Sample records for resolution multichannel seismic

  1. High precision gas hydrate imaging of small-scale and high-resolution marine sparker multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Luo, D.; Cai, F.

    2017-12-01

    Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and

  2. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  3. A Deep-towed Digital Multichannel Seismic Streamer For Very High-resolution Studies Of Marine Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Inggas Working Group

    A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All

  4. Reprocessing of multi-channel seismic-reflection data collected in the Chukchi Sea

    USGS Publications Warehouse

    Agena, W.F.; Lee, M.W.; Hart, P.E.

    2001-01-01

    Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 44 lines recorded in the Chukchi Sea, northern Alaska, by the United States Geological Survey in 1977, 1978, and 1980. All data were reprocessed by the USGS in 2000 using updated methods. The resulting final data have both increased temporal and spatial resolution thus providing improved interpretability. An added benefit of these CD-ROMs is that they are a more stable, long-term archival medium for the data.

  5. High-resolution multi-channel seismic images of the Queen Charlotte Fault system offshore southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Brothers, D. S.; Kluesner, J.; Balster-Gee, A.; Ten Brink, U. S.; Andrews, B. D.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    We present high-resolution multi-channel seismic (MCS) images of fault structure and sedimentary stratigraphy along the southeastern Alaska margin, where the northern Queen Charlotte Fault (QCF) cuts the shelf-edge and slope. The QCF is a dominantly strike slip system that forms the boundary between the Pacific (PA) and North American (NA) plates offshore western Canada and southeastern Alaska. The data were collected using a 64 channel, 200 m digital streamer and a 0.75-3 kJ sparker source aboard the R/V Norseman in August 2016. The survey was designed to cross a seafloor fault trace recently imaged by multibeam sonar (see adjacent poster by Brothers et al.) and to extend the subsurface information landward and seaward from the fault. Analysis of these MCS and multibeam data focus on addressing key questions that have significant implications for the kinematic and geodynamic history of the fault, including: Is the imaged surface fault in multibeam sonar the only recently-active fault trace? What is the shallow fault zone width and structure, is the internal structure of the recently-discovered pull-apart basin a dynamically developing structure? How does sediment thickness vary along the margin and how does this variation affect the fault expression? Can previous glacial sequences be identified in the stratigraphy?

  6. Wireless acquisition of multi-channel seismic data using the Seismobile system

    NASA Astrophysics Data System (ADS)

    Isakow, Zbigniew

    2017-11-01

    This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.

  7. Recording and processing procedures for multi-channel seismic-reflection data collected in the western Ross Sea, Antarctica

    USGS Publications Warehouse

    Dadisman, Shawn V.; Ryan, Holly F.; Mann, Dennis M.

    1987-01-01

    During 1984, over 2300 km of multichannel seismic-reflection data were recorded by the U.S. Geological Survey in the western Ross Sea and Iselin Bank regions.  A temporary loss and sinking of the streamer led to increasing the streamer tow depth to 20 m, which resulted in some attenuation of frequencies in the 30-50 Hz range but no significant difference in resolution of the stacked data.  Severe water bottom multiples were encountered and removed by dip-filtering, weighted stacking, and severe post-NMO muting.

  8. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  9. Multichannel seismic-reflection profiling on the R/V Maurice Ewing during the Los Angeles Region Seismic Experiment (LARSE), California

    USGS Publications Warehouse

    Brocher, Thomas M.; Clayton, Robert W.; Klitgord, Kim D.; Bohannon, Robert G.; Sliter, Ray; McRaney, John K.; Gardner, James V.; Keene, J.B.

    1995-01-01

    This report describes the acquisition of deep-crustal multichannel seismic-reflection data in the Inner California Borderland aboard the R/V Maurice Ewing, conducted in October 1994 as part of the Los Angeles Regional Seismic Experiment (LARSE). LARSE is a cooperative study of the crustal structure of southern California involving earth scientists from the U.S. Geological Survey, Caltech, the University of Southern California, the University of California Los Angeles, and the Southern California Earthquake Center (SCEC). During LARSE, the R/V Ewing's 20- element air gun array, totaling 137.7 liters (8470 cu. in.), was used as the primary seismic source for wide-angle recording along three main onshore-offshore lines centered on the Los Angeles basin and the epicenters of the 1933 Long Beach and 1994 Northridge earthquakes. The LARSE onshore-offshore lines were each 200-250 km long, with the offshore portions being between 90 and 150 km long. The nearly 24,000 air gun signals generated by the Ewing were recorded by an array of 170 PASSCAL REFTEK recorders deployed at 2 km intervals along all three of the onshore lines and 9 ocean bottom seismometers (OBSs) deployed along two of the lines. Separate passes over the OBS-deployment lines were performed with a long air gun repetition rate (60 and 90 seconds) to minimize acoustic-wave interference from previous shots in the OBS data. The Ewing's 4.2-km, 160-channel, digital streamer was also used to record approximately 1250 km of 40-fold multichannel seismic-reflection data. To enhance the fold of the wide-angle data recorded onshore, mitigating against cultural and wind noise in the Los Angeles basin, the entire ship track was repeated at least once resulting in fewer than about 660 km of unique trackline coverage in the Inner Borderland. Portions of the seismic-reflection lines were repeated up to 6 times. A variety of other geophysical data were also continuously recorded, including 3.5 kHz bathymetry, multi

  10. High-resolution lithospheric imaging with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees

    2010-10-01

    In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the

  11. High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images

    NASA Astrophysics Data System (ADS)

    Mojica, Jhon F.; Sallarès, Valentí; Biescas, Berta

    2018-06-01

    The Alboran Sea is a dynamically active region where the salty and warm Mediterranean water first encounters the incoming milder and cooler Atlantic water. The interaction between these two water masses originates a set of sub-mesoscale structures and a complex sequence of processes that entail mixing close to the thermocline. Here we present a high-resolution map of the diapycnal diffusivity around the thermocline depth obtained using acoustic data recorded with a high-resolution multichannel seismic system. The map reveals a patchy thermocline, with spots of strong diapycnal mixing juxtaposed with areas of weaker mixing. The patch size is of a few kilometers in the horizontal scale and of 10-15 m in the vertical one. The comparison of the obtained maps with the original acoustic images shows that mixing tends to concentrate in areas where internal waves, which are ubiquitous in the surveyed area, become unstable and shear instabilities develop, enhancing energy transfer towards the turbulent regime. These results are also compared with others obtained using more conventional oceanographic probes. The values estimated based on the seismic data are within the ranges of values obtained from oceanographic data analysis, and they are also consistent with reference theoretical values. Overall, our results demonstrate that high-resolution seismic systems allow the remote quantification of mixing at the thermocline depth with unprecedented resolution.

  12. China's first intermediate resolution multi-channel seismic survey in the northern Victoria Land Basin and Terror Rift, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Shen, Zhongyan; Gao, Jinyao; Zhang, Tao; Wang, Wei; Ding, Weifeng; Zhang, Sheng

    2017-04-01

    The West Antarctic Rift System (WARS) represents one of the largest active continental rift systems on Earth and is less well known than other rift systems because it is largely covered by thick ice. The Terror Rift (TR), superimposing on the Victoria Land Basin (VLB) in the western Ross Sea, is identified as the most recent deformational zone of the WARS, thus will provide knowledge of the active deformation process of the WARS. The structure and kinematics of the TR is under debate. Originally, the TR was thought to consist of two parts: the Discovery Graben and the magmatically-intruded Lee Arch. New denser seismic grid in the middle and southern segments of the TR revealed a different structure of the Lee Arch while the northern segment of the TR is not well studied. The glacial history of the VLB/TR region is another attractive issue to the geologists since this area records the behavior information of EAIS and WAIS. In the southern part of the VLB, especially in the McMurdo Sound, the framework of the glacial history is well established after several deep cores which recovery the whole stratigraphic sequences since the onset of the glaciation. However, the glacial history of the northern part of the VLB/TR is less well studied and here we emphasize its importance because the northern part of the VLB/TR is a link between the well-studied southern VLB and the sediment-well-preserved Northern Basin. During the 32nd Chinese National Antarctic Research Expedition, on the board of the RV XueLong, we collected intermediate resolution multi-channel seismic reflection data in the northern VLB/TR. These data will establish new constraints on the timing of deformation, structure and kinematics of the TR, and the history of the EAIS and WAIS.

  13. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  14. High resolution seismic stratigraphy and Mass Transport Deposits of the proximal continental margin, offshore Quarteira, South Portugal: Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Duarte, Débora; Santos, Joana; Terrinha, Pedro; Brito, Pedro; Noiva, João; Ribeiro, Carlos; Roque, Cristina

    2017-04-01

    More than 300 nautical miles of multichannel seismic reflection data were acquired in the scope of the ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe), off Quarteira, Algarve, South Portugal. The main goal of this very high resolution multichannel seismic survey was to obtain high-resolution images of the sedimentary record to try to discern the existence of high energy events, possibly tsunami backwash deposits associated with large magnitude earthquakes generated at the Africa-Eurasia plate boundary This seismic dataset was processed at the Instituto Português do Mar e da Atmosfera (IPMA), with the SeisSpace PROMAX Seismic Processing software. A tailor-made processing flow was applied, focusing in the removal of the seafloor multiple and in the enhancement of the superficial layers. A sparker source, using with 300 J of energy and a fire rate of 0,5 s was used onboard Xunauta, an 18 m long vessel. The preliminary seismostratigraphic interpretation of the Algarve ASTARTE seismic dataset allowed the identification of a complex sequence seismic units of progradational and agradational bodies as well as Mass Transported Deposits (MTD). The MTD package of sediments has a very complex internal structure, 20m of thickness, is apparently spatially controlled by an escarpment probably associated to past sea level low stands. The MTD covers across an area, approximately parallel to an ancient coastline, with >30 km (length) x 5 km (across). Acknowledgements: This work was developed as part of the project ASTARTE (603839 FP7) supported by the grant agreement No 603839 of the European Union's Seventh. The Instituto Portugues do Mar e da Atmosfera acknowledges support by Landmark Graphics (SeisWorks) via the Landmark University Grant Program.

  15. Preliminary Interpretations of Multi-Channel Seismic Reflection and Magnetic Data on North Anatolian Fault (NAF) in the Eastern Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Gözde Okut Toksoy, Nigar; Kurt, Hülya; İşseven, Turgay

    2017-04-01

    The North Anatolian Fault (NAF) is 1600 km long, right lateral strike-slip fault nearly E-W elongated between Karlıova in the east and Saros Gulf in the west. NAF splays into two major strands near the west of Bolu city as Northern and Southern strands. Northern strand passes Sapanca Lake and extends towards west and reaches Marmara Sea through the Gulf of Izmit. The area has high seismicity; 1999 Kocaeli (Mw=7.4) and 1999 Düzce (Mw=7.2) earthquakes caused approximately 150 km long surface rupture between the Gulf of Izmit and Bolu. The rupture has four distinct fault segments as Gölcük, Sapanca, Sakarya, and Karadere from west to east. In this study multi-channel seismic and magnetic data are collected for the first time on the Sapanca Segment to investigate the surficial and deeper geometry of the NAF. Previously, the NAF in the eastern Marmara region is investigated using by paleo-seismological data from trenches on the surface rupture of fault or the geomorphological data (Lettis et al., 2000; Dikbaş and Akyüz, 2010) which have shallower depth targets. Crustal structure and seismic velocities for Central Anatolia and eastern Marmara regions are obtained from deeper targeted refraction data (Gürbüz et al., 1992). However, their velocity models do not have the spatial resolution to determine details of the fault zone structure. Multi-channel seismic and magnetic data in this study were acquired on two N-S directed profiles crossing NAF perpendicularly near Kartepe on the western part of the Sapanca Lake in October 2016. The receiver interval is 5 m, shot interval is 5-10 m, and the total length of the profiles are approximately 1400 m. Buffalo Gun is used as a seismic source for deeper penetration. Conventional seismic reflection processing steps are applied to the data. These are geometry definition, editing, filtering, static correction, velocity analysis and deconvolution, stacking and migration. Echos seismic software package in Geophysical Department

  16. Multichannel analysis of surface waves (MASW) - Active and passive methods

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.

    2007-01-01

    The conventional seismic approaches for near-surface investigation have usually been either high-resolution reflection or refraction surveys that deal with a depth range of a few tens to hundreds meters. Seismic signals from these surveys consist of wavelets with frequencies higher than 50 Hz. The multichannel analysis of surface waves (MASW) method deals with surface waves in the lower frequencies (e.g., 1-30 Hz) and uses a much shallower depth range of investigation (e.g., a few to a few tens of meters). ?? 2007 Society of Exploration Geophysicists.

  17. Multichannel seismic/oceanographic/biological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.

    2011-12-01

    Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent

  18. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  19. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  20. Blocky inversion of multichannel elastic impedance for elastic parameters

    NASA Astrophysics Data System (ADS)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  1. Reprocessing of multi-channel seismic-reflection data collected in the Beaufort Sea

    USGS Publications Warehouse

    Agena, W.F.; Lee, Myung W.; Hart, P.E.

    2000-01-01

    Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 65 lines recorded in the Beaufort Sea by the United States Geological Survey in 1977. All data were reprocessed by the USGS using updated processing methods resulting in improved interpretability. Each of the two CD-ROMs contains the following files: 1) 65 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 65 lines in standard SEG-P1 format; 3) an ASCII text file with cross-reference information for relating the sequential trace numbers on each line to cdp numbers and shotpoint numbers; 4) 2 small scale graphic images (stacked and migrated) of a segment of line 722 in Adobe Acrobat (R) PDF format; 5) a graphic image of the location map, generated from the navigation file; 6) PlotSeis, an MS-DOS Application that allows PC users to interactively view the SEG-Y files; 7) a PlotSeis documentation file; and 8) an explanation of the processing used to create the final seismic sections (this document).

  2. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise

    USGS Publications Warehouse

    Detrick, R. S.; Buhl, P.; Vera, E.; Mutter, J.; Orcutt, J.; Madsen, J.; Brocher, T.

    1987-01-01

    A reflection observed on multi-channel seismic profiles along and across the East Pacific Rise between 8??50??? N and 13??30??? N is interpreted to arise from the top of a crustal magma chamber located 1.2-2.4 km below the sea floor. The magma chamber is quite narrow (<4 - 6 km wide), but can be traced as a nearly continuous feature for tens of kilometres along the rise axis. ?? 1987 Nature Publishing Group.

  3. Multi-channel seismic reflection database for the northern Gulf of California, a highly-sedimented oblique rift

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Haxby, W.; Persaud, P.; Stock, J.; Martín-Barajas, A.; Diebold, J.; Gonzalez-Fernandez, A.; Mountain, G. S.

    2003-04-01

    A multi-channel seismic reflection database has been developed to give access to high-resolution MCS data collected in the northern Gulf of California in May-June 1999. This data set consists of 3500 km of high-resolution MCS data acquired by the LDEO portable 48-channel MCS system using a 600-m streamer, a 1-ms sampling interval, and CDP spacing of 6.25/12.5 m on board the B/O Ulloa, the 28-m research vessel of CICESE. The resulting images have vertical resolution on the scale of meters to depths of up to 2 km below the seafloor. In addition, 48 sonobuoys recorded to 7 sec TWTT provided refraction velocities to greater depths. The northern Gulf of California is a transitional region between the oceanic ridge transform system of the central and southern Gulf and the continental San Andreas fault system of southern California. This data images the active deformation associated with the plate boundary zone in the northern Gulf of California. Multiple parallel rifts are simultaneously active in this wide complex zone of regional extension overprinted by shearing and a high sediment influx. The public-access database makes the cruise results, which is in a US MARGINS Program focus area, available to the broader geoscience community. The database includes navigation, final stacks and images for 80 seismic lines and 48 sonobuoys. The database may be accessed with MapApp, a downloadable Java application. Java applets offer many advantages over static or scripted web pages; they permit dynamic local interaction with data sets and limit time-consuming interaction with a remote server. MapApp displays the seismic lines on a map, and provides a viewer for inspecting images of the lines. Users may select a line from a list, or by clicking on the map. Once a line is selected, a user may load the image into the viewer, or download navigation, image or SEG-Y files. The viewer includes capability to zoom in and out, scroll, stretch or shrink horizontally, reverse direction, and

  4. 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Rekapalli, Rajesh; Tiwari, R. K.; Sen, Mrinal K.; Vedanti, Nimisha

    2017-05-01

    Noises and data gaps complicate the seismic data processing and subsequently cause difficulties in the geological interpretation. We discuss a recent development and application of the Multi-channel Time Slice Singular Spectrum Analysis (MTSSSA) for 3D seismic data de-noising in time domain. In addition, L1 norm based simultaneous data gap filling of 3D seismic data using MTSSSA also discussed. We discriminated the noises from single individual time slices of 3D volumes by analyzing Eigen triplets of the trajectory matrix. We first tested the efficacy of the method on 3D synthetic seismic data contaminated with noise and then applied to the post stack seismic reflection data acquired from the Sleipner CO2 storage site (pre and post CO2 injection) from Norway. Our analysis suggests that the MTSSSA algorithm is efficient to enhance the S/N for better identification of amplitude anomalies along with simultaneous data gap filling. The bright spots identified in the de-noised data indicate upward migration of CO2 towards the top of the Utsira formation. The reflections identified applying MTSSSA to pre and post injection data correlate well with the geology of the Southern Viking Graben (SVG).

  5. Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data

    NASA Astrophysics Data System (ADS)

    Singh, Vishwajit

    2016-04-01

    This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.

  6. Multichannel seismic-reflection profiles collected in 1979 aboard M/V Seismic Explorer on the western Florida shelf

    USGS Publications Warehouse

    Ball, M.M.; Soderberg, N.K.

    1989-01-01

    In August 1979, the U.S. Geological Survey (USGS) aboard the M/V SEISMIC EXPLORER of Seismic Explorations International (SEI), ran 17 lines (1,270 km) of multichannel, seismic-reflection profiles on the western Florida Shelf. The main features of the SEI system were (1) a digital recorder with an instantaneous-floating-point-gain constant of 24 dB, (2) a 64-channel hydrophone streamer, 3,200 m long, and (3) a 21-airgun array that had a total volume of 2,000 in and a pressure of 2,000 psi. Sampling interval was array to the center of the farthest phone group was 3,338 m and to the nearest phone group, 188 m. Shot points were 5O m apart to obtain a 32-fold stack. Navigation was by an integrated satellite/Loran/doppler-sonar system.The SEI data were processed by Geophysical Data Processing Center, Inc. of Houston, Texas. Processing procedures were standard with the following exceptions: (1) a deringing deconvolution that had a 128-ms operator length was done prior to stacking. (2) a time-variant predictive deconvolution that had a filter operator length of 100 ms and automatic picking of the second zero-crossing was applied after stacking to further suppress multiple energy. (3) Velocity analyses were performed every 3 km, using a technique that included the determination and consideration of both the amount and direction of apparent dip. (4) Automatic gain ranging using a 750-ms window was applied pre- and post-stack. ( 5) Lines affected by sea floor's angle of slope were deconvolved again before stacking and time-variant filter parameters were adjusted to follow the sea-floor geometry.The data taken with the 3,200-m streamer and 2,000 in3 airgun array, aboard M/V SEISMIC EXPLORER (Arabic numerals) are vastly superior to those obtained by R/V GYRE using a much smaller streamer and source (Roman numerals). The former consistently show coherent primary events from within the units underlying the Mesozoic section on the western Florida Shelf, while the latter tend to do

  7. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  8. Borehole prototype for seismic high-resolution exploration

    NASA Astrophysics Data System (ADS)

    Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas

    2014-05-01

    Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the

  9. Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara

    NASA Astrophysics Data System (ADS)

    Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene

    2015-04-01

    Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.

  10. Sunda-Banda Arc Transition: Marine Multichannel Seismic Profiling

    NASA Astrophysics Data System (ADS)

    Lueschen, E.; Mueller, C.; Kopp, H.; Djajadihardja, Y.; Ehrhardt, A.; Engels, M.; Lutz, R.; Planert, L.; Shulgin, A.; Working Group, S.

    2008-12-01

    After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Shulgin et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of

  11. First Results from the Multi-beam Bathymetry and Multi-channel Seismic Reflection Data offshore Cide-Sinop, Southern Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2016-12-01

    The morphological and seismic features offshore Cide-Sinop at the Southern Black Sea shelf area were first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). Multi-beam bathymetric data were collected between 2002-2008 from onboard the research vessels TCG Çubuklu and TCG Çeşme run by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO) with the system an Elac-Nautic 1050D. Multi-channel seismic reflection data were collected by Turkish Petroleum Corporation (TPAO) Company in 1991. Multi-beam measurements cover 2.59 km2 areas and depths change from -1 to -500 m. Elevation data were digitized from contour lines of 1/25K topo-maps of General Command of Mapping, with the contour interval of 10 m and supplementary 5 m contours in areas of low relief. Contour and shore lines, multi-beam points were interpolated into DEMs of pixel size 10 m and 5 m respectively, using Annudem algorithm. The Geographic Information System (GIS) software was used to analyse and visualize the two data sets. Seismic reflection data were processed by conventional methods under `Echos' seismic data processing software and time migrated seismic sections were produced. DEMs were combined with seismic reflection sections to understand the morphological and morphodynamic character of the study area. First results indicate that offshore Cide-Sinop is characterised by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The bathymetry gently deepens from inner shelf toward shelf break at -120 m isobath. Slope angles from 0 to 1 degrees at the shelf plain, increases about to 10 degrees beyond the shelf edge. The large shelf plain is widely characterized by sand dunes with an average height of 10 meters form E-W oriented belts of 500-1000 m in width. Toward offshore

  12. Multichannel seismic-reflection data collected in 1980 in the eastern Chukchi Sea

    USGS Publications Warehouse

    Grantz, Arthur; Mann, Dennis M.; May, Steven D.

    1986-01-01

    The U.S. Geological Survey (USGS) collected approximately 2,652 km of 24-channel seismic-reflection data in early September, 1980, over the continental shelf in the eastern Chukchi Sea (Fig. 1). The profiles were collected on the USGS Research Vessel S.P. Lee. The seismic energy source consisted of a tuned array of five airguns with a total volume of 1213 cubic inches of air compressed to approximately 1900 psi. The recording system consisted of a 24-channel, 2400 meter long streamer with a group interval of 100 m, and a GUS (Global Universal Science) model 4200 digital recording instrument. Shots were fired every 50 meters. Navigational control for the survey was provided by a Magnavox integrated navigation system using transit satellites and doppler-sonar augmented by Loran C (Rho-Rho). A 2-millisecond sampling rate was used in the field; the data were later desampled to 4-milliseconds during the demultiplexing process. 8 seconds data length was recorded. Processing was done at the USGS Pacific Marine Geology Multichannel Processing Center in Menlo Park, California, in the sequence: editing-demultiplexing, velocity analysis, CDP stacking, deconvolution-filtering, and plotting on an electrostatic plotter. Plate 1 is a trackline chart showing shotpoint navigation.

  13. 2D - 3D high resolution seismic survey on the Sea of Marmara - Western High

    NASA Astrophysics Data System (ADS)

    Saritas, H.; Cifci, G.; Géli, L.; Thomas, Y.; Marsset, B.; Rochat, A.; Westbrook, G. K.; Ker, S.; Atgin, O.; Akhun ćoşkun, S. D.; Grall, C.; Henr, P.; Gürçay, S.; Okay, S.; ćoşkun, S.; Özkan, Ö.; Barın, B.

    2012-04-01

    In the Sea of Marmara the main strand of the NAF is made up of the Ganos (15km long), Central Marmara (150 km), and North Boundary (45 km) fault segment (Okay et al., 2000). The Central Marmara Fault crosses over The Western High which is located between Tekirdag and Central Marmara Basins. The Western High and Cinarcik Basin is one of the major regions of geological interest which is the area close to the NAF where evidence of gas hydrates and gas escapes have been observed during previous scientific cruises. To understand movement of the NAF and origin of the gas , collecting data was focused on these areas by the latter cruises. It started with TAMAM (Turkish-American Marmara Multichannel) cruise in July 2008 by R/V Koca Piri Reis which belongs to Dokuz Eylul University , and after that it continued with MARMESONET (Marmara Demonstration Mission Program supported by European Seafloor Observatory Network) in December 2009 by R/V Le Suroit which belongs to IFREMER. This cruise consisted of two leg; leg-1 was about collecting multibeam and AUV data, Leg-2 was about collecting High Resolution 3D Seismic data. The last cruise PirMarmara was carried out in June 2010 by R/V Koca Piri Reis , its aim was that collecting 2D High Resolution Seismic Data .These projects are grouped in ESONET MARMARA-DM Project. 3D seismic data provide detailed information about fault distribution and subsurface structures. Computer-based interpretation and display of 3D seismic data allow for more thorough analysis than 2D seismic data. The objectives of this survey are; find gas strata and gas hydrate formation location in the western high, geological description of this area, understand tectonical movement related to dextral strike slip North Anatolian fault, focus on the mud volcano in which close to NAF, find gas hydrate and origin of the existing gas , and location of the gas escaping, investigate the creation of the Marmara Sea concerning with Western High. Integrate good velocity

  14. Joint refraction and reflection travel-time tomography of multichannel and wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Begovic, Slaven; Meléndez, Adrià; Ranero, César; Sallarès, Valentí

    2017-04-01

    Both near-vertical multichannel (MCS) and wide-angle (WAS) seismic data are sensitive to same properties of sampled model, but commonly they are interpreted and modeled using different approaches. Traditional MCS images provide good information on position and geometry of reflectors especially in shallow, commonly sedimentary layers, but have limited or no refracted waves, which severely hampers the retrieval of velocity information. Compared to MCS data, conventional wide-angle seismic (WAS) travel-time tomography uses sparse data (generally stations are spaced by several kilometers). While it has refractions that allow retrieving velocity information, the data sparsity makes it difficult to define velocity and the geometry of geologic boundaries (reflectors) with the appropriate resolution, especially at the shallowest crustal levels. A well-known strategy to overcome these limitations is to combine MCS and WAS data into a common inversion strategy. However, the number of available codes that can jointly invert for both types of data is limited. We have adapted the well-known and widely-used joint refraction and reflection travel-time tomography code tomo2d (Korenaga et al, 2000), and its 3D version tomo3d (Meléndez et al, 2015), to implement streamer data and multichannel acquisition geometries. This allows performing joint travel-time tomographic inversion based on refracted and reflected phases from both WAS and MCS data sets. We show with a series of synthetic tests following a layer-stripping strategy that combining these two data sets into joint travel-time tomographic method the drawbacks of each data set are notably reduced. First, we have tested traditional travel-time inversion scheme using only WAS data (refracted and reflected phases) with typical acquisition geometry with one ocean bottom seismometer (OBS) each 10 km. Second, we have jointly inverted WAS refracted and reflected phases with only streamer (MCS) reflection travel-times. And at the end

  15. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  16. Combined Application of Shallow Seismic Reflection and High-resolution Refraction Exploration Approach to Active Fault Survey, Central Orogenic Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, S.; Luo, D.; Yanlin, F.; Li, Y.

    2016-12-01

    Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault

  17. Enhancing analog seismic data resolution using the A/D converter: Examples of Sicilia Channel and Marmara Sea data set

    NASA Astrophysics Data System (ADS)

    Alp, H.

