (), and () were downregulated ( < 0.05) whereas (), (), and () were upregulated ( < 0.05) in the RPS diet, indicating a decrease in fatty acid intake and synthesis and an increase in fatty acid oxidation and glycerophospholipid synthesis. The results demonstrated that the long-term consumption of RPS could modulate hepatic lipid metabolism by decreasing fatty acid synthesis as well as increasing lipid oxidation and glycerophospholipid synthesis. PMID:27065270

  2. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

    PubMed Central

    Sun, Yue; Zhou, Liping; Fang, Lingdong; Su, Yong; Zhu, Weiyun

    2015-01-01

    Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups with a randomized block design. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified CS was replaced with purified RPS during a 100-day trial. Real-time PCR assay showed that RPS significantly decreased the number of total bacteria in the colonic digesta. MiSeq sequencing of the V3-V4 region of the 16S rRNA genes showed that RPS significantly decreased the relative abundance of Clostridium, Treponema, Oscillospira, Phascolarctobacterium, RC9 gut group, and S24-7-related operational taxonomic units (OTUs), and increased the relative abundance of Turicibacter, Blautia, Ruminococcus, Coprococcus, Marvinbryantia, and Ruminococcus bromii-related OTUs in colonic digesta and mucosa. Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome. Our findings suggest that long-term intake of high resistant starch (RS) diet may result in both positive and negative roles in gut health. PMID:26379652

  3. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    PubMed

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. PMID:23497862

  4. Including dietary fiber and resistant starch to increase satiety and reduce aggression in gestating sows.

    PubMed

    Sapkota, A; Marchant-Forde, J N; Richert, B T; Lay, D C

    2016-05-01

    Aggression during mixing of pregnant sows impacts sow welfare and productivity. The aim of this study was to increase satiety and reduce aggression by including dietary fiber and fermentable carbohydrates. Sows were housed in individual stalls 7 to 14 d after breeding (moving day was considered d 0 of treatment) and were fed (at 0700 h) with a CONTROL (corn-soybean meal based with no additional fiber sources), RSTARCH (10.8% resistant starch), BEETPULP (27.2% sugar beet pulp), SOYHULLS (19.1% soybean hulls), or INCSOY (14.05% soybean hulls) for 21 d (5 sows/diet × 5 diets × 8 replications = 200 sows). The CONTROL diet was targeted to contain 185 g(d∙sow) NDF and the other diets were targeted to contain 350 g(d∙sow) NDF. The INCSOY diet was fed at 2.2 kg/(d∙sow) and the other diets were fed at 2 kg(d∙sow). On d 22, sows were mixed in groups of 5 (at 1200 h). Behaviors in stalls (on d 1, 7, 14, and 21) and after mixing (d 22 and 23), heart rate (on d 1, 7, 14, and 21), blood metabolites (on d 2, 8, 15, 22, and 25), and the effects of diets on production were collected and analyzed. Sows stood more ( < 0.01) and rested less ( < 0.001) over time irrespective of the diet. Sows on BEETPULP stood more ( < 0.01) and sows on SOYHULLS rested more ( < 0.01). Sham chewing increased over days irrespective of the diet. Chewing behavior (bar and feeder) increased with days on diet ( < 0.001) and was lowest in sows on the SOYHULLS diet ( = 0.045). When mixed, biting frequency in the first hour was highest for sows on the CONTROL diet (236.5 ± 62.6) and lowest for sows on the RSTARCH diet (90.5 ± 30.5). Skin lesions increased ( < 0.001) 24 h after mixing sows irrespective of diet. Blood urea nitrogen (BUN) concentration was lowest in sows fed BEETPULP and SOYHULLS ( < 0.001). Serum glucose concentration was highest in sows fed RSTARCH and BEETPULP ( = 0.04), but there was no day effect ( = 0.62) or diet × day interaction ( = 0.60). The NEFA was greatest in sows fed

  5. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties.

    PubMed

    Ambigaipalan, P; Hoover, R; Donner, E; Liu, Q

    2014-01-15

    Pulse (faba bean [FB], black bean [BB] and pinto bean [PB]) starches were heat-moisture treated (HMT) at 80, 100 and 120°C for 12h at a moisture content of ∼23%. Structural changes on HMT were monitored by microscopy, HPAEC-PAD, ATR-FTIR, WAXS, DSC and susceptibility towards acid and enzyme hydrolysis. Amylopectin chain length distribution remained unchanged in all starches on HMT. In all starches, HMT increased crystallinity and gelatinisation temperatures. The gelatinization enthalpy remained unchanged in some starches, whereas it decreased slightly in other starches on HMT. Slowly digestible starch content decreased at all temperatures of HMT, whereas resistant starch content increased at HMT80 and HMT100 (HMT80>HMT100), but decreased at HMT120. Birefringence, B-type crystallites and acid hydrolysis decreased on HMT. The extent of the above changes varied amongst starch sources and genotypes. HMT altered the X-ray pattern from A+B→A. The results of this study showed that structural reorganisation of starch chains during HMT temperature was influenced by starch chain flexibility, starch chain interactions and crystalline stability of the native granules. PMID:24054228

  6. Resistant starch analysis of commonly consumed potatoes: Content varies by cooking method and service temperature but not by variety.

    PubMed

    Raatz, Susan K; Idso, Laura; Johnson, LuAnn K; Jackson, Matthew I; Combs, Gerald F

    2016-10-01

    Resistant starch (RS) has unique digestive and absorptive properties which may provide health benefits. We conducted a study to determine the contributions of cultivar, cooking method and service temperature on the RS contents of potatoes (Solanum tuberosum L.). We hypothesized that the RS content would vary by variety, cooking method and service temperature. Potatoes of three common commercial varieties (Yukon Gold, Dark Red Norland, and Russet Burbank) were subjected to two methods of cooking (baking or boiling) and three service temperatures: hot (65°C), chilled (4°C) and reheated (4°C for 6d; reheated to 65°C) and analyzed the starch content by modification of a commercially available assay. Results showed that RS content (g/100g) varied by cooking method and service temperature but not variety. Baked potatoes had higher RS contents than boiled; chilled potatoes had more RS than either hot or reheated. These results may assist in dietary choices for reducing chronic disease risk. PMID:27132853

  7. A standardized method for preparation of potatoes and analysis of their resistant starch content: Variation by cooking method and service temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of resistant starch (RS) may lead to reduced glycemia, improved satiety, and beneficial changes in gut microbiota due to its unique digestive and absorptive properties. We developed a standardized protocol for preparation of potatoes in order to assess their RS content and modified a com...

  8. Chemical composition and starch digestibility of tortillas prepared with non-conventional commercial nixtamalized maize flours.

    PubMed

    Hernández-Salazar, M; Agama-Acevedo, E; Sáyago-Ayerdi, S G; Tovar, J; Bello-Pérez, L A

    2006-01-01

    Non-conventional nixtamalized maize flours elaborated by a factory in Mexico were used for tortilla preparation. Tortillas were stored at 4 degrees C for up to 72 h and the total starch, available starch, resistant starch and retrograded resistant starch were assessed. The traditional white tortilla, used as a control, showed higher protein and fat contents than blue maize tortilla, whereas a maize-bean mixed tortilla had the highest protein, ash and fat contents. Lower total starch was obtained in the maize-bean tortilla than in white and blue maize tortillas. The available starch content in all tortillas decreased with the cold-storage, although the change was more marked for blue-maize tortillas. The maize-bean mixed tortillas exhibited the lowest in vitro digestibility, which is consistent with the relatively high resistant starch levels in the bean. Differences in resistant starch content were found between the two maize tortillas, which might be related to the softer texture of blue-maize tortilla. The starch digestibility features of these new types of nixtamalized maize flours open up the possibility of producing tortillas with variable nutritional properties. PMID:16849122

  9. Functionality of Chemically Modified Wild-Type, Partial Waxy and Waxy Starches from Tetraploid Wheats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial waxy (reduced-amylose) and fully waxy (amylose-free) tetraploid wheats (Triticum turgidum L. var durum) were developed by introgression of null alleles at the Wx-A1 and Wx-B1 loci from common hexaploid wheat (T. aestivum L.). Purified starches were obtained from each genotype, and chemicall...

  10. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    SciTech Connect

    Anderson, Timothy J.; Jones, Roger W.; Ai, Yongfeng; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-12-04

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-week study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  11. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification.

    PubMed

    Jo, A Ra; Kim, Ha Ram; Choi, Seung Jun; Lee, Joon Seol; Chung, Mi Nam; Han, Seon Kyeong; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-01

    Sweet potato Daeyumi starch was dually modified using glycogen branching enzyme (BE) from Streptococcus mutans and amylosucrase (AS) from Neisseria polysaccharea to prepare slowly digestible starch (SDS). Dually modified starches had higher SDS and resistant starch (RS) contents than control starch. The branched chain length distributions of the BE-modified starches indicated an increase in short side-chains [degree of polymerization (DP)≤12] compared with native starch. AS treatment of the BE-modified starches decreased the proportion of short side-chains and increased the proportion of long side-chains (DP≥25) and molecular mass. It also resulted in a B-type X-ray diffraction pattern and an increased relative crystallinity. Regarding thermal properties, the BE-modified starches showed no endothermic peak, whereas the BEAS-modified starches had a broader melting temperature range and lower melting enthalpy compared to native starch. The combined enzymatic treatment resulted in novel glucan polymers with slow digestion properties. PMID:27083356

  12. Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties.

    PubMed

    Kim, Ji Hyung; Kim, Ha Ram; Choi, Seung Jun; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-22

    We investigated dual modification of normal and waxy rice starch, focusing on digestibility. Amylosucrase (AS) was applied to maximize the slowly digestible and resistant starch fractions. AS-modified starches were adjusted to 25-40% moisture levels and heated at 100 °C for 40 min. AS-modified starches exhibited a B-type crystalline structure, and hydrothermal treatment (HTT) significantly (p < 0.05) increased the relative crystallinity with moisture level. The thermal transition properties of modified starches were also affected by the moisture level. The contents of rapidly digestible starch fraction in AS-modified normal and waxy starches (43.3 ± 3.9 and 18.1 ± 0.6%) decreased to 13.0 ± 1.0 and 0.3 ± 0.3% after HTT, accordingly increasing the low digestible fractions. Although the strengthened crystalline structures of AS-modified starches by HTT were not stable enough to maintain their rigidity under cooking, application of AS and HTT was more effective in waxy rice starch than normal rice starch when lowering digestibility. PMID:27228544

  13. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  14. Effects of alginate and resistant starch on feeding patterns, behaviour and performance in ad libitum-fed growing pigs.

    PubMed

    Souza da Silva, C; Bosch, G; Bolhuis, J E; Stappers, L J N; van Hees, H M J; Gerrits, W J J; Kemp, B

    2014-12-01

    This study assessed the long-term effects of feeding diets containing either a gelling fibre (alginate (ALG)), or a fermentable fibre (resistant starch (RS)), or both, on feeding patterns, behaviour and growth performance of growing pigs fed ad libitum for 12 weeks. The experiment was set up as a 2×2 factorial arrangement: inclusion of ALG (yes or no) and inclusion of RS (yes or no) in the control diet, resulting in four dietary treatments, that is, ALG-RS- (control), ALG+RS-, ALG-RS+, and ALG+RS+. Both ALG and RS were exchanged for pregelatinized potato starch. A total of 240 pigs in 40 pens were used. From all visits to an electronic feeding station, feed intake and detailed feeding patterns were calculated. Apparent total tract digestibility of energy, dry matter (DM), and CP was determined in week 6. Pigs' postures and behaviours were scored from live observations in weeks 7 and 12. Dietary treatments did not affect final BW and average daily gain (ADG). ALG reduced energy and DM digestibility (P<0.01). Moreover, ALG increased average daily DM intake, and reduced backfat thickness and carcass gain : digestible energy (DE) intake (P<0.05). RS increased feed intake per meal, meal duration (P<0.05) and inter-meal intervals (P=0.05), and reduced the number of meals per day (P<0.01), but did not affect daily DM intake. Moreover, RS reduced energy, DM and CP digestibility (P<0.01). Average daily DE intake was reduced (P<0.05), and gain : DE intake tended to be increased (P=0.07), whereas carcass gain : DE intake was not affected by RS. In week 12, ALG+RS- increased standing and walking, aggressive, feeder-directed, and drinking behaviours compared with ALG+RS+ (ALG×RS interaction, P<0.05), with ALG-RS- and ALG-RS+ in between. No other ALG×RS interactions were found. In conclusion, pigs fed ALG compensated for the reduced dietary DE content by increasing their feed intake, achieving similar DE intake and ADG as control pigs. Backfat thickness and carcass efficiency

  15. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    PubMed

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. PMID:26163566

  16. Resistance exercise in type 1 diabetes.

    PubMed

    Yardley, Jane E; Sigal, Ronald J; Perkins, Bruce A; Riddell, Michael C; Kenny, Glen P

    2013-12-01

    It is relatively well known that moderate-intensity aerobic exercise increases the risk of hypoglycemia in individuals with type 1 diabetes. Conversely, brief high-intensity (anaerobic) activity can cause post-exercise hyperglycemia. Recent evidence has indicated that including small amounts of anaerobic activity, either in the form of short sprints or as resistance exercise (weight lifting), during aerobic exercise sessions may decrease the drop in blood glucose levels associated with moderate-intensity aerobic exercise. This review discusses the recent developments in the area of exercise and type 1 diabetes, with a particular focus on the effects of resistance exercise. Practical exercise recommendations, as well as suggestions for the future direction of research in this area, are also provided. PMID:24321724

  17. Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress.

    PubMed

    Sánchez, Teresa; Dufour, Dominique; Moreno, Isabel Ximena; Ceballos, Hernán

    2010-04-28

    Functional properties of normal and waxy starches from maize, rice, potato, and cassava as well as the modified waxy maize starch COLFLO 67 were compared. The main objective of this study is to position the recently discovered spontaneous mutation for amylose-free cassava starch in relation to the other starches with well-known characteristics. Paste clarity, wavelength of maximum absorption (lambda(max)), pasting properties, swelling power, solubility, and dispersed volume fraction measurements and gel stability (acid and alkaline resistance, shear, refrigeration, and freeze/thaw stability) were evaluated in the different types and sources of starch included in this study. lambda(max) in the waxy cassava starch was reduced considerably in comparison with that of normal cassava starch (535 vs 592 nm). RVA peak viscosity of waxy cassava starch was larger than in normal cassava starch (1119 vs 937 cP) and assumed a position intermediate between the waxy potato and maize starches. Acid, alkaline, and shear stability of waxy cassava starch were similar to normal cassava except for alkaline pH, at which it showed a low effect. Gels from normal root and tuber starches after refrigeration and freeze/thaw had lower syneresis than cereal starches. Gels from waxy starches (except for potato) did not present any syneresis after 5 weeks of storage at 4 degrees C. Waxy cassava starch was the only one not showing any syneresis after 5 weeks of storage at -20 degrees C. Natural waxy cassava starch is, therefore, a promising ingredient to formulate refrigerated or frozen food. PMID:20356303

  18. Formation of Elongated Starch Granules in High-amylose Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEMS-0067 maize starch contains up to 32% elongated starch granules much higher than amylose-extender (ae) single-mutant maize starch (~7%) and normal (non-mutant) maize starch (0%). These elongated granules are highly resistant to enzymatic hydrolysis at 95-100 C, which function as resistant starc...

  19. Metabolic consequences of resistive-type exercise

    NASA Technical Reports Server (NTRS)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  20. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components. PMID:21513356

  1. Starches, Sugars and Obesity

    PubMed Central

    Aller, Erik E. J. G.; Abete, Itziar; Astrup, Arne; Martinez, J. Alfredo; van Baak, Marleen A.

    2011-01-01

    The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages. PMID:22254101

  2. Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch

    PubMed Central

    Zhou, June; Keenan, Michael J.; Keller, Jeffrey; Fernandez-Kim, Sun Ok; Pistell, Paul J.; Tulley, Richard T.; Raggio, Anne M.; Shen, Li; Zhang, Hanjie; Martin, Roy J.; Blackman, Marc R.

    2013-01-01

    Health benefits of resistant starch (RS), a dietary fermentable fiber, have been well documented in young, but not in old populations. As the essential step of more comprehensive evaluations of RS on healthy aging, we examined the effects of dietary RS on tolerance, colonic fermentation, and cytokine expression in aged mice. Healthy older (18–20 months) C57BL/6J male mice were fed control, 18% RS, or 36% RS diets for 10 weeks. Body weight gain, body composition, and fat pad weights did not differ among the three groups after 10 weeks, indicating good tolerance of the RS diet. Fermentation indicators (cecum weights, and cecal proglucagon and PYY mRNA expression) were enhanced in a RS dose dependent manner (P<0.01). Serum concentrations of soluble cytokine receptors (sTNF-Rb; sIL-4R; sIL-2Rα sVEGFR1; and sRAGE) and TNFα expression (gene and protein) in visceral fat did not differ significantly among groups. Adiponectin protein concentrations, but not gene expression, were greater in epididymal fat of the 36% RS versus control groups (P<0.05). Conclusion: in aged mice, dietary RS is well tolerated, fermented in the colon, and stimulates colonic expression of proglucagon and PYY mRNA, and adiponectin protein in visceral fat. PMID:22174009

  3. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour.

    PubMed

    Sarawong, Chonthira; Schoenlechner, Regine; Sekiguchi, Ken; Berghofer, Emmerich; Ng, Perry K W

    2014-01-15

    Green banana flour was extruded through a co-rotating twin-screw extruder with constant barrel temperature. The objectives of this study were to determine the effect of extrusion cooking variables (feed moisture, FM, 20% and 50%; screw speed, SS, 200 and 400rpm) and storing of the extruded flours at 4°C for 24h on the physicochemical properties, resistant starch (RS), pasting properties and antioxidant capacities. Extrusion cooking at higher FM and lower SS increased the amylose content, which was expressed in highest RS content. Water adsorption index (WAI) and pasting properties were increased, while water solubility index (WSI), total phenolic content (TPC) and antioxidant activities (FRAP, ABTS(+), DPPH) in free and bound phenolics were decreased compared to the other extruded samples. Storing the extruded flours at 4°C for 24h prior to oven drying was the main factor leading to a further increase in the content of amylose, RS, TPC and WSI values, as well as pasting properties - in particular peak viscosity. Compared to native banana flour, extrusion cooking caused significant changes in all studied properties of the extruded flours, except for soluble DF and antioxidant capacity (ABTS(+) and DPPH) of bound phenolics. PMID:24054209

  4. Impact of amylose content on starch physicochemical properties in transgenic sweet potato.

    PubMed

    Zhou, Wenzhi; Yang, Jun; Hong, Yan; Liu, Guiling; Zheng, Jianli; Gu, Zhengbiao; Zhang, Peng

    2015-05-20

    The intrinsic relationship between amylose content and starch physicochemical properties was studied using six representative starch samples (amylose content 0-65%) produced from transgenic sweet potato (cultivar Xushu22). The transgenic lines (waxy and high-amylose) and wild-type (WT) sweet potatoes were analyzed for amylose content, particle size and chain length distribution, X-ray diffraction analysis, thermal characteristics, pasting and rheological property. Compared to the WT starch, the waxy and high-amylose starches showed larger average granule sizes and had fewer short chains and more medium and long chains. X-ray diffractogram analysis revealed that high-amylose starches show a type-B crystal form with a markedly decreased degree of crystallinity in contrast to the type-A crystal form of the WT and waxy starches. In the high-amylose sweet potato starches, the rise of setback value and the reduction of breakdown value led to the high shear resistance as indicated by the higher G', G", and tanδ from the oscillation test. ΔH was not found to be decreased with the reduction of crystallinity. The shear stress resistance of starch gel after gelatinization was also enhanced as amylose content increased. Principal component analysis also confirmed that the amylose content greatly influenced the starch structure and properties, e.g., storage modulus, setback value, and average chain length. Thus, our study not only shed light on how amylose content affects starch properties but also identified novel starches that are available for various applications. PMID:25817686

  5. Impact of Short Term Consumption of Diets High in Either Non-Starch Polysaccharides or Resistant Starch in Comparison with Moderate Weight Loss on Indices of Insulin Sensitivity in Subjects with Metabolic Syndrome

    PubMed Central

    Lobley, Gerald E.; Holtrop, Grietje; Bremner, David M.; Calder, A. Graham; Milne, Eric; Johnstone, Alexandra M.

    2013-01-01

    This study investigated if additional non-starch polysaccharide (NSP) or resistant starch (RS), above that currently recommended, leads to better improvement in insulin sensitivity (IS) than observed with modest weight loss (WL). Obese male volunteers (n = 14) were given an energy-maintenance (M) diet containing 27 g NSP and 5 g RS daily for one week. They then received, in a cross-over design, energy-maintenance intakes of either an NSP-enriched diet (42 g NSP, 2.5 g RS) or an RS-enriched diet (16 g NSP, 25 g RS), each for three weeks. Finally, a high protein (30% calories) WL diet was provided at 8 MJ/day for three weeks. During each dietary intervention, endogenous glucose production (EGP) and IS were assessed. Fasting glycaemia was unaltered by diet, but plasma insulin and C-peptide both decreased with the WL diet (p < 0.001), as did EGP (−11%, p = 0.006). Homeostatis model assessment of insulin resistance improved following both WL (p < 0.001) and RS (p < 0.05) diets. Peripheral tissue IS improved only with WL (57%–83%, p < 0.005). Inclusion of additional RS or NSP above amounts currently recommended resulted in little or no improvement in glycaemic control, whereas moderate WL (approximately 3 kg fat) improved IS. PMID:23752495

  6. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

    PubMed

    Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M

    2000-09-01

    The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III. PMID:10947962

  7. Mixed biopolymer systems based on starch.

    PubMed

    Abd Elgadir, M; Akanda, Md Jahurul Haque; Ferdosh, Sahena; Mehrnoush, Amid; Karim, Alias A; Noda, Takahiro; Sarker, Md Zaidul Islam

    2012-01-01

    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch. PMID:22231495

  8. Starch-Lignin Baked Foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-kraft lignin foams were prepared by a baking process. Replacing up to 20% of the starch with lignin has no effect on foam density or overall morphology. At 10% replacement, lignin marginally increases water resistance and modulus of elasticity but decreases strain at maximum stress. At 20% re...

  9. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors.

    PubMed

    Silvi, S; Rumney, C J; Cresci, A; Rowland, I R

    1999-03-01

    The effect of sucrose and resistant starch ('CrystaLean'--a retrograded, amylose starch) on human gut microflora and associated parameters was studied in human flora-associated (HFA) rats, colonized with microfloras from UK or Italian subjects, to determine whether such floras were affected differently by dietary carbohydrates. Consumption of the resistant starch diet resulted in significant changes in four of the seven main groups of bacteria enumerated. In both the UK and Italian flora-associated rats, numbers of lactobacilli and bifidobacteria were increased 10-100-fold, and there was a concomitant decrease in enterobacteria when compared with sucrose-fed rats. The induced changes in caecal microflora of both HFA rat groups were reflected in changes in bacterial enzyme activities and caecal ammonia concentration. Although it had little effect on caecal short-chain fatty acid concentration, CrystaLean markedly increased the proportion of n-butyric acid in both rat groups and was associated with a significant increase in cell proliferation in the proximal colon of the Italian flora-associated rats. CrystaLean appeared to play a protective role in the colon environment, lowering caecal ammonia concentration, caecal pH and beta-glucuronidase activity. PMID:10196757

  10. Self-assembly of short linear chains to A- and B-type starch spherulites and their enzymatic digestibility.

    PubMed

    Cai, Liming; Shi, Yong-Cheng

    2013-11-13

    A novel process combining enzymatic debranching, melting, and crystallization was developed to produce spherulites from short linear α-1,4-linked glucans (short-chain amylose, SCA) with controlled enzyme digestibility. SCA was obtained by completely debranching waxy maize starch at 50 °C and 25% solids in 0.01 M sodium acetate buffer. The mixture was then heated to 180 °C followed by cooling and crystallization to form well-developed spherulites. Multiple analytical techniques including light microscopy, scanning electron microscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and synchrotron small-angle X-ray scattering (SAXS) covered over 5 orders of length scale and were applied to study the morphology and structure of the spherulites. Spherulites crystallized at low temperatures (4 and 25 °C) had a large size (5-10 μm), a B-type starch X-ray diffraction pattern, a lower melting temperature (70-110 °C), and a higher digestibility (Englyst method) compared to the spherulites crystallized at 50 °C, which had a small size (1-5 μm), an A-type diffraction pattern, a higher melting temperature (100-140 °C), and a lower digestibility. Intact spherulites along with small fragments were observed after digestion with a mixture of α-amyase and amyloglucosidase, indicating that digestion was not homogeneous and preferentially occurred in weak spherulites. A second exposure of the undigested residues to the amylases showed a similar digestive pattern as with the parent spherulites, suggesting that the spherulites were hydrolyzed by enzymes at essentially a constant digestion rate between 20 min and 3 h. PMID:24099235

  11. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  12. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch.

    PubMed

    Shah, Asima; Masoodi, Farooq Ahmad; Gani, Adil; Ashwar, Bilal Ahmad

    2016-12-01

    Starches isolated from three different varieties of oat were modified with dual autoclaving-retrogradation treatment to make modified food starches with high contents of type 3 resistant starch (RS3). FT-IR spectroscopy showed increase in the ratio of intensity of 1047cm(-1)/1022cm(-1) on treatment. Morphology of the oat starches changed into a continuous network with increased values for onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc). XRD showed an additional peak at 13° and increase in peak intensity at 20° inclusive of the major X-ray diffraction peaks which reflects formation of amylose-lipid complex from dual autoclaving-retrogradation cycle. Peaks at 13° and 20° are the typical peaks of the V-type pattern. Rheological analysis suggested that retrogradated oat starches showed shear thickening behavior as revealed from Herschel-Bulkely model and frequency sweep. PMID:27374592

  13. Physicochemical and functional properties of ozone-oxidized starch.

    PubMed

    Chan, Hui T; Bhat, Rajeev; Karim, Alias A

    2009-07-01

    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch. PMID:19489606

  14. BD-Type Write-Once Disk with Pollutant-Free Material and Starch Substrate

    NASA Astrophysics Data System (ADS)

    Hosoda, Yasuo; Higuchi, Takanobu; Shida, Noriyoshi; Imai, Tetsuya; Iida, Tetsuya; Kuriyama, Kazumi; Yokogawa, Fumihiko

    2005-05-01

    We realized an inorganic write-once disk for an optical recording system of the Blu-ray disk format. We developed a new Al alloy for the reflective layer and a Nb-compound oxide nitride material for the dielectric layer. By adopting these materials for the reflective layer and the dielectric layer of our write-once disk, we achieved complete exclusion of toxic substances specified in the pollutant release and transfer register (PRTR) law. That is, this disk did not contain any substances specified in the PRTR law. We confirmed this disk to be compatible with 1× to 2× recording at the user capacity of 25.0 GB. The bottom jitter values of both 1× and 2× were less than 6.0%. In addition, we developed another kind of substrate, which was made of a natural polymer derived from corn starch. The bottom jitter value was 6.0% at the user capacity of 25.0 GB with the limit equalizer.

  15. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    PubMed

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice. PMID:27197747

  16. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats.

    PubMed

    Hu, Ying; Le Leu, Richard K; Christophersen, Claus T; Somashekar, Roshini; Conlon, Michael A; Meng, Xing Q; Winter, Jean M; Woodman, Richard J; McKinnon, Ross; Young, Graeme P

    2016-04-01

    This study evaluated whether dietary resistant starch (RS) and green tea extract (GTE), which have anti-inflammatory and anticancer properties, protect against colitis-associated colorectal cancer (CAC) using a rat model, also investigated potential mechanisms of action of these agents including their effects on the gut microbiota. Rats were fed a control diet or diets containing 10% RS, 0.5% GTE or a combination of the two (RS + GTE). CAC was initiated with 2 weekly azoxymethane (AOM) injections (10mg/kg) followed by 2% dextran sodium sulphate in drinking water for 7 days after 2 weeks on diets. Rats were killed 20 weeks after the first AOM. Colon tissues and tumours were examined for histopathology by H&E, gene/protein expression by PCR and immunohistochemistry and digesta for analyses of fermentation products and microbiota populations. RS and RS + GTE (but not GTE) diets significantly (P< 0.05) decreased tumour multiplicity and adenocarcinoma formation, relative to the control diet. Effects of RS + GTE were not different from RS alone. RS diet caused significant shifts in microbial composition/diversity, with increases in Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium as primary contributors to the shift. RS-containing diets increased short chain fatty acids (SCFA) and expression of the SCFA receptor GPR43 mRNA, and reduced inflammation (COX-2, NF-kB, TNF-α and IL-1β mRNA) and cell proliferation P< 0.05. GTE had no effect. This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC. PMID:26905582

  17. Effectiveness of resistant starch, compared to guar gum, in depressing plasma cholesterol and enhancing fecal steroid excretion.

    PubMed

    Levrat, M A; Moundras, C; Younes, H; Morand, C; Demigné, C; Rémésy, C

    1996-10-01

    Amylase-resistant starch (RS) represents a substrate that can be administered in substantial amounts in the diet, in contrast to gel-forming polysaccharides, such as guar gum (GG). The aim of this work was thus to compare the effects of GG and RS on cholesterol metabolism in rats adapted to 0.4% cholesterol diets, using dietary GG or RS levels (8 or 20%, respectively) that led to a similar development of fermentations, as assessed by the degree of enlargement of the cecum. The RS diet elicited a marked rise in the cecal pool of short-chain fatty acids, especially acetic and butyric acid, whereas the GG diet favored high-propionic acid fermentations. Both polysaccharides markedly altered the cholesterol excretion, from 50% of ingested cholesterol in controls, up to about 70% in rats adapted to the RS or GG diets. With these diets, the fecal excretion of bile acids was enhanced (67 and 144% with the RS and GG diets, respectively). RS and GG diets were effective in lowering plasma cholesterol (about -40%) and triglycerides (-36%). There was practically no effect of the diets on cholesterol in d > 1.040 lipoproteins (high density lipoproteins), whereas RS (and to a larger extent, GG) were very effective to depress cholesterol in d < 1.040 lipoproteins (especially in triglyceride-rich lipoproteins). Fermentable polysaccharides counteracted the accumulation of cholesterol in the liver, especially cholesterol esters. In parallel, liver acyl CoA:cholesterol acyltransferase was depressed in rats fed the RS or GG diets, whereas only the GG diet counteracted the downregulation of 3-hydroxy-3-methylglutaryl-CoA by cholesterol. These data suggest that RS may be practically as effective as a gel-forming gum, such as GG, on steroid excretion and on cholesterol metabolism. PMID:8898306

  18. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of Japonica polished rice and starch.

    PubMed

    Nakamura, Sumiko; Katsura, Junji; Kato, Kiyoko; Ohtsubo, Ken'ichi

    2016-01-01

    We searched for the easy and simple method to measure the novel indicators which reflect not only AAC, but also (RS) based on pasting properties using RVA. Novel indexes such as SB/Con and Max/Fin (Maximum viscosity/Minimum viscosity) ratios had a very high correlation with proportion of intermediate and long chains of amylopectin; Fb1+2+3 (DP ≧ 13). In Japonica polished rice, estimation formulae for AAC and RS content were developed using novel indexes based on pasting properties by RVA, and these equations showed determination coefficients of 0.89 and 0.80 for calibration and 0.71 and 0.75 for validation test. We developed the estimation formulae for AAC and RS content for Japonica starch samples. These equations showed determination coefficients of 0.86 and 1.00 for calibration and 0.76 and 0.83 for validation test, which showed that these equations can be applied to the unknown rice samples. PMID:26399277

  19. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications. PMID:26572335

  20. Chemostat Enrichments of Human Feces with Resistant Starch Are Selective for Adherent Butyrate-Producing Clostridia at High Dilution Rates

    PubMed Central

    Sharp, Richard; Macfarlane, George T.

    2000-01-01

    Resistant starch (RS) enrichments were made using chemostats inoculated with human feces from two individuals at two dilution rates (D = 0.03 h−1 and D = 0.30 h−1) to select for slow- and fast-growing amylolytic communities. The fermentations were studied by analysis of short-chain fatty acids, amylase and α-glucosidase activities, and viable counts of the predominant culturable populations and the use of 16S rRNA-targeted oligonucleotide probes. Considerable butyrate was produced at D = 0.30 h−1, which corresponded with reduced branched-chain fatty acid formation. At both dilution rates, high levels of extracellular amylase activity were produced, while α-glucosidase was predominantly cell associated. Bacteroides and bifidobacteria predominated at the low dilution rate, whereas saccharolytic clostridia became more important at D = 0.30 h−1. Microscopic examination showed that within 48 h of inoculation, one particular bacterial morphotype predominated in RS enrichments at D = 0.30 h−1. This organism attached apically to RS granules and formed rosette-like structures which, with glycocalyx formation, agglomerated to form biofilm networks in the planktonic phase. Attempts to isolate this bacterium in pure culture were repeatedly unsuccessful, although a single colony was eventually obtained. On the basis of its 16S rDNA sequence, this RS-degrading, butyrate-producing organism was identified as being a previously unidentified group I Clostridium sp. A 16S rRNA-targeted probe was designed using this sequence and used to assess the abundance of the population in the enrichments. At 240 h, its contributions to total rRNA in the chemostats were 5 and 23% at D = 0.03 and 0.30 h−1, respectively. This study indicates that bacterial populations with significant metabolic potential can be overlooked using culture-based methodologies. This may provide a paradigm for explaining the discrepancy between the low numbers of butyrate-producing bacteria that are

  1. Genomic DNA sequence of a rice gene coding for a pullulanase-type of starch debranching enzyme.

    PubMed

    Francisco, P B; Zhang, Y; Park, S Y; Ogata, N; Yamanouchi, H; Nakamura, Y

    1998-09-01

    A genomic DNA containing a rice (Oryza sativa L., cv. Norin-8) gene coding for a pullulanase-type starch debranching enzyme (EC 3.2.1. 41) was sequenced (EMBL/GenBank/DDBJ accession number AB012915). Along the 15, 248 bp DNA, the pullulanase gene is split into 26 exons. The four pullulanase consensus regions are positioned in the middle portion of the sequence and are separated by long introns and 1-3 exons. Comparison of the rice cv. Norin-8 pullulanase genomic structure with that of barley pullulanase (limit dextrinase) (F. Lok et al., EMBL/GenBank/DDBJ accession number AF022725) indicates that most of the pullulanase exons are highly conserved. Alignment of the nucleotide bases of rice exon 8 with those of barley exon 8-intron 8-exon 9 fragment suggests that the 85 bp internal sequence of rice exon 8 was originally an intron, a possibility further indicated by the absence in barley and spinach (A. Renz et al., EMBL/GenBank/DDBJ accession number X83969) pullulanases of amino acid residues encoded by the 85 bp fragment. PMID:9748665

  2. Preparation and characterization of starch-based loose-fill packaging foams

    NASA Astrophysics Data System (ADS)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  3. [Starch aspiration].

