Sample records for resolution genomic analysis

  1. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  2. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  3. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    PubMed

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  4. Scanning the human genome at kilobase resolution.

    PubMed

    Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming

    2008-05-01

    Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.

  5. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will

  6. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization.

    PubMed

    Liao, Can; Fu, Fang; Yang, Xin; Sun, Yi-Min; Li, Dong-Zhi

    2011-06-01

    Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction. All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene. The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  7. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  8. Clustering analysis of proteins from microbial genomes at multiple levels of resolution.

    PubMed

    Zaslavsky, Leonid; Ciufo, Stacy; Fedorov, Boris; Tatusova, Tatiana

    2016-08-31

    Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy. Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering. The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters. The developed

  9. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  10. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis

    PubMed Central

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-01-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species. PMID:25762582

  11. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    PubMed

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. High-Resolution Genome-Wide Analysis of Irradiated (UV and γ-Rays) Diploid Yeast Cells Reveals a High Frequency of Genomic Loss of Heterozygosity (LOH) Events

    PubMed Central

    St. Charles, Jordan; Hazkani-Covo, Einat; Yin, Yi; Andersen, Sabrina L.; Dietrich, Fred S.; Greenwell, Patricia W.; Malc, Ewa; Mieczkowski, Piotr; Petes, Thomas D.

    2012-01-01

    In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote. PMID:22267500

  13. Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium.

    PubMed

    de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; Mellmann, Alexander; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag; Willems, Rob J L

    2015-12-01

    Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism(SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks.

  14. A high-resolution cattle CNV map by population-scale genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...

  15. Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium

    PubMed Central

    de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag

    2015-01-01

    Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks. PMID:26400782

  16. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    PubMed

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  17. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    PubMed Central

    2011-01-01

    Background Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service. PMID:22152063

  18. Comparative analysis and visualization of multiple collinear genomes

    PubMed Central

    2012-01-01

    Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897

  19. High resolution melting analysis: rapid and precise characterisation of recombinant influenza A genomes

    PubMed Central

    2013-01-01

    Background High resolution melting analysis (HRM) is a rapid and cost-effective technique for the characterisation of PCR amplicons. Because the reverse genetics of segmented influenza A viruses allows the generation of numerous influenza A virus reassortants within a short time, methods for the rapid selection of the correct recombinants are very useful. Methods PCR primer pairs covering the single nucleotide polymorphism (SNP) positions of two different influenza A H5N1 strains were designed. Reassortants of the two different H5N1 isolates were used as a model to prove the suitability of HRM for the selection of the correct recombinants. Furthermore, two different cycler instruments were compared. Results Both cycler instruments generated comparable average melting peaks, which allowed the easy identification and selection of the correct cloned segments or reassorted viruses. Conclusions HRM is a highly suitable method for the rapid and precise characterisation of cloned influenza A genomes. PMID:24028349

  20. High-resolution characterization of a hepatocellular carcinoma genome.

    PubMed

    Totoki, Yasushi; Tatsuno, Kenji; Yamamoto, Shogo; Arai, Yasuhito; Hosoda, Fumie; Ishikawa, Shumpei; Tsutsumi, Shuichi; Sonoda, Kohtaro; Totsuka, Hirohiko; Shirakihara, Takuya; Sakamoto, Hiromi; Wang, Linghua; Ojima, Hidenori; Shimada, Kazuaki; Kosuge, Tomoo; Okusaka, Takuji; Kato, Kazuto; Kusuda, Jun; Yoshida, Teruhiko; Aburatani, Hiroyuki; Shibata, Tatsuhiro

    2011-05-01

    Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.

  1. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    PubMed Central

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial

  2. High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis

    PubMed Central

    Thomas, Holly R.; Percival, Stefanie M.; Yoder, Bradley K.; Parant, John M.

    2014-01-01

    With the goal to generate and characterize the phenotypes of null alleles in all genes within an organism and the recent advances in custom nucleases, genome editing limitations have moved from mutation generation to mutation detection. We previously demonstrated that High Resolution Melting (HRM) analysis is a rapid and efficient means of genotyping known zebrafish mutants. Here we establish optimized conditions for HRM based detection of novel mutant alleles. Using these conditions, we demonstrate that HRM is highly efficient at mutation detection across multiple genome editing platforms (ZFNs, TALENs, and CRISPRs); we observed nuclease generated HRM positive targeting in 1 of 6 (16%) open pool derived ZFNs, 14 of 23 (60%) TALENs, and 58 of 77 (75%) CRISPR nucleases. Successful targeting, based on HRM of G0 embryos correlates well with successful germline transmission (46 of 47 nucleases); yet, surprisingly mutations in the somatic tail DNA weakly correlate with mutations in the germline F1 progeny DNA. This suggests that analysis of G0 tail DNA is a good indicator of the efficiency of the nuclease, but not necessarily a good indicator of germline alleles that will be present in the F1s. However, we demonstrate that small amplicon HRM curve profiles of F1 progeny DNA can be used to differentiate between specific mutant alleles, facilitating rare allele identification and isolation; and that HRM is a powerful technique for screening possible off-target mutations that may be generated by the nucleases. Our data suggest that micro-homology based alternative NHEJ repair is primarily utilized in the generation of CRISPR mutant alleles and allows us to predict likelihood of generating a null allele. Lastly, we demonstrate that HRM can be used to quickly distinguish genotype-phenotype correlations within F1 embryos derived from G0 intercrosses. Together these data indicate that custom nucleases, in conjunction with the ease and speed of HRM, will facilitate future high

  3. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.

  4. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  5. Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.

    PubMed

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.

  6. Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas

    PubMed Central

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721

  7. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency

    PubMed Central

    Zaboikin, Michail; Freter, Carl

    2018-01-01

    We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734

  8. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly.

    PubMed

    Bartholomé, Jérôme; Mandrou, Eric; Mabiala, André; Jenkins, Jerry; Nabihoudine, Ibouniyamine; Klopp, Christophe; Schmutz, Jeremy; Plomion, Christophe; Gion, Jean-Marc

    2015-06-01

    Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome. © 2014 CIRAD. New Phytologist © 2014 New Phytologist Trust.

  9. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.

    PubMed

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-10-24

    Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole

  10. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation

    PubMed Central

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-01-01

    Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic

  11. Bridging the Resolution Gap in Structural Modeling of 3D Genome Organization

    PubMed Central

    Marti-Renom, Marc A.; Mirny, Leonid A.

    2011-01-01

    Over the last decade, and especially after the advent of fluorescent in situ hybridization imaging and chromosome conformation capture methods, the availability of experimental data on genome three-dimensional organization has dramatically increased. We now have access to unprecedented details of how genomes organize within the interphase nucleus. Development of new computational approaches to leverage this data has already resulted in the first three-dimensional structures of genomic domains and genomes. Such approaches expand our knowledge of the chromatin folding principles, which has been classically studied using polymer physics and molecular simulations. Our outlook describes computational approaches for integrating experimental data with polymer physics, thereby bridging the resolution gap for structural determination of genomes and genomic domains. PMID:21779160

  12. GenomeFingerprinter: the genome fingerprint and the universal genome fingerprint analysis for systematic comparative genomics.

    PubMed

    Ai, Yuncan; Ai, Hannan; Meng, Fanmei; Zhao, Lei

    2013-01-01

    No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology. First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy. We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set

  13. High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    DTIC Science & Technology

    2010-10-14

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and

  14. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    PubMed Central

    Huang, Yuan; Wang, Jun; Yang, Yongping; Fan, Chuanzhu; Chen, Jiahui

    2017-01-01

    Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide

  15. A high-resolution radiation hybrid map of the bovine genome

    USDA-ARS?s Scientific Manuscript database

    We are building high-resolution radiation hybrid maps of all 29 bovine autosomes and chromosome X, using a 58,000-marker genotyping assay, and a 12,000-rad whole-genome radiation hybrid (RH) panel. To accommodate the large number of markers, and to automate the map building procedure, a software pip...

  16. A high-resolution cattle CNV map by population-scale genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. CNVs represent an important type of genetic variation among cattle breeds and even individual animals; however, only low-resolution maps of cattle CNVs currently exis...

  17. JBrowse: a dynamic web platform for genome visualization and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buels, Robert; Yao, Eric; Diesh, Colin M.

    JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a maturemore » web application suitable for genome visualization and analysis.« less

  18. JBrowse: a dynamic web platform for genome visualization and analysis.

    PubMed

    Buels, Robert; Yao, Eric; Diesh, Colin M; Hayes, Richard D; Munoz-Torres, Monica; Helt, Gregg; Goodstein, David M; Elsik, Christine G; Lewis, Suzanna E; Stein, Lincoln; Holmes, Ian H

    2016-04-12

    JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a mature web application suitable for genome visualization and analysis.

  19. High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei.

    PubMed

    Girault, G; Wattiau, P; Saqib, M; Martin, B; Vorimore, F; Singha, H; Engelsma, M; Roest, H J; Spicic, S; Grunow, R; Vicari, N; De Keersmaecker, S C J; Roosens, N H C; Fabbi, M; Tripathi, B N; Zientara, S; Madani, N; Laroucau, K

    2018-05-08

    Burkholderia (B.) mallei is the causative agent of glanders. A previous work conducted on single-nucleotide polymorphisms (SNP) extracted from the whole genome sequences of 45 B. mallei isolates identified 3 lineages for this species. In this study, we designed a high-resolution melting (HRM) method for the screening of 15 phylogenetically informative SNPs within the genome of B. mallei that subtype the species into 3 lineages and 12 branches/sub-branches/groups. The present results demonstrate that SNP-based genotyping represent an interesting approach for the molecular epidemiology analysis of B. mallei. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Comparative genome analysis in the integrated microbial genomes (IMG) system.

    PubMed

    Markowitz, Victor M; Kyrpides, Nikos C

    2007-01-01

    Comparative genome analysis is critical for the effective exploration of a rapidly growing number of complete and draft sequences for microbial genomes. The Integrated Microbial Genomes (IMG) system (img.jgi.doe.gov) has been developed as a community resource that provides support for comparative analysis of microbial genomes in an integrated context. IMG allows users to navigate the multidimensional microbial genome data space and focus their analysis on a subset of genes, genomes, and functions of interest. IMG provides graphical viewers, summaries, and occurrence profile tools for comparing genes, pathways, and functions (terms) across specific genomes. Genes can be further examined using gene neighborhoods and compared with sequence alignment tools.

  1. JBrowse: A dynamic web platform for genome visualization and analysis

    DOE PAGES

    Buels, Robert; Yao, Eric; Diesh, Colin M.; ...

    2016-04-12

    Background: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Results: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. Conclusions: JBrowsemore » is a mature web application suitable for genome visualization and analysis.« less

  2. Whole genome sequencing identifies influenza A H3N2 transmission and offers superior resolution to classical typing methods.

    PubMed

    Meinel, Dominik M; Heinzinger, Susanne; Eberle, Ute; Ackermann, Nikolaus; Schönberger, Katharina; Sing, Andreas

    2018-02-01

    Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations. We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq. We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient. Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.

  3. High-resolution analysis of alterations in medullary thyroid carcinoma genomes.

    PubMed

    Flicker, Karin; Ulz, Peter; Höger, Harald; Zeitlhofer, Petra; Haas, Oskar A; Behmel, Annemarie; Buchinger, Wolfgang; Scheuba, Christian; Niederle, Bruno; Pfragner, Roswitha; Speicher, Michael R

    2012-07-15

    Hereditary and sporadic medullary thyroid carcinoma (MTC) are closely associated with RET proto-oncogene mutations. However, the role of additional changes in the tumor genomes remains unclear. Our objective was the identification of chromosomal regions involved in MTC tumorigenesis and to assess their significance by using MTC-derived cell lines. We used array-CGH (comparative genomic hybridization) to map chromosomal imbalances in 52 primary tumors and ten metastases. Eleven tumors (11/52, 21%) were hereditary and 41 (41/52, 79%) were sporadic. Among the latter, 15 tumors (15/41, 37%) harbored RET mutations. Furthermore, we characterized five MTC cell lines in detail and evaluated the tumorigenicity by severe combined immunodeficiency (SCID)-mouse experiments. Most MTCs had only few copy number changes, and losses of chromosomes 1p, 4q, 19p and 22q were observed most frequently. The number of chromosomal aberrations increased in metastases. Twenty-three percent (12/52) of the primary tumors did not even show any chromosomal gains and losses. We injected three cell lines (two of these were without chromosomal changes and pathogenic RET mutations) into immune deficient SCID mice, and in each case, we observed rapid tumor growth at the injection sites. Our data suggest that MTCs--in contrast to most other tumor entities--do not acquire a multitude of genomic imbalances. SCID mouse experiments performed with chromosomally normal cell lines and without RET mutations suggest that presently unknown submicroscopic genomic changes are sufficient in MTC tumorigenesis. Copyright © 2011 UICC.

  4. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    PubMed

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia.

    PubMed

    Li, Zhiqiang; Chen, Jianhua; Yu, Hao; He, Lin; Xu, Yifeng; Zhang, Dai; Yi, Qizhong; Li, Changgui; Li, Xingwang; Shen, Jiawei; Song, Zhijian; Ji, Weidong; Wang, Meng; Zhou, Juan; Chen, Boyu; Liu, Yahui; Wang, Jiqiang; Wang, Peng; Yang, Ping; Wang, Qingzhong; Feng, Guoyin; Liu, Benxiu; Sun, Wensheng; Li, Baojie; He, Guang; Li, Weidong; Wan, Chunling; Xu, Qi; Li, Wenjin; Wen, Zujia; Liu, Ke; Huang, Fang; Ji, Jue; Ripke, Stephan; Yue, Weihua; Sullivan, Patrick F; O'Donovan, Michael C; Shi, Yongyong

    2017-11-01

    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.

  6. A dictionary based informational genome analysis

    PubMed Central

    2012-01-01

    Background In the post-genomic era several methods of computational genomics are emerging to understand how the whole information is structured within genomes. Literature of last five years accounts for several alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others, recent approaches are based on empirical frequencies of DNA k-mers in whole genomes. Results Any set of words (factors) occurring in a genome provides a genomic dictionary. About sixty genomes were analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local sequence analysis. A software prototype applying a methodology here outlined carried out some computations on genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with frequency distributions. The software performed three main tasks: computation of informational indexes, storage of these in a database, index analysis and visualization. The validation was done by investigating genomes of various organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for example to compute excessively represented functional sequences, such as promoters), was discussed, and suggested a method to define synthetic genetic networks. Conclusions We introduced a methodology based on dictionaries, and an efficient motif-finding software application for comparative genomics. This approach could be extended along many investigation lines, namely exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies. PMID:22985068

  7. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  8. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens

    PubMed Central

    Katz, Lee S.; Griswold, Taylor; Williams-Newkirk, Amanda J.; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A.

    2017-01-01

    genomic profiles, its central database, and its ability to be run in a graphical user interface. However, creating a functional wgMLST scheme requires extended up-front development and subject-matter expertise. When a scheme does not exist or when the highest resolution is needed, SNP analysis is used. Using three Listeria outbreak data sets, we demonstrated the concordance between Lyve-SET SNP typing and wgMLST. Availability: Lyve-SET can be found at https://github.com/lskatz/Lyve-SET. PMID:28348549

  9. AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae

    PubMed Central

    Song, Giltae; Dickins, Benjamin J. A.; Demeter, Janos; Engel, Stacia; Dunn, Barbara; Cherry, J. Michael

    2015-01-01

    The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community. PMID:25781462

  10. Genome U-Plot: a whole genome visualization.

    PubMed

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  11. The Genomic HyperBrowser: an analysis web server for genome-scale data

    PubMed Central

    Sandve, Geir K.; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K.; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalaš, Matúš; Lien, Tonje; Rye, Morten B.; Frigessi, Arnoldo; Hovig, Eivind

    2013-01-01

    The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome. PMID:23632163

  12. The Genomic HyperBrowser: an analysis web server for genome-scale data.

    PubMed

    Sandve, Geir K; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalas, Matús; Lien, Tonje; Rye, Morten B; Frigessi, Arnoldo; Hovig, Eivind

    2013-07-01

    The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome.

  13. Microbial genome analysis: the COG approach.

    PubMed

    Galperin, Michael Y; Kristensen, David M; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2017-09-14

    For the past 20 years, the Clusters of Orthologous Genes (COG) database had been a popular tool for microbial genome annotation and comparative genomics. Initially created for the purpose of evolutionary classification of protein families, the COG have been used, apart from straightforward functional annotation of sequenced genomes, for such tasks as (i) unification of genome annotation in groups of related organisms; (ii) identification of missing and/or undetected genes in complete microbial genomes; (iii) analysis of genomic neighborhoods, in many cases allowing prediction of novel functional systems; (iv) analysis of metabolic pathways and prediction of alternative forms of enzymes; (v) comparison of organisms by COG functional categories; and (vi) prioritization of targets for structural and functional characterization. Here we review the principles of the COG approach and discuss its key advantages and drawbacks in microbial genome analysis. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  14. K-mer Content, Correlation, and Position Analysis of Genome DNA Sequences for the Identification of Function and Evolutionary Features

    PubMed Central

    Sievers, Aaron; Bosiek, Katharina; Bisch, Marc; Dreessen, Chris; Riedel, Jascha; Froß, Patrick; Hausmann, Michael; Hildenbrand, Georg

    2017-01-01

    In genome analysis, k-mer-based comparison methods have become standard tools. However, even though they are able to deliver reliable results, other algorithms seem to work better in some cases. To improve k-mer-based DNA sequence analysis and comparison, we successfully checked whether adding positional resolution is beneficial for finding and/or comparing interesting organizational structures. A simple but efficient algorithm for extracting and saving local k-mer spectra (frequency distribution of k-mers) was developed and used. The results were analyzed by including positional information based on visualizations as genomic maps and by applying basic vector correlation methods. This analysis was concentrated on small word lengths (1 ≤ k ≤ 4) on relatively small viral genomes of Papillomaviridae and Herpesviridae, while also checking its usability for larger sequences, namely human chromosome 2 and the homologous chromosomes (2A, 2B) of a chimpanzee. Using this alignment-free analysis, several regions with specific characteristics in Papillomaviridae and Herpesviridae formerly identified by independent, mostly alignment-based methods, were confirmed. Correlations between the k-mer content and several genes in these genomes have been found, showing similarities between classified and unclassified viruses, which may be potentially useful for further taxonomic research. Furthermore, unknown k-mer correlations in the genomes of Human Herpesviruses (HHVs), which are probably of major biological function, are found and described. Using the chromosomes of a chimpanzee and human that are currently known, identities between the species on every analyzed chromosome were reproduced. This demonstrates the feasibility of our approach for large data sets of complex genomes. Based on these results, we suggest k-mer analysis with positional resolution as a method for closing a gap between the effectiveness of alignment-based methods (like NCBI BLAST) and the high pace of

  15. Tetrahymena micronuclear genome mapping. a high-resolution meiotic map of chromosome 1l.

    PubMed

    Wickert, S; Orias, E

    2000-03-01

    The ciliate Tetrahymena thermophila is a useful model organism that combines diverse experimental advantages with powerful capabilities for genetic manipulation. The genetics of Tetrahymena are especially rich among eukaryotic cells, because it possesses two distinct but related nuclear genomes within one cytoplasm, contained separately in the micronucleus (MIC) and the macronucleus (MAC). In an effort to advance fulfillment of Tetrahymena's potential as a genetic system, we are mapping both genomes and investigating the correspondence between them. With the latter goal especially in mind, we report here a high-resolution meiotic linkage map of the left arm of chromosome 1, one of Tetrahymena's five chromosomes. The map consists of 40 markers, with an average spacing of 2.3 cM in the Haldane function and a total length of 88.6 cM. This study represents the first mapping of any large region of the Tetrahymena genome that has been done at this level of detail. Results of a parallel mapping effort in the macronucleus, and the correspondence between the two genomes, can be found in this issue as a companion to this article.

  16. High-resolution copy number variation analysis of schizophrenia in Japan.

    PubMed

    Kushima, I; Aleksic, B; Nakatochi, M; Shimamura, T; Shiino, T; Yoshimi, A; Kimura, H; Takasaki, Y; Wang, C; Xing, J; Ishizuka, K; Oya-Ito, T; Nakamura, Y; Arioka, Y; Maeda, T; Yamamoto, M; Yoshida, M; Noma, H; Hamada, S; Morikawa, M; Uno, Y; Okada, T; Iidaka, T; Iritani, S; Yamamoto, T; Miyashita, M; Kobori, A; Arai, M; Itokawa, M; Cheng, M-C; Chuang, Y-A; Chen, C-H; Suzuki, M; Takahashi, T; Hashimoto, R; Yamamori, H; Yasuda, Y; Watanabe, Y; Nunokawa, A; Someya, T; Ikeda, M; Toyota, T; Yoshikawa, T; Numata, S; Ohmori, T; Kunimoto, S; Mori, D; Iwata, N; Ozaki, N

    2017-03-01

    Recent schizophrenia (SCZ) studies have reported an increased burden of de novo copy number variants (CNVs) and identified specific high-risk CNVs, although with variable phenotype expressivity. However, the pathogenesis of SCZ has not been fully elucidated. Using array comparative genomic hybridization, we performed a high-resolution genome-wide CNV analysis on a mainly (92%) Japanese population (1699 SCZ cases and 824 controls) and identified 7066 rare CNVs, 70.0% of which were small (<100 kb). Clinically significant CNVs were significantly more frequent in cases than in controls (odds ratio=3.04, P=9.3 × 10 -9 , 9.0% of cases). We confirmed a significant association of X-chromosome aneuploidies with SCZ and identified 11 de novo CNVs (e.g., MBD5 deletion) in cases. In patients with clinically significant CNVs, 41.7% had a history of congenital/developmental phenotypes, and the rate of treatment resistance was significantly higher (odds ratio=2.79, P=0.0036). We found more severe clinical manifestations in patients with two clinically significant CNVs. Gene set analysis replicated previous findings (e.g., synapse, calcium signaling) and identified novel biological pathways including oxidative stress response, genomic integrity, kinase and small GTPase signaling. Furthermore, involvement of multiple SCZ candidate genes and biological pathways in the pathogenesis of SCZ was suggested in established SCZ-associated CNV loci. Our study shows the high genetic heterogeneity of SCZ and its clinical features and raises the possibility that genomic instability is involved in its pathogenesis, which may be related to the increased burden of de novo CNVs and variable expressivity of CNVs.

  17. The integrated microbial genome resource of analysis.

    PubMed

    Checcucci, Alice; Mengoni, Alessio

    2015-01-01

    Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.

  18. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  19. Genome Survey Sequencing of Luffa Cylindrica L. and Microsatellite High Resolution Melting (SSR-HRM) Analysis for Genetic Relationship of Luffa Genotypes.

    PubMed

    An, Jianyu; Yin, Mengqi; Zhang, Qin; Gong, Dongting; Jia, Xiaowen; Guan, Yajing; Hu, Jin

    2017-09-11

    Luffa cylindrica (L.) Roem. is an economically important vegetable crop in China. However, the genomic information on this species is currently unknown. In this study, for the first time, a genome survey of L. cylindrica was carried out using next-generation sequencing (NGS) technology. In total, 43.40 Gb sequence data of L. cylindrica , about 54.94× coverage of the estimated genome size of 789.97 Mb, were obtained from HiSeq 2500 sequencing, in which the guanine plus cytosine (GC) content was calculated to be 37.90%. The heterozygosity of genome sequences was only 0.24%. In total, 1,913,731 contigs (>200 bp) with 525 bp N 50 length and 1,410,117 scaffolds (>200 bp) with 885.01 Mb total length were obtained. From the initial assembled L. cylindrica genome, 431,234 microsatellites (SSRs) (≥5 repeats) were identified. The motif types of SSR repeats included 62.88% di-nucleotide, 31.03% tri-nucleotide, 4.59% tetra-nucleotide, 0.96% penta-nucleotide and 0.54% hexa-nucleotide. Eighty genomic SSR markers were developed, and 51/80 primers could be used in both "Zheda 23" and "Zheda 83". Nineteen SSRs were used to investigate the genetic diversity among 32 accessions through SSR-HRM analysis. The unweighted pair group method analysis (UPGMA) dendrogram tree was built by calculating the SSR-HRM raw data. SSR-HRM could be effectively used for genotype relationship analysis of Luffa species.

  20. Genome Survey Sequencing of Luffa Cylindrica L. and Microsatellite High Resolution Melting (SSR-HRM) Analysis for Genetic Relationship of Luffa Genotypes

    PubMed Central

    An, Jianyu; Yin, Mengqi; Zhang, Qin; Gong, Dongting; Jia, Xiaowen; Guan, Yajing; Hu, Jin

    2017-01-01

    Luffa cylindrica (L.) Roem. is an economically important vegetable crop in China. However, the genomic information on this species is currently unknown. In this study, for the first time, a genome survey of L. cylindrica was carried out using next-generation sequencing (NGS) technology. In total, 43.40 Gb sequence data of L. cylindrica, about 54.94× coverage of the estimated genome size of 789.97 Mb, were obtained from HiSeq 2500 sequencing, in which the guanine plus cytosine (GC) content was calculated to be 37.90%. The heterozygosity of genome sequences was only 0.24%. In total, 1,913,731 contigs (>200 bp) with 525 bp N50 length and 1,410,117 scaffolds (>200 bp) with 885.01 Mb total length were obtained. From the initial assembled L. cylindrica genome, 431,234 microsatellites (SSRs) (≥5 repeats) were identified. The motif types of SSR repeats included 62.88% di-nucleotide, 31.03% tri-nucleotide, 4.59% tetra-nucleotide, 0.96% penta-nucleotide and 0.54% hexa-nucleotide. Eighty genomic SSR markers were developed, and 51/80 primers could be used in both “Zheda 23” and “Zheda 83”. Nineteen SSRs were used to investigate the genetic diversity among 32 accessions through SSR-HRM analysis. The unweighted pair group method analysis (UPGMA) dendrogram tree was built by calculating the SSR-HRM raw data. SSR-HRM could be effectively used for genotype relationship analysis of Luffa species. PMID:28891982

  1. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  2. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE PAGES

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; ...

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  3. Genome-wide high-resolution screening in Dupuytren's disease reveals common regions of DNA copy number alterations.