    2015-12-01

    We present here two data set composed of about 20 multichannel seismic data profiles, for a total of 1102 km of data acquired in the Sicilia Channel in Italy and Marmara Sea in Turkey. The data set of Multichannel seismic reflection profiles and well information acquired for commercial purpose by oil companies in the 1970's and 1980's. All profiles in Sicilia Channel, which are available on .pdf files were downloaded from VIDEPI website. Other profiles in Marmara Sea were taken from Turkish Petroleum Corporation. The first step was to convert the graphic files SEG-Y format files, using SeisTrans® software. Due to the great inhomogeneity of the various seismic lines, which have been recorded from different companies with different acquisition parameters, it has been necessary a great job of homogenization and noise reduction through the use of adequate band-pass filters. Then, for each reconstructed seismic line, SEG-Y header editing was necessary in order to assign the CDP (common-depth-points) and the SP (shot points) to the corresponding geographic coordinates. The SEG-Y files so created were uploaded and archived into a project using the Kingdom Suite® seismic package. To perform the calibration of seismic data with the stratigraphic wells, the classic problem is to identify on seismic profiles the reflections corresponding to the lithological variations identified in the wells. This is because the vertical scale of the seismic data is expressed in time, while that of the wells is expressed in meters. The main unknown is then the sound velocity within the different lithologies. In order to better correlate real data reflections with the corresponding stratigraphic discontinuities, synthetic seismogram have been created from the reflectivity series obtained through acoustic impedance calculations. They represent an example of forward modeling to match as closely as possible the real seismic data.

  18. Seismarmara experiment: results from reprocessing of selected multi-channel seismic reflection profiles

    NASA Astrophysics Data System (ADS)

    Cetin, S.; Voogd, B.; Carton, H.; Laigle, M.; Becel, A.; Saatcilar, R.; Singh, S.; Hirn, A.

    2003-04-01

    The North Anatolian Fault (NAF) has been responsible for the earthquakes of Izmit and Duzce in 1999. The occurrence of these earthquakes has drawn scientific attention into the Sea of Marmara since the NAF enters into the Sea of Marmara where the latest Izmit earthquake rupture stopped. The SEISMARMARA-2001 survey is a combined seismic reflection, refraction and earthquake experiment carried out in 2001 in the Marmara Region in Turkey by French-Turkish scientific cooperation. The objectives of this survey were to image the various branches of the NAF and related other fault systems. R/V Le Nadir was equipped with a 4.5 km long streamer with 360 channels and a large airgun source. During Leg 1, a grid of large regional lines encompassing the whole Marmara trough was shot. For part of them a strong 8100 cu.in. source for deepest penetration was used, with a 150 m shot interval giving a 15-fold coverage. Another part was shot for a higher resolution with a 2900 cu. in. array at a 50m or 38 m interval to give a 45 or 60-fold coverage. The latter acquisition parameters were used for Leg 2 that was devoted to a very dense grid of lines in the Cinarcik Basin Reprocessing of the multi-channel seismic data is currently being undertaken in several Institutions using different seismic processing softwares (GeoVecteur, ProMAX, Focus), to take advantage of the diverse acquisitions and cope with their limitations, for instance high fold-order for Leg 2 and strength of signal but loose spatial sampling for the bigger source. The main objectives of the reprocessing of the selected profiles are to do a detailed velocity analysis and stacking after deconvolution, filtering to remove or suppress deep sea bottom multiples and out of plane reflections, and time-migration and depth conversion and thus reveal both the shallow and deeper reflection image of the crust in the Sea of Marmara. We show that choosing an appropriate processing sequence for different sources and acquisition

  19. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  20. High resolution seismic reflection survey in the Gulf of Pozzuoli, Naples, Italy. An example of preliminary interpretation of seismic profiles.

    NASA Astrophysics Data System (ADS)

    D'Aniello, Elena; di Fiore, Vincenzo; Sacchi, Marco; Rapolla, Antonio

    2010-05-01

    During the cruise CAFE_07 - Leg 3 conducted in the Gulf of Naples and Pozzuoli in January 2008, on board of the R/V URANIA of the CNR it was carried out the acquisition of a grid of ca. 800 km of high-resolution multichannel reflection seismic profiles (Sacchi et al., 2009; Di Fiore et al., 2009). The aim of the cruise was the understanding of the stratigraphic-structural setting of the Pozzuoli Bay area, with specific reference to the major offshore volcanic features, such as Nisida Bank, Pentapalummo Bank, M.Dolce-Pampano Bank and Miseno Bank and others. The Gulf of Pozzuoli is placed in the Volcanic district of Campi Flegrei, an area of active volcanism located at North West of Naples city, along the Tyrrhenian margin, in an extensional collapsed area called Campanian Plain, filled by siliciclastic, epiclastic and volcaniclastic sediments, deposited during Late Pliocene and Quaternary. Several studies present in literature suggest a relation between volcanic system of Campi Flegrei and faults system; in particular, at the Gulf of Pozzuoli we can observe some volcanic banks and submarine volcanic edifices, as Pentapalummo, Nisida and Miseno Banks, are aligned along the NE-SW trending Magnaghi-Sebeto fault line, that separates the Bay of Naples into two sectors: the first, at NW of the Bay, characterized by volcanism activity and magnetic anomalies and the second, at SE of the bay, involved only by sedimentary activity, with the exceptions of the circular anomalies in the offshore of Torre del Greco city (Bruno et al., 2003; Secomandi et al., 2003); other volcanic hights are instead positioned along NW-SE structural discontinuities (Bruno, 2004). The magnetic and gravimetric analysis of the Bay of Naples confirms the tectonic control of the Campanian volcanism: we can observe a good correspondence of high magnetic anomalies with the main volcanic structures at the North-Western side of the bay, just the Gulf of Pozzuoli, where both NE-SW and NW-SE normal faults

  1. Investigating Variations in Rifting Style Along the Southern Margin of Flemish Cap, Offshore Newfoundland: Results from the Erable Multichannel Seismic Reflection Experiment

    NASA Astrophysics Data System (ADS)

    Welford, J.; Smith, J.; Hall, J.; Deemer, S.; Srivastava, S.; Sibuet, J.

    2009-05-01

    In 1992, the Erable project was undertaken by the Geological Survey of Canada and Ifremer to acquire multiple 2-D multichannel seismic reflection profiles in the Newfoundland Basin and along the margins of Flemish Cap. We present four multichannel seismic reflection profiles from the project collected over the southern margin of Flemish Cap and extending into the Newfoundland Basin. These profiles are between and sub- parallel to lines 1 and 2 from the 2000 SCREECH seismic experiment and provide more comprehensive data coverage over the region. We combine these data with the SCREECH seismic profiles, two ODP drill sites, and other geophysical data to map distinct zones of continental, transitional, and oceanic crust in this region. Just as has been evidenced from the mapped crustal boundaries on their conjugate Galicia Bank and Iberian margins, the Flemish Cap and Newfoundland margins show significant along-margin variability in terms of rifting structures and styles. This along-margin variability is superimposed on the overall asymmetry of the conjugate pairs highlighting the complexity of the margins and the importance of considering three- dimensional influences on rifting evolution. In particular, the hypothesized clockwise rotation and southeastward motion of Flemish Cap and the transfer zones that would have accommodated such movement appear to have affected the distribution of extension along the margins as rifting propagated northward. Meanwhile, activity at the North Atlantic triple junction immediately to the east of Flemish Cap may have initiated slow seafloor spreading while rifting was still active to the south as evidenced along the nearby Erable profiles. While simple two-dimensional rifting models may be appropriate for interpreting individual seismic profiles, three-dimensional rifting models are clearly needed to adequately explain the evolution of Flemish Cap and Galicia Bank relative to the margins to the south. These rifting models must

  2. Automatic seismic waveform location using multichannel coherency migration for induced and natural earthquakes

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Shi, P.; Angus, D. A.; Rost, S.; Birnie, C. E.; Yuan, S.

    2017-12-01

    Modern, large seismic datasets place a huge burden on human analysts who traditionally have been required to manually pick distinct phase arrivals in order to locate seismic events. This burden becomes insurmountable when real-time monitoring is needed, and hence automated approaches are necessary. Whilst many methods exist, noisy data often defeat them. We propose here a novel method to migrate seismic energy back to its spatial and temporal source, based on an improved imaging condition with greater tolerance to noise. The multichannel coherency migration (MCM) method sums the correlation coefficients of traces between all available station pairs, using the predicted P- and S-wave windows for any given imaging point in the target volume. Grid searching in time and space allows the point of maximum waveform coherency and event likelihood to be found. The only adjustable parameter in the method is the cross-correlation window length, but this is determined by the dominant frequency of the signal. This is in contrast with most other methods, such as the STA-LTA imaging function, which require several parameters to be adjusted and optimised for each application. Because we use the cross-correlation between stations, incoherent noise is effectively suppressed, and even temporally coherent noise which is not located within the target volume can be minimised also. We apply the MCM to synthetic tests, and real data in geological carbon storage and volcanic settings. In comparison to migrations based on waveform envelope, STA-LTA and kurtosis imaging functions, the MCM more reliably finds the true source and better suppresses noise. Synthetic tests with real noise show that the MCM remains robust up to noise-to-signal (not a typo) ratios (NSR) of about 40. Tests with incorrect velocity models further suggest that the MCM will be a useful event detection method in the future.

  3. Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    NASA Technical Reports Server (NTRS)

    Olson, W. S.; Yeh, C. L.; Weinman, J. A.; Chin, R. T.

    1985-01-01

    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems.

  4. Digital multi-channel high resolution phase locked loop for surveillance radar systems

    NASA Astrophysics Data System (ADS)

    Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed

    This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.

  5. Investigation Of North Anatolian Fault In The Sea Of Marmara: Fault Geometry, The Cumulative Extension, Age Modeling In Çinarcik Basin Using Multi Channel Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Atgın, Orhan; Çifçi, Günay; Soelien, Christopher; Seeber, Leonardo; Steckler, Michael; Shillington, Donna; Kurt, Hülya; Dondurur, Derman; Okay, Seda; Gürçay, Savaş; Sarıtaş, Hakan; Mert Küçük, H.; Barın, Burcu

    2013-04-01

    Marmara Sea is a limelight area for investigations due to its tectonic structure and remarkable seismic activity of North Anatolian Fault Zone (NAFZ). As NAFZ separates into 3 branches in the Marmara Sea, it has a complicated tectonic structure which gives rise to debates among researchers. Çınarcık Basin, which is close to Istanbul and very important for its tectonic activity is studied in this thesis. Two different multichannel seismic reflection data were used in this thesis. First data were acquired in 2008 in the frame of TAMAM (Turkish American Multichannel Project) and second data were in 2010 in the frame of TAMAM-2 (PirMarmara) onboard R/V K.Piri Reis. Also high resolution multibeam data were used which is provided by French Marine Institute IFREMER. In the scope of TAMAM project total 3000 km high resolution multi channel data were collected. 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. In this study, a detailed fault map of the basin is created and the fault on the southern slope of the basin which is interpreted by many researchers in many publications was investigated. And there is no evidence that such a fault exists on the southern part of the basin. With the multichannel seismic reflection data seismic stratigrafic interpretations of the basin deposits were done. The yearly cumulative north-south extension of the basin was calculated by making some calculations on the most active part of the faulting in the basin. In addition, the tilt angles of parallel tilted sediments were calculated and correlated with global sea level changes to calculate ages of the deposits in the basin. Keywords: NAFZ, multi channel seismic reflection, Çınarcık Basin

  6. Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah

    USGS Publications Warehouse

    Taylor, D.J.

    2003-01-01

    Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional

  7. Multichannel Seismic Images of Cascadia Forearc Structure at the Oregon Margin

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Canales, J.; Nedimovic, M. R.

    2013-12-01

    We present new Multichannel Seismic (MCS) images of the Cascadia forearc and downgoing Juan de Fuca plate offshore Oregon. The data were collected during the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 aboard the R/V Langseth. 2D processing including geometry definition, filtering and editing, deconvolution, amplitude correction, velocity analysis, CMP stacking, and post-stack time migration, has been conducted. The new images confirm some previous observations on the location of the plate boundary and structure of the forearc and also reveal new features of the Oregon margin. West of the deformation front, the Juan de Fuca Plate has a dip of ~1.5o and sediment thickness is > 3 km. A bright Moho reflection and reflections from faults cutting through the crust are imaged. The subducting oceanic crust can be traced continuously landward at least to 15 km from the deformation front. One major forearc basin and a smaller basin 10 km from its west end are imaged. Sediments in both basins are folded with wavelengths of 4-6 km and several faults are identified in the larger basin. Beneath the major basin, a low-frequency reflection is imaged at 3.7 s TWTT similar to that imaged by Trehu et al (1995) and interpreted as originating from the top of Siletz terrane. About 70-80 km from the deformation front, a shallowly dipping reflection is imaged at 7.3 s, which likely corresponds to the top of the downgoing plate. Based on existing velocity models for the margin, the location of this reflection is approximately coincident with the July 2004 earthquake cluster interpreted to have occurred at the plate boundary. This bright reflection is presumably similar in origin to the 'bright spot' imaged from two prior multichannel and wide-angle seismic reflection surveys lines located 40 km and 60 km north of our line. The brightness of the reflection may reflect high pore fluid pressure at the plate interface. Just 4 km west of this presumed top

  8. Advances through collaboration: sharing seismic reflection data via the Antarctic Seismic Data Library System for Cooperative Research (SDLS)

    USGS Publications Warehouse

    Wardell, N.; Childs, J. R.; Cooper, A. K.

    2007-01-01

    The Antarctic Seismic Data Library System for Cooperative Research (SDLS) has served for the past 16 years under the auspices of the Antarctic Treaty (ATCM Recommendation XVI-12) as a role model for collaboration and equitable sharing of Antarctic multichannel seismic reflection (MCS) data for geoscience studies. During this period, collaboration in MCS studies has advanced deciphering the seismic stratigraphy and structure of Antarctica’s continental margin more rapidly than previously. MCS data compilations provided the geologic framework for scientific drilling at several Antarctic locations and for high-resolution seismic and sampling studies to decipher Cenozoic depositional paleoenvironments. The SDLS successes come from cooperation of National Antarctic Programs and individual investigators in “on-time” submissions of their MCS data. Most do, but some do not. The SDLS community has an International Polar Year (IPY) goal of all overdue MCS data being sent to the SDLS by end of IPY. The community science objective is to compile all Antarctic MCS data to derive a unified seismic stratigraphy for the continental margin – a stratigraphy to be used with drilling data to derive Cenozoic circum-Antarctic paleobathymetry maps and local-to-regional scale paleoenvironmental histories.

  9. Calibration of the R/V Marcus G. Langseth Seismic Array in shallow Cascadia waters using the Multi-Channel Streamer

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Tolstoy, M.; Carton, H. D.

    2013-12-01

    In the summer of 2012, two multi-channel seismic (MCS) experiments, Cascadia Open-Access Seismic Transects (COAST) and Ridge2Trench, were conducted in the offshore Cascadia region. An area of growing environmental concern with active source seismic experiments is the potential impact of the received sound on marine mammals, but data relating to this issue is limited. For these surveys sound level 'mitigation radii' are established for the protection of marine mammals, based on direct arrival modeling and previous calibration experiments. Propagation of sound from seismic arrays can be accurately modeled in deep-water environments, but in shallow and sloped environments the complexity of local geology and bathymetry can make it difficult to predict sound levels as a function of distance from the source array. One potential solution to this problem is to measure the received levels in real-time using the ship's streamer (Diebold et al., 2010), which would allow the dynamic determination of suitable mitigation radii. We analyzed R/V Langseth streamer data collected on the shelf and slope off the Washington coast during the COAST experiment to measure received levels in situ up to 8 km away from the ship. Our analysis shows that water depth and bathymetric features can affect received levels in shallow water environments. The establishment of dynamic mitigation radii based on local conditions may help maximize the safety of marine mammals while also maximizing the ability of scientists to conduct seismic research. With increasing scientific and societal focus on subduction zone environments, a better understanding of shallow water sound propagation is essential for allowing seismic exploration of these hazardous environments to continue. Diebold, J. M., M. Tolstoy, L. Doermann, S. Nooner, S. Webb, and T. J. Crone (2010) R/V Marcus G. Langseth Seismic Source: Modeling and Calibration. Geochemistry, Geophysics, Geosystems, 11, Q12012, doi:10.1029/2010GC003216.

  10. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    NASA Astrophysics Data System (ADS)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  11. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  12. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  13. Multimodal approach to seismic pavement testing

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.; Ulriksen, P.; Miller, R.D.

    2004-01-01

    A multimodal approach to nondestructive seismic pavement testing is described. The presented approach is based on multichannel analysis of all types of seismic waves propagating along the surface of the pavement. The multichannel data acquisition method is replaced by multichannel simulation with one receiver. This method uses only one accelerometer-receiver and a light hammer-source, to generate a synthetic receiver array. This data acquisition technique is made possible through careful triggering of the source and results in such simplification of the technique that it is made generally available. Multiple dispersion curves are automatically and objectively extracted using the multichannel analysis of surface waves processing scheme, which is described. Resulting dispersion curves in the high frequency range match with theoretical Lamb waves in a free plate. At lower frequencies there are several branches of dispersion curves corresponding to the lower layers of different stiffness in the pavement system. The observed behavior of multimodal dispersion curves is in agreement with theory, which has been validated through both numerical modeling and the transfer matrix method, by solving for complex wave numbers. ?? ASCE / JUNE 2004.

  14. High resolution seismic reflection profiling at Aberdeen Proving Grounds, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.D.; Xia, Jianghai; Swartzel, S.

    1996-11-01

    The effectiveness of shallow high resolution seismic reflection (i.e., resolution potential) to image geologic interfaces between about 70 and 750 ft at the Aberdeen Proving Grounds, Maryland (APG), appears to vary locally with the geometric complexity of the unconsolidated sediments that overlay crystalline bedrock. The bedrock surface (which represents the primary geologic target of this study) was imaged at each of three test areas on walkaway noise tests and CDP (common depth point) stacked data. Proven high resolution techniques were used to design and acquire data on this survey. Feasibility of the technique and minimum acquisition requirements were determined throughmore » evaluation and correlation of walkaway noise tests, CDP survey lines, and a downhole velocity check shot survey. Data processing and analysis revealed several critical attributes of shallow seismic data from APG that need careful consideration and compensation on reflection data sets. This survey determined: (1) the feasibility of the technique, (2) the resolution potential (both horizontal and vertical) of the technique, (3) the optimum source for this site, (4) the optimum acquisition geometries, (5) general processing flow, and (6) a basic idea of the acoustic variability across this site. Source testing involved an accelerated weight drop, land air gun, downhole black powder charge, sledge hammer/plate, and high frequency vibrator. Shallow seismic reflection profiles provided for a more detailed picture of the geometric complexity and variability of the distinct clay sequences (aquatards), previously inferred from drilling to be present, based on sparse drill holes and basewide conceptual models. The seismic data also reveal a clear explanation for the difficulties previously noted in correlating individual, borehole-identified sand or clay units over even short distances.« less

  15. Comparison of Earthquake Damage Patterns and Shallow-Depth Vs Structure Across the Napa Valley, Inferred From Multichannel Analysis of Surface Waves (MASW) and Multichannel Analysis of Love Waves (MALW) Modeling of Basin-Wide Seismic Profiles

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.

    2017-12-01

    We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.

  16. Restoration of multichannel microwave radiometric images

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Yeh, C. L.; Olson, W. S.

    1983-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation.

  17. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  18. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  19. Investigation of sea-level changes and shelf break prograding sequences during the Late Quaternary offshore of Kusadasi (West Anatolia) and surroundings by high resolution seismic methods

    NASA Astrophysics Data System (ADS)

    Gurcay, Savas; Cifci, Gunay; Dondurur, Derman; Okay, Seda; Atgin, Orhan; Ozel, Ozkan; Mert Kucuk, Hilmi

    2016-04-01

    High Resolution multi-channel seismic reflection and Chirp data were collected by K. Piri Reis, research vessel of Dokuz Eylül University, in the central Aegean coast of the West Anatolia by research cruises carried out in 2005 and 2008, respectively. Submarine stratigraphic and structural features of Sıǧacık Gulf, Kuşadası Gulf and surroundings were investigated under this survey. The data were processed and interpreted in SeisLab, D.E.U. Marine Sciences and Technology seismic laboratory. Thirteen distinct unconformities can be traced below the study area that separate thirteen progradational stacked paleo-delta sequences (Lob1-Lob13) on seismic profiles following and cutting each other. As a result of comparison with the oxygen isotopic stages (δ18), these deltas (Lob1-L13) were interpreted that they have been deposited during the sea-level lowstands within Pleistocene glacial stages. In the study area the basement surface which observed as the lowest unconformity surface of the seismic sections was called 'Acoustic Basement'. This basement which traced approximately all of the seismic sections has generally quite wavy surface and underlain the upper seismic units. It was observed that these seismic units which terminated their formation in Pleistocene (Lob1-Lob13) and Holocene period were cut and uplifted by acoustic basement, like an intrusion. These type deformations were interpreted as a result of magmatic intrusion into these upper seismic units occurred in Late Pleistocene and Holocene period. Tectonic and structural interpretation was carried out to constitute the submarine active tectonic map of the study area by correlated active faults identified on seismic sections. Submarine active tectonic map and, basement topography and sediment thickness map were correlated together to present the relationship between tectonic deformation and stratigraphy.

  20. The Sunda-Banda Arc Transition: New Insights from Marine Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Kopp, H.; Djajadihardja, Y.; Engels, M.; Flueh, E.; Gaedicke, C.; Lueschen, E.; Lutz, R.; Planert, L.; Shulgin, A.; Soemantri, D. D.

    2007-12-01

    After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Planert et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of

  1. Improving resolution of crosswell seismic section based on time-frequency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, H.; Li, Y.

    1994-12-31

    According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less

  2. Analysis of marine multi-channel seismic data using a 2D continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Vuong, A. K.; Zhang, J.; Gibson, R. L.; Sager, W. W.

    2011-12-01

    Marine multi-channel seismic (MCS) profiles provide important constraints on crustal structure beneath the sea floor. MCS data usually provide good images of the upper part of the oceanic crust, especially in sedimentary layers. In contrast, it is often difficult to interpret deeper layers, especially those within the igneous basement, which is often nearly seismically transparent. That difference in interpretability occurs because sediments typically have continuous, well-layered and easily-traced structural features, whereas volcanic materials are characterized by smaller features with poorer lateral continuity and often with weak impedance contrasts. Since the basement tends to create weaker reflections, the signal-to-noise ratio decreases, creating additional difficulties that can be exacerbated by the presence of multiples generated by the sea floor and other sources of noise. However, it is still important to characterize the basement accurately to better understand oceanic crust formation and associated basaltic volcanism. We analyzed marine MCS data collected by R/V Marcus G. Langseth across the TAMU Massif of Shatsky Rise in the Northwest Pacific. The seismic data from this experiment display the typical problems in imaging basement features. Therefore, we seek to facilitate interpretation by applying 2-D continuous wavelet transforms to the data. Conventional Fourier methods transform 2-D seismic data from space and time domains to wavenumber and frequency, but the results are global in that there is no knowledge of temporal or spatial variations in frequency or wavenumber content. In contrast, wavelet transforms provide estimates of the local frequency and wavenumber content of the seismic image. The transform achieves this result by utilizing a localized, 2D wavelet function instead of the infinite sines and cosines applied in Fourier transforms. We utilize an anisotropic Mexican hat wavelet, where the horizontal and vertical scales are related to

  3. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  4. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  5. A high-resolution ambient seismic noise model for Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  6. Seismic experiment ross ice shelf 1990/91: Characteristics of the seismic reflection data

    USGS Publications Warehouse

    1993-01-01

    The Transantarctic Mountains, with a length of 3000-3500 km and elevations of up to 4500 m, are one of the major Cenozoic mountain ranges in the world and are by far the most striking example of rift-shoulder mountains. Over the 1990-1991 austral summer Seismic Experiment Ross Ice Shelf (SERIS) was carried out across the Transantarctic Mountain front, between latitudes 82 degrees to 83 degrees S, in order to investigate the transition zone between the rifted area of the Ross Embayment and the uplifted Transantarctic Mountains. This experiment involved a 140 km long seismic reflection profile together with a 96 km long coincident wide-angle reflection/refraction profile. Gravity and relative elevation (using barometric pressure) were also measured along the profile. The primary purpose was to examine the boundary between the rift system and the uplifted rift margin (represented by the Transantarctic Mountains) using modern multi-channel crustal reflection/refraction techniques. The results provide insight into crustal structure across the plate boundary. SERIS also represented one of the first large-scale and modern multi-channel seismic experiments in the remote interior of Antarctica. As such, the project was designed to test different seismic acquisition techniques which will be involved in future seismic exploration of the continent. This report describes the results from the analysis of the acquisition tests as well as detailing some of the characteristics of the reflection seismic data. (auths.)

  7. Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Dagnino, D.; Sallarès, V.; Biescas, B.; Ranero, C. R.

    2016-08-01

    This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ˜ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulation.

  8. The new Nam Co Multichannel Seismic Campaign in June/July 2016 - Fresh Results and Perspectives for a Future ICDP Drilling Campaign

    NASA Astrophysics Data System (ADS)

    Daut, G.; Spiess, V.; Haberzettl, T.; Schwenk, T.; Schulze, N.; Haberkern, J.; Bergmann, F.; Gernhardt, F.; Wang, J.; Ju, J.; Huang, L.; Zhu, L.

    2016-12-01

    In June/July 2016, a multichannel seismic survey was executed on Lake Nam Co to further explore the opportunities for a deep drilling ICDP project. For acquisition, a streamer (Teledyne Inc.) of 64 m active length with 32 single hydrophone was used and sound emission was carried out with a mini GI Gun of 2 x 0.1 L chamber volume, operated at pressures between 50 bar and 140 bar, providing frequencies between 50 Hz and >600 Hz. The data acquired with the MaMuCS recording system were sampled with 1/8 ms for a length of 2 seconds. Additionally, all survey lines were recorded with a parametric echosounder (Innomar SES 200 light) to cover the uppermost ca. 25 m of the sediment sequence (last glacial-Holocene period) in high resolution. These data can serve as a modern analogs for interpreting the deep seismic lines in terms of older glacial-interglacial cycles. 91 seismic profiles were shot using shot rates between 6 and 14 with ship's speed around 4.5 knots during most of the survey, ensuring a good signal/noise ratios and complete coverage of the lake basin. Selected profiles were shot at a speed of 3.0 knots to allow lower frequencies down to 50 Hz to be recorded and to penetrate deeper (>500 ms TWT) into the sedimentary sequence. The basin formation appears to be controlled by the overall tectonic framework revealing significant activity in the latest Quaternary. Extensional, strike-slip and presumably flower structures indicate a complex fault and subsidence pattern, which could not yet be resolved in detail during the field work, but awaits further post-expedition analyses. The dense grid near the thickest sediment packages, assumed to reach back at least to MIS 5 in age, will allow a detailed investigation of sedimentary structures, sediment transport and dispersal patterns. In particular periods of higher and lower lake level can be identified and used as preliminary stratigraphic markers due to their characteristic seismic facies, revealing very low amplitudes

  9. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  10. Investigaton of ÇINARCIK Basin and North Anatolian Fault Within the Sea of Marmara with Multichannel Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Atgın, O.; Çifçi, G.; Sorlien, C.; Seeber, L.; Steckler, M.; Sillington, D.; Kurt, H.; Dondurur, D.; Okay, S.; Gürçay, S.; Sarıtaş, H.; Küçük, H. M.