    PubMed

    Volk, O; Neidhöfer, M; Schregel, W

    1999-06-01

    Starch is a white, neutral smelling, insoluble and harmless powder. The case of a 24-year old worker with a pronounced bronchospasm and arterial hypoxaemia after a collapse and aspiration during working in a silo filled with corn starch will be reported. Medication consisted mainly in mucolytics. Intensive airway clearing consisted of repeated bronchoscopies, bedding, tapotement and vibration massage. The patient has made a complete recovery in 3 days. PMID:10429779

  4. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure.

    PubMed

    Liu, Hang; Wang, Lijing; Cao, Rong; Fan, Huanhuan; Wang, Min

    2016-06-25

    High hydrostatic pressure (HHP), a non-thermal processing technology, was applied at 120, 240, 360, 480, and 600MPa to assess its effect on the in vitro digestibility, physicochemical, and structural properties of common buckwheat starch (CBS). HHP treatment resulted in CBS granules with more rough surfaces. With the increasing pressure level, amylose content, pasting temperature, and thermal stability substantially increased and relative crystallinity, hardness, swelling power, and viscosity decreased. At 120-480MPa, HHP did not affect the 'A'-type crystalline pattern of CBS. However, at 600MPa, HHP contributed to a similar 'B'-type pattern. Compared with native starch, HHP-modified CBS samples had lower in vitro hydrolysis, reduced content of rapidly digestible starch, and increased levels of slowly digestible starch and resistant starch. These results revealed that the in vitro digestibility, physicochemical, and structural properties of CBS are effectively modified by HHP. PMID:27083786

  5. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms.

    PubMed

    Naidoo, K; Amonsou, E O; Oyeyinka, S A

    2015-07-10

    Amadumbe, commonly known as taro, is an indigenous underutilised tuber to Southern Africa. In this study, starch functional properties and in vitro starch digestibility of processed products from wild and cultivated amadumbe were determined. Starch extracts from both amadumbe types had similar contents of total starch (approx. 95%). Wild and cultivated amadumbe starch granules were polygonal and very small in size (2.7 ± 0.9 μm). Amylose content of wild amadumbe (20%) was about double that of cultivated (12%). By DSC, the peak gelatinisation temperatures of wild and cultivated amadumbe starches were 81 and 85°C, respectively. The slowly digestible starch (SDS); 20% and resistant starch (RS); 64% contents of wild amadumbe appeared slightly higher than those of cultivated. Processing amadumbe into boiled and baked products did not substantially affect SDS and RS contents. Estimated glycaemic index of processed products ranged from 40 to 44%. Thus, amadumbe, both wild and cultivated, present some potential in the formulation of products for diabetics and weight management. PMID:25857954

  6. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

    PubMed Central

    Ze, Xiaolei; Ben David, Yonit; Laverde-Gomez, Jenny A.; Dassa, Bareket; Sheridan, Paul O.; Duncan, Sylvia H.; Louis, Petra; Henrissat, Bernard; Juge, Nathalie; Koropatkin, Nicole M.; Bayer, Edward A.

    2015-01-01

    ABSTRACT Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate “resistant” starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockerins possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an “amylosome.” PMID:26419877

  7. Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products.

    PubMed

    Nasrin, Taslima Ayesha Aktar; Anal, Anil Kumar

    2015-08-01

    Oil in water emulsions were produced by the mixture of culled banana resistant starch (CBRS) & soy protein isolate (SPI), mixture of Hylon VII & SPI and SPI with 7.5 and 5 % (w/w) Menhaden fish oil. The emulsions were further freeze- dried obtaining 33 and 50 % oil load microcapsules. The range of particles diameter was 4.11 to 7.25 μm and viscosity was 34.6 to 146.48 cP of the emulsions. Compressibility index (CI), Hasner ratio (HR) and angle of repose (AR) was significantly (p < 0.01) lower of the microcapsules made with starch and protein (CBRS & SPI and Hylon VII & SPI) than that made with protein (SPI) only. Microcapsules composed of CBRS & SPI with 33 % oil load had maximum microencapsulation efficiency (82.49 %) and highest oxidative stability. Muffin made with emulsions containing mixture of CBRS & SPI exhibited less fishy flavour than that containing mixture of Hylon VII & SPI. PMID:26243933

  8. Effects of a highly resistant rice starch and pre-incubation temperatures on the physicochemical properties of surimi gel from grass carp (Ctenopharyn Odon Idellus).

    PubMed

    Yang, Zhen; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2014-02-15

    The effects of a specific rice starch (SRS), containing highly resistant starch (RSIII), on gel properties of grass carp (Ctenopharyngodon idella) and the influence of five levels of SRS (0%, 2%, 4%, 6%, and 8%w/w) on gel physicochemical properties at three different pre-incubation temperatures (4 °C, 25 °C, and 40 °C) were investigated. Gels with increasing amounts of SRS addition showed lower expressible water contents and cooking loss values than did control gels. SDS gel electrophoresis revealed no changes in protein patterns, regardless of different SRS-added levels at the same pre-incubation temperature, but an evident decrease in the MHC when the pre-incubation temperature increased. The texture properties, colour attributes, SEM were optimal in the treatments containing 4%w/w SRS at the pre-incubation temperature 25 °C. Thus, the optimum SRS addition level and pre-incubation temperature are proposed to be 4%w/w and 25 °C, respectively. PMID:24128470

  9. Resistant starch reduces colonic and urinary p-cresol in rats fed a tyrosine-supplemented diet, whereas konjac mannan does not.

    PubMed

    Chen, Bixiao; Morioka, Sahya; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2016-10-01

    The effect of resistant starch (RS) and konjac mannan (KM) to maintain and improve the large intestinal environment was compared. Wistar SPF rats were fed the following diets for 4 weeks: negative control diet (C diet), tyrosine-supplemented positive control diet (T diet), and luminacoid supplemented diets containing either high-molecular konjac mannan A (KMAT diet), low-molecular konjac mannan B (KMBT diet), high-amylose cornstarch (HAST diet), or heat-moisture-treated starch (HMTST diet). The luminacoid-fed group had an increased content of short-chain fatty acids in the cecum. HAS caused a significant decrease in p-cresol content in the cecum, whereas KM did not. Urinary p-cresol was reduced in the HAST group compared with the T group, but not the KM fed groups. Deterioration in the large intestinal environment was only improved completely in the HAST and HMTST groups, suggesting that RS is considerably more effective than KM in maintaining the large intestinal environment. PMID:27296718

  10. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-01

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization. PMID:27312641

  11. Electricity. Electrical Appliance Serviceman (Major Resistive Type).

    ERIC Educational Resources Information Center

    Moughan, John P.; And Others

    Two types of materials comprise the curriculum guide: descriptive information about student, job and individualized instruction techniques for use by the instructor and a set of 10 learning activity packages for the student. Together, these form a work unit which, when successfully completed by the student, provides the necessary skills for an…

  12. No Latex Starch Utilization in Euphorbia esula L.

    PubMed

    Nissen, S J; Foley, M E

    1986-06-01

    Utilization of leaf, stem, root, and latex starch was monitored in Euphorbia esula L. plants. Leaf, stem, and root starch decreased rapidly during a 52 day light starvation period while latex starch did not. Scanning electron and light microscope studies provided additional evidence that no changes in latex starch granules had occurred. Amylase activity (6.6 units per milligram protein) could be isolated from latex. However, latex starch granules were extremely resistant to enzymic hydrolysis by latex amylases, Bacillus subtilis alpha-amylase, and by amyloglucosidase from Aspergillus niger. Results indicate that latex starch grains do not function as utilizable carbohydrate in this species under these conditions. PMID:16664883

  13. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch.

    PubMed

    Zeng, Feng; Ma, Fei; Kong, Fansheng; Gao, Qunyu; Yu, Shujuan

    2015-04-01

    Waxy rice starch was subjected to annealing (ANN) and heat-moisture treatment (HMT). These starches were also treated by a combination of ANN and HMT. The impact of single and dual modifications (ANN-HMT and HMT-ANN) on the molecular weight (M(w)), crystalline structure, thermal properties, and the digestibility were investigated. The relative crystallinity and short-range order on the granule surface increased on ANN, whereas decreased on HMT. All treated starches showed lower M(w) than that of the native starch. Gelatinization onset temperature, peak temperature and conclusion temperature increased for both single and dual treatments. Increased slowly digestible starch content was found on HMT and ANN-HMT. However, resistant starch levels decreased in all treated starches as compared with native starch. The results would imply that hydrothermal treatment induced structural changes in waxy rice starch significantly affected its digestibility. PMID:25442528

  14. Can resistant starch and/or aspirin prevent the development of colonic neoplasia? The Concerted Action Polyp Prevention (CAPP) 1 Study.

    PubMed

    Mathers, John C; Mickleburgh, Ian; Chapman, Pam C; Bishop, D Tim; Burn, John

    2003-02-01

    Loss of function of the adenomatous polyposis coli (APC) tumour suppressor gene through truncating mutations or other means is an early event in most colo-rectal cancer (CRC). The APC gene encodes a large multifunctional protein that plays key roles in several cellular processes, including the wnt signalling pathway where an intact APC protein is essential for down regulation of beta-catenin. The APC protein also plays a role in regulation of cell proliferation, differentiation, apoptosis, cell-cell adhesion, cell migration and chromosomal stability during mitosis. Acquisition of a non-functional APC gene can occur by inheritance (in the disease familial adenomatous polyposis (FAP)) or by a sporadic event in a somatic cell. Whilst there is strong epidemiological evidence that variation in diet is a major determinant of variation in CRC incidence, conventional adenoma recurrence trials in sporadic cases of the disease have been relatively unsuccessful in identifying potentially protective food components. Since the genetic basis of CRC in FAP and in sporadic CRC is similar, intervention trials in FAP gene carriers provide an attractive strategy for investigation of potential chemo-preventive agents, since smaller numbers of subjects and shorter time frames are needed. The Concerted Action Polyp Prevention (CAPP) 1 Study is using a 2 x 2 factorial design to test the efficacy of resistant starch (30 g raw potato starch-Hylon VII (1:1, w/w)/d) and aspirin (600 mg/d) in suppressing colo-rectal adenoma formation in young subjects with FAP. Biopsies of macroscopically-normal rectal mucosa are also being collected for assay of putative biomarkers of CRC risk. PMID:12740057

  15. Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs.

    PubMed

    Haenen, Daniëlle; Souza da Silva, Carol; Zhang, Jing; Koopmans, Sietse Jan; Bosch, Guido; Vervoort, Jacques; Gerrits, Walter J J; Kemp, Bas; Smidt, Hauke; Müller, Michael; Hooiveld, Guido J E J

    2013-12-01

    Consumption of resistant starch (RS) has been associated with various intestinal health benefits, but knowledge of its effects on global gene expression in the colon is limited. The main objective of the current study was to identify genes affected by RS in the proximal colon to infer which biologic pathways were modulated. Ten 17-wk-old male pigs, fitted with a cannula in the proximal colon for repeated collection of tissue biopsy samples and luminal content, were fed a digestible starch (DS) diet or a diet high in RS (34%) for 2 consecutive periods of 14 d in a crossover design. Analysis of the colonic transcriptome profiles revealed that, upon RS feeding, oxidative metabolic pathways, such as the tricarboxylic acid cycle and β-oxidation, were induced, whereas many immune response pathways, including adaptive and innate immune system, as well as cell division were suppressed. The nuclear receptor peroxisome proliferator-activated receptor γ was identified as a potential key upstream regulator. RS significantly (P < 0.05) increased the relative abundance of several butyrate-producing microbial groups, including the butyrate producers Faecalibacterium prausnitzii and Megasphaera elsdenii, and reduced the abundance of potentially pathogenic members of the genus Leptospira and the phylum Proteobacteria. Concentrations in carotid plasma of the 3 main short-chain fatty acids acetate, propionate, and butyrate were significantly higher with RS consumption compared with DS consumption. Overall, this study provides novel insights on effects of RS in proximal colon and contributes to our understanding of a healthy diet. PMID:24132577

  16. The Other Double Helix--The Fascinating Chemistry of Starch

    NASA Astrophysics Data System (ADS)

    Hancock, Robert D.; Tarbet, Bryon J.

    2000-08-01

    Current textbooks deal only briefly with the chemistry of starch. A short review with 21 references is presented, describing the structure of starch and indicating the double helix structure of A-type and B-type starch. The structure of the starch granule is examined, pointing out the existence of growth rings of alternating crystalline and noncrystalline starch, with growing amylopectin molecules extending from the hilum (point of origin) to the surface of the starch granule. The swelling of starch granules in water, above the gelatinization temperature of about 60 °C, is discussed. The process of gelatinization involves unraveling of the starch helix and a manyfold increase in volume of the starch granule as water is imbibed and bound to the unraveled starch polymer by hydrogen bonding. Baking bread or pastries causes unraveling of the starch helix, and the process by which these products become stale corresponds primarily to the re-forming of the starch helix. The importance of this phenomenon in food science is discussed. The absorption of nonpolar linear molecules such as I2, or linear nonpolar portions of molecules such as n-butanol or fats and phospholipids, by the C-type helix of starch is examined. The way in which starch is structurally modified to retard staling is discussed in relation to food technology.

  17. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers

    PubMed Central

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu

    2015-01-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. PMID:26253678

  18. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    PubMed

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. PMID:26253678

  19. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  20. Mapping a Type 1 FHB resistance on chromosome 4AS of Triticum macha and deployment in combination with two Type 2 resistances.

    PubMed

    Burt, C; Steed, A; Gosman, N; Lemmens, M; Bird, N; Ramirez-Gonzalez, R; Holdgate, S; Nicholson, P

    2015-09-01

    Markers closely flanking a Type 1 FHB resistance have been produced and the potential of combining this with Type 2 resistances to improve control of FHB has been demonstrated. Two categories of resistance to Fusarium head blight (FHB) in wheat are generally recognised: resistance to initial infection (Type 1) and resistance to spread within the head (Type 2). While numerous sources of Type 2 resistance have been reported, relatively fewer Type 1 resistances have been characterised. Previous study identified a Type 1 FHB resistance (QFhs.jic-4AS) on chromosome 4A in Triticum macha. Little is known about the effect of combining Type 1 and Type 2 resistances on overall FHB symptoms or accumulation of the mycotoxin deoxynivalenol (DON). QFhs.jic-4AS was combined independently with two Type 2 FHB resistances (Fhb1 and one associated with the 1BL/1RS translocation). While combining Type 1 and Type 2 resistances generally reduced visual symptom development, the effect on DON accumulation was marginal. A lack of polymorphic markers and a limited number of recombinants had originally prevented accurate mapping of the QFhs.jic-4AS resistance. Using an array of recently produced markers in combination with new populations, the position of QFhs.jic-4AS has been determined to allow this resistance to be followed in breeding programmes. PMID:26040404

  1. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  2. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  3. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  4. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  5. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  6. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  7. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type B and Type BE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  8. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type AE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  9. Predicting erythropoietin resistance in hemodialysis patients with type 2 diabetes

    PubMed Central

    2013-01-01

    Background Resistance to ESAs (erythropoietin stimulating agents) is highly prevalent in hemodialysis patients with diabetes and associated with an increased mortality. The aim of this study was to identify predictors for ESA resistance and to develop a prediction model for the risk stratification in these patients. Methods A post-hoc analysis was conducted of the 4D study, including 1015 patients with type 2 diabetes undergoing hemodialysis. Determinants of ESA resistance were identified by univariate logistic regression analyses. Subsequently, multivariate models were performed with stepwise inclusion of significant predictors from clinical parameters, routine laboratory and specific biomarkers. Results In the model restricted to clinical parameters, male sex, shorter dialysis vintage, lower BMI, history of CHF, use of ACE-inhibitors and a higher heart rate were identified as independent predictors of ESA resistance. In regard to routine laboratory markers, lower albumin, lower iron saturation, higher creatinine and higher potassium levels were independently associated with ESA resistance. With respect to specific biomarkers, higher ADMA and CRP levels as well as lower Osteocalcin levels were predictors of ESA resistance. Conclusions Easily obtainable clinical parameters and routine laboratory parameters can predict ESA resistance in diabetic hemodialysis patients with good discrimination. Specific biomarkers did not meaningfully further improve the risk prediction of ESA resistance. Routinely assessed data can be used in clinical practice to stratify patients according to the risk of ESA resistance, which may help to assign appropriate treatment strategies. Clinical trial registration The study was registered at the German medical authority (BfArM; registration number 401 3206). The sponsor protocol ID and clinical trial unique identified number was CT-981-423-239. The results of the study are published and available at http

  10. Is insulin resistance the principal cause of type 2 diabetes?

    PubMed

    Gerich, J E

    1999-09-01

    The data presented from these recent studies raise serious doubt concerning the commonly held view that insulin resistance is the principal cause of type 2 diabetes: first of all they provide evidence that insulin resistance may not be the primary genetic factor for type 2 diabetes; secondly, they demonstrate that at least under certain circumstances insulin resistance is not essential for diabetes to occur, and then finally, they indicate that insulin resistance may not be the predominant factor determining the degree of hyperglycaemia. Although these studies suggest that the role of insulin resistance relative to that of beta-cell dysfunction in the pathogenesis of type 2 diabetes has been generally overestimated, one should not be left with the impression that insulin resistance is not important. It is certainly an important factor in determining the degree of hyperglycaemia or glucose intolerance present at a given level of beta-cell function. The improvement in glycaemic control after weight loss which lessens insulin resistance or after the administration of pharmacologic agents that improve insulin sensitivity clearly argue that insulin resistance is important in this regard. In addition to influencing the severity of glucose intolerance, insulin resistance is probably also important in determining the time of onset of diabetes. It may do this simply by altering the balance between the body's demand for insulin and the ability of the pancreas to provide insulin. It might adversely affect beta-cell function in addition to increasing the demand for insulin. This concept is schematically represented in figure 3. It is well established that beta-cell function normally deteriorates as a function of age [41]. Although the prevalence of type 2 diabetes increases as a function of age, this by itself obviously does not result in diabetes in the great majority of people. In such individuals their insulin sensitivity is sufficient to maintain the balance between the

  11. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch.

    PubMed

    Wang, Zhiwei; Liao, Tianqi; Zhou, Zhongkai; Wang, Yuyang; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-09-01

    To study the mechanism underlying the liver damage induced by deep-fried oil (DO) consumption and the beneficial effects from resistant starch (RS) supplement, differential gene expression and pathway network were analyzed based on RNA sequencing data from rats. The up/down regulated genes and corresponding signaling pathways were used to construct a novel local gene network (LGN). The topology of the network showed characteristics of small-world network, with some pathways demonstrating a high degree. Some changes in genes led to a larger probability occurrence of disease or infection with DO intake. More importantly, the main pathways were found to be almost the same between the two LGNs (30 pathways overlapped in total 48) with gene expression profile. This finding may indicate that RS supplement in DO-containing diet may mainly regulate the genes that related to DO damage, and RS in the diet may provide direct signals to the liver cells and modulate its effect through a network involving complex gene regulatory events. It is the first attempt to reveal the mechanism of the attenuation of liver dysfunction from RS supplement in the DO-containing diet using differential gene expression and pathway network. PMID:27363782

  12. The removal of stickies with modified starch and chitosan--highly cationic and hydrophobic types compared with unmodified ones.

    PubMed

    Petzold, Gudrun; Petzold-Welcke, Katrin; Qi, Haisong; Stengel, Knut; Schwarz, Simona; Heinze, Thomas

    2012-11-01

    The removal of dissolved and colloidal substances (DCS) in paper cycling water, so called stickies, with tailored natural polymers, having cationic as well as hydrophobic groups, was investigated using model suspensions made by the recycling of paper. The sticky content, characterized by the turbidity, the anionic charge, and the total organic carbon content (TOC) was increased by the addition of latex. The dynamic surface tension was established as useful tool for the characterization of the sticky content. The sticky removal using the starch derivatives (with benzyl- as well as ethyl-substituents), from very low up to high cationic charge and N-(benzyl)chitosan was compared. Depending on the properties of the derivatives two possible mechanisms can be found: "charge dominated removal" or "removal dominated by hydrophobicity." It seems that turbidity and TOC are lowered especially due to charge interaction whereas the increase of the surface tension is mainly caused by the hydrophobic character of the modified natural polymers. PMID:22944437

  13. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on alpha-amylase activity and in vitro digestibility of starch in raw and processed flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...

  14. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell. PMID:26104674

  15. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications. PMID:26787952

  16. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs.

    PubMed

    Topping, D L; Gooden, J M; Brown, I L; Biebrick, D A; McGrath, L; Trimble, R P; Choct, M; Illman, R J

    1997-04-01

    Young male pigs consumed a diet of fatty minced beef, safflower oil, skim milk powder, sucrose, cornstarch and wheat bran. Starch provided 50% of total daily energy either as low amylose cornstarch, high amylose (amylomaize) cornstarch or as a 50/50 mixture of corn and high amylose starch. Neither feed intake nor body weight gain as affected by dietary starch. Final plasma cholesterol concentrations were significantly higher than initial values in pigs fed the 50/50 mixture of corn and high amylose starch. Biliary concentrations of lithocholate and deoxycholate were lower in pigs fed high amylose starch. Large bowel length correlated positively with the dietary content of high amylose starch. Concentrations of butyrate in portal venous plasma were significantly lower in pigs fed high amylose starch than in those fed cornstarch. Neither large bowel digesta mass nor the concentrations of total or individual volatile fatty acids were affected by diet. However, the pool of propionate in the proximal colon and the concentration of propionate in feces were higher in pigs fed amylose starch. Concentrations of starch were uniformly low along the large bowel and were unaffected by starch type. In pigs with cecal cannula, digesta starch concentrations were higher with high amylose starch than with cornstarch. Electron micrographic examination of high amylose starch granules from these animals showed etching patterns similar to those of granules obtained from human ileostomy effluent. It appears that high amylose starch contributes to large bowel bacterial fermentation in the pig but that its utilization may be relatively rapid. PMID:9109613

  17. Probing starch-iodine interaction by atomic force microscopy.

    PubMed

    Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

    2014-01-01

    We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex. PMID:24338992

  18. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing.

    PubMed

    Liu, Hang; Guo, Xudan; Li, Wuxia; Wang, Xiaofang; Lv, Manman; Peng, Qiang; Wang, Min

    2015-11-01

    Heat-moisture treatment (HMT) and annealing (ANN) were applied in the test to investigate how they can affect the physicochemical properties and in vitro digestibility of common buckwheat starch (CBS). In the practice, these two modification methods did not change typical 'A'-type X-ray diffraction pattern of CBS. However, the gelatinization temperature, amylose content, and relative crystallinity increased and peak viscosity value and gelatinization enthalpy of CBS declined significantly. Both the solubility and swelling power, which were temperature dependent, progressively decreased along with the treatments. Remarkable increase in slowly digested starch and resistant starch level was found at the same time. Besides, the decreases of rapidly digested starch and total hydrolysis content by using HMT were greater than by using ANN. The results indicated that the ANN and HMT efficiently modified physicochemical properties and in vitro digestibility of CBS and were able to improve its thermal stability, healthy benefits and application value. PMID:26256346

  19. Frictional Resistance of Three Types of Ceramic Brackets

    PubMed Central

    Williams, Claire L

    2013-01-01

    ABSTRACT Objectives To investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation. Material and Methods Four bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons). Results Self ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05). Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01). Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001). Conclusions Compared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets. PMID:24478913

  20. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose.

    PubMed

    Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B

    2016-09-20

    Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. PMID:27261733

  1. Genotypic Testing for Human Immunodeficiency Virus Type 1 Drug Resistance

    PubMed Central

    Shafer, Robert W.

    2002-01-01

    There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs. PMID:11932232

  2. Relationship of cooked rice nutritionally-important starch fractions with other physicochemical properties.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen rice cultivars representing 5 cytosine-thymine repeat (CTn) microsatellite genetic marker groups were analyzed for their cooked rice nutritionally-important starch fractions (rapidly digestible, slowly digestible, and resistant starch), basic grain quality indices (apparent amylose, crude pr...

  3. ISOLATION AND CHARACTERIZATION OF TWO GENES THAT ENCODE ACTIVE GLUCOAMYLASE WITHOUT A STARCH BINDING DOMAIN FROM A TYPE II RHIZOPUS ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucoamylase obtained from Rhizopus sp. is frequently preferred for certain applications of starch modification or saccharification. The predominant enzyme, which contains a starch binding domain on the amino terminus, has been previously characterized from several species. Additionally, the cDNA ...

  4. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm.

    PubMed

    Toyosawa, Yoshiko; Kawagoe, Yasushi; Matsushima, Ryo; Crofts, Naoko; Ogawa, Masahiro; Fukuda, Masako; Kumamaru, Toshihiro; Okazaki, Yozo; Kusano, Miyako; Saito, Kazuki; Toyooka, Kiminori; Sato, Mayuko; Ai, Yongfeng; Jane, Jay-Lin; Nakamura, Yasunori; Fujita, Naoko

    2016-03-01

    Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production. PMID:26747287

  5. The effects of feeding resistant starch on apparent total tract macronutrient digestibility, faecal characteristics and faecal fermentative end-products in healthy adult dogs.

    PubMed

    Beloshapka, Alison N; Alexander, Lucille G; Buff, Preston R; Swanson, Kelly S

    2014-01-01

    The benefits of whole grain consumption have been studied in human subjects, but little research exists on their effects in dogs. The objective of the present study was to test the effects of resistant starch (RS) in the diet of healthy adult dogs. Twelve adult Miniature Schnauzer dogs (eight males, four females; mean age: 3·3 (1·6) years; mean body weight: 8·4 (1·2) kg; mean body condition score: D/ideal) were randomly allotted to one of three treatment groups, which consisted of different amounts of RS supplied in a biscuit format. Dogs received either 0, 10 or 20 g biscuits per d (estimated to be 0, 2·5 or 5 g RS per d) that were fed within their daily energetic allowance. A balanced Latin square design was used, with each treatment period lasting 21 d (days 0-17 adaptation; days 18-21 fresh and total faecal collection). All dogs were fed the same diet to maintain body weight throughout the study. Dogs fed 5 g RS per d had lower (P = 0·03) fat digestibility than dogs fed 0 gRS per d, but DM, organic matter and crude protein digestibilities were not affected. Faecal fermentative end-products, including SCFA and branched-chain fatty acids, ammonia, phenols and indoles, and microbial populations were not affected. The minor changes observed in the present study suggest the RS doses provided to the dogs were too low. Further work is required to assess the dose of RS required to affect gut health. PMID:26101607

  6. Characterization of starch from two ecotypes of andean achira roots (Canna edulis).

    PubMed

    Cisneros, Fausto H; Zevillanos, Roberto; Cisneros-Zevallos, Luis

    2009-08-26

    Starches from two ecotypes of achira roots (Canna edulis Ker-Gawler) were characterized and compared to commercial potato and corn starches. This included scanning electron microscopy (SEM) of starch granules and amylose content determination of starch. Starch solutions or gels were tested by rotational viscometry, Rapid Visco Analyzer (RVA), and texture analysis. Some starch samples were subjected to various treatments: pH reduction, autoclaving at high temperature, and high shear before testing by rotational viscometry. Achira starch showed some unusual properties, such as very large oblong granules (approximately 45-52 microm major axis and approximately 33-34 microm minor axis) and relatively high amylose content (approximately 33-39%). The San Gaban achira ecotype formed high-consistency gels upon cooling, both in RVA study (5% starch) and in texture analysis (8% starch), compared to other starch gels and also exhibited higher thermal resistance to viscosity breakdown. PMID:19627148

  7. Plant-crafted starches for bioplastics production.

    PubMed

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. PMID:27516287

  8. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption.

    PubMed

    Wang, Jinmei; Sun, Hong; Li, Junjie; Dong, Dianyu; Zhang, Yabin; Yao, Fanglian

    2015-03-01

    Non-fouling materials bind water molecules via either hydrogen bonding or ionic solvation to form a hydration layer which is responsible for their resistance to protein adsorption. Three ionic starch-based polymers, namely a cationic starch (C-Starch), an anionic starch (A-Starch) and a zwitterionic starch (Z-Starch), were synthesized via etherification reactions to incorporate both hydrogen bonding and ionic solvation hydration groups into one molecule. Further, C-, A- and Z-Starch hydrogels were prepared via chemical crosslinking. The non-fouling properties of these hydrogels were tested with different proteins in solutions with different ionic strengths. The C-Starch hydrogel had low protein resistance at all ionic strengths; the A-Starch hydrogel resisted protein adsorption at ionic strengths of more than 10mM; and the Z-Starch hydrogel resisted protein adsorption at all ionic strengths. In addition, the A- and Z-Starch hydrogels both resisted cell adhesion. This work provides a new path for developing non-fouling materials using the integration of polysaccharides with anionic or zwitterionic moieties to regulate the protein resistance of materials. PMID:25498650

  9. Draft Genome Sequence of Neisseria gonorrhoeae Sequence Type 1407, a Multidrug-Resistant Clinical Isolate.

    PubMed

    Anselmo, A; Ciammaruconi, A; Carannante, A; Neri, A; Fazio, C; Fortunato, A; Palozzi, A M; Vacca, P; Fillo, S; Lista, F; Stefanelli, P

    2015-01-01

    Gonorrhea may become untreatable due to the spread of resistant or multidrug-resistant strains. Cefixime-resistant gonococci belonging to sequence type 1407 have been described worldwide. We report the genome sequence of Neisseria gonorrhoeae strain G2891, a multidrug-resistant isolate of sequence type 1407, collected in Italy in 2013. PMID:26272575

  10. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch.

    PubMed

    Zeng, Feng; Chen, Fuquan; Kong, Fansheng; Gao, Qunyu; Aadil, Rana Muhammad; Yu, Shujuan

    2015-11-15

    Debranched waxy rice starch was subjected to repeated crystallization (RC) treatment, and its physicochemical properties and digestion pattern were investigated. The A-type crystalline pattern of native starch was crystallized to a complex of B- and V-type patterns by debranching and RC treatment. Among the treated starches, the relative crystallinity of debranched starch reached its maximum (29.6%) after eight repetitions of crystallization. Changes in weight-average molar mass among treated starch samples were not significantly different. The repeated-crystallized starches showed higher thermal transition temperatures and melting enthalpy than that of debranched starch. As a result, slowly digestible starch (SDS) content of repeated-crystallized starches reached a very high level (57.8%). Results showed that RC treatment induced structural changes of waxy rice starch result in a great amount of SDS. PMID:25977036

  11. Starch metabolism in leaves.

    PubMed

    Orzechowski, Sławomir

    2008-01-01

    Starch is the most abundant storage carbohydrate produced in plants. The initiation of transitory starch synthesis and degradation in plastids depends mainly on diurnal cycle, post-translational regulation of enzyme activity and starch phosphorylation. For the proper structure of starch granule the activities of all starch synthase isoenzymes, branching enzymes and debranching enzymes are needed. The intensity of starch biosynthesis depends mainly on the activity of AGPase (adenosine 5'-diphosphate glucose pyrophosphorylase). The key enzymes in starch degradation are beta-amylase, isoamylase 3 and disproportionating enzyme. However, it should be underlined that there are some crucial differences in starch metabolism between heterotrophic and autotrophic tissues, e.g. is the ability to build multiprotein complexes responsible for biosynthesis and degradation of starch granules in chloroplasts. The observed huge progress in understanding of starch metabolism was possible mainly due to analyses of the complete Arabidopsis and rice genomes and of numerous mutants with altered starch metabolism in leaves. The aim of this paper is to review current knowledge on transient starch metabolism in higher plants. PMID:18787712

  12. Investigation of resistive losses in type II superconductors

    NASA Astrophysics Data System (ADS)

    Benapfl, Brendan W.

    For low-TC materials, the superconducting transition temperature (TC) is depressed by the application of a magnetic field. In contrast, one of the remarkable features of cuprate high-TC materials is that the superconducting transition is broadened by the application of a magnetic field. Tinkham presented a model for the field-dependent resistive transition of high-T C materials, arising from "phase slippage at a complicated network of channels." Coffey & Clem did not include this field-broadening effect in their sophisticated model for the field and temperature dependence of the surface resistance in type-II superconductors. From the model by Lee & Stroud, treating Josephson Junction-coupled superconducting segments, it is concluded that doped, layered superconductors are certain to have a field-broadened superconducting transition. This effect can be identified by measurements of the resistivity as a function of temperature, magnetic field strength, angle of field with respect to the crystal axis as well as with respect to an induced current density. The iron pnictide materials such as Ba0.6K0.4Fe2As2 (BaK122) have chemical layers with different compositions, differentiating them from elemental type-II superconductors such as niobium, and also from cuprates, by the absence of copper. Experimental data on BaK122 indicate a field-broadened transition in conjunction with a field-depressed superconducting transition temperature. In this work, techniques associated with Electron Spin Resonance (ESR) spectroscopy were used to measure the temperature and field-induced changes in the surface resistance of single-crystal BaK122 samples. In addition, polycrystalline foils of niobium and a NbTi (70/30) alloy were measured using the same techniques to provide comparison. Measurements were taken as a function of applied magnetic field, temperature, rf field intensity, and angle of the applied field with respect to the rf-induced current. BaK122 sample field-dependent surface

  13. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  14. Physicochemical properties and in vitro starch digestibility of potato starch/protein blends.