    PubMed

    Shih, Barbara B; Tassabehji, May; Watson, James S; McGrouther, Angus D; Bayat, Ardeshir

    2010-07-01

    Dupuytren's disease (DD) is a familial disorder with a high genetic susceptibility in white people; however, its etiopathogenesis remains unknown. Previous comparative genomic hybridization studies using lower-resolution, 44-k oligonucleotide-based arrays revealed no copy number variation (CNV) changes in DD. In this study, we used a higher-resolution genome-wide screening (next-generation microarrays) comprising 963,331 human sequences (3 kb spacing between probes) for whole genome DNA variation analysis. The objective was to detect cryptic chromosomal imbalances in DD. Agilent SurePrint G3 microarrays, one million format (Agilent Technologies, Santa Clara, CA), were used to detect CNV regions (CNVRs) in DNA extracted from nodules of 4 white men with DD (age, 69 +/- 4 y). Reference samples were from the DNA of 10 men who served as control patients. Copy number variations that were common to greater than 3 assessed DD individuals (p < .05) were selected as candidate loci for DD etiology. In addition, quantitative polymerase chain reactions (qPCR) assays were designed for selected CNVRs on DNA from 13 DD patients and 11 control patients. Independent t-tests and Fisher's exact tests were carried out for statistical analysis. Three novel CNVs previously unreported in the phenotypically normal population were detected in 3 DD cases, located at 10q22, 16p12.1, and 17p12. Nine polymorphic CNVRs potentially associated with DD were determined using our strategic selection criteria, locating to chromosomes 1q31, 6p21, 7p14, 8p11, 12p13, 14q11, 17q21 and 20p13. More than 3 of the DD cases tested had a CNVR located to a small region on 6p21 and 4 CNVRs within 6p21-22 of the human leukocyte antigen (HLA) genes. Three novel copy number alterations were observed in 3 unrelated patients with sporadic (no known family history) DD. Nine polymorphic CNVRs were found to be common among the DD cases. These variants might contain genes involved in DD formation, indicating that

  4. Comparative Genome Analysis of Enterobacter cloacae

    PubMed Central

    Liu, Wing-Yee; Wong, Chi-Fat; Chung, Karl Ming-Kar; Jiang, Jing-Wei; Leung, Frederick Chi-Ching

    2013-01-01

    The Enterobacter cloacae species includes an extremely diverse group of bacteria that are associated with plants, soil and humans. Publication of the complete genome sequence of the plant growth-promoting endophytic E. cloacae subsp. cloacae ENHKU01 provided an opportunity to perform the first comparative genome analysis between strains of this dynamic species. Examination of the pan-genome of E. cloacae showed that the conserved core genome retains the general physiological and survival genes of the species, while genomic factors in plasmids and variable regions determine the virulence of the human pathogenic E. cloacae strain; additionally, the diversity of fimbriae contributes to variation in colonization and host determination of different E. cloacae strains. Comparative genome analysis further illustrated that E. cloacae strains possess multiple mechanisms for antagonistic action against other microorganisms, which involve the production of siderophores and various antimicrobial compounds, such as bacteriocins, chitinases and antibiotic resistance proteins. The presence of Type VI secretion systems is expected to provide further fitness advantages for E. cloacae in microbial competition, thus allowing it to survive in different environments. Competition assays were performed to support our observations in genomic analysis, where E. cloacae subsp. cloacae ENHKU01 demonstrated antagonistic activities against a wide range of plant pathogenic fungal and bacterial species. PMID:24069314

  5. Application of resequencing to rice genomics, functional genomics and evolutionary analysis

    PubMed Central

    2014-01-01

    Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing. PMID:25006357

  6. Coloc-stats: a unified web interface to perform colocalization analysis of genomic features.

    PubMed

    Simovski, Boris; Kanduri, Chakravarthi; Gundersen, Sveinung; Titov, Dmytro; Domanska, Diana; Bock, Christoph; Bossini-Castillo, Lara; Chikina, Maria; Favorov, Alexander; Layer, Ryan M; Mironov, Andrey A; Quinlan, Aaron R; Sheffield, Nathan C; Trynka, Gosia; Sandve, Geir K

    2018-06-05

    Functional genomics assays produce sets of genomic regions as one of their main outputs. To biologically interpret such region-sets, researchers often use colocalization analysis, where the statistical significance of colocalization (overlap, spatial proximity) between two or more region-sets is tested. Existing colocalization analysis tools vary in the statistical methodology and analysis approaches, thus potentially providing different conclusions for the same research question. As the findings of colocalization analysis are often the basis for follow-up experiments, it is helpful to use several tools in parallel and to compare the results. We developed the Coloc-stats web service to facilitate such analyses. Coloc-stats provides a unified interface to perform colocalization analysis across various analytical methods and method-specific options (e.g. colocalization measures, resolution, null models). Coloc-stats helps the user to find a method that supports their experimental requirements and allows for a straightforward comparison across methods. Coloc-stats is implemented as a web server with a graphical user interface that assists users with configuring their colocalization analyses. Coloc-stats is freely available at https://hyperbrowser.uio.no/coloc-stats/.

  7. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    PubMed

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  8. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines.

    PubMed

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L; Park, Yoonsoo; Meltzer, Paul S; Kirsch, Ilan R; Kaye, Frederic J; Roschke, Anna V

    2013-05-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired. Published by Elsevier Inc.

  9. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the

  10. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    PubMed Central

    2010-01-01

    Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227

  11. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations

    PubMed Central

    Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze

    2010-01-01

    Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882

  12. Genome-wide analysis of alternative splicing during human heart development

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  13. High Resolution Typing by Whole Genome Mapping Enables Discrimination of LA-MRSA (CC398) Strains and Identification of Transmission Events

    PubMed Central

    Bosch, Thijs; Verkade, Erwin; van Luit, Martijn; Pot, Bruno; Vauterin, Paul; Burggrave, Ronald; Savelkoul, Paul; Kluytmans, Jan; Schouls, Leo

    2013-01-01

    After its emergence in 2003, a livestock-associated (LA-)MRSA clade (CC398) has caused an impressive increase in the number of isolates submitted for the Dutch national MRSA surveillance and now comprises 40% of all isolates. The currently used molecular typing techniques have limited discriminatory power for this MRSA clade, which hampers studies on the origin and transmission routes. Recently, a new molecular analysis technique named whole genome mapping was introduced. This method creates high-resolution, ordered whole genome restriction maps that may have potential for strain typing. In this study, we assessed and validated the capability of whole genome mapping to differentiate LA-MRSA isolates. Multiple validation experiments showed that whole genome mapping produced highly reproducible results. Assessment of the technique on two well-documented MRSA outbreaks showed that whole genome mapping was able to confirm one outbreak, but revealed major differences between the maps of a second, indicating that not all isolates belonged to this outbreak. Whole genome mapping of LA-MRSA isolates that were epidemiologically unlinked provided a much higher discriminatory power than spa-typing or MLVA. In contrast, maps created from LA-MRSA isolates obtained during a proven LA-MRSA outbreak were nearly indistinguishable showing that transmission of LA-MRSA can be detected by whole genome mapping. Finally, whole genome maps of LA-MRSA isolates originating from two unrelated veterinarians and their household members showed that veterinarians may carry and transmit different LA-MRSA strains at the same time. No such conclusions could be drawn based spa-typing and MLVA. Although PFGE seems to be suitable for molecular typing of LA-MRSA, WGM provides a much higher discriminatory power. Furthermore, whole genome mapping can provide a comparison with other maps within 2 days after the bacterial culture is received, making it suitable to investigate transmission events and

  14. GWAMA: software for genome-wide association meta-analysis.

    PubMed

    Mägi, Reedik; Morris, Andrew P

    2010-05-28

    Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  15. Savant Genome Browser 2: visualization and analysis for population-scale genomics.

    PubMed

    Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael

    2012-07-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.

  16. Genome-wide comparative analysis of four Indian Drosophila species.

    PubMed

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  17. Using the Saccharomyces Genome Database (SGD) for analysis of genomic information

    PubMed Central

    Skrzypek, Marek S.; Hirschman, Jodi

    2011-01-01

    Analysis of genomic data requires access to software tools that place the sequence-derived information in the context of biology. The Saccharomyces Genome Database (SGD) integrates functional information about budding yeast genes and their products with a set of analysis tools that facilitate exploring their biological details. This unit describes how the various types of functional data available at SGD can be searched, retrieved, and analyzed. Starting with the guided tour of the SGD Home page and Locus Summary page, this unit highlights how to retrieve data using YeastMine, how to visualize genomic information with GBrowse, how to explore gene expression patterns with SPELL, and how to use Gene Ontology tools to characterize large-scale datasets. PMID:21901739

  18. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. Copyright © 2016 Li et al.

  19. Savant Genome Browser 2: visualization and analysis for population-scale genomics

    PubMed Central

    Smith, Eric J. M.; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M.; Robinson, Mark D.; Wodak, Shoshana J.; Brudno, Michael

    2012-01-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com. PMID:22638571

  20. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    DOE PAGES

    McNair, Katelyn; Edwards, Robert A.

    2015-06-16

    As increases in prokaryotic sequencing take place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek) was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping errormore » rates low, as well as offering unique data visualization options.« less

  1. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    PubMed

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  2. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    PubMed

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square

  3. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

    PubMed

    Thakur, Shalabh; Guttman, David S

    2016-06-30

    Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .

  4. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    PubMed

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  5. SuperDCA for genome-wide epistasis analysis.

    PubMed

    Puranen, Santeri; Pesonen, Maiju; Pensar, Johan; Xu, Ying Ying; Lees, John A; Bentley, Stephen D; Croucher, Nicholas J; Corander, Jukka

    2018-05-29

    The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 10 4 -10 5 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 10 5 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.

  6. Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders

    PubMed Central

    Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert

    2015-01-01

    Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217

  7. CscoreTool: fast Hi-C compartment analysis at high resolution.

    PubMed

    Zheng, Xiaobin; Zheng, Yixian

    2018-05-01

    The genome-wide chromosome conformation capture (Hi-C) has revealed that the eukaryotic genome can be partitioned into A and B compartments that have distinctive chromatin and transcription features. Current Principle Component Analyses (PCA)-based method for the A/B compartment prediction based on Hi-C data requires substantial CPU time and memory. We report the development of a method, CscoreTool, which enables fast and memory-efficient determination of A/B compartments at high resolution even in datasets with low sequencing depth. https://github.com/scoutzxb/CscoreTool. xzheng@carnegiescience.edu. Supplementary data are available at Bioinformatics online.

  8. Harnessing Whole Genome Sequencing in Medical Mycology.

    PubMed

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  9. Improved analytical methods for microarray-based genome-composition analysis

    PubMed Central

    Kim, Charles C; Joyce, Elizabeth A; Chan, Kaman; Falkow, Stanley

    2002-01-01

    Background Whereas genome sequencing has given us high-resolution pictures of many different species of bacteria, microarrays provide a means of obtaining information on genome composition for many strains of a given species. Genome-composition analysis using microarrays, or 'genomotyping', can be used to categorize genes into 'present' and 'divergent' categories based on the level of hybridization signal. This typically involves selecting a signal value that is used as a cutoff to discriminate present (high signal) and divergent (low signal) genes. Current methodology uses empirical determination of cutoffs for classification into these categories, but this methodology is subject to several problems that can result in the misclassification of many genes. Results We describe a method that depends on the shape of the signal-ratio distribution and does not require empirical determination of a cutoff. Moreover, the cutoff is determined on an array-to-array basis, accounting for variation in strain composition and hybridization quality. The algorithm also provides an estimate of the probability that any given gene is present, which provides a measure of confidence in the categorical assignments. Conclusions Many genes previously classified as present using static methods are in fact divergent on the basis of microarray signal; this is corrected by our algorithm. We have reassigned hundreds of genes from previous genomotyping studies of Helicobacter pylori and Campylobacter jejuni strains, and expect that the algorithm should be widely applicable to genomotyping data. PMID:12429064

  10. Whole-Genome Sequencing in Outbreak Analysis

    PubMed Central

    Turner, Stephen D.; Riley, Margaret F.; Petri, William A.; Hewlett, Erik L.

    2015-01-01

    SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  11. PanWeb: A web interface for pan-genomic analysis.

    PubMed

    Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J

    2017-01-01

    With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.

  12. Genomic analysis of diploid plants.

    PubMed Central

    Kimber, G; Yen, Y

    1990-01-01

    The numerical analysis of meiosis in the triploid hybrid between an induced autotetraploid and a related diploid provides the basis for investigations of the genomic relationships of diploid species based on chromosome pairing. It is also possible to make legitimate comparisons between different triploid hybrids of this type so that the genomic relationships can be converted into measures of phylogenetic distance for taxa where only diploids are known. PMID:11607075

  13. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak.

    PubMed

    Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J

    2018-06-02

    Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.

  14. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  15. Short and long-term genome stability analysis of prokaryotic genomes.

    PubMed

    Brilli, Matteo; Liò, Pietro; Lacroix, Vincent; Sagot, Marie-France

    2013-05-08

    Gene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes (i.e. the backbone gene order); on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events. We developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation (hereinafter called backbone stability) against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics (insertions and deletions) have a much more dramatic effect on genome organization stability than backbone rearrangements. In this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were

  16. Differential DNA Methylation Analysis without a Reference Genome.

    PubMed

    Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph

    2015-12-22

    Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. [Clinical value of genome-wide high resolution chromosomal microarray analysis in etiological study of fetuses with congenital heart defects].

    PubMed

    Wu, Xiaoli; Fu, Fang; Li, Ru; Pan, Min; Han, Jin; Zhen, Li; Yang, Xin; Zhang, Yongling; Li, Fatao; Liao, Can

    2014-12-01

    To explore the clinical value of genome-wide high resolution chromosomal microarray analysis (CMA) in etiological study of fetuses with congenital heart disease (CHD) diagnosed by fetal echocardiography. A total of 176 fetuses diagnosed CHD by fetal echocardiography were analyzed, and invasive prenatal diagnosis was performed at Guangzhou Women and Children's Medical Center from January 2012 to January 2014. Among them, 158 fetuses were proved to have normal karyotype, and 88 fetuses (50.0%, 88/176) underwent CMA testing. The parental blood specimens were also collected for assisting the diagnosis of variants of uncertain clinical significance (VOUS). The 88 fetuses were divided into two groups: isolated CHD (n = 68) and CHD with extra-cardiac structural abnormalities (n = 20). The phenotypes of the two groups were subclassified. Copy number variations (CNV) were classified as benign CNV, pathogenic CNV (pCNV) or VOUS. (1) 58 fetuses (66%, 58/88) were with simple CHD and 30 fetuses were with complicated CHD (34%, 30/88). In the 45 fetuses with isolated and simple CHD, the pCNV detection rate was 11% (5/45). In the 23 fetuses with isolated and complicated CHD, the pCNV detection rate was 17% (4/23). In the 13 fetuses with simple CHD and extra-cardiac structural abnormalities, the pCNV detection rate was 5/13. In the 7 fetuses with complicated CHD and extra-cardiac structural abnormalities, the pCNV detection rate was 0. (2) The total detection rate for pCNV detection was 16% (14/88) in the 88 fetuses. The pCNV detection rates for isolated CHD and CHD with extra-cardiac structural abnormalities were 13% (9/68) and 25% (5/20), respectively (P > 0.05). The pCNV detection rates for simple and complicated CHD were 17% (10/58) and 13% (4/30), respectively (P > 0.05). (3) Eighteen fetuses (10.2%, 18/176) had abnormal karyotype results. (4) CMA test was performed in 88 fetuses. CNV detected in 8 fetuses were classified as VOUS initially. After parental microarray analysis

  18. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration

    PubMed Central

    Thorvaldsdóttir, Helga; Mesirov, Jill P.

    2013-01-01

    Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today’s sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license. PMID:22517427

  20. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

    PubMed

    Thorvaldsdóttir, Helga; Robinson, James T; Mesirov, Jill P

    2013-03-01

    Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.

  1. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  2. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    PubMed

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  3. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. TCGA4U: A Web-Based Genomic Analysis Platform To Explore And Mine TCGA Genomic Data For Translational Research.

    PubMed

    Huang, Zhenzhen; Duan, Huilong; Li, Haomin

    2015-01-01

    Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.

  6. SeeGH--a software tool for visualization of whole genome array comparative genomic hybridization data.

    PubMed

    Chi, Bryan; DeLeeuw, Ronald J; Coe, Bradley P; MacAulay, Calum; Lam, Wan L

    2004-02-09

    Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles. We have developed a visualization tool for displaying whole genome array CGH data in the context of chromosomal location. SeeGH is an application that translates spot signal ratio data from array CGH experiments to displays of high resolution chromosome profiles. Data is imported from a simple tab delimited text file obtained from standard microarray image analysis software. SeeGH processes the signal ratio data and graphically displays it in a conventional CGH karyotype diagram with the added features of magnification and DNA segment annotation. In this process, SeeGH imports the data into a database, calculates the average ratio and standard deviation for each replicate spot, and links them to chromosome regions for graphical display. Once the data is displayed, users have the option of hiding or flagging DNA segments based on user defined criteria, and retrieve annotation information such as clone name, NCBI sequence accession number, ratio, base pair position on the chromosome, and standard deviation. SeeGH represents a novel software tool used to view and analyze array CGH data. The software gives users the ability to view the data in an overall genomic view as well as magnify specific chromosomal regions facilitating the precise localization of genetic alterations. SeeGH is easily installed and runs on Microsoft Windows 2000 or later environments.

  7. Initial sequencing and comparative analysis of the mouse genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of themore » genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.« less

  8. Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis

    PubMed Central

    Sun, Zhifu; Cunningham, Julie; Slager, Susan; Kocher, Jean-Pierre

    2015-01-01

    Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers’ needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions. PMID:26366945

  9. Using comparative genome analysis to identify problems in annotated microbial genomes.

    PubMed

    Poptsova, Maria S; Gogarten, J Peter

    2010-07-01

    Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.

  10. Comparative analysis of 2D and 3D distance measurements to study spatial genome organization.

    PubMed

    Finn, Elizabeth H; Pegoraro, Gianluca; Shachar, Sigal; Misteli, Tom

    2017-07-01

    The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization. Published by Elsevier Inc.

  11. An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data.

    PubMed

    Jenkinson, Garrett; Abante, Jordi; Feinberg, Andrew P; Goutsias, John

    2018-03-07

    DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of

  12. IMG: the integrated microbial genomes database and comparative analysis system

    PubMed Central

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2012-01-01

    The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640

  13. IMG: the Integrated Microbial Genomes database and comparative analysis system.

    PubMed

    Markowitz, Victor M; Chen, I-Min A; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C

    2012-01-01

    The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp).

  14. CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips

    PubMed Central

    Tan, Mui Fern; Jakubovics, Nick S.; Wee, Wei Yee; Mutha, Naresh V. R.; Wong, Guat Jah; Ang, Mia Yang; Yazdi, Amir Hessam; Choo, Siew Woh

    2014-01-01

    Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/. PMID:24466021

  15. Genome wide analysis in a discordant monozygotic twin with caudal appendage and multiple congenital anomalies.

    PubMed

    Cogulu, O; Pariltay, E; Koroglu, O A; Aykut, A; Ozyurek, R; Levent, E; Kultursay, N; Ozkinay, F

    2013-01-01

    Caudal appendage is a rare dysmorphic feature of which etiologic mechanisms are not well understood. Here we report monozygotic (MZ) twin brothers who are discordant for the caudal appendage and multiple congenital anomalies. Twins were the product of a 33 weeks of gestation, monochorionic-diamniotic pregnancy. On admission the proband had micrognathia, beaked nose, hypospadias, caudal appendage and juxtaductal aorta coarctation. At birth, he was small for gestational age and he had transient hypothyroidism which was detected in the newborn period. Karyotype analysis showed 46,XY. Monozygosity was shown by 15 microsatellite markers plus amelogenin (AmpFlSTR Identifiler PCR Amplification Kit, Applied Biosystems). Genome-wide copy number analysis of the twins by DNA-DNA hybridization of whole genomic DNA (NimbleGen Human CGH 385K WG-T v2.0 array) showed a significant difference at two neighboring probes with Log2 ratio: 0.72088 which are located on chromosome 3p12.3. Further analysis by high resolution of chromosome 3 array (Roche NimbleGen Human HG18 CHR3 FT Median Probe Spacing 475 bp) and quantitative PCR analysis did not confirm the deletion.

  16. Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome

    PubMed Central

    2010-01-01

    Background A goal of the Bovine Genome Database (BGD; http://BovineGenome.org) has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC) in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. Results and Discussion BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. Conclusions We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence. PMID:21092105

  17. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    PubMed

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Genomic analysis using high density SNP based oligonucleotide arrays and MLPA provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors

    PubMed Central

    Jackson, Eric M.; Sievert, Angela J.; Gai, Xiaowu; Hakonarson, Hakon; Judkins, Alexander R; Tooke, Laura; Perin, Juan Carlos; Xie, Hongbo; Shaikh, Tamim H.; Biegel, Jaclyn A.

    2009-01-01

    Translational Relevance Previous reports suggested that abnormalities of INI1 could be detected in 70–75% of malignant rhabdoid tumors. The mechanism of inactivation in the other 25% remained unclear. The goal of this study was to perform a high-resolution genomic analysis of a large series of rhabdoid tumors with the expectation of identifying additional loci related to the initiation or progression of these malignancies. We also developed a comprehensive set of assays, including a new MLPA assay, to interrogate the INI1 locus in 22q11.2. Intragenic deletions could be detected using the Illumina 550K Beadchip, whereas single exon deletions could be detected using MLPA. The current study demonstrates that with a multi-platform approach, alterations at the INI1 locus can be detected in almost all cases. Thus, appropriate molecular genetic testing can be used as an aid in the diagnosis and for treatment planning for most patients. Purpose A high-resolution genomic profiling and comprehensive targeted analysis of INI1/SMARCB1 of a large series of pediatric rhabdoid tumors was performed. The aim was to identify regions of copy number change and loss of heterozygosity that might pinpoint additional loci involved in the development or progression of rhabdoid tumors, and define the spectrum of genomic alterations of INI1 in this malignancy. Experimental Design A multi-platform approach, utilizing Illumina single nucleotide polymorphism (SNP) based oligonucleotide arrays, multiplex ligation dependent probe amplification (MLPA), fluorescence in situ hybridization (FISH), and coding sequence analysis was used to characterize genome wide copy number changes, loss of heterozygosity, and genomic alterations of INI1/SMARCB1 in a series of pediatric rhabdoid tumors. Results The bi-allelic alterations of INI1 that led to inactivation were elucidated in 50 of 51 tumors. INI1 inactivation was demonstrated by a variety of mechanisms, including deletions, mutations, and loss of

  19. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    PubMed

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Comparative genome analysis of Basidiomycete fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism.more » Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.« less

  1. A Rapid Whole Genome Sequencing and Analysis System Supporting Genomic Epidemiology (7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Michael

    2012-06-01

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  2. A Rapid Whole Genome Sequencing and Analysis System Supporting Genomic Epidemiology (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    FitzGerald, Michael

    2018-01-11

    Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  3. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    PubMed Central

    2011-01-01

    Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1

  4. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits.

    PubMed

    Saski, Christopher A; Li, Zhigang; Feltus, Frank A; Luo, Hong

    2011-07-18

    Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring OsBRI1 orthologs present a glimpse into

  5. Pathway and network analysis of cancer genomes.

    PubMed

    Creixell, Pau; Reimand, Jüri; Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J; Marks, Debora S; Ouellette, B F Francis; Valencia, Alfonso; Bader, Gary D; Boutros, Paul C; Stuart, Joshua M; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D

    2015-07-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.

  6. Genomic signal analysis of pathogen variability

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan

    2006-02-01

    The paper presents results in the study of pathogen variability by using genomic signals. The conversion of symbolic nucleotide sequences into digital signals offers the possibility to apply signal processing methods to the analysis of genomic data. The method is particularly well suited to characterize small size genomic sequences, such as those found in viruses and bacteria, being a promising tool in tracking the variability of pathogens, especially in the context of developing drug resistance. The paper is based on data downloaded from GenBank [32], and comprises results on the variability of the eight segments of the influenza type A, subtype H5N1, virus genome, and of the Hemagglutinin (HA) gene, for the H1, H2, H3, H4, H5 and H16 types. Data from human and avian virus isolates are used.

  7. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level.

    PubMed

    Rodriguez-R, Luis M; Gunturu, Santosh; Harvey, William T; Rosselló-Mora, Ramon; Tiedje, James M; Cole, James R; Konstantinidis, Konstantinos T

    2018-06-14

    The small subunit ribosomal RNA gene (16S rRNA) has been successfully used to catalogue and study the diversity of prokaryotic species and communities but it offers limited resolution at the species and finer levels, and cannot represent the whole-genome diversity and fluidity. To overcome these limitations, we introduced the Microbial Genomes Atlas (MiGA), a webserver that allows the classification of an unknown query genomic sequence, complete or partial, against all taxonomically classified taxa with available genome sequences, as well as comparisons to other related genomes including uncultivated ones, based on the genome-aggregate Average Nucleotide and Amino Acid Identity (ANI/AAI) concepts. MiGA integrates best practices in sequence quality trimming and assembly and allows input to be raw reads or assemblies from isolate genomes, single-cell sequences, and metagenome-assembled genomes (MAGs). Further, MiGA can take as input hundreds of closely related genomes of the same or closely related species (a so-called 'Clade Project') to assess their gene content diversity and evolutionary relationships, and calculate important clade properties such as the pangenome and core gene sets. Therefore, MiGA is expected to facilitate a range of genome-based taxonomic and diversity studies, and quality assessment across environmental and clinical settings. MiGA is available at http://microbial-genomes.org/.

  8. Mycobacterial species as case-study of comparative genome analysis.

    PubMed

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  9. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  10. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  11. Microbial genomic island discovery, visualization and analysis.

    PubMed

    Bertelli, Claire; Tilley, Keith E; Brinkman, Fiona S L

    2018-06-03

    Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.

  12. Whole genome DNA methylation: beyond genes silencing.

    PubMed

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2017-01-17

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.