    2012-04-01

    The Sea of Marmara is becoming a natural laboratory for structure, sedimentation, and fluid flow within the North Anatolian fault (NAF) system. Much marine geological and geophysical data has been collected there since the deadly 1999 M=7.2. Izmit earthquake. The Sea of Marmara occupies 3 major basins, with the study area located in the eastern Cinarcik basin near Istanbul. These basins are the results of an extensional component in releasing segments between bends in this right-lateral tranmsform. It is controversial whether the extensional component is taken up by partitioned normal slip on separate faults, or instead by oblique right-normal slip on the non-vertical main northern branch of the NAF. High resolution multichannel seismic reflection (MCS) and multibeam bathymetry data collected by R/V K.Piri Reis and R/V Le-Suroit as part of two different projects respectively entitled "SeisMarmara", "TAMAM" and "ESONET". 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. The aim of the study is to investigate continuation of North Anatolian Fault along the Sea of Marmara, in order to investigate migration of depo-centers past a fault bend. We also test and extend a recently-published age model, quantify extension across short normal faults, and investigate whether a major surface fault exists along the southern edge of Çınarcık Basin. MCS profiles indicate that main NAF strand is located at the northern boundary of Çınarcık Basin and has a large vertical component of slip. The geometry of the eastern (Tuzla) bend and estimated right-lateral slip rates from GPS data requires as much of ten mm/yr of extension across Çınarcık Basin. Based on the published age model, we calculate about 2 mm/yr of extension on short normal faults in the

  11. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  12. High Resolution Near Surface 3D Seismic Experiments: A Carbonate Platform vs. a Siliciclastic Sequence

    NASA Astrophysics Data System (ADS)

    Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.

    2005-05-01

    Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors

  13. Processing of multichannel seismic reflection data acquired in 2013 for seismic investigations of gas hydrates in the Gulf of Mexico

    USGS Publications Warehouse

    Miller, John J.; Agena, Warren F.; Haines, Seth S.; Hart, Patrick E.

    2016-04-13

    As part of a cooperative effort among the U.S. Geological Survey (USGS), the U.S. Department of Energy, and the U.S. Department of the Interior Bureau of Ocean Energy Management, two grids of two-dimensional multichannel seismic reflection data were acquired in the Gulf of Mexico over lease blocks Green Canyon 955 and Walker Ridge 313 between April 18 and May 3, 2013. The purpose of the data acquisition was to fill knowledge gaps in an ongoing study of known gas hydrate accumulations in the area. These data were initially processed onboard the recording ship R/V Pelican for more quality control during the recording. The data were subsequently processed in detail by the U.S. Geological Survey in Denver, Colorado, in two phases. The first phase was to create a “kinematic” dataset that removed extensive noise present in the data but did not preserve relative amplitudes. The second phase was to create a true relative amplitude dataset that included noise removal and “wavelet” deconvolution that preserved the amplitude information. This report describes the processing techniques used to create both datasets.

  14. The Evolution of the Campi Flegrei caldera (Italy): High- and low-frequency multichannel 2.5D seismic surveying for an amphibian IODP/ICDP drilling approach

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2016-04-01

    offshore IODP drilling campaign. These data are of outstanding quality and high vertical resolution (~1 m), however, limited by their low signal penetration of ~200 m below seafloor. Hence, only the shallow structures of the Campi Flegrei caldera could be imaged and, consequently, the interpretation was mainly focused on the evolution of the Campi Flegrei caldera since the NYT eruption at 15 ka. Nonetheless, the data also show first evidence for a collapse prior the NYT eruption, supporting the existence of a nested-caldera system formed by collapses related to both the CI and NYT eruptions. Detailed imaging of the upper 2 km - target of the IODP/ICDP drilling campaigns - will be provided through an additional semi-3D (50 m profile spacing) low-frequency (20-200 Hz) multichannel seismic survey collected in February 2016. Preliminary results from a combination of both low- and high-frequency seismic surveys will be presented on (1) deeper-seated collapse structures related to the CI eruption, (2) the extent of the caldera fill, and (3) the hypothesized shallow hydrothermal system.

  15. High-resolution boomer seismic-reflection profiles of the shelf off southern California from cruise A-1-00-SC: Santa Monica Bay to San Diego

    USGS Publications Warehouse

    Gutmacher, Christina E.; Ross, Stephanie L.; Triezenberg, Peter J.; Sliter, Ray W.; Normark, William R.; Edwards, Brian D.

    2006-01-01

    High-resolution boomer data were collected in the California Continental Borderland as part of the southern California Earthquake Hazards Task of the Southern California Coastal and Marine Geology Regional Investigations Project. During the period from 1997 to 2002, five data-acquisition cruises collected seismic-reflection data using several different systems from offshore Santa Barbara, California, south to the Exclusive Economic Zone boundary with Mexico. A key mission of this project was to map late Quaternary deformation in addition to improving our understanding of which offshore fault zones might have potential to damage highly populated areas of southern California. State regulations concerning the use of seismic-reflection equipment within three miles of the coastline precluded the routine gathering of high-resolution multichannel data in that swath adjacent to the coast. Boomer seismic-reflection data, however, can be obtained within the state 3-mile limit provided the operation receives authorization from the California State Lands Commission. The Geopulse boomer data accessible through this report were collected on the cruise A-1-00-SC, which was the only survey where we requested permission to work inside the 3-mile limit of the State of California. These data are critical to discovering connections between onshore and offshore faults, the overall lengths of which are related to the potential size of an earthquake that might be generated along them. The 2000 survey was designed to fill the gap between onshore data and reflection data obtained in deeper water on previous cruises as well as data anticipated from future surveys. This report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles.

  16. Seismic Oceanography's Failure to Flourish: A Possible Solution

    NASA Astrophysics Data System (ADS)

    Ruddick, B. R.

    2018-01-01

    A recent paper in Journal of Geophysical Research: Oceans used multichannel seismic observations to map estimates of internal wave mixing in the Gulf of Mexico, finding greatly enhanced mixing over the slope region. These results suggest that the ocean margins may supply the mixing required to close the global thermohaline circulation, and the techniques demonstrated here might be used to map mixing over much of the world's continental shelves. The use of multichannel seismics to image ocean phenomena is nearly 15 years old, and despite the initial promise, the techniques have not become as broadly used as initially expected. We discuss possible reasons for this, and suggest an alternative approach that might gain broader success.

  17. High lateral resolution exploration using surface waves from noise records

    NASA Astrophysics Data System (ADS)

    Chávez-García, Francisco José Yokoi, Toshiaki

    2016-04-01

    Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to

  18. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    USGS Publications Warehouse

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During the cruise about 850 km of multichannel and single-channel seismic data were recorded. Seismic measurements at nine ocean-bottom seismometer (OBS) stations were recorded for several of the multichannel tracklines (see Fig. 3 in report). The following report describes the field operations and equipment systems employed, gives two examples of ship-board seismic records, and outlines a few preliminary results.

  19. Gas, slumps and faulting in the Marmara Sea: new results from TAMAM high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Dondurur, D.; Seeber, L.; Steckler, M. S.; Sorlien, C. C.; Diebold, J. B.; Cifci, G.; Gurcay, S.; Okay, S.; Imren, C.; Kurt, H.; Timur, D.; Demirbag, E.

    2009-12-01

    The Marmara Sea comprises a series of active transtensional basins forming along the North Anatolian Fault (NAF). Both deformation and sedimentation are punctuated by large, destructive earthquakes. Slumping and gas migration also appear to be coupled with these seismotectonic processes. Sediment cores, water column measurements, ROV observations and Chirp data acquired in the Marmara Sea over the last 10 years indicate numerous fluid/gas seeps along active faults, particularly the NAF. Furthermore, some authors infer fluidization and collapse of gas-charged sediments occurred during the 1999 Gulf of Izmit earthquake (farther east along the NAF) based on the presence of mudvolcanoes and slumps after the earthquake. These studies hint at interesting interactions between tectonics, slumping and fluid/gas migration. However, they comprise detailed observations focused on the fault and the upper 20 m of sediments and thus do not provide a complete picture. Here we use a new high-resolution multi-channel seismic (MCS) reflection dataset acquired in the Marmara Sea in July 2008 to elucidate the spatial relationships between gas, slumps and tectonic elements, particularly faults and progressively tilted sediments. The Turkish-American MAmara Multichannel (TAMAM) project involved the acquisition of >2600 km of MCS data throughout the Marmara Sea aboard the R/V K. Piri Reis using a GI gun and a ~450-m-long streamer. We employ several techniques to extract information on the distribution of gas from these data: 1) visual identification of attributes associated with gas (wipe-out zones, high amplitudes, polarity reversals, etc) using a seismic interpretation package, 2) instantaneous attribute analysis (particularly frequency and amplitude), and 3) AVO on select data in shallow water. Many TAMAM profiles exhibit abundant seismic signatures associated with gas. Likewise, many structures are apparent in TAMAM data that may be related to gravitational collapse, and they cover a

  20. Absorption, autoionization, and predissociation in molecular hydrogen: High-resolution spectroscopy and multichannel quantum defect theory.

    PubMed

    Sommavilla, M; Merkt, F; Mezei, J Zs; Jungen, Ch

    2016-02-28

    Absorption and photoionization spectra of H2 have been recorded at a resolution of 0.09 and 0.04 cm(-1), respectively, between 125,600 cm(-1) and 126,000 cm(-1). The observed Rydberg states belong to series (n = 10 - 14) converging on the first vibrationally excited level of the X (2)Σ(g)(+) state of H2(+), and of lower members of series converging on higher vibrational levels. The observed resonances are characterized by the competition between autoionization, predissociation, and fluorescence. The unprecedented resolution of the present experimental data leads to a full characterization of the predissociation/autoionization profiles of many resonances that had not been resolved previously. Multichannel quantum defect theory is used to predict the line positions, widths, shapes, and intensities of the observed spectra and is found to yield quantitative agreement using previously determined quantum defect functions as the unique set of input parameters.

  1. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  2. High Resolution Multichannel Imaging of Basin Growth Along a Continental Transform: The Marmara Sea Along the North Anatolian Fault in NW Turkey

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Çifçi, G.; Demirbağ, E.; Akhun, S. D.; Büyükaşik, E.; Cevatoglu, M.; Coşkun, S.; Diebold, J.; Dondurur, D.; Gürçay, S.; Imren, C.; Kücük, H. M.; Kurt, H.; Özer, P. G.; Perinçek, E.; Seeber, L.; Shillington, D.; Sorlien, C.; Timur, D.

    2008-12-01

    The 1500-km-long North Anatolian continental transform (NAF) accommodates the westward motion of the Anatolian platelet relative to Asia. The Marmara Trough in western Turkey is a large composite Quaternary structure that includes three main extensional basins with water depths reaching ~1200m separated by shallower ridges. Syntectonic sedimentation in the basins with highly variable sea-level-related changes in accumulation rates provide valuable time-space markers for reconstructing structural growth and basin development in the Marmara Sea. The TAMAM (Turkish-American MArmara Multichannel) Project is a collaboration between several US and Turkish research institutes. During July 2008, TAMAM collected ~2700 km of multichannel profiles in the Marmara Sea using the R/V K. Piri Reis. MCS data were sampled with a 1-ms interval on the first 72 channels with 6.25m group spacing in a 600m streamer. The source was a 45/45 cu. in. GI air gun, which was fired every 12.5 or18.75m. The gun-streamer offset was 40 or 100 m depending on water depth. Both the gun and streamer were towed at a depth of 3 or 4m. This configuration yielded high-resolution images of the stratigraphy in the Marmara Sea. TAMAM follows a recent series of impressive seismotectonic studies of the NAF in the Marmara Sea area. Previous seismic cruises focused on deep penetration MCS imaging of the overall basin structure and faulting or very high-resolution imaging of the near-surface faulting. TAMAM fills a gap in resolution imaging the stratigraphy that records the history of deformation in the basins and linkages between faults. We will present preliminary high-resolution images of the stratigraphy and tectonics beneath the Marmara Sea highlighting the following exciting observations and initial results from this experiment: 1) Improved stratigraphic correlations between the major basins, a primary goal of the experiment; 2) Clearer imaging of active faults, including the NAF, the less studied southern

  3. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  4. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  5. Structure and builtup of the Middle Bengal Fan at 8°N from multichannel seismic surveys and the IODP Expedition 354 drilling transect

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Bergmann, F.; Schwenk, T.; Lantzsch, H.; Bahk, J. J.; Weber, M. E.; France-Lanord, C.; Klaus, A.

    2016-12-01

    IODP Expedition 354 to the Bengal Fan drilled a 320 km long e-W transect at 8°N with 7 drill sites, fully covering the uppermost 150-200 meters of fan deposits at distances of 50 km, originating from Himalayan mountain ranges and the Ganges-Brahmaputra river system. A major goal of this transect approach was to ensure a continuous record of turbiditic material delivered over the last appx. 1 million year, considering frequent longitudinal depocenter shifts of the active channel. By extensively utilizing the new half-APC coring technique, high quality and high recovery cores could be retrieved representing a wide range of grain sizes from hemipelagic deposits through clay rich turbidites to coarse silt and sandy units. Up to medium sand grain sizes were retrieved within the basal units of levees, which correspond to high-reflectivity units in high-resolution multichannel seismic profiles. Finely laminated sections with mm to cm-thick turbidites represents levee formations. At Site U1453 for example, core logging and downhole logging data confirm the representative sampling based on a very good match of several physical property data sets. An expanded section was cored at Site U1454, where the presumably currently active channel has built a levee, which likely represents major sediment supply within the last 30 kyr. A spatial grid of seismic and echosounder data in the vicinity of the active channel reveals a high spatial variability in sedimentation rates and distinct depocenter shifts in response to changes in channel geometry. Site U1452 has provided a full record a levee growth including interlevee sedimentation, sandy basal units characterized by a lobe formation, and a pronounced fining upward trend following the phase of channel erosion and levee builtup. From all sites, detailed comparisons of physical and sedimentological shipboard results with seismic data will be presented. Expedition 354 has provided a unique sample and data set to better understand fan

  6. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  7. Seismic Structural Setting of Western Farallon Basin, Southern Gulf of California, Mexico.

    NASA Astrophysics Data System (ADS)

    Pinero-Lajas, D.; Gonzalez-Fernandez, A.; Lopez-Martinez, M.; Lonsdale, P.

    2007-05-01

    Data from a number of high resolution 2D multichannel seismic (MCS) lines were used to investigate the structure and stratigraphy of the western Farallon basin in the southern Gulf of California. A Generator-Injector air gun provided a clean seismic source shooting each 12 s at a velocity of 6 kts. Each signal was recorded during 6- 8 s, at a sampling interval of 1 ms, by a 600 m long digital streamer with 48 channels and a spacing of 12.5 m. The MCS system was installed aboard CICESE's (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada) 28 m research vessel Francisco de Ulloa. MCS data were conventionally processed, to obtain post- stack time-migrated seismic sections. The MCS seismic sections show a very detailed image of the sub-bottom structure up to 2-3 s two-way travel time (aprox. 2 km). We present detailed images of faulting based on the high resolution and quality of these data. Our results show distributed faulting with many active and inactive faults. Our study also constrains the depth to basement near the southern Baja California eastern coast. The acoustic basement appears as a continuous feature in the western part of the study area and can be correlated with some granite outcrops located in the southern Gulf of California islands. To the East, near the center of the Farallon basin, the acoustic basement changes, it is more discontinuous, and the seismic sections show a number of diffracted waves.

  8. Large Erosional Features on the Cascadia Accretionary Wedge Imaged with New High-Resolution Multibeam Bathymetry and Seismic Datasets

    NASA Astrophysics Data System (ADS)

    Beeson, J. W.; Goldfinger, C.

    2013-12-01

    Utilizing new high resolution multibeam bathymetric data along with chirp sub-bottom and multichannel seismic reflection (MCS) data, we identified remarkable erosional features on the toe of the Cascadia accretionary wedge near Willapa Canyon, offshore Washington, USA. Bathymetric data was compiled from the Cascadia Open-Access Seismic Transects (COAST) cruise and from the site survey cruise for the Cascadia Initiative. These features loosely resemble slope failures of the frontal thrust, but can be distinguished from such failures by several key features: They incise the crest of the frontal thrust and encompass the landward limb; They have floors below the level of the abyssal plain, similar to plunge pool morphology; They show no evidence of landslide blocks at the base of the slope indicative of block sliding. The features where likely formed during the latest Pleistocene based on post event deposition, cross-cutting relationships with Juan de Fuca Channel and the Willapa Channel levees and wave field, and post event slip on the frontal thrust of the Cascadia accretionary prism. The Holocene levees of both Willapa Channel and Juan de Fuca Channel overlap these older features, and clearly place an upper bound on the age of the erosional features in the latest Pleistocene. A lower bound is estimated from a sub-bottom profile that images ~30 meters of post scour sediment fill. Using existing literature of Holocene and Pleistocene sedimentation rates we estimate a lower age bound between ~23,000 - 56,000 y.b.p. We also map a fault scarp within the erosional feature, with ~60 m of vertical offset. Using multi-channel seismic reflection profiles from the COAST cruise we interpret this scarp as the surface expression of the landward vergent frontal thrust fault. The apparent short duration of the erosional event along the seaward margin of the accretionary wedge, coupled with the presence of the fresh fault scarp within the erosion zone, are indicative of a dormant

  9. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  10. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data

    USGS Publications Warehouse

    Brothers, Laura; Herman, Bruce M.; Hart, Patrick E.; Ruppel, Carolyn D.

    2016-01-01

    Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.

  11. Super-resolution Time-Lapse Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Ovcharenko, O.; Kazei, V.; Peter, D. B.; Alkhalifah, T.

    2017-12-01

    Time-lapse seismic waveform inversion is a technique, which allows tracking changes in the reservoirs over time. Such monitoring is relatively computationally extensive and therefore it is barely feasible to perform it on-the-fly. Most of the expenses are related to numerous FWI iterations at high temporal frequencies, which is inevitable since the low-frequency components can not resolve fine scale features of a velocity model. Inverted velocity changes are also blurred when there is noise in the data, so the problem of low-resolution images is widely known. One of the problems intensively tackled by computer vision research community is the recovering of high-resolution images having their low-resolution versions. Usage of artificial neural networks to reach super-resolution from a single downsampled image is one of the leading solutions for this problem. Each pixel of the upscaled image is affected by all the pixels of its low-resolution version, which enables the workflow to recover features that are likely to occur in the corresponding environment. In the present work, we adopt machine learning image enhancement technique to improve the resolution of time-lapse full-waveform inversion. We first invert the baseline model with conventional FWI. Then we run a few iterations of FWI on a set of the monitoring data to find desired model changes. These changes are blurred and we enhance their resolution by using a deep neural network. The network is trained to map low-resolution model updates predicted by FWI into the real perturbations of the baseline model. For supervised training of the network we generate a set of random perturbations in the baseline model and perform FWI on the noisy data from the perturbed models. We test the approach on a realistic perturbation of Marmousi II model and demonstrate that it outperforms conventional convolution-based deblurring techniques.

  12. Tectonics of the Kızılırmak Delta and Sinop Basin, offshore Pontides, evidence from new, high resolution seismic and bathymetric data.

    NASA Astrophysics Data System (ADS)

    Haşimoğlu, B. Y.; Cifci, G.; Lacassin, R.; Fernández-Blanco, D.; Ozel, O.

    2016-12-01

    The Kızılırmak River is the one of the largest river in Turkey, flowing across two key features characteristic of the Late Cenozoic tectonic evolution of Northern Turkey: the North Anatolian Fault and the Pontides. The offshore part of the fan delta of the Kızılırmak river is of particular interest, since it contains valuable information on the 3D delta structure directly related to the river dynamics, and encompasses essential tectonic and bathymetric features like the Sinop graben and Archangelsky ridge. We present new high-resolution multichannel seismic data and multibeam bathymetric data that have been collected in this area by researchers and PhD/MSc students of Dokuz Eylül University, Institute of Marine Sciences and Technology with R/V Koca Piri Reis. 17 seismic lines, for a total of 1300km, have been acquired and processed in order to enhance the visualization of the stratigraphy and of tectonic structures, and to remove multiples. In our preliminary interpretation of the seismic data we observe a thick pile of sediments of probable upper Cenozoic age lying of top of an erosional surface possibly related to the Messinian salinity crisis or to older events. These sediments are affected both by gravitational processes and by normal faulting, related to the actively growing Sinop graben. The Archangelsky ridge is well resolved down to 3-4s and appears to be bounded by active normal faults and likely crosscut by strike-slip faults. Our bathymetric data reveals the submarine channel of the Yeşilırmak river, which connects to the paleo streambed of the Kızılırmak river. This is the first high resolution seismic dataset that has been collected in this area, and in our ongoing study we aim at integrating this state-of-the-art new data with the onshore evolution of the Kızılırmak delta. This will potentially bring a valuable new perspective to reconcile sedimentation rates and the offshore delta-architecture with the onshore delta dynamics, and can

  13. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  14. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  15. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  16. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to

  17. High-resolution reflection seismic survey at a CCS site, Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Ying; Chung, Chen-Tung; Kuo, Hsuan-Yu; Wu, Ming-shyan; Kuo-Chen, Hao

    2017-04-01

    To control the effect of greenhouse gas on global warming, the reduction of carbon dioxide emission has become a significant international issue in recent years. The capture of carbon dioxide during its manufacturing and storing in adjacent areas are the most economical way. This research uses high-resolution seismic reflection survey to investigate the region around the world's largest coal-fired power plant at Taichung Port, Taiwan. We aim to detect proper geological structures and to evaluate the possible way to store carbon dioxide. This research uses reflection seismic survey with two mini-vibrators and 240 channels to investigate detailed underground structures. The total length of seismic lines is more than 20 kilometers. By aligning sequential seismic lines, we are able to correlate stratigraphic layers over a wide area. Two adjacent wells along the seismic line are used to identified possible formations. The TaiChung Power Plant (TCPP) at Taichung Port is our target which has more cross-tied seismic lines and a seismic line even extending into the sea water. We analyze these seismic profiles to establish the geological model for carbon dioxide storage and evaluate the possibility of storage systems. Furthermore, this research may prepare some baseline data for the future carbon dioxide injection monitoring. The result shows that the geological structures striking 8 degrees east of north and dipping 2.8 degrees to the east. This means that carbon dioxide will migrate toward the sea direction after injection. The structural layers are relatively flat without any sign of faults. Three carbon dioxide storage systems : Mushan Wuchihshan—Paling(bottom), Peiliao—Talu(middle) and Kueichulin—Chinshui(upper) system are identified. All has the proper reservoir with high porosity and capable caprocks more than 100 meters thick. The geological storage of carbon dioxide injected into TCPP site is a feasible, commercial and safe way to reduce the emission of carbon

  18. Multi-channel Analysis of Passive Surface Waves (MAPS)

    NASA Astrophysics Data System (ADS)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  19. Multichannel seismic/weather/Zoological monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Yann; Bonnieux, Sebastien; Sukovitch, Alexey; Argentino, Jean-Francois; Nolet, Guust

    2013-04-01

    Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' has concuded its final design stage and a fleet of 20 units is available off the shelf. Two of these floats have been deployed in the Mediterranean sea between Nice and the island of Corsica late 2012, others will be deployed in 2013, in the South Indian Ocean and near Galapagos in the Pacific. Analysis of the first data will allow us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal. Ten significant events can be stored in internal memory during an average "parking depth" drift of 10 days at a chosen depth of up to 2 km. Events are classified by interest and when the memory is full, larger events replace minor events. At the end of the preprogrammed mission the float surface and transmit data (health logs and events) in Rudics mode by Iridium satellite network. A major event will force the float to ascent at surface and transmit in a short delay the corresponding recorded data as well as its GPS

  20. High-resolution seismic-reflection data offshore of Dana Point, southern California borderland

    USGS Publications Warehouse

    Sliter, Ray W.; Ryan, Holly F.; Triezenberg, Peter J.

    2010-01-01

    The U.S. Geological Survey collected high-resolution shallow seismic-reflection profiles in September 2006 in the offshore area between Dana Point and San Mateo Point in southern Orange and northern San Diego Counties, California. Reflection profiles were located to image folds and reverse faults associated with the San Mateo fault zone and high-angle strike-slip faults near the shelf break (the Newport-Inglewood fault zone) and at the base of the slope. Interpretations of these data were used to update the USGS Quaternary fault database and in shaking hazard models for the State of California developed by the Working Group for California Earthquake Probabilities. This cruise was funded by the U.S. Geological Survey Coastal and Marine Catastrophic Hazards project. Seismic-reflection data were acquired aboard the R/V Sea Explorer, which is operated by the Ocean Institute at Dana Point. A SIG ELC820 minisparker seismic source and a SIG single-channel streamer were used. More than 420 km of seismic-reflection data were collected. This report includes maps of the seismic-survey sections, linked to Google Earth? software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats.

  1. Deep Stucture of the Northwestern Atlantic Moroccan Margin Studied by OBS and Deep Multichannel Seismic Reflection.

    NASA Astrophysics Data System (ADS)

    MALOD, J. A.; Réhault, J.; Sahabi, M.; Géli, L.; Matias, L.; Diaz, J.; Zitellini, N.

    2001-12-01

    The Northwestern Atlantic Moroccan margin, a conjugate of the New Scotland margin, is one of the oldest passive margin of the world. Continental break up occurred at early Liassic time and the deep margin is characterized by a large salt basin. A good knowledge of this basin is of major interest to improve the initial reconstruction between Africa, North America and Iberia (Eurasia). It is also a good opportunity to study a mature passive margin and model its structure and evolution.Moreover, there is a need to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. These topics have been adressed during the SISMAR cruise carried out from April 9th to May 4th 2001.During this cruise, 3667 km of multichannel seismic reflection (360 channels, 4500 m long streamer, 4800 ci array of air guns) were recorded together with refraction records by means of 48 OBH/OBS drops. Simultaneously, some of the marine profiles have been extended onshore with 16 portable seismic land stations. We present the initial results of this study. Off El Jadida, the Moho and structures within the thinned continental crust are well imaged on both the reflection and refraction records. In the northern area, off Casablanca, we follow the deepening of the moroccan margin beneath the up to 9 sec (twtt) allochtonous series forming a prism at the front the Rif-Betic chain. Sismar cruise has been also the opportunity to record long seismic profiles making the junction between the Portuguese margin and the Moroccan one, and crossing the Iberian-African plate boundary. This allows to observe the continuity of the sedimentary sequence after the end of the large inter-plate motion in Early Cretaceous. In addition to the authors, SISMAR Group includes: AMRHAR Mostafa, BERMUDEZ VASQUEZ Antoni, CAMURRI Francesca, CONTRUCCI Isabelle, CORELA Carlos, DIAZ Jordi, DORVAL Philippe, EL ARCHI Abdelkrim, EL ATTARI Ahmed, GONZALEZ Raquel, HARMEGNIES Francois, JAFFAL

  2. Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.

    PubMed

    Miyake, Teru

    This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-resolution seismic reflection to delineate shallow gas in Eastern Kansas

    USGS Publications Warehouse

    Miller, R.D.; Watney, W.L.; Begay, D.K.; Xia, J.

    2000-01-01

    Unique amplitude characteristics of shallow gas sands within Pennsylvanian clastic-carbonate dominated sequences are discernible on high-resolution seismic reflection data in eastern Kansas. Upward grading sequences of sand into shale represent a potential gas reservoir with a low-impedence acoustic contrast at the base of the encasing layer. The gas sand and encasing shale, which define the gas reservoir studied here, are part of an erosional incised valley where about 30 m of carbonates and shale have been replaced by sandstone and shale confined to the incised valley. These consolidated geologic settings would normally possess high impedence gas sand reservoirs as defined by abrupt contacts between the gas sand and encasing shale. Based orr core and borehole logs, the gas sand studied here grades from sand into shale in a fashion analogous to that observed in classic low-impedance environments. Amplitude and phase characteristics of high-resolution seismic data across this approximately 400-m wide gas sand are indicative of a low-impedance reservoir. Shot gathers possess classic amplitude with offsett-dependent characteristics which are manifeted on the stacked section as "bright spots." Dominant Frequencies of around 120 Hz allow detection of several reflectors within the 30+ meters of sand/shale that make up this localized gas-rich incised valley fill. The gradational nature of the trapping mechanism observed in this gas reservoir would make detection with conventional seismic reflection methods unlikely.