    PubMed

    Lu, Zhan-Hui; Donner, Elizabeth; Yada, Rickey Y; Liu, Qiang

    2016-12-10

    This study aimed to investigate effects of starch-protein interactions on physicochemical properties and in vitro starch digestibility of composite potato starch/protein blends (0, 5, 10, or 15% protein) during processing (cooking, cooling and reheating). The effect on recrystallization and short-range ordering in starch was studied by light microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The results show that protein in the blend proportionally restricted starch granule swelling during cooking and facilitated amylopectin recrystallization during cold-storage. The facilitating effect of protein diminished with increasing blend ratio. Resistant starch content in the processed blends was positively correlated to intensity ratio of 1053/1035cm(-1) in FTIR spectra arising from slow retrogradation of amylopectin (r(2)>0.88, P≤0.05), whose formation was favored by the presence of protein in the blends and further enhanced by cooling of cooked blends. As a conclusion, starch-protein interaction reduced starch digestibility of the processed blends. PMID:27577912

  15. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

  16. Reinforcement of injectable calcium phosphate cement by gelatinized starches.

    PubMed

    Liu, Huiling; Guan, Ying; Wei, Donglei; Gao, Chunxia; Yang, Huilin; Yang, Lei

    2016-04-01

    Current injectable calcium phosphate bone cements (CPC) encounter the problems of low strength, high brittleness, and low cohesion in aqueous environment, which greatly hinder their clinical applications for loading-bearing bone substitution and minimally invasive orthopedic surgeries. Here, a strategy of using gelatinized starches to reinforce injectable CPC was investigated. Four types of starches, namely corn starch, crosslinked starch, cationic starch, and Ca-modified starch, were studied for their influence on CPC mechanical properties, injectability, setting times, anticollapsibility, and cytocompatibility. Gelatinized starch significantly improved compressive strength and modulus as well as strain energy density of CPC to different extents. Specifically, both corn starch and Ca-modified starch revealed sixfold and more than twofold increases in the compressive strength and modulus of CPC, respectively. The addition of gelatinized starches with proper contents increased the injectability and anticollapsibility of CPC. In addition, osteoblast proliferation tests on leaching solution of modified cements showed that gelatinized starches had no adverse effect on cell proliferation, and all cement samples resulted in better osteoblast proliferation compared to phosphate-buffered solution control. The mechanisms behind the reinforcing effect of different starches were preliminarily studied. Two possible mechanisms, reinforcement by the second phase of gelatinized starch and strong interlocking of apatite crystals, were proposed based on the results of starch zeta potential and viscosity, cement microstructure, and resultant mechanical properties. In conclusion, incorporating gelatinized starches could be an effective, facile, and bio-friendly strategy to reinforce injectable CPC and improve its mechanical stability, and thus, should be further studied and developed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 615-625, 2016. PMID

  17. Physicochemical properties of rhizome starch from a traditional Chinese medicinal plant of Anemone altaica.

    PubMed

    Man, Jianmin; Cai, Jinwen; Cai, Canhui; Huai, Huyin; Wei, Cunxu

    2012-06-20

    This study investigated the physicochemical properties of rhizome starch of A. altaica for the first time. The results were compared to those obtained from two common starches (potato and rice). The rhizome had a starch content of 49.8%. Isolated starch granules were mostly oval in shape with a central Maltese cross and an average long axis of 6.25 μm. The starch contained 35.5% amylose and had lower gelatinization and pasting temperatures than rice and potato starches and a swelling power comparable to potato. Altaica starch had high breakdown and setback viscosities. X-ray diffraction revealed B-type starch with relative degree of crystallinity of 17.5%. Starch possessed a high susceptibility to hydrolysis by acid, porcine pancreatic α-amylase and Aspergillus niger amyloglucosidase when compared with potato and rice starches. PMID:24750760

  18. P type porous silicon resistivity and carrier transport

    SciTech Connect

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  19. Pseudohypoparathyroidism type 1a and insulin resistance in a child.

    PubMed

    Nwosu, Benjamin U; Lee, Mary M

    2009-06-01

    Background. A 5-year-old white girl with a history of hypothyroidism in infancy presented to the endocrinology clinic of a tertiary hospital. Her physical examination noted a stocky physique, broad chest, short neck and short digits. Two years later, skin examination revealed subcutaneous nodules and acanthosis nigricans.Investigations. Measurement of levels of serum phosphate, parathyroid hormone, ionized calcium and insulin; measurement of peak growth hormone by the arginine-levodopa stimulation test; calculation of homeostasis model assessment of insulin resistance; assessment of bone age; DNA analysis of the GNAS gene.Diagnosis. Pseudohypoparathyroidism type 1a in a patient with Albright hereditary osteodystrophy, characterized by hypocalcemia, hypothyroidism, growth-hormone deficiency and insulin resistance.Management. The child continued to take levothyroxine 25 microg once daily, and at 5 years of age she was started on 40 mg/kg elemental calcium as calcium carbonate daily, and calcitriol (active vitamin D) 0.25 microg twice daily. Lifestyle modifications were also recommended for weight control. At 6 years and 4 months of age, treatment with growth hormone was initiated at a dose of 0.3 mg/kg weekly. PMID:19465898

  20. Helminth infection promotes colonization resistance via type 2 immunity.

    PubMed

    Ramanan, Deepshika; Bowcutt, Rowann; Lee, Soo Ching; Tang, Mei San; Kurtz, Zachary D; Ding, Yi; Honda, Kenya; Gause, William C; Blaser, Martin J; Bonneau, Richard A; Lim, Yvonne A L; Loke, P'ng; Cadwell, Ken

    2016-04-29

    Increasing incidence of inflammatory bowel diseases, such as Crohn's disease, in developed nations is associated with changes to the microbial environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the Crohn's disease susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization by an inflammatory Bacteroides species. Resistance to Bacteroides colonization was dependent on type 2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota and that deworming treatment reduced levels of Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis in which certain individuals are genetically susceptible to the consequences of a changing microbial environment. PMID:27080105

  1. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  2. Helminth Infection Promotes Colonization Resistance via Type 2 Immunity

    PubMed Central

    Ramanan, Deepshika; Bowcutt, Rowann; Lee, Soo Ching; Tang, Mei San; Kurtz, Zachary D.; Ding, Yi; Honda, Kenya; Gause, William C.; Blaser, Martin J.; Bonneau, Richard A.; Lim, Yvonne AL; Loke, P’ng; Cadwell, Ken

    2016-01-01

    Increasing incidence of inflammatory bowel diseases such as Crohn’s disease (CD) in developed nations is associated with changes to the environment, such as decreased prevalence of helminth colonization and alterations to the gut microbiota. We find that helminth infection protects mice deficient in the CD susceptibility gene Nod2 from intestinal abnormalities by inhibiting colonization with an inflammatory Bacteroides species. Colonization resistance to Bacteroides was dependent on type-2 immunity, which promoted the establishment of a protective microbiota enriched in Clostridiales. Additionally, we show that individuals from helminth-endemic regions harbor a similar protective microbiota, and that deworming treatment reduced Clostridiales and increased Bacteroidales. These results support a model of the hygiene hypothesis whereby certain individuals are genetically susceptible to the consequences of a changing microbial environment. PMID:27080105

  3. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  4. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    PubMed

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined. PMID:19572519

  5. High throughput screening of starch structures using carbohydrate microarrays.

    PubMed

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  6. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  7. Mapping four new QTL associated with type I FHB resistance in winter wheat line INW0412

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) has become one of the most damaging wheat diseases in humid and semi-humid regions around the world. Breeding efforts have focused on resistance mechanisms that limit the spread once a spike is infected, or type II resistance. But resistance to initial infection, type I re...

  8. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type B and Type BE..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test;...

  9. Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films.

    PubMed

    López, O V; Versino, F; Villar, M A; García, M A

    2015-12-10

    Biocomposites films based on thermoplastic corn starch (TPS) containing 0.5% w/w fibrous residue from Pachyrhizus ahipa starch extraction (PASR) were obtained by melt-mixing and compression molding. PASR is mainly constituted by remaining cell walls and natural fibers, revealed by Scanning Electron Microscopy (SEM). Chemical composition of the residue indicated that fiber and starch were the principal components. Biocomposites thermo-stability was determined by Thermo-Gravimetric Analysis. A continuous PASR-TPS interface was observed by SEM, as a result of a good adhesion of the fibrous residue to starch matrix. Likewise, films containing PASR presented fewer superficial cracks than TPS ones, whereas their fracture surfaces were more irregular. Besides, the presence of PASR increased starch films roughness, due to fibers agglomerates. Films reinforced with PASR showed significantly lower water vapor permeability (WVP). In addition, PARS filler increased maximum tensile strength and Young's modulus of TPS films, thus leading to more resistant starch matrixes. PMID:26428131

  10. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    PubMed

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. PMID:23768605

  11. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  12. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    PubMed

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia. PMID:23939892

  13. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    PubMed

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat. PMID:17721773

  14. Starch nanoparticles: a review.

    PubMed

    Le Corre, Déborah; Bras, Julien; Dufresne, Alain

    2010-05-10

    Starch is a natural, renewable, and biodegradable polymer produced by many plants as a source of stored energy. It is the second most abundant biomass material in nature. The starch structure has been under research for years, and because of its complexity, an universally accepted model is still lacking (Buleon, A.; et al. Int. J. Biol. Macromol. 1998, 23, 85-112). However, the predominant model for starch is a concentric semicrystalline multiscale structure that allows the production of new nanoelements: (i) starch nanocrystals resulting from the disruption of amorphous domains from semicrystalline granules by acid hydrolysis and (ii) starch nanoparticles produced from gelatinized starch. This paper intends to give a clear overview of starch nanoparticle preparation, characterization, properties, and applications. Recent studies have shown that they could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging, continuously looking for innovative solutions for efficient and sustainable systems, is being investigated. Therefore, recently, starch nanoparticles have been the focus of an exponentially increasing number of works devoted to develop biocomposites by blending starch nanoparticles with different biopolymeric matrices. To our knowledge, this topic has never been reviewed, despite several published strategies and conclusions. PMID:20405913

  15. Enzymatic pretreatment for preparing starch nanocrystals.

    PubMed

    LeCorre, Déborah; Vahanian, Elina; Dufresne, Alain; Bras, Julien

    2012-01-01

    Starch nanocrystals (SNCs) are crystalline platelets resulting from the acid hydrolysis of starch. A limiting factor for their more widespread use is their preparation duration. Therefore, this study investigates the possibility of developing an enzymatic pretreatment of starch to reduce the acid hydrolysis duration. A screening of three types of enzymes, namely, α-amylase, β-amylase, and glucoamylase, is proposed, and the latter was selected for a pretreatment. Compared with the regular kinetics of hydrolysis for preparing SNC, that of pretreated starch was much faster. The extent of hydrolysis normally reached in 24 h was obtained after only 6 h, and the regular final yield (15% after 5 days) was reached in 45 h. AFM and X-ray diffraction measurements confirmed that the obtained nanoparticles were indeed SNC. PMID:22133316

  16. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    PubMed Central

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

  17. Second Harmonic Generation Mediated by Aligned Water in Starch Granules.

    PubMed

    Cisek, Richard; Tokarz, Danielle; Krouglov, Serguei; Steup, Martin; Emes, Michael J; Tetlow, Ian J; Barzda, Virginijus

    2014-12-26

    The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network. The highest SHG intensity was found in fully hydrated starch granules, and heat treatment diminished the SHG intensity. The PIPO SHG imaging showed that dried starch granules have a much higher nonlinear optical susceptibility component ratio than fully hydrated granules. In contrast, deuterated starch granules showed a smaller susceptibility component ratio demonstrating that SHG is highly sensitive to the organization of the hydroxyl and hydrogen bond network. The polarization SHG imaging results of potato starch granules, representing starch allomorph B, were compared to those of maize starch granules representing allomorph A. The results showed that the amount of aligned water was higher in the maize granules. Nonlinear microscopy of starch granules provides evidence that varying hydration conditions leads to significant changes in the nonlinear susceptibility ratio as well as the SHG intensity, supporting the hypothesis from ab initio calculations that the dominant contribution to SHG is due to the ordered hydroxide and hydrogen bond network. PMID:25427055

  18. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    PubMed

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch. PMID:27311503

  19. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    PubMed

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction. PMID:26912092

  20. A nonlinear HP-type complementary resistive switch

    NASA Astrophysics Data System (ADS)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  1. Adiponectin Dysregulation and Insulin Resistance in Type 1 Diabetes

    PubMed Central

    Snell-Bergeon, Janet K.; Erickson, Christopher; Schauer, Irene E.; Bergman, Bryan C.; Rewers, Marian; Maahs, David M.

    2012-01-01

    Context: Type 1 diabetes (T1D) is associated with insulin resistance despite elevated levels of the insulin-sensitizing protein adiponectin. Whether the expected positive correlation between adiponectin and insulin sensitivity is preserved in a T1D population is unknown. Objective: We measured the correlation between total and high-molecular-weight (HMW) adiponectin and insulin sensitivity in T1D patients and nondiabetic controls and identified determinants of adiponectin levels in patients with T1D. Design and Participants: Fasting total and HMW adiponectin were measured in 86 subjects from the Coronary Artery Calcification in T1D (CACTI) cohort (39 T1D, 47 nondiabetic; age 45 ± 8 yr; 55% female). The association of adiponectin levels with insulin sensitivity was analyzed. Setting: The study was conducted at an academic research institute. Methods: Fasting total and HMW adiponectin were measured by RIA and ELISA, respectively. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp. Multivariate linear regression was used to identify determinants of adiponectin levels. Results: Adiponectin levels positively correlated with insulin sensitivity in both subject groups (total adiponectin, r = 0.33 P < 0.05 for T1D, r = 0.29 P < 0.05 controls), but insulin sensitivity was lower in T1D subjects at any given level of total or HMW adiponectin. Adiponectin levels were independently associated with age, gender, and trunk fat, but these variables did not account for increased adiponectin in patients with T1D. Conclusion: Adiponectin levels are positively correlated with insulin sensitivity in T1D patients. However, T1D patients have decreased insulin sensitivity compared with controls at every level of adiponectin, suggesting an important adaptive change of adiponectin set point. PMID:22278421

  2. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  3. GenoType NTM-DR for Identifying Mycobacterium abscessus Subspecies and Determining Molecular Resistance.

    PubMed

    Kehrmann, Jan; Kurt, Nermin; Rueger, Kai; Bange, Franz-Christoph; Buer, Jan

    2016-06-01

    We studied the performance of a new line probe assay for identifying the subspecies and determining the macrolide and aminoglycoside resistance levels of 50 Mycobacterium abscessus isolates. Agreement of GenoType NTM-DR results with sequencing and phenotypic resistance results was 92% for subspecies identification and 98% for determining molecular and phenotypic resistance. PMID:27030487

  4. Genetics Home Reference: type A insulin resistance syndrome

    MedlinePlus

    ... Ovarian Cysts Health Topic: Blood Sugar Health Topic: Diabetes Genetic and Rare Diseases Information Center (1 link) Insulin- ... List from the University of Kansas Medical Center: Diabetes Genetic Testing Registry (1 link) Insulin-resistant diabetes mellitus ...

  5. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  6. Thermal dissolution of maize starches in aqueous medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starches are not soluble in neutral water at room temperature. However, if they are heated in a closed container beyond the boiling point of water, they eventually dissolve. The dissolution temperature depends on the type of starch. The dissolution process was monitored in real time by measuring ...

  7. The deposition and characterization of starch in Brachypodium distachyon.

    PubMed

    Tanackovic, Vanja; Svensson, Jan T; Jensen, Susanne L; Buléon, Alain; Blennow, Andreas

    2014-10-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. PMID:25056772

  8. The deposition and characterization of starch in Brachypodium distachyon

    PubMed Central

    Tanackovic, Vanja; Svensson, Jan T.; Jensen, Susanne L.; Buléon, Alain; Blennow, Andreas

    2014-01-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5–10 µm) and very small C-type (0.5–2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. PMID:25056772

  9. Debranching and Crystallization of Waxy Maize Starch in Relation to Enzyme Digestibility

    SciTech Connect

    Cai, L.; Shi, Y; Rong, L; Hsiao, B

    2010-01-01

    Molecular and crystal structures as well as morphology during debranching and crystallization of waxy maize starch at a high solid content (25%, w/w) were investigated, and the results were related to the digestibility of debranched products. The starch was cooked at 115-120 C for 10 min, cooled to 50 C and debranched by isoamylase. After 1 h of debranching, wormlike objects with 5-10 nm width and ca. 30 nm length were observed by transmission electron microscopy. Further release of linear chains and crystallization led to assembly of semi-crystalline structures in the form of nano-particles and subsequent growth of nano-particles into large aggregates. After 24 h at 50 C, a debranched starch product with an A-type X-ray diffraction pattern, a high melting temperature (90-140 C), and high resistant starch content (71.4%) was obtained. Small-angle X-ray scattering results indicated that all debranched products were surface fractal in a dry state (4% moisture) but had a mass fractal structure when hydrated (e.g. 45% moisture).

  10. Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization.

    PubMed

    Li, Wenhao; Guo, Hongmei; Wang, Peng; Tian, Xiaoling; Zhang, Wei; Saleh, Ahmed S M; Zheng, Jianmei; Ouyang, Shaohui; Luo, Qingui; Zhang, Guoquan

    2015-10-20

    The changes in physicochemical and structural properties of Ultra high pressure (UHP) gelatinized mung bean starch were investigated during 0 to 196h retrogradation process by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). XRD analysis showed that the UHP-gelatinizated granules regenerated its original C-type crystallinity structures after retrogradation. The swelling power and solubility of native starch were increased with the increase in the assay temperatures from 50 to 90°C, while the changing trend of the retrogradated granules was more gradual over entire assay temperatures. In addition, retrogradated granules showed a progressive decrease in the light transmittance and an increase in the amount of resistant starch as the ageing time increased from 0 to 192h. DSC analysis suggested a slight increase in the transition temperatures (To, Tp and Tc) and the retrogradation enthalpy as the storage time increased. In contrast no endothermic transition peak could be observed using DSC after storage of heat-gelatinized mung bean starch gel. PMID:26256204

  11. Determination of dietary starch in animal feeds and pet food by an enzymatic-colorimetric method: collaborative study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, glycogen, maltooligosaccharides, and other alpha-1,4- and alpha-1,6-linked glucose carbohydrates exclusive of resistant starch are collectively termed "dietary starch." This nutritionally important fraction is increasingly measured for use in diet formulation for animals, as it can have posi...

  12. Enzymatic acylation of starch.

    PubMed

    Alissandratos, Apostolos; Halling, Peter J

    2012-07-01

    Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described. PMID:22138593

  13. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. PMID:26344323

  14. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  15. Characterization of Maize Amylose-extender (ae) Mutant Starches. Part II: Structures and Properties of Starch Residues Remaining After Enzymatic Hydrolyis at Boiling-water Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEMS-0067 maize ae-line starch developed by Truman State University and the Germplasm Enhancement of Maize (GEM) Project consisted of 39.4%-43.2% resistant-starch (RS), which was larger than the existing ae-line starches of H99ae, OH43ae, B89ae, and B84ae (11.5%-19.1%) as reported in part I of the s...

  16. Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch.

    PubMed

    Gao, Jinfeng; Kreft, Ivan; Chao, Guimei; Wang, Ying; Liu, Xiaojin; Wang, Li; Wang, Pengke; Gao, Xiaoli; Feng, Baili

    2016-01-01

    A starch rich fraction is a side product in Tartary buckwheat processing. This study investigated the fractions that are of technological and nutritional interest. Tartary buckwheat starch granules had a diameter of 3-14 μm, and presented a typical type "A" X-ray diffraction pattern. They contained nearly 39.0% amylose. The solubility of Tartary buckwheat starch was much lower at 70-90 °C (ranging within 9.9-10.4% at 90 °C) than that in maize (up to 49.3%) and potato (up to 85.0%) starch. The starch of one variety of Tartary buckwheat had significantly lower solubility at 70 °C and 80 °C than that of common buckwheat. The starch peak viscosity and breakdown were higher and pasting time was shorter in Tartary buckwheat than in that of the starch of common buckwheat. Tartary buckwheat starch had unique pasting and physicochemical properties, and is thereby capable of being exploited as a suitable raw material of retrograded starch in food processing. PMID:26213009

  17. New Starch Phenotypes Produced by TILLING in Barley

    PubMed Central

    Sparla, Francesca; Falini, Giuseppe; Botticella, Ermelinda; Pirone, Claudia; Talamè, Valentina; Bovina, Riccardo; Salvi, Silvio; Tuberosa, Roberto; Sestili, Francesco; Trost, Paolo

    2014-01-01

    Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications. PMID:25271438

  18. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    PubMed

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p < 0.05) BWG and feed conversion ratio (FCR) compared to CON group. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p < 0.05). Drip loss percentage on days 3 and 5 and also meat colour were not affected significantly. Supplementing the diets with multi-enzyme or thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p < 0.05). Among measured blood constituents, chickens fed supplemented diets with thermo-resistant multi-enzyme showed higher (p < 0.05) IgG. Counts of red and white blood cells and lymphocyte percentage were not affected. In conclusion, the results demonstrated that supplementing pelleted diets with thermo-resistant multi-enzyme improved performance of broiler chickens. PMID:26334023

  19. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    PubMed

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity. PMID:25888600

  20. Plasmid studies of Salmonella typhimurium phage type 179 resistant to ampicillin, tetracycline, sulphonamides and trimethoprim.

    PubMed Central

    Anderson, D. M.

    1980-01-01

    Sixteen strains of Salmonella typhimurium phage type 179 were referred to the National Health Institute, Wellington, New Zealand, from 1977 to 1979. This phage type had not been observed here before 1977. All strains were resistant to ampicillin, several were also resistant to tetracycline, and several were resistant to ampicillin, tetracycline, sulphafurazole and trimethoprim. All resistances could be transferred to Escherichia coli K 12. Plasmids from these strains and their transconjugants were characterized by agarose gel electrophoresis. It appears that resistance to sulphafurazole and trimethoprim is carried on a plasmid with a molecular weight of 5 . 2 Mdal and that resistance to ampicillin and tetracycline is carried on a plasmid with a molecular weight of approximately 60 Mdal. Images Plate 1 PMID:7005330

  1. Centrifugally spun starch-based fibers from amylopectin rich starches.

    PubMed

    Li, Xianglong; Chen, Huanhuan; Yang, Bin

    2016-02-10

    Centrifugal spinning and electrospinning have proved to be effective techniques for fabricating micro-to-nanofibers. However, starches of amylopectin content above 65% cannot be fabricated to fiber by electrospinning. This paper is focus on the centrifugal spinnability of amylopectin rich starches. We investigated the amylopectin content of starches by Dual-wavelength colorimetry, studied the rheological properties of starch dopes to determine entanglement concentration (ce) by rotary rheometer. Results indicated that amylopectin rich native corn and potato starches, which with amylopectin content higher than 65%, were suitable for centrifugal spinning to micro-to-nanofibers. Additionally, starch-based fibers were successfully fabricated from the amylose rich corn starch as well. Rheological studies showed that the entanglement concentration (ce) of starch solution was crucial for successful centrifugal spinning. PMID:26686151

  2. Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis

    PubMed Central

    Longato, Lisa; Tong, Ming; Wands, Jack R

    2015-01-01

    Recent studies have linked obesity, type 2 diabetes mellitus (T2DM) or non-alcoholic steatohepatitis (NASH) to insulin resistance in the brain, cognitive impairment and neurodegeneration. Insulin resistance compromises cell survival, metabolism and neuronal plasticity, and increases oxidative stress, cytokine activation and apoptosis. T2DM/NASH has been demonstrated to be associated with increased ceramide generation, suggesting a mechanistic link between peripheral insulin resistance and neurodegeneration because ceramides mediate insulin resistance and can cross the blood-brain barrier (BBB). Peripheral insulin resistance diseases may potentially cause brain insulin resistance via a liver-brain axis of neurodegeneration as a result of the trafficking of ceramides across the BBB. Therapy that includes insulin-sensitizing agents may help prevent brain insulin resistance-mediated cognitive impairment. PMID:19777393

  3. The Two Plastidial Starch-Related Dikinases Sequentially Phosphorylate Glucosyl Residues at the Surface of Both the A- and B-Type Allomorphs of Crystallized Maltodextrins But the Mode of Action Differs1

    PubMed Central

    Hejazi, Mahdi; Fettke, Joerg; Paris, Oskar; Steup, Martin

    2009-01-01

    In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of monophosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases. PMID:19395406

  4. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively.

    PubMed Central

    Denyer, K; Waite, D; Motawia, S; Møller, B L; Smith, A M

    1999-01-01

    Isoforms of starch synthase belonging to the granule-bound starch synthase I (GBSSI) class synthesize the amylose component of starch in plants. Other granule-bound isoforms of starch synthase, such as starch synthase II (SSII), are unable to synthesize amylose. The kinetic properties of GBSSI and SSII that are responsible for these functional differences have been investigated using starch granules from embryos of wild-type peas and rug5 and lam mutant peas, which contain, respectively, both GBSSI and SSII, GBSSI but not SSII and SSII but not GBSSI. We show that GBSSI in isolated granules elongates malto-oligosaccharides processively, adding more than one glucose molecule for each enzyme-glucan encounter. Granule-bound SSII can elongate malto-oligosaccharides, but has a lower affinity for these than GBSSI and does not elongate processively. As a result of these properties GBSSI synthesizes longer malto-oligosaccharides than SSII. The significance of these results with respect to the roles of GBSSI and SSII in vivo is discussed. PMID:10229673

  5. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  6. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  7. PA-560, A Southern Root-knot Nematode Resistant, Yellow-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has developed a yellow-fruited, Habanero-type pepper (Capsicum chinense Jacq.) that is highly resistant to root-knot nematodes. The new breeding line, designated PA-560, is the product of a backcross/pedigree breeding procedure to incorporate a root-knot nematode resistance gene from the S...

  8. Resistance training alters cytokine gene expression in skeletal muscle of adults with type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training results in muscle hypertrophy and improves glycemic control in patients with type 2 diabetes. Whether resistance training modulates inflammation in muscles of diabetic patients remains unknown. We examined the expression of genes encoding the cytokines, tumor necrosis factor-al...

  9. Structure and properties of maize starch processed with a combination of α-amylase and pullulanase.

    PubMed

    Zhang, Huanxin; Tian, Yaoqi; Bai, Yuxiang; Xu, Xueming; Jin, Zhengyu

    2013-01-01

    The dissolution and digestion characteristics of maize starch processed with a combination of α-amylase and pullulanase (ERS) were investigated. The results were compared with those of high pressure-processed RS (HRS) and regular maize starch. The ERS exhibited a considerably lower dissolution and digestibility than the HRS under conditions that simulated the stomach and small intestine in vitro. Infrared spectroscopy showed two bands at 1047 and 1002 cm(-1) for ERS, which suggested an easily produced RS during the retrogradation process after enzymatic treatment. High-performance size-exclusion chromatography showed a hydrolyzed ERS forming a critical molecular weight fraction (MW 4833 Da; DP 29.8). X-ray diffraction analysis also revealed a significant difference between the types of HRS (B+V type) and ERS (in the transformation from B+V to V type) crystallinities, and the crystal structure change leads to improved anti-enzymatic properties of ERS. These results indicate that the enzyme-combined method is a more promising technique than high pressure to prepare RS from maize starch with greater resistance. PMID:23043758

  10. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch.

    PubMed

    Takahata, Yasuhiro; Tanaka, Masaru; Otani, Motoyasu; Katayama, Kenji; Kitahara, Kanefumi; Nakayachi, Osamu; Nakayama, Hiroki; Yoshinaga, Masaru

    2010-06-01

    The sweetpotato cultivar Quick Sweet (QS) with a lower pasting temperature of starch is a unique breeding material, but the biochemical background of this property has been unknown. To assess the physiological impact of the reduced isoform II activity of starch synthase (SSII) on the starch properties in sweetpotato storage root, transgenic sweetpotato plants with reduced expressions of the SSII gene were generated and evaluated. All of the starches from transgenic plants showed lower pasting temperatures and breakdown measured by a Rapid Visco Analyzer. The pasting temperatures in transgenic plants were approximately 10-15 degrees C lower than in wild-type plants. Distribution of the amylopectin chain length of the transgenic lines showed marked differences compared to that in wild-type plants: more chains with degree of polymerization (DP) 6-11 and fewer chains with DP 13-25. The starch granules from the storage root of transgenic plants showed cracking on the hilum, while those from wild-type plants appeared to be typical sweetpotato starch. In accordance with these observations, the expression of SSII in the storage roots of the sweetpotato cultivar with low pasting temperature starch (QS) was notably lower than in cultivars with normal starch. Moreover, nucleotide sequence analysis suggested that most of the SSII transcripts in the cultivar with low pasting temperature starch were inactive alleles. These results clearly indicate that the activity of SSII in sweetpotato storage roots, like those in other plants, affects the pasting properties of starch through alteration of the amylopectin structure. PMID:20306051

  11. New ESCAP-type resist with enhanced etch resistance and its application to future DRAM and logic devices

    NASA Astrophysics Data System (ADS)

    Conley, Will; Brunsvold, William R.; Buehrer, Fred; DellaGuardia, Ronald; Dobuzinsky, David; Farrell, Timothy R.; Ho, Hok; Katnani, Ahmad D.; Keller, Robin; Marsh, James T.; Muller, Paul; Nunes, Ronald; Ng, Hung Y.; Oberschmidt, James M.; Pike, Michael; Ryan, Deborah; Cotler-Wagner, Tina; Schulz, Ron; Ito, Hiroshi; Hofer, Donald C.; Breyta, Gregory; Fenzel-Alexander, Debra; Wallraff, Gregory M.; Opitz, Juliann; Thackeray, James W.; Barclay, George G.; Cameron, James F.; Lindsay, Tracy K.; Cronin, Michael F.; Moynihan, Matthew L.; Nour, Sassan; Georger, Jacque H., Jr.; Mori, Mike; Hagerty, Peter; Sinta, Roger F.; Zydowsky, Thomas M.

    1997-07-01

    This new photoresist system extends the capability of the ESCAP platform previously discussed. (1) This resist material features a modified ESCAP type 4-hydroxystyrene-t-butyl acrylate polymer system which is capable of annealing due to the increased stability of the t-butyl ester blocking group. The resist based on this polymer system exhibits excellent delay stability and enhanced etch resistance versus previous DUV resists, APEX and UV2HS. Improved stabilization of chemically amplified photoresist images can be achieved through reduction of film volume by film densification. When the host polymer provides good thermal stability the soft bake conditions can be above or near the Tg (glass transition) temperature of the polymer. The concept of annealing (film densification) can significantly improve the environmental stability of the photoresist system. Improvements in the photoacid generator, processing conditions and overall formulation coupled with high NA (numerical aperture) exposure systems, affords linear lithography down to 0.15 micrometer for isolated lines with excellent post exposure delay stability. In this paper, we discuss the UV4 and UV5 photoresist systems based on the ESCAP materials platform. The resist based on this polymer system exhibits excellent delay stability and enhanced etch resistance versus APEX-E and UV2HS. Due to lower acrylate content, the Rmax for this system can be tuned for feature-type optimization. We demonstrate sub-0.25 micrometer process window for isolated lines using these resists on a conventional exposure tool with chrome on glass masks. We also discuss current use for various device levels including gate structures for advanced microprocessor designs. Additional data will be provided on advanced DRAM applications for 0.25 micrometer and sub-0.25 micrometer programs.

  12. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3'-aminoglycoside phosphotransferase.

    PubMed Central

    Lambert, T; Gerbaud, G; Courvalin, P

    1988-01-01

    Acinetobacter baumannii BM2580 resistant to kanamycin and structurally related antibiotics, including amikacin, was isolated from a clinical specimen. A phosphocellulose paper-binding assay and DNA annealing studies indicated that resistance to aminoglycosides in BM2580 was due to synthesis of a new type of 3'-aminoglycoside phosphotransferase. The gene conferring resistance to kanamycin-amikacin in this strain was carried by a 63-kilobase plasmid, pIP1841, self-transferable to A. baumannii, A. haemolyticus, and A. lwoffii but not to Escherichia coli. The aminoglycoside resistance gene of pIP1841 was cloned in E. coli, where it was expressed. Images PMID:2831812

  13. Autophagy Contributes to Leaf Starch Degradation[C][W

    PubMed Central

    Wang, Yan; Yu, Bingjie; Zhao, Jinping; Guo, Jiangbo; Li, Ying; Han, Shaojie; Huang, Lei; Du, Yumei; Hong, Yiguo; Tang, Dingzhong; Liu, Yule

    2013-01-01

    Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown. PMID:23564204

  14. Metabolomics: Insulin Resistance and Type 2 Diabetes Mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes mellitus (T2DM) develops over many years, providing an opportunity to consider early prognostic tools that guide interventions to thwart disease. Advancements in analytical chemistry enable quantitation of hundreds of metabolites in biofluids and tissues (metabolomics), providing in...

  15. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.

    PubMed

    Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Sanchez-Rivera, Mirna M; Bello-Pérez, Luis A

    2016-11-15

    The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6″-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits. PMID:27283633

  16. Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots.

    PubMed

    Aprianita, Aprianita; Vasiljevic, Todor; Bannikova, Anna; Kasapis, Stefan

    2014-12-01

    Flours and starches isolated from traditional tubers and roots grown in Indonesia have physical and chemical properties suitable for certain food applications. Compared to other flour samples, cassava and canna flours contained the highest amount of total starch (TS) (77.4 and 77.1 %, respectively). Taro starch had the lowest amount of TS among other starch samples with 75.4 %. The highest amount of amylose was observed from yam and canna flours (25.2 and 23.2 %, respectively). Among starch samples, canna starch contained the highest amylose content (30.4 %), while taro had the lowest (7.6 %). In terms of protein content, arrowroot flour had the highest amount (7.7 %), in contrast to cassava flour which had the lowest (1.5 %). Compared to other flours, canna and konjac flour were the most slowly digested which indicated by their high amount of resistant starch (RS). Canna starch had the highest swelling power and viscosity than other starches and flours. The clearest paste was observed from cassava flour and starch as opposed to konjac starch which was the most opaque paste. PMID:25477633

  17. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule.

    PubMed

    Amoako, Derrick B; Awika, Joseph M

    2016-10-01

    Excess calorie intake is a growing global problem. This study investigated effect of complexing partially gelatinized starch with condensed tannins on in vitro starch digestibility. Extracts from tannin and non-tannin sorghum, and cellulose control, were reacted with normal and waxy maize starch in 30% (30E) and 50% ethanol (50E) solutions at 70°C/20min. More tannins complexed with the 30E than 50E starches (mean 6.2 vs 3.5mg/g, respectively). In the 30E treatments, tannins significantly increased crystallinity, pasting temperature, peak viscosity, and slow digesting starch (from 100 to 274mg/g) in normal, but not waxy starch, suggesting intragranular cross-linking with amylose. Tannins doubled resistant starch (RS) to approx. 300mg/g in both starches. In 50E treatments, tannins made both maize starches behave like raw potato starch (>90% RS), suggesting granule surface interactions dominated. Non-tannin treatments generally behaved similar to cellulose. Condensed tannins could be used to favorably alter starch digestion profile. PMID:27132818

  18. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates. [Gamma radiation

    SciTech Connect

    Henderson, A.M.; Rudin, A.