  13. Whole genome DNA methylation: beyond genes silencing

    PubMed Central

    Tirado-Magallanes, Roberto; Rebbani, Khadija; Lim, Ricky; Pradhan, Sriharsa; Benoukraf, Touati

    2017-01-01

    The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology. PMID:27895318

  14. Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles

    NASA Astrophysics Data System (ADS)

    Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.

    Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.

  15. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups.

    PubMed

    Nourdin-Galindo, Guillermo; Sánchez, Patricio; Molina, Cristian F; Espinoza-Rojas, Daniela A; Oliver, Cristian; Ruiz, Pamela; Vargas-Chacoff, Luis; Cárcamo, Juan G; Figueroa, Jaime E; Mancilla, Marcos; Maracaja-Coutinho, Vinicius; Yañez, Alejandro J

    2017-01-01

    Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis , functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be

  16. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups

    PubMed Central

    Nourdin-Galindo, Guillermo; Sánchez, Patricio; Molina, Cristian F.; Espinoza-Rojas, Daniela A.; Oliver, Cristian; Ruiz, Pamela; Vargas-Chacoff, Luis; Cárcamo, Juan G.; Figueroa, Jaime E.; Mancilla, Marcos; Maracaja-Coutinho, Vinicius; Yañez, Alejandro J.

    2017-01-01

    Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be

  17. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  18. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    PubMed

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  19. Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends

    PubMed Central

    Chan, K. C. Allen; Jiang, Peiyong; Sun, Kun; Cheng, Yvonne K. Y.; Tong, Yu K.; Cheng, Suk Hang; Wong, Ada I. C.; Hudecova, Irena; Leung, Tak Y.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2016-01-01

    Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts. Improvements in the interpretation of the sequence information of every base position in the genome allowed us to interrogate the maternal inheritance of the fetus for 618,271 of 656,676 (94.2%) heterozygous SNPs within the maternal genome. The fetal genotype at each of these sites was deduced individually, unlike previously, where the inheritance was determined for a collection of sites within a haplotype. These results represent a 90-fold enhancement in the resolution in determining the fetus’s maternal inheritance. Selected genomic locations were more likely to be found at the ends of plasma DNA molecules. We found that a subset of such preferred ends exhibited selectivity for fetal- or maternal-derived DNA in maternal plasma. The ratio of the number of maternal plasma DNA molecules with fetal preferred ends to those with maternal preferred ends showed a correlation with the fetal DNA fraction. Finally, this second generation approach for noninvasive fetal whole-genome analysis was validated in a pregnancy diagnosed with cardiofaciocutaneous syndrome with maternal plasma DNA sequenced to 195× coverage. The causative de novo BRAF mutation was successfully detected through the maternal plasma DNA analysis. PMID:27799561

  20. Millstone: software for multiplex microbial genome analysis and engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  1. Millstone: software for multiplex microbial genome analysis and engineering.

    PubMed

    Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  2. Millstone: software for multiplex microbial genome analysis and engineering

    DOE PAGES

    Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  3. Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer

    DTIC Science & Technology

    2012-10-01

    fever virus (Lauck et al. 2011). The success of transposon-based genomic library construction for genomic analyses suggests that it should be possible...2011. Novel, divergent simian hemorrhagic Fever viruses in a wild ugandan red colobus Gertz et al. 140 Genome Research www.genome.org Cold Spring...2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5: e1000569. doi: 10.1371

  4. GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

    PubMed

    Ai, Hannan; Ai, Yuncan; Meng, Fanmei

    2018-01-18

    Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.

  5. High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.

    PubMed

    Harrison, Lucas B; Hanson, Nancy D

    2017-06-01

    Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.

  6. OPTIMA: sensitive and accurate whole-genome alignment of error-prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.

    PubMed

    Verzotto, Davide; M Teo, Audrey S; Hillmer, Axel M; Nagarajan, Niranjan

    2016-01-01

    Resolution of complex repeat structures and rearrangements in the assembly and analysis of large eukaryotic genomes is often aided by a combination of high-throughput sequencing and genome-mapping technologies (for example, optical restriction mapping). In particular, mapping technologies can generate sparse maps of large DNA fragments (150 kilo base pairs (kbp) to 2 Mbp) and thus provide a unique source of information for disambiguating complex rearrangements in cancer genomes. Despite their utility, combining high-throughput sequencing and mapping technologies has been challenging because of the lack of efficient and sensitive map-alignment algorithms for robustly aligning error-prone maps to sequences. We introduce a novel seed-and-extend glocal (short for global-local) alignment method, OPTIMA (and a sliding-window extension for overlap alignment, OPTIMA-Overlap), which is the first to create indexes for continuous-valued mapping data while accounting for mapping errors. We also present a novel statistical model, agnostic with respect to technology-dependent error rates, for conservatively evaluating the significance of alignments without relying on expensive permutation-based tests. We show that OPTIMA and OPTIMA-Overlap outperform other state-of-the-art approaches (1.6-2 times more sensitive) and are more efficient (170-200 %) and precise in their alignments (nearly 99 % precision). These advantages are independent of the quality of the data, suggesting that our indexing approach and statistical evaluation are robust, provide improved sensitivity and guarantee high precision.

  7. Genome-wide analysis of intraspecific DNA polymorphism in 'Micro-Tom', a model cultivar of tomato (Solanum lycopersicum).

    PubMed

    Kobayashi, Masaaki; Nagasaki, Hideki; Garcia, Virginie; Just, Daniel; Bres, Cécile; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Brunel, Dominique; Suda, Kunihiro; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Toyoshima, Hiromi; Suzuki, Takayuki; Igarashi, Kaori; Rothan, Christophe; Kaminuma, Eli; Nakamura, Yasukazu; Yano, Kentaro; Aoki, Koh

    2014-02-01

    Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.

  8. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs

    PubMed Central

    2013-01-01

    Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077

  9. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    PubMed

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  10. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    PubMed

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  11. Integrative prescreening in analysis of multiple cancer genomic studies

    PubMed Central

    2012-01-01

    Background In high throughput cancer genomic studies, results from the analysis of single datasets often suffer from a lack of reproducibility because of small sample sizes. Integrative analysis can effectively pool and analyze multiple datasets and provides a cost effective way to improve reproducibility. In integrative analysis, simultaneously analyzing all genes profiled may incur high computational cost. A computationally affordable remedy is prescreening, which fits marginal models, can be conducted in a parallel manner, and has low computational cost. Results An integrative prescreening approach is developed for the analysis of multiple cancer genomic datasets. Simulation shows that the proposed integrative prescreening has better performance than alternatives, particularly including prescreening with individual datasets, an intensity approach and meta-analysis. We also analyze multiple microarray gene profiling studies on liver and pancreatic cancers using the proposed approach. Conclusions The proposed integrative prescreening provides an effective way to reduce the dimensionality in cancer genomic studies. It can be coupled with existing analysis methods to identify cancer markers. PMID:22799431

  12. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.

    PubMed

    Belaghzal, Houda; Dekker, Job; Gibcus, Johan H

    2017-07-01

    Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    PubMed Central

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  14. Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A

    PubMed Central

    Chen, Chunxia; Cui, Xiaoying; Yu, Jun; Xiao, Jingfa; Kan, Biao

    2012-01-01

    Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded. PMID:23028950

  15. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  16. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  17. Microbial Genome Analysis and Comparisons: Web-based Protocols and Resources

    USDA-ARS?s Scientific Manuscript database

    Fully annotated genome sequences of many microorganisms are publicly available as a resource. However, in-depth analysis of these genomes using specialized tools is required to derive meaningful information. We describe here the utility of three powerful publicly available genome databases and ana...

  18. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    PubMed

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  19. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. MIPS: analysis and annotation of proteins from whole genomes

    PubMed Central

    Mewes, H. W.; Amid, C.; Arnold, R.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; Pagel, P.; Strack, N.; Stümpflen, V.; Warfsmann, J.; Ruepp, A.

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein–protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354

  1. MIPS: analysis and annotation of proteins from whole genomes.

    PubMed

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  2. IMG 4 version of the integrated microbial genomes comparative analysis system

    PubMed Central

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2014-01-01

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu). PMID:24165883

  3. IMG 4 version of the integrated microbial genomes comparative analysis system.

    PubMed

    Markowitz, Victor M; Chen, I-Min A; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2014-01-01

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG's data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG's annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).

  4. Complete Genomic Sequence and Comparative Analysis of the Genome Segments of Sweet Potato Chlorotic Stunt Virus in China

    PubMed Central

    Qin, Yanhong; Wang, Li; Zhang, Zhenchen; Qiao, Qi; Zhang, Desheng; Tian, Yuting; Wang, Shuang; Wang, Yongjiang; Yan, Zhaoling

    2014-01-01

    Background Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. Methodology/Principal Findings The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. Conclusions/Significance We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV

  5. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  6. Ortholog Identification and Comparative Analysis of Microbial Genomes Using MBGD and RECOG.

    PubMed

    Uchiyama, Ikuo

    2017-01-01

    Comparative genomics is becoming an essential approach for identification of genes associated with a specific function or phenotype. Here, we introduce the microbial genome database for comparative analysis (MBGD), which is a comprehensive ortholog database among the microbial genomes available so far. MBGD contains several precomputed ortholog tables including the standard ortholog table covering the entire taxonomic range and taxon-specific ortholog tables for various major taxa. In addition, MBGD allows the users to create an ortholog table within any specified set of genomes through dynamic calculations. In particular, MBGD has a "My MBGD" mode where users can upload their original genome sequences and incorporate them into orthology analysis. The created ortholog table can serve as the basis for various comparative analyses. Here, we describe the use of MBGD and briefly explain how to utilize the orthology information during comparative genome analysis in combination with the stand-alone comparative genomics software RECOG, focusing on the application to comparison of closely related microbial genomes.

  7. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE PAGES

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew; ...

    2015-08-13

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  8. BactoGeNIE: a large-scale comparative genome visualization for big displays

    PubMed Central

    2015-01-01

    Background The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. Results In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. Conclusions BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics. PMID:26329021

  9. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  10. Comparative genomic analysis by microbial COGs self-attraction rate.

    PubMed

    Santoni, Daniele; Romano-Spica, Vincenzo

    2009-06-21

    Whole genome analysis provides new perspectives to determine phylogenetic relationships among microorganisms. The availability of whole nucleotide sequences allows different levels of comparison among genomes by several approaches. In this work, self-attraction rates were considered for each cluster of orthologous groups of proteins (COGs) class in order to analyse gene aggregation levels in physical maps. Phylogenetic relationships among microorganisms were obtained by comparing self-attraction coefficients. Eighteen-dimensional vectors were computed for a set of 168 completely sequenced microbial genomes (19 archea, 149 bacteria). The components of the vector represent the aggregation rate of the genes belonging to each of 18 COGs classes. Genes involved in nonessential functions or related to environmental conditions showed the highest aggregation rates. On the contrary genes involved in basic cellular tasks showed a more uniform distribution along the genome, except for translation genes. Self-attraction clustering approach allowed classification of Proteobacteria, Bacilli and other species belonging to Firmicutes. Rearrangement and Lateral Gene Transfer events may influence divergences from classical taxonomy. Each set of COG classes' aggregation values represents an intrinsic property of the microbial genome. This novel approach provides a new point of view for whole genome analysis and bacterial characterization.

  11. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system.

    PubMed

    Mavromatis, Konstantinos; Chu, Ken; Ivanova, Natalia; Hooper, Sean D; Markowitz, Victor M; Kyrpides, Nikos C

    2009-11-24

    Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov.

  12. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication.

    PubMed

    Liu, Q; Yong, C B; Astell, C R

    1994-06-01

    Previous characterization of the terminal sequences of the minute virus of mice (MVM) genome demonstrated that the right hand palindrome contains two sequences, each the inverted complement of the other. However, the left hand palindrome was shown to exist as a unique sequence [Astell et al., J. Virol. 54: 179-185 (1985)]. The modified rolling hairpin (MRH) model for MVM replication provided an explanation of how the right hand palindrome could undergo hairpin transfer to generate two sequences, while the left end palindrome within the dimer bridge could undergo asymmetric resolution and retain the unique left end sequence. This report describes in vitro resolution of the wild-type dimer bridge sequence of MVM using recombinant (baculovirus) expressed NS-1 and a replication extract from LA9 cells. The resolution products are consistent with those predicted by the MRH model, providing support for this replication mechanism. In addition, mutant dimer bridge clones were constructed and used in the resolution assay. The mutant structures included removal of the asymmetry in the hairpin stem, inversion of the sequence at the initiating nick site, and a 2-bp deletion within one stem of the dimer bridge. In all cases, the mutant dimer bridge structures are resolved; however, the resolution pattern observed with the mutant dimer bridge compared with the wild-type dimer bridge is shifted toward symmetrical resolution. These results suggest that sequences within the left hand hairpin (and hence dimer bridge sequence) are responsible for asymmetric resolution and conservation of the unique sequence within the left hand palindrome of the MVM genome.

  13. IMG 4 version of the integrated microbial genomes comparative analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts providemore » support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).« less

  14. Genome-wide selection components analysis in a fish with male pregnancy.

    PubMed

    Flanagan, Sarah P; Jones, Adam G

    2017-04-01

    A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double-digest restriction-site associated DNA sequencing (ddRAD-seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An F ST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the F ST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome-wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome-level targets of selection in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    PubMed Central

    Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F

    2007-01-01

    Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA

  16. A binary search approach to whole-genome data analysis.

    PubMed

    Brodsky, Leonid; Kogan, Simon; Benjacob, Eshel; Nevo, Eviatar

    2010-09-28

    A sequence analysis-oriented binary search-like algorithm was transformed to a sensitive and accurate analysis tool for processing whole-genome data. The advantage of the algorithm over previous methods is its ability to detect the margins of both short and long genome fragments, enriched by up-regulated signals, at equal accuracy. The score of an enriched genome fragment reflects the difference between the actual concentration of up-regulated signals in the fragment and the chromosome signal baseline. The "divide-and-conquer"-type algorithm detects a series of nonintersecting fragments of various lengths with locally optimal scores. The procedure is applied to detected fragments in a nested manner by recalculating the lower-than-baseline signals in the chromosome. The algorithm was applied to simulated whole-genome data, and its sensitivity/specificity were compared with those of several alternative algorithms. The algorithm was also tested with four biological tiling array datasets comprising Arabidopsis (i) expression and (ii) histone 3 lysine 27 trimethylation CHIP-on-chip datasets; Saccharomyces cerevisiae (iii) spliced intron data and (iv) chromatin remodeling factor binding sites. The analyses' results demonstrate the power of the algorithm in identifying both the short up-regulated fragments (such as exons and transcription factor binding sites) and the long--even moderately up-regulated zones--at their precise genome margins. The algorithm generates an accurate whole-genome landscape that could be used for cross-comparison of signals across the same genome in evolutionary and general genomic studies.

  17. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    PubMed Central

    2012-01-01

    Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia

  18. A Chromosome 7 Pericentric Inversion Defined at Single-Nucleotide Resolution Using Diagnostic Whole Genome Sequencing in a Patient with Hand-Foot-Genital Syndrome.

    PubMed

    Watson, Christopher M; Crinnion, Laura A; Harrison, Sally M; Lascelles, Carolina; Antanaviciute, Agne; Carr, Ian M; Bonthron, David T; Sheridan, Eamonn

    2016-01-01

    Next generation sequencing methodologies are facilitating the rapid characterisation of novel structural variants at nucleotide resolution. These approaches are particularly applicable to variants initially identified using alternative molecular methods. We report a child born with bilateral postaxial syndactyly of the feet and bilateral fifth finger clinodactyly. This was presumed to be an autosomal recessive syndrome, due to the family history of consanguinity. Karyotype analysis revealed a homozygous pericentric inversion of chromosome 7 (46,XX,inv(7)(p15q21)x2) which was confirmed to be heterozygous in both unaffected parents. Since the resolution of the karyotype was insufficient to identify any putatively causative gene, we undertook medium-coverage whole genome sequencing using paired-end reads, in order to elucidate the molecular breakpoints. In a two-step analysis, we first narrowed down the region by identifying discordant read-pairs, and then determined the precise molecular breakpoint by analysing the mapping locations of "soft-clipped" breakpoint-spanning reads. PCR and Sanger sequencing confirmed the identified breakpoints, both of which were located in intergenic regions. Significantly, the 7p15 breakpoint was located 523 kb upstream of HOXA13, the locus for hand-foot-genital syndrome. By inference from studies of HOXA locus control in the mouse, we suggest that the inversion has delocalised a HOXA13 enhancer to produce the phenotype observed in our patient. This study demonstrates how modern genetic diagnostic approach can characterise structural variants at nucleotide resolution and provide potential insights into functional regulation.

  19. Genome analysis of Legionella pneumophila strains using a mixed-genome microarray.

    PubMed

    Euser, Sjoerd M; Nagelkerke, Nico J; Schuren, Frank; Jansen, Ruud; Den Boer, Jeroen W

    2012-01-01

    Legionella, the causative agent for Legionnaires' disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data. Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-derived strains from notified cases in The Netherlands in the period 2002-2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental. Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between Legionella strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future may be implemented in the daily practice of controlling Legionella in the public health environment.

  20. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    PubMed

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  1. IMG/M: integrated genome and metagenome comparative data analysis system

    DOE PAGES

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; ...

    2016-10-13

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less

  2. IMG/M: integrated genome and metagenome comparative data analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less

  3. IMG/M: integrated genome and metagenome comparative data analysis system

    PubMed Central

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Palaniappan, Krishna; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Andersen, Evan; Huntemann, Marcel; Varghese, Neha; Hadjithomas, Michalis; Tennessen, Kristin; Nielsen, Torben; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2017-01-01

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system. PMID:27738135

  4. Selected Insights from Application of Whole Genome Sequencing for Outbreak Investigations

    PubMed Central

    Le, Vien Thi Minh; Diep, Binh An

    2014-01-01

    Purpose of review The advent of high-throughput whole genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate pathogen strain resolution, whole genome sequencing could augment traditional epidemiologic investigations of infectious disease outbreaks. Recent findings The combination of whole genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, and Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreak caused by environmentally acquired molds. Summary When combined with traditional epidemiologic investigation, whole genome sequencing has proven useful for elucidating sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for analysis of whole genome sequence data is much needed to make this powerful tool more widely accessible. PMID:23856896

  5. Genomic Analysis of Attenuation in Pandemic Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Pinnell, L. J.; Tallman, J. J., III; Turner, J.

    2016-02-01

    A critical problem in the prevention and treatment of infectious disease is the ability to differentiate virulent from avirulent bacterial strains. The distinction is commonly based on the presence or absence of specific virulence-associated genes. Alternately, serotypic or phylogenetic typing can accurately differentiate virulent from avirulent strains. When these approaches fail, more discriminatory analysis is needed. Pandemic Vibiro parahaemolyticus, distinguishable by genotyping (thermostable direct hemolysin or tdh), serotyping (O3:K6) and multilocus sequence typing (ST3), is regarded as a highly virulent clonal complex. We have previously shown, through population genetics and cytotoxicity testing, that some pandemic strains isolated from environmental sources are avirulent. To investigate the basis for attenuation, we sequenced the draft genomes of 10 pandemic V. parahaemolyticus isolates originating from environmental (N = 7) and clinical sources (N = 3). Genomic comparison of these 10 draft genomes, and the pandemic type strain (RIMD2210633), revealed a large core genome (5,158,719 bp) and a much smaller accessory genome (141,403 bp). The accessory genome was largely comprised of hypothetical proteins; however, several genes encoded phage-related proteins. Phylogenetic analysis, based on 2,902 single nucleotide polymorphisms in the core genome, did not reveal a discernable pattern. Current efforts are focused on the identification of insertions, deletions and point mutations that may alter protein expression or protein function. Preliminary results show that attenuated strains lack the virulence-associated vacB gene (VP1890). This gene encodes a 741 amino acid exoribonuclease homologous to exoribonucleases known to modulate virulence in Salmonella enterica and Helicobacter pylori. The correlation between attenuation and the absence of this gene, suggests that VP1890 plays an important role in human pathogenesis.

  6. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes.

    PubMed

    Cabal, Adriana; Jun, Se-Ran; Jenjaroenpun, Piroon; Wanchai, Visanu; Nookaew, Intawat; Wongsurawat, Thidathip; Burgess, Mary J; Kothari, Atul; Wassenaar, Trudy M; Ussery, David W

    2018-02-14

    Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same

  7. COGNAT: a web server for comparative analysis of genomic neighborhoods.

    PubMed

    Klimchuk, Olesya I; Konovalov, Kirill A; Perekhvatov, Vadim V; Skulachev, Konstantin V; Dibrova, Daria V; Mulkidjanian, Armen Y

    2017-11-22

    In prokaryotic genomes, functionally coupled genes can be organized in conserved gene clusters enabling their coordinated regulation. Such clusters could contain one or several operons, which are groups of co-transcribed genes. Those genes that evolved from a common ancestral gene by speciation (i.e. orthologs) are expected to have similar genomic neighborhoods in different organisms, whereas those copies of the gene that are responsible for dissimilar functions (i.e. paralogs) could be found in dissimilar genomic contexts. Comparative analysis of genomic neighborhoods facilitates the prediction of co-regulated genes and helps to discern different functions in large protein families. We intended, building on the attribution of gene sequences to the clusters of orthologous groups of proteins (COGs), to provide a method for visualization and comparative analysis of genomic neighborhoods of evolutionary related genes, as well as a respective web server. Here we introduce the COmparative Gene Neighborhoods Analysis Tool (COGNAT), a web server for comparative analysis of genomic neighborhoods. The tool is based on the COG database, as well as the Pfam protein families database. As an example, we show the utility of COGNAT in identifying a new type of membrane protein complex that is formed by paralog(s) of one of the membrane subunits of the NADH:quinone oxidoreductase of type 1 (COG1009) and a cytoplasmic protein of unknown function (COG3002). This article was reviewed by Drs. Igor Zhulin, Uri Gophna and Igor Rogozin.

  8. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  9. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale.

    PubMed

    Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun

    2015-01-01

    Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.

  10. Comparative analysis of prophages in Streptococcus mutans genomes

    PubMed Central

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  11. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    PubMed Central

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  12. The most common technologies and tools for functional genome analysis.

    PubMed

    Gasperskaja, Evelina; Kučinskas, Vaidutis

    2017-01-01

    Since the sequence of the human genome is complete, the main issue is how to understand the information written in the DNA sequence. Despite numerous genome-wide studies that have already been performed, the challenge to determine the function of genes, gene products, and also their interaction is still open. As changes in the human genome are highly likely to cause pathological conditions, functional analysis is vitally important for human health. For many years there have been a variety of technologies and tools used in functional genome analysis. However, only in the past decade there has been rapid revolutionizing progress and improvement in high-throughput methods, which are ranging from traditional real-time polymerase chain reaction to more complex systems, such as next-generation sequencing or mass spectrometry. Furthermore, not only laboratory investigation, but also accurate bioinformatic analysis is required for reliable scientific results. These methods give an opportunity for accurate and comprehensive functional analysis that involves various fields of studies: genomics, epigenomics, proteomics, and interactomics. This is essential for filling the gaps in the knowledge about dynamic biological processes at both cellular and organismal level. However, each method has both advantages and limitations that should be taken into account before choosing the right method for particular research in order to ensure successful study. For this reason, the present review paper aims to describe the most frequent and widely-used methods for the comprehensive functional analysis.

  13. GEnomes Management Application (GEM.app): a new software tool for large-scale collaborative genome analysis.

    PubMed

    Gonzalez, Michael A; Lebrigio, Rafael F Acosta; Van Booven, Derek; Ulloa, Rick H; Powell, Eric; Speziani, Fiorella; Tekin, Mustafa; Schüle, Rebecca; Züchner, Stephan

    2013-06-01

    Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets (https://genomics.med.miami.edu/). GEM.app currently contains ∼1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user-friendly analysis for nonbioinformaticians to make next-generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across ∼1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease. © 2013 Wiley Periodicals, Inc.

  14. Creation and genomic analysis of irradiation hybrids in Populus

    Treesearch

    Matthew S. Zinkgraf; K. Haiby; M.C. Lieberman; L. Comai; I.M. Henry; Andrew Groover

    2016-01-01

    Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in...

  15. The Essential Genome of Escherichia coli K-12

    PubMed Central

    2018-01-01

    ABSTRACT Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. PMID:29463657

  16. Resolution in forensic microbial genotyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S P

    2005-08-30

    Resolution is a key parameter for differentiating among the large number of strain typing methods that could be applied to pathogens involved in bioterror events or biocrimes. In this report we develop a first-principles analysis of strain typing resolution using a simple mathematical model to provide a basis for the rational design of microbial typing systems for forensic applications. We derive two figures of merit that describe the resolving power and phylogenetic depth of a strain typing system. Rough estimates of these figures-of-merit for MLVA, MLST, IS element, AFLP, hybridization microarrays, and other bacterial typing methods are derived from mutationmore » rate data reported in the literature. We also discuss the general problem of how to construct a ''universal'' practical typing system that has the highest possible resolution short of whole-genome sequencing, and that is applicable with minimal modification to a wide range of pathogens.« less

  17. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    PubMed Central

    Paterson, Andrew H.; Wang, Xuelin; Xu, Yiqing; Wu, Dongyang; Qu, Yanshu; Jiang, Anna; Ye, Qiaolin

    2016-01-01

    Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants. PMID:27847816

  18. Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus.

    PubMed

    Mullapudi, Edukondalu; Füzik, Tibor; Přidal, Antonín; Plevka, Pavel

    2017-02-15

    Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release. Honeybee populations in Europe and North America are declining due to pressure from pathogens, including viruses. Israeli acute bee paralysis virus (IAPV), a member of the family Dicistroviridae, causes honeybee colony collapse disorder in the United States. The delivery of virus genomes into host cells is necessary for the initiation of infection. Here we present a structural cryo-electron microscopy analysis of IAPV particles induced to release their genomes. We show that genome release is not preceded by an expansion of IAPV virions as in the case of related picornaviruses that infect vertebrates. Furthermore, minor capsid proteins detach from the capsid upon genome release. The genome leaves behind empty

  19. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.

    PubMed

    Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun

    2011-08-01

    A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.