  4. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  5. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  6. Military applications and examples of near-surface seismic surface wave methods (Invited)

    NASA Astrophysics Data System (ADS)

    sloan, S.; Stevens, R.

    2013-12-01

    Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.

  7. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  8. Differences in ice retreat across Pine Island Bay, West Antarctica, since the Last Glacial Maximum: Indications from multichannel seismic reflection data

    USGS Publications Warehouse

    Uenzelmann-Neben, G.; Gohl, K.; Larter, R.D.; Schlüter, P.

    2007-01-01

    An understanding of the glacial history of Pine Island Bay (PIB) is essential for refining models of the future stability of the West Antarctic Ice Sheet (WAIS). New multichannel seismic reflection data from inner PIB are interpreted in context of previously published reconstructions for the retreat history in this area since the Last Glacial Maximum. Differences in the behavior of the ice sheet during deglaciation are shown to exist for the western and eastern parts of PIB. While we can identify only a thin veneer of sedimentary deposits in western PIB, eastern PIB shows sedimentary layers ≤ 400 msTWT. This is interpreted as a result of differences in ice retreat: a fast ice retreat in western PIB accompanied by rapid basal melting led to production of large meltwater streams, a slower ice retreat in eastern PIB is most probably the result of smaller drainage basins resulting in less meltwater production.

  9. Experience with a Shallow Water Seismic Pre-Site Survey for combined IODP and ICDP Drilling Campaigns in the Gulf of Naples and Pozzuoli Bay, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Metzen, J.; Fekete, N.; Palamenghi, L.; Sacchi, M.

    2009-04-01

    The Gulf of Naples receives particular attention due to its proximity to major volcanic features, as the Somma-Vesuvius stratovolcano and the Campi Flegrei Volcanic Fields, both being viewed to bear extreme hazard potential in the highly populated area. Accordingly, a better understanding of the geologic history of the region and its volcanic activity is of high value for predictive approaches. In January 2008, a dedicated shallow water multichannel seismic survey on R/V URANIA was carried out by the Institute for Coastal Marine Environment in cooperation with the University of Bremen in Pozzuoli Bay as well as in its surroundings to image subseafloor volcanic features as well as the neotectonic framework, as it is documented in Holocene sediments. Furthermore, volcanoclastic events, volcanic edifices, pyroclastic flows and lava flows were identified complicating the stratigraphic interpretation. Major units as the Campanian Ignimbrite and the Neapoltian Yellow Tuff could be traced on regional scales. Particular focus was put on the nearshore surveys, to connect the onland future ICDP drilling results with the marine deposits and planned IODP drill sites in the vicinity of the survey area. It turned out particularly difficult to collect seismic data in the coastal zone due to intense usage and protected areas. The equipment used was optimized to collect multichannel seismic data in shallow and very shallow environments. A 50 m long streamer with 48 single hydrophone channels allowed to record undistorted seismic response in waters shallower than 10 meters, and high shot rates - 2 to 4 seconds - provide high coverage and a lateral resolution as good as 1 meter. A modified mini-GI Gun with a reduced volume of only 0.1 L, called micro-GI Gun, generated a frequency spectrum up to 1000 Hz, optimizing also the vertical resolution to less than 1 meter. Examples will be shown to demonstrate the capability of the equipment for use in amphibic projects, where ICDP and IODP

  10. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less

  11. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    NASA Astrophysics Data System (ADS)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  12. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  13. Crustal structure of the Southwest Subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging

    NASA Astrophysics Data System (ADS)

    Yu, Zhiteng; Li, Jiabiao; Ding, Weiwei; Zhang, Jie; Ruan, Aiguo; Niu, Xiongwei

    2017-06-01

    The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10-12 km). No high velocity bodies are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.

  14. New High-Resolution Multibeam Mapping and Seismic Reflection Imaging of Mudflows on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Baldwin, W. E.; Danforth, W. W.; Bentley, S. J.; Miner, M. D.; Damour, M.

    2017-12-01

    Mudflows (channelized and unconfined debris flows) on the Mississippi River Delta Front (MRDF) are a recognized hazard to oil and gas infrastructure in the shallow Gulf of Mexico. Preconditioning of the seafloor for failure results from high sedimentation rates coupled with slope over-steepening, under-consolidation, and abundant biogenic gas production. Cyclical loading of the seafloor by waves from passing major storms appears to be a primary trigger, but the role of smaller (more frequent) storms and background oceanographic processes are largely unconstrained. A pilot high-resolution seafloor mapping and seismic imaging study was carried out across portions of the MRDF aboard the R/V Point Sur from May 19-26, 2017, as part of a multi-agency/university effort to characterize mudflow hazards in the area. The primary objective of the cruise was to assess the suitability of seafloor mapping and shallow sub-surface imaging tools in the challenging environmental conditions found across delta fronts (e.g., variably-distributed water column stratification and wide-spread biogenic gas in the shallow sub-surface). More than 600 km of multibeam bathymetry/backscatter/water column data, 425 km of towed chirp data, and > 500 km of multi-channel seismic data (boomer/mini-sparker sources, 32-channel streamer) were collected. Varied mudflow (gully, lobe), pro-delta morphologies, and structural features, some of which have been surveyed more than once, were imaged in selected survey areas from Pass a Loutre to Southwest Pass. The present location of the SS Virginia, which has been moving with one of the mudflow lobes since it was sunk in 1942, was determined and found to be 60 m SW of its 2006 position, suggesting movement not linked to hurricane-induced wave triggering of mudflows. Preliminary versions these data were used to identify sediment sampling sites visited on a cruise in early June 2017 led by scientists from LSU and other university/agency partners.

  15. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    NASA Astrophysics Data System (ADS)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  16. Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea

    NASA Astrophysics Data System (ADS)

    Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.

    2015-04-01

    Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.

  17. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Sibuet, Jean-Claude; Srivastava, Shiri P.

    2010-11-01

    We present the results from processing and interpreting nine multichannel seismic reflection lines collected during the 1992 Erable experiment over the northeastern margin of Flemish Cap offshore Newfoundland. These lines, combined into five cross-sections, provide increased seismic coverage over this lightly probed section of the margin and reveal tectonically significant along-strike variations in the degree and compartmentalization of crustal thinning. Similar to the southeastern margins of Flemish Cap and the Grand Banks, a transitional zone of exhumed serpentinized mantle is interpreted between thinned continental and oceanic crust. The 25 km wide transitional zone bears similarities to the 120 km wide transitional zone interpreted as exhumed serpentinized mantle on the conjugate Irish Atlantic margin but the significant width difference is suggestive of an asymmetric conjugate pair. A 40-50 km wide zone of inferred strike-slip shearing is interpreted and observed to extend along most of the northeastern margin of Flemish Cap. Individual shear zones (SZs) may represent extensions of SZs and normal faults within the Orphan Basin providing further evidence for the rotation and displacement of Flemish Cap out of Orphan Basin. The asymmetry between the Flemish Cap and Irish conjugate pairs is likely due in large part to the rotation and displacement of Flemish Cap which resulted in the Flemish Cap margin displaying features of both a strike-slip margin and an extensional margin.

  18. Fast history matching of time-lapse seismic and production data for high resolution models

    NASA Astrophysics Data System (ADS)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used

  19. New discovered Izmir and Busan Mud Volcanoes and Application of Seismic Attributes and AVO Analysis in the Easternmost Black Sea.

    NASA Astrophysics Data System (ADS)

    Okay, S.; Cifci, G.; Ozel, S.; Atgin, O.; Ozel, O.; Barin, B.; Er, M.; Dondurur, D.; Kucuk, M.; Gurcay, S.; Choul Kim, D.; Sung-Ho, B.

    2012-04-01

    Recently, the continental margins of Black Sea became important for its gas content. There are no scientific researches offshore Trabzon-Giresun area except the explorations of oil companies. This is the first survey that performed in that area. 1700 km high resolution multichannel seismic and chirp data simultaneously were collected onboard R/V K.Piri Reis . The seismic data reveal BSRs, bright spots and acoustic maskings especially on the eastern part of the survey area. The survey area in the Eastern Black Sea includes continental slope, apron and deep basin. Two mud volcanoes are discovered and named as Busan and Izmir. The observed fold belt is believed to be the main driving force for the growth of mud volcanoes.Faults are developed at the flanks of diapiric uplift. Seismic attributes and AVO analysis are applied to 9 seismic sections which have probable gassy sediments and BSR zones. In the seismic attribute analysis high amplitude horzions with reverse polarity are observed in instantaneous frequency, envelope and apparent polarity sections also with low frequency at instantaneous frequency sections. These analysis verify existence of gas accumulations in the sediments. AVO analysis and cross section drawing and Gradient analysis show Class 1 AVO anomaly and indicate gas in sediments. Keywords: BSR, Bright spot, Mud volcano, Seismic Attributes, AVO

  20. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  1. Imaging the Danish Chalk Group with high resolution, 3-component seismics

    NASA Astrophysics Data System (ADS)

    Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.

    2016-12-01

    The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.

  2. High-resolution seismic measurements at loamy dikes for monitoring high-water influences

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger

    2010-05-01

    For the risk management of high-water events it is important to know how secure river dikes are. Even the structures of dikes are often unknown. Methods for the exploration of existing dikes and of their underground, for an evaluation of failure potential and strengthening requirements are needed. In the presented work, the potential of a high-resolution seismics to monitor the moisture penetration of dikes during flood periods was analyzed. To identify the extent of moisture penetration and to determine the structures of a loamy dike body would enable to determine the probability of a dike failure. Dikes made of loam show a different behavior of moisture penetration under high-water influence. The distribution and penetration of water is moderate compared to sandy dikes and resist longer high-water events. The water expands slowly in the dike body in all directions known as fingering. It should be analyzed how the moisture penetration from a dike can be displayed with seismic methods. The aim was to identify on the basis of seismic measurements the areas of moisture penetration within a dike during a flood and out of it to determine the probability of collapse of the dike. For that purpose the structures in the dike body should be determined in reference to the materials and his soil parameters like water content and porosity. A test facility was built for dikes including a regulation for the water level. This allowed the simulation of flood scenarios at dikes. Two dikes with different loam content were built in order to determine the failure mechanism of dikes. With a width of 8 meters at the basis they had nearly the dimension of river dikes. Seismic instrumentation was installed on both dike models. The seismic survey consists of three parallel receiver lines on the dike which recorded seismic signals emitted along the same lines, resulting in a 3D-seismic data set. The receivers were 3-component-geophones fixed in spikes, at the flooded side of the dike were

  3. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  4. Resolution analysis of marine seismic full waveform data by Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Ray, A.; Sekar, A.; Hoversten, G. M.; Albertin, U.

    2015-12-01

    The Bayesian posterior density function (PDF) of earth models that fit full waveform seismic data convey information on the uncertainty with which the elastic model parameters are resolved. In this work, we apply the trans-dimensional reversible jump Markov Chain Monte Carlo method (RJ-MCMC) for the 1D inversion of noisy synthetic full-waveform seismic data in the frequency-wavenumber domain. While seismic full waveform inversion (FWI) is a powerful method for characterizing subsurface elastic parameters, the uncertainty in the inverted models has remained poorly known, if at all and is highly initial model dependent. The Bayesian method we use is trans-dimensional in that the number of model layers is not fixed, and flexible such that the layer boundaries are free to move around. The resulting parameterization does not require regularization to stabilize the inversion. Depth resolution is traded off with the number of layers, providing an estimate of uncertainty in elastic parameters (compressional and shear velocities Vp and Vs as well as density) with depth. We find that in the absence of additional constraints, Bayesian inversion can result in a wide range of posterior PDFs on Vp, Vs and density. These PDFs range from being clustered around the true model, to those that contain little resolution of any particular features other than those in the near surface, depending on the particular data and target geometry. We present results for a suite of different frequencies and offset ranges, examining the differences in the posterior model densities thus derived. Though these results are for a 1D earth, they are applicable to areas with simple, layered geology and provide valuable insight into the resolving capabilities of FWI, as well as highlight the challenges in solving a highly non-linear problem. The RJ-MCMC method also presents a tantalizing possibility for extension to 2D and 3D Bayesian inversion of full waveform seismic data in the future, as it objectively

  5. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.

  6. Imaging of 2-D multichannel land seismic data using an iterative inversion-migration scheme, Naga Thrust and Fold Belt, Assam, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Dasgupta, Rahul

    2010-05-01

    We demonstrate that imaging of 2-D multichannel land seismic data can be effectively accomplished by a combination of reflection traveltime tomography and pre-stack depth migration (PSDM); we refer to the combined process as "the unified imaging". The unified imaging comprises cyclic runs of joint reflection and direct arrival inversion and pre-stack depth migration. From one cycle to another, both the inversion and the migration provide mutual feedbacks that are guided by the geological interpretation. The unified imaging is implemented in two broad stages. The first stage is similar to the conventional imaging except that it involves a significant use of velocity model from the inversion of the direct arrivals for both datuming and stacking velocity analysis. The first stage ends with an initial interval velocity model (from the stacking velocity analysis) and a corresponding depth migrated image. The second stage updates the velocity model and the depth image from the first stage in a cyclic manner; a single cycle comprises a single run of reflection traveltime inversion followed by PSDM. Interfaces used in the inversion are interpretations of the PSDM image in the previous cycle and the velocity model used in PSDM is from the joint inversion in the current cycle. Additionally in every cycle interpreted horizons in the stacked data are inverted as zero-offset reflections for constraining the interfaces; the velocity model is maintained stationary for the zero-offset inversion. A congruency factor, j, which measures the discrepancy between interfaces from the interpretation of the PSDM image and their corresponding counterparts from the inversion of the zero-offset reflections within assigned uncertainties, is computed in every cycle. A value of unity for jindicates that images from both the inversion and the migration are equivalent; at this point the unified imaging is said to have converged and is halted. We apply the unified imaging to 2-D multichannel

  7. High resolution seismic stratigraphy of Tampa Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tihansky, A.B.; Hine, A.C.; Locker, S.D.

    1993-03-01

    Tampa Bay is one of two large embayments that interrupt the broad, regional nature of the carbonate ramp of the west coast of the Florida carbonate platform. It is believed to have formed as a result of preferential dissolution of the Cenozoic limestones beneath it. Highly reactive freshwater systems became hydrologically focused in the bay region as the surface and groundwater systems established themselves during sea-level lowstands. This weakening of the underlying limestone resulted in extensive karstification, including warping, subsidence, sinkhole and spring formation. Over 120 miles of high resolution seismic reflection data were collected within Tampa Bay. This recordmore » has been tied into 170 core borings taken from within the bay. This investigation has found three major seismic stratigraphic sequences beneath the bay. The lowermost sequence is probably of Miocene age. Its surface is highly irregular due to erosion and dissolution and exhibits a great deal of vertical relief as well as gentler undulations or warping. Much of the middle sequence consists of low angle clinoforms that gently downlap and fill in the underlying karst features. The uppermost sequence is a discontinuous unit comprised of horizontal to low angle clinoforms that are local in their extent. The recent drainage and sedimentation patterns within the bay area are related to the underlying structure controlled by the Miocene karst activity.« less

  8. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  9. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  10. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  11. Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region

    USGS Publications Warehouse

    Tréhu, Anne M.

    1995-01-01

    In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.

  12. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  13. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland)

    USGS Publications Warehouse

    Baster, I.; Girardclos, S.; Pugin, A.; Wildi, W.

    2003-01-01

    A high-resolution seismic survey was conducted in western Lake Geneva on a small delta formed by the Promenthouse, the Asse and the Boiron rivers. This dataset provides information on changes in the geometry and sedimentation patterns of this delta from Late-glacial to Present. The geometry of the deposits of the lacustrine delta has been mapped using 300-m spaced grid lines acquired with a 12 kHz Echosounder subbottom profiler. A complete three dimensional image of the sediment architecture was reconstructed through seismic stratigraphic analysis. Six different delta lobes have been recognized in the prodelta area. Depositional centers and lateral extension of the delta have changed through time, indicating migration and fluctuation of river input as well as changes in lake currents and wind regime from the time of glacier retreat to the Present. The delta slope is characterized by a high instability causing stumps developing and by the accumulation of biogenic gas that prevents seismic penetration.

  14. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  15. Design and implementation of a low-cost multichannel seismic noise recorder for array measurements

    NASA Astrophysics Data System (ADS)

    Soler-Llorens, Juan Luis; Juan Giner-Caturla, Jose; Molina-Palacios, Sergio; Galiana-Merino, Juan Jose; Rosa-Herranz, Julio; Agea-Medina, Noelia

    2017-04-01

    Soil characterization is the starting point for seismic hazard studies. Currently, the methods based on ambient noise measurements are very used because they are non-invasive methods and relatively easy to implement in urban areas. Among these methods, the analysis of array measurements provides the dispersion curve and subsequently the shear-wave velocity profile associated to the site under study. In this case, we need several sensors recording simultaneously and a data acquisition system with one channel by sensor, what can become the complete equipment unaffordable for small research groups. In this work, we have designed and implemented a low-cost multichannel ambient noise recorder for array measurements. The complete system is based on Arduino, an open source electronic development platform, which allows recording 12 differential input channels simultaneously. Besides, it is complemented with a conditioning circuit that includes an anti-aliasing filter and a selectable gain between 0 and 40dB. The data acquisition is set up through a user-friendly graphical user interface. It is important to note that the electronic scheme as well as the programming code are open hardware and software, respectively, so it allows other researchers to suite the system to their particular requirements. The developed equipment has been tested at several sites around the province of Alicante (southeast of Spain), where the soil characteristics are well-known from previous studies. Array measurements have been taken and after that, the recorded data have been analysed using the frequency-wavenumber (f-k) and the extended spatial autocorrelation (ESAC) methods. The comparison of the obtained dispersion curves with the ones obtained in previous studies shows the suitability of the implemented low-cost system for array measurements.

  16. High-Resolution Seismic-Reflection and Marine Magnetic Data Along the Hosgri Fault Zone, Central California

    USGS Publications Warehouse

    Sliter, Ray W.; Triezenberg, Peter J.; Hart, Patrick E.; Watt, Janet T.; Johnson, Samuel Y.; Scheirer, Daniel S.

    2009-01-01

    The U.S. Geological Survey (USGS) collected high-resolution shallow seismic-reflection and marine magnetic data in June 2008 in the offshore areas between the towns of Cayucos and Pismo Beach, Calif., from the nearshore (~6-m depth) to just west of the Hosgri Fault Zone (~200-m depth). These data are in support of the California State Waters Mapping Program and the Cooperative Research and Development Agreement (CRADA) between the Pacific Gas & Electric Co. and the U.S. Geological Survey. Seismic-reflection and marine magnetic data were acquired aboard the R/V Parke Snavely, using a SIG 2Mille minisparker seismic source and a Geometrics G882 cesium-vapor marine magnetometer. More than 550 km of seismic and marine magnetic data was collected simultaneously along shore-perpendicular transects spaced 800 m apart, with an additional 220 km of marine magnetometer data collected across the Hosgri Fault Zone, resulting in spacing locally as smallas 400 m. This report includes maps of the seismic-survey sections, linked to Google Earth software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats, as well as preliminary gridded marine-magnetic-anomaly and residual-magnetic-anomaly (shallow magnetic source) maps.

  17. Shear wave modelling of high resolution OBS data in a gas hydrate environment in the Danube deep-sea fan, Black Sea

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Bialas, J.; Zander, T.; Klaeschen, D.

    2016-12-01

    The Danube deep-sea fan, with his ancient channel-levee systems, hosts multiple bottom-simulating reflections (BSRs) observed in high-resolution reflection seismic data, indicating the occurrence of gas hydrates and free gas. To image the distribution of submarine gas hydrates and the occurrence of free gas in a channel-levee system, high-resolution 2D and 3D multichannel seismic reflection data were collected and fifteen ocean bottom seismometers (OBS) were deployed. The OBS data in particular reveal information about seismic P- and S-wave velocities of the subsurface. They record wave fields of a wide range of incidence angles. Both, P- and S-wave traveltime modelling cover a depth down to 1.5 km below the seafloor; thus, providing seismic velocity information far below the BSR. The seismic P-wave velocities increase with depth from 1600 m/s beneath the seafloor up to 2400 m/s at 1.5 km depth. The frequencies of the S-waves are much lower than the P-wave reflection signals. This is characteristic for shear waves in unconsolidated sediments where the S-wave attenuation is high. However, they travel much slower than P-waves and thus, show a higher resolution. The first S-wave appears at 0.7 s after the direct wave. Some of the S-phases can be traced up to 3.5 km in offset to the station. The seismic S-wave velocities increase from 240 m/s beneath the seafloor up to 1100 m/s at a depth of 1.5 km below the seafloor. From these observations, the P-to-S ratio can be derived. The P-to-S ratio might help to estimate the thickness of the zones with gas hydrates and free gas, while there will be a limited capability to constrain their concentrations.

  18. Geophysical techniques in the historical center of Venice (Italy): preliminary results from HVSR and multichannel analysis of surface waves

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele; Boaga, Jacopo

    2014-05-01

    This presentation aims to outline the preliminary findings related to an extensive seismic survey conducted in the historical center of Venice, Italy. The survey was conducted via noninvasive and low-cost seismic techniques based on surface waves analysis and microtremor methods, mainly using single station horizontal to vertical spectral ratio techninques (HVSR) and multichannel analysis of surface waves in passive (ReMI) and active (MASW) configurations. The importance and the fragility of the cultural heritage of Venice, coupled with its peculiar geological and geotechnical characteristics, stress the importance of a good knowledge of its geological architecture and seismic characteristics as an opportunity to improve restoration and conservation planning. Even if Venice is located in a relatively low seismic hazard zone, a local characterization of soil resonance frequencies and surficial shear waves velocities could improve the planning of engineering interventions, furnishing important information on possible local effects related to seismic amplification and possible coupling within buildings and soil resonance frequencies. In the specific we collected more than 50 HVSR single station noise measurements and several passive and active multichannel analysis of surface waves located in the historical center. In this work we report the characteristics of the conducted seismic surveys (instrumentation, sampling geometry, etc.) and the preliminary findings of our analysis. Moreover, we discuss briefly the practical issues, mainly of logistic nature, of conducting this kind of surveys in a peculiar and crowed historical center as represented by Venice urban contest. Acknowledgments Instrumentation acquired in relation to the project co-financed by Regione Veneto, POR-CRO, FESR, 2007-2013, action 1.1.1. "Supporto ad attività di ricerca, processi e reti di innovazione e alla creazione di imprese in settori a elevato contenuto tecnologico"

  19. Tunnel Detection Using Seismic Methods

    NASA Astrophysics Data System (ADS)

    Miller, R.; Park, C. B.; Xia, J.; Ivanov, J.; Steeples, D. W.; Ryden, N.; Ballard, R. F.; Llopis, J. L.; Anderson, T. S.; Moran, M. L.; Ketcham, S. A.

    2006-05-01

    Surface seismic methods have shown great promise for use in detecting clandestine tunnels in areas where unauthorized movement beneath secure boundaries have been or are a matter of concern for authorities. Unauthorized infiltration beneath national borders and into or out of secure facilities is possible at many sites by tunneling. Developments in acquisition, processing, and analysis techniques using multi-channel seismic imaging have opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Body waves have great potential based on modeling and very preliminary empirical studies trying to capitalize on diffracted energy. A primary limitation of all seismic energy is the natural attenuation of high-frequency energy by earth materials and the difficulty in transmitting a high- amplitude source pulse with a broad spectrum above 500 Hz into the earth. Surface waves have shown great potential since the development of multi-channel analysis methods (e.g., MASW). Both shear-wave velocity and backscatter energy from surface waves have been shown through modeling and empirical studies to have great promise in detecting the presence of anomalies, such as tunnels. Success in developing and evaluating various seismic approaches for detecting tunnels relies on investigations at known tunnel locations, in a variety of geologic settings, employing a wide range of seismic methods, and targeting a range of uniquely different tunnel geometries, characteristics, and host lithologies. Body-wave research at the Moffat tunnels in Winter Park, Colorado, provided well-defined diffraction-looking events that correlated with the subsurface location of the tunnel complex. Natural voids related to karst have been studied in Kansas, Oklahoma, Alabama, and Florida using shear-wave velocity imaging techniques based on the MASW approach. Manmade tunnels, culverts, and crawl spaces have been the target of multi-modal analysis

  20. Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems

    NASA Astrophysics Data System (ADS)

    Davis, Brynmor J.

    Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively). This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then

  1. Constraints on the Final Stages of Breakup and Early Spreading history of the Eastern North American Margin from New Multichannel Seismic Data of the Community Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Becel, A.

    2016-12-01

    In September-October 2014, the East North American Margin (ENAM) Community Seismic Experiment (CSE) acquired deep penetration multichannel seismic (MCS) reflection on a 500 km wide section of the Mid-Atlantic continental margin offshore North Carolina and Virginia. This margin formed after the Mesozoic breakup of supercontinent Pangea. One of the goals of this experiment is an improved understanding of events surrounding final stage of breakup including the relationship between the timing of rifting and the occurrence of offshore magmatism and early spreading history of this passive margin that remain poorly understood. Deep penetration MCS data were acquired with the 6600 cu.in. tuned airgun array and the 636 channel, 8-km-long streamer of the R/V Marcus Langseth. The source and the streamer were both towed at a depth of 9 m for deep imaging. Here we present initial results from MCS data along two offshore margin normal profiles (450-km long and 370-km-long, respectively), spanning from continental crust 50 km off the coast to mature oceanic crust and a 350-km-long MCS profile along the enigmatic Blake Spur Magnetic Anomaly (BSMA). Initial images reveal a major change in the basement roughness at the BSMA on both margin normal profiles. Landward of this anomaly, the basement is rough and more faulted whereas starting at the anomaly and seaward, the basement is very smooth and reflective. Clear Moho reflections are observed 2.5-3s (7.75-9.3 km assuming an average crustal velocity of 6.2 km/s) beneath the top of the basement on the seaward part of two margin normal profiles and on the margin parallel profile. Intracrustal reflections are also observed over both transitional and oceanic basement. A long-lived mantle thermal anomaly close to the ridge axis during the early opening of the Atlantic Ocean could explain the thicker than normal oceanic crust and smooth basement topography observed in the data.

  2. Web-based multi-channel analyzer

    DOEpatents

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  3. Enhanced global seismic resolution using proposed undersea cables

    NASA Astrophysics Data System (ADS)

    Ranasinghe, N. R.; Rowe, C. A.; Larmat, C. S.; Syracuse, E. M.; Begnaud, M. L.

    2016-12-01

    With the exception of a few isolated, near-shore deployments of Ocean-bottom seismometers (OBS's), most seismic instrumentation on the Earth is located on land, although two thirds of the Earth's surface is covered with oceans. Most large earthquakes are unevenly distributed along the Earth's subduction zones; hence, large areas of the Earth are unevenly sampled in terms of seismic rays. The goal of this work is to produce a comparison of seismic ray coverage of the Earth with today's seismic stations to that which might be possible in the future if densely-instrumented transoceanic cables are deployed.Our work is motivated by the planning of a Joint Task Force under the UN that is proposing to integrate seismic sensors at intervals as small as 75 km along the next generation of oceanic telecommunication cables. These sensors offer the potential to improve global geophysical models as well as reduce event detection thresholds and location uncertainties in poorly characterized regions. Data coverage is first estimated via an infinite-frequency ray-tracing utility (Pcalc) that is used to predict seismic propagation in support of the United States effort towards nuclear explosion monitoring. We have predicted P-wave raypaths from 1668 earthquakes to 4421 seismic stations to produce global raypath density images in the crust and mantle. We present the improvement in ray coverage achieved at crustal and mantle depths by the addition of 1382 sensors along the telecommunication cables and we discuss the areas in which our models and earthquake characterization benefits from these proposed instruments. Because the Earth's complex 3D structure can have frequency-dependent effects on seismic propagation, we also employ a spectral element method (SPECFEM3D) to compute finite-frequency kernels that include the first order of scattering produced by 3D anomalies, and we present progress on this effort to compare with our infinite-frequency predictions.