    1982-11-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized.

  19. High-sensitivity and high-dry-etching durability positive-type electron-beam resist

    NASA Astrophysics Data System (ADS)

    Tamura, Akira; Yonezawa, Masaji; Sato, Mitsuyoshi; Fujimoto, Yoshiaki

    1991-08-01

    As feature sizes of semiconductors grow smaller, a resist having dry etching durability and high sensitivity is required for electron beam lithography. However, the positive type electron beam resist having both high sensitivity and high dry etching durability, which suits for practical use, has not been developed yet. In order to solve this problem, a homologous series of poly(alkyl 2-cyanoacrylate) has been investigated. As a result, the new positive type electron beam resist having high sensitivity, high dry etching durability, and high thermal resistance has been developed. This new type of resist consists of poly(cyclohexyl 2- cyanoacrylate), and these features of this resist are due to the cyano and the cyclohexyl groups. The dry etching durability of this resist is 2.19 times as high as that of poly(mthyl methacrylate) (PMMA). The sensitivity is 1.7 (mu) C/cm2 at accelerating voltage of 20 kV, which is about the same as that of poly(butene-1-sulfone) (PBS). Moreover, poly(cyclohexyl 2-cyanoacrylate) has the glass transition of 152 degree(s)C, and then it is thermally stable. Using this resist in photomask fabrication by dry etching, the chrome linewidth uniformity of 0.034 micrometers 3 (sigma) can be obtained.

  20. Dispersion-type Hall resistance in InSb|Pt hybrid systems

    PubMed Central

    Shiomi, Y.; Saitoh, E.

    2016-01-01

    In nonmagnetic semiconductors and metals, most of Hall resistance exhibits a linear dependence with applied magnetic fields. In this work, by combining conduction in a metal and a semiconductor under external magnetic fields, we realize a dispersion-type magnetic-field dependence of Hall resistance. The dispersion-type Hall resistance appears in a broad temperature range below 150 K, where quantum linear magnetoresistance is noticeable in the semiconductor substrate. This unconventional Hall response in metal|semiconductor hybrid systems is explained by a change in dominant conduction from the semiconductor to the metal with increasing magnetic field strength. PMID:26908361

  1. Development of maize starch granules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize kernels of self-pollinated inbred line B73 harvested on various days after pollination (DAP) were subjected for starch granule development studies. Starch in endosperms was first observed on 6 DAP. A small amount of starch granules (<2% of dry weight) was found in the endosperm on 12 DAP. S...

  2. What is the threshold amount of starch necessary for full gravitropic sensitivity?

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Guisinger, Mary M.; Miller, Allison J.

    In preparation for microgravity experiments, we studied the kinetics of gravitropism in seedlings of wild-type (WT) Arabidopsis and three starch-deficient mutants. One of these mutants is starchless (ACG 21) while the other two are intermediate starch mutants (ACG 20 and ACG 27). In root cap cells, ACG 20 and 27 have 51% and 60% of the WT amount of starch, respectively. However, in endodermal cells of the hypocotyl, ACG 20 has a greater amount of starch than ACG 27. WT roots and hypocotyls were much more responsive to gravity than were the respective organs of the starchless mutant, and the intermediate starch mutants exhibited reduced gravitropism but had responses that were close to that of the WT. In roots, ACG 27 (more starch) was more responsive than ACG 20 (less starch), while in hypocotyls, ACG 20 (more starch) had a greater response than ACG 27 (less starch). Taken together, our data are consistent with the starch-statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell. These results also suggest that (in roots) 51 - 60% starch is close to the threshold amount of starch needed for full gravitropism and that the gravity sensing system is ``overbuilt.''

  3. Rheological and biochemical properties of Solanum lycocarpum starch.

    PubMed

    Di-Medeiros, Maria Carolina B; Pascoal, Aline M; Batista, Karla A; Bassinello, Priscila Z; Lião, Luciano M; Leles, Maria Inês G; Fernandes, Kátia F

    2014-04-15

    This study was conducted to evaluate the rheological and physicochemical properties of Solanum lycocarpum starch. The thermogravimetric analysis of S. lycocarpum starch showed a typical three-step weight loss pattern. Microscopy revealed significant changes in the granule morphology after hydrothermal treatment. Samples hydrothermally treated at 50°C for 10 min lost 52% of their crystallinity, which was recovered after storage for 7 days at 4°C. However, samples hydrothermally treated at 65°C were totally amorphous. This treatment was sufficient to completely disrupt the starch granule, as evidenced by the absence of an endothermic peak in the DSC thermogram. The RVA of S. lycocarpum starch revealed 4440.7cP peak viscosity, 2660.5cP breakdown viscosity, 2414.1cP final viscosity, 834.3cP setback viscosity, and a pasting temperature of 49.6°C. The low content of resistant starch (10.25%) and high content of digestible starch (89.78%) in S. lycocarpum suggest that this starch may be a good source for the production of hydrolysates, such as glucose syrup and its derivatives. PMID:24607161

  4. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation.

    PubMed

    Chen, Y; Scieux, C; Garrait, V; Socié, G; Rocha, V; Molina, J M; Thouvenot, D; Morfin, F; Hocqueloux, L; Garderet, L; Espérou, H; Sélimi, F; Devergie, A; Leleu, G; Aymard, M; Morinet, F; Gluckman, E; Ribaud, P

    2000-10-01

    Fourteen cases of severe acyclovir-resistant herpes simplex virus type 1 (HSV-1) infection, 7 of which showed resistance to foscarnet, were diagnosed among 196 allogeneic stem cell transplant recipients within a 29-month period. Recipients of unrelated stem cell transplants were at higher risk. All patients received foscarnet; 8 subsequently received cidofovir. Strains were initially foscarnet-resistant in 3 patients and secondarily so in 4 patients. In vitro resistance to acyclovir or foscarnet was associated with clinical failure of these drugs; however, in vitro susceptibility to foscarnet was associated with complete response in only 5 of 7 patients. No strain from any of the 7 patients was resistant in vitro to cidofovir; however, only 3 of 7 patients achieved complete response. Therefore, acyclovir- and/or foscarnet-resistant HSV-1 infections after allogeneic stem cell transplantation have become a concern; current strategies need to be reassessed and new strategies must be evaluated in this setting. PMID:11049772

  5. Resistance to β-lactams in Bacteria Isolated from Different Types of Portuguese Cheese

    PubMed Central

    Amador, Paula; Fernandes, Ruben; Prudêncio, Cristina; Brito, Luísa

    2009-01-01

    The purpose of this study was to investigate the presence of β-lactam-resistant bacteria in six different types of Portuguese cheese. The numbers of ampicillin resistant (AMPr) bacteria varied from 4.7 × 102 to 1.5 × 107 CFU/g. Within 172 randomly selected β-lactam-resistant bacteria, 44 resistant phenotypes were found and 31.4% were multidrug resistant. The majority (85%) of the isolates identified belonged to the Enterobacteriaceae family. The presence of the blaTEM gene was detected in 80.9% of the tested isolates. The results suggest that without thermal processing of the milk and good hygienic practices, cheese may act as a vehicle of transfer of β-lactam-resistant bacteria to the gastrointestinal tract of consumers. PMID:19468324

  6. Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure.

    PubMed

    Stahl, Yvonne; Coates, Steve; Bryce, James H; Morris, Peter C

    2004-08-01

    The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown. PMID:15272877

  7. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    NASA Astrophysics Data System (ADS)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs (<50%), WPI films had 2-3 times lower elongation at break (E or stretchability) than PS and LDPE. Increasing RH to 90% significantly (P<0.01) increased the elongation of PS but not WPI and LDPE films. LDPE and WPI films kept significantly (P<0.01) higher tensile strength (TS) than PS films at high RH (90%). Oxygen permeability (OP) of all films was very low (<0.5 cm3 μm m-2 d-1 kPa-1) below 40% RH but increased for PS films and became significantly (P<0.01) different than that of LDPE and WPI at > 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  8. Antimicrobial resistance and molecular typing of pseudomonas aeruginosa isolated from surgical wounds in Lagos, Nigeria.

    PubMed

    Smith, Stella; Ganiyu, Olaniyi; John, Rachael; Fowora, Muinah; Akinsinde, Kehinde; Odeigah, Peter

    2012-01-01

    The aim of the study was to determine the resistance patterns of Pseudomonas aeruginosa isolates recovered from patients with surgical wounds in hospitals and also to investigate their epidemiological relatedness using molecular typing techniques. Twenty Pseudomonas sp. isolated from surgical wounds were subjected to antibiotic susceptibility testing by disk diffusion, plasmid profile, SDS-PAGE and PCR using the parC, gyr A gene and RAPD using the 1254 primer. The isolates showed resistance to 12 different antibiotics with six being 100% resistant. Plasmids were detected in 16 (80%) of the isolates. The RAPD-PCR using the primer 1254, SDS-PAGE classified the 20 Pseudomonas spp. into 5 and 6 types respectively. Pseudomona aeruginosa strains isolated from surgical wounds were generally resistant to a broad range of antibiotics and this is rather worrisome. The typing techniques classified the 20 isolates into 5 and 6 groups. PMID:22837123

  9. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

  10. Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Associates with CRISPR Sequence Type

    PubMed Central

    DiMarzio, Michael; Shariat, Nikki; Kariyawasam, Subhashinie; Barrangou, Rodolphe

    2013-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of food-borne salmonellosis in the United States. The number of antibiotic-resistant isolates identified in humans is steadily increasing, suggesting that the spread of antibiotic-resistant strains is a major threat to public health. S. Typhimurium is commonly identified in a wide range of animal hosts, food sources, and environments, but little is known about the factors mediating the spread of antibiotic resistance in this ecologically complex serovar. Previously, we developed a subtyping method, CRISPR–multi-virulence-locus sequence typing (MVLST), which discriminates among strains of several common S. enterica serovars. Here, CRISPR-MVLST identified 22 sequence types within a collection of 76 S. Typhimurium isolates from a variety of animal sources throughout central Pennsylvania. Six of the sequence types were identified in more than one isolate, and we observed statistically significant differences in resistance among these sequence types to 7 antibiotics commonly used in veterinary and human medicine, such as ceftiofur and ampicillin (P < 0.05). Importantly, five of these sequence types were subsequently identified in human clinical isolates, and a subset of these isolates had identical antibiotic resistance patterns, suggesting that these subpopulations are being transmitted through the food system. Therefore, CRISPR-MVLST is a promising subtyping method for monitoring the farm-to-fork spread of antibiotic resistance in S. Typhimurium. PMID:23796925

  11. Ultrastructure of underutilized tuber starches and its relation to physicochemical properties.

    PubMed

    Lan, Xiaohong; Li, Yongfu; Xie, Shichao; Wang, Zhengwu

    2015-12-01

    Starches from five underutilized tubers (canna, potato, Chinese yam, water chestnut, and taro) were extracted to investigate quantitative structure-property relationships (QSPR) in each starch using a combination of X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS). Structural parameters of the tuber starches were determined using the paracrystalline model. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), and thermal properties were also measured. The XRD results indicated that starches from Chinese yam, water chestnut, and taro are C-type starches with relatively high crystallinity (29.23-35.02%). In contrast, canna and potato starches are B-type starches exhibiting lower crystallinity and higher amylose content. The paracrystalline model provided a better fit for the C-type starches than for the B-type starches because the former was highly compressible (indicated by a higher "β" value). B-type starches, on the other hand, tend to be more rigid along the lamellar repeat direction, requiring the layers to bend to accommodate internal stress. The QSPR analysis showed that three structural parameters, "Ø", "β", and "Δρu", correlate well with the SP and WSI, and thus can be used to predict certain physicochemical properties. PMID:26041241

  12. SURFACE PROPERTIES OF WATER SOLUBLE STARCH, STARCH ACETATES AND STARCH ACETATES/ALKENYLSUCCINATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface and interfacial tensions with hexadecane were measured for starch and water soluble starch ester solutions in order to determine their potential as stabilizers or emulsifiers. The surface tension for an acid hydrolysed starch (maltodextrin) initially declined with concentration and then rea...

  13. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants.

    PubMed

    Kobayashi, Masanori; Nakahara, Koichiro; Seki, Takahiro; Miki, Shigeru; Kawauchi, Shinobu; Suyama, Akemi; Wakasa-Morimoto, Chiaki; Kodama, Makoto; Endoh, Takeshi; Oosugi, Eiichi; Matsushita, Yoshihiro; Murai, Hitoshi; Fujishita, Toshio; Yoshinaga, Tomokazu; Garvey, Edward; Foster, Scott; Underwood, Mark; Johns, Brian; Sato, Akihiko; Fujiwara, Tamio

    2008-11-01

    Resistance passage studies were conducted with five INIs (integrase inhibitors) that have been tested in clinical trials to date: a new naphthyridinone-type INI S/GSK-364735, raltegravir, elvitegravir, L-870,810 and S-1360. In establishing the passage system and starting from concentrations several fold above the EC(50) value, resistance mutations against S-1360 and related diketoacid-type compounds could be isolated from infected MT-2 cell cultures from day 14 to 28. Q148R and F121Y were the two main pathways of resistance to S/GSK-364735. Q148R/K and N155H, which were found in patients failing raltegravir treatment in Phase IIb studies, were observed during passage with raltegravir with this method. The fold resistance of 40 mutant molecular clones versus wild type virus was compared with these five INIs. The overall resistance pattern of S/GSK-364735 was similar to that of raltegravir and other INIs. However, different fold resistances of particular mutations were noted among different INIs, reflecting a potential to develop INIs with distinctly different resistant profiles. PMID:18625269

  14. Non-invasive cell type selective in vivo monitoring of insulin resistance dynamics

    PubMed Central

    Paschen, Meike; Moede, Tilo; Leibiger, Barbara; Jacob, Stefan; Bryzgalova, Galyna; Leibiger, Ingo B.; Berggren, Per-Olof

    2016-01-01

    Insulin resistance contributes to the development of cardio-vascular disease and diabetes. An important but unresolved task is to study the dynamics of insulin resistance in selective cell types of insulin target tissues in vivo. Here we present a novel technique to monitor insulin resistance dynamics non-invasively and longitudinally in vivo in a cell type-specific manner, exemplified by the pancreatic β-cell situated within the micro-organ the islet of Langerhans. We utilize the anterior chamber of the eye (ACE) as a transplantation site and the cornea as a natural body-window to study the development and reversibility of insulin resistance. Engrafted islets in the ACE that express a FoxO1-GFP-based biosensor in their β-cells, report on insulin resistance measured by fluorescence microscopy at single-cell resolution in the living mouse. This technique allows monitoring of cell type specific insulin sensitivity/resistance in real-time in the context of whole body insulin resistance during progression and intervention of disease. PMID:26899548

  15. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance.

    PubMed

    Ran, Yang; Feng, Fu-Rong; Liang, Yi-Zhi; Jin, Long; Guan, Bai-Ou

    2015-12-15

    We report on the fabrication of a thermally resistant ultra-short distributed Bragg reflector (DBR) fiber laser based on the photo inscription of two wavelength-matched type IIa gratings in a thin-core Er-doped fiber. With continuous UV exposure, each Bragg reflector initially grows as a type I grating, followed by decay in strength, and then re-grows as a type IIa grating with enhanced thermal resistance. The DBR laser, with an entire length of 13 mm, can stably operate at 600°C with single longitude mode, which provides potential applications in high temperature environments. PMID:26670491

  16. Antimicrobial Resistance and Neisseria gonorrhoeae Multiantigen Sequence Typing Profile of Neisseria gonorrhoeae in New Delhi, India.

    PubMed

    Mahajan, Neeraj; Sood, Seema; Singh, Rajendra; Kapil, Arti; Das, Bimal Kumar; Sreenivas, Vishnubhatla; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2016-08-01

    Molecular epidemiology of 100 consecutive gonococcal isolates collected between April 2010 and October 2013 from New Delhi was investigated using Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) along with its association with antimicrobial resistance profiles. Neisseria gonorrhoeae isolates were assigned into 60 different sequence types and 43 (71.6%) were novel. Sole representation was seen in 76.6% sequence types. There was significant association between ST6058 and resistance to penicillin (P = 0.00) and tetracycline (P = 0.002). PMID:27414684

  17. Methicillin-resistant Staphylococcus aureus in Spain: molecular epidemiology and utility of different typing methods.

    PubMed

    Vindel, Ana; Cuevas, Oscar; Cercenado, Emilia; Marcos, Carmen; Bautista, Verónica; Castellares, Carol; Trincado, Pilar; Boquete, Teresa; Pérez-Vázquez, Maria; Marín, Mercedes; Bouza, Emilio

    2009-06-01

    In a point-prevalence study performed in 145 Spanish hospitals in 2006, we collected 463 isolates of Staphylococcus aureus in a single day. Of these, 135 (29.2%) were methicillin (meticillin)-resistant S. aureus (MRSA) isolates. Susceptibility testing was performed by a microdilution method, and mecA was detected by PCR. The isolates were analyzed by pulsed-field gel electrophoresis (PFGE) after SmaI digestion, staphylococcal chromosomal cassette mec (SCCmec) typing, agr typing, spa typing with BURP (based-upon-repeat-pattern) analysis, and multilocus sequence typing (MLST). The 135 MRSA isolates showed resistance to ciprofloxacin (93.3%), tobramycin (72.6%), gentamicin (20.0%), erythromycin (66.7%), and clindamycin (39.3%). Among the isolates resistant to erythromycin, 27.4% showed the M phenotype. All of the isolates were susceptible to glycopeptides. Twelve resistance patterns were found, of which four accounted for 65% of the isolates. PFGE revealed 36 different patterns, with 13 major clones (including 2 predominant clones with various antibiotypes that accounted for 52.5% of the MRSA isolates) and 23 sporadic profiles. Two genotypes were observed for the first time in Spain. SCCmec type IV accounted for 6.7% of the isolates (70.1% were type IVa, 23.9% were type IVc, 0.9% were type IVd, and 5.1% were type IVh), and SCCmec type I and SCCmec type II accounted for 7.4% and 5.2% of the isolates, respectively. One isolate was nontypeable. Only one of the isolates produced the Panton-Valentine leukocidin. The isolates presented agr type 2 (82.2%), type 1 (14.8%), and type 3 (3.0%). spa typing revealed 32 different types, the predominant ones being t067 (48.9%) and t002 (14.8%), as well as clonal complex 067 (78%) by BURP analysis. The MRSA clone of sequence type 125 and SCCmec type IV was the most prevalent throughout Spain. In our experience, PFGE, spa typing, SCCmec typing, and MLST presented good correlations for the majority of the MRSA strains; we suggest the

  18. CHARACTERISATION OF JICAMA (MEXICAN POTATO)(PACHYRHIZUS EROSUS L. URBAN) STARCH FROM TAPROOTS GROWN IN USA AND MEXICO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characteristics of starch extracted from roots of jícama (Pachyrhizus erosus L. Urban) cultivated in Texas and two locations in Mexico were studied. Jícama starch granules were spherical or polygonal with diameters ranging from 1-13 micrometers. Jícama starch exhibited A-type X-ray diffraction pat...

  19. Novel type of Streptococcus pneumoniae causing multidrug-resistant acute otitis media in children.

    PubMed

    Xu, Qingfu; Pichichero, Michael E; Casey, Janet R; Zeng, Mingtao

    2009-04-01

    After our recent discovery of a Streptococcus pneumoniae 19A "superbug" (Legacy strain) that is resistant to all Food and Drug Administration-approved antimicrobial drugs for treatment of acute otitis media (AOM) in children, other S. pneumoniae isolates from children with AOM were characterized by multilocus sequence typing (MLST). Among 40 isolates studied, 16 (40%) were serotype 19A, and 9 (23%) were resistant to multiple antimicrobial drugs. Two others had unreported sequence types (STs) that expressed the 19A capsule, and 8 (88%) of the 9 multidrug-resistant strains were serotype 19A, including the Legacy strain with the new ST-2722. In genetic relatedness, ST-2722 belonged to a cluster of reported strains of S. pneumoniae in which all strains had 6 of the same alleles as ST-156. The multidrug-resistant strains related to ST-156 expressed different capsular serotypes: 9V, 14, 11A, 15C, and 19F. PMID:19331730

  20. Structure and Functional Properties of Sorghum Starches Differing in Amylose Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum is an important cereal grain due to its drought-resistance and relative low cost. Starch is the major component of grain sorghum, and comprises ~70% of dry grain weight. Many important physicochemical, thermal, and rheological properties of starch are influenced by the ratio of amylose and ...

  1. Nutritionally-important starch fractions of rice cultivars grown in southern United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary starches can be classified into three major fractions, according to in vitro digestibility: rapidly digestible (RDS), slowly digestible (SDS), and resistant starch (RS). Literature indicates that SDS and/or RS have significant implications on human health, particularly, glucose metabolism, ...

  2. Improvement of polymer type EB resist sensitivity and line edge roughness

    NASA Astrophysics Data System (ADS)

    Otani, Makoto; Asada, Hironori; Tsunoda, Hosei; Kunitake, Masashi; Ishizaki, Takehiko; Miyagawa, Ryuji

    2011-05-01

    In order to improve sensitivity and line edge roughness (LER) for electron beam (EB) lithography, the positive-type polymer resists with various molecular weights and controlled dispersion were newly synthesized and examined. The synthesized resists have the same composition as ZEP520A (Nippon Zeon). With the low molecular and the narrow dispersion resist, improvements of both the sensitivity and LER are confirmed by obtaining the SEM images of line and space resist patterns exposed by EB writing system at an acceleration voltage of 100 kV. The polymer resist with molecular weight (Mw: 30k) and dispersion (1.4) exhibited 22 nm hp resolution, 20% improved LER and 15 % improved sensitivity compared with original ZEP520A.

  3. Effects of waxy rice and tapioca starches on the physicochemical and sensory properties of white sauces enriched with functional fibre.

    PubMed

    Bortnowska, Grażyna; Krudos, Agnieszka; Schube, Violetta; Krawczyńska, Wioletta; Krzemińska, Natalia; Mojka, Katarzyna

    2016-07-01

    This study was conducted to examine the physicochemical and sensory properties of gluten-free white sauces (WSs) prepared with waxy rice starch (WRS) or tapioca starch (TS) and high amylose maize starch (HAMS) as the source of resistance starch RS2 type. Herschel-Bulkley model (H-B) was successfully used to describe the flow behavior of WSs. Temperature had a notable effect on the derived from H-B relation parameters and the Arrhenius equation was applied to describe changes in consistency. The values of storage modulus (G') were higher than those of loss modulus (G″) with loss tangent between 0.1 and 1.0 within the tested frequency range of 0.1-50Hz. Generalized Cox-Merz rule was used to correlate the steady shear properties to viscoelasticity of WSs. Consumers were tolerant to the presence of HAMS and mostly interested in consuming WSs containing 3.0-3.5wt% WRS and 2.5-3.0wt% TS. PMID:26920263

  4. In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars.

    PubMed

    Chung, Hyun-Jung; Liu, Qiang; Hoover, Ratnajothi; Warkentin, Tom D; Vandenberg, Bert

    2008-11-15

    In vitro starch digestibility, expected glycemic index (eGI), and thermal and pasting properties of flours from pea, lentil and chickpea grown in Canada under identical environmental conditions were investigated. The protein content and gelatinization transition temperatures of lentil flour were higher than those of pea and chickpea flours. Chickpea flour showed a lower amylose content (10.8-13.5%) but higher free lipid content (6.5-7.1%) and amylose-lipid complex melting enthalpy (0.7-0.8J/g). Significant differences among cultivars within the same species were observed with respect to swelling power, gelatinization properties, pasting properties and in vitro starch digestibility, especially chickpea flour from desi (Myles) and kabuli type (FLIP 97-101C and 97-Indian2-11). Lentil flour was hydrolyzed more slowly and to a lesser extent than pea and chickpea flours. The amount of slowly digestible starch (SDS) in chickpea flour was the highest among the pulse flours, but the resistant starch (RS) content was the lowest. The eGI of lentil flour was the lowest among the pulse flours. PMID:26047429

  5. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria.

    PubMed

    Klein-Jöbstl, Daniela; Sofka, Dmitri; Iwersen, Michael; Drillich, Marc; Hilbert, Friederike

    2016-01-01

    Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves' feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic vs. conventional) and calf housing (place, and individual vs. group) were identified as significantly (p < 0.05) associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3%) were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%), followed by nalidixic acid (42.8%), and tetracycline (14.5%) was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for C. jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans. PMID:26870027

  6. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics

    PubMed Central

    dos Santos, Gilberto Monteiro; Montrezol, Fábio Tanil; Pauli, Luciana Santos Souza; Sartori-Cintra, Angélica Rossi; Colantonio, Emilson; Gomes, Ricardo José; Marinho, Rodolfo; de Moura, Leandro Pereira; Pauli, José Rodrigo

    2014-01-01

    Objective To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. Methods The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training’s equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. Results The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Conclusion Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals. PMID:25628192

  7. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria

    PubMed Central

    Klein-Jöbstl, Daniela; Sofka, Dmitri; Iwersen, Michael; Drillich, Marc; Hilbert, Friederike

    2016-01-01

    Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves’ feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic vs. conventional) and calf housing (place, and individual vs. group) were identified as significantly (p < 0.05) associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3%) were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%), followed by nalidixic acid (42.8%), and tetracycline (14.5%) was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for C. jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans. PMID:26870027

  8. Antimicrobial Resistance and Molecular Typing of Salmonella Stanley Isolated from Humans, Foods, and Environment.

    PubMed

    Yang, Xiaowei; Kuang, Dai; Meng, Jianghong; Pan, Haijian; Shen, Junqing; Zhang, Jing; Shi, Weimin; Chen, Qi; Shi, Xianming; Xu, Xuebin; Zhang, Jianmin

    2015-12-01

    Salmonella enterica serovar Stanley is an important serovar that has been increasingly identified in human salmonellosis. The present study aimed to investigate the antimicrobial resistance and molecular typing of 88 Salmonella Stanley strains isolated from humans (diarrhea patients, n = 64; and healthy carrier, n = 1), foods (aquatic products, n = 16; vegetable, n = 1; and pork, n = 1), and environment (waste water, n = 2; and river water, n = 3) in Shanghai, China from 2006 to 2012. Nearly half of the strains were resistant to sulfafurazole (43/88, 48.9%), and many were resistant to streptomycin (35/88, 39.8%), tetracycline (22/88, 25%), and nalidixic acid (19/88, 21.6%). Approximately a quarter of the strains (24/88, 27.3%) were resistant to more than three antimicrobials, and five had ACSSuT resistance type. Six clusters (A-F) were identified by pulsed-field gel electrophoresis (PFGE) with 80% similarity. Interestingly, strains in the same cluster identified by PFGE possessed similar antibiotic resistance patterns. PFGE typing also indicated that aquatic products might serve as a transmission reservoir for Salmonella Stanley infections in humans. PMID:26488910

  9. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

    PubMed

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte

    2011-04-01

    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism. PMID:21294843

  10. RHEOLOGY OF STARCH-LIPID COMPOSITES YOGURTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yogurt is traditionally made by fermenting liquid milk. The ability of starches to thicken, gel, and hold water has been exploited in yogurt manufacture. The addition of starch increases the viscosity of yogurt, but some starches impart an undesirable taste and promote phase separation. Starch-li...

  11. Carbon and nitrogen effects on sensitization resistance of type 347 stainless steels

    SciTech Connect

    Oh, Y.J.; Yoon, J.H.; Hong, J.H.

    2000-03-01

    The sensitization resistance of the stabilized Type 347 (UNS S34700) stainless steels (SS) having different carbon and nitrogen contents was evaluated using the double-loop electrochemical potentiokinetic reactivation (DL-EPR) and ASTM A262, practice E methods. Samples were heat-treated to simulate the coarse grain region of the heat-affected zone (HAZ) during welding and subsequently aged at 948 K for different times. For comparison, DL-EPR tests also were conducted for the unstabilized steels, Type 316 (UNS S31600) and Type 304 (UNS S30400). For Type 347 SS, a criterion for sensitization in accordance with the ASTM A262, practice E test corresponded to a condition of > 10% reactivation ratio (peak reactivation current [I{sub r}]/peak activation current [I{sub a}]) from DL-EPR test. The carbon and nitrogen effects on the sensitization resistance of the Type 347 SS were explained in view of the observed microstructures. BY introducing a resistance parameter based on the chemical composition, sensitization resistance of the stabilized Type 347 SS and the unstabilized steels was expressed as a unified function.

  12. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release.

    PubMed

    Yang, Jinlong; Huang, Yinjuan; Gao, Chunmei; Liu, Mingzhu; Zhang, Xinjie

    2014-03-01

    A novel type of reduction-sensitive starch nanoparticles was prepared via the reversed-phase microemulsion method by using crosslinker, N,N-bisacryloylcystamine (BAC) with the disulfide linkages, which was specifically cleaved by dithiothreitol (DTT). Starch nanoparticles had a spherical morphology with a small size of 40 nm in the optimal condition. The influences of process parameters (starch amount, surfactant amount and oil/water (O/W) ratio) on the size of starch nanoparticles were studied by dynamic light scattering (DLS). BAC crosslinked starch nanoparticles were degraded into oligomers with the reducing agent of DTT due to the cleavage of the disulfide linkages. A model drug 5-aminosalicylic acid (5-ASA) could be loaded efficiently into starch nanoparticles and the in vitro drug release behaviors were also studied. The results suggested that the disulfide crosslinked starch nanoparticles exhibited an accelerated drug release behavior in the presence of DTT. In vitro methyl thiazolyl tetrazolium (MTT) assays indicated that BAC crosslinked starch nanoparticles had a good biocompatibility when cocultured with human HeLa cancer cells. Hence, with excellent biocompatibility and biodegradability, and rapid drug release in response to DTT, BAC crosslinked starch nanoparticles showed a great potential as a biomaterial carrier for the application of drug controlled release. In contrast to BAC crosslinked starch nanoparticles, N,N-methylenebisacrylamine (MBA) crosslinked starch nanoparticles were prepared as the control without the disulfide linkages. PMID:24463097

  13. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch.

    PubMed

    Madruga, Marta Suely; de Albuquerque, Fabíola Samara Medeiros; Silva, Izis Rafaela Alves; do Amaral, Deborah Silva; Magnani, Marciane; Queiroga Neto, Vicente

    2014-01-15

    Starches used in food industry are extracted from roots, tubers and cereals. Seeds of jackfruit are abundant and contain high amounts of starch. They are discarded during the fruit processing or consumption and can be an alternative source of starch. The starch was extract from the jackfruit seeds and characterised to chemical, morphological and functional properties. Soft and hard jackfruit seeds showed starch content of 92.8% and 94.5%, respectively. Starch granules showed round and bell shape and some irregular cuts on their surface with type-A crystallinity pattern, similar to cereals starches. The swelling power and solubility of jackfruit starch increased with increasing temperature, showing opaque pastes. The soft seeds starch showed initial and final gelatinisation temperature of 36°C and 56°C, respectively; while hard seeds starch presented initial gelatinisation at 40°C and final at 61°C. These results suggest that the Brazilian jackfruit seeds starches could be used in food products. PMID:24054264

  14. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes.

    PubMed

    Perry, Rachel J; Samuel, Varman T; Petersen, Kitt F; Shulman, Gerald I

    2014-06-01

    Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes. PMID:24899308

  15. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes

    PubMed Central

    Perry, Rachel J.; Samuel, Varman T.; Petersen, Kitt F.; Shulman, Gerald I.

    2015-01-01

    Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes. PMID:24899308

  16. Preparation and characterization of dry method esterified starch/polylactic acid composite materials.

    PubMed

    Zuo, Yingfeng; Gu, Jiyou; Yang, Long; Qiao, Zhibang; Tan, Haiyan; Zhang, Yanhua

    2014-03-01

    Corn starch and maleic anhydride were synthesized from a maleic anhydride esterified starch by dry method. Fourier transform infrared spectroscopy (FTIR) was used for the qualitative analysis of the esterified starches. The reaction efficiency of dry method esterified starch reached 92.34%. The dry method esterified starch was blended with polylactic acid (PLA), and the mixture was melted and extruded to produce the esterified starch/polylactic acid (ES/PLA) composites. The degree of crystallinity of the ES/PLA was lower than that of the NS/PLA, indicating that the relative dependence between these two components of starch and polylactic acid was enhanced. Scanning electron microscopy (SEM) indicated that the dry method esterified starch increased the two-phase interface compatibility of the composites, thereby improving the tensile strength, bending strength, and elongation at break of the ES/PLA composite. The introduction of a hydrophobic ester bond and increase in interface compatibility led to an increase in ES/PLA water resistance. Melt index determination results showed that starch esterification modification had improved the melt flow properties of starch/PLA composite material. Strain scanning also showed that the compatibility of ES/PLA was increased. While frequency scanning showed that the storage modulus and complex viscosity of ES/PLA was less than that of NS/PLA. PMID:24315947

  17. Intactness of cell wall structure controls the in vitro digestion of starch in legumes.

    PubMed

    Dhital, Sushil; Bhattarai, Rewati R; Gorham, John; Gidley, Michael J

    2016-03-16

    Increasing the level of starch that is not digested by the end of the small intestine and therefore enters the colon ('resistant starch') is a major opportunity for improving the nutritional profile of foods. One mechanism that has been shown to be successful is entrapment of starch within an intact plant tissue structure. However, the level of tissue intactness required for resistance to amylase digestion has not been defined. In this study, intact cells were isolated from a range of legumes after thermal treatment at 60 °C (starch not gelatinised) or 95 °C (starch gelatinised) followed by hydrolysis using pancreatic alpha amylase. It was found that intact cells, isolated at either temperature, were impervious to amylase. However, application of mechanical force damaged the cell wall and made starch accessible to digestive enzymes. This shows that the access of enzymes to the entrapped swollen starch is the rate limiting step controlling hydrolysis of starch in cooked legumes. The results suggest that a single cell wall could be sufficient to provide an effective delivery of starch to the large intestine with consequent nutritional benefits, provided that mechanical damage during digestion is avoided. PMID:26786854

  18. Nutritional value of broad bean seeds. Part 3: Changes of dietary fibre and starch in the production of commercial flours.