  20. Typing and comparative genome analysis of Brucella melitensis isolated from Lebanon.

    PubMed

    Abou Zaki, Natalia; Salloum, Tamara; Osman, Marwan; Rafei, Rayane; Hamze, Monzer; Tokajian, Sima

    2017-10-16

    Brucella melitensis is the main causative agent of the zoonotic disease brucellosis. This study aimed at typing and characterizing genetic variation in 33 Brucella isolates recovered from patients in Lebanon. Bruce-ladder multiplex PCR and PCR-RFLP of omp31, omp2a and omp2b were performed. Sixteen representative isolates were chosen for draft-genome sequencing and analyzed to determine variations in virulence, resistance, genomic islands, prophages and insertion sequences. Comparative whole-genome single nucleotide polymorphism analysis was also performed. The isolates were confirmed to be B. melitensis. Genome analysis revealed multiple virulence determinants and efflux pumps. Genome comparisons and single nucleotide polymorphisms divided the isolates based on geographical distribution but revealed high levels of similarity between the strains. Sequence divergence in B. melitensis was mainly due to lateral gene transfer of mobile elements. This is the first report of an in-depth genomic characterization of B. melitensis in Lebanon. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    PubMed

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and

  2. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and

  3. The need for high-quality whole-genome sequence databases in microbial forensics.

    PubMed

    Sjödin, Andreas; Broman, Tina; Melefors, Öjar; Andersson, Gunnar; Rasmusson, Birgitta; Knutsson, Rickard; Forsman, Mats

    2013-09-01

    Microbial forensics is an important part of a strengthened capability to respond to biocrime and bioterrorism incidents to aid in the complex task of distinguishing between natural outbreaks and deliberate acts. The goal of a microbial forensic investigation is to identify and criminally prosecute those responsible for a biological attack, and it involves a detailed analysis of the weapon--that is, the pathogen. The recent development of next-generation sequencing (NGS) technologies has greatly increased the resolution that can be achieved in microbial forensic analyses. It is now possible to identify, quickly and in an unbiased manner, previously undetectable genome differences between closely related isolates. This development is particularly relevant for the most deadly bacterial diseases that are caused by bacterial lineages with extremely low levels of genetic diversity. Whole-genome analysis of pathogens is envisaged to be increasingly essential for this purpose. In a microbial forensic context, whole-genome sequence analysis is the ultimate method for strain comparisons as it is informative during identification, characterization, and attribution--all 3 major stages of the investigation--and at all levels of microbial strain identity resolution (ie, it resolves the full spectrum from family to isolate). Given these capabilities, one bottleneck in microbial forensics investigations is the availability of high-quality reference databases of bacterial whole-genome sequences. To be of high quality, databases need to be curated and accurate in terms of sequences, metadata, and genetic diversity coverage. The development of whole-genome sequence databases will be instrumental in successfully tracing pathogens in the future.

  4. Comparative Analysis of Genome Diversity in Bullmastiff Dogs

    PubMed Central

    Mortlock, Sally-Anne; Khatkar, Mehar S.; Williamson, Peter

    2016-01-01

    Management and preservation of genomic diversity in dog breeds is a major objective for maintaining health. The present study was undertaken to characterise genomic diversity in Bullmastiff dogs using both genealogical and molecular analysis. Genealogical analysis of diversity was conducted using a database consisting of 16,378 Bullmastiff pedigrees from year 1980 to 2013. Additionally, a total of 188 Bullmastiff dogs were genotyped using the 170,000 SNP Illumina CanineHD Beadchip. Genealogical parameters revealed a mean inbreeding coefficient of 0.047; 142 total founders (f); an effective number of founders (fe) of 79; an effective number of ancestors (fa) of 62; and an effective population size of the reference population of 41. Genetic diversity and the degree of genome-wide homogeneity within the breed were also investigated using molecular data. Multiple-locus heterozygosity (MLH) was equal to 0.206; runs of homozygosity (ROH) as proportion of the genome, averaged 16.44%; effective population size was 29.1, with an average inbreeding coefficient of 0.035, all estimated using SNP Data. Fine-scale population structure was analysed using NETVIEW, a population analysis pipeline. Visualisation of the high definition network captured relationships among individuals within and between subpopulations. Effects of unequal founder use, and ancestral inbreeding and selection, were evident. While current levels of Bullmastiff heterozygosity, inbreeding and homozygosity are not unusual, a relatively small effective population size indicates that a breeding strategy to reduce the inbreeding rate may be beneficial. PMID:26824579

  5. Whole Genome Amplification and Reduced-Representation Genome Sequencing of Schistosoma japonicum Miracidia

    PubMed Central

    Shortt, Jonathan A.; Card, Daren C.; Schield, Drew R.; Liu, Yang; Zhong, Bo; Castoe, Todd A.

    2017-01-01

    Background In areas where schistosomiasis control programs have been implemented, morbidity and prevalence have been greatly reduced. However, to sustain these reductions and move towards interruption of transmission, new tools for disease surveillance are needed. Genomic methods have the potential to help trace the sources of new infections, and allow us to monitor drug resistance. Large-scale genotyping efforts for schistosome species have been hindered by cost, limited numbers of established target loci, and the small amount of DNA obtained from miracidia, the life stage most readily acquired from humans. Here, we present a method using next generation sequencing to provide high-resolution genomic data from S. japonicum for population-based studies. Methodology/Principal Findings We applied whole genome amplification followed by double digest restriction site associated DNA sequencing (ddRADseq) to individual S. japonicum miracidia preserved on Whatman FTA cards. We found that we could effectively and consistently survey hundreds of thousands of variants from 10,000 to 30,000 loci from archived miracidia as old as six years. An analysis of variation from eight miracidia obtained from three hosts in two villages in Sichuan showed clear population structuring by village and host even within this limited sample. Conclusions/Significance This high-resolution sequencing approach yields three orders of magnitude more information than microsatellite genotyping methods that have been employed over the last decade, creating the potential to answer detailed questions about the sources of human infections and to monitor drug resistance. Costs per sample range from $50-$200, depending on the amount of sequence information desired, and we expect these costs can be reduced further given continued reductions in sequencing costs, improvement of protocols, and parallelization. This approach provides new promise for using modern genome-scale sampling to S. japonicum surveillance

  6. Whole Genome Amplification and Reduced-Representation Genome Sequencing of Schistosoma japonicum Miracidia.

    PubMed

    Shortt, Jonathan A; Card, Daren C; Schield, Drew R; Liu, Yang; Zhong, Bo; Castoe, Todd A; Carlton, Elizabeth J; Pollock, David D

    2017-01-01

    In areas where schistosomiasis control programs have been implemented, morbidity and prevalence have been greatly reduced. However, to sustain these reductions and move towards interruption of transmission, new tools for disease surveillance are needed. Genomic methods have the potential to help trace the sources of new infections, and allow us to monitor drug resistance. Large-scale genotyping efforts for schistosome species have been hindered by cost, limited numbers of established target loci, and the small amount of DNA obtained from miracidia, the life stage most readily acquired from humans. Here, we present a method using next generation sequencing to provide high-resolution genomic data from S. japonicum for population-based studies. We applied whole genome amplification followed by double digest restriction site associated DNA sequencing (ddRADseq) to individual S. japonicum miracidia preserved on Whatman FTA cards. We found that we could effectively and consistently survey hundreds of thousands of variants from 10,000 to 30,000 loci from archived miracidia as old as six years. An analysis of variation from eight miracidia obtained from three hosts in two villages in Sichuan showed clear population structuring by village and host even within this limited sample. This high-resolution sequencing approach yields three orders of magnitude more information than microsatellite genotyping methods that have been employed over the last decade, creating the potential to answer detailed questions about the sources of human infections and to monitor drug resistance. Costs per sample range from $50-$200, depending on the amount of sequence information desired, and we expect these costs can be reduced further given continued reductions in sequencing costs, improvement of protocols, and parallelization. This approach provides new promise for using modern genome-scale sampling to S. japonicum surveillance, and could be applied to other schistosome species and other

  7. Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN

    PubMed Central

    Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.

    2018-01-01

    Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956

  8. Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus

    PubMed Central

    Zhang, Jie; Chen, Yuewen; Shao, Yong; Wu, Qi; Guan, Ming; Zhang, Wei; Wan, Jun; Yu, Bo

    2012-01-01

    Background. TNFα-induced protein 3 (TNFAIP3) interacting with protein 1 (TNIP1) acts as a negative regulator of NF-κB and plays an important role in maintaining the homeostasis of immune system. A recent genome-wide association study (GWAS) showed that the polymorphism of TNIP1 was associated with the disease risk of SLE in Caucasian. In this study, we investigated whether the association of TNIP1 with SLE was replicated in Chinese population. Methods. The association of TNIP1 SNP rs7708392 (G/C) was determined by high resolution melting (HRM) analysis with unlabeled probe in 285 SLE patients and 336 healthy controls. Results. A new SNP rs79937737 located on 5 bp upstream of rs7708392 was discovered during the HRM analysis. No association of rs7708392 or rs79937737 with the disease risk of SLE was found. Furthermore, rs7708392 and rs79937737 were in weak linkage disequilibrium (LD). Hypotypes analysis of the two SNPs also showed no association with SLE in Chinese population. Conclusions. High resolution melting analysis with unlabeled probes proves to be a powerful and efficient genotyping method for identifying and screening SNPs. No association of rs7708392 or rs79937737 with the disease risk of SLE was observed in Chinese population. PMID:22852072

  9. Comparative whole genome analysis of six diagnostic brucellaphages.

    PubMed

    Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P

    2014-05-15

    Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.

  10. Toward a Comprehensive Genomic Analysis of Cancer - TCGA

    Cancer.gov

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) convened a "Toward a Comprehensive Genomic Analysis of Cancer" workshop in Washington, D.C. This workshop brought together physicians, basic scientists and other members of the U.S. and international cancer communities to assist in outlining the most effective strategies for the development of a successful project. Information about this workshop is reported in the Executive Summary.

  11. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    PubMed

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  12. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor.

    PubMed

    Dong, Chongmei; Vincent, Kate; Sharp, Peter

    2009-12-04

    TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here

  13. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    PubMed

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  14. Systematic identification of fragile sites via genome-wide location analysis of γ-H2AX

    PubMed Central

    Szilard, Rachel K.; Jacques, Pierre-Étienne; Laramée, Louise; Cheng, Benjamin; Galicia, Sarah; Bataille, Alain R.; Yeung, ManTek; Mendez, Megan; Bergeron, Maxime; Robert, François; Durocher, Daniel

    2011-01-01

    Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication fork stalling results in histone H2A phosphorylation to yield γ-H2A (yeast γ-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)- dependent manner. Here, we describe the genome-wide location analysis of γ-H2A as a strategy to identify loci prone to engage the Mec1 and Tel1 pathways. Remarkably, γ-H2A enrichment overlaps with loci prone to replication fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for γ-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of γ-H2A at these loci. Finally, our work indicates that high resolution mapping of γ-H2AX is a fruitful route to map fragile sites in eukaryotic genomes. PMID:20139982

  15. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  16. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  17. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE PAGES

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...

    2016-03-07

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  18. Genomic analysis of WCP30 Phage of Weissella cibaria for Dairy Fermented Foods.

    PubMed

    Lee, Young-Duck; Park, Jong-Hyun

    2017-01-01

    In this study, we report the morphogenetic analysis and genome sequence of a new WCP30 phage of Weissella cibaria , isolated from a fermented food. Based on its morphology, as observed by transmission electron microscopy, WCP30 phage belongs to the family Siphoviridae . Genomic analysis of WCP30 phage showed that it had a 33,697-bp double-stranded DNA genome with 41.2% G+C content. Bioinformatics analysis of the genome revealed 35 open reading frames. A BLASTN search showed that WCP30 phage had low sequence similarity compared to other phages infecting lactic acid bacteria. This is the first report of the morphological features and complete genome sequence of WCP30 phage, which may be useful for controlling the fermentation of dairy foods.

  19. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response

    PubMed Central

    Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.

    2016-01-01

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136

  20. Genome-scale modelling of microbial metabolism with temporal and spatial resolution.

    PubMed

    Henson, Michael A

    2015-12-01

    Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.

  1. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. EDGAR: A software framework for the comparative analysis of prokaryotic genomes

    PubMed Central

    Blom, Jochen; Albaum, Stefan P; Doppmeier, Daniel; Pühler, Alfred; Vorhölter, Frank-Jörg; Zakrzewski, Martha; Goesmann, Alexander

    2009-01-01

    Background The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results To support these studies EDGAR – "Efficient Database framework for comparative Genome Analyses using BLAST score Ratios" – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface , where the precomputed data sets can be browsed. PMID:19457249

  3. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    PubMed

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures. © 2016 Szałaj et al.; Published by Cold Spring Harbor Laboratory Press.

  4. High-resolution genetic map for understanding the effect of genome-wide recombination rate, selection sweep and linkage disequilibrium on nucleotide diversity in watermelon

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...

  5. Analysis tools for the interplay between genome layout and regulation.

    PubMed

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  6. High Resolution Genome-Wide Analysis of Chromosomal Alterations in Burkitt's Lymphoma

    PubMed Central

    Toujani, Saloua; Dessen, Philippe; Ithzar, Nathalie; Danglot, Gisèle; Richon, Catherine; Vassetzky, Yegor; Robert, Thomas; Lazar, Vladimir; Bosq, Jacques; Da Costa, Lydie; Pérot, Christine; Ribrag, Vincent; Patte, Catherine; Wiels, Jöelle; Bernheim, Alain

    2009-01-01

    Additional chromosomal abnormalities are currently detected in Burkitt's lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitt's lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs<2 Mb were mapped to Mendelian CNVs, including GSTT1, glutathione s-transferase and BIRC6, an anti-apoptotic protein, possibly predisposing to some cancers. Somatic cell line-specific CNVs localized to the IG locus were consistently observed with the 244 K aCGH platform. Among 136 CNAs >2 Mb, gains were found in 1q (12/27), 13q (7/27), 7q (6/27), 8q(4/27), 2p (3/27), 11q (2/27) and 15q (2/27). Losses were found in 3p (5/27), 4p (4/27), 4q (4/27), 9p (4/27), 13q (4/27), 6p (3/27), 17p (3/27), 6q (2/27),11pterp13 (2/27) and 14q12q21.3 (2/27). Twenty one minimal critical regions (MCR), (range 0.04–71.36 Mb), were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3) harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 <89.58–96.81> MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 <60.96–61> MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 <60.43–60.53> that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies. PMID:19759907

  7. High resolution genome-wide analysis of chromosomal alterations in Burkitt's lymphoma.

    PubMed

    Toujani, Saloua; Dessen, Philippe; Ithzar, Nathalie; Danglot, Gisèle; Richon, Catherine; Vassetzky, Yegor; Robert, Thomas; Lazar, Vladimir; Bosq, Jacques; Da Costa, Lydie; Pérot, Christine; Ribrag, Vincent; Patte, Catherine; Wiels, Jöelle; Bernheim, Alain

    2009-09-17

    Additional chromosomal abnormalities are currently detected in Burkitt's lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitt's lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs<2 Mb were mapped to Mendelian CNVs, including GSTT1, glutathione s-transferase and BIRC6, an anti-apoptotic protein, possibly predisposing to some cancers. Somatic cell line-specific CNVs localized to the IG locus were consistently observed with the 244 K aCGH platform. Among 136 CNAs >2 Mb, gains were found in 1q (12/27), 13q (7/27), 7q (6/27), 8q(4/27), 2p (3/27), 11q (2/27) and 15q (2/27). Losses were found in 3p (5/27), 4p (4/27), 4q (4/27), 9p (4/27), 13q (4/27), 6p (3/27), 17p (3/27), 6q (2/27),11pterp13 (2/27) and 14q12q21.3 (2/27). Twenty one minimal critical regions (MCR), (range 0.04-71.36 Mb), were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3) harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 <89.58-96.81> MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 <60.96-61> MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 <60.43-60.53> that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies.

  8. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    PubMed Central

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  9. A Novel Genome-Information Content-Based Statistic for Genome-Wide Association Analysis Designed for Next-Generation Sequencing Data

    PubMed Central

    Luo, Li; Zhu, Yun

    2012-01-01

    Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812

  10. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    PubMed

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  11. Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley

    PubMed Central

    Cai, Shengguan; Wu, Dezhi; Jabeen, Zahra; Huang, Yuqing; Huang, Yechang; Zhang, Guoping

    2013-01-01

    Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement. PMID:23922796

  12. The Cancer Genome Atlas Pan-Cancer Analysis Project

    PubMed Central

    Weinstein, John N.; Collisson, Eric A.; Mills, Gordon B.; Shaw, Kenna M.; Ozenberger, Brad A.; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M.

    2014-01-01

    Cancer can take hundreds of different forms depending on the location, cell of origin and spectrum of genomic alterations that promote oncogenesis and affect therapeutic response. Although many genomic events with direct phenotypic impact have been identified, much of the complex molecular landscape remains incompletely charted for most cancer lineages. For that reason, The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumours to discover molecular aberrations at the DNA, RNA, protein, and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences, and emergent themes across tumour lineages. The Pan-Cancer initiative compares the first twelve tumour types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumour types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. PMID:24071849

  13. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes.

    PubMed

    Kumar, Ajay; Seetan, Raed; Mergoum, Mohamed; Tiwari, Vijay K; Iqbal, Muhammad J; Wang, Yi; Al-Azzam, Omar; Šimková, Hana; Luo, Ming-Cheng; Dvorak, Jan; Gu, Yong Q; Denton, Anne; Kilian, Andrzej; Lazo, Gerard R; Kianian, Shahryar F

    2015-10-16

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average

  14. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the

  15. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  16. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  17. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    PubMed

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A note on generalized Genome Scan Meta-Analysis statistics

    PubMed Central

    Koziol, James A; Feng, Anne C

    2005-01-01

    Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930

  19. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    PubMed Central

    2012-01-01

    Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported

  20. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.

    PubMed

    Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin

    2016-03-01

    To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.

  1. Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus

    PubMed Central

    Jolley, Keith A.; Reed, Elizabeth; Martinez-Urtaza, Jaime

    2017-01-01

    ABSTRACT Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non

  2. Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus.

    PubMed

    Gonzalez-Escalona, Narjol; Jolley, Keith A; Reed, Elizabeth; Martinez-Urtaza, Jaime

    2017-06-01

    Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non

  3. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Ivanova, Natalia; D'Souza, Mark; Bernal, Axel; Lykidis, Athanasios; Kapatral, Vinayak; Anderson, Iain; Larsen, Niels; Los, Tamara; Reznik, Gary; Selkov, Eugene; Walunas, Theresa L; Feil, Helene; Feil, William S; Purcell, Alexander; Lassez, Jean-Louis; Hawkins, Trevor L; Haselkorn, Robert; Overbeek, Ross; Predki, Paul F; Kyrpides, Nikos C

    2002-09-17

    Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.

  4. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  5. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    PubMed Central

    2011-01-01

    Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae. PMID:21226921

  6. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  7. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    PubMed

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  8. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    PubMed

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.

  9. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    PubMed Central

    Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah

    2016-01-01

    Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950

  10. Whole-genome CNV analysis: advances in computational approaches.

    PubMed

    Pirooznia, Mehdi; Goes, Fernando S; Zandi, Peter P

    2015-01-01

    Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development.

  11. [Detection of the introgression of genome elements of Aegilops cylindrica Host. into Triticum aestivum L. genome with ISSR-analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2003-01-01

    Comparative analysis of introgressive and parental forms of wheat was carried out to reveal the sites of donor genome with new loci of resistance to fungal diseases. By ISSR-method 124 ISSR-loci were detected in the genomes of 18 individual plants of introgressive line 5/20-91; 17 of them have been related to introgressive fragments of Ae. cylindrica genome in T. aestivum. It was shown that ISSR-method is effective for detection of the variability caused by introgression of alien genetic material to T. aestivum genome.

  12. Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy

    PubMed Central

    Actis, Paolo; Maalouf, Michelle; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader

    2014-01-01

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis. PMID:24279711

  13. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    PubMed

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  14. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    PubMed

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  15. Genomics-enabled analysis of the emergent disease cotton bacterial blight

    PubMed Central

    Phillips, Anne Z.; Burke, Jillian; Bunn, J. Imani; Allen, Tom W.; Wheeler, Terry

    2017-01-01

    Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars. PMID:28910288

  16. Genome-wide association analysis for feed efficiency in Angus cattle.

    PubMed

    Rolf, M M; Taylor, J F; Schnabel, R D; McKay, S D; McClure, M C; Northcutt, S L; Kerley, M S; Weaber, R L

    2012-08-01

    Estimated breeding values for average daily feed intake (AFI; kg/day), residual feed intake (RFI; kg/day) and average daily gain (ADG; kg/day) were generated using a mixed linear model incorporating genomic relationships for 698 Angus steers genotyped with the Illumina BovineSNP50 assay. Association analyses of estimated breeding values (EBVs) were performed for 41,028 single nucleotide polymorphisms (SNPs), and permutation analysis was used to empirically establish the genome-wide significance threshold (P < 0.05) for each trait. SNPs significantly associated with each trait were used in a forward selection algorithm to identify genomic regions putatively harbouring genes with effects on each trait. A total of 53, 66 and 68 SNPs explained 54.12% (24.10%), 62.69% (29.85%) and 55.13% (26.54%) of the additive genetic variation (when accounting for the genomic relationships) in steer breeding values for AFI, RFI and ADG, respectively, within this population. Evaluation by pathway analysis revealed that many of these SNPs are in genomic regions that harbour genes with metabolic functions. The presence of genetic correlations between traits resulted in 13.2% of SNPs selected for AFI and 4.5% of SNPs selected for RFI also being selected for ADG in the analysis of breeding values. While our study identifies panels of SNPs significant for efficiency traits in our population, validation of all SNPs in independent populations will be necessary before commercialization. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  17. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme.

    PubMed

    Cowell, John K; Matsui, Sei-Ichi; Wang, Yong D; LaDuca, Jeffrey; Conroy, Jeffrey; McQuaid, Devin; Nowak, Norma J

    2004-05-01

    Identification of genetic losses and gains is valuable in analysis of brain tumors. Locus-by-locus analyses have revealed correlations between prognosis and response to chemotherapy and loss or gain of specific genes and loci. These approaches are labor intensive and do not provide a global view of the genetic changes within the tumor cells. Bacterial artificial chromosome (BAC) arrays, which cover the genome with an average resolution of less than 1 MbP, allow defining the sum total of these genetic changes in a single comparative genomic hybridization (CGH) experiment. These changes are directly overlaid on the human genome sequence, thus providing the extent of the amplification or deletion, reflected by a megabase position, and gene content of the abnormal region. Although this array-based CGH approach (CGHa) seems to detect the extent of the genetic changes in tumors reliably, it has not been robustly tested. We compared genetic changes in four newly derived, early-passage glioma cell lines, using spectral karyotyping (SKY) and CGHa. Chromosome changes seen in cell lines under SKY analysis were also detected with CGHa. In addition, CGHa detected cryptic genetic gains and losses and resolved the nature of subtle marker chromosomes that could not be resolved with SKY, thus providing distinct advantages over previous technologies. There was remarkable general concordance between the CGHa results comparing the cell lines to the original tumor, except that the magnitude of the changes seen in the tumor sample was generally suppressed compared with the cell lines, a consequence of normal cells contaminating the tumor sample. CGHa revealed changes in cell lines that were not present in the original tumors and vice versa, even when analyzed at the earliest passage possible, which highlights the adaptation of the cells to in vitro culture. CGHa proved to be highly accurate and efficient for identifying genetic changes in tumor cells. This approach can accurately

  18. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions

    PubMed Central

    Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A.; Guerrant, Richard L.

    2017-01-01

    Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas. PMID:28100790

  19. Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis

    PubMed Central

    Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia

    2011-01-01

    Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non

  20. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping.

    PubMed

    U'Ren, Jana M; Schupp, James M; Pearson, Talima; Hornstra, Heidie; Friedman, Christine L Clark; Smith, Kimothy L; Daugherty, Rebecca R Leadem; Rhoton, Shane D; Leadem, Ben; Georgia, Shalamar; Cardon, Michelle; Huynh, Lynn Y; DeShazer, David; Harvey, Steven P; Robison, Richard; Gal, Daniel; Mayo, Mark J; Wagner, David; Currie, Bart J; Keim, Paul

    2007-03-30

    The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health

  1. A Perfect Match Genomic Landscape Provides a Unified Framework for the Precise Detection of Variation in Natural and Synthetic Haploid Genomes

    PubMed Central

    Palacios-Flores, Kim; García-Sotelo, Jair; Castillo, Alejandra; Uribe, Carina; Aguilar, Luis; Morales, Lucía; Gómez-Romero, Laura; Reyes, José; Garciarubio, Alejandro; Boege, Margareta; Dávila, Guillermo

    2018-01-01

    We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository. PMID:29367403

  2. A Perfect Match Genomic Landscape Provides a Unified Framework for the Precise Detection of Variation in Natural and Synthetic Haploid Genomes.

    PubMed

    Palacios-Flores, Kim; García-Sotelo, Jair; Castillo, Alejandra; Uribe, Carina; Aguilar, Luis; Morales, Lucía; Gómez-Romero, Laura; Reyes, José; Garciarubio, Alejandro; Boege, Margareta; Dávila, Guillermo

    2018-04-01

    We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository. Copyright © 2018 by the Genetics Society of America.

  3. Genome sequencing and analysis of the model grass Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Kalluri, Udaya C; Tuskan, Gerald A

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with easemore » of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.« less

  4. Re-Assembly and Analysis of an Ancient Variola Virus Genome.

    PubMed

    Smithson, Chad; Imbery, Jacob; Upton, Chris

    2017-09-08

    We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.

  5. High-resolution DNA melting analysis in plant research

    USDA-ARS?s Scientific Manuscript database

    Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually developed...

  6. Genome-Wide Comparative Analysis Reveals Similar Types of NBS Genes in Hybrid Citrus sinensis Genome and Original Citrus clementine Genome and Provides New Insights into Non-TIR NBS Genes

    PubMed Central

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K.; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention. PMID:25811466

  7. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    PubMed

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  8. Genome-scale analysis of positionally relocated genes

    PubMed Central

    Bhutkar, Arjun; Russo, Susan M.; Smith, Temple F.; Gelbart, William M.