  4. Mapping the Moho with seismic surface waves: Sensitivity, resolution, and recommended inversion strategies

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Adam, Joanne; Meier, Thomas

    2013-04-01

    Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the

  5. A multi-channel coronal spectrophotometer.

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  6. High-resolution seismic data regularization and wavefield separation

    NASA Astrophysics Data System (ADS)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  7. Post-collapse evolution of a coastal caldera system: Insights from a 3D multichannel seismic survey from the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2018-01-01

    In this study we present the first 3D high-resolution multichannel seismic dataset from a (partly) submerged caldera setting, the Campi Flegrei caldera (CFc). Our work aims at examining the spatial and temporal evolution of the CFc since the last caldera-forming event, the Neapolitan Yellow Tuff (NYT, 15 ka) eruption. The main objectives are to investigate the caldera's shallow (< 200 m) subsurface structure and post-NYT-collapse (< 15 ka) deformational processes, the manifestation of magmatic and hydrothermal processes in the subsurface, as well as the volume, dispersal and explosivity of coastal post-collapse eruptions, thereby significantly advancing our current knowledge of the CFc. Our findings confirm the existence of a nested-caldera system comprising two caldera depressions bordered by an inner and a deeper (> 200 m) outer caldera ring-fault zone. The seismic data revealed that the NYT collapse occurred exclusively along the inner caldera ring-fault and that the related NYT caldera depression is filled with on average 61 m of sediment deposited between 15 and 8.6 ka. The geometry of the inner ring-fault, consisting of four fault segments, seems to be strongly influenced by regional NW-SE and NE SW-trending faults. Furthermore, we found that the ring-faults have acted as pathway for the recent (< 3.7 ka) ascent of fluids (gases and liquids) and the emplacement of intrusions. We propose that the outer ring-fault zone, which likely formed in the course of the Campanian Ignimbrite (CI, 39 ka) eruption, has had the main control on the release and ascent of fluids. Overall, the caldera ring-faults represent key locations for the interconnection between the magmatic-hydrothermal systems and the surface and, thus, potentially represent future eruption sites as well as important fluid pathways during the recent unrest episodes. Furthermore, we reassessed the volume, dispersal, and explosivity of the post-collapse Nisida Bank (10.3-9.5 ka), Nisida Island ( 3.98 ka

  8. Creating realistic models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data

    NASA Astrophysics Data System (ADS)

    Stupina, T.; Koulakov, I.; Kopp, H.

    2009-04-01

    We consider questions of creating structural models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data. For our investigations, we use the PROFIT (Profile Forward and Inverse Tomographic modeling) algorithm which was tested earlier with different datasets. Here we consider offshore seismic profiling data from three areas (Chile, Java and Central Pacific). Two of the study areas are characterized by subduction zones whereas the third data set covers a seamount province. We have explored different algorithmic issues concerning the quality of the solution, such as (1) resolution assessment using different sizes and complexity of synthetic anomalies; (2) grid spacing effects; (3) amplitude damping and smoothing; (4) criteria for rejection of outliers; (5) quantitative criteria for comparing models. Having determined optimal algorithmic parameters for the observed seismic profiling data we have created structural synthetic models which reproduce the results of the observed data inversion. For the Chilean and Java subduction zones our results show similar patterns: a relatively thin sediment layer on the oceanic plate, thicker inhomogeneous sediments in the overlying plate and a large area of very strong low velocity anomalies in the accretionary wedge. For two seamounts in the Pacific we observe high velocity anomalies in the crust which can be interpreted as frozen channels inside the dormant volcano cones. Along both profiles we obtain considerable crustal thickening beneath the seamounts.

  9. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  10. Vertical displacements inherited from pre-Neogene time in the Gulfes of Sigacik and Kusadasi (Western Anatolia) by multi channel seismic and chirp data

    NASA Astrophysics Data System (ADS)

    Gurcay, S.; Cifci, G.; Dondurur, D.; Sozbilir, H.

    2012-12-01

    Gulfes of Sigacik and Kusadasi (Western Anatolia) are located south of the Middle Eastern Aegean depression which formed by vertical displacements along the NB- to N-trending structural planes. This study consists of the results of the multi-channel seismic reflection and chirp data acquisition by K. Piri Reis, research vessel of Dokuz Eylül University (Izmir-TURKEY), in Sigacik Gulf and Kusadasi Gulf (West Anatolia) in August-2005 and in March-2008. Data were acquired approximately along the 1300km seismic lines. Two main seismic units, lower unit (Pre-Neogene) and upper unit (Neogene), can easily be determined on multi channel seismic sections. It is also observed on seismic sections that there are many active faults deform these units. Two main submarine basins can be determined from multi-channel seismic sections, Sigacik Basin and Kusadasi Basin. The upper unit in Sigacik Basin is deformed generally by strike slip faults. But there are some faults that have sharp vertical movements on lower unit. Some of these vertical movements are followed by strike-slip active faults along the upper unit indicating that these normal movements have changed to lateral movements, recently.

  11. Pre-stack full-waveform inversion of multichannel seismic data to retrieve thermohaline ocean structure. Application to the Gulf of Cadiz (SW Iberia).

    NASA Astrophysics Data System (ADS)

    Dagnino, Daniel; Jiménez Tejero, Clara-Estela; Meléndez, Adrià; Gras, Clàudia; Sallarès, Valentí; Ranero, César R.

    2016-04-01

    This work demonstrates the feasibility to retrieve high-resolution models of oceanic physical parameters by means of 2D adjoint-state full-waveform inversion (FWI). The proposed method is applied to pre-stack multi-channel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in the framework of the EU GO (Geophysical Oceanography) project in 2006. We first design and apply a specific data processing flow that allows reducing data noise without modifying trace amplitudes. This step is shown to be essential to obtain accurate results due to the low signal-to-noise ratio (SNR) of water layer reflections, which are typically three-to-four orders of magnitude weaker than those in solid earth. Second, we propose new techniques to improve the inversion results by reducing the artefacts appearing in the gradient and misfit as a consequence of the low SNR. We use a weight and filter operator to focus in the regions where the gradient is reliable. The source wavelet is then inverted together with the sound speed. We demonstrate the efficiency of the proposed method and inversion strategy retrieving a 2D sound speed model along a 50 km-long MCS profile collected in the Gulf of Cadiz during the GO experiment. In this region, the Mediterranean outflow entrains the Atlantic waters, creating a salinity complex thermohaline structure that can be measured by a difference in acoustic impedance. The inverted sound speed model have a resolution of 75m for the horizontal direction, which is two orders of magnitude better than the models obtained using conventional, probe-based oceanographic techniques. In a second step, temperature and salinity are derived from the sound speed by minimizing the difference between the inverted and the theoretical sound speed estimated using the thermodynamic equation of seawater (TEOS-10 software). To apply the TEOS-10 we first calculate a linear-fitting between temperature and salinity using regional data from the National Oceanic and

  12. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  13. One Decade of Induced Seismicity in Basel, Switzerland: A Consistent High-Resolution Catalog Obtained by Template Matching

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Kraft, T.; Tormann, T.; Scarabello, L.; Wiemer, S.

    2017-12-01

    Induced seismicity at the site of the Basel Enhanced Geothermal System (EGS) continuously decayed for six years after injection had been stopped in December 2006. Starting in May 2012, the Swiss Seismological Service was detecting a renewed increase of induced seismicity in the EGS reservoir to levels last seen in 2007 and reaching magnitudes up to ML2.0. Seismic monitoring at this EGS site is running for more than ten years now, but the details of the long-term behavior of its induced seismicity remained unexplored because a seismic event catalog that is consistent in detection sensitivity and magnitude estimation did not exist.We have created such a catalog by applying our matched filter detector to the 11-year-long seismic recordings of a borehole station at 2.7km depth. Based on 3'600 located earthquakes of the operator's borehole-network catalog, we selected about 2'500 reasonably dissimilar templates using waveform clustering. This large template set ensures an adequate coverage of the diversity of event waveforms which is due to the reservoir's highly complex fault system and the close observation distance. To cope with the increased computational demand of scanning 11-years of data with 2'500 templates, we parallelized our detector to run on a high-performance computer of the Swiss National Supercomputing Centre.We detect more than 200'000 events down to ML-2.5 during the six-day-long stimulation in December 2006 alone. Previously, only 13'000 detections found by an amplitude-threshold-based detector were known for this period. The high temporal and spatial resolution of this new catalog allows us to analyze the statistics of the induced Basel earthquakes in great detail. We resolve spatio-temporal variations of the seismicity parameters (a- and b-value) that have not been identified before and derive the first high-resolution temporal evolution of the seismic hazard for the Basel EGS reservoir.In summer 2017, our detector monitored the 10-week pressure

  14. Flat Engineered Multichannel Reflectors

    NASA Astrophysics Data System (ADS)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  15. Towards a Multi-Resolution Model of Seismic Risk in Central Asia. Challenge and perspectives

    NASA Astrophysics Data System (ADS)

    Pittore, M.; Wieland, M.; Bindi, D.; Parolai, S.

    2011-12-01

    Assessing seismic risk, defined as the probability of occurrence of economical and social losses as consequence of an earthquake, both at regional and at local scale is a challenging, multi-disciplinary task. In order to provide a reliable estimate, diverse information must be gathered by seismologists, geologists, engineers and civil authorities, and carefully integrated keeping into account the different levels of uncertainty. The research towards an integrated methodology, able to seamlessly describe seismic risk at different spatial scales is challenging, but discloses new application perspectives, particularly in those countries which suffer from a relevant seismic hazard but do not have resources for a standard assessment. Central Asian countries in particular, which exhibit one of the highest seismic hazard in the world, are experiencing a steady demographic growth, often accompanied by informal settlement and urban sprawling. A reliable evaluation of how these factors affect the seismic risk, together with a realistic assessment of the assets exposed to seismic hazard and their structural vulnerability is of particular importance, in order to undertake proper mitigation actions and to promptly and efficiently react to a catastrophic event. New strategies are needed to efficiently cope with systematic lack of information and uncertainties. An original approach is presented to assess seismic risk based on integration of information coming from remote-sensing and ground-based panoramic imaging, in situ measurements, expert knowledge and already available data. Efficient sampling strategies based on freely available medium-resolution multi-spectral satellite images are adopted to optimize data collection and validation, in a multi-scale approach. Panoramic imaging is also considered as a valuable ground-based visual data collection technique, suitable both for manual and automatic analysis. A full-probabilistic framework based on Bayes Network is proposed to

  16. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    NASA Astrophysics Data System (ADS)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  17. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  18. Seismic Activity offshore Martinique and Dominique islands (Lesser Antilles subduction zone)

    NASA Astrophysics Data System (ADS)

    Ruiz Fernandez, Mario; Galve, Audrey; Monfret, Tony; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Gallart, Josep; Hello, Yann

    2010-05-01

    In the framework of the European project Thales was Right, two seismic surveys (Sismantilles II and Obsantilles) were carried out to better constrain the lithospheric structure of the Lesser Antilles subduction zone, its seismic activity and to evaluate the associated seismic hazards. Sismantilles II experiment was conducted in January, 2007 onboard R/V Atalante (IFREMER). A total of 90 OBS belonging to Géoazur, INSU-CNRS and IFM-Geomar were deployed on a regular grid, offshore Antigua, Guadeloupe, Dominique and Martinique islands. During the active part of the survey, more than 2500 km of multichannel seismic profiles were shot along the grid lines. Then the OBS remained on the seafloor continuously recording for the seismic activity for approximately 4 months. On April 2007 Obsantilles experiment, carried out onboard R/V Antea (IRD), was focused on the recovery of those OBS and the redeployment of 28 instruments (Géoazur OBS) off Martinique and Dominica Islands for 4 additional months of continuous recording of the seismicity. This work focuses on the analysis of the seismological data recorded in the southern sector of the study area, offshore Martinique and Dominique. During the two recording periods, extending from January to the end of August 2007, more than 3300 seismic events were detected in this area. Approximately 1100 earthquakes had enough quality to be correctly located. Station corrections, obtained from multichannel seismic profiles, were introduced to each OBS to take in to account the sedimentary cover and better constrain the hypocentral determinations. Results show events located at shallower depths in the northern sector of the array, close to the Tiburon Ridge, where the seismic activity is mainly located between 20 to 40 km depth. In the southern sector, offshore Martinique, hypocenters become deeper, ranging to 60 km depth and dipping to the west. Focal solutions have also been obtained using the P wave polarities of the best azimuthally

  19. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each

  20. High-Resolution Seismic Imaging of Near-Surface Voids

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Korneev, V. A.; Elobaid, E. A.; Mohamed, F.; Sadooni, F.

    2017-12-01

    A major hazard in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. We present a suite of seismic techniques applied to a controlled experiment to detect, locate and estimate the size of a karst analog in form of a man-made water shaft on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation, we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We use the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys

  1. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  2. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  3. MULTIMERMAID: A dedicated multichannel seismic/weather/zoological float for monitoring of the oceans

    NASA Astrophysics Data System (ADS)

    Hello, Y. M.; Bonnieux, S.; Joubert, C.; Sukhovich, A.; Argentino, J.; Yegikyan, M.; Nolet, G.

    2013-12-01

    Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions, mostly because of the large cost associated with deploying ocean-bottom seismometers. At the same time, several thousand free-drifting profiling floats measure the temperature, salinity and current of the upper 2000 m of the ocean in the Argo program, but are incapable to record and transmit seismic signals. Simons et al. (JGR, 2009) developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. We built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. This `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers', has concluded its final design stage and a fleet of 20 units is available for experiments. Since 2012, half of these floats have been deployed in the Mediterranean and in the South Indian Ocean. 10 more will be deployed early in 2014 near the Galapagos islands in the Pacific. Analysis of the first data is allowing us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal and adapt it to specific noise conditions. A new multidisciplinary version of Mermaid using a dedicated hydrophone is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. By combining the same algorithm using wavelet transforms, and by adopting a different monitoring strategy with a dedicated processing, Mermaid is able to continuously analyzes acoustic signals to detect major seismic events, while at the same time regularly checking for weather phenomena such rain

  4. High resolution seismic imaging of faults beneath Limón Bay, northern Panama Canal, Republic of Panama

    USGS Publications Warehouse

    Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.

    2003-01-01

    High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.

  5. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.

    PubMed

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2017-01-15

    Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  7. Mobile seismic exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V.; Cao, X.

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDVmore » measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.« less

  8. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    NASA Astrophysics Data System (ADS)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  9. A seismic-reflection investigation of gas hydrates and sea-floor features of the upper continental slope of the Garden Banks and Green Canyon regions, northern Gulf of Mexico: report for cruise G1-99-GM (99002)

    USGS Publications Warehouse

    Cooper, Alan; Twichell, David; Hart, Patrick

    1999-01-01

    During April 1999, the U.S. Geological Survey (USGS) conducted a 13-day cruise in the Garden Banks and Green Canyon regions of the Gulf of Mexico. The R/V Gyre, owned by Texas A&M University, was chartered for the cruise. The general objectives were (1) to acquire very high resolution seismic-reflection data and side-scan sonar images of the upper and middle continental slope (200-1200-m water depths), (2) to study the acoustic character and features of the sea floor for evidence of sea-floor hazards, and (3) to look for evidence of subsurface gas hydrates and their effects. The Gulf of Mexico is well known for hydrocarbon resources, with emphasis now on frontier deep-water areas. For water depths greater than about 250 m, the pressure-termperature conditions are correct for the development of shallow-subsurface gas hydrate formation (Anderson et al., 1992). Gas hydrates are ice-like mixtures of gas and water (Kvenvolden, 1993). They are known to be present from extensive previous sampling in sea-floor cores and from mound-like features observed on the sea floor in many parts of the northern Gulf, including the Green Canyon and Garden Banks areas (e.g., Roberts, 1995). Seismic-reflection data are extensive in the Gulf of Mexico, but few very-high-resolution data like those needed for gas-hydrate studies exist in the public domain. The occurrence and mechanisms of gas hydrate formation and dissociation are important to understand, because of their perceived economic potential for methane gas, their potential controls on local and regional sea-floor stability, and their possible effects on earth climates due to massive release of methane greenhouse gas into the atmosphere. Three high-resolution seismic-reflection systems and one side-scan sonar system were used on the cruise to map the surface reflectance and features of the sea floor and the acoustic geometries and character of the shallow sub-surface. The cruise was designed to acquire regional and detailed local

  10. High-resolution chirp seismic reflection data acquired from the Cap de Creus shelf and canyon area, Gulf of Lions, Spain in 2004

    USGS Publications Warehouse

    Grossman, Eric E.; Hart, Patrick E.; Field, Michael E.; Triezenberg, Peter

    2006-01-01

    Seismic reflection data were collected from the Cap de Creus shelf and canyon in the southwest portion of the Gulf of Lions in October 2004. The data were acquired using the U.S. Geological Survey`s (USGS) high-resolution Edgetech CHIRP 512i seismic reflection system aboard the R/V Oceanus. Data from the shipboard 3.5 kHz echosounder were also collected but are not presented here. The seismic reflection data were collected as part of EuroSTRATAFORM funded by the Office of Naval Research. In October 2004, more than 200 km of high resolution seismic reflection data were collected in water depths ranging 30 m - 600 m. All data were recorded with a Delph Seismic PC-based digital recording system and processed with Delph Seismic software. Processed sections were georeferenced into tiff images for digital archive, processing and display. Penetration ranged 20-80 m. The data feature high quality vertical cross-section imagery of numerous sequences of Quaternary seismic stratigraphy. The report includes trackline maps showing the location of the data, as well as both digital data files (SEG-Y) and images of all of the profiles. The data are of high quality and provide new information on the location and thickness of sediment deposits overlying a major erosion surface on the Cap de Creus shelf; they also provide new insight into sediment processes on the walls and in the channel of Cap de Creus Canyon. These data are under study by researchers at the US Geological Survey, the University of Barcelona, and Texas A and M University. Copies of the data are available to all researchers.

  11. Seismic evidence for Messinian salt deformation and fluid circulation on the South Balearic margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela

    2014-05-01

    The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU

  12. High-resolution seismic reflection survey near SPR surface collapse feature at Weeks Island, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.D.; Xia, J.; Harding, R.S. Jr.

    1994-12-31

    Shallow high resolution 2-D and 3-D seismic reflection techniques are assisting in the subsurface delineation of a surface collapse feature (sinkhole) at Weeks Island, Louisiana. Seismic reflection surveys were conducted in March 1994. Data from walkaway noise tests were used to assist selection of field recording parameters. The top of the salt dome is about 180 ft below ground surface at the sinkhole. The water table is an estimated 90 ft below the ground surface. A single coherent reflection was consistently recorded across the entire area of the survey, although stacking velocity and spectral content of the event varied. Onmore » the basis of observed travel times and stacking velocities, the coherent reflection event appears to originate above the top of the salt, possibly at or near the water table. Identification of this reflector will be made form borehole investigations currently planned for the sinkhole site. A depression or time sag in this reflection event is clearly evident in both the 2-D and 3-D seismic data in the immediate vicinity of the sinkhole. The time sag appears to be related to the subsurface structure of the reflector and not to near surface topography or velocity effects. Elsewhere in the survey area, observed changes in reflection travel times and wavelet character appear to be related to subsurface geologic structure. These seismic observations may assist in predicting where future sinkholes will develop after they have been tied to borehole data collected at the site.« less

  13. Evidence for sub-lacustrine volcanic activity in Lake Bolsena (central Italy) revealed by high resolution seismic data sets

    NASA Astrophysics Data System (ADS)

    Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke

    2017-06-01

    The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from

  14. Seismic inversion for incoming sedimentary sequence in the Nankai Trough margin off Kumano Basin, southwest Japan

    NASA Astrophysics Data System (ADS)

    Naito, K.; Park, J.

    2012-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its

  15. An image of the Columbia Plateau from inversion of high-resolution seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutter, W.J.; Catchings, R.D.; Jarchow, C.M.

    1994-08-01

    The authors use a method of traveltime inversion of high-resolution seismic data to provide the first reliable images of internal details of the Columbia River Basalt Group (CRBG), the subsurface basalt/sediment interface, and the deeper sediment/basement interface. Velocity structure within the basalts, delineated on the order of 1 km horizontally and 0.2 km vertically, is constrained to within [plus minus]0.1 km/s for most of the seismic profile. Over 5,000 observed traveltimes fit their model with an rms error of 0.018 s. The maximum depth of penetration of the basalt diving waves (truncated by underlying low-velocity sediments) provides a reliable estimatemore » of the depth to the base of the basalt, which agrees with well-log measurements to within 0.05 km (165 ft). The authors use image blurring, calculated from the resolution matrix, to estimate the aspect ratio of images velocity anomaly widths to true widths for velocity features within the basalt. From their calculations of image blurring, they interpret low velocity zones (LVZ) within the basalts at Boylston Mountain and the Whiskey Dick anticline to have widths of 4.5 and 3 km, respectively, within the upper 1.5 km of the model. At greater depth, the widths of these imaged LVZs thin to approximately 2 km or less. They interpret these linear, subparallel, low-velocity zones imaged adjacent to anticlines of the Yakima Fold Belt to be brecciated fault zones. These fault zones dip to the south at angles between 15 to 45 degrees.« less

  16. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  17. 47 CFR 76.1513 - Open video dispute resolution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Open video dispute resolution. 76.1513 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1513 Open video dispute resolution. (a... with the following additions or changes. (b) Alternate dispute resolution. An open video system...

  18. 47 CFR 76.1513 - Open video dispute resolution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Open video dispute resolution. 76.1513 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1513 Open video dispute resolution. (a... with the following additions or changes. (b) Alternate dispute resolution. An open video system...

  19. 47 CFR 76.1513 - Open video dispute resolution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Open video dispute resolution. 76.1513 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1513 Open video dispute resolution. (a... with the following additions or changes. (b) Alternate dispute resolution. An open video system...

  20. 47 CFR 76.1513 - Open video dispute resolution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Open video dispute resolution. 76.1513 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1513 Open video dispute resolution. (a... with the following additions or changes. (b) Alternate dispute resolution. An open video system...

  1. 47 CFR 76.1513 - Open video dispute resolution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Open video dispute resolution. 76.1513 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1513 Open video dispute resolution. (a... with the following additions or changes. (b) Alternate dispute resolution. An open video system...

  2. Origin and Formation of Giant Mounds in Lake Ladoga (Russia) from High-Resolution Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Lebas, E.; Krastel, S.; Averes, T.; Wagner, B.; Melles, M.; Fedorov, G.

    2017-12-01

    In the framework of the German-Russian project `PLOT - Paleolimnological Transect' (for an overview of the project see Gromig et al., this meeting), a pilot seismic survey was carried out in Lake Ladoga (Russia) in late summer 2013. In total, 1500 km of seismic reflection profiles have been acquired using a mini-GI gun and a 32-channel seismic streamer. The high-resolution of the seismic data allows us to document in detail the sedimentary processes that occurred in the lake during the preglacial and postglacial history. The seismic stratigraphic architecture of the lake shows, from top to bottom, acoustically well-stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions are usually bordered by a hard reflector underneath, which may represent coarse-grained sediments or a till. The nature of the material composing the uppermost units have been tied to coring information from core Co1309, which was retrieved during the same survey. Of particular interest, are the single to composite, giant (kilometer-scale) mounds directly overlying the hard reflector. Internal architecture of the mounds reveals a complex formation history, with mound types showing significant structural deformation of different degrees; and other mound types showing a central deformation area, which strongly contrasts with the titled reflections or undisturbed stratification visible at the edges. The deepest seismic unit underlying the mounds is characterized by well-bedded, tilted reflectors in the southeastern part of the lake, while clear synclines are identified in the northwestern part of the lake. An erosional truncation separates the deepest unit from the overlying ones. In the work presented here, we focus on the understanding of the origin and the formation of the giant mounds with respect to the glacial history of Lake Ladoga.

  3. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  4. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4

  5. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less

  6. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  7. The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group

    The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help

  8. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery

    USGS Publications Warehouse

    Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.

    2008-01-01

    To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.

  9. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  10. New High-Resolution Marine Single-Channel Seismic Data From the Emperor Seamounts: Initial Observations From ODP Leg 197

    NASA Astrophysics Data System (ADS)

    Kerr, B. C.; Scholl, D. W.

    2001-12-01

    In July-August of 2001, ODP Leg 197 drilled Detroit, Nintoku, and Koko Seamounts of the Emperor seamount chain to obtain cores of basaltic lava flows. These basalt cores will provide radiometric age and paleomagnetic data to accurately and precisely constrain the paleolatitude of the Hawaiian hotspot. In addition, recovered cores will determine temporal changes in the geochemistry of Hawaiian hotspot volcanic products. Prior to drilling, the JOIDES Resolution, performed high-resolution single-channel seismic surveys in the vicinity of preliminary site locations to help confirm suitability for drilling, and to collect digital seismic data. Generally, at least two seismic lines (about 10 km in length) cross directly over each drill site. The acoustic source consisted of a single SSI 80 cubic-inch water gun with a peak output frequency of approximately 50 Hz. Compared to most SCS data, low ship speeds (4.5-7 knots) and higher than typical firing rates (4 or 6 seconds) helped maximize horizontal resolution, resulting in shot-point spacings between 9 and 21.5 m. A 60-phone, 100-m-long Teledyne oil-filled streamer recorded the water gun shots at near-zero offset. At the end of the leg, a calibrated hydrophone, suspended about 30 m below the water gun, recorded the gun's source signature for 11-30 consecutive shots at each of 6, 5, 4, 3, and 2 m below the sea surface. Near-ideal weather conditions during each site survey produced data with high signal-to-noise ratios. The presence of volcaniclastic and/or soil interbeds, as well as highly vesicular lava flow units, significantly affected the seismic reflection character of the volcanic basement. Strong, laterally-coherent internal reflections in the volcanic basement indicate the presence of these layers, which exhibit low velocities and low bulk densities. Generally, laterally-coherent reflections cease where the number and thickness of the low-velocity interbeds diminish. Where the seamount sediment cap is underlain by

  11. High-resolution seismic-reflection data from offshore northern California — Bolinas to Sea Ranch

    USGS Publications Warehouse

    Sliter, Ray W.; Johnson, Samuel Y.; Chin, John L.; Allwardt, Parker; Beeson, Jeffrey; Triezenberg, Peter J.

    2016-12-05

    The U.S. Geological Survey collected high-resolution seismic-reflection data in September 2009, on survey S-8-09-NC, offshore of northern California between Bolinas and Sea Ranch.The survey area spans about 125 km of California’s coast and extends around Point Reyes. Data were collected aboard the U.S. Geological Survey R/V Parke Snavely. Cumulatively, ~1,150 km of seismic-reflection data were acquired using a SIG 2mille minisparker. Subbottom acoustic depth of penetration spanned tens to several hundred meters and varied by location and underlying sediments and rock types.This report includes maps and a navigation file of the surveyed transects, utilizing Google Earth™ software, as well as digital data files showing images of each transect in SEG-Y and JPEG formats. The images of bedrock, sediment deposits, and tectonic structure provide geologic information that is essential to hazard assessment, regional sediment management, and coastal and marine spatial planning at Federal, State and local levels. This information is also valuable for future research on the geomorphic, sedimentary, tectonic, and climatic record of central California.

  12. The Effect of Regional Tectonics on Faults in Bonaire and the Bonaire Basin: A Seismic Reflection Study

    NASA Astrophysics Data System (ADS)

    Brandl, C.; Reece, R.; Bayer, J.; Bales, M. K.