    PubMed

    Giczewska, Anna; Borowska, Julitta

    2004-04-01

    We report on the impact of flour production from small- and large-seed varieties of broad bean on the quantitative and qualitative distribution of dietary fibre and starch. The experimental material consisted of the seeds of small-seed varieties of broad bean: Gobik and Goral, large-seed varieties of broad bean: Windsor Bialy and Bartom, and pea seeds of Albatros, Karat and Miko varieties (for comparison). The seeds were at full physiological maturity. Soaking and hydrothermal processing were shown to cause multidirectional, statistically significant changes in dietary fibre and starch, depending on both parameters of the process and type of the seeds. The flours of both small-seed broad bean varieties contained 20.15%-28.31%, flours of the large-seed broad bean 23.10%-27.50%, and those from pea seeds 20.13%-22.81% total dietary fibre. Attention should be paid to the considerable, approximately 2-fold increase in the soluble dietary fibre (SDF) content, compared to the raw material. The processing of seeds caused significant changes also with reference to starch. The most considerable changes were observed when the variant with the longest times of soaking (18 h) and heating (45 min) was applied. In the broad bean flours, the content of analytically available starch decreased by 22.94-30.60% and its digestibility was observed to decrease up to 30.25%. The pea flours, however, were characterised by an increased concentration of both forms of starch, especially significant for the digestible starch. The calculated content of resistant starch (RS) differentiated, to a high extent, the flours obtained. Under the same processing conditions, the flours of small-seed Gobik and Goral varieties of broad bean were characterised by a significantly higher RS content than those obtained from the large-seed varieties. A decrease in the starch digestibility rate index (SDRI) values, especially high for the small-seed varieties, should also be emphasised. The results obtained

  19. Gravitropism in roots of intermediate-starch mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Wright, J. B.; Caspar, T.

    1996-01-01

    Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the starchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to the starchless mutant, it appears that 51-60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.

  20. Lipoprotein Subfraction Cholesterol Distribution Is Proatherogenic in Women With Type 1 Diabetes and Insulin Resistance

    PubMed Central

    Maahs, David M.; Hokanson, John E.; Wang, Hong; Kinney, Gregory L.; Snell-Bergeon, Janet K.; East, Ashley; Bergman, Bryan C.; Schauer, Irene E.; Rewers, Marian; Eckel, Robert H.

    2010-01-01

    OBJECTIVE Individuals with type 1 diabetes have a less atherogenic fasting lipid profile than those without diabetes but paradoxically have increased rates of cardiovascular disease (CVD). We investigated differences in lipoprotein subfraction cholesterol distribution and insulin resistance between subjects with and without type 1 diabetes to better understand the etiology of increased CVD risk. RESEARCH DESIGN AND METHODS Fast protein liquid chromatography was used to fractionate lipoprotein cholesterol distribution in a substudy of the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study (n = 82, age 46 ± 8 years, 52% female, 49% with type 1 diabetes for 23 ± 8 years). Insulin resistance was assessed by a hyperinsulinemic-euglycemic clamp. RESULTS Among men, those with type 1 diabetes had less VLDL and more HDL cholesterol than control subjects (P < 0.05), but among women, those with diabetes had a shift in cholesterol to denser LDL, despite more statin use. Among control subjects, men had more cholesterol distributed as VLDL and LDL but less as HDL than women; however, among those with type 1 diabetes, there was no sex difference. Within sex and diabetes strata, a more atherogenic cholesterol distribution by insulin resistance was seen in men with and without diabetes, but only in women with type 1 diabetes. CONCLUSIONS The expected sex-based less atherogenic lipoprotein cholesterol distribution was not seen in women with type 1 diabetes. Moreover, insulin resistance was associated with a more atherogenic lipoprotein cholesterol distribution in all men and in women with type 1 diabetes. This lipoprotein cholesterol distribution may contribute to sex-based differences in CVD in type 1 diabetes. PMID:20393149

  1. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    PubMed

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P < 0.05). An increase in moisture, water, and oil absorption capacity was observed for the acetylated starch and, which was less pronounced for the enzymatically hydrolysed starch but more pronounced for the enzymatically hydrolysed acetylated product. The latter product underwent an increase in resistant starch content, which is induced by a rise in hydrolysis time to attain about 67 % after 1 h of reaction. The modified starch samples were added to cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch. PMID:26787967

  2. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: glycemic response and mechanism.

    PubMed

    He, Jinhua; Liu, Jie; Zhang, Genyi

    2008-01-01

    The mechanism and molecular structure of the slowly digestible waxy maize starch prepared by octenyl succinic anhydride (OSA) esterification and heat-moisture treatment were investigated. The in vitro Englyst test showed a proportion of 28.3% slowly digestible starch (SDS) when waxy maize starch was esterified with 3% OSA (starch weight based, and it is named OSA-starch), and a highest SDS content of 42.8% was obtained after OSA-starch (10% moisture) was further heated at 120 degrees C for 4 h (named HOSA-starch). The in vivo glycemic response of HOSA-starch, which showed a delayed appearance of blood glucose peak and a significant reduction (32.2%) of the peak glucose concentration, further confirmed its slow digestion property. Amylopectin debranching analysis revealed HOSA-starch had the highest resistance to debranching enzymes of isoamylase and pullulanase, and a simultaneous decrease of K m and V m (enzyme kinetics) was also shown when HOSA-starch was digested by either alpha-amylase or amyloglucosidase, indicating that the slow digestion of HOSA-starch resulted from an uncompetitive inhibition of enzyme activity during digestion. Size exclusion chromatography analysis of HOSA-starch showed fragmented amylopectin molecules with more nonreducing ends that are favorable for RS conversion to SDS by the action of amyloglucosidase in the Englyst test. Further solubility analysis indicates that the water-insolubility of HOSA-starch is caused by OSA-mediated cross-linking of amylopectin and the hydrophobic interaction between OSA-modified starch molecules. The water-insolubility of HOSA-starch would decrease its enzyme accessibility, and the digestion products with attached OSA molecules might also directly act as the uncompetitive inhibitor to reduce the enzyme activity leading to a slow digestion of HOSA-starch. PMID:18067261

  3. Features of Hepatic and Skeletal Muscle Insulin Resistance Unique to Type 1 Diabetes

    PubMed Central

    Howard, David; Schauer, Irene E.; Maahs, David M.; Snell-Bergeon, Janet K.; Eckel, Robert H.; Perreault, Leigh; Rewers, Marian

    2012-01-01

    Context: Type 1 diabetes is known to be a state of insulin resistance; however, the tissues involved in whole-body insulin resistance are less well known. It is unclear whether insulin resistance is due to glucose toxicity in the post-Diabetes Control and Complications Trial era of tighter glucose control. Objective: We performed this study to determine muscle and liver insulin sensitivity individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose concentration. Design, Patients, and Methods: Fifty subjects [25 controls without and 25 individuals with type 1 diabetes (diabetes duration 22.9 ± 1.7 yr, without known end organ damage] were frequency matched on age and body mass index by group and studied. After 3 d of dietary control and overnight insulin infusion to normalize glucose, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m2 · min. Glucose metabolism was quantified using an infusion of [6,6-2H2]glucose. Hepatic insulin sensitivity was measured using the insulin IC50 for glucose rate of appearance (Ra), whereas muscle insulin sensitivity was measured using the glucose rate of disappearance during the highest insulin dose. Results: Throughout the study, glucose Ra was significantly greater in individuals compared with those without type 1 diabetes. The concentration of insulin required for 50% suppression of glucose Ra was 2-fold higher in subjects with type 1 diabetes. Glucose rate of disappearance was significantly lower in individuals with type 1 diabetes during the 8- and 40-mU/m2 · min stages. Conclusion: Insulin resistance in liver and skeletal muscle was a significant feature in type 1 diabetes. Nevertheless, the etiology of insulin resistance was not explained by body mass index, percentage fat, plasma lipids, visceral fat, and physical activity and was also not fully explained by hyperglycemia. PMID:22362823

  4. Insulin resistance in type 1 diabetes: what is 'double diabetes' and what are the risks?

    PubMed

    Cleland, S J; Fisher, B M; Colhoun, H M; Sattar, N; Petrie, J R

    2013-07-01

    In this review, we explore the concept of 'double diabetes', a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice. PMID:23613085

  5. Effects of single and dual physical modifications on pinhão starch.

    PubMed

    Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra

    2015-11-15

    Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. PMID:25977003

  6. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. PMID:26248144

  7. Resistivity control by solid-state reaction of perovskite-type oxides

    SciTech Connect

    Nagamoto, H.; Tanaka, H.; Koya, T.

    1995-10-01

    Resistivity control has been conducted by solid-state reaction of two different perovskite-type oxides. One is La{sub 0.5}Ba{sub 0.5}CoO{sub 3{minus}{delta}} (LBC) which showed metallic conduction, and its resistivity, {rho} was 10{sup {minus}3} {Omega} {center_dot} cm at 20 C. The other is Ba{sub 0.998}Sb{sub 0.002}TiO{sub 3} (BT) which showed positive temperature coefficient of resistivity (PTCR) effect. The sintered body of the mixture of the two oxides did not show PTCR effect. The logarithm of the resistivity of the sintered body, log {rho}{sub mix} was expressed using the resistivity of LBC, {rho}{sub LBC}, the molar ratio of BT, x, and temperature dependent constant, {alpha}(T) as log {rho}{sub mix} = (1 {minus} x) log {rho}{sub LBC} + x{alpha}(T), which holds for 0 {le} x {le} 0.8 at the temperature ranging from 20 to 240 C. {rho}{sub mix} changed by about 8 orders of magnitude at room temperature. X-ray diffraction analysis suggested that metal ions at the A-site move from one perovskite-type oxide to another and that the sintered body consisted of two perovskite-type oxides different from starting ones.

  8. Carcinomas contain an MMP-resistant isoform of type I collagen exerting selective support to invasion

    PubMed Central

    Makareeva, Elena; Han, Sejin; Vera, Juan Carlos; Sackett, Dan L.; Holmbeck, Kenn; Phillips, Charlotte L.; Visse, Robert; Nagase, Hideaki; Leikin, Sergey

    2010-01-01

    Collagen fibers affect metastasis in two opposing ways, by supporting invasive cells but also generating a barrier to invasion. We hypothesized that these functions might be performed by different isoforms of type I collagen. Carcinomas are reported to contain α1(I)3 homotrimers, a type I collagen isoform normally not present in healthy tissues, but the role of the homotrimers in cancer pathophysiology is unclear. In this study, we found that these homotrimers were resistant to all collagenolytic matrix metalloproteinases (MMPs). MMPs are massively produced and utilized by cancer cells and cancer-associated fibroblasts for degrading stromal collagen at the leading edge of tumor invasion. The MMP-resistant homotrimers were produced by all invasive cancer cell lines tested, both in culture and in tumor xenografts, but they were not produced by cancer-associated fibroblasts, thereby comprising a specialized fraction of tumor collagen. We observed the homotrimer fibers to be resistant to pericellular degradation, even upon stimulation of the cells with pro-inflammatory cytokines. Further, we confirmed an enhanced proliferation and migration of invasive cancer cells on the surface of homotrimeric vs. normal (heterotrimeric) type I collagen fibers. In summary, our findings suggest that invasive cancer cells may utilize homotrimers for building MMP-resistant invasion paths, supporting local proliferation and directed migration of the cells while surrounding normal stromal collagen is cleaved. Because the homotrimers are universally secreted by cancer cells and deposited as insoluble, MMP-resistant fibers, they offer an appealing target for cancer diagnostics and therapy. PMID:20460529

  9. Transport characteristics of meander and bispiral types resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Nishimoto, M.; Joo, J. H.; Murase, S.

    2008-09-01

    The resistive type fault current limiter based on YBCO thin film with high critical current density was proposed and developed because of its fast recovery characteristics. We have been developing a magnetic field measurement system with hall sensor to study the critical current density distribution or magnetic properties of high- Tc superconductors such as thin film, tape conductor and coated conductors. In this study, the transport current distribution in straight line and U-corner region of meander type resistive fault current limiter using YBCO thin film was investigated experimentally. The both axial and radial self-magnetic field components according to the direct (DC) and alternating (AC) transport currents were measured by two-axis hall probe to estimate the current distribution. And also, the self-magnetic field at the corner of bispiral type fault current limiter was measured by two-axis hall probe with a high spatial resolution to compare with the meander type fault current limiter.

  10. Freeze-drying changes the structure and digestibility of B-polymorphic starches.

    PubMed

    Zhang, Bin; Wang, Kai; Hasjim, Jovin; Li, Enpeng; Flanagan, Bernadine M; Gidley, Michael J; Dhital, Sushil

    2014-02-19

    Starch granules both isolated from plants and used in foods or other products have typically been dried. Common food laboratory and industry practices include oven (heat), freeze, and ethanol (solvent-exchange) drying. Starch granules isolated from maize (A-type polymorph) and potato (B-type polymorph) were used to understand the effects of different dehydration methods on starch structure and in vitro digestion kinetics. Oven and ethanol drying do not significantly affect the digestion properties of starches compared with their counterparts that have never been dried. However, freeze-drying results in a significant increase in the digestion rate of potato starch but not maize starch. The structural and conformational changes of starch granules after drying were investigated at various length scales using scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction, FTIR spectroscopy, and NMR spectroscopy. Freeze-drying not only disrupts the surface morphology of potato starch granules (B-type polymorph), but also degrades both short- and long-range molecular order of the amylopectin, each of which can cause an increase in the digestion rate. In contrast to A-polymorphic starches, B-polymorphic starches are more disrupted by freeze-drying, with reductions of both short- and long-range molecular order. We propose that the low temperatures involved in freeze-drying compared with oven drying result in greater chain rigidity and lead to structural disorganization during water removal at both nanometer and micrometer length scales in B-type polymorphic starch granules, because of the different distribution of water within crystallites and the lack of pores and channels compared with A-type polymorphic starch granules. PMID:24471496

  11. Frequencies of heavy metal resistance are associated with land cover type in the Upper Mississippi River.

    PubMed

    Staley, Christopher; Johnson, Dylan; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-04-01

    Taxonomic compositions of freshwater bacterial communities have been well-characterized via metagenomic and amplicon-based approaches, especially next-generation sequencing. However, functional diversity of these communities remains less well-studied. Various anthropogenic sources are known to impact the bacterial community composition in freshwater riverine systems and potentially alter functional diversity. In this study, high-throughput functional screening of large (~10,000 clones) fosmid libraries representing communities in the Upper Mississippi River revealed low frequencies of resistance to heavy metals in the following order: Mn2+>Cr3+>Zn2+>Cd2+>Hg2+. No resistance to Cu2+ was detected. Significant, but weak, correlations were observed between resistance frequencies of Cd and Cr with developed land cover (r2=0.08, P=0.016 and r=0.07, P=0.037, respectively). While discriminant function analyses further supported these associations, redundancy analysis further indicated associations with forested land cover and greater resistance to Hg and Zn. Nutrient and metal ion concentrations and abundances of bacterial orders were poorly correlated with heavy metal resistance, except for an association of Pseudomonadales abundance and resistance to Hg and Zn. Taken together, results of this study suggest that allochthonous bacteria contributed from specific land cover types influence the patterns of metal resistance throughout this river. PMID:25569582

  12. Starch Suspensions with Different Fluids

    NASA Astrophysics Data System (ADS)

    Lim, Melody; Melville, Audrey; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    A suspension made of starch particles dispersed in water displays significant non-Newtonian behavior for high enough particulate concentration. This surprising behavior has recently inspired a series of experiments that have shed much light on the possible mechanism behind this phenomenon. In our studies we assess the role of the fluid phase in these suspensions. We find that using fluids other than water can significantly alter the behavior of starch suspensions. Through mechanical tests of various kinds, we assess the interaction between starch particles and different liquids, and how this interaction affects the non-Newtonian behavior of starch suspensions.

  13. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. PMID:26428150

  14. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.

    PubMed

    Magnet, S; Courvalin, P; Lambert, T

    2001-12-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster. PMID:11709311

  15. Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454

    PubMed Central

    Magnet, Sophie; Courvalin, Patrice; Lambert, Thierry

    2001-01-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster. PMID:11709311

  16. PA-559: A New, Root-knot Nematode Resistant, Red-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to develop a root-knot nematode resistant, red-fruited, Habanero-type pepper (Capsicum chinense Jacq.) were completed with the official release of PA-559 on September 18, 2008. The new breeding line is the product of a backcross/pedigree breeding procedure to incorporate a dominant root-kno...

  17. Variation in morphotype, karyotype and DNA type of fluconazole resistant Candida albicans from an AIDS patient.

    PubMed

    Takasuka, T; Baily, G G; Birch, M; Anderson, M J; Law, D; Denning, D W

    1998-01-01

    Azole-resistant oropharyngeal and oesophageal candidiasis is a recent phenomenon observed in patients with AIDS usually previously treated with fluconazole. Some variation has been observed in antifungal susceptibility testing among separate colonies of Candida albicans from the same patient. This raises the question of whether there are multiple clones present or simply phenotypic variation in expression of azole resistance. To address this question we took 18 isolates grown from multiple swabs taken before and after experimental azole therapy from a single HIV-positive individual with fluconazole-resistant oral candidiasis and compared morphotype, karyotype, PCR-based DNA typing and azole susceptibility. Ten of the isolates were from a single 2-day period. Amongst these 10 there were seven morphotypes, five karyotypes and four polymerase chain reaction (PCR) types. Three further morphotypes, one karyotype and two PCR types were found amongst the eight isolates obtained during the subsequent 4 months. Limited variation in susceptibility to two azoles--fluconazole and D0870--was also seen. This work emphasizes both the large genotype and phenotypic variability of C. albicans isolates in the mouth of AIDS patients with fluconazole resistance, and the difficulties in interpretation of present typing methods. PMID:9515670

  18. OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2016-04-01

    OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.

  19. Insulin resistance, role of metformin and other noninsulin therapies in pediatric type 1 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 1 diabetes mellitus (T1DM) in youth is a challenging chronic medical condition. Its management should address not only the glycemic control but also insulin resistance and cardiovascular disease risk factors which are increasingly recognized to be present in youth with TID. Current knowledge on...

  20. Percieved Coercion, Resistance to Persuasion, and the Type A Behavior Pattern.

    ERIC Educational Resources Information Center

    Carver, Charles S.

    1980-01-01

    Gender differences in resistance to stress are not rooted in recognition of coercive elements, but in differences in responding to coercive elements. Type As are particularly sensitive to threats to personal control. The critical difference may be in the frequency rather than the intensity of the stress. (JAC)

  1. Truhart-NR, A Root-knot Nematode Resistant, Pimento-type Pepper Cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to develop a high-yielding, pimento-type pepper (Capsicum annuum L.) cultivar that is highly resistant to root-knot nematodes were completed with the official release of Truhart-NR on October 20, 2009. The new cultivar is homozygous for the dominant N gene that conditions a high level of re...

  2. PA-559, a Root-knot Nematode Resistant, Red-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service of the U.S. Department of Agriculture has released a new Habanero-type pepper designated PA-559. The new breeding line is the product of a recurrent backcross breeding procedure to incorporate a dominant root-knot nematode resistance gene from the Scotch Bonnet-typ...

  3. PA-560, A Root-Knot Nematode Resistant, Yellow-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to develop a yellow-fruited, Habanero-type pepper (Capsicum chinense Jacq.) that is highly resistant to root-knot nematodes were completed with the official release of PA-560 on October 20, 2009. PA-560, an advanced breeding line, is the product of a backcross/pedigree breeding procedure to...

  4. [Extreme subcutaneous and intramuscular insulin resistance at type 1 diabetes mellitus].

    PubMed

    Pinheiro, Anielli; Tácito, Lúcia H B; Pires, Antônio C

    2011-04-01

    Insulin resistance signs reduced cellular response to this hormone and dysfunction of glucose transport to intracellular compartment. This phenomenon is associated to genetic factors and principally behavior factors correlating to obesity and its comorbidities, as type 2 diabetes mellitus, hypertension and dyslipidemia. However clinical factors of insulin resistance are still present at not obese type 1 diabetes in a known syndrome called type 1 diabetes mellitus with resistance to insulin administered subcutaneously and intramuscularly (DRIASM). This is a rare condition that consists into insulin resistance at subcutaneously and intramuscularly use and normal or near to normal sensitivity at intravenously way. Treatments until now proposed are ineffective and are related to frequent fails and complications. We report here two cases of DRIASM in 45 and 46 female patients that are different from others yet related because they have late diabetes type 1, sustained hyperglycemia associated to catabolic, microangiopathy and neuropathic complications without any ketoacidosis episode. The treatment vary from alternative ways for insulin infusion to inscription to a possible performance of pancreas transplantation like a experiment of definitive treatment. This report was approved by Research Ethic Committee from São José do Rio Preto medical school. PMID:21655874

  5. Physicochemical and structural characteristics of rice starch modified by irradiation.

    PubMed

    Polesi, Luís Fernando; Sarmento, Silene Bruder Silveira; Moraes, Jaqueline de; Franco, Célia Maria Landi; Canniatti-Brazaca, Solange Guidolin

    2016-01-15

    This work evaluated the physicochemical and structural properties of rice starch of the cultivars IAC 202 and IRGA 417 modified by irradiation. Starch samples were irradiated by (60)Co in doses 1, 2 and 5kGy, on a rate of 0.4kGy/h. A control not irradiated was used for comparison. The granule morphology and A-type X-ray diffraction pattern were not altered by irradiation. There was an increase in amylose content, carboxyl content and acidity with irradiation. Gamma radiation did not affect the thermal properties of IAC202, but increased gelatinization temperature of IRGA417, in the higher dose (5kGy). The number of long chains of amylopectin was reduced and short chains were increased for IAC202, whereas for IRGA 417, the opposite was observed, probably due to cross-linking of starch chains. Starches had their physicochemical and structural properties modified by irradiation differently. PMID:26258702

  6. Starch degradation in the cotyledons of germinating lentils.

    PubMed

    Tárrago, J F; Nicolás, G

    1976-11-01

    Starch, total amylolytic and phosphorylase activities were determined in lentil cotyledons during the first days of germination. Several independent criteria show that the amylolytic activity is due mainly to an amylase of the alpha type. Starch is degraded slowly in the first days; during this time, alpha- and beta-amylase activity are very low, while phosphorylase increases and reach a peak on the 3rd day. On the 4th day, there is a more rapid depletion of starch which coincides with an increase in alpha-amylase activity. By polyacrylamide gel electrophoresis of the crude starch-degrading enzyme, five bands were obtained: one phosphorylase, three alpha-amylases, and one beta-amylase. Based on their heat lability or heat stability, two sets of alpha-amylase seem to exist in lentil cotyledons. PMID:16659730

  7. Optical temperature behavior of a starch-water mixture

    NASA Astrophysics Data System (ADS)

    de Dios Ortiz-Alvarado, Juan; Yahuaca-Juárez, Berenice; Vázquez-Landaverde, Pedro; Morales-Sánchez, Eduardo; Martínez-Flores, Héctor E.; Canto-Pérez, Alfredo; Huerta-Ruelas, Jorge A.

    2009-09-01

    An optical set-up was developed to measure transmitted and scattered light in real time using a photodiode array as a detector and tested during starch heating. Statistical parameters calculated were Partial Integrated Scattering (PIS) and variance. Understanding behavior of starch under heat treatment in the presence of water is very important in food industry. The structure of heated starch granule changes depending on different factors like pH, solvent type and amount, enzime presence, amylose/amylopectin relation, etc., such changes has been attempted by using several techniques. In this work, solutions in distilled water of amylopectin, were evaluated. Calcium hydroxide solution was also tested and mixed with previous amylopectin samples to evaluate any interaction in a two-phase system. A close relationship was found between the observed optical signals with literature reported structure changes in starch, demonstrating that the system developed has potential to be used in a real industrial process for monitoring and control.

  8. Preparation and characterization of polymeric nanoparticles from Gadong starch

    NASA Astrophysics Data System (ADS)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  9. Preparation and characterization of polymeric nanoparticles from Gadong starch

    SciTech Connect

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat; Fazry, Shazrul

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  10. RESISTANCE OF PANCREATIC CANCER CELLS TO ONCOLYTIC VESICULAR STOMATITIS VIRUS: ROLE OF TYPE I INTERFERON SIGNALING

    PubMed Central

    Moerdyk-Schauwecker, Megan; Shah, Nirav R.; Murphy, Andrea M.; Hastie, Eric; Mukherjee, Pinku; Grdzelishvili, Valery Z.

    2012-01-01

    Oncolytic virus (OV) therapy takes advantage of common cancer characteristics, such as defective type I interferon (IFN) signaling, to preferentially infect and kill cancer cells with viruses. Our recent study (Murphy et al., 2012, J. Virol., 86: 3073-87) found human pancreatic ductal adenocarcinoma (PDA) cells were highly heterogeneous in their permissiveness to vesicular stomatitis virus (VSV) and suggested at least some resistant cell lines retained functional type I IFN responses. Here we examine cellular responses to infection by the oncolytic VSV recombinant VSV-ΔM51-GFP by analyzing a panel of 11 human PDA cell lines for expression of 33 genes associated with type I IFN pathways. Although all cell lines sensed infection by VSV-ΔM51-GFP and most activated IFN-α and β expression, only resistant cell lines displayed constitutive high-level expression of the IFN-stimulated antiviral genes MxA and OAS. Inhibition of JAK/STAT signaling decreased levels of MxA and OAS and increased VSV infection, replication and oncolysis, further implicating IFN responses in resistance. Unlike VSV, vaccinia and herpes simplex virus infectivity and killing of PDA cells was independent of the type I IFN signaling profile, possibly because these two viruses are better equipped to evade type I IFN responses. Our study demonstrates heterogeneity in the type I IFN signaling status of PDA cells and suggests MxA and OAS as potential biomarkers for PDA resistance to VSV and other OVs sensitive to type I IFN responses. PMID:23246628

  11. Characterization of starch from tubers of yam bean (Pachyrhizus ahipa).

    PubMed

    Forsyth, Jane L; Ring, Steve G; Noel, Timothy R; Parker, Roger; Cairns, Paul; Findlay, Kim; Shewry, Peter R

    2002-01-16

    Detailed studies of the starch present in tubers of six accessions of Pachyrhizus ahipa (ahipa) have been carried out using starches from tubers of P. erosus (Mexican yam bean) and seeds of ahipa and wheat for comparison. Starch accounted for 56-58% of the tuber dry weight with granules occurring in a range of geometric forms and in sizes from below 5 microm to about 35 microm (mean about 10 microm in all accessions except two). The amylose content ranged from 11.6 to 16.8% compared with 16.9% in P. erosus tubers and over 23% in the seed starches. X- ray diffraction analysis showed A-type or C(A)-type diffraction patterns. The chain-length distribution of the amylopectin after enzyme debranching showed a peak at DP11 similar to that of wheat starch, but had a less marked shoulder at DP 21-22 and contained a higher proportion of longer chains. Differential scanning calorimitry showed an endothermic peak corresponding to gelatinization with T(max) ranging from 59 to 63 degrees C, which was similar to the T(max) of wheat (about 64 degrees C). The composition of the ahipa starch may mean that it is suitable for food applications that require low amylose content and low retrogradation after processing. PMID:11782208

  12. Age-related anabolic resistance after endurance-type exercise in healthy humans

    PubMed Central

    Durham, William J.; Casperson, Shanon L.; Dillon, Edgar L.; Keske, Michelle A.; Paddon-Jones, Douglas; Sanford, Arthur P.; Hickner, Robert C.; Grady, James J.; Sheffield-Moore, Melinda

    2010-01-01

    Age-related skeletal muscle loss is thought to stem from suboptimal nutrition and resistance to anabolic stimuli. Impaired microcirculatory (nutritive) blood flow may contribute to anabolic resistance by reducing delivery of amino acids to skeletal muscle. In this study, we employed contrast-enhanced ultrasound, microdialysis sampling of skeletal muscle interstitium, and stable isotope methodology, to assess hemodynamic and metabolic responses of older individuals to endurance type (walking) exercise during controlled amino acid provision. We hypothesized that older individuals would exhibit reduced microcirculatory blood flow, interstitial amino acid concentrations, and amino acid transport when compared with younger controls. We report for the first time that aging induces anabolic resistance following endurance exercise, manifested as reduced (by ∼40%) efficiency of muscle protein synthesis. Despite lower (by ∼40–45%) microcirculatory flow in the older than in the younger participants, circulating and interstitial amino acid concentrations and phenylalanine transport into skeletal muscle were all equal or higher in older individuals than in the young, comprehensively refuting our hypothesis that amino acid availability limits postexercise anabolism in older individuals. Our data point to alternative mediators of age-related anabolic resistance and importantly suggest correction of these impairments may reduce requirements for, and increase the efficacy of, dietary protein in older individuals. Durham, W. J., Casperson, S. L., Dillon, E. L., Keske, M. A., Paddon-Jones, D., Sanford, A. P., Hickner, R. C., Grady, J. J., Sheffield-Moore, M. Age-related anabolic resistance after endurance-type exercise in healthy humans. PMID:20547663

  13. Combined Resistivity and Shear Wave Velocity Soil-type Estimation Beneath a Coastal Protection Levee.

    NASA Astrophysics Data System (ADS)

    Lorenzo, J. M.; Goff, D.; Hayashi, K.

    2015-12-01

    Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.

  14. Random amplified polymorphic DNA typing versus pulsed-field gel electrophoresis for epidemiological typing of vancomycin-resistant enterococci.

    PubMed Central

    Barbier, N; Saulnier, P; Chachaty, E; Dumontier, S; Andremont, A

    1996-01-01

    Sixty vancomycin-resistant vanA mutant Enterococcus faecium (VRE) isolates, collected during a 40-month period from 48 patients hospitalized in a French Cancer Referral Center, were typed by using random amplified polymorphic DNA (RAPD), and the results were compared with those previously obtained by typing with SmaI pulsed-field gel electrophoresis (PFGE), which is currently recognized as the "gold standard." The discriminating power of RAPD typing, with seven primers and 11 combinations of primers, was tested on 18 strains, and only the most discriminating combination was further tested on the whole collection. We compared the epidemiological usefulness of RAPD typing of 60 clinical VRE isolates with that of SmaI PFGE typing. With primers AP4 and ERIC1R, RAPD generated 30 patterns versus the 36 patterns generated by SmaI PFGE. However, this did not hamper the epidemiologically correct clustering of 15 related strains and the detection of multiple colonization in nine patients. We conclude that this simple RAPD technique is well suited to the epidemiological typing of VRE and the monitoring of its nosocomial spread. PMID:8727883

  15. THERMOMECHANICAL PROPERTIES OF COMPRESSION MOLDED STARCH AND PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One result of the rising costs of petroleum-derived plastic resins is increasing demand for biodegradable products. The main problem with using agriculture-derived biodegradable materials, based on blends of protein and starch, is their limited physical properties; such as, poor stress resistance, ...

  16. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.

    PubMed

    Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo

    2008-11-01

    The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications. PMID:18545945

  17. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    PubMed Central

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  18. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats

    PubMed Central

    Dotzert, Michelle S.; Murray, Michael R.; McDonald, Matthew W.; Olver, T. Dylan; Velenosi, Thomas J.; Hennop, Anzel; Noble, Earl G.; Urquhart, Brad L.; Melling, C. W. James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9–15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  19. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats.

    PubMed

    Dotzert, Michelle S; Murray, Michael R; McDonald, Matthew W; Olver, T Dylan; Velenosi, Thomas J; Hennop, Anzel; Noble, Earl G; Urquhart, Brad L; Melling, C W James

    2016-01-01

    The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training. PMID:27197730

  20. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid.

    PubMed

    Babu, A Surendra; Parimalavalli, R; Jagannadham, K; Rao, J Sudhakara

    2015-09-01

    In the present study sweet potato starch was treated with hydrochloric acid or citric acid at 1 or 5 % concentration and its properties were investigated. Citric acid treatment resulted higher starch yield. Water holding capacity and water absorption index was increased with increased acid concentration. Emulsion properties improved at 5 % acid concentration. The DE value of acid-thinned sweet potato starches was ranged between 1.93 and 3.76 %. Hydrochloric acid treated starches displayed a higher fraction of amylose. X-ray diffraction (XRD) study revealed that all the starches displayed C-type crystalline pattern with varied crystallinity. FT-IR spectra perceived a slight change in percentage intensity of C-H stretch of citric acid modified starches. Starch granules tended to appear less smooth than the native starch granules after acid treatment in Scanning Electron Micrographs (SEM) with granule size ranging between 8.00 and 8.90 μm. A drastic decrease in the pasting profile was noticed in hydrochloric acid (5 %) treated starch. While 5 % citric acid treated starch exhibited higher pasting profile. Differential Scanning Calorimeter (DSC) showed that peak and conclusion gelatinisation temperatures increased with increase in hydrochloric acid or citric acid concentration. Hence citric acid was found to mimic the hydrochloric acid with some variation which suggests that it may have promising scope in acid modification. PMID:26344988

  1. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  2. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    PubMed

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. PMID:26800900

  3. Comparison of Morphology and Physicochemical Properties of Starch Among 3 Arrowhead Varieties.

    PubMed

    Li, Aimin; Zhang, Yunhong; Zhang, Yongji; Yu, Xurun; Xiong, Fei; Zhou, Rumei; Zhang, Yongtai

    2016-05-01

    Arrowhead (Sagittaria trifolia var. sinensis) is a source of starch worldwide, but arrowhead starch has been rarely studied. In this work, starch was separated from arrowhead corm. The morphology and physicochemical properties of starch were then investigated and compared among 3 different arrowhead varieties (Purple-corm, Hongta, and Japanese). Results showed that starches from the 3 varieties similarly featured an oval shape containing a visible polarization cross, a CA -type crystalline structure, and an ordered structure in the external granule region. However, starch content, granule size, crystal characteristics, and pasting properties differed among the 3 varieties. Japanese arrowhead exhibited the highest starch content and degree of ordered structure in the external granule region, as well as onset, peak, and final gelatinization temperature. Purple-corm arrowhead starch demonstrated the highest amylose content and relative degree of crystallinity, smallest granule size, and lowest swelling power and solubility. Purple-corm arrowhead starch also showed the highest gelatinization enthalpy, as well as peak, trough, final, and setback viscosities. This starch further presented the lowest breakdown viscosity and degree of hydrolysis by HCl and porcine pancreatic α-amylase. These findings can provide useful references for arrowhead variety selection in food and nonfood industries. PMID:27082515

  4. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A.