    2007-01-01

    During evolution, genome reorganization includes large-scale events such as inversions, translocations, and segmental or even whole-genome duplications, as well as fine-scale events such as the relocation of individual genes. This latter category, which we will refer to as positionally relocated genes (PRGs), is the subject of this report. Assessment of the magnitude of such PRGs and of possible contributing mechanisms is aided by a comparative analysis of related genomes, where conserved chromosomal organization can aid in identifying genes that have acquired a new location in a lineage of these genomes. Here we utilize two methods to comprehensively identify relocated protein-coding genes in the recently sequenced genomes of 12 species of genus Drosophila. We use exceptions to the general rule of maintenance of chromosome arm (Muller element) association for most Drosophila genes to identify one major class of PRGs. We also identify a partially overlapping set of PRGs among “embedded genes,” located within the extents of other surrounding genes. We provide evidence that PRG movements have at least two different origins: Some events occur via retrotransposition of processed RNAs and others via a DNA-based transposition mechanism. Overall, we identify several hundred PRGs that arose within a lineage of the genus Drosophila phylogeny and provide suggestive evidence that a few thousand such events have occurred within the radiation of the insect order Diptera, thereby illustrating the magnitude of the contribution of PRG movement to chromosomal reorganization during evolution. PMID:17989252

  9. iCLIP: Protein–RNA interactions at nucleotide resolution

    PubMed Central

    Huppertz, Ina; Attig, Jan; D’Ambrogio, Andrea; Easton, Laura E.; Sibley, Christopher R.; Sugimoto, Yoichiro; Tajnik, Mojca; König, Julian; Ule, Jernej

    2014-01-01

    RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein–RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein–RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs. PMID:24184352

  10. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays

    PubMed Central

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Sethi, Himanshu; Liang, Shoudan; Nelson, David C.; Hegeman, Adrian; Nelson, Clark; Rancour, David; Bednarek, Sebastian; Ulrich, Eldon L.; Zhao, Qin; Wrobel, Russell L.; Newman, Craig S.; Fox, Brian G.; Phillips, George N.; Markley, John L.; Sussman, Michael R.

    2005-01-01

    Using a maskless photolithography method, we produced DNA oligonucleotide microarrays with probe sequences tiled throughout the genome of the plant Arabidopsis thaliana. RNA expression was determined for the complete nuclear, mitochondrial, and chloroplast genomes by tiling 5 million 36-mer probes. These probes were hybridized to labeled mRNA isolated from liquid grown T87 cells, an undifferentiated Arabidopsis cell culture line. Transcripts were detected from at least 60% of the nearly 26,330 annotated genes, which included 151 predicted genes that were not identified previously by a similar genome-wide hybridization study on four different cell lines. In comparison with previously published results with 25-mer tiling arrays produced by chromium masking-based photolithography technique, 36-mer oligonucleotide probes were found to be more useful in identifying intron–exon boundaries. Using two-dimensional HPLC tandem mass spectrometry, a small-scale proteomic analysis was performed with the same cells. A large amount of strongly hybridizing RNA was found in regions “antisense” to known genes. Similarity of antisense activities between the 25-mer and 36-mer data sets suggests that it is a reproducible and inherent property of the experiments. Transcription activities were also detected for many of the intergenic regions and the small RNAs, including tRNA, small nuclear RNA, small nucleolar RNA, and microRNA. Expression of tRNAs correlates with genome-wide amino acid usage. PMID:15755812

  11. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Sethi, Himanshu; Liang, Shoudan; Nelson, David C.; Hegeman, Adrian; Nelson, Clark; Rancour, David; Bednarek, Sebastian; hide

    2005-01-01

    Using a maskless photolithography method, we produced DNA oligonucleotide microarrays with probe sequences tiled throughout the genome of the plant Arabidopsis thaliana. RNA expression was determined for the complete nuclear, mitochondrial, and chloroplast genomes by tiling 5 million 36-mer probes. These probes were hybridized to labeled mRNA isolated from liquid grown T87 cells, an undifferentiated Arabidopsis cell culture line. Transcripts were detected from at least 60% of the nearly 26,330 annotated genes, which included 151 predicted genes that were not identified previously by a similar genome-wide hybridization study on four different cell lines. In comparison with previously published results with 25-mer tiling arrays produced by chromium masking-based photolithography technique, 36-mer oligonucleotide probes were found to be more useful in identifying intron-exon boundaries. Using two-dimensional HPLC tandem mass spectrometry, a small-scale proteomic analysis was performed with the same cells. A large amount of strongly hybridizing RNA was found in regions "antisense" to known genes. Similarity of antisense activities between the 25-mer and 36-mer data sets suggests that it is a reproducible and inherent property of the experiments. Transcription activities were also detected for many of the intergenic regions and the small RNAs, including tRNA, small nuclear RNA, small nucleolar RNA, and microRNA. Expression of tRNAs correlates with genome-wide amino acid usage.

  12. High-resolution array comparative genomic hybridization (aCGH) identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy

    PubMed Central

    Kreisel, F.; Kulkarni, S.; Kerns, R. T.; Hassan, A.; Deshmukh, H.; Nagarajan, R.; Frater, J. L.; Cashen, A.

    2013-01-01

    Despite recent attempts at sub-categorization, including gene expression profiling into prognostically different groups of “germinal center B-cell type” and “activated B-cell type”, diffuse large B-cell lymphoma (DLBCL) remains a biologically heterogenous tumor with no clear prognostic biomarkers to guide therapy. Whole genome, high resolution array comparative genomic hybridization (aCGH) was performed on 4 cases of chemoresistant DLBCL and 4 cases of chemo-responsive DLBCL to identify genetic differences which may correlate with response to R-CHOP therapy. Array CGH analysis identified 7 DNA copy number alteration (CNA) regions exclusive to the chemoresistant group, consisting of amplifications at 1p36.13, 1q42.3, 3p21.31, 7q11.23, and 16p13.3, and loss at 9p21.3, and 14p21.31. Copy number loss of the tumor suppressor genes CDKN2A (p16, p14) and CDKN2B (p15) at 9p21.3 was validated by fluorescence in situ hybridization and immunohistochemistry as independent techniques. In the chemo-sensitive group, 12 CNAs were detected consisting of segment gains on 1p36.11, 1p36.22, 2q11.2, 8q24.3, 12p13.33, and 22q13.2 and segment loss on 6p21.32. RUNX3, a tumor suppressor gene located on 1p36.11 and MTHFR, which encodes for the enzyme methylenetetrahydrofolate reductase, located on 1p36.22 are the only known genes in this group associated with lymphoma. Whole genome aCGH analysis has detected copy number alterations exclusive to either chemoresistant or chemo-responsive DLBCL that may represent consistent clonal changes predictive for prognosis and outcome of chemotherapy. PMID:21504712

  13. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    PubMed

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  15. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    PubMed

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  16. Bacterial genomes in epidemiology—present and future

    PubMed Central

    Croucher, Nicholas J.; Harris, Simon R.; Grad, Yonatan H.; Hanage, William P.

    2013-01-01

    Sequence data are well established in the reconstruction of the phylogenetic and demographic scenarios that have given rise to outbreaks of viral pathogens. The application of similar methods to bacteria has been hindered in the main by the lack of high-resolution nucleotide sequence data from quality samples. Developing and already available genomic methods have greatly increased the amount of data that can be used to characterize an isolate and its relationship to others. However, differences in sequencing platforms and data analysis mean that these enhanced data come with a cost in terms of portability: results from one laboratory may not be directly comparable with those from another. Moreover, genomic data for many bacteria bear the mark of a history including extensive recombination, which has the potential to greatly confound phylogenetic and coalescent analyses. Here, we discuss the exacting requirements of genomic epidemiology, and means by which the distorting signal of recombination can be minimized to permit the leverage of growing datasets of genomic data from bacterial pathogens. PMID:23382424

  17. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    PubMed Central

    Freschi, Luca; Jeukens, Julie; Kukavica-Ibrulj, Irena; Boyle, Brian; Dupont, Marie-Josée; Laroche, Jérôme; Larose, Stéphane; Maaroufi, Halim; Fothergill, Joanne L.; Moore, Matthew; Winsor, Geoffrey L.; Aaron, Shawn D.; Barbeau, Jean; Bell, Scott C.; Burns, Jane L.; Camara, Miguel; Cantin, André; Charette, Steve J.; Dewar, Ken; Déziel, Éric; Grimwood, Keith; Hancock, Robert E. W.; Harrison, Joe J.; Heeb, Stephan; Jelsbak, Lars; Jia, Baofeng; Kenna, Dervla T.; Kidd, Timothy J.; Klockgether, Jens; Lam, Joseph S.; Lamont, Iain L.; Lewenza, Shawn; Loman, Nick; Malouin, François; Manos, Jim; McArthur, Andrew G.; McKeown, Josie; Milot, Julie; Naghra, Hardeep; Nguyen, Dao; Pereira, Sheldon K.; Perron, Gabriel G.; Pirnay, Jean-Paul; Rainey, Paul B.; Rousseau, Simon; Santos, Pedro M.; Stephenson, Anne; Taylor, Véronique; Turton, Jane F.; Waglechner, Nicholas; Williams, Paul; Thrane, Sandra W.; Wright, Gerard D.; Brinkman, Fiona S. L.; Tucker, Nicholas P.; Tümmler, Burkhard; Winstanley, Craig; Levesque, Roger C.

    2015-01-01

    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care. PMID:26483767

  18. The Cancer Genome Atlas Pan-Cancer analysis project.

    PubMed

    Weinstein, John N; Collisson, Eric A; Mills, Gordon B; Shaw, Kenna R Mills; Ozenberger, Brad A; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M

    2013-10-01

    The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

  19. Genomic analysis and selected molecular pathways in rare cancers

    NASA Astrophysics Data System (ADS)

    Liu, Stephen V.; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J.; Eng, Cathy; Ramanathan, Ramesh K.; Von Hoff, Daniel D.; Barrett, Michael T.

    2012-12-01

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.

  20. Genomic analysis and selected molecular pathways in rare cancers.

    PubMed

    Liu, Stephen V; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J; Eng, Cathy; Ramanathan, Ramesh K; Von Hoff, Daniel D; Barrett, Michael T

    2012-12-01

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.

  1. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island.

    PubMed

    Wu, Zongfu; Wang, Weixue; Tang, Min; Shao, Jing; Dai, Chen; Zhang, Wei; Fan, Hongjie; Yao, Huochun; Zong, Jie; Chen, Dai; Wang, Junning; Lu, Chengping

    2014-02-10

    Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Guidelines for Genome-Scale Analysis of Biological Rhythms.

    PubMed

    Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B

    2017-10-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

  3. Guidelines for Genome-Scale Analysis of Biological Rhythms

    PubMed Central

    Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.

    2017-01-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954

  4. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.

    PubMed

    Garst, Andrew D; Bassalo, Marcelo C; Pines, Gur; Lynch, Sean A; Halweg-Edwards, Andrea L; Liu, Rongming; Liang, Liya; Wang, Zhiwen; Zeitoun, Ramsey; Alexander, William G; Gill, Ryan T

    2017-01-01

    Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.

  5. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    USDA-ARS?s Scientific Manuscript database

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  6. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    PubMed

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to

  8. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    PubMed

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  9. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.

    PubMed

    Nikpay, Majid; Goel, Anuj; Won, Hong-Hee; Hall, Leanne M; Willenborg, Christina; Kanoni, Stavroula; Saleheen, Danish; Kyriakou, Theodosios; Nelson, Christopher P; Hopewell, Jemma C; Webb, Thomas R; Zeng, Lingyao; Dehghan, Abbas; Alver, Maris; Armasu, Sebastian M; Auro, Kirsi; Bjonnes, Andrew; Chasman, Daniel I; Chen, Shufeng; Ford, Ian; Franceschini, Nora; Gieger, Christian; Grace, Christopher; Gustafsson, Stefan; Huang, Jie; Hwang, Shih-Jen; Kim, Yun Kyoung; Kleber, Marcus E; Lau, King Wai; Lu, Xiangfeng; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Mihailov, Evelin; Morrison, Alanna C; Pervjakova, Natalia; Qu, Liming; Rose, Lynda M; Salfati, Elias; Saxena, Richa; Scholz, Markus; Smith, Albert V; Tikkanen, Emmi; Uitterlinden, Andre; Yang, Xueli; Zhang, Weihua; Zhao, Wei; de Andrade, Mariza; de Vries, Paul S; van Zuydam, Natalie R; Anand, Sonia S; Bertram, Lars; Beutner, Frank; Dedoussis, George; Frossard, Philippe; Gauguier, Dominique; Goodall, Alison H; Gottesman, Omri; Haber, Marc; Han, Bok-Ghee; Huang, Jianfeng; Jalilzadeh, Shapour; Kessler, Thorsten; König, Inke R; Lannfelt, Lars; Lieb, Wolfgang; Lind, Lars; Lindgren, Cecilia M; Lokki, Marja-Liisa; Magnusson, Patrik K; Mallick, Nadeem H; Mehra, Narinder; Meitinger, Thomas; Memon, Fazal-Ur-Rehman; Morris, Andrew P; Nieminen, Markku S; Pedersen, Nancy L; Peters, Annette; Rallidis, Loukianos S; Rasheed, Asif; Samuel, Maria; Shah, Svati H; Sinisalo, Juha; Stirrups, Kathleen E; Trompet, Stella; Wang, Laiyuan; Zaman, Khan S; Ardissino, Diego; Boerwinkle, Eric; Borecki, Ingrid B; Bottinger, Erwin P; Buring, Julie E; Chambers, John C; Collins, Rory; Cupples, L Adrienne; Danesh, John; Demuth, Ilja; Elosua, Roberto; Epstein, Stephen E; Esko, Tõnu; Feitosa, Mary F; Franco, Oscar H; Franzosi, Maria Grazia; Granger, Christopher B; Gu, Dongfeng; Gudnason, Vilmundur; Hall, Alistair S; Hamsten, Anders; Harris, Tamara B; Hazen, Stanley L; Hengstenberg, Christian; Hofman, Albert; Ingelsson, Erik; Iribarren, Carlos; Jukema, J Wouter; Karhunen, Pekka J; Kim, Bong-Jo; Kooner, Jaspal S; Kullo, Iftikhar J; Lehtimäki, Terho; Loos, Ruth J F; Melander, Olle; Metspalu, Andres; März, Winfried; Palmer, Colin N; Perola, Markus; Quertermous, Thomas; Rader, Daniel J; Ridker, Paul M; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Sanghera, Dharambir K; Schwartz, Stephen M; Seedorf, Udo; Stewart, Alexandre F; Stott, David J; Thiery, Joachim; Zalloua, Pierre A; O'Donnell, Christopher J; Reilly, Muredach P; Assimes, Themistocles L; Thompson, John R; Erdmann, Jeanette; Clarke, Robert; Watkins, Hugh; Kathiresan, Sekar; McPherson, Ruth; Deloukas, Panos; Schunkert, Heribert; Samani, Nilesh J; Farrall, Martin

    2015-10-01

    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.

  10. LOLAweb: a containerized web server for interactive genomic locus overlap enrichment analysis.

    PubMed

    Nagraj, V P; Magee, Neal E; Sheffield, Nathan C

    2018-06-06

    The past few years have seen an explosion of interest in understanding the role of regulatory DNA. This interest has driven large-scale production of functional genomics data and analytical methods. One popular analysis is to test for enrichment of overlaps between a query set of genomic regions and a database of region sets. In this way, new genomic data can be easily connected to annotations from external data sources. Here, we present an interactive interface for enrichment analysis of genomic locus overlaps using a web server called LOLAweb. LOLAweb accepts a set of genomic ranges from the user and tests it for enrichment against a database of region sets. LOLAweb renders results in an R Shiny application to provide interactive visualization features, enabling users to filter, sort, and explore enrichment results dynamically. LOLAweb is built and deployed in a Linux container, making it scalable to many concurrent users on our servers and also enabling users to download and run LOLAweb locally.

  11. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    PubMed Central

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  13. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  14. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    PubMed

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  15. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments

    PubMed Central

    Raviram, Ramya; Rocha, Pedro P.; Müller, Christian L.; Miraldi, Emily R.; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina

    2016-01-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. PMID:26938081

  16. [Comparative analysis of variable regions in the genomes of variola virus].

    PubMed

    Babkin, I V; Nepomniashchikh, T S; Maksiutov, R A; Gutorov, V V; Babkina, I N; Shchelkunov, S N

    2008-01-01

    Nucleotide sequences of two extended segments of the terminal variable regions in variola virus genome were determined. The size of the left segment was 13.5 kbp and of the right, 10.5 kbp. Totally, over 540 kbp were sequenced for 22 variola virus strains. The conducted phylogenetic analysis and the data published earlier allowed us to find the interrelations between 70 variola virus isolates, the character of their clustering, and the degree of intergroup and intragroup variations of the clusters of variola virus strains. The most polymorphic loci of the genome segments studied were determined. It was demonstrated that that these loci are localized to either noncoding genome regions or to the regions of destroyed open reading frames, characteristic of the ancestor virus. These loci are promising for development of the strategy for genotyping variola virus strains. Analysis of recombination using various methods demonstrated that, with the only exception, no statistically significant recombinational events in the genomes of variola virus strains studied were detectable.

  17. High-Resolution Analysis by Whole-Genome Sequencing of an International Lineage (Sequence Type 111) of Pseudomonas aeruginosa Associated with Metallo-Carbapenemases in the United Kingdom.

    PubMed

    Turton, Jane F; Wright, Laura; Underwood, Anthony; Witney, Adam A; Chan, Yuen-Ting; Al-Shahib, Ali; Arnold, Catherine; Doumith, Michel; Patel, Bharat; Planche, Timothy D; Green, Jonathan; Holliman, Richard; Woodford, Neil

    2015-08-01

    Whole-genome sequencing (WGS) was carried out on 87 isolates of sequence type 111 (ST-111) of Pseudomonas aeruginosa collected between 2005 and 2014 from 65 patients and 12 environmental isolates from 24 hospital laboratories across the United Kingdom on an Illumina HiSeq instrument. Most isolates (73) carried VIM-2, but others carried IMP-1 or IMP-13 (5) or NDM-1 (1); one isolate had VIM-2 and IMP-18, and 7 carried no metallo-beta-lactamase (MBL) gene. Single nucleotide polymorphism analysis divided the isolates into distinct clusters; the NDM-1 isolate was an outlier, and the IMP isolates and 6/7 MBL-negative isolates clustered separately from the main set of 73 VIM-2 isolates. Within the VIM-2 set, there were at least 3 distinct clusters, including a tightly clustered set of isolates from 3 hospital laboratories consistent with an outbreak from a single introduction that was quickly brought under control and a much broader set dominated by isolates from a long-running outbreak in a London hospital likely seeded from an environmental source, requiring different control measures; isolates from 7 other hospital laboratories in London and southeast England were also included. Bayesian evolutionary analysis indicated that all the isolates shared a common ancestor dating back ∼50 years (1960s), with the main VIM-2 set separating approximately 20 to 30 years ago. Accessory gene profiling revealed blocks of genes associated with particular clusters, with some having high similarity (≥95%) to bacteriophage genes. WGS of widely found international lineages such as ST-111 provides the necessary resolution to inform epidemiological investigations and intervention policies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. 2q37 Deletion syndrome confirmed by high-resolution cytogenetic analysis

    PubMed Central

    Cho, Eun-Kyung; Kim, Jinsup; Yang, Aram; Jin, Dong-Kyu

    2017-01-01

    Chromosome 2q37 deletion syndrome is a rare chromosomal disorder characterized by mild to moderate developmental delay, brachydactyly of the third to fifth digits or toes, short stature, obesity, hypotonia, a characteristic facial appearance, and autism spectrum disorder. Here, we report on a patient with 2q37 deletion presenting with dilated cardiomyopathy (DCMP). Congenital heart malformations have been noted in up to 20% of patients with 2q37 deletions. However, DCMP has not been reported in 2q37 deletion patients previously. The patient exhibited the characteristic facial appearance (a flat nasal bridge, deep-set eyes, arched eyebrows, and a thin upper lip), developmental delay, mild mental retardation, peripheral nerve palsy, and Albright hereditary osteodystrophy (AHO)-like phenotypes (short stature and brachydactyly). Conventional chromosomal analysis results were normal; however, microarray-based comparative genomic hybridization revealed terminal deletion at 2q37.1q37.3. In addition, the patient was confirmed to have partial growth hormone (GH) deficiency and had shown a significant increase in growth rate after substitutive GH therapy. Chromosome 2q37 deletion syndrome should be considered in the differential diagnosis of patients presenting with AHO features, especially in the presence of facial dysmorphism. When patients are suspected of having a 2q37 deletion, high-resolution cytogenetic analysis is recommended. PMID:28690993

  19. Producing genome structure populations with the dynamic and automated PGS software.

    PubMed

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  20. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    PubMed

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. © 2015 S. Karger AG, Basel.

  1. GDA, a web-based tool for Genomics and Drugs integrated analysis.

    PubMed

    Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio

    2018-05-25

    Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.

  2. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway

    PubMed Central

    Muñoz-Ramírez, Zilia Y.; Mendez-Tenorio, Alfonso; Kato, Ikuko; Bravo, Maria M.; Rizzato, Cosmeri; Thorell, Kaisa; Torres, Roberto; Aviles-Jimenez, Francisco; Camorlinga, Margarita; Canzian, Federico; Torres, Javier

    2017-01-01

    Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk. PMID:28293542

  3. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  4. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  5. A high-resolution map of the three-dimensional chromatin interactome in human cells.

    PubMed

    Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing

    2013-11-14

    A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.

  6. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    PubMed

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  7. iCLIP: protein-RNA interactions at nucleotide resolution.

    PubMed

    Huppertz, Ina; Attig, Jan; D'Ambrogio, Andrea; Easton, Laura E; Sibley, Christopher R; Sugimoto, Yoichiro; Tajnik, Mojca; König, Julian; Ule, Jernej

    2014-02-01

    RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein-RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein-RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Whole-genome sequence-based analysis of thyroid function.

    PubMed

    Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G

    2015-03-06

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.

  9. Atlas2 Cloud: a framework for personal genome analysis in the cloud

    PubMed Central

    2012-01-01

    Background Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. Results We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. Conclusions We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms. PMID:23134663

  10. Atlas2 Cloud: a framework for personal genome analysis in the cloud.

    PubMed

    Evani, Uday S; Challis, Danny; Yu, Jin; Jackson, Andrew R; Paithankar, Sameer; Bainbridge, Matthew N; Jakkamsetti, Adinarayana; Pham, Peter; Coarfa, Cristian; Milosavljevic, Aleksandar; Yu, Fuli

    2012-01-01

    Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms.

  11. Privacy-preserving GWAS analysis on federated genomic datasets.

    PubMed

    Constable, Scott D; Tang, Yuzhe; Wang, Shuang; Jiang, Xiaoqian; Chapin, Steve

    2015-01-01

    The biomedical community benefits from the increasing availability of genomic data to support meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually requires a large amount of samples, which can grow beyond the capability of a single institution. Federated genomic data analysis holds the promise of enabling cross-institution collaboration for effective GWAS, but it raises concerns about patient privacy and medical information confidentiality (as data are being exchanged across institutional boundaries), which becomes an inhibiting factor for the practical use. We present a privacy-preserving GWAS framework on federated genomic datasets. Our method is to layer the GWAS computations on top of secure multi-party computation (MPC) systems. This approach allows two parties in a distributed system to mutually perform secure GWAS computations, but without exposing their private data outside. We demonstrate our technique by implementing a framework for minor allele frequency counting and χ2 statistics calculation, one of typical computations used in GWAS. For efficient prototyping, we use a state-of-the-art MPC framework, i.e., Portable Circuit Format (PCF) 1. Our experimental results show promise in realizing both efficient and secure cross-institution GWAS computations.

  12. Comparative genomic analysis of seven Mycoplasma hyosynoviae strains

    PubMed Central

    Bumgardner, Eric A; Kittichotirat, Weerayuth; Bumgarner, Roger E; Lawrence, Paulraj K

    2015-01-01

    Infection with Mycoplasma hyosynoviae can result in debilitating arthritis in pigs, particularly those aged 10 weeks or older. Strategies for controlling this pathogen are becoming increasingly important due to the rise in the number of cases of arthritis that have been attributed to infection in recent years. In order to begin to develop interventions to prevent arthritis caused by M. hyosynoviae, more information regarding the specific proteins and potential virulence factors that its genome encodes was needed. However, the genome of this emerging swine pathogen had not been sequenced previously. In this report, we present a comparative analysis of the genomes of seven strains of M. hyosynoviae isolated from different locations in North America during the years 2010 to 2013. We identified several putative virulence factors that may contribute to the ability of this pathogen to adhere to host cells. Additionally, we discovered several prophage genes present within the genomes of three strains that show significant similarity to MAV1, a phage isolated from the related species, M. arthritidis. We also identified CRISPR-Cas and type III restriction and modification systems present in two strains that may contribute to their ability to defend against phage infection. PMID:25693846

  13. Analysis of pig genomes provide insight into porcine demography and evolution

    USDA-ARS?s Scientific Manuscript database

    For nearly 8,000 years pigs and humans have shared a close and complex relationship, and through domestication and breeding, humans have shaped the genomes of current diverse pig breeds. Here we present the assembly and analysis of the genome sequence of a female domestic pig from the European Duroc...