    2016-12-01

    Bonaire is located on the Bonaire microplate between the Caribbean and South American plates, and is part of the Netherlands Leeward Antilles as well as the ABC Islands along with Aruba and Curacao. As the major tectonic plates move they stress the microplate, which causes deformation as faulting. This study utilizes legacy seismic reflection data combined with a recent nearshore survey to study tectonic deformation in the basins surrounding Bonaire. Our legacy data covers a large portion of the ABC Islands; one dataset is a 1981 multichannel seismic (MCS) WesternGeco survey and the other is a 1971 USGS survey that we converted from print to SEGY. The modern dataset (2013) is a high-resolution MCS survey acquired off the western coast of Bonaire. We will use the legacy datasets to validate previous interpretations in the nearshore environment and extend these interpretations to the deepwater basins. Faults influenced by regional tectonics are more evident in deepwater basins because of their lateral continuity, and offset of thick sedimentary strata. A recent study of nearshore Bonaire utilizing the high-resolution seismic dataset interpreted several NE-SW dipping normal faults, which may correspond to regional extension. However, the influence is not clear, perhaps due to a lack of data or the nearshore nature of the dataset. Analysis of the legacy datasets show several areas in the surrounding basins with faults dipping NE-SW. Further analysis may reinforce observations made in the nearshore environment. Studying the tectonics of Bonaire can provide insight about the evolution of the region and help better define the effect of regional tectonic forces on the microplate. This study also shows the benefit of legacy seismic datasets that are publically available but stored as print or film in conjunction with modern data. They can provide value to a modern study by expanding the scope of available data as well as increasing the number of questions a study can

  13. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  14. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    NASA Astrophysics Data System (ADS)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then

  15. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  16. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures - a case study in Bad Frankenhausen, Germany

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.

    2016-10-01

    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10

  17. High-Resolution Geophysical Constraints on Late Pleistocene-Present Deformation History, Seabed Morphology, and Slip-Rate along the Queen Charlotte-Fairweather Fault, Offshore Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Haeussler, P. J.; Dartnell, P.; Conrad, J. E.; Kluesner, J. W.; Hart, P. E.; Witter, R. C.; Balster-Gee, A. F.; Maier, K. L.; Watt, J. T.; East, A. E.

    2015-12-01

    The Queen Charlotte-Fairweather Fault (QCFF) of southeastern Alaska and British Columbia is the dominant fault along the 1200 km-long transform boundary between the Pacific and North American plates. More than 900 km of the QCFF lies offshore where the style and rates of deformation are poorly constrained due to a lack of high-resolution marine geophysical data. In May 2015, the USGS acquired ~900 km2 of high-resolution multibeam bathymetry data and >2000 line-km of high-resolution multichannel seismic reflection profiles between Cross Sound, Yakobi Sea Valley, and Icy Point (the northernmost offshore section of the QCFF) using a 24-ch streamer and 500 Joule minisparker source. During a second cruise in August 2015 we conducted targeted multichannel seismic and subbottom CHIRP profiling in the same region. The new data reveal a single trace of the QCFF expressed as a clear and remarkably straight seafloor lineation for >60 km. Subtle jogs in the fault (<3 degrees) are associated with pop-up structures and en echelon pull-apart basins. The near surface deformation along the fault never exceeds a width of 1.2 km. Northward, as the fault approaches Icy Point and a restraining bend, it splays into multiple strands and displays evidence for uplift and transpression. The fault appears to transition from almost purely strike-slip in the south to oblique-convergence as it steps onshore to the north. The QCFF cuts through the Yakobi Sea Valley and Cross Sound, two elongate bathymetric troughs that were filled with glaciers as recently as 17-19 ka. The southern wall of the Yakobi Sea Valley is offset 890±30 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of 45-54 mm/yr. This suggests that nearly the entire plate boundary slip budget is confined to a single, narrow, strike-slip fault zone, which may have implications for models of plate boundary strain localization.

  18. Multichannel electrochemical microbial detection unit

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Young, R. N.; Boykin, E. H.

    1978-01-01

    The paper describes the design and capabilities of a compact multichannel electrochemical unit devised to detect and automatically indicate detection time length of bacteria. By connecting this unit to a strip-chart recorder, a permanent record is obtained of the end points and growth curves for each of eight channels. The experimental setup utilizing the multichannel unit consists of a test tube (25 by 150 mm) containing a combination redox electrode plus 18 ml of lauryl tryptose broth and positioned in a 35-C water bath. Leads from the electrodes are connected to the multichannel unit, which in turn is connected to a strip-chart recorder. After addition of 2.0 ml of inoculum to the test tubes, depression of the push-button starter activates the electronics, timer, and indicator light for each channel. The multichannel unit is employed to test tenfold dilutions of various members of the Enterobacteriaceae group, and a typical dose-response curve is presented.

  19. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    NASA Astrophysics Data System (ADS)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  20. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils

    USDA-ARS?s Scientific Manuscript database

    The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...

  1. Very-long-period seismic signals - filling the gap between deformation and seismicity

    NASA Astrophysics Data System (ADS)

    Neuberg, Jurgen; Smith, Paddy

    2013-04-01

    Good broadband seismic sensors are capable to record seismic transients with dominant wavelengths of several tens or even hundreds of seconds. This allows us to generate a multi-component record of seismic volcanic events that are located in between the conventional high to low-frequency seismic spectrum and deformation signals. With a much higher temporal resolution and accuracy than e.g. GPS records, these signals fill the gap between seismicity and deformation studies. In this contribution we will review the non-trivial processing steps necessary to retrieve ground deformation from the original velocity seismogram and explore which role the resulting displacement signals have in the analysis of volcanic events. We use examples from Soufriere Hills volcano in Montserrat, West Indies, to discuss the benefits and shortcomings of such methods regarding new insights into volcanic processes.

  2. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  3. Very-high-resolution seismic and magnetic investigations of a chemical munition dumpsite in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Missiaen, Tine; Feller, Pascal

    2008-09-01

    Very-high-resolution (VHR) seismic and magnetic investigations were carried out over a chemical munition dumpsite in the Bornholm Basin, south-western Baltic Sea. The main goal of the investigations was to image the shallow internal structure of the dumpsite and to map the lateral and vertical distribution of the dumped war material. The shallow geology was imaged in great detail on the seismic data. Seven seismic-stratigraphic units were identified, related to different stages in the Holocene and late-glacial history. A large number of diapir-like features were observed that most likely represent fluid expulsion phenomena. Four shipwrecks were identified in the dumpsite area. The wrecks have partly sunk into the soft upper sediments, their height above the sea floor reaching no more than 2 m. Seismic and magnetic data indicate the presence of a large number of buried objects. In most cases there is a good correlation between the seismic and magnetic data sets. The objects are generally buried no deeper than 1 to 2 m. Their size varies between 1.5 and 5 m, occasionally up to 10 m. Shallow pits in the sea bed are likely due to the impact of dumping. The data confirm the wide variety of dumped war material ranging from bombs and shells to encasements and containers. The distribution of the buried objects seems rather heterogeneous, with locally high object concentrations surrounded by areas of lower object density. The results of this case study demonstrate the benefit of complementary, concurrent geophysical investigations for munition dumpsite research. Finally this will yield a better assessment of the current status of the dumpsite and the possible ecological risks related to the dumped war material.

  4. High-resolution seismic imaging of the gas and gas hydrate system at Green Canyon 955 in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2015-12-01

    High-resolution 2D seismic data acquired by the USGS in 2013 enable detailed characterization of the gas and gas hydrate system at lease block Green Canyon 955 (GC955) in the Gulf of Mexico, USA. Earlier studies, based on conventional industry 3D seismic data and logging-while-drilling (LWD) borehole data acquired in 2009, identified general aspects of the regional and local depositional setting along with two gas hydrate-bearing sand reservoirs and one layer containing fracture-filling gas hydrate within fine-grained sediments. These studies also highlighted a number of critical remaining questions. The 2013 high-resolution 2D data fill a significant gap in our previous understanding of the site by enabling interpretation of the complex system of faults and gas chimneys that provide conduits for gas flow and thus control the gas hydrate distribution observed in the LWD data. In addition, we have improved our understanding of the main channel/levee sand reservoir body, mapping in fine detail the levee sequences and the fault system that segments them into individual reservoirs. The 2013 data provide a rarely available high-resolution view of a levee reservoir package, with sequential levee deposits clearly imaged. Further, we can calculate the total gas hydrate resource present in the main reservoir body, refining earlier estimates. Based on the 2013 seismic data and assumptions derived from the LWD data, we estimate an in-place volume of 840 million cubic meters or 29 billion cubic feet of gas in the form of gas hydrate. Together, these interpretations provide a significantly improved understanding of the gas hydrate reservoirs and the gas migration system at GC955.

  5. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  6. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  7. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  8. High-resolution image of Calaveras fault seismicity

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.

  9. High-resolution seismic reflection survey at Dover AFB: A comparison of three seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardimona, S.; Kadinsky-Cade, K.; Miller, R.

    1996-11-01

    In June of 1995, the Earth Sciences Division of the Air Force Phillips Lab, with survey equipment from the University of Delaware and assisted by the Kansas Geological Survey and Elohi Geophysics, conducted a geophysical site characterization of the SERDP-funded Groundwater Remediation Field Lab (GRFL) located at Dover AFB, Delaware and administered by Applied Research Associates for USAF Armstrong Lab. Seismic data were collected in order to (1) compare the results using three different compressional sources and (2) cover the field site well enough to characterize the seismic response of the shallow subsurface. This paper will focus primarily on themore » first of these two goals. Seismic data were collected along three north-south profiles set 10 meters apart, each profile with a different compressional source: a 5.5kg sledgehammer, a 12-gauge firing rod from Betsy Seisgun Inc. shooting 150 grain blanks, and a portable piezoelectrically driven vibrator, developed by Elohi Geophysics, operating with a 90Hz-450Hz sweep. An east-west cross line was collected using the sledgehammer source in order to tie the three profiles together. A laser theodolite provided station location and elevation control. The primary targets were the water table (that had been marked on maps at a depth of about 3 meters) and a sand-clay interface at about 15 meters depth. We collected 24-channel CMP data using a half meter spacing of both source and 100Hz geophones. Field C after initial walkaway noise testing with each source did not show any one source to be outstanding A practical early result of the seismic survey showed the water table to be at just over 10 meters. We have associated the strongest reflection event with the water-table interface. Seismic data comparison in this study is based on spectral content, total energy and signal-to-noise ratios, as well as a discussion of coherency of the primary reflection event at the water table.« less

  10. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    NASA Technical Reports Server (NTRS)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  11. High resolution seismic tomography imaging of Ireland with quarry blast data

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  12. Multichannel spectral mode of the ALOHA up-conversion interferometer

    NASA Astrophysics Data System (ADS)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-06-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  13. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where

  14. Preliminary interpretation of high resolution 3D seismic data from offshore Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Gross, F.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Cukur, D.; Bialas, J.; Papenberg, C. A.; Crutchley, G.; Koch, S.

    2013-12-01

    In order to gain knowledge about subsurface structures and its correlation to seafloor expressions, a hydro-acoustic dataset was collected during RV Meteor Cruise M86/2 (December 2011/January 2012) in Messina Straits and offshore Mt. Etna. Especially offshore Mt. Etna, the data reveals an obvious connection between subsurface structures and previously known morphological features at the sea floor. Therefore a high resolution 3D seismic dataset was acquired between Riposto Ridge and Catania Canyon close to the shore of eastern Sicily. The study area is characterized by a major structural high, which hosts several ridge-like features at the seafloor. These features are connected to a SW-NE trending fault system. The ridges are bended in their NE-SW direction and host major escarpments at the seafloor. Furthermore they are located directly next to a massive amphitheater structure offshore Mt. Etna with slope gradients of up to 35°, which is interpreted as remnants of a massive submarine mass wasting event off Sicily. The new 3D seismic dataset allows an in depth analysis of the ongoing deformation of the east flank of Mt. Etna.

  15. Imaging a Hydrate-Related Cold Vent Offshore Vancouver Island From Deep-Towed Multichannel Seismic Data

    DTIC Science & Technology

    2009-02-20

    vent). 2500 2600 2700 Distance (m) 2800 2900 3000 1.791 Figure 11. Southeast-northwest seismic section, showing hydrate cap details from DTI 6. The...line DT16 Line DTI 6 continues as a long transit line extending to the north- west. The 1999 COAMS (Canadian Ocean Acoustic Measurement System) grid...inline IN26 is coincident with DTI 6 (Figure 1). A com- bination of the surface-towed seismic data and the deep-towed DTAGS data is needed to provide

  16. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  17. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  18. Foraminiferal and seismic stratigraphy, paleoenvironments and depositional cycles in the Georges Bank Basin

    NASA Astrophysics Data System (ADS)

    Poag, C. W.

    Biostratigraphic analyses of foraminiferal assemblages sampled from rotary cuttings taken at 10 ft to 90 ft intervals were used with interpretation of seismic sequences to determine the presence of nonconformities and to establish a chronostratigraphic framework for COST G-1 and G-2 wells. The chronostratigraphic sequences were then used to calculate sediment accumulation rates. Lithostratigraphic and chronostratigraphic units were compared with those of the Scotian Basin of Canada, and correlations were established between the COST G-2 and the Shell Mohican L-100 wells. Paleoenvironmental analysis was based on the microfossil record of the G-1 and G-2 wells and on interpretation of seismic facies along USGS multichannel line 19.

  19. Multichannel Spectrometer of Time Distribution

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.

    2015-06-01

    For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.

  20. Use of Multibeam-Bathymetry and Seismic-Reflection Data to Investigate the Origin of Seafloor Depressions Along the Southeastern Carbonate Florida Platform

    NASA Astrophysics Data System (ADS)

    Cunningham, K. J.; Kluesner, J.; Westcott, R. L.; Ebuna, D. R.; Walker, C.

    2016-12-01

    Numerous large, semicircular, deep submarine depressions on the seafloor of the Miami Terrace (a bathymetric bench that interrupts the Atlantic continental slope on the southeastern carbonate Florida Platform) have been described as submarine sinkholes resulting from freshwater discharge at the seafloor and dissolution of carbonate rock. Multibeam-bathymetry and marine, high-resolution, multichannel 2D and 3D seismic-reflection data acquired over two of these depressions at water depths of about 250 m ("Miami sinkhole") and 336 m ("Key Biscayne sinkhole") indicate the depressions are pockmarks. Seafloor pockmarks are concave, crater-like depressions that form through the outburst or venting of fluid (gas, liquid) at the sea floor and are important seabed features that provide information about fluid flow on continental margins. Both the "Miami sinkhole" and "Key Biscayne sinkhole" (about 25 and 48m deep, respectively) have a seismic-chimney structure beneath them that indicates an origin related to seafloor fluid expulsion, as supported by multi-attribute analysis of the "Key Biscayne sinkhole". Further, there is no widening of the depressions with depth, as in the Fort Worth Basin, where downward widening of seismic, sub-circular, karst-collapse structures is common. However, hypogenic karst dissolution is not ruled out as part of the evolution of the two depressions. Indeed, a hypogenic karst pipe plausibly extends downward from the bottom of "Key Biscayne sinkhole", providing a passageway for focused upward flow of fluids to the seafloor. In "Key Biscayne sinkhole", the proposed karst pipe occurs above the underlying seismic chimney that contains flat bright spots (a hydrocarbon indicator) in the seismic data plausibly showing fluids are currently trapped beneath the pockmark within a tightly folded popup structure. The Miami Terrace depressions have seismic-reflection features similar to modern pockmarks imaged on the Maldives carbonate platform. The seismic

  1. Back to the Future: Long-Term Seismic Archives Revisited

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2007-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives

  2. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  3. Chronology of Late Quaternary Glacial Cycles in the Bering Trough, Gulf of Alaska: Constraints from Core-Log-Seismic Integration across the Continental Shelf and Slope

    NASA Astrophysics Data System (ADS)

    Clary, W. A.; Worthington, L. L.; Daigle, H.; Slagle, A. L.; Gulick, S. P. S.

    2016-12-01

    Sediments offshore Southern Alaska offer a natural laboratory to study glacial erosion, sediment deposition, and orogenesis. A major goal of Integrated Ocean Drilling Program (IODP) Expedition 341 was investigation of interrelationships among tectonic processes, paleoclimate, and glacial activity. Here, we focus on core-log-seismic integration of IODP Sites U1420 and U1421 on the shallow shelf and slope near the Bering Trough, a glacially derived shelf-crossing landform. These sites sample glacial and marine sediments that record a history of sedimentation following the onset of glacial intensification near the mid-Pleistocene transition (1.2 Ma) and Yakutat microplate convergence with North America. Ocean drilling provides important stratigraphic, physical properties, and age data in depth which support development of a stratigraphic model that can be extended across the shelf if carefully calibrated to local and regional seismic surveys. We use high resolution multichannel seismic, core, and logging data to develop a time-depth relationship (TDR) and update the developing chronostratigraphic model based on correlation of seismic sequence boundaries and drilling-related data, including biostratigraphic and paleomagnetic age controls. We calibrate, combine, and interpolate core and logging data at each site to minimize gaps in physical property information and generate synthetic seismic traces. At Site U1421, vertical seismic profiling further constrains the TDR, and provides input for the initial velocity model during the tie. Finally, we match reflectors in the synthetic trace with events in nearby seismic reflection data to establish a TDR at each site. We can use this relationship to better interpret the development of the Bering Trough, a recurring and favored path for ice streams and glacial advance. Initial results suggest late Pleistocene sedimentation rates of at least 1 km/m.y. on average, and variable sedimentation rates which are possibly correlated

  4. Seismic multiple attenuation in the northern continent-ocean transition zone of the South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, N.; Li, C. F.

    2017-12-01

    In seismic exploration, especially in marine oil and gas exploration, presence of multiple reflections lowers signal-to-noise ratio of seismic data and makes it difficult to analyze seismic velocity. In northern continent-ocean transition zone of the South China Sea (SCS), low-velocity Cenozoic strata cover sets of high-velocity carbonate strata directly, and over 1000 m thick of sediments were deposited on the igneous basement in the northwest SCS. These sedimentary boundaries generate quite strong impedance interfaces and strong internal multiples. Diffractions as a result of variation of seabed topography, coupled with the vibration, free surface multiples and refraction multiples, cause a variety of strong energy disturbances and missing of frequency component. In this study, we process four recently acquired multichannel reflection seismic profiles from the northern continent-ocean transition zone of the SCS with a new combination of demultiple techniques. There is a variety of strong multiples in the raw data, and the seabed multiple occurs between 9 to 11 seconds in two-way travel time (TWTT), and we apply Surface-related Multiple Elimination (SRME) to attenuate the free surface multiples. After SRME, we use high-resolution Radon transform (RAMUR) to attenuate deep multiples concentrating below 10 seconds in TWTT. Normal moveout correction (NMO) is necessary to flatten true reflections and turn multiples into a parabola before RAMUR, and we can attenuate the deep multiples in theτ-p domain. The seabed topography varies greatly in the continent-ocean transition zone, so the diffractions are well developed. However, SRME and RAMUR are not effective in attenuating diffractions and internal multiples. We select diffracted multiple attenuation (DIMAT) after many trials and detailed analysis. The diffractions are extracted in decomposed frequency bands. The internal multiples below 11 seconds in TWTT and high-amplitude noises are successfully suppressed while

  5. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  6. A low-cost multichannel wireless neural stimulation system for freely roaming animals.

    PubMed

    Alam, Monzurul; Chen, Xi; Fernandez, Eduardo

    2013-12-01

    Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.

  7. A low-cost multichannel wireless neural stimulation system for freely roaming animals

    NASA Astrophysics Data System (ADS)

    Alam, Monzurul; Chen, Xi; Fernandez, Eduardo

    2013-12-01

    Objectives. Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. Approach. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. Main results. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. Significance. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.

  8. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    NASA Astrophysics Data System (ADS)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  9. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  10. The seismic traffic footprint: Tracking trains, aircraft, and cars seismically

    NASA Astrophysics Data System (ADS)

    Riahi, Nima; Gerstoft, Peter

    2015-04-01

    Although naturally occurring vibrations have proven useful to probe the subsurface, the vibrations caused by traffic have not been explored much. Such data, however, are less sensitive to weather and low visibility compared to some common out-of-road traffic sensing systems. We study traffic-generated seismic noise measured by an array of 5200 geophones that covered a 7 × 10 km area in Long Beach (California, USA) with a receiver spacing of 100 m. This allows us to look into urban vibrations below the resolution of a typical city block. The spatiotemporal structure of the anthropogenic seismic noise intensity reveals the Blue Line Metro train activity, departing and landing aircraft in Long Beach Airport and their acceleration, and gives clues about traffic movement along the I-405 highway at night. As low-cost, stand-alone seismic sensors are becoming more common, these findings indicate that seismic data may be useful for traffic monitoring.

  11. A multi-channel setup to study fractures in scintillators

    NASA Astrophysics Data System (ADS)

    Tantot, A.; Bouard, C.; Briche, R.; Lefèvre, G.; Manier, B.; Zaïm, N.; Deschanel, S.; Vanel, L.; Di Stefano, P. C. F.

    2016-12-01

    To investigate fractoluminescence in scintillating crystals used for particle detection, we have developed a multi-channel setup built around samples of double-cleavage drilled compression (DCDC) geometry in a controllable atmosphere. The setup allows the continuous digitization over hours of various parameters, including the applied load, and the compressive strain of the sample, as well as the acoustic emission. Emitted visible light is recorded with nanosecond resolution, and crack propagation is monitored using infrared lighting and camera. An example of application to \\text{B}{{\\text{i}}4}\\text{G}{{\\text{e}}3}{{\\text{O}}12} (BGO) is provided.

  12. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  13. Multichannel analysis of surface wave method with the autojuggie

    USGS Publications Warehouse

    Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.

    2003-01-01

    The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.

  14. Multichannel Compression, Temporal Cues, and Audibility.

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Turner, Christopher W.

    1998-01-01

    The effect of the reduction of the temporal envelope produced by multichannel compression on recognition was examined in 16 listeners with hearing loss, with particular focus on audibility of the speech signal. Multichannel compression improved speech recognition when superior audibility was provided by a two-channel compression system over linear…

  15. Borehole and High-Resolution Seismic Reflection Evidence for Holocene Activity on the Compton Blind-Thrust Fault, Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Leon, L. A.; Dolan, J. F.; Shaw, J. H.; Pratt, T. L.

    2006-12-01

    Newly collected borehole and high-resolution seismic reflection data from a site ~6 km south of downtown Los Angeles demonstrate that the Compton blind-thrust fault has generated multiple large-magnitude earthquakes during the Holocene. This large blind thrust fault, which was originally identified by Shaw and Suppe (1996) using industry seismic reflection profiles and well data, extends northwest-southeast for 40 km beneath the western edge of the Los Angeles basin. The industry seismic reflection data define a growth fault-bend fold associated with the thrust ramp, which, combined with well data, reveal compelling evidence for Pliocene and Pleistocene activity. The industry data, however, do not image deformation in the uppermost few hundred meters. In order to bridge this gap, we acquired high-resolution seismic reflection profiles at two scales across the back limb active axial surface of the fault-bend fold above the Compton thrust ramp, using a truck-mounted weight drop and sledgehammer sources. These profiles delineate the axial surfaces of the fold from <20 m depth downward to overlap with the upper part of the industry reflection data within the upper 500 m. The seismic reflection data reveal an upward-narrowing zone of folding that extends to <100 m of the surface. These data, in turn, allowed us to accurately and efficiently site a fault-perpendicular transect of eight continuously cored boreholes across the axial surface of the fold observed in both industry and high-resolution seismic reflection data. The borehole data reveal folding within a discrete kink band that is <~150 m wide in the shallow subsurface. Preliminary analysis of the deformed, shallow growth strata reveals evidence for a number of discrete uplift events, which we interpret as having occurred during several large-magnitude (M >7) earthquakes on the Compton fault. Although we do not as yet have age control for this transect, numerous organic-rich clay and silt layers, as well as

  16. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  17. Southeast Georgia embayment high-resolution seismic-reflection survey

    USGS Publications Warehouse

    Edsall, Douglas W.

    1979-01-01

    A high-resolution seismic survey of the offshore part of the Southeast Georgia Embayment on about a 20 km spacing was completed in 1976. A stratigraphic analyses of the data shows that the largest controlling factor in the depositional history of the shelf has been the Gulf Stream. These currents have shifted back and forth across the shelf, at times incising into shelf sediments, and at all times blocking much of the accumulation of Cenozoic sediments seaward of the Florida-Hatteras Slope. In the southern region the Gulf Stream maintained its present position since Miocene time, blocking the accumulation of Pliocene and younger rocks on the Plateau. Northward, in the middle, region the currents turned slightly to the northeast. The inner portion of the Blake Plateau has been scoured of sediments since the Paleocene in this area, and scouring has also occurred on the shelf from time to time. In the northern part of the survey area a more easterly flow of the Gulf Stream has allowed Eocene and younger rocks to be deposited on the Plateau. Line drawings and a geologic map show the distribution of the various Cretaceous and Cenozoic units. A number of potential environmental hazards or constraints to petroleum development seen in the reflection data are identified. Besides current scour and erosion features, these include gravity faults on the slope, a slump, faulting on the inner Blake Plateau, the shelf edge reef, and deep water reefs on the Blake Plateau.

  18. Integrating long-offset transient electromagnetics (LOTEM) with seismics in an exploration environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strack, K.M.; Vozoff, K.

    The applications of electromagnetics have increased in the past two decades because of an improved understanding of the methods, improves service availability, and the increased focus of exploration in the more complex reservoir characterization issues. For electromagnetic methods surface applications for hydrocarbon Exploration and Production are still a special case, while applications in borehole and airborne research and for engineering and environmental objectives are routine. In the past, electromagnetic techniques, in particular deep transient electromagnetics, made up a completely different discipline in geophysics, although many of the principles are similar to the seismic one. With an understanding of the specificmore » problems related to data processing initially and then acquisition, the inclusion of principles learned from seismics happened almost naturally. Initially, the data processing was very similar to seismic full-waveform processing. The hardware was also changed to include multichannel acquisition systems, and the field procedures became very similar to seismic surveying. As a consequence, the integration and synergism of the interpretation process is becoming almost automatic. The long-offset transient electromagnetic (LOTEM) technique will be summarized from the viewpoint of its similarity to seismics. The complete concept of the method will also be reviewed. An interpretation case history that integrates seismic and LOTEM from a hydrocarbon area in China clearly demonstrates the limitations and benefits of the method.« less

  19. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  20. BabySQUID: A mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment

    NASA Astrophysics Data System (ADS)

    Okada, Yoshio; Pratt, Kevin; Atwood, Christopher; Mascarenas, Anthony; Reineman, Richard; Nurminen, Jussi; Paulson, Douglas

    2006-02-01

    We developed a prototype of a mobile, high-resolution, multichannel magnetoencephalography (MEG) system, called babySQUID, for assessing brain functions in newborns and infants. Unlike electroencephalography, MEG signals are not distorted by the scalp or the fontanels and sutures in the skull. Thus, brain activity can be measured and localized with MEG as if the sensors were above an exposed brain. The babySQUID is housed in a moveable cart small enough to be transported from one room to another. To assess brain functions, one places the baby on the bed of the cart and the head on its headrest with MEG sensors just below. The sensor array consists of 76 first-order axial gradiometers, each with a pickup coil diameter of 6mm and a baseline of 30mm, in a high-density array with a spacing of 12-14mm center-to-center. The pickup coils are 6±1mm below the outer surface of the headrest. The short gap provides unprecedented sensitivity since the scalp and skull are thin (as little as 3-4mm altogether) in babies. In an electromagnetically unshielded room in a hospital, the field sensitivity at 1kHz was ˜17fT/√Hz. The noise was reduced from ˜400to200fT/√Hz at 1Hz using a reference cancellation technique and further to ˜40fT/√Hz using a gradient common mode rejection technique. Although the residual environmental magnetic noise interfered with the operation of the babySQUID, the instrument functioned sufficiently well to detect spontaneous brain signals from babies with a signal to noise ratio (SNR) of as much as 7.6:1. In a magnetically shielded room, the field sensitivity was 17fT/√Hz at 20Hz and 30fT/√Hz at 1Hz without implementation of reference or gradient cancellation. The sensitivity was sufficiently high to detect spontaneous brain activity from a 7month old baby with a SNR as much as 40:1 and evoked somatosensory responses with a 50Hz bandwidth after as little as four averages. We expect that both the noise and the sensor gap can be reduced further by

  1. Interlobate esker architecture and related hydrogeological features derived from a combination of high-resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland

    NASA Astrophysics Data System (ADS)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2017-05-01

    A novel high-resolution (2-4 m source and receiver spacing) reflection and refraction seismic survey was carried out for aquifer characterization and to confirm the existing depositional model of the interlobate esker of Virttaankangas, which is part of the Säkylänharju-Virttaankangas glaciofluvial esker-chain complex in southwest Finland. The interlobate esker complex hosting the managed aquifer recharge (MAR) plant is the source of the entire water supply for the city of Turku and its surrounding municipalities. An accurate delineation of the aquifer is therefore critical for long-term MAR planning and sustainable use of the esker resources. Moreover, an additional target was to resolve the poorly known stratigraphy of the 70-100-m-thick glacial deposits overlying a zone of fractured bedrock. Bedrock surface as well as fracture zones were confirmed through combined reflection seismic and refraction tomography results and further validated against existing borehole information. The high-resolution seismic data proved successful in accurately delineating the esker cores and revealing complex stratigraphy from fan lobes to kettle holes, providing valuable information for potential new pumping wells. This study illustrates the potential of geophysical methods for fast and cost-effective esker studies, in particular the digital-based landstreamer and its combination with geophone-based wireless recorders, where the cover sediments are reasonably thick.