    PubMed

    Sarian, Fean D; van der Kaaij, Rachel M; Kralj, Slavko; Wijbenga, Dirk-Jan; Binnema, Doede J; van der Maarel, Marc J E C; Dijkhuizen, Lubbert

    2012-01-01

    Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules. PMID:21732245

  5. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  6. Effect of alloying elements and residuals on corrosion resistance of type 444 stainless steel

    SciTech Connect

    Dowling, N.J.E.; Kim, Y.H.; Ahn, S.K.; Lee, Y.D.

    1999-02-01

    The principal criteria for the corrosion resistance of intermediate-grade ferritic stainless steels (SS) were examined in a neutral chloride (Cl{sup {minus}}) solution. The effect of increasing quantities of chromium and molybdenum was estimated for several heats in terms of the breakdown potential (E{sub b}). The effect of inclusions (particularly the oxide-sulfide type) in type 444 SS ([UNS S44400] 19% Cr-2% Mo-Nb or 19% Cr-2% Mo alloy), combined with the alloying element trend, permitted derivation of an expression that integrated both phenomena. The expression represents the mutually opposing effects of the chromium/molybdenum passive film reinforcement as represented by the pitting resistance equivalent number (PREN), as well as incorporating the deleterious contribution of the inclusion density ({Psi}/mm{sup 2}). Aluminum reduced the total inclusion content, which was associated with an increase in E{sub b}. Since no aluminum was detected in the passive film of high aluminum steels, it appeared likely that the prime effect of this element on corrosion resistance was via inclusion suppression. Corrosion studies of welded type 444 SS demonstrated that dual stabilization with low individual concentrations of titanium and niobium provided optimum corrosion resistance. This apparent synergism of niobium and titanium was independent of the surface of the welded materials, which were examined in the as-received, pickled, or polished states. The effect of the surface state in all cases was shown to exercise a critical effect on passive behavior.

  7. Different impacts of metabolic syndrome components on insulin resistance in type 2 diabetes.

    PubMed

    Hsu, Chung-Hua

    2013-01-01

    Objective. To examine the different impacts of MS components on insulin resistance in type 2 diabetes. Methods. A number of subjects (144) who met the criteria of (1) age between 30 and 75 years, (2) had type 2 diabetes for more than one year, and (3) taking gliclazide and metformin for more than 6 months were enrolled. All subjects were assigned to one of the four HOMA index categories. The HOMA index quartile 4 denotes the highest insulin resistance. The main outcome evaluated is the odds ratios (ORs) of different MS components on HOMA index quartile 4. The characteristics in HOMA index quartiles and groups of nonmetabolic syndrome (NMS; number of components < 2), metabolic syndrome A (MSA; number of components = 2), and metabolic syndrome B (MSB; number of components > 2) were also evaluated. Results. The results showed that both MSA and MSB groups had higher ORs (5.9 and 13.8 times, resp.) than the NMS group; and that subjects with large waist circumference (LWC) and high triglyceride (HTG) level have higher ORs (6.1 and 2.6 times, resp.) in developing higher insulin resistance than normal control subjects. Conclusion. Type 2 diabetic patients with greater number of MS components have higher ORs in developing increased insulin resistance. PMID:23431295

  8. Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents.

    PubMed

    Yang, Zhi; Swedlund, Peter; Hemar, Yacine; Mo, Guang; Wei, Yanru; Li, Zhihong; Wu, Zhonghua

    2016-04-01

    Corn starches with amylose contents ranging from 0 to 80% were suspended in 60 wt% water or ethanol and subjected to high hydrostatic pressure (HHP) up to 600 MPa. The impact of HHP treatment on the granule morphology, lamellae structures, and crystalline characteristics were examined with a combination of SAXS, WAXS and optical microscopy. All starch dispersed in water showed a decrease in area of the lamellar peak in the SAXS data at q∼0.6 nm(-1). The lamellae thickness (d) increased for pressurized waxy, normal, and Gelose80 corn starches, suggesting water is forced into starch lamellae during HHP. However, for Gelose50 corn starch, the d remained constant over the whole pressure range and light microscopy showed no obvious granule swelling. WAXS studies demonstrated that HHP partially converted A-type starches (waxy and normal corn) to starches with a faint B-type pattern while starches with a B+V-type pattern (Gelose50 and Gelose80), were not affected by HHP. All corn starches suspended in ethanol showed no detectable changes in either granule morphology, or the fractal, the lamellae, and the crystalline structures. PMID:26778159

  9. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition

    PubMed Central

    2013-01-01

    Metal oxide nanosheets have potential applications in novel nanoelectronics as nanocrystal building blocks. In this work, the devices with a structure of Au/p-type Co3O4 nanosheets/indium tin oxide/glass having bipolar resistive switching characteristics were successfully fabricated. The experimental results demonstrate that the device have stable high/low resistance ratio that is greater than 25, endurance performance more than 200 cycles, and data retention more than 10,000 s. Such a superior performance of the as-fabricated device could be explained by the bulk film and Co3O4/indium tin oxide glass substrate interface effect. PMID:23331856

  10. First Characterization of a Cluster of VanA-Type Glycopeptide-Resistant Enterococcus faecium, Colombia

    PubMed Central

    Panesso, Diana; Ospina, Sigifredo; Robledo, Jaime; Vela, María Claudia; Peña, Julieta; Hernández, Orville; Reyes, Jinnethe

    2002-01-01

    From August 1998 to October 1999, glycopeptide-resistant enterococci (GRE) were isolated from 23 infected patients at a teaching hospital in Medellín, Colombia. Identification at the species level and by multiplex polymerase chain reaction assay indicated that all isolates were Enterococcus faecium. The isolates were highly resistant to ampicillin, ciprofloxacin, gentamicin, penicillin, streptomycin, teicoplanin, and vancomycin; they were susceptible only to chloramphenicol, linezolid, and nitrofurantoin. Determination of glycopeptide genotype indicated the presence of the vanA gene in all isolates. Molecular typing by pulsed field gel electrophoresis showed that all isolates were closely related. This study is the first molecular characterization of GRE in Colombia. PMID:12194774

  11. Starch graft poly(methyl acrylate) loose-fill foam: preparation, properties and degradation.

    PubMed

    Chen, L; Gordon, S H; Imam, S H

    2004-01-01

    Starch graft poly(methyl acrylate) (S-g-PMA) was prepared by ceric ion initiation of methyl acrylate in an aqueous corn starch slurry (prime starch) which maximized the accessibility of the starch for graft polymerization. A new ceric ion reaction sequence was established as starch-initiator-methyl acrylate followed by addition of a small amount of ceric ion solution when the graft polymerization was almost complete to quench the reaction. As a result of this improved procedure, no unreacted methyl acrylate monomer remained, and thus, essentially no ungrafted poly(methyl acrylate) homopolymer was formed in the final grafted product. Quantities of the high purity S-g-PMA so prepared in pilot scale were converted to resin pellets and loose-fill foam by single screw and twin screw extrusion. The use of prime starch significantly improved the physical properties of the final loose-fill foam, in comparison to foam produced from regular dry corn starch. The S-g-PMA loose-fill foam had compressive strength and resiliency comparable to expanded polystyrene but higher bulk density. The S-g-PMA loose-fill foam also had better moisture and water resistance than other competitive starch-based materials. Studies indicated that the starch portion in S-g-PMA loose-fill foam biodegraded rapidly, whereas poly(methyl acrylate) remained relatively stable under natural environmental conditions. PMID:14715032

  12. Vitamin D Status Is Negatively Correlated with Insulin Resistance in Chinese Type 2 Diabetes.

    PubMed

    Zhang, Jie; Ye, Jianhong; Guo, Gang; Lan, Zhenhao; Li, Xing; Pan, Zhiming; Rao, Xianming; Zheng, Zongji; Luo, Fangtao; Lin, Luping; Lin, Zhihua; Xue, Yaoming

    2016-01-01

    Objectives. Vitamin D deficiency plays a role in insulin resistance and the pathogenesis of type 2 diabetes mellitus. Little information is available about the association between vitamin D status and insulin resistance in the Chinese population. Currently, vitamin D status is evaluated by the concentrations of serum 25-hydroxyvitamin D [25(OH)D]. This study explores the relationship between insulin resistance and serum 25-hydroxyvitamin D concentrations in Chinese patients with type 2 diabetes mellitus. Subjects and Methods. This study included 117 patients with type 2 diabetes. The following variables were measured: 25-hydroxyvitamin D [25(OH)D], glycosylated hemoglobin A1c (HbA1c), fasting blood glucose (FBS), fasting blood insulin (FINS), fasting blood C-peptide, serum creatinine (SCr), glomerular filtration rate (eGFR), body mass index (BMI), and homeostatic model estimates of insulin resistance (HOMA-IR). Results. The cases were divided into three groups: Group 1 (G1) with 25(OH)D ≤ 20 ng/mL [≤50 nmol/L], Group 2 (G2) with 25(OH)D values from 20 ng/mL [50 nmol/L] to 30 ng/mL [75 nmol/L], and Group 3 (G3) with 25(OH)D ≥ 30 ng/mL [≥75 nmol/L], with 52.6%, 26.3%, and 21.1% of subjects in Groups 1-3, respectively. There was a negative correlation between 25(OH)D and HOMA-IR (β = -0.314, p = 0.001) adjusted by age, BMI, and eGFR. Conclusion. Better vitamin D status may be protective of glucose homeostasis since 25(OH)D was negatively associated with insulin resistance in Chinese patients with type 2 diabetes. PMID:27413370

  13. Vitamin D Status Is Negatively Correlated with Insulin Resistance in Chinese Type 2 Diabetes

    PubMed Central

    Zhang, Jie; Ye, Jianhong; Guo, Gang; Lan, Zhenhao; Li, Xing; Pan, Zhiming; Rao, Xianming; Luo, Fangtao; Lin, Luping; Lin, Zhihua; Xue, Yaoming

    2016-01-01

    Objectives. Vitamin D deficiency plays a role in insulin resistance and the pathogenesis of type 2 diabetes mellitus. Little information is available about the association between vitamin D status and insulin resistance in the Chinese population. Currently, vitamin D status is evaluated by the concentrations of serum 25-hydroxyvitamin D [25(OH)D]. This study explores the relationship between insulin resistance and serum 25-hydroxyvitamin D concentrations in Chinese patients with type 2 diabetes mellitus. Subjects and Methods. This study included 117 patients with type 2 diabetes. The following variables were measured: 25-hydroxyvitamin D [25(OH)D], glycosylated hemoglobin A1c (HbA1c), fasting blood glucose (FBS), fasting blood insulin (FINS), fasting blood C-peptide, serum creatinine (SCr), glomerular filtration rate (eGFR), body mass index (BMI), and homeostatic model estimates of insulin resistance (HOMA-IR). Results. The cases were divided into three groups: Group 1 (G1) with 25(OH)D ≤ 20 ng/mL [≤50 nmol/L], Group 2 (G2) with 25(OH)D values from 20 ng/mL [50 nmol/L] to 30 ng/mL [75 nmol/L], and Group 3 (G3) with 25(OH)D ≥ 30 ng/mL [≥75 nmol/L], with 52.6%, 26.3%, and 21.1% of subjects in Groups 1–3, respectively. There was a negative correlation between 25(OH)D and HOMA-IR (β = −0.314, p = 0.001) adjusted by age, BMI, and eGFR. Conclusion. Better vitamin D status may be protective of glucose homeostasis since 25(OH)D was negatively associated with insulin resistance in Chinese patients with type 2 diabetes. PMID:27413370

  14. Responsive starch-based materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, a low-cost, annually renewable resource, is naturally hydrophilic and its properties change with relative humidity. Starch’s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (e.g. humidity). For example, starch-based graf...

  15. Starch-filled polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the development of degradable polymer composites that can be made at room temperature without special equipments. The developed composites are made from ethyl cyanoacrylate and starch. The polymer composites produced by this procedure contain 60 wt% of starch with compressive s...

  16. Brucite nanoplate reinforced starch bionanocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  17. Starch Applications for Delivery Systems

    NASA Astrophysics Data System (ADS)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  18. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  19. Analysis of Antibiotic Resistance Genes and its Associated SCCmec Types among Nasal Carriage of Methicillin Resistant Coagulase Negative Staphylococci from Community Settings, Chennai, Southern India

    PubMed Central

    Murugesan, Saravanan; Perumal, Nagaraj; Mahalingam, Surya Prakash; Dilliappan, Selva Kumar

    2015-01-01

    Objective The study was designed to find the distribution of SCCmec types and the various antibiotic resistance genes amongst MR-CoNS isolates from asymptomatic individuals. Materials and Methods A total of 145 nasal swabs were collected from asymptomatic healthy individuals from community settings. Identification and speciation of CoNS were done by standard biochemical methods. Screening of methicillin resistance (mecA gene) and detection of various antibiotic resistant genes were done using multiplex PCR method. SCCmec types (I - V) were determined using multiplex PCR. Results 50 (44.6%) isolates were found to be methicillin resistant both by cefoxitin method and multiplex PCR. S. epidermidis (40%) was the predominant species followed by S. haemolyticus (28%), S. hominis (20%) and S. warneri (12%). Highest resistance was shown for cotrimoxazole (26%), followed by ciprofloxacin (24%), tetracycline (20%), erythromycin (18%), fusidic acid (10%) and mupirocin (6%). Among SCCmec types, 44 isolates showed single type, including type I (30%), type IV (24%), type II (18%), type V (14%) and type III (2%). 6 isolates showed two types, III+IV (n= 2), II+V (n=2), IV+V (n=1) and type I+V (n=1). Conclusion In conclusion, to the best of our knowledge, this is the first study in India to study the distribution of antibiotic resistant genes and SCCmec types among MR-CoNS from community settings. This study highlights high prevalence of MR-CoNS in community and its role in harbouring genetically diverse SCCmec elements as antibiotic resistance determinant. PMID:26435940

  20. MECHANICAL PROPERTIES OF ORIENTED HIGH AMYLOSE STARCH FILMS: ORIENTATION BY DRAWING OF STARCH TRIACETATES FOLLOWED BY DEACETYLATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of orientation on the properties of starch films was studied in order to determine if film strength, flexibility and water resistance could be improved. High amylose (70%) cornstarch was peracetylated, cast into films, stretched in hot glycerol 1-5 times the original length and deacetyla...

  1. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    PubMed Central

    Moosavi, Horieh; Zeynali, Mahsa; Pour, Zahra Hosseini

    2012-01-01

    To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n = 10). Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37°C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth. PMID:22666255

  2. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  3. Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.

    PubMed

    Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad

    2016-01-20

    Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear. PMID:26572436

  4. Expression of the PXR gene in various types of cancer and drug resistance

    PubMed Central

    QIAO, ENQI; JI, MINGHUA; WU, JIANZHONG; MA, RONG; ZHANG, XIAOHUA; HE, YUEJUN; ZHA, QUANBIN; SONG, XUE; ZHU, LI-WEI; TANG, JINHAI

    2013-01-01

    Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. PXR is a key xenobiotic receptor that regulates the expression of genes implicated in drug metabolism, detoxification and clearance, including drug metabolizing enzymes and transporters, suggesting that it is significant in the drug resistance of cancer cells. PXR is expressed in a wide range of tissues in the human body. Studies have demonstrated that PXR is expressed in a variety of tumor types, correlating not only with drug resistance but also with the cell proliferation, apoptosis and prognosis of cancer. The purpose of the present review is to provide a comprehensive review of PXR and its potential roles in multidrug resistance and the biological characteristics of PXR-positive tumors. PMID:23599746

  5. Molecular Mechanism of Type I Collagen Homotrimer Resistance to Mammalian Collagenases*

    PubMed Central

    Han, Sejin; Makareeva, Elena; Kuznetsova, Natalia V.; DeRidder, Angela M.; Sutter, Mary Beth; Losert, Wolfgang; Phillips, Charlotte L.; Visse, Robert; Nagase, Hideaki; Leikin, Sergey

    2010-01-01

    Type I collagen cleavage is crucial for tissue remodeling, but its homotrimeric isoform is resistant to all collagenases. The homotrimers occur in fetal tissues, fibrosis, and cancer, where their collagenase resistance may play an important physiological role. To understand the mechanism of this resistance, we studied interactions of α1(I)3 homotrimers and normal α1(I)2α2(I) heterotrimers with fibroblast collagenase (MMP-1). Similar MMP-1 binding to the two isoforms and similar cleavage efficiency of unwound α1(I) and α2(I) chains suggested increased stability and less efficient unwinding of the homotrimer triple helix at the collagenase cleavage site. The unwinding, necessary for placing individual chains inside the catalytic cleft of the enzyme, was the rate-limiting cleavage step for both collagen isoforms. Comparative analysis of the homo- and heterotrimer cleavage kinetics revealed that MMP-1 binding promotes stochastic helix unwinding, resolving the controversy between different models of collagenase action. PMID:20463013

  6. Activated central galanin type 1 receptor alleviated insulin resistance in diabetic rat muscle.

    PubMed

    Bu, Le; Chang, Xusheng; Cheng, Xiaoyun; Yao, Qian; Su, Bin; Sheng, Chunjun; Qu, Shen

    2016-10-01

    Evidence indicates that central galanin is involved in regulation of insulin resistance in animals. This study investigates whether type 1 galanin receptor (GAL1) in the brain mediates the ameliorative effect of galanin on insulin resistance in skeletal muscles of type 2 diabetic rats. Rats were intracerebroventricularly (i.c.v.) injected with galanin(1-13)-bradykinin(2-9) amide (M617), a GAL1 agonist, and/or Akti-1/2, an Akt inhibitor, via caudal veins once per day for 10 days. Insulin resistance in muscle tissues was evaluated by glucose tolerance and 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) tests, peroxisome proliferator-activated receptor-γ (PPARγ), glucose transporter 4 (GLUT4) mRNA expression levels, Akt phosphorylation, and GLUT4 and vesicle-associated membrane protein 2 (VAMP2) concentration at plasma membranes in muscle cells. The results show that i.c.v. treatment with M617 increased glucose tolerance, 2-NBDG uptake, PPARγ levels, Akt phosphorylation, GLUT4 protein, and GLUT4 mRNA expression levels as well as GLUT4 and VAMP2 concentration at plasma membranes. All increases may be blocked by pretreatment with Akti-1/2. These results suggest that activated central GAL1 may trigger the Akt signaling pathway to alleviate insulin resistance in muscle cells. Therefore, the impact of galanin on insulin resistance is mediated mainly by GAL1 in the brain, and the GAL1 agonist may be taken as a potential antidiabetic agent for treatment of type 2 diabetes mellitus. © 2016 Wiley Periodicals, Inc. PMID:27410235

  7. Determinants of Human Immunodeficiency Virus Type 1 Resistance to gp41-Derived Inhibitory Peptides

    PubMed Central

    Rimsky, Laurence T.; Shugars, Diane C.; Matthews, Thomas J.

    1998-01-01

    A synthetic peptide, DP178, containing amino acids 127 to 162 of the human immunodeficiency virus type 1 (HIV-1) gp41 Env glycoprotein, is a potent inhibitor of virus infection and virus mediated cell-to-cell fusion (C. Wild, T. Greenwell, and T. Matthews, AIDS Res. Hum. Retroviruses 9:1051–1053, 1993). In an effort to understand the mechanism of action of this peptide, we derived resistant variants of HIV-1IIIB and NL4-3 by serial virus passage in the presence of increasing doses of the peptide. Sequence analysis of the resistant isolates suggested that a contiguous 3-amino-acid sequence within the amino-terminal heptad repeat motif of gp41 was associated with resistance. Site-directed mutagenesis studies confirmed this observation and indicated that changes in two of these three residues were necessary for development of the resistant phenotype. Direct binding of DP178 to recombinant protein and synthetic peptide analogs containing the wild-type and mutant heptad repeat sequences revealed a strong correlation between DP178 binding and the biological sensitivity of the corresponding virus isolates to DP178. The results are discussed from the standpoints of the mechanism of action of DP178 and recent crystallographic information for a core structure of the gp41 ectodomain. PMID:9444991

  8. Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants.

    PubMed Central

    Lorenz, R T; Parks, L W

    1991-01-01

    Fenpropimorph-resistant mutants of Saccharomyces cerevisiae were isolated by a gradient selection procedure. The mutants were cross-resistant to other morpholines (fenpropidin, dodemorph, tridemorph) and 15-azasterol, but were susceptible to azoles (miconazole, clotrimazole, ketoconazole) and nystatin. In the absence of fenpropimorph, the major sterol produced by the mutants and the parental strain was ergosterol. In the presence of fenpropimorph, ignosterol (ergosta-8,14-dien-3 beta-ol) was the major sterol produced by the mutants and the parental strain. The resistance to fenpropimorph involves two recessive genes, each of which allows a semiresistance, when they are isolated apart from one another. Strain JR4 (erg3 erg11), which produces 14-methylfecosterol [14 alpha-methyl-ergosta-8,24(28)-dien- 3-beta-ol) as the major sterol in the presence or absence of fenpropimorph, was also found to be resistant to the drug. The growth inhibitory effect of fenpropimorph on wild-type cells appears to be linked to the production of ignosterol. The uptake of exogenous sterol by wild-type cells was greatly enhanced in the presence of fenpropimorph. The growth inhibition caused by fenpropimorph could only be overcome with bulk levels of exogenous C-5,6-unsaturated sterols. PMID:1929324

  9. Resistance of Clostridium perfringens Type A Spores to γ-Radiation

    PubMed Central

    Midura, T. F.; Kempe, L. L.; Graikoski, J. T.; Milone, N. A.

    1965-01-01

    The radiation resistance of the spores of a classical strain and of an atypical, heat-resistant strain of Clostridium perfringens was determined. Spores were produced in Ellner's and in a Trypticase broth medium. Approximately 106 viable spores per milliliter were suspended in 0.06 m phosphate buffer and irradiated with γ rays from cobalt-60; the survivors were counted in Tryptone-yeast extract-agar by the Prickett-tube technique. Radiation D values for spores of the atypical strain in phosphate buffer and in cooked-meat broth were 0.23 and 0.30 Mrad, respectively, and the D value of the classical strain was 0.25 Mrad in phosphate buffer. Spores of the classical and atypical strains of C. perfringens type A are characterized by differences in heat resistance; yet, all strains tested demonstrated similar radiation resistance. Also, the spores were more resistant to ionizing radiation in cooked-meat broth than in phosphate buffer. PMID:14325887

  10. Re-Evaluation of the Role of Starch in Gravitropic Sensing

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.

    1998-01-01

    Plant organs grow toward or away from gravity as a way to orient those organs for optimizing growth. Starch has long been thought to be important in sensing the direction of the g-vector in gravitropism, but that hypothesis has also evoked controversy. We have previously shown that starch-deficient mutants of Arabidopsis (TC7) and Nicotiana (NS458) are impaired in their gravitropism. While this suggests that starch is not necessary for reduced gravitropism, it also indicates that the mass of the starch contributes to sensing when present and thus is necessary for full gravitropic sensitivity. The research supported by this grant focused on three related projects, (1) the effect of light on hypocotyl gravitropism in NS458, (2) the effects of root phototropism on measurements of gravitropic sensitivity, and (3) the effects of starch overproduction on sedimentation and gravitropism. Collectively, our results provide additional strong support for the importance of starch in gravitropic sensing. First, by accounting for negative phototropism in roots of two starchless mutants of Arabidopsis we have established that these mutants are much less sensitive to gravity than previously thought. This work also demonstrates the importance of designing experimental protocols that remove the influence of root phototropism on measuring root gravitropism. Second, light apparently promotes gravitropism in starch-deficient Nicotiana hypocotyls by increasing the trace amounts of starch in the plastids, by inducing limited plastid sedimentation and thus by presumably increasing the signal provided by plastid mass. And finally, we show that excess starch in Arabidopsis seedlings has little effect on gravitropic sensitivity implying that the sensing system is already saturated. However, in light-grown stems where this mutation results in starch accumulation and where the wild-type practically lacks starch in the sensing cells, the mutant is much more sensitive than the wild-type again

  11. Direct Repeat Unit (dru) Typing of Methicillin-Resistant Staphylococcus pseudintermedius from Dogs and Cats

    PubMed Central

    Schwarz, Stefan; Goering, Richard V.; Weese, J. Scott

    2015-01-01

    Methicillin-resistant Staphylococcus pseudintermedius (MRSP) has emerged in a remarkable manner as an important problem in dogs and cats. However, limited molecular epidemiological information is available. The aims of this study were to apply direct repeat unit (dru) typing in a large collection of well-characterized MRSP isolates and to use dru typing to analyze a collection of previously uncharacterized MRSP isolates. Two collections of MRSP isolates from dogs and cats were included in this study. The first collection comprised 115 well-characterized MRSP isolates from North America and Europe. The data for these isolates included multilocus sequence typing (MLST) and staphylococcal protein A gene (spa) typing results as well as SmaI macrorestriction patterns after pulsed-field gel electrophoresis (PFGE). The second collection was a convenience sample of 360 isolates from North America. The dru region was amplified by PCR, sequenced, and analyzed. For the first collection, the discriminatory indices of the typing methods were calculated. All isolates were successfully dru typed. The discriminatory power for dru typing (D = 0.423) was comparable to that of spa typing (D = 0.445) and of MLST (D = 0.417) in the first collection. Occasionally, dru typing was able to further discriminate between isolates that shared the same spa type. Among all 475 isolates, 26 different dru types were identified, with 2 predominant types (dt9a and dt11a) among 349 (73.4%) isolates. The results of this study underline that dru typing is a useful tool for MRSP typing, being an objective, standardized, sequence-based method that is relatively cost-efficient and easy to perform. PMID:26378275

  12. [Effect of immunomodulators on resistance to gas gangrene. The enhanced resistance of white mice to perfringens toxin type A as affected by prodigiozan].

    PubMed

    Konikova, R E; Stepanov, A V; Sviridov, L P

    1986-02-01

    Experiments on 575 noninbred white mice have revealed that the nonspecific resistance of the animals to type A C. perfringens toxin can be enhanced by the administration of Prodigiosan, a commercial immunostimulating agent. Prodigiosan, introduced in 3-4 injections (the last one made 24 hours before intoxication) has been found to enhance the resistance of the animals to the subcutaneous injection of type A C. perfringens toxin by 40-60% and to its intraperitoneal injection by 60-97%. PMID:2870596

  13. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    PubMed

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. PMID:23768606

  14. Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes.

    PubMed

    Menzel, Carolin; Andersson, Mariette; Andersson, Roger; Vázquez-Gutiérrez, José L; Daniel, Geoffrey; Langton, Maud; Gällstedt, Mikael; Koch, Kristine

    2015-10-01

    High-amylose potato starches were produced through genetic modification resulting in changed granule morphology and composition, with higher amylose content and increased chain length of amylopectin. The increased amylose content and structural changes in amylopectin enhanced film-forming behavior and improved barrier and tensile properties in starch films. The molecular structure in these starches was related to film-forming properties. Solution-cast films of high-amylose starch revealed a homogeneous structure with increasing surface roughness at higher amylose content, possibly due to amylose aggregation. Films exhibited significantly higher stress and strain at break compared with films of wild-type starch, which could be attributable to the longer chains of amylopectin being involved in the interconnected network and more interaction between chains, as shown using transmission electron microscopy. The oxygen permeability of high-amylose starch films was significantly decreased compared with wild-type starch. The nature of the modified starches makes them an interesting candidate for replacement of non-renewable oxygen and grease barrier polymers used today. PMID:26076640

  15. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry.

    PubMed

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Roitsch, Carolyn Ann; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60-80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  16. Effect of farm type on within-herd Salmonella prevalence, serovar distribution, and antimicrobial resistance.

    PubMed

    Rasschaert, G; Michiels, J; Arijs, D; Wildemauwe, C; De Smet, S; Heyndrickx, M

    2012-05-01

    Salmonella represents a major challenge to the pig industry, as pork presents a risk for human salmonellosis. In this study, we have examined the effect of farm type on the prevalence of fattening pigs shedding Salmonella on 12 farms at risk for harboring Salmonella. On six open (grow-to-finish) and six closed (farrow-to-finish) farms, the prevalence of pigs shedding Salmonella was determined on two occasions approximately 2 months apart. The serovar, phage type, and antimicrobial resistance of the obtained Salmonella isolates were determined. On all farms, pigs shedding Salmonella were detected on at least one of the two sampling days. The mean within-herd prevalence was 7.8%. Closed farms were two times less likely to have pigs shedding Salmonella than open farms. On open farms, the odds of finding Salmonella shedding in pigs were 1.9 times higher when sampling was performed at slaughter age than when samples were taken halfway through the fattening period. Salmonella enterica serovar Typhimurium was the most predominant serotype, with a prevalence of 62 to 63% on both farm types. Of all the Salmonella Typhimurium isolates, 65% had the tetraresistant profile ASSuT (ampicillin, streptomycin, sulfonamide, and tetracycline) with or without additional resistance to trimethoprim-sulfonamide. Phage type DT120 seemed to be especially associated with this antimicrobial-resistant profile. The prevalence of Salmonella Typhimurium isolates showing resistance to ampicillin, streptomycin, tetracycline, sulfonamide, trimethoprim-sulfonamide, and lincomycin hydrochloride and spectinomycin sulfate tetrahydrate was significantly higher on open farms than on closed farms. PMID:22564934

  17. Growth of Low-Resistivity n-Type ZnTe by Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Irfan, Gheyas; Nakayama, Hitoshi; Nishio, Mitsuhiro; Yoshida, Akira

    1994-07-01

    Doping of ZnTe has been carried out by metalorganic vapor phase epitaxy using triethylaluminum as the dopant source. N-type ZnTe layers with a carrier concentration of (1 4) ×1017 cm-3 and a resistivity as low as 0.1 0.3 Ω·cm have been obtained. It has been indicated by the photoluminescence measurement that Al is incorporated effectively into the epitaxial layer.

  18. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry

    PubMed Central

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Ann Roitsch, Carolyn; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60–80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  19. A Suite of Lotus japonicus Starch Mutants Reveals Both Conserved and Novel Features of Starch Metabolism1[W][OA

    PubMed Central

    Vriet, Cécile; Welham, Tracey; Brachmann, Andreas; Pike, Marilyn; Pike, Jodie; Perry, Jillian; Parniske, Martin; Sato, Shusei; Tabata, Satoshi; Smith, Alison M.; Wang, Trevor L.

    2010-01-01

    The metabolism of starch is of central importance for many aspects of plant growth and development. Information on leaf starch metabolism other than in Arabidopsis (Arabidopsis thaliana) is scarce. Furthermore, its importance in several agronomically important traits exemplified by legumes remains to be investigated. To address this issue, we have provided detailed information on the genes involved in starch metabolism in Lotus japonicus and have characterized a comprehensive collection of forward and TILLING (for Targeting Induced Local Lesions IN Genomes) reverse genetics mutants affecting five enzymes of starch synthesis and two enzymes of starch degradation. The mutants provide new insights into the structure-function relationships of ADP-glucose pyrophosphorylase and glucan, water dikinase1 in particular. Analyses of the mutant phenotypes indicate that the pathways of leaf starch metabolism in L. japonicus and Arabidopsis are largely conserved. However, the importance of these pathways for plant growth and development differs substantially between the two species. Whereas essentially starchless Arabidopsis plants lacking plastidial phosphoglucomutase grow slowly relative to wild-type plants, the equivalent mutant of L. japonicus grows normally even in a 12-h photoperiod. In contrast, the loss of GLUCAN, WATER DIKINASE1, required for starch degradation, has a far greater effect on plant growth and fertility in L. japonicus than in Arabidopsis. Moreover, we have also identified several mutants likely to be affected in new components or regulators of the pathways of starch metabolism. This suite of mutants provides a substantial new resource for further investigations of the partitioning of carbon and its importance for symbiotic nitrogen fixation, legume seed development, and perenniality and vegetative regrowth. PMID:20699404

  20. Antimicrobial Drug Resistance and Molecular Typing of Salmonella enterica Serovar Rissen from Different Sources.

    PubMed

    García-Fierro, Raquel; Montero, Ignacio; Bances, Margarita; González-Hevia, Maria Ángeles; Rodicio, María Rosario

    2016-04-01

    Salmonella enterica serovar Rissen is one of the most common serovars found in pigs and pork products in different countries, including Spain. However, information on the molecular bases of antimicrobial drug resistance and the population structure of Salmonella Rissen from different sources in Spain is limited. The present study focused on 84 isolates collected in Spain from pig and beef carcasses, foods and clinical samples associated with sporadic cases of gastroenteritis, and one outbreak. The majority of the isolates were resistant to tetracycline (73.8%), mainly conferred by tet(A). Resistances to streptomycin (aadA1-like, aadA2, and strAB), sulfonamides (sul1, sul2, and sul3), trimethoprim (dfrA1-like and dfrA12), ampicillin (blaTEM-1-like), and chloramphenicol (cmlA1-like) were also detected, with frequencies ranging from 12% to 20.2%. Most of the identified genes were carried by integrons, including three class 1 integrons of the sul1 type, a class 1 integron of the sul3 type, and the class 2 integron of Tn7. Two sul1 integrons, the sul3 integron, and the class 2 integron are first reported in Salmonella Rissen. Typing of the isolates with XbaI pulsed-field gel electrophoresis detected a major clone, which was circulating in humans and animals during the past decade, and was responsible for the outbreak. The obtained results are relevant for food safety and public health. PMID:26295933

  1. Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems

    SciTech Connect

    Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

    2011-11-15

    We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

  2. Proton radiation damage in high-resistivity n-type silicon CCDs

    SciTech Connect

    Bebek, C.J.; Groom, D.E.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Lee, J.; Levi, M.E.; Palaio, N.P.; Turko, B.T.; Uslenghi, M.C.; Wagner, M.T.; Wang, G.

    2001-12-20

    A new type of p-channel CCD constructed on high-resistivity n-type silicon was exposed to 12 MeV protons at doses up to 1x1011 protons/cm2. The charge transfer efficiency was measured as a function of radiation dose and temperature. We previously reported that these CCDs are significantly more tolerant to radiation damage than conventional n-channel devices. In the work reported here, we used pocket pumping techniques and charge transfer efficiency measurements to determine the identity and concentrations of radiation induced traps present in the damaged devices.