  14. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  15. High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis

    PubMed Central

    An, Shi-Qi; Febrer, Melanie; McCarthy, Yvonne; Tang, Dong-Jie; Clissold, Leah; Kaithakottil, Gemy; Swarbreck, David; Tang, Ji-Liang; Rogers, Jane; Dow, J Maxwell; Ryan, Robert P

    2013-01-01

    The bacterium Xanthomonas campestris is an economically important pathogen of many crop species and a model for the study of bacterial phytopathogenesis. In X. campestris, a regulatory system mediated by the signal molecule DSF controls virulence to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon a system comprising the sensor RpfC and regulator RpfG. Here we have addressed the action and role of Rpf/DSF signalling in phytopathogenesis by high-resolution transcriptional analysis coupled to functional genomics. We detected transcripts for many genes that were unidentified by previous computational analysis of the genome sequence. Novel transcribed regions included intergenic transcripts predicted as coding or non-coding as well as those that were antisense to coding sequences. In total, mutation of rpfF, rpfG and rpfC led to alteration in transcript levels (more than fourfold) of approximately 480 genes. The regulatory influence of RpfF and RpfC demonstrated considerable overlap. Contrary to expectation, the regulatory influence of RpfC and RpfG had limited overlap, indicating complexities of the Rpf signalling system. Importantly, functional analysis revealed over 160 new virulence factors within the group of Rpf-regulated genes. PMID:23617851

  16. Comparing Mycobacterium tuberculosis genomes using genome topology networks.

    PubMed

    Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan

    2015-02-14

    Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes

  17. [Detection of the introgression of genome elements of the Aegilops cylindrica host. into the Triticum aestivum L. genome by ISSR and SSR analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2004-12-01

    To reveal sites of the donor genome in wheat crossed with Aegilops cylindrica, which acquired conferred resistance to fungal diseases, a comparative analysis of introgressive and parental forms was conducted. Two systems of PCR analysis, ISSR and SSR-PCR, were employed. Upon use of 7 ISSR primers in genotypes of 30 individual plants BC1 F9 belonging to lines 5/55-91 and 5/20-91, 19 ISSR loci were revealed and assigned to introgressive fragments of Aegilops cylindrica genome in Triticum aestivum. The 40 pairs of SSR primers allowed the detection of seven introgressive alleles; three of these alleles were located on common wheat chromosomes in the B genome, while four alleles, in the D genome. Based on data of microsatellite analysis, it was assumed that the telomeric region of the long arm of common wheat chromosome 6A also changed. ISSR and SSR methods were shown to be effective for detecting variability caused by introgression of foreign genetic material into the genome of common wheat.

  18. Genome Comparisons Reveal a Dominant Mechanism of Chromosome Number Reduction in Grasses and Accelerated Genome Evolution in Triticeae

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...

  19. Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle

    Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less

  20. Sigma: Strain-level inference of genomes from metagenomic analysis for biosurveillance

    DOE PAGES

    Ahn, Tae-Hyuk; Chai, Juanjuan; Pan, Chongle

    2014-09-29

    Motivation: Metagenomic sequencing of clinical samples provides a promising technique for direct pathogen detection and characterization in biosurveillance. Taxonomic analysis at the strain level can be used to resolve serotypes of a pathogen in biosurveillance. Sigma was developed for strain-level identification and quantification of pathogens using their reference genomes based on metagenomic analysis. Results: Sigma provides not only accurate strain-level inferences, but also three unique capabilities: (i) Sigma quantifies the statistical uncertainty of its inferences, which includes hypothesis testing of identified genomes and confidence interval estimation of their relative abundances; (ii) Sigma enables strain variant calling by assigning metagenomic readsmore » to their most likely reference genomes; and (iii) Sigma supports parallel computing for fast analysis of large datasets. In conclusion, the algorithm performance was evaluated using simulated mock communities and fecal samples with spike-in pathogen strains. Availability and Implementation: Sigma was implemented in C++ with source codes and binaries freely available at http://sigma.omicsbio.org.« less

  1. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. © 2010 Wiley-Liss, Inc.

  2. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.

    PubMed

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-09-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  3. The timing resolution of scintillation-detector systems: Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng

    2009-11-01

    Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and

  4. The timing resolution of scintillation-detector systems: Monte Carlo analysis.

    PubMed

    Choong, Woon-Seng

    2009-11-07

    Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and

  5. Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less

  6. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    PubMed

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  7. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    PubMed Central

    2011-01-01

    Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants. PMID:22082336

  8. Accurate evaluation and analysis of functional genomics data and methods

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2016-01-01

    The development of technology capable of inexpensively performing large-scale measurements of biological systems has generated a wealth of data. Integrative analysis of these data holds the promise of uncovering gene function, regulation, and, in the longer run, understanding complex disease. However, their analysis has proved very challenging, as it is difficult to quickly and effectively assess the relevance and accuracy of these data for individual biological questions. Here, we identify biases that present challenges for the assessment of functional genomics data and methods. We then discuss evaluation methods that, taken together, begin to address these issues. We also argue that the funding of systematic data-driven experiments and of high-quality curation efforts will further improve evaluation metrics so that they more-accurately assess functional genomics data and methods. Such metrics will allow researchers in the field of functional genomics to continue to answer important biological questions in a data-driven manner. PMID:22268703

  9. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.

    PubMed

    ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong

    2018-05-15

    We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.

  10. Ethical considerations of research policy for personal genome analysis: the approach of the Genome Science Project in Japan.

    PubMed

    Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto

    2014-12-01

    As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.

  11. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm Spodoptera littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of...

  12. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    PubMed

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  13. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.

    PubMed

    Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M

    2012-04-05

    The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via

  14. Comparative genomic analysis of Acinetobacter strains isolated from murine colonic crypts.

    PubMed

    Saffarian, Azadeh; Touchon, Marie; Mulet, Céline; Tournebize, Régis; Passet, Virginie; Brisse, Sylvain; Rocha, Eduardo P C; Sansonetti, Philippe J; Pédron, Thierry

    2017-07-11

    A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities. Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems. Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt.

  15. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    Benito, Ernesto P.; Couloux, Arnaud; Coutinho, Pedro M.; de Vries, Ronald P.; Dyer, Paul S.; Fillinger, Sabine; Fournier, Elisabeth; Gout, Lilian; Hahn, Matthias; Kohn, Linda; Lapalu, Nicolas; Plummer, Kim M.; Pradier, Jean-Marc; Quévillon, Emmanuel; Sharon, Amir; Simon, Adeline; ten Have, Arjen; Tudzynski, Bettina; Tudzynski, Paul; Wincker, Patrick; Andrew, Marion; Anthouard, Véronique; Beffa, Rolland; Benoit, Isabelle; Bouzid, Ourdia; Brault, Baptiste; Chen, Zehua; Choquer, Mathias; Collémare, Jérome; Cotton, Pascale; Danchin, Etienne G.; Da Silva, Corinne; Gautier, Angélique; Giraud, Corinne; Giraud, Tatiana; Gonzalez, Celedonio; Grossetete, Sandrine; Güldener, Ulrich; Henrissat, Bernard; Howlett, Barbara J.; Kodira, Chinnappa; Kretschmer, Matthias; Lappartient, Anne; Leroch, Michaela; Levis, Caroline; Mauceli, Evan; Neuvéglise, Cécile; Oeser, Birgitt; Pearson, Matthew; Poulain, Julie; Poussereau, Nathalie; Quesneville, Hadi; Rascle, Christine; Schumacher, Julia; Ségurens, Béatrice; Sexton, Adrienne; Silva, Evelyn; Sirven, Catherine; Soanes, Darren M.; Talbot, Nicholas J.; Templeton, Matt; Yandava, Chandri; Yarden, Oded; Zeng, Qiandong; Rollins, Jeffrey A.; Lebrun, Marc-Henri; Dickman, Marty

    2011-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such

  16. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    PubMed

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  17. Comparative genomic analysis of the Haloferax volcanii DS2 and Halobacterium salinarium GRB contig maps reveals extensive rearrangement.

    PubMed Central

    St Jean, A; Charlebois, R L

    1996-01-01

    Anonymous probes from the genome of Halobacterium salinarium GRB and 12 gene probes were hybridized to the cosmid clones representing the chromosome and plasmids of Halobacterium salinarium GRB and Haloferax volcanii DS2. The order of and pairwise distances between 35 loci uniquely cross-hybridizing to both chromosomes were analyzed in a search for conservation. No conservation between the genomes could be detected at the 15-kbp resolution used in this study. We found distinct sets of low-copy-number repeated sequences in the chromosome and plasmids of Halobacterium salinarium GRB, indicating some degree of partitioning between these replicons. We propose alternative courses for the evolution of the haloarchaeal genome: (i) that the majority of genomic differences that exist between genera came about at the inception of this group or (ii) that the differences have accumulated over the lifetime of the lineage. The strengths and limitations of investigating these models through comparative genomic studies are discussed. PMID:8682791

  18. An Alternative Methodological Approach for Cost-Effectiveness Analysis and Decision Making in Genomic Medicine.

    PubMed

    Fragoulakis, Vasilios; Mitropoulou, Christina; van Schaik, Ron H; Maniadakis, Nikolaos; Patrinos, George P

    2016-05-01

    Genomic Medicine aims to improve therapeutic interventions and diagnostics, the quality of life of patients, but also to rationalize healthcare costs. To reach this goal, careful assessment and identification of evidence gaps for public health genomics priorities are required so that a more efficient healthcare environment is created. Here, we propose a public health genomics-driven approach to adjust the classical healthcare decision making process with an alternative methodological approach of cost-effectiveness analysis, which is particularly helpful for genomic medicine interventions. By combining classical cost-effectiveness analysis with budget constraints, social preferences, and patient ethics, we demonstrate the application of this model, the Genome Economics Model (GEM), based on a previously reported genome-guided intervention from a developing country environment. The model and the attendant rationale provide a practical guide by which all major healthcare stakeholders could ensure the sustainability of funding for genome-guided interventions, their adoption and coverage by health insurance funds, and prioritization of Genomic Medicine research, development, and innovation, given the restriction of budgets, particularly in developing countries and low-income healthcare settings in developed countries. The implications of the GEM for the policy makers interested in Genomic Medicine and new health technology and innovation assessment are also discussed.

  19. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  20. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  1. GenomeVIP: a cloud platform for genomic variant discovery and interpretation

    PubMed Central

    Mashl, R. Jay; Scott, Adam D.; Huang, Kuan-lin; Wyczalkowski, Matthew A.; Yoon, Christopher J.; Niu, Beifang; DeNardo, Erin; Yellapantula, Venkata D.; Handsaker, Robert E.; Chen, Ken; Koboldt, Daniel C.; Ye, Kai; Fenyö, David; Raphael, Benjamin J.; Wendl, Michael C.; Ding, Li

    2017-01-01

    Identifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a result, the search for alternative approaches to the traditional “download and analyze” paradigm on local computing resources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis. Here, we introduce the Genome Variant Investigation Platform (GenomeVIP), an open-source framework for performing genomics variant discovery and annotation using cloud- or local high-performance computing infrastructure. GenomeVIP orchestrates the analysis of whole-genome and exome sequence data using a set of robust and popular task-specific tools, including VarScan, GATK, Pindel, BreakDancer, Strelka, and Genome STRiP, through a web interface. GenomeVIP has been used for genomic analysis in large-data projects such as the TCGA PanCanAtlas and in other projects, such as the ICGC Pilots, CPTAC, ICGC-TCGA DREAM Challenges, and the 1000 Genomes SV Project. Here, we demonstrate GenomeVIP's ability to provide high-confidence annotated somatic, germline, and de novo variants of potential biological significance using publicly available data sets. PMID:28522612

  2. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Han, Lee; Liu, Cheng

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less

  3. Characterizing polymorphic inversions in human genomes by single-cell sequencing

    PubMed Central

    Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.

    2016-01-01

    Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961

  4. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    PubMed Central

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  5. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  6. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status.

    PubMed

    Schwaenen, Carsten; Viardot, Andreas; Berger, Hilmar; Barth, Thomas F E; Bentink, Stefan; Döhner, Hartmut; Enz, Martina; Feller, Alfred C; Hansmann, Martin-Leo; Hummel, Michael; Kestler, Hans A; Klapper, Wolfram; Kreuz, Markus; Lenze, Dido; Loeffler, Markus; Möller, Peter; Müller-Hermelink, Hans-Konrad; Ott, German; Rosolowski, Maciej; Rosenwald, Andreas; Ruf, Sandra; Siebert, Reiner; Spang, Rainer; Stein, Harald; Truemper, Lorenz; Lichter, Peter; Bentz, Martin; Wessendorf, Swen

    2009-01-01

    Follicular lymphoma (FL) is characterized by a large number of chromosomal aberrations. However, their exact genomic extension and involved target genes remain to be determined. For this purpose, we used array-based intermediate-high resolution genomic profiling in combination with Affymetrix gene expression analysis. Tumor specimens from 128 FL patients were analyzed for the presence of genomic aberrations and the results were correlated to clinical data sets and mRNA expression levels. In 114 (89%) of the 128 analyzed cases, a total of 688 genomic aberrations (384 gains/amplifications and 304 losses) were detected. Frequent genomic aberrations were: -1p36 (18%), +2p15 (24%), -3q (14%), -6q (25%), +7p (19%), +7q (23%), +8q (14%), -9p (16%), -11q (15%), +12q (20%), -13q (11%), -17p (16%), +18p (18%), and +18q (28%). Critical segments of these imbalances were delineated to genomic fragments with a minimum size down to 0.2 Mb. By comparison of these with mRNA gene expression data, putative candidate genes were identified. Moreover, we found that deletions affecting the tumor suppressor gene CDKN2A/B on 9p21 were detected in nontransformed FL grade I-II. For this aberration as well as for -6q25 and -6q26, an association with inferior survival was observed.

  7. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaofan; Peris, David; Kominek, Jacek

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  8. in silico Whole Genome Sequencer & Analyzer (iWGS): A Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies

    DOE PAGES

    Zhou, Xiaofan; Peris, David; Kominek, Jacek; ...

    2016-09-16

    The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less

  9. Epiviz: a view inside the design of an integrated visual analysis software for genomics

    PubMed Central

    2015-01-01

    Background Computational and visual data analysis for genomics has traditionally involved a combination of tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative visualization of large numbers of big datasets, and computational environments, focused on data modeling of a small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools. In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying these workflows. Results In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins from source control providers, as well as by allowing analysis states to be shared among the scientific community; 3) combines established analysis features that have never before been available simultaneously in a genome browser. In our discussion section, we present security implications of the current design, as well as a series of limitations and future research steps. Conclusions Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the same direction for the genomics community. PMID:26328750

  10. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  11. JGI Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less

  12. Genomic Encyclopedia of Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supportedmore » by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  13. Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.

  14. Pan-Genome Analysis Links the Hereditary Variation of Leptospirillum ferriphilum With Its Evolutionary Adaptation

    PubMed Central

    Zhang, Xian; Liu, Xueduan; Yang, Fei; Chen, Lv

    2018-01-01

    Niche adaptation has long been recognized to drive intra-species differentiation and speciation, yet knowledge about its relatedness with hereditary variation of microbial genomes is relatively limited. Using Leptospirillum ferriphilum species as a case study, we present a detailed analysis of genomic features of five recognized strains. Genome-to-genome distance calculation preliminarily determined the roles of spatial distance and environmental heterogeneity that potentially contribute to intra-species variation within L. ferriphilum species at the genome level. Mathematical models were further constructed to extrapolate the expansion of L. ferriphilum genomes (an ‘open’ pan-genome), indicating the emergence of novel genes with new sequenced genomes. The identification of diverse mobile genetic elements (MGEs) (such as transposases, integrases, and phage-associated genes) revealed the prevalence of horizontal gene transfer events, which is an important evolutionary mechanism that provides avenues for the recruitment of novel functionalities and further for the genetic divergence of microbial genomes. Comprehensive analysis also demonstrated that the genome reduction by gene loss in a broad sense might contribute to the observed diversification. We thus inferred a plausible explanation to address this observation: the community-dependent adaptation that potentially economizes the limiting resources of the entire community. Now that the introduction of new genes is accompanied by a parallel abandonment of some other ones, our results provide snapshots on the biological fitness cost of environmental adaptation within the L. ferriphilum genomes. In short, our genome-wide analyses bridge the relation between genetic variation of L. ferriphilum with its evolutionary adaptation. PMID:29636744

  15. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes

    USDA-ARS?s Scientific Manuscript database

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...

  16. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein familiesmore » that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.« less

  17. [Genome-scale sequence data processing and epigenetic analysis of DNA methylation].

    PubMed

    Wang, Ting-Zhang; Shan, Gao; Xu, Jian-Hong; Xue, Qing-Zhong

    2013-06-01

    A new approach recently developed for detecting cytosine DNA methylation (mC) and analyzing the genome-scale DNA methylation profiling, is called BS-Seq which is based on bisulfite conversion of genomic DNA combined with next-generation sequencing. The method can not only provide an insight into the difference of genome-scale DNA methylation among different organisms, but also reveal the conservation of DNA methylation in all contexts and nucleotide preference for different genomic regions, including genes, exons, and repetitive DNA sequences. It will be helpful to under-stand the epigenetic impacts of cytosine DNA methylation on the regulation of gene expression and maintaining silence of repetitive sequences, such as transposable elements. In this paper, we introduce the preprocessing steps of DNA methylation data, by which cytosine (C) and guanine (G) in the reference sequence are transferred to thymine (T) and adenine (A), and cytosine in reads is transferred to thymine, respectively. We also comprehensively review the main content of the DNA methylation analysis on the genomic scale: (1) the cytosine methylation under the context of different sequences; (2) the distribution of genomic methylcytosine; (3) DNA methylation context and the preference for the nucleotides; (4) DNA- protein interaction sites of DNA methylation; (5) degree of methylation of cytosine in the different structural elements of genes. DNA methylation analysis technique provides a powerful tool for the epigenome study in human and other species, and genes and environment interaction, and founds the theoretical basis for further development of disease diagnostics and therapeutics in human.

  18. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  19. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.

    PubMed

    Canver, Matthew C; Haeussler, Maximilian; Bauer, Daniel E; Orkin, Stuart H; Sanjana, Neville E; Shalem, Ophir; Yuan, Guo-Cheng; Zhang, Feng; Concordet, Jean-Paul; Pinello, Luca

    2018-05-01

    CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions.

  20. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    PubMed Central

    Tyson, Jess; Majerus, Tamsin MO; Walker, Susan; Armour, John AL

    2009-01-01

    Background Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms. PMID:19785739

  1. Genomic Analysis of Natural Variation for Seed and Plant Size in Maize (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Kaeppler, Shawn

    2018-02-01

    Shawn Kaeppler from the University of Wisconsin-Madison on "Genomic Analysis of Biofuel Traits in Maize and Switchgrass" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, CA.

  2. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas.

    PubMed

    Shen, Xuemei; Hu, Hongbo; Peng, Huasong; Wang, Wei; Zhang, Xuehong

    2013-04-22

    Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon

  3. Measurement of replication structures at the nanometer scale using super-resolution light microscopy

    PubMed Central

    Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256

  4. Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity.

    PubMed

    Sahl, Jason W; Johnson, J Kristie; Harris, Anthony D; Phillippy, Adam M; Hsiao, William W; Thom, Kerri A; Rasko, David A

    2011-06-04

    Acinetobacter baumannii has recently emerged as a significant global pathogen, with a surprisingly rapid acquisition of antibiotic resistance and spread within hospitals and health care institutions. This study examines the genomic content of three A. baumannii strains isolated from distinct body sites. Isolates from blood, peri-anal, and wound sources were examined in an attempt to identify genetic features that could be correlated to each isolation source. Pulsed-field gel electrophoresis, multi-locus sequence typing and antibiotic resistance profiles demonstrated genotypic and phenotypic variation. Each isolate was sequenced to high-quality draft status, which allowed for comparative genomic analyses with existing A. baumannii genomes. A high resolution, whole genome alignment method detailed the phylogenetic relationships of sequenced A. baumannii and found no correlation between phylogeny and body site of isolation. This method identified genomic regions unique to both those isolates found on the surface of the skin or in wounds, termed colonization isolates, and those identified from body fluids, termed invasive isolates; these regions may play a role in the pathogenesis and spread of this important pathogen. A PCR-based screen of 74 A. baumanii isolates demonstrated that these unique genes are not exclusive to either phenotype or isolation source; however, a conserved genomic region exclusive to all sequenced A. baumannii was identified and verified. The results of the comparative genome analysis and PCR assay show that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease regardless of the isolation source.

  5. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  6. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal

    PubMed Central

    Gao, Jianjiong; Aksoy, Bülent Arman; Dogrusoz, Ugur; Dresdner, Gideon; Gross, Benjamin; Sumer, S. Onur; Sun, Yichao; Jacobsen, Anders; Sinha, Rileen; Larsson, Erik; Cerami, Ethan; Sander, Chris; Schultz, Nikolaus

    2014-01-01

    The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. PMID:23550210

  7. Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    PubMed

    Lindblad-Toh, Kerstin; Wade, Claire M; Mikkelsen, Tarjei S; Karlsson, Elinor K; Jaffe, David B; Kamal, Michael; Clamp, Michele; Chang, Jean L; Kulbokas, Edward J; Zody, Michael C; Mauceli, Evan; Xie, Xiaohui; Breen, Matthew; Wayne, Robert K; Ostrander, Elaine A; Ponting, Chris P; Galibert, Francis; Smith, Douglas R; DeJong, Pieter J; Kirkness, Ewen; Alvarez, Pablo; Biagi, Tara; Brockman, William; Butler, Jonathan; Chin, Chee-Wye; Cook, April; Cuff, James; Daly, Mark J; DeCaprio, David; Gnerre, Sante; Grabherr, Manfred; Kellis, Manolis; Kleber, Michael; Bardeleben, Carolyne; Goodstadt, Leo; Heger, Andreas; Hitte, Christophe; Kim, Lisa; Koepfli, Klaus-Peter; Parker, Heidi G; Pollinger, John P; Searle, Stephen M J; Sutter, Nathan B; Thomas, Rachael; Webber, Caleb; Baldwin, Jennifer; Abebe, Adal; Abouelleil, Amr; Aftuck, Lynne; Ait-Zahra, Mostafa; Aldredge, Tyler; Allen, Nicole; An, Peter; Anderson, Scott; Antoine, Claudel; Arachchi, Harindra; Aslam, Ali; Ayotte, Laura; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Benamara, Mostafa; Berlin, Aaron; Bessette, Daniel; Blitshteyn, Berta; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Brown, Adam; Cahill, Patrick; Calixte, Nadia; Camarata, Jody; Cheshatsang, Yama; Chu, Jeffrey; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Dawoe, Tenzin; Daza, Riza; Decktor, Karin; DeGray, Stuart; Dhargay, Norbu; Dooley, Kimberly; Dooley, Kathleen; Dorje, Passang; Dorjee, Kunsang; Dorris, Lester; Duffey, Noah; Dupes, Alan; Egbiremolen, Osebhajajeme; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Ferreira, Patricia; Fisher, Sheila; FitzGerald, Mike; Foley, Karen; Foley, Chelsea; Franke, Alicia; Friedrich, Dennis; Gage, Diane; Garber, Manuel; Gearin, Gary; Giannoukos, Georgia; Goode, Tina; Goyette, Audra; Graham, Joseph; Grandbois, Edward; Gyaltsen, Kunsang; Hafez, Nabil; Hagopian, Daniel; Hagos, Birhane; Hall, Jennifer; Healy, Claire; Hegarty, Ryan; Honan, Tracey; Horn, Andrea; Houde, Nathan; Hughes, Leanne; Hunnicutt, Leigh; Husby, M; Jester, Benjamin; Jones, Charlien; Kamat, Asha; Kanga, Ben; Kells, Cristyn; Khazanovich, Dmitry; Kieu, Alix Chinh; Kisner, Peter; Kumar, Mayank; Lance, Krista; Landers, Thomas; Lara, Marcia; Lee, William; Leger, Jean-Pierre; Lennon, Niall; Leuper, Lisa; LeVine, Sarah; Liu, Jinlei; Liu, Xiaohong; Lokyitsang, Yeshi; Lokyitsang, Tashi; Lui, Annie; Macdonald, Jan; Major, John; Marabella, Richard; Maru, Kebede; Matthews, Charles; McDonough, Susan; Mehta, Teena; Meldrim, James; Melnikov, Alexandre; Meneus, Louis; Mihalev, Atanas; Mihova, Tanya; Miller, Karen; Mittelman, Rachel; Mlenga, Valentine; Mulrain, Leonidas; Munson, Glen; Navidi, Adam; Naylor, Jerome; Nguyen, Tuyen; Nguyen, Nga; Nguyen, Cindy; Nguyen, Thu; Nicol, Robert; Norbu, Nyima; Norbu, Choe; Novod, Nathaniel; Nyima, Tenchoe; Olandt, Peter; O'Neill, Barry; O'Neill, Keith; Osman, Sahal; Oyono, Lucien; Patti, Christopher; Perrin, Danielle; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Rachupka, Anthony; Raghuraman, Sujaa; Rameau, Rayale; Ray, Verneda; Raymond, Christina; Rege, Filip; Rise, Cecil; Rogers, Julie; Rogov, Peter; Sahalie, Julie; Settipalli, Sampath; Sharpe, Theodore; Shea, Terrance; Sheehan, Mechele; Sherpa, Ngawang; Shi, Jianying; Shih, Diana; Sloan, Jessie; Smith, Cherylyn; Sparrow, Todd; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Stone, Sabrina; Sykes, Sean; Tchuinga, Pierre; Tenzing, Pema; Tesfaye, Senait; Thoulutsang, Dawa; Thoulutsang, Yama; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Venkataraman, Vijay; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Yang, Shuli; Yang, Xiaoping; Young, Geneva; Yu, Qing; Zainoun, Joanne; Zembek, Lisa; Zimmer, Andrew; Lander, Eric S

    2005-12-08

    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.

  8. Functional analysis and transcriptional output of the Göttingen minipig genome.

    PubMed

    Heckel, Tobias; Schmucki, Roland; Berrera, Marco; Ringshandl, Stephan; Badi, Laura; Steiner, Guido; Ravon, Morgane; Küng, Erich; Kuhn, Bernd; Kratochwil, Nicole A; Schmitt, Georg; Kiialainen, Anna; Nowaczyk, Corinne; Daff, Hamina; Khan, Azinwi Phina; Lekolool, Isaac; Pelle, Roger; Okoth, Edward; Bishop, Richard; Daubenberger, Claudia; Ebeling, Martin; Certa, Ulrich

    2015-11-14

    In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development. Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we

  9. Genome-wide analysis of Tol2 transposon reintegration in zebrafish.

    PubMed

    Kondrychyn, Igor; Garcia-Lecea, Marta; Emelyanov, Alexander; Parinov, Sergey; Korzh, Vladimir

    2009-09-08

    Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.

  10. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis

    PubMed Central

    Mason, Annaliese S.; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E.; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A. P.; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N.

    2016-01-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. PMID:26614742

  11. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

    PubMed

    Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N

    2016-02-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.

  12. Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

    PubMed Central

    Potanina, Anastasia; Francis, Christopher A.; Quake, Stephen R.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles. PMID

  13. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis.