  2. Seismic and Gravity Data Help Constrain the Stratigraphic and Tectonic History of Offshore New Harbor, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Pekar, S. F.; Wilson, G. S.; Sunwall, D. A.; Tinto, K. J.

    2010-12-01

    The ANDRILL (ANtarctic geological DRILLing) Program’s Offshore New Harbor (ONH) Project successfully conducted multi-channel seismic and gravity surveys in 2008 to investigate the stratigraphic and tectonic history of westernmost Southern McMurdo Sound, Ross Sea, Antarctica, during the Greenhouse World (Eocene) into the start of the Icehouse World (Oligocene). Approximately 48 km of multi-channel seismic reflection data were collected on a sea-ice platform east of New Harbor. The seismic survey used and improved upon methods employed successfully by ANDRILL’s surveys in Southern McMurdo Sound (2005) and in Mackay Sea Valley (2007). These methods include using an air gun and snow streamer of gimbaled geophones. Upgrades in the ONH project’s field equipment substantially increased the rate at which seismic data could be acquired in a sea-ice environment compared to all previous surveys. In addition to the seismic survey, gravity data were collected from the sea ice in New Harbor with the aim of defining basin structural controls. Both the seismic and gravity data indicate thick sediment accumulation above the hanging wall of a major range front fault. This clearly identified fault could be the postulated master fault of the Transantarctic Mountains. An approximately 5 km thick sequence of sediments is present east of the CIROS-1 drill hole. CIROS-1 was drilled adjacent to the range front fault and recovered 702 m of sediments that cross the Eocene/Oligocene boundary. The new geophysical data indicate that substantial sediment core below the Eocene/Oligocene boundary could be recovered to the east of CIROS-1 during future drilling. Inshore of the range front fault, the data show fault bounded half grabens with sediment fill thickening eastward against localized normal faults. Modeling of the gravity data, that extends farther inland than the seismic profiles, suggests that over 1 km of sediments could be present locally offshore Taylor Valley. Future drilling of

  3. Sub-metric Resolution FWI of Ultra-High-Frequency Marine Reflection Seismograms. A Remote Sensing Tool for the Characterisation of Shallow Marine Geohazard

    NASA Astrophysics Data System (ADS)

    Provenzano, G.; Vardy, M. E.; Henstock, T.; Zervos, A.

    2017-12-01

    A quantitative high-resolution physical model of the top 100 meters of the sub-seabed is of key importance for a wide range of shallow geohazard scenarios: identification of potential shallow landsliding, monitoring of gas storage sites, and assessment of offshore structures stability. Cur- rently, engineering-scale sediment characterisation relies heavily on direct sampling of the seabed and in-situ measurements. Such an approach is expensive and time-consuming, as well as liable to alter the sediment properties during the coring process. As opposed to reservoir-scale seismic exploration, ultra-high-frequency (UHF, 0.2-4.0 kHz) multi-channel marine reflection seismic data are most often limited to a to semi-quantitative interpretation of the reflection amplitudes and facies geometries, leaving largely unexploited its intrinsic value as a remote characterisation tool. In this work, we develop a seismic inversion methodology to obtain a robust sub-metric resolution elastic model from limited-offset, limited-bandwidth UHF seismic reflection data, with minimal pre-processing and limited a priori information. The Full Waveform Inversion is implemented as a stochastic optimiser based upon a Genetic Algorithm, modified in order to improve the robustness against inaccurate starting model populations. Multiple independent runs are used to create a robust posterior model distribution and quantify the uncertainties on the solution. The methodology has been applied to complex synthetic examples and to real datasets acquired in areas prone to shallow landsliding. The inverted elastic models show a satisfactory match with the ground-truths and a good sensitivity to relevant variations in the sediment texture and saturation state. We apply the methodology to a range of synthetic consolidating slopes under different loading conditions and sediment properties distributions. Our work demonstrates that the seismic inversion of UHF data has the potential to become an important

  4. A Student-Made Inexpensive Multichannel Pipet

    ERIC Educational Resources Information Center

    Dragojlovic, Veljko

    2009-01-01

    An inexpensive multichannel pipet designed to deliver small volumes of liquid simultaneously to wells in a multiwell plate can be prepared by students in a single laboratory period. The multichannel pipet is made of disposable plastic 1 mL syringes and drilled plastic plates, which are used to make plunger and barrel assemblies. Application of the…

  5. MASW on the standard seismic prospective scale using full spread recording

    NASA Astrophysics Data System (ADS)

    Białas, Sebastian; Majdański, Mariusz; Trzeciak, Maciej; Gałczyński, Edward; Maksym, Andrzej

    2015-04-01

    The Multichannel Analysis of Surface Waves (MASW) is one of seismic survey methods that use the dispersion curve of surface waves in order to describe the stiffness of the surface. Is is used mainly for geotechnical engineering scale with total length of spread between 5 - 450 m and spread offset between 1 - 100 m, the hummer is the seismic source on this surveys. The standard procedure of MASW survey is: data acquisition, dispersion analysis and inversion of extracting dispersion curve to obtain the closest theoretical curve. The final result includes share-wave velocity (Vs) values at different depth along the surveyed lines. The main goal of this work is to expand this engineering method to the bigger scale with the length of standard prospecting spread of 20 km using 4.5 Hz version of vertical component geophones. The standard vibroseis and explosive method are used as the seismic source. The acquisition were conducted on the full spread all the time during each single shoot. The seismic data acquisition used for this analysis were carried out on the Braniewo 2014 project in north of Poland. The results achieved during standard MASW procedure says that this method can be used on much bigger scale as well. The different methodology of this analysis requires only much stronger seismic source.

  6. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    In the case of drilling for deep reservoirs previous exploration is indispensable. In recent years the focus shifted more on geological structures like small layers or hydrothermal fault systems. Beside 2D- or 3D-seismics from the surface and seismic measurements like Vertical Seismic Profile (VSP) or Seismic While Drilling (SWD) within a borehole these methods cannot always resolute this structures. The resolution is worsen the deeper and smaller the sought-after structures are. So, potential horizons like small layers in oil exploration or fault zones usable for geothermal energy production could be failed or not identified while drilling. The application of a device to explore the geology with a high resolution ahead of the drill bit in direction of drilling would be of high importance. Such a device would allow adjusting the drilling path according to the real geology and would minimize the risk of discovery and hence the costs for drilling. Within the project SPWD a device for seismic exploration ahead of the drill bit will be developed. This device should allow the seismic exploration to predict areas about 50 to 100 meters ahead of the drill bit with a resolution of one meter. At the GFZ a first prototype consisting of different units for seismic sources, receivers and data loggers has been designed and manufactured. As seismic sources four standard magnetostrictive actuators and as receivers four 3-component-geophones are used. Every unit, actuator or geophone, can be rotated in steps of 15° around the longitudinal axis of the prototype to test different measurement configurations. The SPWD prototype emits signal frequencies of about 500 up to 5000 Hz which are significant higher than in VSP and SWD. An increased radiation of seismic wave energy in the direction of the borehole axis allows the view in areas to be drilled. Therefore, every actuator must be controlled independently of each other regarding to amplitude and phase of the source signal to

  7. Can we go From Tomographically Determined Seismic Velocities to Composition? Amplitude Resolution Issues in Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Wagner, L.

    2007-12-01

    There have been a number of recent papers (i.e. Lee (2003), James et al. (2004), Hacker and Abers (2004), Schutt and Lesher (2006)) which calculate predicted velocities for xenolith compositions at mantle pressures and temperatures. It is tempting, therefore, to attempt to go the other way ... to use tomographically determined absolute velocities to constrain mantle composition. However, in order to do this, it is vital that one is able to accurately constrain not only the polarity of the determined velocity deviations (i.e. fast vs slow) but also how much faster, how much slower relative to the starting model, if absolute velocities are to be so closely analyzed. While much attention has been given to issues concerning spatial resolution in seismic tomography (i.e. what areas are fast, what areas are slow), little attention has been directed at the issue of amplitude resolution (how fast, how slow). Velocity deviation amplitudes in seismic tomography are heavily influenced by the amount of regularization used and the number of iterations performed. Determining these two parameters is a difficult and little discussed problem. I explore the effect of these two parameters on the amplitudes obtained from the tomographic inversion of the Chile Argentina Geophysical Experiment (CHARGE) dataset, and attempt to determine a reasonable solution space for the low Vp, high Vs, low Vp/Vs anomaly found above the flat slab in central Chile. I then compare this solution space to the range in experimentally determined velocities for peridotite end-members to evaluate our ability to constrain composition using tomographically determined seismic velocities. I find that in general, it will be difficult to constrain the compositions of normal mantle peridotites using tomographically determined velocities, but that in the unusual case of the anomaly above the flat slab, the observed velocity structure still has an anomalously high S wave velocity and low Vp/Vs ratio that is most

  8. New insights on multiple seismic uplift on the Main Frontal Thrust near the Ratu river, Eastern Nepal using high-resolution topography

    NASA Astrophysics Data System (ADS)

    Karakas, Cagil; Tapponnier, Paul; Nath Sapkota, Soma; Coudurier Curveur, Aurelie; Ildefonso, Sorvigenaleon; Gao, Mingxing; Bollinger, Laurent; Klinger, Yann

    2016-04-01

    The number of localities along the Main Frontal Thrust, between 85°49' to 86°27' E, where new data corroborates the surface emergence of the great M ≈ 8.4, 1934 Bihar-Nepal and 1255 AD earthquakes has increased over the past years. Here we show new high-resolution, quantitative evidences of surface rupture and co-seismic uplift near the Ratu river area. We present a refined map of uplifted terrace surfaces and abandoned paleo-channels truncated by the MFT, obtained by the combination of newly acquired high resolution Digital Elevation Models from Total station, Terrestrial Lidar Scanner (TLS), Unmanned Aerial Vehicle (UAV) and kinematic GPS surveys. In the Ratu valley, using these new high-resolution topographic datasets, we identify six and possibly seven distinct terrace levels uplifted parallel to the riverbed, lying unconformably on top of folded Siwaliks. Several sets of measurements may be taken to imply broadly characteristic increments of throw during sequences of at least six to seven events of riverbed abandonment related to co-seismic uplifts. Newly collected detrital charcoals from several pits and from a rejuvenated paleoseismological wall will help assess more precisely uplift and shortening rates over the length of segments of the MFT east and west of Bardibas. A regional comparison of comparable long-term paleoseismological data at other sites along the 1934 rupture length is in progress.

  9. The Investigation of Active Tectonism Offshore Cide-Sinop, Southern Black Sea by Seismic Reflection and Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2017-12-01

    The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime

  10. Late Cretaceous sub-volcanic structure in the continental shelf off Portugal and its implications on tectonics and seismicity

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Terrinha, Pedro; Custódio, Susana; Noiva, João; Brito, Pedro; Santos, Joana; Carrilho, Fernando

    2017-04-01

    Long-lasting and widespread alkaline magmatism is recognized in the west Portuguese margin. Offshore, several volcanic seamounts punctuate the Tore-Madeira Rise and the Estremadura Spur, with known ages between 80 and 100 Ma. Onshore, the major events are the Monchique (69-73 Ma), Sines (75-77 Ma) and Sintra (75-82 Ma) plutons - whose location (aligned along 200 km) and age discrepancy inspired some geodynamic models for Iberia during the Cretaceous - and the Lisbon Volcanic Complex (90-100 Ma). Structural links between them have been proposed but no direct evidence was yet found for it. In this work we present new magnetic data from recent marine magnetic surveys (ROCHEL and MINEPLAT project) conducted off the west Portuguese coast on the continental shelf and slope. A total area of about 3000 km2 between Sintra and Sines was surveyed with line spacing of 1 mile. Very high-resolution multi-channel seismic profiles were simultaneously acquired with the magnetics covering an area of 400 km2 off Sines. Two main primary outcomes arise from these data. On one hand, higher-resolution mapping in regions where magnetic anomalies were already known allows a better understanding of the buried sub-volcanic system. On the other hand, previously unknown NNW-SSE aligned magnetic anomalies were identified along the coast off Sines, possibly corresponding to buried Late Cretaceous alkaline magmatic intrusives. The presence of magmatic bodies was up to now unknown in this region, and these findings reignite the discussion about a structural link connecting the three main on land intrusive complexes, Sintra, Sines and Monchique. In addition to the structural control of the magmatic complexes, seismicity is also an issue as a cluster of seismicity coincident with the Monchique complex has long been known. Smaller clusters coincide with the magnetic anomalies mapped during the ROCHEL and MINEPLAT surveys, as well. We interpret these results in the light of the tectono-magmatism of

  11. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in

  12. First results of a high resolution reflection seismic survey of the Central Northern Venezuelan Shelf

    NASA Astrophysics Data System (ADS)

    Avila, J.; van Welden, A.; Audemard, F.; de Batist, M.; Beck, C.; Scientific Party, G.

    2008-05-01

    In September - November 2007 the first high resolution marine seismic campaign on the North-Central coast of Venezuela was carried out between Cabo Codera and Golfo Triste. The principal aim of this work was to characterize the active San Sebastian Fault (SSF) and to analyze Cenozoic sedimentation on the Venezuela shelf focusing on: i) effects of active tectonics and ii) coastal landslides/flashflood deposits related to 1999 Vargas catastrophic event or to similar phenomena. Data were acquired onboard R/V GUAIQUERI II from the Oceanographic Institute of the Oriente University. The seismic source was a "CENTIPEDE" sparker (RCGM) operated between 300 and 600 J, 1.3 kHz main frequency. We used a single-channel streamer with 10 hydrophones. In total, 49 seismic profiles were collected, with a cumulative length of 1000 km approximately. In these seismic profiles we identified and separated the deposits into three main units. Unit (U1) comprises low energy reflectors mainly dipping in southward direction (i.e. toward the coast bounded by the San Sebastian Fault). This unit also includes a number of isolated acoustic anomalies, which we tentatively interpret as coral reefs. Its top is defined as Basal Erosional Discontinuity (BED) onto which Unit 2 (U2) deposits are onlapping. U2 is acoustically well-stratified, with strong reflectors. Gradual variations in thickness and a wavy configuration allow us to interpret U2 as probably Quaternary current-related deposits. Last Unit (U3) was defined on the Venezuela shelf and corresponds to prograding sequences probably related to the terrigenous input of the Tuy River. Impact of eustatic fluctuations on these deposits are discussed. The data were also used to construct a simplified bathymetry of the studied area. The lateral transition from the western Cariaco-Tuy pull-apart basin to the (single) SSF was clearly imaged (mostly folds and gravity faults). The survey also displayed prograding sediments bodies in La Tortuga Shelf

  13. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    PubMed

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  14. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  15. High-Resolution Body Wave Tomography of the Ross Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    White-Gaynor, A.; Nyblade, A.; Wiens, D. A.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Stephen, R. A.

    2017-12-01

    The West Antarctic Rift System (WARS) is one of the least understood continental rift system on the planet. The 1000 km wide WARS includes the Ross Sea Embayment between Marie Byrd Land and the Transantarctic Mountains (TAMS). Active volcanism on Ross Island continues to challenge our understanding of the generally quiescent rift system. Previous regional-scale body wave tomographic investigations have identified areas of low seismic wave speeds to 200 km depth beneath Ross Island. However, the spatial extent of the low velocity structure across the entirety of the WARS remains poorly constrained due to the insufficient resolution of upper mantle structure under the Ross Sea Embayment away from Ross Island. We utilize teleseismic P wave observations recorded on the RIS/DRIS network, which consists of 34 seismometers deployed across the Ross Ice Shelf, along with data from nearby POLENET and TAMSEIS stations to better resolve this region. Relative P wave travel time residuals from 1300 teleseismic events, obtained using a multichannel cross-correlation method, have been inverted for a seismic velocity model of the upper mantle throughout the Ross Sea Embayment. Our results suggest that the low wave speed structure under Ross Island extends roughly halfway across the Embayment and south along the Transantarctic Mountains. This observation is consistent with a two-phase rifting history for the WARS in which broad, late Cretaceous rifting between Marie Byrd Land and the TAMS transitioned to more focused rifting along the TAMS margin in the Cenozoic.

  16. Seismic-reflection studies, offshore Santa Maria Province, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, K.J.; Childs, J.R.; Taylor, D.J.

    1991-02-01

    Well data and seismic-reflection records are being analyzed to provide a subsurface geologic framework for the US Geological Survey's Santa Maria Province project. This project, jointly sponsored by the Evolution of Sedimentary Basins and Onshore Oil and Gas Investigations Programs, in a basin-evolution and petroleum geology study focusing on the geologically complex and tectonically active south-central California margin. The area embraces several basins and basin fragments including the onshore Santa Maria, offshore Santa Maria, Pismo, Huasna, Sur, Santa Lucia, and western Santa Barbara-Ventura. These basins have many similarities, including generally synchronous formation at about the end of the Oligocene, developmentmore » on a complex assemblage of Mesozoic tectonostratigraphic terranes, and basin fill consisting of Neogene clastic marine and nonmarine deposits, minor volcanic rocks, and organic-rich biogenous deposits of the Monterey Formation. Despite these similarities, basin origins are controversial and paleogeographies uncertain. In 1990, the US Geological Survey collected approximately 130 line-mi of multichannel seismic reflection data in seven profiles off-shore California from Morro Bay south to the western Santa Barbara Channel. These are the first US Geological Survey seismic data collected in this area since the early 1980s exploratory drilling began in the offshore Santa Maria basin. Profiles were generally oriented perpendicular to structural grain and located to intersect as many well-sites and pre-existing seismic profiles as possible. Profile orientation and spacing were designed to provide the offshore extensions of onshore well-correlation profiles currently under construction. With synthetic seismograms the authors are integrating the stratigraphy of the wells with these seismic-reflection records.« less

  17. Multichannel Brain-Signal-Amplifying and Digitizing System

    NASA Technical Reports Server (NTRS)

    Gevins, Alan

    2005-01-01

    An apparatus has been developed for use in acquiring multichannel electroencephalographic (EEG) data from a human subject. EEG apparatuses with many channels in use heretofore have been too heavy and bulky to be worn, and have been limited in dynamic range to no more than 18 bits. The present apparatus is small and light enough to be worn by the subject. It is capable of amplifying EEG signals and digitizing them to 22 bits in as many as 150 channels. The apparatus is controlled by software and is plugged into the USB port of a personal computer. This apparatus makes it possible, for the first time, to obtain high-resolution functional EEG images of a thinking brain in a real-life, ambulatory setting outside a research laboratory or hospital.

  18. High-resolution seismic-reflection imaging 25 years of change in I-70 sinkhole, Russell County, Kansas

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.

    2006-01-01

    Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.

  19. A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps

    NASA Astrophysics Data System (ADS)

    Beev, Nikolai; Fenske, Julia-Aileen; Hannig, Stephan; Schmidt, Piet O.

    2017-05-01

    We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz-100 kHz, with spectral density lower than 3 nV Hz-1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.

  20. Broadband seismic : case study modeling and data processing

    NASA Astrophysics Data System (ADS)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  1. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  2. Development of Vertical Cable Seismic System

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  3. Combination of different seismic methods and geotechnical sounding for a rapid characterization of the near-surface ground

    NASA Astrophysics Data System (ADS)

    Dietrich, P.; Kretschmer, F.; Vienken, T.; Popp, S.

    2009-04-01

    For economical and feasible seismic exploration of the near-surface ground, an approach has been developed for the joint application of reflection and refraction seismics as well as multi-channel analysis of surface waves (MASW). The measuring concept was tested within the research project COMEXTECH, dealing with the exploration of construction ground. Besides the overall characterization of the subsurface by refraction and reflection seismics, the MASW can be used for the derivation of relevant soil parameters such as soil stiffness. The centre of the measuring concept represents a land streamer, pulled by a vehicle equipped with the seismic source. The 24-channel land streamer may be tipped with different geophones, according to the focus of investigation. We used three fully equipped land streamers with 72 channels at all at the test site Nauen close to Berlin, Germany. The first 24 positions of the land streamer nearby the seismic source were filled with 4.5 Hz geophones. The next two land streamers were tipped with 14 Hz geophones, respectively. The idea behind this arrangement is that the positions close to the shot point, which are not utilisable for reflection seismics, can be used for the interpretation of surface waves. The signal was given with an accelerated weight drop mounted on a cross-country vehicle. Shots were arranged every meter, and four shots per shot point were executed for an increased signal/noise ratio. Three registration units (GeodeTM by Geometrics) were connected in series for signal recording. At the site, a profile of 164 m length was investigated in bidirectional manner in combination with geotechnical exploration technique. The purpose of bidirectional recording is to check the reliability and sensitivity of the seismic array and to increase the resolution of the image of the subsurface. By using the same shot points forth and back, a multiple overlap rate for certain common depth points (CDP) can be achieved, which is thought to

  4. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  5. Feasibility of high resolution seismic reflection to improve accuracy of hydrogeologic models in a culturally noisy part of Ventura County, CA, USA

    USGS Publications Warehouse

    Miller, R.; Black, W.; Miele, M.; Morgan, T.; Ivanov, J.; Xia, J.; Peterie, S.

    2011-01-01

    A high-resolution seismic reflection investigation mapped reflectors and identified characteristics potentially influencing the interpretation of the hydrogeology underlying a portion of the Oxnard Plain in Ventura County, California. Design and implementation of this study was heavily influenced by high levels of cultural noise from vehicles, power lines, roads, manufacturing facilities, and underground utilities/vaults. Acquisition and processing flows were tailored to this noisy environment and relatively shallow target interval. Layering within both upper and lower aquifer systems was delineated at a vertical resolution potential of around 2.5 m at 350 m depth. ?? 2011 Society of Exploration Geophysicists.

  6. High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri

    NASA Astrophysics Data System (ADS)

    Rosandich, B.; Harris, J. B.; Woolery, E. W.

    2017-12-01

    Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.

  7. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  8. Seismic and thermal evidences for subduction of exhumed mantle oceanic crust beneath the seismically quiet Antigua-St Martin Margin segment in the Northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has

  9. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Research on Seismic Wave Attenuation in Gas Hydrates Layer Using Vertical Cable Seismic Data

    NASA Astrophysics Data System (ADS)

    Wang, Xiangchun; Liang, Lunhang; Wu, Zhongliang

    2018-06-01

    Vertical cable seismic (VCS) data are the most suitable seismic data for estimating the quality factor Q values of layers under the sea bottom by now. Here the quality factor Q values are estimated using the high-precision logarithmic spectrum ratio method for VCS data. The estimated Q values are applied to identify the layers with gas hydrates and free gas. From the results it can be seen that the Q value in layer with gas hydrates becomes larger and the Q value in layer with free gas becomes smaller than layers without gas hydrates or free gas. Additionally, the estimated Q values are used for inverse Q filtering processing to compensate the attenuated seismic signal's high-frequency component. From the results it can be seen that the main frequency of seismic signal is improved and the frequency band is broadened, the resolution of the VCS data is improved effectively.

  11. Joint MR-PET reconstruction using a multi-channel image regularizer

    PubMed Central

    Koesters, Thomas; Otazo, Ricardo; Bredies, Kristian; Sodickson, Daniel K

    2016-01-01

    While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, the acquired data sets are still usually reconstructed separately. We propose a new multi-modality reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated multi-channel regularization functional that jointly reconstructs images from both modalities. In this way, information about the underlying anatomy is shared during the image reconstruction process while unique differences are preserved. Results from numerical simulations and in-vivo experiments using a range of accelerated MR acquisitions and different MR image contrasts demonstrate improved PET image quality, resolution, and quantitative accuracy. PMID:28055827

  12. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  13. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts

  14. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  15. Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    NASA Astrophysics Data System (ADS)

    Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.

    2016-12-01

    The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here

  16. Highly Efficient Compression Algorithms for Multichannel EEG.

    PubMed

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  17. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.

    PubMed

    Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg

    2016-07-28

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  18. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  19. The Distributuion BSR and Multiple BSR Across The Danube Delta on the Offshore Romania and Bulgaria

    NASA Astrophysics Data System (ADS)

    Atgin, Orhan; Cifci, Gunay; Dondurur, Derman; Bialas, Jorg; Klaucke, Ingo

    2015-04-01

    Danube river which flows into the Black Sea is one of the world's biggest amount sediment transporter to the marine environment. Throughout long geological periods, Danube has formed many channel structures and the channel developments are still being continuened. Danube River has caused a lot of potential gas hydrate formations which spread over quite larger areas. Under the frame of SUGAR Project, high resolution multichannel seismic data were collected using the facilities of Seismic Laboratory (SeisLab) in the Institute of Marine Sciences and Technology of Dokuz Eylül University on board R/V Maria S. Merian in 2013. More then 2300 km Multichannel seismic reflection data acquired across the palaeo Danube delta to investigate BSR and potential gas hyrdate areas on the continental shelf where Danube river reaches to the Black Sea, BSR areas and potential gas hyrdates. Also, in relation with high sediment input, the effects of deltas on BSR's are aimed to research and several of inactive and partly buried channel systems could be mapped. There are large number of buried channel levee systems which seem to underlain by a continuous BSR indicating availability of free gas. There are also a significant reflector of inverted polarity was identified within a depth of about 100 m below seafloor. A very prominent BSR with reversed polarity is determined 200 ms TWT below seafloor on the eastern levee of the channel and simulate and crosscut the sediment layer. Three distinct BSRs as multiple BSR signature are observed on the high resolution multichannel seismic with a slightly varying dips. Multiple BSR's up to 5 BSRs are exist around river channels and paleochannels which have formed during different geological periods. In some paleochannel areas, high amount of sediment transportation causes dissolution of gashyrdate structures. At such areas seismic signals are being absorbed and structures which indicate dissolved gas are determined. In addition parasound data show

  20. Time-lapse seismic study of levees in southern New Mexico

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Stimac, N.; Ballard, R.F.; Dunbar, J. Joseph; Smullen, S. Steve

    2006-01-01

    The primary objective of this work was to measure changes in compressional- (Vp) and shear-wave (Vs) velocities in an earthen levee during a ponding experiment designed to simulate flood conditions on the Rio Grande in south New Mexico. Although similar to such experiment, performed an year earlier on the Rio Grande in south Texas, the levee seismic response results are different. This work was similar to previous Preliminary testing at three levee sites, all within a 1 km radius and each with unique physical, EM, and core characteristics, was completed and a single low-conductivity, highly fractured site was selected for investigation. Several different types of seismic data were recorded. Seismic data analysis techniques appraised included P-refraction tomography and Rayleigh surface-wave analysis using multichannel analysis of surface waves (MASW). P-wave velocity change (decrease) was rapid and isolated to one section within the pool confines, which already had anomalously high velocity most likely related to burrowing animals modification of the levee structure. S-wave velocity change was gradual and could be observed along the whole width of the pond within and below the levee. The results within the levee sand core were consistent with the observations of sand S-wave velocity changed due to saturation. ?? 2005 Society of Exploration Geophysicists.