  3. Removal of both cationic and anionic contaminants by amphoteric starch.

    PubMed

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. PMID:26794754

  4. Data on the phylogenetic typing, integron gene cassette array analysis, multi-drug resistance analysis and correlation between antimicrobial resistance determinants in Klebsiella strains.

    PubMed

    Wu, Hao; Wang, Mingyu; Liu, Yuqing; Wang, Xinhua; Wang, Yunkun; Lu, Jinxing; Xu, Hai

    2016-09-01

    The antimicrobial resistance of Klebsiella species in the poultry industry is becoming a public concern. In support our recent publication "Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers" (Wu et al., 2016) [1], multilocus sequence typing (MLST) and gyrA PCR-RFLP assays were conducted to identify the genetic relationships between and phylogenetic groups of the 90 antimicrobial resistant Klebsiella species isolated from a commercial broiler slaughter plant in Shandong, China. In addition, PCR-RFLP was performed to identify different gene cassette arrays in class 1 and 2 integrons, and the correlations between different antimicrobial resistance determinants were analyzed. PMID:27570806

  5. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders. PMID:22822539

  6. A review of processable high temperature resistant addition-type laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.

  7. Characterization of a Panela cheese with added probiotics and fava bean starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty Lactobacillus spp. and eight Bifidobacterium spp. were screened for their ability to ferment fava bean starch. B. breve ATCC 15700 and L. rhamnosus GG ATCC 53103 were selected as probiotics for use in fresh style Panela cheese. Two types of fresh cheese (with and without 3% fava bean starch) ...

  8. Biodegradation of starch films: the roles of molecular and crystalline structure.

    PubMed

    Li, Ming; Witt, Torsten; Xie, Fengwei; Warren, Frederick J; Halley, Peter J; Gilbert, Robert G

    2015-05-20

    The influences of molecular, crystalline and granular structures on the biodegradability of compression-molded starch films were investigated. Fungal α-amylase was used as model degradation agent. The substrates comprised varied starch structures obtained by different degrees of acid hydrolysis, different granular sizes using size fractionation, and different degrees of crystallinity by aging for different times (up to 14 days). Two stages are identified for unretrograded films by fitting degradation data using first-order kinetics. Starch films containing larger molecules were degraded faster, but the rate coefficient was independent of the granule size. Retrograded films were degraded much slower than unretrograded ones, with a similar rate coefficient to that in the second stage of unretrograded films. Although initially the smaller molecules or the easily accessible starch chains on the amorphous film surface were degraded faster, the more ordered structure (resistant starch) formed from retrogradation, either before or during enzymatic degradation, strongly inhibits film biodegradation. PMID:25817650

  9. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    PubMed

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  10. Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties

    PubMed Central

    Kumar, Rohit; Kumar, Aman; Sharma, Nand Kishor; Kaur, Navneet; Chunduri, Venkatesh; Chawla, Meenakshi; Sharma, Saloni; Singh, Kashmir; Garg, Monika

    2016-01-01

    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch

  11. Resistance of human immunodeficiency virus type 1 to acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidines.

    PubMed Central

    Nguyen, M H; Schinazi, R F; Shi, C; Goudgaon, N M; McKenna, P M; Mellors, J W

    1994-01-01

    Acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidine derivatives are potent and specific inhibitors of human immunodeficiency virus type 1 (HIV-1). The development of in vitro resistance to two derivatives, 5-ethyl-1-(ethoxymethyl)-(6-phenylthio)-uracil (E-EPU), was evaluated by serial passage of HIV-1 in increasing concentrations of inhibitor. HIV-1 variants exhibiting > 500-fold resistance to E-EPSeU and E-EPU were isolated after sequential passage in 1, 5, and 10 microM inhibitor. The resistant variants exhibited coresistance to related acyclic 6-substituted pyrimidines and the HIV-1-specific inhibitors (+)-(5S)-4,5,6,7-tetrahydro-5- pyrimidines and the HIV-1-specific inhibitors (+)-(5S)-4,5,6,7-tetrahydro-5- methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1-jk]benzodiazepin-2(1H)- thione (TIBO R82150) and nevirapine, but remained susceptible to 3'-azido-3'-deoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and phosphonoformic acid. DNA sequence analysis of reverse transcriptase (RT) derived from E-EPSeU-resistant virus identified a Tyr (TAT)-to-Cys (TGT) mutation at either codon 188 (Cys-188; 9 of 15 clones) or codon 181 (Cys-181; 5 of 15 clones). The same amino acid changes were found in RT from E-EPU-resistant virus, but the Cys-181 mutation was more common (9 of 10 clones) than the Cys-188 mutation (1 of 10 clones). Site-specific mutagenesis and production of mutant recombinant viruses demonstrated that both the Cys-181 and Cys-188 mutations cause resistance to E-EPSeU and E-EPU. Of the two mutations, the Cys-188 substitution produced greater E-EPSeU and E-EPU resistance. The predominance of the Cys-188 mutation in E-EPSeU-resistant variants has not been noted for other classes of HIV-1 specific RT inhibitors. HIV-1 resistance is likely to limit the therapeutic efficacy of acyclic 6-substituted pyrimidines if they are used as monotherapy. PMID:7840579

  12. Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci.

    PubMed

    Bhardwaj, Pooja; Ziegler, Elizabeth; Palmer, Kelli L

    2016-04-01

    Chlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistantE. faecium(VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed thatvanAupregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. ThevanHpromoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. UsingvanHreporter experiments withBacillus subtilisand deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion ofvanRdid not result in increased chlorhexidine susceptibility, demonstrating thatvanHAXinduction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies. PMID:26810654

  13. Resistance testing of clinical herpes simplex virus type 2 isolates collected over 4 decades.

    PubMed

    Bohn-Wippert, Kathrin; Schmidt, Susanne; Runtze, Anna; Zell, Roland; Sauerbrei, Andreas

    2015-10-01

    There is only little information about the role of mutations of the thymidine kinase (TK) and DNA polymerase (pol) genes of herpes simplex virus type 2 (HSV-2) for the development of antiviral resistance. In this study, the polymorphism of TK and DNA pol genes was examined in 82 clinical isolates collected routinely between 1973 and 2013. If novel, presently unclear or resistance-related mutations were found, the resistance phenotype against acyclovir (ACV) and foscarnet (FOS) was analyzed. The four novel amino acid changes G150D, A157T, R248W, L342W and the hitherto phenotypically unclear substitution T131M within the TK gene were identified as natural polymorphisms. Within the DNA pol gene, 17 novel substitutions and the to-date unclear change R628C were characterized as part of natural gene polymorphism. Two novel DNA pol mutations were linked to resistance (M910T) and weak susceptibility to ACV (684 insertion ED), respectively. In one isolate, the genomic cause of ACV resistance could not be identified. Phylogenetic analysis including sequences of this study and of the GenBank revealed a hierarchy of mutation clusters in TK displaying G39E as first common mutation step, followed by N78D and L140F. In conclusion, the present findings allow a deeper insight in the variability of HSV-2 TK and DNA pol genes. The most common substitution G39E can be excluded as unique cause of HSV-2 resistance. This study supports once more the importance of phenotypic adjustment of genotypic results to enhance the clinical utility of genotypic findings. PMID:26338148

  14. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme. PMID:25039418

  15. Prebiotic properties of potato starch dextrins.

    PubMed

    Barczyńska, Renata; Śliżewska, Katarzyna; Libudzisz, Zdzisława; Kapuśniak, Kamila; Kapuśniak, Janusz

    2015-01-01

    The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion - they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells) counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains. PMID:26400889

  16. Methicillin-Resistant Staphylococcus aureus from Brazilian Dairy Farms and Identification of Novel Sequence Types.

    PubMed

    Oliveira, C J B; Tiao, N; de Sousa, F G C; de Moura, J F P; Santos Filho, L; Gebreyes, W A

    2016-03-01

    The aim of this study was to investigate the phenotypic and genotypic diversity and anti-microbial resistance among staphylococci of dairy herds that originated from Paraiba State, north-eastern Brazil, a region where such studies are rare. Milk samples (n = 552) were collected from 15 dairy farms. Isolates were evaluated for anti-microbial susceptibility by Kirby-Bauer disc diffusion method. Confirmation of methicillin-resistant Staphylococcus aureus (MRSA) was performed using multiplex PCR targeting mecA and nuc genes in addition to phenotypic assay based on PBP-2a latex agglutination. Clonal relatedness of isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) genotyping. Staphylococci were detected in 269 (49%) of the samples. Among these, 65 (24%) were S. aureus. The remaining 204 isolates were either coagulase-negative staphylococci (n = 188; 70%) or coagulase positive other than S. aureus (n = 16; 6%). Staphylococci were cultured in seven (35%) of the 20 hand swab samples, from which five isolates were S. aureus. The isolates were most commonly resistant against penicillin (43%), ampicillin (38%) and oxacillin (27%). The gene mecA was detected in 21 S. aureus from milk and in one isolate from a milker's hand. None of the isolates were resistant to vancomycin. PFGE findings showed high clonal diversity among the isolates. Based on MLST, we identified a total of 11 different sequence types (STs 1, 5, 6, 83, 97, 126, 1583, 1622, 1623, 1624 and 1625) with four novel STs (ST1622-ST1625). The findings show that MRSA is prevalent in milk from semi-extensive dairy cows in north-eastern Brazil, and further investigation on its extent in various types of milk production systems and the farm-to-table continuum is warranted. PMID:26178302

  17. Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes

    PubMed Central

    Heden, Timothy D.; Winn, Nathan C.; Mari, Andrea; Booth, Frank W.; Rector, R. Scott; Thyfault, John P.

    2014-01-01

    Abnormally elevated postprandial glucose and triacylglycerol (TAG) concentrations are risk factors for cardiovascular disease in type 2 diabetes. The most effective time to exercise to lower postprandial glucose and TAG concentrations is unknown. Thus the aim of this study was to determine what time is more effective, either pre- or postdinner resistance exercise (RE), at improving postprandial risk factors in patients with type 2 diabetes. Thirteen obese patients with type 2 diabetes completed three trials in a random order in which they consumed a dinner meal with 1) no RE (NoRE), 2) predinner RE (RE → M), and 3) postdinner RE beginning 45 min after dinner (M → RE). Clinical outcome measures included postprandial glucose and TAG concentrations. In addition, postprandial acetaminophen (gastric emptying), endocrine responses, free fatty acids, and β-cell function (mathematical modeling) were measured to determine whether these factors were related to changes in glucose and TAG. The TAG incremental area under the curve (iAUC) was ∼92% lower (P ≤ 0.02) during M → RE compared with NoRE and RE → M, an effect due in part to lower very-low-density lipoprotein-1 TAG concentrations. The glucose iAUC was reduced (P = 0.02) by ∼18 and 30% during the RE → M and M → RE trials, respectively, compared with NoRE, with no difference between RE trials. RE → M and M → RE reduced the insulin iAUC by 35 and 48%, respectively, compared with NoRE (P < 0.01). The glucagon-like peptide-1 iAUC was ∼50% lower (P ≤ 0.02) during M → RE compared with NoRE and RE → M. Given that predinner RE only improves postprandial glucose concentrations, whereas postdinner RE improves both postprandial glucose and TAG concentrations, postdinner RE may lower the risk of cardiovascular disease more effectively. PMID:25539939

  18. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: Plasmid characterization has particular clinical importance because genes encoding significant traits including antimicrobial resistance are frequently carried on plasmids. The objective of this study was to examine the distribution of multidrug resistance (MDR) in Escherichia coli in relation ...

  19. Structure and physicochemical properties of starches in lotus (Nelumbo nucifera Gaertn.) rhizome

    PubMed Central

    Yu, Huaguang; Cheng, Libao; Yin, Jingjing; Yan, Shunjun; Liu, Kejun; Zhang, Fengmin; Xu, Bin; Li, Liangjun

    2013-01-01

    The type and content of starch are believed to be the most critical factors in determining the storage and processing quality of lotus rhizome species, and the intention of this study is to survey the structure and properties of starches isolated from rhizomes of two lotus cultivars using X-ray powder diffraction, solid-state nuclear magnetic resonance spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, and rapid viscosity analyzer (RVA). Starch in rhizome of cultivar Meirenhong exhibited C-type X-ray diffraction pattern, while starch in rhizome of cultivar Wawalian showed A-type pattern. 13C cross-polarization magic-angle spinning nuclear magnetic resonance (13C CP-MAS NMR) also confirmed the polymorphs. The relative crystallinity of two starches was quantitatively estimated from two methods and compared. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results indicated that the external regions of the starch granules had a great level of ordered structure. Starch granules in Meirenhong showed oval-shaped granules, while starch granules in Wawalian were elongated and oval in shape with relatively large size. Gelatinization temperatures of starch in Meirenhong and Wawalian were 330.5 and 342.4 K, respectively, and the gelatinization temperature range of Meirenhong was significantly wider than that of Wawalian. Starch in rhizome of cultivar Meirenhong showed lower pasting temperature, lower hot and cool viscosities, lower setback, and higher peak viscosity and breakdown than those of Wawalian in RVA pasting profiles at 6% starch concentration. PMID:24804031

  20. 3'-Azido-3'-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors.

    PubMed Central

    Larder, B A

    1992-01-01

    Nonnucleoside reverse transcriptase (NNRT) inhibitors (R82913; (+)-S-4,5,6,7-tetrahydro-9-chloro-5-methyl-6-(3-methyl-2-butenyl)- imidazo[4,5,1-jk][1,4]-benzodiazepin-2(1H)-thione; Cl-TIBO; and BI-RG-587, nevirapine) were used to select resistant human immunodeficiency virus type 1 (HIV-1) variants by passage in cell cultures of wild-type or 3'-azido-3'-deoxythymidine (zidovudine; AZT)-resistant strains. Similar to other NNRT inhibitors, Cl-TIBO induced a single mutation (Y181 to C) in reverse transcriptase (RT) that accounted for the resistance. BI-RG-587 induced a different mutation (V106-->A) in AZT resistance backgrounds. A series of viable HIV-1 variants was constructed by site-directed mutagenesis of the RT, which harbored multiple drug resistance mutations, including Y181 to C. HIV-1 that was co-resistant to NNRT inhibitors and 2',3'-dideoxyinosine resulted when a 2',3'-dideoxyinosine resistance mutation (L74 to V) was also present in RT. By contrast, however, the Y181 to C mutation in an AZT resistance background significantly suppressed resistance to AZT, while it conferred resistance to NNRT inhibitors. However, the V106-->A substitution did not cause suppression of preexisting AZT resistance. Since certain combinations of nucleoside analogs and NNRT inhibitors might result in the development of co-resistance, careful analysis of clinical isolates obtained during combination therapy will be needed to determine the potential significance of these observations. PMID:1282792

  1. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    SciTech Connect

    Elizabeth M. Lenihan

    2003-12-12

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC

  2. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    PubMed Central

    Claver, Irakoze Pierre; Zhang, Haihua; Li, Qin; Zhu, Kexue; Zhou, Huiming

    2010-01-01

    Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP) and the water solubility index (WSI) of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA) showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU) than raw sorghum starch (454 BU/RVU). For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC) revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp) at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′) and loss modulus (G″) of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods. PMID:21152287

  3. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  4. Imaging Features of Pulmonary CT in Type 2 Diabetic Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Jiang, Hongbo; Ren, Yanwei; Lu, Xiwei

    2016-01-01

    Background Until now, radiographic manifestations of multidrug-resistant pulmonary tuberculosis (MDR- TB) in patients with diabetes mellitus (DM) have not been reported. We conducted a study to investigate the imaging features of pulmonary computed tomography (CT) for type 2 diabetic (T2DM) patients with MDR-TB. Methods The clinical data and pulmonary CT findings of 39 type 2 diabetic patients with MDR-TB, 46 type 2 diabetic patients with drug-susceptible tuberculosis (DS-TB), and 72 pure drug-susceptible TB cases (without T2DM and MDR) treated at Dalian Tuberculosis Hospital from 2012 to 2015 were collected, and the clinical features and imaging differences of the three groups were compared. Results The clinical characteristics of the three groups of patients were not significantly different except with respect to age and previous treatment history. However, on imaging, the patients with MDR-TB showed consolidation in and above the pulmonary segments was significantly more extensive than that seen in the DS-TB group with or without T2DM. Conclusion Consolidation in or above multiple pulmonary segments with multiple mouth-eaten cavities and bronchial damage on pulmonary CT images in type 2 diabetic patients with tuberculosis suggests the possibility of multi-drug resistance. PMID:27022735

  5. Multilocus Sequence Typing Reveals Evidence of Homologous Recombination Linked to Antibiotic Resistance in the Genus Salinispora

    PubMed Central

    Freel, Kelle C.; Millán-Aguiñaga, Natalie

    2013-01-01

    The three closely related species that currently comprise the genus Salinispora were analyzed using a multilocus sequence typing approach targeting 48 strains derived from four geographic locations. Phylogenetic congruence and a well-supported concatenated tree provide strong support for the delineation of the three species as currently described and the basal relationship of Salinispora arenicola to the more recently diverged sister taxa S. tropica and S. pacifica. The phylogeny of the initial region of the rpoB gene sequenced was atypical, placing the related genera Micromonospora and Verrucosispora within the Salinispora clade. This phylogenetic incongruence was subsequently ascribed to a homologous-recombination event in a portion of the gene associated with resistance to compounds in the rifamycin class, which target RpoB. All S. arenicola strains produced compounds in this class and possessed resistance-conferring amino acid changes in RpoB. The phylogeny of a region of the rpoB gene that is not associated with rifamycin resistance was congruent with the other housekeeping genes. The link between antibiotic resistance and homologous recombination suggests that incongruent phylogenies provide opportunities to identify the molecular targets of secondary metabolites, an observation with potential relevance for drug discovery efforts. Low ratios of interspecies recombination to mutation, even among cooccurring strains, coupled with high levels of within-species recombination suggest that the three species have been described in accordance with natural barriers to recombination. PMID:23892741

  6. Antibiotics Resistance in Rhizobium: Type, Process, Mechanism and Benefit for Agriculture.

    PubMed

    Naamala, Judith; Jaiswal, Sanjay K; Dakora, Felix D

    2016-06-01

    The use of high-quality rhizobial inoculants on agricultural legumes has contributed substantially to the N economy of farming systems through inputs from biological nitrogen fixation (BNF). Large populations of symbiotically effective rhizobia should be available in the rhizosphere for symbiotic BNF with host plants. The rhizobial populations should also be able to compete and infect host plants. However, the rhizosphere comprises large populations of different microorganisms. Some of these microorganisms naturally produce antibiotics which are lethal to susceptible rhizobial populations in the soil. Therefore, intrinsic resistance to antibiotics is a desirable trait for the rhizobial population. It increases the rhizobia's chances of growth, multiplication and persistence in the soil. With a large population of rhizobia in the soil, infectivity of host plants and the subsequent BNF efficiency can be guaranteed. This review, therefore, puts together findings by various researchers on antibiotic resistance in bacteria with the main emphasis on rhizobia. It describes the different modes of action of different antibiotics, the types of antibiotic resistance exhibited by rhizobia, the mechanisms of acquisition of antibiotic resistance in rhizobia and the levels of tolerance of different rhizobial species to different antibiotics. PMID:26897128

  7. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    PubMed

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  8. Analysis of nonnucleoside drug-resistant variants of human immunodeficiency virus type 1 reverse transcriptase.

    PubMed Central

    Boyer, P L; Currens, M J; McMahon, J B; Boyd, M R; Hughes, S H

    1993-01-01

    A number of chemically distinct nonnucleoside inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been reported. Several lines of evidence, including the isolation of RT mutants that show cross resistance, suggest that, despite their structural diversity, many of these inhibitors bind to a common site on HIV-1 RT. We have recently reported that, on the basis of analyses of HIV-1/HIV-2 chimeras, the natural product calanolide A may interact with a different site or sites in HIV-1 RT. We have used BspMI cassette mutagenesis to prepare a collection of HIV-1 RT mutants that show resistance to the known members of the general class of nonnucleoside inhibitors. This collection of mutants can be used to determine whether a new drug will show cross resistance with known inhibitors and to define amino acid positions critical for the action of the drugs. The mutants were used to analyze calanolide A, 1H,3H-thiazolo[3,4-a]benzimidazole(4i), and the acyclic nucleoside analog 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. These analyses suggest that all three drugs interact with HIV-1 RT within the previously defined common binding site for nonnucleoside inhibitors. However, the drugs respond differently to the panel of drug-resistant HIV-1 RTs, indicating that while the binding sites of the drugs overlap they are not identical. PMID:7680393

  9. Structural and functional properties of alkali-treated high-amylose rice starch.

    PubMed

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. PMID:24128474

  10. Types and Prevalence of Carbapenem-Resistant Acinetobacter calcoaceticus-Acinetobacter baumannii Complex in Northern Taiwan

    PubMed Central

    Hsieh, Wen-Shyang; Wang, Nai-Yu; Feng, Jou-An; Weng, Li-Chuan

    2014-01-01

    The frequency of the carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii (CRACB) complex increases annually in our hospitals. However, the types and prevalence of carbapenemases among isolates still remain unclear. In this study, we identified and collected 672 carbapenem-resistant isolates from a medical center in Northern Taiwan between April and December of 2010. There were 577 genospecies 2 (Acinetobacter baumannii), 79 genospecies 13TU, and 16 genospecies 3 isolates. The isolates had an acquired blaOXA-24-like gene, which was confirmed by sequencing for the encoded OXA-72 carbapenemase, and were often associated with high-level carbapenem resistance. These CRACB complex isolates remained susceptible to colistin (100%). The genotyping of isolates was conducted using pulsed-field gel electrophoresis with ApaI digestion. In most clonally related groups, patients were from both branch hospitals. The results indicate that interhospital dissemination of clones occurred. This study provides updated data on the types and prevalence of the CRACB complex. In addition, it presents a warning on the emergence and spread of CRACB complex harboring blaOXA-24-like genes in northern Taiwan. PMID:24145535

  11. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus

    PubMed Central

    2010-01-01

    We performed whole genome sequencing of a cidofovir {[(S)-1-(3-hydroxy-2-phosphonylmethoxy-propyl) cytosine] [HPMPC]}-resistant (CDV-R) strain of Monkeypoxvirus (MPV). Whole-genome comparison with the wild-type (WT) strain revealed 55 single-nucleotide polymorphisms (SNPs) and one tandem-repeat contraction. Over one-third of all identified SNPs were located within genes comprising the poxvirus replication complex, including the DNA polymerase, RNA polymerase, mRNA capping methyltransferase, DNA processivity factor, and poly-A polymerase. Four polymorphic sites were found within the DNA polymerase gene. DNA polymerase mutations observed at positions 314 and 684 in MPV were consistent with CDV-R loci previously identified in Vaccinia virus (VACV). These data suggest the mechanism of CDV resistance may be highly conserved across Orthopoxvirus (OPV) species. SNPs were also identified within virulence genes such as the A-type inclusion protein, serine protease inhibitor-like protein SPI-3, Schlafen ATPase and thymidylate kinase, among others. Aberrant chain extension induced by CDV may lead to diverse alterations in gene expression and viral replication that may result in both adaptive and attenuating mutations. Defining the potential contribution of substitutions in the replication complex and RNA processing machinery reported here may yield further insight into CDV resistance and may augment current therapeutic development strategies. PMID:20509894

  12. Contact resistivities of antimony-doped n-type Ge1‑x Sn x

    NASA Astrophysics Data System (ADS)

    Senthil Srinivasan, V. S.; Fischer, Inga A.; Augel, Lion; Hornung, Anja; Koerner, Roman; Kostecki, Konrad; Oehme, Michael; Rolseth, Erlend; Schulze, Joerg

    2016-08-01

    As Ge1‑x Sn x is being investigated for CMOS applications, obtaining contacts to n-type Ge1‑x Sn x with low specific contact resistivity (ρ c) is a major concern. Here, we present results on specific contact resistivities of Sb doped n-type Ge1‑x Sn x with 0 ≤ x ≤ 0.08 also with varying doping concentrations using Ni, Ag and Mn as contact metals. Our results show that Ni offers the lowest ρ c for all x values of Ge1‑x Sn x . The lowest ρ c measured for Ni contacts on highly n-doped Ge0.92Sn0.08 is 2.29 × 10‑6 Ω cm2. We find a strong dependence of the specific contact resistivity on doping, which we attribute to the fact that strong Fermi level pinning is present in metal/n-Ge1‑x Sn x contacts.

  13. Impact of angiotensin II type 1 receptor gene polymorphism on insulin resistance in polycystic ovary syndrome.

    PubMed

    El-Mesallamy, H; El-Refaie, T; El-Razek, R A

    2013-04-01

    Insulin resistance is allegedly a target pathophysiological mechanism in the pathogenesis of polycystic ovary syndrome. Moreover, this metabolic alteration is possibly genetically determined. In view of the recent evidence implicating genetic variants of the renin-angiotensin system as candidates in several metabolic disorders, we investigated the allele and genotype frequencies of the A1166 C polymorphism of the angiotensin II type 1 receptor in relation with various metabolic and biochemical parameters in affected females trying to asses its role in the pathogenesis of this syndrome. The study was conducted on 83 females of which 39 females served as the control group. The participants were matched for age, body mass index and degree of obesity. For all subjects biochemical parameters were assayed including soluble CD40 ligand together with fasting glucose and insulin which were used for calculation of insulin resistance indices, Genotyping performed using real time polymerase chain reaction revealed that the C allele frequency and the AC genotype were less frequently observed in patients compared to controls, however this difference was not statistically significant (p=0.146). Lack of the C allele was associated with adverse metabolic parameters including higher rate of insulin resistance as well as solubes CD40 ligand in the patients group. Results of the current study support a causative role for the A1166 C polymorphism of the angiotensin II type 1 gene polymorphism in the pathogenesis or phenotypic expression of polycystic ovary syndrome. PMID:23564192

  14. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors.

    PubMed Central

    Nunberg, J H; Schleif, W A; Boots, E J; O'Brien, J A; Quintero, J C; Hoffman, J M; Emini, E A; Goldman, M E

    1991-01-01

    Human immunodeficiency virus type 1 (HIV-1)-specific pyridinone reverse transcriptase (RT) inhibitors prevent HIV-1 replication in cell culture (M. E. Goldman, J. H. Nunberg, J. A. O'Brien, J.C. Quintero, W. A. Schleif, K. F. Freund, S. L. Gaul, W. S. Saari, J. S. Wai, J. M. Hoffman, P. S. Anderson, D. J. Hupe, E. A. Emini, and A. M. Stern, Proc. Natl. Acad. Sci. USA 88:6863-6867, 1991). In contrast to nucleoside analog inhibitors, such as AZT, which need to be converted to triphosphates by host cells, these compounds act directly to inhibit RT via a mechanism which is noncompetitive with respect to deoxynucleoside triphosphates. As one approach to define the mechanism of action of pyridinone inhibitors, we isolated resistant mutants of HIV-1 in cell culture. Serial passage in the presence of inhibitor yielded virus which was 1,000-fold resistant to compounds of this class. Bacterially expressed RTs molecularly cloned from resistant viruses were also resistant. The resistant RT genes encoded two amino acid changes, K-103 to N and Y-181 to C, each of which contributed partial resistance. The mutation at amino acid 181 lies adjacent to the conserved YG/MDD motif found in most DNA and RNA polymerases. The mutation at amino acid 103 lies within a region of RT which may be involved in PPi binding. The resistant viruses, although sensitive to nucleoside analogs, were cross-resistant to the structurally unrelated RT inhibitors TIBO R82150 (R. Pauwels, K. Andries, J. Desmyter, D. Schols, M. J. Kukla, H. J. Breslin, A. Raeymaeckers, J. Van Gelder, R. Woestenborghs, J. Heykanti, K. Schellekens, M. A. C. Janssen, E. De Clercq, and P. A. J. Janssen, Nature [London] 343:470-474, 1990) and BI-RG-587 (V. J. Merluzzi, K. D. Hargrave, M. Labadia, K. Grozinger, M. Skoog, J. C. Wu, C.-K. Shih, K. Eckner, S. Hattox, J. Adams, A. S. Rosenthal, R. Faanes, R. J. Eckner, R. A. Koup, and J. L. Sullivan, Science 250:1411-1413, 1990). Thus, these nonnucleoside analog inhibitors may share a

  15. Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values.

    PubMed

    Hedayati, Sara; Shahidi, Fakhri; Koocheki, Arash; Farahnaky, Asgar; Majzoobi, Mahsa

    2016-10-01

    The aim of this study was to investigate the influence of pH changes (3, 5, 7 and 9) on physical properties of pregelatinized (PG) and granular cold water swelling (GCWS) maize starches. In acidic pH, PG starches were fragmented; however, GCWS starches mainly reserved their granular integrity but were shriveled. For both modified starches the water absorption, cold water viscosity, textural parameters, turbidity and freeze-thaw stability of the samples decreased whereas water solubility increased at pH 3 and 5. On the other hand, alkaline pH did not bring about evident changes on morphology of PG starch but the surface of GCWS starch became smoother. Water absorption, solubility, rheological and mechanical properties, freeze-thaw stability and turbidity of the starch pastes increased at high pH values. Overall, both starches were more stable at alkaline pH compared to acidic pH values and GCWS starch was more resistance to pH changes than PG starch. PMID:27288699

  16. Relative Replicative Fitness of Zidovudine-Resistant Human Immunodeficiency Virus Type 1 Isolates In Vitro

    PubMed Central

    Harrigan, P. Richard; Bloor, Stuart; Larder, Brendan A.

    1998-01-01

    Replication of mixtures of two or more human immunodeficiency virus type 1 (HIV-1) variants would be expected to result in the eventual selection of the fittest virus due to Darwinian competition among the variants. The relative proportions of known HIV-1 variants (which may differ only by a single nucleotide from a standard “wild-type” virus, HIV-1HXB2) in mixed viral cultures were quantified by analysis of automated sequence signals of reverse transcriptase PCR products. With this method, the relative levels of replicative fitness of several zidovudine (3′-azidothymidine)-resistant HIV-1HXB2 variants were estimated under controlled in vitro conditions by measuring the rate of change in the proportions of viral variants as they replicated in cell cultures both in the presence and in the absence of drug selection pressure. These variants were engineered to contain commonly observed zidovudine resistance mutations in the HIV-1 reverse transcriptase (M41L, K70R, T215Y, and M41L+T215Y). In the absence of zidovudine, all variants tested displayed reduced replicative fitness compared to wild-type HIV-1HXB2. The order of relative fitness was wild type > K70R ≫ T215Y = M41L+T215Y > M41L. Mixed cultures in the presence of zidovudine showed a dose-dependent selection pressure against the wild-type virus which varied according to the resistance profile of each virus. The information gathered from this approach provides insight into competition among multiple HIV-1 variants, which likely occurs in vivo with drug selection pressure, and may be applicable in more complex mathematical models for predicting the emergence of HIV-1 variants after the initiation of antiretroviral therapy. PMID:9557659

  17. Evaluation of the GenoType MTBDR assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates.

    PubMed

    Saglik, I; Oz, Y; Kiraz, N

    2014-01-01

    Detection of drug resistance plays a critical role in tuberculosis treatment. The aim of this study was to evaluate the performance of GenoType Mycobacteria Drug Resistance (MTBDR) assay (Hain Lifescience, Germany) and to compare it with radiometric BACTEC 460 TB system (Becton Dickinson, USA) for the detection of rifampicin (RIF) and isoniazid (INH) resistance in 84 Mycobacterium tuberculosis complex (MTBC) isolates. RIF resistance was identified in 6 of 7 (85.7%) isolates and INH resistance was identified in 8 of 14 (57.1%) isolates by the GenoType MTBDR assay. Compared with BACTEC system, the sensitivity, specificity, positive predictive value and negative predictive values were 85.7%, 98.7%, 85.7% and 98.7% for RIF resistance; and 57.1%, 100%, 100% and 92.1% for INH resistance, respectively. GenoType MTBDR assay is reliable when tested specimen is resistant to the tested drugs. Although test was more successful in the detection of RIF resistance, it exhibited low sensitivity for the detection of INH resistance. PMID:25008829

  18. Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production.

    PubMed

    Kim, Bum-Su; Kim, Hyun-Seok; Yoo, Sang-Ho

    2015-07-10

    Physicochemical properties of Neisseria polysaccharea amylosucrase (NpAS)-treated rice and barley starches were investigated at scale-up production. Pre-gelatinized rice and barley starches were treated with significantly lower NpAS dose (0.1 U/mL) but 100 times larger reaction volume (3500 mL), compared to the analytical scale (35 mL) used in the previous study. NpAS-treated starches in this scale-up production were characterized with respect to reaction efficiency (RE), resistant starch (RS) content, amylopectin (AP) branch-chain length distribution, solubility, swelling power, pasting viscosity, and thermal transition properties. The RE enhanced up to 1.8 times by increasing the reaction volume, which improved the RS content and AP branch-chain lengths of NpAS-treated starches. Compared with the native starch, NpAS-treated starches exhibited lower solubility and swelling power, lower pasting viscosity, and a large increase in the melting peak temperature. Consequently, NpAS treatment of pre-gelatinized starches in this study would be a potential way of replacing commercial RS production. PMID:25857960

  19. Characterization of an ExoS Type III Translocation-Resistant Cell Line

    PubMed Central

    Rucks, Elizabeth A.; Olson, Joan C.

    2005-01-01

    Pseudomonas aeruginosa ExoS is a type III-secreted type III-secreted, bifunctional protein that causes diverse effects on eukaryotic cell function. The coculture of P. aeruginosa strains expressing ExoS with HL-60 myeloid cells revealed the cell line to be resistant to the toxic effects of ExoS. Differentiation of HL-60 cells with phorbol 12-myristate 13-acetate (TPA) rendered the cell line sensitive to ExoS. To understand the cellular basis for the alteration in sensitivity, undifferentiated and TPA-differentiated HL-60 cells were compared for differences in bacterial adherence, type III secretion induction, and ExoS translocation. These comparisons found that ExoS was translocated more efficiently in TPA-differentiated HL-60 cells than in undifferentiated cells. The studies support the ability of eukaryotic cells to influence P. aeruginosa TTS at the level of membrane translocation. PMID:15618208

  20. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    SciTech Connect

    Aminorroaya Yamini, Sima E-mail: jsnyder@caltech.edu; Dou, Shi Xue; Mitchell, David R. G.; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Snyder, G. Jeffrey E-mail: jsnyder@caltech.edu

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  1. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation.