    PubMed

    Blainey, Paul C; Mosier, Annika C; Potanina, Anastasia; Francis, Christopher A; Quake, Stephen R

    2011-02-22

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles.

  14. Lessons learnt on the analysis of large sequence data in animal genomics.

    PubMed

    Biscarini, F; Cozzi, P; Orozco-Ter Wengel, P

    2018-04-06

    The 'omics revolution has made a large amount of sequence data available to researchers and the industry. This has had a profound impact in the field of bioinformatics, stimulating unprecedented advancements in this discipline. Mostly, this is usually looked at from the perspective of human 'omics, in particular human genomics. Plant and animal genomics, however, have also been deeply influenced by next-generation sequencing technologies, with several genomics applications now popular among researchers and the breeding industry. Genomics tends to generate huge amounts of data, and genomic sequence data account for an increasing proportion of big data in biological sciences, due largely to decreasing sequencing and genotyping costs and to large-scale sequencing and resequencing projects. The analysis of big data poses a challenge to scientists, as data gathering currently takes place at a faster pace than does data processing and analysis, and the associated computational burden is increasingly taxing, making even simple manipulation, visualization and transferring of data a cumbersome operation. The time consumed by the processing and analysing of huge data sets may be at the expense of data quality assessment and critical interpretation. Additionally, when analysing lots of data, something is likely to go awry-the software may crash or stop-and it can be very frustrating to track the error. We herein review the most relevant issues related to tackling these challenges and problems, from the perspective of animal genomics, and provide researchers that lack extensive computing experience with guidelines that will help when processing large genomic data sets. © 2018 Stichting International Foundation for Animal Genetics.

  15. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  16. CoCoNUT: an efficient system for the comparison and analysis of genomes

    PubMed Central

    2008-01-01

    Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477

  17. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    PubMed

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  18. The human genome: a multifractal analysis

    PubMed Central

    2011-01-01

    Background Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the Caenorhabditis elegans genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode. Results We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed. Conclusions Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful. PMID:21999602

  19. Whole-Genome Analysis of Mycobacterium tuberculosis from Patients with Tuberculous Spondylitis, Russia.

    PubMed

    Chernyaeva, Ekaterina; Rotkevich, Mikhail; Krasheninnikova, Ksenia; Yurchenko, Andrey; Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Zhuravlev, Viacheslav; Yablonsky, Piotr; O'Brien, Stephen J

    2018-03-01

    Whole-genome analysis of Mycobacterium tuberculosis isolates collected in Russia (N = 71) from patients with tuberculous spondylitis supports a detailed characterization of pathogen strain distributions and drug resistance phenotype, plus distinguished occurrence and association of known resistance mutations. We identify known and novel genome determinants related to bacterial virulence, pathogenicity, and drug resistance.

  20. Microsatellite analysis in the genome of Acanthaceae: An in silico approach.

    PubMed

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future.

  1. Microsatellite analysis in the genome of Acanthaceae: An in silico approach

    PubMed Central

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Background: Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. Objective: The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. Materials and Methods: The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Results: Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. Conclusion: The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future. PMID:25709226

  2. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  3. GENOMIC ANALYSIS OF THE TESTICULAR TOXICITY OF HALOACETIC ACIDS

    EPA Science Inventory

    Genomic analysis of the testicular toxicity of haloacetic acids

    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, R...

  4. Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species.

    PubMed

    Jo, Ick-Hyun; Sung, Jwakyung; Hong, Chi-Eun; Raveendar, Sebastin; Bang, Kyong-Hwan; Chung, Jong-Wook

    2018-05-01

    Licorice ( Glycyrrhiza glabra ) is an important medicinal crop often used as health foods or medicine worldwide. The molecular genetics of licorice is under scarce owing to lack of molecular markers. Here, we have developed cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers based on single nucleotide polymorphisms (SNP) by comparing the chloroplast genomes of two Glycyrrhiza species ( G. glabra and G. lepidota ). The CAPS and HRM markers were tested for diversity analysis with 24 Glycyrrhiza accessions. The restriction profiles generated with CAPS markers classified the accessions (2-4 genotypes) and melting curves (2-3) were obtained from the HRM markers. The number of alleles and major allele frequency were 2-6 and 0.31-0.92, respectively. The genetic distance and polymorphism information content values were 0.16-0.76 and 0.15-0.72, respectively. The phylogenetic relationships among the 24 accessions were estimated using a dendrogram, which classified them into four clades. Except clade III, the remaining three clades included the same species, confirming interspecies genetic correlation. These 18 CAPS and HRM markers might be helpful for genetic diversity assessment and rapid identification of licorice species.

  5. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  6. Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food.

    PubMed

    Yu, Jihyun; Ahn, Sojin; Kim, Kwondo; Caetano-Anolles, Kelsey; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Yoon, Sook Hee; Kang, Dae-Kyung; Kim, Heebal

    2017-08-28

    As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum , which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.

  7. Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718.

    PubMed

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  8. CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments.

    PubMed

    Giffard, Philip M; Andersson, Patiyan; Wilson, Judith; Buckley, Cameron; Lilliebridge, Rachael; Harris, Tegan M; Kleinecke, Mariana; O'Grady, Kerry-Ann F; Huston, Wilhelmina M; Lambert, Stephen B; Whiley, David M; Holt, Deborah C

    2018-01-01

    Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phylogenetically coherent "classical ocular lineage". However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance.

  9. Identification of Uvaria sp by barcoding coupled with high-resolution melting analysis (Bar-HRM).

    PubMed

    Osathanunkul, M; Madesis, P; Ounjai, S; Pumiputavon, K; Somboonchai, R; Lithanatudom, P; Chaowasku, T; Wipasa, J; Suwannapoom, C

    2016-01-13

    DNA barcoding, which was developed about a decade ago, relies on short, standardized regions of the genome to identify plant and animal species. This method can be used to not only identify known species but also to discover novel ones. Numerous sequences are stored in online databases worldwide. One of the ways to save cost and time (by omitting the sequencing step) in species identification is to use available barcode data to design optimized primers for further analysis, such as high-resolution melting analysis (HRM). This study aimed to determine the effectiveness of the hybrid method Bar-HRM (DNA barcoding combined with HRM) to identify species that share similar external morphological features, rather than conduct traditional taxonomic identification that require major parts (leaf, flower, fruit) of the specimens. The specimens used for testing were those, which could not be identified at the species level and could either be Uvaria longipes or Uvaria wrayias, indicated by morphological identification. Primer pairs derived from chloroplast regions (matK, psbA-trnH, rbcL, and trnL) were used in the Bar-HRM. The results obtained from psbA-trnH primers were good enough to help in identifying the specimen while the rest were not. Bar-HRM analysis was proven to be a fast and cost-effective method for plant species identification.

  10. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning

    PubMed Central

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A.; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M.

    2008-01-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome. PMID:18477713

  11. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.

    PubMed

    McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A

    2017-01-01

    Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. IonGAP: integrative bacterial genome analysis for Ion Torrent sequence data.

    PubMed

    Baez-Ortega, Adrian; Lorenzo-Diaz, Fabian; Hernandez, Mariano; Gonzalez-Vila, Carlos Ignacio; Roda-Garcia, Jose Luis; Colebrook, Marcos; Flores, Carlos

    2015-09-01

    We introduce IonGAP, a publicly available Web platform designed for the analysis of whole bacterial genomes using Ion Torrent sequence data. Besides assembly, it integrates a variety of comparative genomics, annotation and bacterial classification routines, based on the widely used FASTQ, BAM and SRA file formats. Benchmarking with different datasets evidenced that IonGAP is a fast, powerful and simple-to-use bioinformatics tool. By releasing this platform, we aim to translate low-cost bacterial genome analysis for microbiological prevention and control in healthcare, agroalimentary and pharmaceutical industry applications. IonGAP is hosted by the ITER's Teide-HPC supercomputer and is freely available on the Web for non-commercial use at http://iongap.hpc.iter.es. mcolesan@ull.edu.es or cflores@ull.edu.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  14. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163

  15. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    PubMed

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  16. The draft genome of tropical fruit durian (Durio zibethinus).

    PubMed

    Teh, Bin Tean; Lim, Kevin; Yong, Chern Han; Ng, Cedric Chuan Young; Rao, Sushma Ramesh; Rajasegaran, Vikneswari; Lim, Weng Khong; Ong, Choon Kiat; Chan, Ki; Cheng, Vincent Kin Yuen; Soh, Poh Sheng; Swarup, Sanjay; Rozen, Steven G; Nagarajan, Niranjan; Tan, Patrick

    2017-11-01

    Durian (Durio zibethinus) is a Southeast Asian tropical plant known for its hefty, spine-covered fruit and sulfury and onion-like odor. Here we present a draft genome assembly of D. zibethinus, representing the third plant genus in the Malvales order and first in the Helicteroideae subfamily to be sequenced. Single-molecule sequencing and chromosome contact maps enabled assembly of the highly heterozygous durian genome at chromosome-scale resolution. Transcriptomic analysis showed upregulation of sulfur-, ethylene-, and lipid-related pathways in durian fruits. We observed paleopolyploidization events shared by durian and cotton and durian-specific gene expansions in MGL (methionine γ-lyase), associated with production of volatile sulfur compounds (VSCs). MGL and the ethylene-related gene ACS (aminocyclopropane-1-carboxylic acid synthase) were upregulated in fruits concomitantly with their downstream metabolites (VSCs and ethylene), suggesting a potential association between ethylene biosynthesis and methionine regeneration via the Yang cycle. The durian genome provides a resource for tropical fruit biology and agronomy.

  17. Toward high-resolution population genomics using archaeological samples

    PubMed Central

    Morozova, Irina; Flegontov, Pavel; Mikheyev, Alexander S.; Bruskin, Sergey; Asgharian, Hosseinali; Ponomarenko, Petr; Klyuchnikov, Vladimir; ArunKumar, GaneshPrasad; Prokhortchouk, Egor; Gankin, Yuriy; Rogaev, Evgeny; Nikolsky, Yuri; Baranova, Ancha; Elhaik, Eran; Tatarinova, Tatiana V.

    2016-01-01

    The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research. PMID:27436340

  18. Challenges in Resolution for IC Failure Analysis

    NASA Astrophysics Data System (ADS)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  19. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  20. A nine-scaffold genome assembly of the nine chromosome sugar beet

    USDA-ARS?s Scientific Manuscript database

    A sugar beet genome sequence is required to take full advantage of the increasingly powerful approaches directed a single nucleotide resolution across the whole genome. A high quality reference genome serves as a benchmark from which other genotypes might be compared and exploited for sugar beet imp...

  1. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    PubMed Central

    Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges

    2016-01-01

    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735

  2. Family genome browser: visualizing genomes with pedigree information.

    PubMed

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Effective normalization for copy number variation detection from whole genome sequencing.

    PubMed

    Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka

    2012-01-01

    Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls

  4. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  5. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  6. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE PAGES

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...

    2017-02-20

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  7. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates.

    PubMed

    Liu, Fei; Hu, Yongfei; Wang, Qi; Li, Hong Min; Gao, George F; Liu, Cui Hua; Zhu, Baoli

    2014-06-13

    Due to excessive antibiotic use, drug-resistant Mycobacterium tuberculosis has become a serious public health threat and a major obstacle to disease control in many countries. To better understand the evolution of drug-resistant M. tuberculosis strains, we performed whole genome sequencing for 7 M. tuberculosis clinical isolates with different antibiotic resistance profiles and conducted comparative genomic analysis of gene variations among them. We observed that all 7 M. tuberculosis clinical isolates with different levels of drug resistance harbored similar numbers of SNPs, ranging from 1409-1464. The numbers of insertion/deletions (Indels) identified in the 7 isolates were also similar, ranging from 56 to 101. A total of 39 types of mutations were identified in drug resistance-associated loci, including 14 previously reported ones and 25 newly identified ones. Sixteen of the identified large Indels spanned PE-PPE-PGRS genes, which represents a major source of antigenic variability. Aside from SNPs and Indels, a CRISPR locus with varied spacers was observed in all 7 clinical isolates, suggesting that they might play an important role in plasticity of the M. tuberculosis genome. The nucleotide diversity (Л value) and selection intensity (dN/dS value) of the whole genome sequences of the 7 isolates were similar. The dN/dS values were less than 1 for all 7 isolates (range from 0.608885 to 0.637365), supporting the notion that M. tuberculosis genomes undergo purifying selection. The Л values and dN/dS values were comparable between drug-susceptible and drug-resistant strains. In this study, we show that clinical M. tuberculosis isolates exhibit distinct variations in terms of the distribution of SNP, Indels, CRISPR-cas locus, as well as the nucleotide diversity and selection intensity, but there are no generalizable differences between drug-susceptible and drug-resistant isolates on the genomic scale. Our study provides evidence strengthening the notion that

  8. SRXRF analysis with spatial resolution of dental calculus

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam

    2000-09-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.

  9. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing.

    PubMed

    Legendre, Matthieu; Santini, Sébastien; Rico, Alain; Abergel, Chantal; Claverie, Jean-Michel

    2011-03-04

    Mimivirus, a giant dsDNA virus infecting Acanthamoeba, is the prototype of the mimiviridae family, the latest addition to the family of the nucleocytoplasmic large DNA viruses (NCLDVs). Its 1.2 Mb-genome was initially predicted to encode 917 genes. A subsequent RNA-Seq analysis precisely mapped many transcript boundaries and identified 75 new genes. We now report a much deeper analysis using the SOLiD™ technology combining RNA-Seq of the Mimivirus transcriptome during the infectious cycle (202.4 Million reads), and a complete genome re-sequencing (45.3 Million reads). This study corrected the genome sequence and identified several single nucleotide polymorphisms. Our results also provided clear evidence of previously overlooked transcription units, including an important RNA polymerase subunit distantly related to Euryarchea homologues. The total Mimivirus gene count is now 1018, 11% greater than the original annotation. This study highlights the huge progress brought about by ultra-deep sequencing for the comprehensive annotation of virus genomes, opening the door to a complete one-nucleotide resolution level description of their transcriptional activity, and to the realistic modeling of the viral genome expression at the ultimate molecular level. This work also illustrates the need to go beyond bioinformatics-only approaches for the annotation of short protein and non-coding genes in viral genomes.

  10. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    PubMed

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.

  11. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    PubMed Central

    Weniger, Markus; Engelmann, Julia C; Schultz, Jörg

    2007-01-01

    Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional

  12. Uncertainty Analysis in the Creation of a Fine-Resolution Leaf Area Index (LAI) Reference Map for Validation of Moderate Resolution LAI Products

    EPA Science Inventory

    The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...

  13. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    PubMed

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at <16 years. Genome-wide association studies for childhood pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia

  14. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  15. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome

  16. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic

  17. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants.

    PubMed

    Iso-Touru, T; Sahana, G; Guldbrandtsen, B; Lund, M S; Vilkki, J

    2016-03-22

    The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark are under a joint breeding value estimation system. The long history of recording of production and health traits offers a great opportunity to study production traits and identify causal variants behind them. In this study, we used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome for loci affecting milk, fat and protein yields. Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26 were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis was used to identify networks connecting these genes displaying significant hits. When compared to previously mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes common for fat yield and fertility, thus linking these two traits via biological networks. This is the first time when whole genome sequence data is utilized to study genomic regions affecting milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the observed effects. This information on target genomic regions may be exploited to improve genomic prediction.

  18. Symposium on single cell analysis and genomic approaches, Experimental Biology 2017 Chicago, Illinois, April 23, 2017.

    PubMed

    Coller, Hilary A

    2017-09-01

    Emerging technologies for the analysis of genome-wide information in single cells have the potential to transform many fields of biology, including our understanding of cell states, the response of cells to external stimuli, mosaicism, and intratumor heterogeneity. At Experimental Biology 2017 in Chicago, Physiological Genomics hosted a symposium in which five leaders in the field of single cell genomics presented their recent research. The speakers discussed emerging methodologies in single cell analysis and critical issues for the analysis of single cell data. Also discussed were applications of single cell genomics to understanding the different types of cells within an organism or tissue and the basis for cell-to-cell variability in response to stimuli. Copyright © 2017 the American Physiological Society.

  19. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-01-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. PMID:24344172

  20. High-resolution array comparative genomic hybridization analysis of human bronchial and salivary adenoid cystic carcinoma.

    PubMed

    Bernheim, Alain; Toujani, Saloua; Saulnier, Patrick; Robert, Thomas; Casiraghi, Odile; Validire, Pierre; Temam, Stéphane; Menard, Philippe; Dessen, Philippe; Fouret, Pierre

    2008-05-01

    Adenoid cystic carcinoma (ACC) is a rare but distinctive tumor. Oligonucleotide array comparative genomic hybridization has been applied for cataloging genomic copy number alterations (CNAs) in 17 frozen salivary or bronchial tumors. Only four whole chromosome CNAs were found, and most cases had 2-4 segmental CNAs. No high level amplification was observed. There were recurrent gains at 7p15.2, 17q21-25, and 22q11-13, and recurrent losses at 1p35, 6q22-25, 8q12-13, 9p21, 12q12-13, and 17p11-13. The minimal region of gain at 7p15.2 contained the HOXA cluster. The minimal common regions of deletions contained the CDKN2A/CDKN2B, TP53, and LIMA1 tumor suppressor genes. The recurrent deletion at 8q12.3-13.1 contained no straightforward tumor suppressor gene, but the MIRN124A2 microRNA gene, whose product regulates MMP2 and CDK6. Among unique CNAs, gains harbored CCND1, KIT/PDGFRA/KDR, MDM2, and JAK2. The CNAs involving CCND1, MDM2, KIT, CDKN2A/2B, and TP53 were validated by FISH and/or multiplex ligation-dependent probe amplification. Although most tumors overexpressed cyclin D1 compared with surrounding glands, the only case to overexpress MDM2 had the corresponding CNA. In conclusion, our report suggests that ACC is characterized by a relatively low level of structural complexity. Array CGH and immunohistochemical data implicate MDM2 as the oncogene targeted at 12q15. The gain at 4q12 warrants further exploration as it contains a cluster of receptor kinase genes (KIT/PDGFRA/KDR), whose products can be responsive to specific therapies.

  1. Microbial genomic taxonomy

    PubMed Central

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  2. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    PubMed

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation

    DOE PAGES

    Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.; ...

    2017-08-21

    The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens

  4. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.

    The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens

  5. CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.

    PubMed

    Merkenschlager, Matthias; Nora, Elphège P

    2016-08-31

    Genome function, replication, integrity, and propagation rely on the dynamic structural organization of chromosomes during the cell cycle. Genome folding in interphase provides regulatory segmentation for appropriate transcriptional control, facilitates ordered genome replication, and contributes to genome integrity by limiting illegitimate recombination. Here, we review recent high-resolution chromosome conformation capture and functional studies that have informed models of the spatial and regulatory compartmentalization of mammalian genomes, and discuss mechanistic models for how CTCF and cohesin control the functional architecture of mammalian chromosomes.

  6. Genome Data Exploration Using Correspondence Analysis

    PubMed Central

    Tekaia, Fredj

    2016-01-01

    Recent developments of sequencing technologies that allow the production of massive amounts of genomic and genotyping data have highlighted the need for synthetic data representation and pattern recognition methods that can mine and help discovering biologically meaningful knowledge included in such large data sets. Correspondence analysis (CA) is an exploratory descriptive method designed to analyze two-way data tables, including some measure of association between rows and columns. It constructs linear combinations of variables, known as factors. CA has been used for decades to study high-dimensional data, and remarkable inferences from large data tables were obtained by reducing the dimensionality to a few orthogonal factors that correspond to the largest amount of variability in the data. Herein, I review CA and highlight its use by considering examples in handling high-dimensional data that can be constructed from genomic and genetic studies. Examples in amino acid compositions of large sets of species (viruses, phages, yeast, and fungi) as well as an example related to pairwise shared orthologs in a set of yeast and fungal species, as obtained from their proteome comparisons, are considered. For the first time, results show striking segregations between yeasts and fungi as well as between viruses and phages. Distributions obtained from shared orthologs show clusters of yeast and fungal species corresponding to their phylogenetic relationships. A direct comparison with the principal component analysis method is discussed using a recently published example of genotyping data related to newly discovered traces of an ancient hominid that was compared to modern human populations in the search for ancestral similarities. CA offers more detailed results highlighting links between modern humans and the ancient hominid and their characterizations. Compared to the popular principal component analysis method, CA allows easier and more effective interpretation of results

  7. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli

    PubMed Central

    2011-01-01

    Background Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses. Results We have sequenced and annotated the genome of E. coli W. The chromosome is 4,900,968 bp and encodes 4,764 ORFs. Two plasmids, pRK1 (102,536 bp) and pRK2 (5,360 bp), are also present. W has unique features relative to other sequenced laboratory strains (K-12, B and Crooks): it has a larger genome and belongs to phylogroup B1 rather than A. W also grows on a much broader range of carbon sources than does K-12. A genome-scale reconstruction was developed and validated in order to interrogate metabolic properties. Conclusions The genome of W is more similar to commensal and pathogenic B1 strains than phylogroup A strains, and therefore has greater utility for comparative analyses with these strains. W should therefore be the strain of choice, or 'type strain' for group B1 comparative analyses. The genome annotation and tools created here are expected to allow further utilization and development of E. coli W as an industrial organism for sucrose-based bioprocesses. Refinements in our E. coli metabolic reconstruction allow it to more accurately define E. coli metabolism relative to previous models. PMID:21208457

  8. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens.

    PubMed

    Wood, Henry M; Belvedere, Ornella; Conway, Caroline; Daly, Catherine; Chalkley, Rebecca; Bickerdike, Melissa; McKinley, Claire; Egan, Phil; Ross, Lisa; Hayward, Bruce; Morgan, Joanne; Davidson, Leslie; MacLennan, Ken; Ong, Thian K; Papagiannopoulos, Kostas; Cook, Ian; Adams, David J; Taylor, Graham R; Rabbitts, Pamela

    2010-08-01

    The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.

  9. Genomic Epidemiology of Tuberculosis.

    PubMed

    Comas, Iñaki

    2017-01-01

    The application of next generation sequencing technologies has opened the door to a new molecular epidemiology of tuberculosis, in which we can now look at transmission at a resolution not possible before. At the same time, new technical and analytical challenges have appeared, and we are still exploring the wider potential of this new technology. Whole genome sequencing in tuberculosis still requires bacterial cultures. Thus, although whole genome sequencing has revolutionized the interpretation of transmission patterns, it is not yet ready to be applied at the point-of-care. In this chapter, I will review the promises and challenges of genomic epidemiology, as well as some of the new questions that have arisen from the use of this new technology. In addition, I will examine the role of molecular epidemiology within the general frame of global tuberculosis control and how genomic epidemiology can contribute towards the elimination of the disease.

  10. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    PubMed

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  12. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes.

    PubMed

    Takashima, Masako; Sriswasdi, Sira; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru

    2018-01-01

    To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Delta: a new web-based 3D genome visualization and analysis platform.

    PubMed

    Tang, Bixia; Li, Feifei; Li, Jing; Zhao, Wenming; Zhang, Zhihua

    2018-04-15

    Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. zhangzhihua@big.ac.cn. Supplementary data are available at Bioinformatics online.

  14. A DNA methylation map of human cancer at single base-pair resolution

    PubMed Central

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-01-01

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523

  15. A DNA methylation map of human cancer at single base-pair resolution.

    PubMed

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-10-05

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.

  16. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    PubMed Central

    Gorski, Mathias; van der Most, Peter J.; Teumer, Alexander; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Nolte, Ilja M.; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F.; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P.; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C.; Curhan, Gary C.; d’Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H.; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J.; Harris, Tamara B.; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G.; Homuth, Georg; Hu, Frank B.; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K.; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J.; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J. F.; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A.; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J.; Olden, Matthias; WJH Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P.; Probst-Hensch, Nicole; Raitakari, Olli T.; Rettig, Rainer; Ridker, Paul M.; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E.; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J.; Sedaghat, Sanaz; Smith, Albert V.; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G.; Ulivi, Sheila; Viikari, Jorma S.; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I.; Tromp, Gerard; Snieder, Harold; Heid, Iris M.; Fox, Caroline S.; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian

    2017-01-01

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. PMID:28452372

  17. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    PubMed

    Gorski, Mathias; van der Most, Peter J; Teumer, Alexander; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Nolte, Ilja M; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C; Curhan, Gary C; d'Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J; Harris, Tamara B; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G; Homuth, Georg; Hu, Frank B; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J F; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J; Olden, Matthias; Wjh Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P; Probst-Hensch, Nicole; Raitakari, Olli T; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J; Sedaghat, Sanaz; Smith, Albert V; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G; Ulivi, Sheila; Viikari, Jorma S; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I; Tromp, Gerard; Snieder, Harold; Heid, Iris M; Fox, Caroline S; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A; Fuchsberger, Christian

    2017-04-28

    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 -8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.

  18. Importance of databases of nucleic acids for bioinformatic analysis focused to genomics

    NASA Astrophysics Data System (ADS)

    Jimenez-Gutierrez, L. R.; Barrios-Hernández, C. J.; Pedraza-Ferreira, G. R.; Vera-Cala, L.; Martinez-Perez, F.

    2016-08-01

    Recently, bioinformatics has become a new field of science, indispensable in the analysis of millions of nucleic acids sequences, which are currently deposited in international databases (public or private); these databases contain information of genes, RNA, ORF, proteins, intergenic regions, including entire genomes from some species. The analysis of this information requires computer programs; which were renewed in the use of new mathematical methods, and the introduction of the use of artificial intelligence. In addition to the constant creation of supercomputing units trained to withstand the heavy workload of sequence analysis. However, it is still necessary the innovation on platforms that allow genomic analyses, faster and more effectively, with a technological understanding of all biological processes.

  19. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  20. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome

    PubMed Central

    Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O.; Alawad, Abdullah O.; Al-Sadi, Abdullah M.; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants. PMID:27736909

  1. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    PubMed

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  2. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results.