    PubMed

    Sun, Qingjie; Li, Guanghua; Dai, Lei; Ji, Na; Xiong, Liu

    2014-11-01

    Waxy maize starch was treated by a facile and green enzymolysis procedure to fabricate starch nanoparticles (StNPs). The yield of StNPs was raised to 85% by pullulanase treatment, and the preparation duration was two days. Morphology (SEM, TEM), crystalline structure (XRD), thermal gravimetry analysis (TGA), and the group changing (FTIR) of StNPs prepared with different starch concentrations (10%, 15%, 20% and 25%,w/v) were investigated. Compared with native starch, the topography of all StNPs exhibited irregularly-shaped fragments, the particle diameters decreased from several μm to about 60-120 nm, and the crystal pattern changed from A-type to B+V-type. The StNPs prepared with 15% starch slurry had the highest degree of crystallinity at 55.41%. The eco-friendly prepared nanoparticles could be widely used in biomedical applications and development of new materials. PMID:24874379

  2. Mutagenesis Mapping of the Protein-Protein Interaction Underlying FusB-Type Fusidic Acid Resistance

    PubMed Central

    Cox, Georgina; Edwards, Thomas A.

    2013-01-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB–EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  3. Mutagenesis mapping of the protein-protein interaction underlying FusB-type fusidic acid resistance.

    PubMed

    Cox, Georgina; Edwards, Thomas A; O'Neill, Alex J

    2013-10-01

    FusB-type proteins represent the predominant mechanism of resistance to fusidic acid in staphylococci and act by binding to and modulating the function of the drug target (elongation factor G [EF-G]). To gain further insight into this antibiotic resistance mechanism, we sought to identify residues important for the interaction of FusB with EF-G and thereby delineate the binding interface within the FusB-EF-G complex. Replacement with alanine of any one of four conserved residues within the C-terminal domain of FusB (F156, K184, Y187, and F208) abrogated the ability of the protein to confer resistance to fusidic acid; the purified mutant proteins also lost the ability to bind S. aureus EF-G in vitro. E. coli EF-G, which is not ordinarily able to bind FusB-type proteins, was rendered competent for binding to FusB following deletion of a 3-residue tract (529SNP531) from domain IV of the protein. This study has identified key regions of both FusB and EF-G that are important for the interaction between the proteins, findings which corroborate our previous in silico prediction for the architecture of the complex formed between the resistance protein and the drug target (G. Cox, G. S. Thompson, H. T. Jenkins, F. Peske, A. Savelsbergh, M. V. Rodnina, W. Wintermeyer, S. W. Homans, T. A. Edwards, and A. J. O'Neill, Proc. Natl. Acad. Sci. U. S. A. 109:2102-2107, 2012). PMID:23836182

  4. Sensory and physicochemical evaluation of low-fat chicken mortadella with added native and modified starches.

    PubMed

    Prestes, R C; Silva, L B; Torri, A M P; Kubota, E H; Rosa, C S; Roman, S S; Kempka, A P; Demiate, I M

    2015-07-01

    The objective of this work was to evaluate the effect of adding different starches (native and modified) on the physicochemical, sensory, structural and microbiological characteristics of low-fat chicken mortadella. Two formulations containing native cassava and regular corn starch, coded CASS (5.0 % of cassava starch) and CORN (5.0 % of regular corn starch), and one formulation produced with physically treated starch coded as MOD1 (2.5 % of Novation 2300) and chemically modified starch coded as MOD2 (2.5 % of Thermtex) were studied. The following tests were performed: physicochemical characterization (moisture, ash, protein, starch and lipid contents, and water activity); cooling, freezing and reheating losses; texture (texture profile test); color coordinates (L*, a*, b*, C and h); microbiological evaluation; sensory evaluation (multiple comparison and preference test); and histological evaluation (light microscopy). There was no significant difference (p > 0.05) for ash, protein, cooling loss, cohesiveness or in the preference test for the tested samples. The other evaluated parameters showed significant differences (p < 0.05). Histological study allowed for a qualitative evaluation between the physical properties of the food and its microscopic structure. The best results were obtained for formulation MOD2 (2.5 % Thermtex). The addition of modified starch resulted in a better performance than the native starch in relation to the evaluated technological parameters, mainly in relation to reheating losses, which demonstrated the good interaction between the modified starch in the structure of the product and the possibility of the application of this type of starch in other types of functional meat products. PMID:26139901

  5. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid

    PubMed Central

    Cox, Georgina; Thompson, Gary S.; Jenkins, Huw T.; Peske, Frank; Savelsbergh, Andreas; Rodnina, Marina V.; Wintermeyer, Wolfgang; Homans, Steve W.; Edwards, Thomas A.; O'Neill, Alexander J.

    2012-01-01

    Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G. PMID:22308410

  6. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid.

    PubMed

    Cox, Georgina; Thompson, Gary S; Jenkins, Huw T; Peske, Frank; Savelsbergh, Andreas; Rodnina, Marina V; Wintermeyer, Wolfgang; Homans, Steve W; Edwards, Thomas A; O'Neill, Alexander J

    2012-02-01

    Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G. PMID:22308410

  7. Notice of Release of PA-559, a Root-knot Nematode Resistant, Red-fruited, Habanero-type Pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA has developed a new Habanero-type pepper designated PA-559. The new breeding line is the product of a backcross/pedigree breeding procedure to incorporate a dominant root-knot nematode resistance gene from the Scotch Bonnet-type accession PA-426 into a red-fruited Habanero-type pepper. PA...

  8. Preparation of low-resistivity n-type ZnSe by organometallic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Stutius, W.

    1981-03-01

    Low-resistivity n-type ZnSe with p<0.05 W cm and n≳1017 cm-3 has been grown epitaxially on (100) GaAs substrates by a low-pressure low-temperature organometallic chemical vapor deposition process. Triethylaluminum is used as a dopant. The as-grown layers show a strong near-band-gap photoluminescence peak. The much weaker photoluminescence intensity at longer wavelength indicates that the concentration of deep centers is lower than in doped ZnSe prepared by other methods.

  9. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure.

    PubMed

    Guo, Zebin; Zeng, Shaoxiao; Lu, Xu; Zhou, Meiling; Zheng, Mingjing; Zheng, Baodong

    2015-11-01

    Aqueous lotus seed starch suspensions (15%, w/w) were subjected to ultra-high pressure treatment (UHP, 100-600 MPa) for 30 min. The effects of UHP treatment on the structural and physicochemical properties of starch were investigated. The SEM and laser diffraction particle size analysis revealed that UHP treatment affected the shape and size distribution of starch granules. The morphological structure of starch was completely destroyed at 600 MPa, indicating complete gelatinization. Analysis of HPSEC-MALLS-RI suggested that the dispersity index of UHP-treated starch were decreased from 1.28 to 1.11. According to XRD analyses, UHP treatment converted native starch (C-type) into a B-type pattern. The swelling power and solubility presented a significant decrease at 85 and 95 °C, but opposite trends were found at 55-75 °C. The DSC results indicated a reduction in gelatinization temperatures and enthalpy with increasing pressure treatment. The RVA viscograms revealed that UHP-treated starch showed a decreased breakdown and setback viscosity, reflecting lower retrogradation tendency compared to native starch. PMID:25976814

  10. 12-Lipoxygenase Inhibition on Microalbuminuria in Type-1 and Type-2 Diabetes Is Associated with Changes of Glomerular Angiotensin II Type 1 Receptor Related to Insulin Resistance

    PubMed Central

    Xu, Hong-Zhao; Cheng, Yan-Li; Wang, Wan-Ning; Wu, Hao; Zhang, Yuan-Yuan; Zang, Chong-Sen; Xu, Zhong-Gao

    2016-01-01

    (1) Background: 12-lipoxygenase (12-LO) is involved in the development of diabetic nephropathy (DN). In the present study, we investigated whether 12-LO inhibition may ameliorate type-2 DN (T2DN) by interfering with insulin resistance (IR); (2) Methods: Rat glomerular mesangial cells, glomeruli and skeletal muscles were isolated and used in this study. Kidney histological changes were confirmed by periodic-acid Schiff staining; mRNA expression was detected by competitive reverse transcription polymerase chain reaction; and the protein level was determined by Western blot and the enzyme-linked immunosorbent assay, respectively; (3) Results: The inhibition of 12-LO attenuated microalbuminuria (MAU) increases in type-2 diabetic rats, but not in type-1 diabetic rats. Infusion of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) significantly increased the expression of angiotensin II (Ang II) and Ang II type 1 receptor (AT1R), but decreased the expression of AT1R-associated protein (ATRAP) in rat glomeruli, compared to the control. An in vitro study revealed that both 12(S)-HETE and insulin upregulated AT1R expression in rat mesangial cells. In the presence of p38 mitogen-activated protein kinase (MAPK) inhibitor, SB202190, the 12(S)-HETE-induced ATRAP reduction was significantly abolished. Interestingly, 12-LO inhibition did not influence AT1R expression in type-1 diabetic rats, but significantly abolished the increased AT1R and Ang II expression in glomeruli of type-2 diabetic rats. Furthermore, the inhibition of 12-LO significantly corrected impaired insulin sensitivity and fast serum insulin level, as well as the p-AMP-activated protein kinase (AMPK) reduction in skeletal muscle of type-2 diabetic rats; (4) Conclusion: The inhibition of 12-LO potentially ameliorated MAU by preventing IR through the downregulation of glomerular AT1R expression in T2DN. PMID:27164093

  11. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  12. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  13. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  14. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  15. Investigation of biofilm formation ability, antimicrobial resistance and the staphylococcal cassette chromosome mec patterns of methicillin resistant Staphylococcus epidermidis with different sequence types isolated from children.

    PubMed

    Soroush, Setareh; Jabalameli, Fereshteh; Taherikalani, Morovat; Amirmozafari, Nour; Imani Fooladi, Abbas Ali; Asadollahi, Khairollah; Beigverdi, Reza; Emaneini, Mohammad

    2016-04-01

    This study investigated the molecular characterizations of 80 methicillin resistant Staphylococcus epidermidis (MRSE) collected during 2012-2013 in Tehran Children's Medical Center, Iran. About 90% of MRSE isolates were multi-drug resistant (MDR) and the highest resistance was observed to cotrimoxazole and they were quite sensitive to quinupristin-dalfopristin and linezolid. Though vanA gene was not detected, the majority of isolates showed intermediate resistance to vancomycin (MIC90 16 μg/ml). Resistance to mupirocin was observed in 18 isolates. Staphylococcal cassette chromosome mec (SCCmec) types V, III, IV and II were detected in 23.75%, 7.5%, 6.25% and 5% of isolates respectively, in some of which the additional parts of mec or ccr complexes were observed. In 57.5% MRSE isolates SCCmec types were not classified. 41.2% of MRSE isolates were carrying intercellular adhesion (ica) operon and 40% had strong or intermediate biofilm. The types of arginine catabolic mobile element (ACME) were limited to type I and II. Nine sequence types (STs) were seen in mupirocin resistant MRSE isolates. The common STs were ST2, ST5 and ST22 with 27.7% (5/18), 22.2% (4/18) and 16.6% (3/18) frequencies, respectively. ST23, ST54 and ST179 plus three novels STs 580, 581,588 were also observed. The majority of STs, 83.3% (15/18) belonged to clonal complex 2 (CC2). The spread of antibiotic resistance and virulence factors among MRSE species is an alarming sign in Children's Hospitals. The combination of these two issues leads to increase the chance of successfully establishing of common STs in hospital environments, and promotes the device-related infections and bacteremia. PMID:26821355

  16. Epidemiological typing of meticillin-resistant Staphylococcus aureus isolates from Pakistan and India.

    PubMed

    Shabir, Sahida; Hardy, Katherine J; Abbasi, Waseem S; McMurray, Claire L; Malik, Salman A; Wattal, Chand; Hawkey, Peter M

    2010-03-01

    The levels of meticillin-resistant Staphylococcus aureus (MRSA) in Pakistan and India are known to be high, but few studies have described the epidemiology of the different MRSA clones present. In order to gain an understanding of the epidemiology of MRSA within this region, 60 MRSA isolates from Pakistan (49) and India (11) were genotyped. All isolates were typed using PFGE, staphylococcal interspersed repeat units (SIRUs), a restriction-modification method and staphylococcal cassette chromosome mec (SCCmec) typing. A subset of isolates that were distinct by PFGE and SIRUs were typed using multilocus sequence typing (MLST). Clonal complex (CC) 8 was the dominant clonal complex (57/60) and was present in both Pakistan and India. Within CC8, there were 10 SIRU profiles and 24 PFGE profiles. Two SIRU profiles were present in isolates from both India and Pakistan, whilst seven were distinct for Pakistan and one for India. All PFGE profiles were distinct for each of the two countries. Thirty-four of the 57 isolates carried SCCmec type III/IIIa and the remainder carried type IV SCCmec. MLST analysis of 14 CC8 isolates with diverse SIRU and PFGE profiles showed that all were single-locus variants, with nine belonging to sequence type (ST) 239, three to ST8 and two to ST113. From a single hospital in Pakistan, three isolates belonged to CC30 and all were indistinguishable by PFGE and SIRUs and carried the Panton-Valentine leukocidin gene. Thus, epidemiological typing of strains from three distinct locations in India and Pakistan revealed the predominance of one clonal complex and highly related STs. The ability of SIRUs and PFGE to differentiate within ST239 demonstrates their utility in defining local epidemiology in these countries. PMID:19926728

  17. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  18. Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs.

    PubMed

    Li, T-J; Dai, Q-Z; Yin, Y-L; Zhang, J; Huang, R-L; Ruan, Z; Deng, Z; Xie, M

    2008-05-01

    Four male pigs (Duroc × Landrace × Yorkshire; average initial (mean ± SEM) BW = 22.5 ± 1.1 kg), fitted with permanent catheters in the portal vein, ileal vein and carotid artery, were used in a 4 × 4 Latin square experimental design to measure the effect of dietary starch sources on the net portal appearance of glucose and amino acids. Dietary starch sources were resistant starch (RS), maize, sticky rice and brown rice. Diets were provided at 0730, 1530 and 2330 h during a 6-day adjustment period and 1-day collection period. On day 7 of each period, blood samples were collected from the portal vein and carotid artery at 0730 h (prior to feeding) and hourly up to 8 h after meal. Blood samples were used to determine glucose, amino acid, packed cell volume and partial pressure of oxygen (pO2). When calculated per 100 g feed intake, cumulative portal glucose appearance was lower (P < 0.05) for resistant starch than for maize, sticky rice or brown rice up to 8 h after the meal. Cumulative portal glucose appearance was higher (P < 0.05) for sticky rice and brown rice than for other diets until 4 h after the meal, but maize had higher cumulative glucose appearance after 4 h. Net cumulative portal concentrations of most amino acids for resistant starch were also reduced (P < 0.05) than for the other starch sources. Cumulative portal appearance of amino acid represented 48.39%, 63.76%, 61.80% and 59.18% of dietary intake for resistant starch, maize, sticky rice and brown rice, respectively. Collectively, our results indicate that dietary starch sources substantially affect the appearance of amino acids and glucose in the portal circulation. PMID:22443597

  19. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection.

    PubMed

    Menéndez-Arias, Luis; Alvarez, Mar

    2014-02-01

    One to two million people worldwide are infected with the human immunodeficiency virus type 2 (HIV-2), with highest prevalences in West African countries, but also present in Western Europe, Asia and North America. Compared to HIV-1, HIV-2 infection undergoes a longer asymptomatic phase and progresses to AIDS more slowly. In addition, HIV-2 shows lower transmission rates, probably due to its lower viremia in infected individuals. There is limited experience in the treatment of HIV-2 infection and several antiretroviral drugs used to fight HIV-1 are not effective against HIV-2. Effective drugs against HIV-2 include nucleoside analogue reverse transcriptase (RT) inhibitors (e.g. zidovudine, tenofovir, lamivudine, emtricitabine, abacavir, stavudine and didanosine), protease inhibitors (saquinavir, lopinavir and darunavir), and integrase inhibitors (raltegravir, elvitegravir and dolutegravir). Maraviroc, a CCR5 antagonist blocking coreceptor binding during HIV entry, is active in vitro against CCR5-tropic HIV-2 but more studies are needed to validate its use in therapeutic treatments against HIV-2 infection. HIV-2 strains are naturally resistant to a few antiretroviral drugs developed to suppress HIV-1 propagation such as nonnucleoside RT inhibitors, several protease inhibitors and the fusion inhibitor enfuvirtide. Resistance selection in HIV-2 appears to be faster than in HIV-1. In this scenario, the development of novel drugs specific for HIV-2 is an important priority. In this review, we discuss current anti-HIV-2 therapies and mutational pathways leading to drug resistance. PMID:24345729

  20. Effective marker alleles associated with type 2 resistance to Fusarium head blight infection in fields

    PubMed Central

    Li, Tao; Luo, Meng; Zhang, Dadong; Wu, Di; Li, Lei; Bai, Guihua

    2016-01-01

    Molecular markers associated with known quantitative trait loci (QTLs) for type 2 resistance to Fusarium head blight (FHB) in bi-parental mapping population usually have more than two alleles in breeding populations. Therefore, understanding the association of each allele with FHB response is particularly important to marker-assisted enhancement of FHB resistance. In this paper, we evaluated FHB severities of 192 wheat accessions including landraces and commercial varieties in three field growing seasons, and genotyped this panel with 364 genome-wide informative molecular markers. Among them, 11 markers showed reproducible marker-trait association (p < 0.05) in at least two experiments using a mixed model. More than two alleles were identified per significant marker locus. These alleles were classified into favorable, unfavorable and neutral alleles according to the normalized genotypic values. The distributions of effective alleles at these loci in each wheat accession were characterized. Mean FHB severities increased with decreased number of favorable alleles at the reproducible loci. Chinese wheat landraces and Japanese accessions have more favorable alleles at the majority of the reproducible marker loci. FHB resistance levels of varieties can be greatly improved by introduction of these favorable alleles and removal of unfavorable alleles simultaneously at these QTL-linked marker loci. PMID:27436944

  1. Starch-degrading polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted. PMID:27170366

  2. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus

    PubMed Central

    Lewitt, Moira S.; Dent, Mairi S.; Hall, Kerstin

    2014-01-01

    The insulin-like growth factor (IGF) system, acting in concert with other hormone axes, is important in normal metabolism. In obesity, the hyperinsulinaemia that accompanies peripheral insulin resistance leads to reduced growth hormone (GH) secretion, while total IGF-I levels are relatively unchanged due to increased hepatic GH sensitivity. IGF-binding protein (IGFBP)-1 levels are suppressed in relation to the increase in insulin levels in obesity and low levels predict the development of type 2 diabetes several years later. Visceral adiposity and hepatic steatosis, along with a chronic inflammation, contribute to the IGF system phenotype in individuals with metabolic syndrome and type 2 diabetes mellitus, including changes in the normal inverse relationship between IGFBP-1 and insulin, with IGFBP-1 concentrations that are inappropriately normal or elevated. The IGF system is implicated in the vascular and other complications of these disorders and is therefore a potential therapeutic target. PMID:26237614

  3. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W.

    PubMed

    Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong

    2011-03-01

    Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding. PMID:21079966

  4. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    PubMed Central

    Mota, Marcelo Mendonça; da Silva, Tharciano Luiz Teixeira Braga; Fontes, Milene Tavares; Barreto, André Sales; Araújo, João Eliakim dos Santos; de Oliveira, Antônio Cesar Cabral; Wichi, Rogério Brandão; Santos, Márcio Roberto Viana

    2014-01-01

    Background Resistance exercise effects on cardiovascular parameters are not consistent. Objectives The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Conclusions Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats. PMID:25120082

  5. Antibiotic Resistance, RAPD- PCR Typing of Multiple Drug Resistant Strains of Escherichia Coli From Urinary Tract Infection (UTI)

    PubMed Central

    Marialouis, Xavier Alexander

    2016-01-01

    Introduction Global spreading of multidrug resistant strains of Escherichia coli is responsible for Urinary Tract Infection (UTI) which is a major health problem in of concern. Among the gram negative bacteria, the major contributors for UTI belongs to the family Enterobacteriaceae, which includes E. coli, Klebsiella, Citrobacter and Proteus. However, E. coli accounts for the major cause of Urinary tract infections (UTIs) and accounts for 75% to 90% of UTI isolates. Aim The main aim of this study is to analyse the phylogenetic grouping of clinical isolates of UTI E. coli. Materials and Methods In this study nearly 58 E. coli strains were isolated and confirmed through microbiological, biochemical characterization. The urine samples were collected from outpatients having symptoms of UTI, irrespective of age and sex in Tamil Nadu, India. The isolates were subjected to analyse for ESBL and AmpC β-lactamase production. To understand its genetic correlation, molecular typing was carried out using RAPD-PCR method. Results Here we noted phenotypically twenty seven isolates were positive for ESBL and seven for AmpC β-lactamase production. However, among the ESBL isolates higher sensitivity was noted for Nitrofurantoin and Cefoxitin. It is worth to note that the prevalence of UTIs was more common among female and elderly male. Phylogenetic grouping revealed the presence of 24 isolates belonged to B2 group followed by 19 isolates to group A, eight isolates to group B1 and Seven isolates to group D. Conclusion Phenotypically most of the strains were positive for ESBL and showed high sensitivity for Nitrofurantoin and cefoxitin. PMID:27134870

  6. Use of Salsalate to Target Inflammation in the Treatment of Insulin Resistance and Type 2 Diabetes

    PubMed Central

    Goldfine, Allison B.; Silver, Robert; Aldhahi, Waleed; Cai, Dongsheng; Tatro, Elizabeth; Lee, Jongsoon; Shoelson, Steven E.

    2009-01-01

    Objectives: Chronic subacute inflammation is implicated in the pathogenesis of insulin resistance and type 2 diabetes. Salicylates were shown years ago to lower glucose and more recently to inhibit NF-κB activity. Salsalate, a prodrug form of salicylate, has seen extensive clinical use and has a favorable safety profile. We studied the efficacy of salsalate in reducing glycemia and insulin resistance and potential mechanisms of action to validate NF-κB as a potential pharmacologic target in diabetes. Methods and Results: In open label studies, both high (4.5 g/d) and standard (3.0 g/d) doses of salsalate reduced fasting and postchallenge glucose levels after 2 weeks of treatment. Salsalate increased glucose utilization during euglycemic hyperinsulinemic clamps, by approximately 50% and 15% at the high and standard doses, respectively, and insulin clearance was decreased. Dose-limiting tinnitus occurred only at the higher dose. In a third, double-masked, placebo-controlled trial, 1 month of salsalate at maximum tolerable dose (no tinnitus) improved fasting and postchallenge glucose levels. Circulating free fatty acids were reduced and adiponectin increased in all treated subjects. Conclusions: These data demonstrate that salsalate improves in vivo glucose and lipid homeostasis, and support targeting of inflammation and NF-κB as a therapeutic approach in type 2 diabetes. PMID:19337387

  7. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria

    PubMed Central

    Lubelski, Jacek; Konings, Wil N.; Driessen, Arnold J. M.

    2007-01-01

    Summary: Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria. PMID:17804667

  8. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system.

    PubMed

    Pontais, Isabelle; Treutter, Dieter; Paulin, Jean-Pierre; Brisset, Marie-Noëlle

    2008-03-01

    Fire blight is a disease affecting Maloideae caused by the necrogenic bacterium Erwinia amylovora, which requires the type III protein secretion system (TTSS) for pathogenicity. Profiles of methanol-extractable leaf phenolics of two apple (Malus x domestica) genotypes with contrasting susceptibility to this disease were analyzed by HPLC after infection. Some qualitative differences were recorded between the constitutive compositions of the two genotypes but in both of them dihydrochalcones accounted for more than 90% of total phenolics. Principal component analysis separated leaves inoculated with a virulent wild-type strain from those inoculated with a non-pathogenic TTSS-defective mutant or with water. The changes in levels of the various groups of phenolics in response to the virulent bacterium were similar between the two genotypes, with a significant decrease of dihydrochalcones and a significant increase of hydroxycinnamate derivatives. Differences between genotypes were, however, recorded in amplitude and kinetic of variation in these groups. Occurrence of oxidation and polymerization reactions is proposed, based on the browning process of infected tissues, but whether some by-products act in defense as toxic compounds remain to be tested. Among direct antibacterial constitutive compounds present in apple leaves, the dihydrochalcone phloretin only was found at levels close to lethal concentrations in both genotypes. However, E. amylovora exhibited the ability to stabilize this compound at sublethal levels even in the resistant apple, rejecting the hypothesis of its involvement in the resistance of this genotype. PMID:18275458

  9. Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity

    PubMed Central

    Chen, Zheng; Canet, Mark J.; Sheng, Liang; Jiang, Lin; Xiong, Yi; Yin, Lei; Rui, Liangyou

    2015-01-01

    Objective Metabolic inflammation is believed to promote insulin resistance and type 2 diabetes progression in obesity. TRAF3, a cytoplasmic signaling protein, has been known to mediate/modulate cytokine signaling in immune cells. The goal is to define the metabolic function of hepatic TRAF3 in the setting of obesity. Methods Hepatocyte-specific TRAF3 knockout mice were generated using the loxp/albumin-cre system. Liver TRAF3 was deleted in adult obese mice via Cre adenoviral infection. Both high fat diet-induced and genetic obesity were examined. TRAF3 levels and insulin signaling were measured by immunoblotting. Insulin sensitivity, hepatic glucose production, and glucose metabolism were examined by glucose, insulin, and pyruvate tolerance tests. Hepatic steatosis was examined by Oil red O staining of liver sections and measuring liver triacylglycerol levels. Results Liver TRAF3 levels were lower in the fasted states in normal mice, and were aberrantly higher in obese mice and in mice with streptozotocin-induced hyperglycemia. Glucose directly increased TRAF3 levels in primary hepatocytes. Hepatocyte-specific deletion of TRAF3 decreased hyperinsulinemia, insulin resistance, glucose intolerance, and hepatic steatosis in mice with either high fat diet-induced obesity or genetic obesity (ob/ob); conversely, in lean mice, adenovirus-mediated overexpression of TRAF3 in the liver induced hyperinsulinemia, insulin resistance, and glucose intolerance. Deletion of TRAF3 enhanced the ability of insulin to stimulate phosphorylation of Akt in hepatocytes, whereas overexpression of TRAF3 suppressed insulin signaling. Conclusions Glucose increases the levels of hepatic TRAF3. TRAF3 in turn promotes hyperglycemia through increasing hepatic glucose production, thus forming a glucose-TRAF3 reinforcement loop in the liver. This positive feedback loop may drive the progression of type 2 diabetes and nonalcoholic fatty liver disease in obesity. PMID:26909311

  10. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids. PMID:27028891

  11. Association of doripenem resistance with OXA-type carbapenemases in Acinetobacter baumannii isolates

    PubMed Central

    Terzi, Huseyin-Agah; Atasoy, Ali-Rıza; Aykan, Sadiye-Berna; Karakece, Engin; Asık, Gulsah; Ciftci, Ihsan-Hakkı

    2016-01-01

    Objectives: To evaluate the in vitro activity of doripenem in Acinetobacter baumannii (A. baumannii) clinical isolates that possess different OXA-type carbapenemases, and to evaluate the roles of these enzymes in the development of carbapenem resistance. Methods: This retrospective study was conducted with 25 A. baumannii isolates at Sakarya University Training and Research Hospital, Sakarya, Turkey from June to October 2014. Antibiotic susceptibility testing was carried out using the Vitek-2 automated system (bioMérieux, Marcy l’Etoile, France). Minimum inhibitory concentrations (MICs) were determined using Etest strips (bioMérieux, Marcy l’Etoile, France). Quantitative polymerase chain reaction was performed in a Fluorion Instrument (Iontek, Istanbul, Turkey). Results: Isolates were divided into 5 groups based on their susceptibility profiles and OXA-type carbapenemase positivity. Group 2 isolates whose MIC of both meropenem and doripenem are in the range of 4-32 µg/mL were negative for both blaOXA-23 and blaOXA-58. Group 3 isolates whose MIC of meropenem and doripenem is in the range of 4-32 µg/mL, blaOXA-23 is positive, and blaOXA-58 is negative. Group 5 isolates whose MIC of meropenem is >32 µg/mL, and that of doripenem is in the range of 16-32 µg/mL were positive for both blaOXA-23 and blaOXA-58. Conclusion: The blaOXA-23 and blaOXA-58 gene combinations may confer resistance with a much greater MIC of both meropenem and doripenem. However, the presence of blaOXA-58 alone was not correlated with doripenem resistance. PMID:26739973

  12. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS).

    PubMed

    Ceseracciu, Luca; Heredia-Guerrero, José Alejandro; Dante, Silvia; Athanassiou, Athanassia; Bayer, Ilker S

    2015-02-18

    Designing starch-based biopolymers and biodegradable composites with durable mechanical properties and good resistance to water is still a challenging task. Although thermoplastic (destructured) starch has emerged as an alternative to petroleum-based polymers, its poor dimensional stability under humid and dry conditions extensively hinders its use as the biopolymer of choice in many applications. Unmodified starch granules, on the other hand, suffer from incompatibility, poor dispersion, and phase separation issues when compounded into other thermoplastics above a concentration level of 5%. Herein, we present a facile biodegradable elastomer preparation method by incorporating large amounts of unmodified corn starch, exceeding 80% by volume, in acetoxy-polyorganosiloxane thermosets to produce mechanically robust, hydrophobic bioelastomers. The naturally adsorbed moisture on the surface of starch enables autocatalytic rapid hydrolysis of polyorganosiloxane to form Si-O-Si networks. Depending on the amount of starch granules, the mechanical properties of the bioelastomers can be easily tuned with high elastic recovery rates. Moreover, starch granules considerably lowered the surface friction coefficient of the polyorganosiloxane network. Stress relaxation measurements indicated that the bioelastomers have strain energy dissipation factors that are lower than those of conventional rubbers, rendering them as promising green substitutes for plastic mechanical energy dampeners. Corn starch granules also have excellent compatibility with addition-cured polysiloxane chemistry that is used extensively in microfabrication. Regardless of the starch concentration, all of the developed bioelastomers have hydrophobic surfaces with lower friction coefficients and much less water uptake capacity than those of thermoplastic starch. The bioelastomers are biocompatible and are estimated to biodegrade in Mediterranean seawater within three to six years. PMID:25622232

  13. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  14. Comparison of Cationic and Unmodified Starches in Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch and polyacrylamide (PAAm) were prepared using reactive extrusion in a corotating twin screw extruder. The effect of cationic starch modification was examined using unmodified and cationic dent starch (approximately 23% amylose) and waxy maize starch (approximately 2% amyl...

  15. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling.

    PubMed

    Hong, Eun-Gyoung; Jung, Dae Young; Ko, Hwi Jin; Zhang, Zhiyou; Ma, Zhexi; Jun, John Y; Kim, Jae Hyeong; Sumner, Andrew D; Vary, Thomas C; Gardner, Thomas W; Bronson, Sarah K; Kim, Jason K

    2007-12-01

    Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects. PMID:17911348

  16. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions. PMID:27147464

  17. Quality of Spelt Wheat and its Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flours from 5 spelt cultivars grown over 3 years were evaluated as to their bread baking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions and pasting properties. Mill...

  18. Differences in 23S ribosomal RNA mutations between wild-type and mutant macrolide-resistant Chlamydia trachomatis isolates

    PubMed Central

    JIANG, YONG; ZHU, HUI; YANG, LI-NA; LIU, YUAN-JUN; HOU, SHU-PING; QI, MAN-LI; LIU, QUAN-ZHONG

    2015-01-01

    The aim of the present study was to determine the in vitro susceptibility of wild-type and mutant clinical isolates of Chlamydia (C.) trachomatis strains to erythromycin, azithromycin and josamycin, and to identify the resistance-conferring 23S ribosomal (r)RNA mutations in the isolates. The wild-type resistant isolates were defined as those with minimum inhibitory concentration values above the tissue concentration of the antibiotic in the urogenital system. Furthermore, all resistant C. trachomatis isolates were exposed to sub-inhibitory concentrations of macrolides, and 13 resistant mutants were selected following serial passages. Among the 8 wild-type isolates that were resistant to erythromycin, 3 isolates had a mutation at T2611C in the 23S rRNA gene while the others did not show any 23S rRNA mutations. The selected mutant isolates showed a 4- to 16-fold reduction in in vitro sensitivities. With regard to the mutant strains, the T2611C mutation was found in 10 isolates, A2057G mutation in 6 isolates, and A2059G mutation in 1 isolate. Thus, the macrolide-resistant isolates of the wild-type strain had different mutations from those selected by exposure to sub-inhibitory concentrations of macrolides. Also, since 23S rRNA mutations were not identified in certain isolates, it was considered that other molecular mechanisms may also be responsible for the macrolide resistance of C. trachomatis. PMID:26622462

  19. Effect of oil lamination between plasticized starch layers on film properties.

    PubMed

    Basiak, Ewelina; Debeaufort, Frédéric; Lenart, Andrzej

    2016-03-15

    To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, when water droplet contact occurred. Addition of lipids always decreases the contact angle for all liquid tested, except for water. Surface affinity of films for liquids less polar that water increased with rapeseed oil addition. The addition of rapeseed oil significantly reduces water vapour and oxygen permeability. PMID:26575712

  20. Glycemic Response to Corn Starch Modified with Cyclodextrin Glycosyltransferase and its Relationship to Physical Properties.

    PubMed

    Dura, A; Yokoyama, W; Rosell, C M

    2016-09-01

    Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous granules with or without CGTase hydrolysis products may be used as an alternative to modified corn starches in foods applications. The amount and type of hydrolysis products were determined, containing mainly β-cyclodextrin (CD), which will influence pasting behavior and glycemic response in mice. Irregular surface and small holes were observed by microscopic analysis and differences in pasting properties were observed in the presence of hydrolysis products. Postprandial blood glucose in mice fed gelatinized enzymatically modified starch peaked earlier than their ungelatinized counterparts. However, in ungelatinized enzymatically modified starches, the presence of β- CD may inhibit the orientation of amylases slowing hydrolysis, which may help to maintain lower blood glucose levels. Significant correlations were found between glycemic curves and viscosity pattern of starches. PMID:27277075