    PubMed

    Combaret, Valérie; Iacono, Isabelle; Bréjon, Stéphanie; Schleiermacher, Gudrun; Pierron, Gäelle; Couturier, Jérôme; Bergeron, Christophe; Blay, Jean-Yves

    2012-12-01

    In cases of neuroblastoma, recurring genetic alterations--losses of the 1p, 3p, 4p, and 11q and/or gains of 1q, 2p, and 17q chromosome arms--are currently used to define the therapeutic strategy in therapeutic protocols for low- and intermediate-risk patients. Different genome-wide analysis techniques, such as array comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe amplification (MLPA), have been suggested for detecting chromosome segmental abnormalities. In this study, we compared the results of the two technologies in the analyses of the DNA of tumor samples from 91 neuroblastoma patients. Similar results were obtained with the two techniques for 75 samples (82%). In five cases (5.5%), the MLPA results were not interpretable. Discrepancies between the aCGH and MLPA results were observed in 11 cases (12%). Among the discrepancies, a 18q21.2-qter gain and 16p11.2 and 11q14.1-q14.3 losses were detected only by aCGH. The MLPA results showed that the 7p, 7q, and 14q chromosome arms were affected in six cases, while in two cases, 2p and 17q gains were observed; these results were confirmed by neither aCGH nor fluorescence in situ hybridization (FISH) analysis. Because of the higher sensitivity and specificity of genome-wide information, reasonable cost, and shorter time of aCGH analysis, we recommend the aCGH procedure for the analysis of genomic alterations in neuroblastoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    PubMed Central

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  4. Comparative genome analysis of Lactobacillus plantarum GB-LP3 provides candidates of survival-related genetic factors.

    PubMed

    Jeon, Soomin; Jung, Jaehoon; Kim, Kwondo; Yoo, DongAhn; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Kang, Dae-Kyung; Kwak, Woori; Yoon, Sook Hee; Kim, Heebal; Cho, Seoae

    2017-09-01

    Lactobacillus plantarum is found in various environmental niches such as in the gastrointestinal tract of an animal host or a fermented food. This species isolated from a certain environment is known to possess a variety of properties according to inhabited environment's adaptation. However, a causal relationship of a genetic factor and phenotype affected by a specific environment has not been systematically comprehended. L. plantarum GB-LP3 strain was isolated from Korean traditional fermented vegetable and the whole genome of GB-LP3 was sequenced. Comparative genome analysis of GB-LP3, with other 14 L. plantarum strains, was conducted. In addition, genomic island regions were investigated. The assembled whole GB-LP3 genome contained a single circular chromosome of 3,206,111bp with the GC content of 44.7%. In the phylogenetic tree analysis, GB-LP3 was in the closest distance from ZJ316. The genomes of GB-LP3 and ZJ316 have the high level of synteny. Functional genes that are related to prophage, bacteriocin, and quorum sensing were found through comparative genomic analysis with ZJ316 and investigation of genomic islands. dN/dS analysis identified that the gene coding for phosphonate ABC transporter ATP-binding protein is evolutionarily accelerated in GB-LP3. Our study found that potential candidate genes that are affected by environmental adaptation in Korea traditional fermented vegetable. Copyright © 2017. Published by Elsevier B.V.

  5. Survey of protein–DNA interactions in Aspergillus oryzae on a genomic scale

    PubMed Central

    Wang, Chao; Lv, Yangyong; Wang, Bin; Yin, Chao; Lin, Ying; Pan, Li

    2015-01-01

    The genome-scale delineation of in vivo protein–DNA interactions is key to understanding genome function. Only ∼5% of transcription factors (TFs) in the Aspergillus genus have been identified using traditional methods. Although the Aspergillus oryzae genome contains >600 TFs, knowledge of the in vivo genome-wide TF-binding sites (TFBSs) in aspergilli remains limited because of the lack of high-quality antibodies. We investigated the landscape of in vivo protein–DNA interactions across the A. oryzae genome through coupling the DNase I digestion of intact nuclei with massively parallel sequencing and the analysis of cleavage patterns in protein–DNA interactions at single-nucleotide resolution. The resulting map identified overrepresented de novo TF-binding motifs from genomic footprints, and provided the detailed chromatin remodeling patterns and the distribution of digital footprints near transcription start sites. The TFBSs of 19 known Aspergillus TFs were also identified based on DNase I digestion data surrounding potential binding sites in conjunction with TF binding specificity information. We observed that the cleavage patterns of TFBSs were dependent on the orientation of TF motifs and independent of strand orientation, consistent with the DNA shape features of binding motifs with flanking sequences. PMID:25883143

  6. PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes

    PubMed Central

    Fong, Christine; Rohmer, Laurence; Radey, Matthew; Wasnick, Michael; Brittnacher, Mitchell J

    2008-01-01

    Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client

  7. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5.

    PubMed

    Shariati J, Vahid; Malboobi, Mohammad Ali; Tabrizi, Zeinab; Tavakol, Elahe; Owilia, Parviz; Safari, Maryam

    2017-11-15

    In this study, we provide a comparative genomic analysis of Pantoea agglomerans strain P5 and 10 closely related strains based on phylogenetic analyses. A next-generation shotgun strategy was implemented using the Illumina HiSeq 2500 technology followed by core- and pan-genome analysis. The genome of P. agglomerans strain P5 contains an assembly size of 5082485 bp with 55.4% G + C content. P. agglomerans consists of 2981 core and 3159 accessory genes for Coding DNA Sequences (CDSs) based on the pan-genome analysis. Strain P5 can be grouped closely with strains PG734 and 299 R using pan and core genes, respectively. All the predicted and annotated gene sequences were allocated to KEGG pathways. Accordingly,  genes involved in plant growth-promoting (PGP) ability, including phosphate solubilization, IAA and siderophore production, acetoin and 2,3-butanediol synthesis and bacterial secretion, were assigned. This study provides an in-depth view of the PGP characteristics of strain P5, highlighting its potential use in agriculture as a biofertilizer.

  8. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population.

    PubMed

    Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M

    2018-02-02

    Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.

  9. Genome analysis of the platypus reveals unique signatures of evolution.

    PubMed

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  10. High resolution frequency analysis techniques with application to the redshift experiment

    NASA Technical Reports Server (NTRS)

    Decher, R.; Teuber, D.

    1975-01-01

    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.

  11. Multi-trait analysis of genome-wide association summary statistics using MTAG.

    PubMed

    Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J

    2018-02-01

    We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff  = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.

  12. Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes.

    PubMed

    Lohse, Konrad; Frantz, Laurent A F

    2014-04-01

    Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.

  13. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  14. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    PubMed Central

    Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong

    2009-01-01

    Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530

  15. A genomic overview of the population structure of Salmonella.

    PubMed

    Alikhan, Nabil-Fareed; Zhou, Zhemin; Sergeant, Martin J; Achtman, Mark

    2018-04-01

    For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.

  16. Exploring a Nonmodel Teleost Genome Through RAD Sequencing—Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis

    PubMed Central

    Manousaki, Tereza; Tsakogiannis, Alexandros; Taggart, John B.; Palaiokostas, Christos; Tsaparis, Dimitris; Lagnel, Jacques; Chatziplis, Dimitrios; Magoulas, Antonios; Papandroulakis, Nikos; Mylonas, Constantinos C.; Tsigenopoulos, Costas S.

    2015-01-01

    Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts. PMID:26715088

  17. Exploring a Nonmodel Teleost Genome Through RAD Sequencing-Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis.

    PubMed

    Manousaki, Tereza; Tsakogiannis, Alexandros; Taggart, John B; Palaiokostas, Christos; Tsaparis, Dimitris; Lagnel, Jacques; Chatziplis, Dimitrios; Magoulas, Antonios; Papandroulakis, Nikos; Mylonas, Constantinos C; Tsigenopoulos, Costas S

    2015-12-29

    Common pandora (Pagellus erythrinus) is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), stickleback (Gasterosteus aculeatus), and medaka (Oryzias latipes), suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts. Copyright © 2016 Manousaki et al.

  18. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    PubMed

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction

  19. Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids

    PubMed Central

    Wang, Jianlin; Lee, Jinsuk J.; Tian, Lu; Lee, Hyeon-Se; Chen, Meng; Rao, Sheetal; Wei, Edward N.; Doerge, R. W.; Comai, Luca; Jeffrey Chen, Z.

    2007-01-01

    Polyploidy is an evolutionary innovation, providing extra sets of genetic material for phenotypic variation and adaptation. It is predicted that changes of gene expression by genetic and epigenetic mechanisms are responsible for novel variation in nascent and established polyploids (Liu and Wendel, 2002; Osborn et al., 2003; Pikaard, 2001). Studying gene expression changes in allopolyploids is more complicated than in autopolyploids, because allopolyploids contain more than two sets of genomes originating from divergent, but related, species. Here we describe two methods that are applicable to the genome-wide analysis of gene expression differences resulting from genome duplication in autopolyploids or interactions between homoeologous genomes in allopolyploids. First, we describe an amplified fragment length polymorphism (AFLP)–complementary DNA (cDNA) display method that allows the discrimination of homoeologous loci based on restriction polymorphisms between the progenitors. Second, we describe microarray analyses that can be used to compare gene expression differences between the allopolyploids and respective progenitors using appropriate experimental design and statistical analysis. We demonstrate the utility of these two complementary methods and discuss the pros and cons of using the methods to analyze gene expression changes in autopolyploids and allopolyploids. Furthermore, we describe these methods in general terms to be of wider applicability for comparative gene expression in a variety of evolutionary, genetic, biological, and physiological contexts. PMID:15865985

  20. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity

    PubMed Central

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-01-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  1. Sequence Search and Comparative Genomic Analysis of SUMO-Activating Enzymes Using CoGe.

    PubMed

    Carretero-Paulet, Lorenzo; Albert, Victor A

    2016-01-01

    The growing number of genome sequences completed during the last few years has made necessary the development of bioinformatics tools for the easy access and retrieval of sequence data, as well as for downstream comparative genomic analyses. Some of these are implemented as online platforms that integrate genomic data produced by different genome sequencing initiatives with data mining tools as well as various comparative genomic and evolutionary analysis possibilities.Here, we use the online comparative genomics platform CoGe ( http://www.genomevolution.org/coge/ ) (Lyons and Freeling. Plant J 53:661-673, 2008; Tang and Lyons. Front Plant Sci 3:172, 2012) (1) to retrieve the entire complement of orthologous and paralogous genes belonging to the SUMO-Activating Enzymes 1 (SAE1) gene family from a set of species representative of the Brassicaceae plant eudicot family with genomes fully sequenced, and (2) to investigate the history, timing, and molecular mechanisms of the gene duplications driving the evolutionary expansion and functional diversification of the SAE1 family in Brassicaceae.

  2. St2-80: a new FISH marker for St genome and genome analysis in Triticeae.

    PubMed

    Wang, Long; Shi, Qinghua; Su, Handong; Wang, Yi; Sha, Lina; Fan, Xing; Kang, Houyang; Zhang, Haiqin; Zhou, Yonghong

    2017-07-01

    The St genome is one of the most fundamental genomes in Triticeae. Repetitive sequences are widely used to distinguish different genomes or species. The primary objectives of this study were to (i) screen a new sequence that could easily distinguish the chromosome of the St genome from those of other genomes by fluorescence in situ hybridization (FISH) and (ii) investigate the genome constitution of some species that remain uncertain and controversial. We used degenerated oligonucleotide primer PCR (Dop-PCR), Dot-blot, and FISH to screen for a new marker of the St genome and to test the efficiency of this marker in the detection of the St chromosome at different ploidy levels. Signals produced by a new FISH marker (denoted St 2 -80) were present on the entire arm of chromosomes of the St genome, except in the centromeric region. On the contrary, St 2 -80 signals were present in the terminal region of chromosomes of the E, H, P, and Y genomes. No signal was detected in the A and B genomes, and only weak signals were detected in the terminal region of chromosomes of the D genome. St 2 -80 signals were obvious and stable in chromosomes of different genomes, whether diploid or polyploid. Therefore, St 2 -80 is a potential and useful FISH marker that can be used to distinguish the St genome from those of other genomes in Triticeae.

  3. The tiger genome and comparative analysis with lion and snow leopard genomes.

    PubMed

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.

  4. The tiger genome and comparative analysis with lion and snow leopard genomes

    PubMed Central

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  5. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes

    PubMed Central

    Nakatani, Yoichiro; McLysaght, Aoife

    2017-01-01

    Abstract Motivation: It has been argued that whole-genome duplication (WGD) exerted a profound influence on the course of evolution. For the purpose of fully understanding the impact of WGD, several formal algorithms have been developed for reconstructing pre-WGD gene order in yeast and plant. However, to the best of our knowledge, those algorithms have never been successfully applied to WGD events in teleost and vertebrate, impeded by extensive gene shuffling and gene losses. Results: Here, we present a probabilistic model of macrosynteny (i.e. conserved linkage or chromosome-scale distribution of orthologs), develop a variational Bayes algorithm for inferring the structure of pre-WGD genomes, and study estimation accuracy by simulation. Then, by applying the method to the teleost WGD, we demonstrate effectiveness of the algorithm in a situation where gene-order reconstruction algorithms perform relatively poorly due to a high rate of rearrangement and extensive gene losses. Our high-resolution reconstruction reveals previously overlooked small-scale rearrangements, necessitating a revision to previous views on genome structure evolution in teleost and vertebrate. Conclusions: We have reconstructed the structure of a pre-WGD genome by employing a variational Bayes approach that was originally developed for inferring topics from millions of text documents. Interestingly, comparison of the macrosynteny and topic model algorithms suggests that macrosynteny can be regarded as documents on ancestral genome structure. From this perspective, the present study would seem to provide a textbook example of the prevalent metaphor that genomes are documents of evolutionary history. Availability and implementation: The analysis data are available for download at http://www.gen.tcd.ie/molevol/supp_data/MacrosyntenyTGD.zip, and the software written in Java is available upon request. Contact: yoichiro.nakatani@tcd.ie or aoife.mclysaght@tcd.ie Supplementary information

  6. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes.

    PubMed

    Nakatani, Yoichiro; McLysaght, Aoife

    2017-07-15

    It has been argued that whole-genome duplication (WGD) exerted a profound influence on the course of evolution. For the purpose of fully understanding the impact of WGD, several formal algorithms have been developed for reconstructing pre-WGD gene order in yeast and plant. However, to the best of our knowledge, those algorithms have never been successfully applied to WGD events in teleost and vertebrate, impeded by extensive gene shuffling and gene losses. Here, we present a probabilistic model of macrosynteny (i.e. conserved linkage or chromosome-scale distribution of orthologs), develop a variational Bayes algorithm for inferring the structure of pre-WGD genomes, and study estimation accuracy by simulation. Then, by applying the method to the teleost WGD, we demonstrate effectiveness of the algorithm in a situation where gene-order reconstruction algorithms perform relatively poorly due to a high rate of rearrangement and extensive gene losses. Our high-resolution reconstruction reveals previously overlooked small-scale rearrangements, necessitating a revision to previous views on genome structure evolution in teleost and vertebrate. We have reconstructed the structure of a pre-WGD genome by employing a variational Bayes approach that was originally developed for inferring topics from millions of text documents. Interestingly, comparison of the macrosynteny and topic model algorithms suggests that macrosynteny can be regarded as documents on ancestral genome structure. From this perspective, the present study would seem to provide a textbook example of the prevalent metaphor that genomes are documents of evolutionary history. The analysis data are available for download at http://www.gen.tcd.ie/molevol/supp_data/MacrosyntenyTGD.zip , and the software written in Java is available upon request. yoichiro.nakatani@tcd.ie or aoife.mclysaght@tcd.ie. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All

  7. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains

    PubMed Central

    Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith

    2011-01-01

    Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363

  8. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes

    USDA-ARS?s Scientific Manuscript database

    In this Genomics Era, vast amounts of next generation sequencing data have become publicly-available for multiple genomes across hundreds of species. Analysis of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset...

  9. Real-time, portable genome sequencing for Ebola surveillance.

    PubMed

    Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W

    2016-02-11

    The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.

  10. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  11. Genome-wide analysis of disease progression in age-related macular degeneration.

    PubMed

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  12. eHive: An Artificial Intelligence workflow system for genomic analysis

    PubMed Central

    2010-01-01

    Background The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. Results We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. Conclusions eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/. PMID:20459813

  13. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    PubMed

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. eHive: an artificial intelligence workflow system for genomic analysis.

    PubMed

    Severin, Jessica; Beal, Kathryn; Vilella, Albert J; Fitzgerald, Stephen; Schuster, Michael; Gordon, Leo; Ureta-Vidal, Abel; Flicek, Paul; Herrero, Javier

    2010-05-11

    The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/.

  15. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    PubMed

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  16. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    DOE PAGES

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; ...

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less

  17. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach.

    PubMed

    Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A

    2018-04-01

    Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.

  18. Genomic analysis and clinical management of adolescent cutaneous melanoma.

    PubMed

    Rabbie, Roy; Rashid, Mamunur; Arance, Ana M; Sánchez, Marcelo; Tell-Marti, Gemma; Potrony, Miriam; Conill, Carles; van Doorn, Remco; Dentro, Stefan; Gruis, Nelleke A; Corrie, Pippa; Iyer, Vivek; Robles-Espinoza, Carla Daniela; Puig-Butille, Joan A; Puig, Susana; Adams, David J

    2017-05-01

    Melanoma in young children is rare; however, its incidence in adolescents and young adults is rising. We describe the clinical course of a 15-year-old female diagnosed with AJCC stage IB non-ulcerated primary melanoma, who died from metastatic disease 4 years after diagnosis despite three lines of modern systemic therapy. We also present the complete genomic profile of her tumour and compare this to a further series of 13 adolescent melanomas and 275 adult cutaneous melanomas. A somatic BRAF V 600E mutation and a high mutational load equivalent to that found in adult melanoma and composed primarily of C>T mutations were observed. A germline genomic analysis alongside a series of 23 children and adolescents with melanoma revealed no mutations in known germline melanoma-predisposing genes. Adolescent melanomas appear to have genomes that are as complex as those arising in adulthood and their clinical course can, as with adults, be unpredictable. © 2017 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  19. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    PubMed

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  20. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less

  1. [Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis].

    PubMed

    Goriunova, S V; Kochieva, E Z; Chikida, N N; Pukhal'skiĭ, V A

    2004-05-01

    RAPD analysis was carried out to study the genetic variation and phylogenetic relationships of polyploid Aegilops species, which contain the D genome as a component of the alloploid genome, and diploid Aegilops tauschii, which is a putative donor of the D genome for common wheat. In total, 74 accessions of six D-genome Aegilops species were examined. The highest intraspecific variation (0.03-0.21) was observed for Ae. tauschii. Intraspecific distances between accessions ranged 0.007-0.067 in Ae. cylindrica, 0.017-0.047 in Ae. vavilovii, and 0.00-0.053 in Ae. juvenalis. Likewise, Ae. ventricosa and Ae. crassa showed low intraspecific polymorphism. The among-accession difference in alloploid Ae. ventricosa (genome DvNv) was similar to that of one parental species, Ae. uniaristata (N), and substantially lower than in the other parent, Ae. tauschii (D). The among-accession difference in Ae. cylindrica (CcDc) was considerably lower than in either parent, Ae. tauschii (D) or Ae. caudata (C). With the exception of Ae. cylindrica, all D-genome species--Ae. tauschii (D), Ae. ventricosa (DvNv), Ae. crassa (XcrDcrl and XcrDcrlDcr2), Ae. juvenalis (XjDjUj), and Ae. vavilovii (XvaDvaSva)--formed a single polymorphic cluster, which was distinct from clusters of other species. The only exception, Ae. cylindrica, did not group with the other D-genome species, but clustered with Ae. caudata (C), a donor of the C genome. The cluster of these two species was clearly distinct from the cluster of the other D-genome species and close to a cluster of Ae. umbellulata (genome U) and Ae. ovata (genome UgMg). Thus, RAPD analysis for the first time was used to estimate and to compare the interpopulation polymorphism and to establish the phylogenetic relationships of all diploid and alloploid D-genome Aegilops species.

  2. Genome analysis of the platypus reveals unique signatures of evolution

    PubMed Central

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  3. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution

    PubMed Central

    Mägi, Reedik; Horikoshi, Momoko; Sofer, Tamar; Mahajan, Anubha; Kitajima, Hidetoshi; Franceschini, Nora; McCarthy, Mark I.; Morris, Andrew P.

    2017-01-01

    Abstract Trans-ethnic meta-analysis of genome-wide association studies (GWAS) across diverse populations can increase power to detect complex trait loci when the underlying causal variants are shared between ancestry groups. However, heterogeneity in allelic effects between GWAS at these loci can occur that is correlated with ancestry. Here, a novel approach is presented to detect SNP association and quantify the extent of heterogeneity in allelic effects that is correlated with ancestry. We employ trans-ethnic meta-regression to model allelic effects as a function of axes of genetic variation, derived from a matrix of mean pairwise allele frequency differences between GWAS, and implemented in the MR-MEGA software. Through detailed simulations, we demonstrate increased power to detect association for MR-MEGA over fixed- and random-effects meta-analysis across a range of scenarios of heterogeneity in allelic effects between ethnic groups. We also demonstrate improved fine-mapping resolution, in loci containing a single causal variant, compared to these meta-analysis approaches and PAINTOR, and equivalent performance to MANTRA at reduced computational cost. Application of MR-MEGA to trans-ethnic GWAS of kidney function in 71,461 individuals indicates stronger signals of association than fixed-effects meta-analysis when heterogeneity in allelic effects is correlated with ancestry. Application of MR-MEGA to fine-mapping four type 2 diabetes susceptibility loci in 22,086 cases and 42,539 controls highlights: (i) strong evidence for heterogeneity in allelic effects that is correlated with ancestry only at the index SNP for the association signal at the CDKAL1 locus; and (ii) 99% credible sets with six or fewer variants for five distinct association signals. PMID:28911207

  4. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. A survey of tools for variant analysis of next-generation genome sequencing data

    PubMed Central

    Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes

    2014-01-01

    Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494

  6. Short-Read Sequencing for Genomic Analysis of the Brown Rot Fungus Fibroporia radiculosa

    Treesearch

    J. D. Tang; A. D. Perkins; T. S. Sonstegard; S. G. Schroeder; S. C. Burgess; S. V. Diehl

    2012-01-01

    The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment...

  7. Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease

    PubMed Central

    Rusniok, Christophe; Lomma, Mariella; Dervins-Ravault, Delphine; Newton, Hayley J.; Sansom, Fiona M.; Jarraud, Sophie; Zidane, Nora; Ma, Laurence; Bouchier, Christiane; Etienne, Jerôme; Hartland, Elizabeth L.; Buchrieser, Carmen

    2010-01-01

    Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella

  8. Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2

    PubMed Central

    Lamers, Susanna L.; Weiner, Brian; Ray, Stuart C.; Colgrove, Robert C.; Diaz, Fernando; Jing, Lichen; Wang, Kening; Saif, Sakina; Young, Sarah; Henn, Matthew; Laeyendecker, Oliver; Tobian, Aaron A. R.; Cohen, Jeffrey I.; Koelle, David M.; Quinn, Thomas C.; Knipe, David M.

    2015-01-01

    ABSTRACT Herpes simplex virus 2 (HSV-2), the principal causative agent of recurrent genital herpes, is a highly prevalent viral infection worldwide. Limited information is available on the amount of genomic DNA variation between HSV-2 strains because only two genomes have been determined, the HG52 laboratory strain and the newly sequenced SD90e low-passage-number clinical isolate strain, each from a different geographical area. In this study, we report the nearly complete genome sequences of 34 HSV-2 low-passage-number and laboratory strains, 14 of which were collected in Uganda, 1 in South Africa, 11 in the United States, and 8 in Japan. Our analyses of these genomes demonstrated remarkable sequence conservation, regardless of geographic origin, with the maximum nucleotide divergence between strains being 0.4% across the genome. In contrast, prior studies indicated that HSV-1 genomes exhibit more sequence diversity, as well as geographical clustering. Additionally, unlike HSV-1, little viral recombination between HSV-2 strains could be substantiated. These results are interpreted in light of HSV-2 evolution, epidemiology, and pathogenesis. Finally, the newly generated sequences more closely resemble the low-passage-number SD90e than HG52, supporting the use of the former as the new reference genome of HSV-2. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a causative agent of genital and neonatal herpes. Therefore, knowledge of its DNA genome and genetic variability is central to preventing and treating genital herpes. However, only two full-length HSV-2 genomes have been reported. In this study, we sequenced 34 additional HSV-2 low-passage-number and laboratory viral genomes and initiated analysis of the genetic diversity of HSV-2 strains from around the world. The analysis of these genomes will facilitate research aimed at vaccine development, diagnosis, and the evaluation of clinical manifestations and transmission of HSV-2. This information will also contribute

  9. A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens

    PubMed Central

    Qanbari, Saber; Strom, Tim M.; Haberer, Georg; Weigend, Steffen; Gheyas, Almas A.; Turner, Frances; Burt, David W.; Preisinger, Rudolf; Gianola, Daniel; Simianer, Henner

    2012-01-01

    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a “creeping window” strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes. PMID:23209582

  10. GenomeGraphs: integrated genomic data visualization with R.

    PubMed

    Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine

    2009-01-06

    Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.

  11. Ensembl Genomes 2013: scaling up access to genome-wide data

    USDA-ARS?s Scientific Manuscript database

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provi...

  12. Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes

    PubMed Central

    McCarthy, Charley G. P.

    2017-01-01

    ABSTRACT The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the

  13. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.

    PubMed

    Zhang, Ning; Cai, Guohong; Price, Dana C; Crouch, Jo Anne; Gladieux, Pierre; Hillman, Bradley; Khang, Chang Hyun; LeBrun, Marc-Henri; Lee, Yong-Hwan; Luo, Jing; Qiu, Huan; Veltri, Daniel; Wisecaver, Jennifer H; Zhu, Jie; Bhattacharya, Debashish

    2018-04-12

    The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.

  14. Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes

    PubMed Central

    Lohse, Konrad; Frantz, Laurent A. F.

    2014-01-01

    Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination. PMID:24532731

  15. High-density genetic map construction and comparative genome analysis in asparagus bean.

    PubMed

    Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu

    2018-03-19

    Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.

  16. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.

    PubMed

    Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S

    2016-01-15

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  18. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  19. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus

    PubMed Central

    Sharma, Gaurav; Narwani, Tarun; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria. PMID:26900859

  20. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    PubMed Central

    2009-01-01

    Background The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo) and the first analysis of copy number variants (CNVs) in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos), an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots"). Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies. PMID:19656363