  1. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    NASA Astrophysics Data System (ADS)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  2. Seismic Attenuation Structure and Intraplate Deformation

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Kowalke, S.; Smale, J.

    2017-12-01

    It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.

  3. High-resolution seismicity catalog of Italian peninsula in the period 1981-2015

    NASA Astrophysics Data System (ADS)

    Michele, M.; Latorre, D.; Castello, B.; Di Stefano, R.; Chiaraluce, L.

    2017-12-01

    In order to provide an updated reference catalog of Italian seismicity, the absolute location of the last 35 years (1981-2015) of seismic activity was computed with a three-dimensional VP and VS velocity model covering the whole Italian territory. The NonLinLoc code (Lomax et al., 2000), which is based on a probabilistic approach, was used to provide a complete and robust description of the uncertainties associated to the locations corresponding to the hypocentral solutions with the highest probability density. Moreover, the code using a finite difference approximation of the eikonal equation (Podvin and Lecomte, 1991), allows to manage very contrasted velocity models in the arrival time computation. To optimize the earthquakes location, we included the station corrections in the inverse problem. For each year, the number of available earthquakes depends on both the network detection capability and the occurrence of major seismic sequences. The starting earthquakes catalog was based on 2.6 million P and 1.9 million S arrival time picks for 278.607 selected earthquakes, recorded at least by 3 seismic stations of the Italian seismic network. The new catalog compared to the previous ones consisting of hypocentral locations retrieved with linearized location methods, shows a very good improvement as testified by the location parameters assessing the quality of the solution (i.e., RMS, azimuthal gap, formal error on horizontal and vertical components). In addition, we used the distance between the expected and the maximum likelihood hypocenter location to establish the unimodal (high-resolved location) or multimodal (poor-resolved location) character of the probability distribution. We used these parameters to classify the resulting locations in four classes (A, B, C and D) considering the simultaneous goodness of the previous parameters. The upper classes (A and B) include the 65% of the relocated earthquake, while the lowest class (D) only includes the 7% of the

  4. Seismic imaging: From classical to adjoint tomography

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Gu, Y. J.

    2012-09-01

    Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in

  5. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  6. The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group

    During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main

  7. High resolution seismic stratigraphy and sedimentological signature of the Late Quaternary deposits in the northern Western Basin (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Corradi, N.; Finocchiaro, F.; Ivaldi, R.; Melis, R.; Pittà, A.

    2003-04-01

    The northern Western Basin is a sector of the continental shelf of the Western Ross Sea that is considered to be the natural northward extension of the Drygalski Basin by many authors. The literature provides a general model of the evolution of the basin and the recent papers propose a seismic stratigraphy for the post-Miocene sedimentation. However, the sedimentary processes during the Late Quaternary and, in particular, the Last Glacial Maximum (LGM) are still little understood (Brambati et al., 2001). In this paper we present the preliminary results of the very high-resolution seismic surveys (Sub Bottom Profiler, Huntec Deep Tow Boomer and Sparker) and their calibration with the sediment samples collected during the three Marine Geology Campaigns of the PNRA (XIII, XIV and XVII), with the scientific objective of the research to investigate the role of the East Antarctic Ice Sheet (EAIS) in the morphogenesis and deposition of the Late Quaternary sedimentary series.

  8. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  9. A two-electrode multichannel analyzer of charged particles with discrete outer cylindrical and flat end electrodes

    NASA Astrophysics Data System (ADS)

    Fishkova, T. Ya.

    2017-06-01

    Using computer simulation, I have determined the parameters of a multichannel analyzer of charged particles of a simple design that I have proposed having the form of a cylindrical capacitor with a discrete outer cylinder and closed ends in a wide range of simultaneously recorded energies ( E max/ E min = 100). When introducing an additional cylindrical electrode of small dimensions near the front end of the system, it is possible to improve the resolution by more than an order of magnitude in the low-energy region. At the same time, the energy resolution of the analyzer in all the above energy range is ρ = (4-6) × 10-3.

  10. A High-Resolution Seismic Survey Across the State Line fault, NV

    NASA Astrophysics Data System (ADS)

    Beachly, M.; Cox, C. M.; Saldana, S. C.; Snelson, C. M.; Taylor, W. J.; Robins, C.; Davis, R.; Stropky, M.; Phillips, R.; Cothrun, C.

    2007-12-01

    During the summer of 2007, an investigation of the faulting in Stewart Valley was under taken, located within the central Basin and Range province ~90 km west of Las Vegas, Nevada. The goal of this study was to resolve the seismic hazard potential of the State Line fault, a right-lateral strike-slip fault that runs the length of Stewart Valley. Four seismic reflection lines were acquired, two perpendicular and two parallel to the State Line fault. What is presented is an analysis of the western and eastern seismic lines parallel to the State Line fault. The western line was acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to form a 715 m long profile. The eastern line employed 120 of these geophones in a 595 m long profile. A mini-vibroseis served as the seismic source every ten meters, between geophones. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. Three sweeps were recorded at each shot location without acquisition filters at a sampling rate of 0.5 ms. The three shot gathers were then stacked at each location to reduce noise. The data collected had minimal noise, although; during the processing of the eastern line a notch filtered was used to remove the 60 Hz noise created by adjacent power line. These lines, acquired parallel to the State Line fault, contain matching features that serve to determine how much lateral displacement the fault has undergone. The amount of the displacement can indicate how active the fault is, and thus, what magnitude of earthquake can be expected in the future. This will in turn contribute to determining the seismic hazard potential for southern Nevada. A preliminary interpretation of the seismic reflection sections indicates an average displacement of about 20 - 38 m with greater displacement in the deeper sections of the image. The shallow depth displacement calculations are consistent with previous work in the area. The State Line fault

  11. The incidence of the different sources of noise on the uncertainty in radiochromic film dosimetry using single channel and multichannel methods

    NASA Astrophysics Data System (ADS)

    González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    2017-11-01

    The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.

  12. Seismic modeling of Earth's 3D structure: Recent advancements

    NASA Astrophysics Data System (ADS)

    Ritsema, J.

    2008-12-01

    Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.

  13. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  14. Suppressing multiples using an adaptive multichannel filter based on L1-norm

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jing, Hongliang; Zhang, Wenwu; Ning, Dezhi

    2017-08-01

    Adaptive subtraction is an important link for removing surface-related multiples in the wave equation-based method. In this paper, we propose an adaptive multichannel subtraction method based on the L1-norm. We achieve enhanced compensation for the mismatch between the input seismogram and the predicted multiples in terms of the amplitude, phase, frequency band, and travel time. Unlike the conventional L2-norm, the proposed method does not rely on the assumption that the primary and the multiples are orthogonal, and also takes advantage of the fact that the L1-norm is more robust when dealing with outliers. In addition, we propose a frequency band extension via modulation to reconstruct the high frequencies to compensate for the frequency misalignment. We present a parallel computing scheme to accelerate the subtraction algorithm on graphic processing units (GPUs), which significantly reduces the computational cost. The synthetic and field seismic data tests show that the proposed method effectively suppresses the multiples.

  15. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  17. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  18. High-Resolution Analysis of Seismicity Induced at Berlín Geothermal Field, El Salvador

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Bulut, F.; Dresen, G. H.; Bohnhoff, M.

    2012-12-01

    We investigate induced microseismic activity monitored at Berlín Geothermal Field, El Salvador, during a hydraulic stimulation. The site was monitored for a time period of 17 months using thirteen 3-component seismic stations located in shallow boreholes. Three stimulations were performed in the well TR8A with a maximum injection rate and well head pressure of 160l/s and 130bar, respectively. For the entire time period of our analysis, the acquisition system recorded 581 events with moment magnitudes ranging between -0.5 and 3.7. The initial seismic catalog provided by the operator was substantially improved: 1) We re-picked P- and S-wave onsets and relocated the seismic events using the double-difference relocation algorithm based on cross-correlation derived differential arrival time data. Forward modeling was performed using a local 1D velocity model instead of homogeneous full-space. 2) We recalculated source parameters using the spectral fitting method and refined the results applying the spectral ratio method. We investigated the source parameters and spatial and temporal changes of the seismic activity based on the refined dataset and studied the correlation between seismic activity and production. The achieved hypocentral precision allowed resolving the spatiotemporal changes in seismic activity down to a scale of a few meters. The application of spectral ratio method significantly improved the quality of source parameters in a high-attenuating and complex geological environment. Of special interest is the largest event (Mw3.7) and its nucleation process. We investigate whether the refined seismic data display any signatures that the largest event is triggered by the shut-in of the well. We found seismic activity displaying clear spatial and temporal patterns that could be easily related to the amount of water injected into the well TR8A and other reinjection wells in the investigated area. The migration of seismicity outside of injection point is observed

  19. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...

  20. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...

  1. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...

  2. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...

  3. 47 CFR 76.613 - Interference from a multichannel video programming distributor (MVPD).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference from a multichannel video... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.613 Interference from a multichannel video programming distributor (MVPD). (a) Harmful interference is...

  4. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in

  5. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  6. Least squares restoration of multi-channel images

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Galatsanos, Nikolas P.

    1989-01-01

    In this paper, a least squares filter for the restoration of multichannel imagery is presented. The restoration filter is based on a linear, space-invariant imaging model and makes use of an iterative matrix inversion algorithm. The restoration utilizes both within-channel (spatial) and cross-channel information as constraints. Experiments using color images (three-channel imagery with red, green, and blue components) were performed to evaluate the filter's performance and to compare it with other monochrome and multichannel filters.

  7. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  8. High-resolution seismic-reflection data collected on R/V S.P. LEE: L9-84-CP, Marshall Islands to Hawaii

    USGS Publications Warehouse

    Schwab, William C.; Bailey, Norman G.

    1984-01-01

    The U.S. Geological Survey (USGS) R/V S.P. LEE (cruise L9-84-CP) left Majuro, Radak chain of the Marshall Islands on July 28, 1984, cruised over the Mid-Pacific Mountains, and reached Hawaii on August 15, 1984. The main objectives of the cruise were to study the distribution and composition of ferromanganese-oxide crusts in the Marshall Islands and to retrieve a current meter/sediment trap mooring deployed in October 1983 on Horizon Guyot, Mid-Pacific Mountains (USGS LS-83-HW cruise). The quality of the geophysical data collected is generally good. However, the declivity of some seamount, atoll, and guyot flanks are too large to allow high-quality resolution from the surface-towed systems that were used.The navigation system used was an integrated satellite-navigation/LORAN-C (in Mid-Pacific Mountains)/dead-reckoning system that was updated by radar when possible. A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data and 730 km of 80-in3 to 148-in3 airgun seismic-reflection data were collected. The original records can be seen and studied at the USGS offices at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection data can be purchased only from the National Geophysical Data Center, NOAA/EDIS/NGDC, 325 Broadway, Boulder, CO 80303.

  9. High resolution P-wave velocity structure beneath Northeastern Tibet from multiscale seismic tomography

    NASA Astrophysics Data System (ADS)

    Guo, B.; Gao, X.; Chen, J.; Liu, Q.; Li, S.

    2016-12-01

    The continuing collision of the northward advancing Indian continent with the Eurasia results in the high elevations and thickened Tibetan Plateau. Numerous geologic and geophysical studies engaged in the mechanics of the Tibetan Plateau deformation and uplift. Many seismic experiments were deployed in south and central Tibet, such as INDEPTH and Hi-climb, but very few in northeastern Tibet. Between 2013 and 2015, The China Seismic Array-experiment operated 670 broadband seismic stations with an average station spacing of 35km. This seismic array located in northeastern Tibet and covered the Qilian Mountains, Qaidam Basin, and part of Songpan-Ganzi, Gobi-Alashan, Yangzi, and Ordos. A new multiscale seismic traveltime tomography technique with sparsity constrains were used to map the upper mantle P-wave velocity structure beneath northeastern Tibet. The seismic tomography algorithm employs sparsity constrains on the wavelet representation velocity model via the L1-norm regularization. This algorithm can efficiently deal with the uneven-sampled volume, and give multiscale images of the model. Our preliminary results can be summarized as follows: 1) in the upper mantle down to 200km, significate low-velocity anomalies exist beneath the northeastern Tibet, and slight high-velocity anomalies beneath the Qaidam basin; 2) under Gobi-Alashan, Yangzi, and Ordos, high-velocity anomalies appear to extend to a depth of 250km, this high-velocity may correspond to the lithosphere; 3) there exist relative high-velocity anomalies at depth of 250km-350km underneath north Tibet, which suggests lithospheric delamination; 4) the strong velocity contrast between north Tibet and Yangzi, Gabi-Alashan is visible down to 200km, which implies the north Tibet boundary.

  10. Super-resolution optics for virtual reality

    NASA Astrophysics Data System (ADS)

    Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.

  11. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    been relocated. Our goal is to derive high-resolution three-dimensional P- and S-wave velocity structure models of Mammoth Mountain. These models will enable more precise locations of the local seismicity, full waveform inversions of long-period seismicity, derivation of moment tensors for the seemingly brittle-failure high-frequency earthquakes, analyses of shear-wave splitting, and high-resolution relative relocation of seismicity using double differences.

  12. Evolution of the Gorda Escarpment, San Andreas fault and Mendocino triple junction from multichannel seismic data collected across the northern Vizcaino block, offshore northern California

    USGS Publications Warehouse

    Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.

    1998-01-01

    The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.

  13. Crustal evolution of Eocene paleo arc around Ogasawara region obtained by seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Miura, S.; Ishizuka, O.; Tatsumi, Y.

    2011-12-01

    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. The existence of two paleo arc which consists of Oligocene and Eocene paleo age is known in IBM forearc region by geological and geophysical studies. The Ogasawara ridge is also known to locate the initial structure of arc evolution from geologic sampling of research submersible. In this region, IODP drilling site: IBM-2 is proposed in order to understand the temporal and spatial change in arc crust composition from 50 to 40Ma magmatism. Site IBM-2 consists of two offset drilling holes (BON-1, BON-2). BON-1 designed to first encounter forearc basalt and will reach the sheeted dykes. BON-2 will start in boninites and finish in fore arc basalts. The purpose of these drilling is sampling the full volcanic stratigraphy from gabbro to boninite. There is no seismic data around BON-1 and BON-2, therefore it is need to conduct the multi-channel seismic reflection survey. Japan Agency for Marine-Earth Science and Technology carried out multi-channel seismic reflection survey and wide-angle reflection survey using 7,800 cu.in. air gun, 5 km streamer with 444 ch hydrophones and 40 OBSs in March 2011. We obtained two seismic reflection profiles of lines KT06 and KT07 along the paleo arc around Ogasawara ridge. Line KT06 located the north side of Ogasawara ridge. Line KT07 located the trench side of Ogasawara ridge. Lines KT06 is also deployed the OBSs every 5 km interval. Thin sediments are covered with basement in both survey lines. There are some sediment filled in depression topography. The low-frequency reflection from the top of subducting Pacific plate is recognized in line KT06. The continuity of this reflection is not clear due to the complicated bathymetry. The displacement of basement in northern side of Ogasawara ridge is identified along the lineament of bathymetry in Line 06. This structure is

  14. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOEpatents

    Owen, Thomas E.; Parra, Jorge O.

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  15. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere

  16. Comparison of Seismic Sources and Frequencies in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.

    2017-12-01

    During October 2017 the Seismic Source Facility (SSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at SSF test facility located near Fabens, TX. The project objective was to compare source amplitudes and frequencies of various seismic sources available through the SSF. Selecting the appropriate seismic source is important to reach geological objectives. We compare seismic sources between explosive sources (pentolite and shotgun) and mechanical sources (accelerated weight drop and hammer on plate), focusing on amplitude and frequency. All sources were tested in same geologic environment. Although this is not an ideal geologic formation for source coupling, it does allow an "apples to apples" comparison. Twenty Reftek RT125A seismic recorders with 4.5 Hz geophones were laid out in a line with 3m station separation. Mechanical sources were tested first to minimize changes in the subsurface related to explosive sources Explosive sources, while yielding higher amplitudes, have lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Mechanical sources yield higher frequencies allowing better resolution at shallower depths, but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  17. Seismic stratigraphy and deformational styles of the offshore Cyrenaica (Libya) and bordering Mediterranean Ridge

    NASA Astrophysics Data System (ADS)

    Yem, Lionel Mbida; Camera, Laurent; Mascle, Jean; Ribodetti, Alessandra

    2011-04-01

    Off northwest Libya the Cyrenaica foreland basin domain and its Pan-African continental crust, which constitute the African promontory, are overthrusted by the Mediterranean Ridge Complex. The thrust belt contact and its seismic stratigraphy have been analysed using pre-stack depth-migrated multichannel seismic (MCS) lines recorded during the MEDISIS survey (2002). The geometry and sedimentary distribution analysis through the wedge-top depocentres allow reconstruction of schematic cross-sections of the tectono-sedimentary wedge that includes two major thrust sequences separated by an apparently poorly deformed transition zone. Based on time-space variation of several piggyback basins, we propose that these thrust sequences relate to distinct phases of shortening. (1) A first event, which probably occurred just prior to the Messinian crisis in latest Miocene (Tortonian times?) and (2) A second event, that has finally led to the present-day overthrusting of the Mediterranean Ridge over the Libyan continental slope.

  18. Evidence of post-Pleistocene faults on New Jersey Atlantic outer continental shelf

    USGS Publications Warehouse

    Sheridan, R.E.; Knebel, H.J.

    1976-01-01

    Recently obtained high-resolution seismic profiles (400-4,000-Hz band) show evidence of faults in shallow sedimentary strata near the edge of the Atlantic continental shelf off New Jersey. Apparent normal faults having a throw of about 1.5 m displace sediments to within 7 m of the sea floor. The faults appear to be overlain by undeformed horizontal beds of relatively recent age. Several faults 1 to 2 km apart strike approximately N70°E and dip northwest. The data suggest that the faults are upthrown on the southeast.Projection of the faults on the high-resolution profiles to a nearby multichannel seismic-reflection profile indicates that these shallow faults might be the near-surface expression of a more fundamental deep-seated fault. Several prominent reflectors in the multichannel records are offset by a high-angle normal fault reaching depths of 4.0 to 5.0 sec (6.0 to 6.5 km). The deep fault on the multichannel line also is upthrown on the southeast. Throws of as much as 90 m are apparent at depth, but offsets of as much as 10 m could be present in the shallower parts of the section that may not be resolved in the multichannel data.The position and strike of these faults coincide with and parallel the East Coast magnetic anomaly interpreted as the fundamental seaward basement boundary of the Baltimore Canyon trough. Recurring movements along such boundary faults are expected theoretically if the marginal basins are subsiding in response to the plate rotation of North America and seafloor spreading in the Atlantic.

  19. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  20. 47 CFR 76.975 - Commercial leased access dispute resolution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.975 Commercial leased access dispute resolution. (a) Any person aggrieved by the failure or refusal of a cable operator to make... cable system is located to compel that such capacity be made available. (b) Any person aggrieved by the...

  1. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  2. On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30)

    USGS Publications Warehouse

    Allen, T.I.; Wald, D.J.

    2009-01-01

    An alternative method has recently been proposed for evaluating global seismic site conditions, or the average shear velocity to 30 m depth (VS30), from the Shuttle Radar Topography Mission (SRTM) 30 arcsec digital elevation models (DEMs). The basic premise of the method is that the topographic slope can be used as a reliable proxy for VS30 in the absence of geologically and geotechnically based site-condition maps through correlations between VS30 measurements and topographic gradient. Here we evaluate the use of higher-resolution (3 and 9 arcsec) DEMs to examine whether we are able to resolve VS30 in more detail than can be achieved using the lower-resolution SRTM data. High-quality DEMs at resolutions greater than 30 arcsec are not uniformly available at the global scale. However, in many regions where such data exist, they may be employed to resolve finer-scale variations in topographic gradient, and consequently, VS30. We use the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center's National Elevation Dataset (NED) to investigate the use of high-resolution DEMs for estimating VS30 in several regions across the United States, including the San Francisco Bay area in California, Los Angeles, California, and St. Louis, Missouri. We compare these results with an example from Taipei, Taiwan, that uses 9 arcsec SRTM data, which are globally available. The use of higher-resolution NED data recovers finer-scale variations in topographic gradient, which better correlate to geological and geomorphic features, in particular, at the transition between hills and basins, warranting their use over 30 arcsec SRTM data where available. However, statistical analyses indicate little to no improvement over lower-resolution topography when compared to VS30 measurements, suggesting that some topographic smoothing may provide more stable VS30 estimates. Furthermore, we find that elevation variability in canopy-based SRTM measurements at resolutions

  3. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  4. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  5. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  6. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  7. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Bécel, Anne; Shillington, Donna J.; Nedimović, Mladen R.; Webb, Spahr C.; Kuehn, Harold

    2015-08-01

    Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ∼ 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ∼ 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ∼0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ∼10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ∼10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ∼ 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge

  8. Poor boy 3D seismic effort yields South Central Kentucky discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanratty, M.

    1996-11-04

    Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.

  9. Determination of optimum "multi-channel surface wave method" field parameters.

    DOT National Transportation Integrated Search

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  10. Crustal structure of Shatsky Rise from joint refraction and reflection seismic tomography

    NASA Astrophysics Data System (ADS)

    Korenaga, J.; Sager, W. W.

    2011-12-01

    Shatsky Rise in the western Pacific is one of a few gigantic oceanic plateaus in the world, with a surface area of ˜ 4.8 ± 105~km2 (about the same size as California). In contrast to other large oceanic plateaus formed during the Cretaceous Quite Period, Shatsky Rise formed during the frequent reversals of magnetic polarity, allowing its tectonic environment to be resolved in detail. It was formed at a rapidly spreading ridge-ridge-ridge triple junction, so the effect of lithospheric lid on magma migration is expected to be minimal, thereby facilitating the petrological interpretation of its seismic structure in terms of parental mantle processes. In the summer of 2010, a seismic refraction survey combined with multichannel seismic profiling was conducted across Shatsky Rise. Twenty eight ocean-bottom seismometers were deployed along two crossing perpendicular lines, and all of the instruments were recovered successfully, yielding a large volume of high-quality wide-angle refraction and reflection data, with the source-receiver distance often exceeding 200~km. In this contribution, we present the P-wave velocity structure of the Shatsky Rise crust, which is constructed by joint refraction and reflection travel time tomography, and also discuss its implications for the origin of Shatsky Rise.

  11. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz

  12. Integrated Seismic Study of Weathering in Hawaiian Volcanic Flows

    NASA Astrophysics Data System (ADS)

    Yaede, J.; Nelson, S. J.; Flores, J. A.; Weber, M.; Turnbull, S.; Tingey, D. G.; Park, C.; McBride, J. H.

    2012-12-01

    Chemical weathering profiles of lateritic volcanic rocks in tropical environments can be used to estimate local-scale denudation rates and atmospheric CO2 removal, as well as evaluate ground stability during seismic events. However, the estimation of laterite thickness is a critical parameter. Characterizing laterites with traditional seismological methods can be difficult where discrete breaks in material properties are lacking and where velocity inversions are present. The multichannel analysis of surface waves (MASW) method was used to determine shear wave velocity profiles and integrated with standard walk-through reflection surveys (common mid-point "CMP" reflection profiles and first-break tomographic modeling). We performed experiments at the Schofield Barracks (United States Army), Oahu, Hawaii in which MASW and reflection results are correlated with geological constraints on laterite thicknesses and properties. Oahu is an ideal field laboratory for studying the effects of climate on chemical weathering due to the variation in climate (very wet to very dry) across the island, combined with a single type of bedrock (basalt). Baseline seismic experiments were conducted in the Sevier Desert near Fillmore, Utah, where young and relatively unweathered basalts are covered by valley fill at known depths. Our results indicate the effectiveness of an integrated approach for characterizing the acoustic properties of thick laterites. Study sites were chosen where laterite thicknesses were known from well logs or could be inferred from nearby deeply-incised ravines. Standard walk-through CMP reflection surveys exhibit reflectors within laterite horizons that probably reflect relict contrasts in the original volcanic stratigraphy. Coincident MASW measurements were conducted with repeated increased offsets in an attempt to improve resolution at depth. In many cases MASW profiles produced shear-wave velocity models that can be correlated with the CMP reflection profiles

  13. A High-Resolution View of Global Seismicity

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2014-12-01

    We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.

  14. Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor.

    PubMed

    Sinefeld, David; Ben-Ezra, Shalva; Marom, Dan M

    2013-09-01

    We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.

  15. MASW Seismic Method in Brebu Landslide Area, Romania

    NASA Astrophysics Data System (ADS)

    Mihai, Marinescu; Paul, Cristea; Cristian, Marunteanu; Matei, Mezincescu

    2017-12-01

    This paper is focused on assessing the possibility of enhancing the geotechnical information in perimeters with landslides, especially through applications of the Multichannel Analysis of Surface Waves (MASW) method. The technology enables the determination of the phase velocities of Rayleigh waves and, recursively, the evaluation of shear wave velocities (Vs) related to depth. Finally, using longitudinal wave velocities (Vp), derived from the seismic refraction measurements, in situ dynamic elastic properties in a shallow section can be obtained. The investigation was carried out in the Brebu landslide (3-5 m depth of bedrock), located on the southern flank of the Slanic Syncline (110 km North of Bucharest) and included a drilling program and geotechnical laboratory observations. The seismic refraction records (seismic sources placed at the centre, ends and outside of the geophone spread) have been undertaken on two lines, 23 m and 46 m long respectively) approximately perpendicular to the downslope direction of the landslide and on different local morpho-structures. A Geode Geometrics seismograph was set for 1 ms sampling rate and pulse summations in real-time for five blows. Twenty-four vertical Geometrics SpaceTech geophones (14 Hz resonance frequency) were disposed at 1 m spacing. The seismic source was represented by the impact of an 8kg weight sledge hammer on a metal plate. Regarding seismic data processing, the distinctive feature is related to performing more detailed analyses of MASW records. The proposed procedure consists of the spread split in groups with fewer receivers and several interval-geophones superposed. 2D Fourier analysis, f-k (frequency-wave number) spectrum, for each of these groups assures the information continuity and, all the more, accuracy to pick out the amplitude maximums of the f-k spectra. Finally, combining both values VS (calculated from 2D spectral analyses of Rayleigh waves) and VP (obtained from seismic refraction records

  16. CHARACTERISTICS OF THE CRUSTAL MAGMA BODY IN THE 2005-2006 ERUPTION AREA AT 9°50'N ON THE EAST PACIFIC RISE FROM 3D MULTI-CHANNEL SEISMIC DATA

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Marjanovic, M.; Aghaei, O.; Xu, M.; Han, S.; Stowe, L.

    2009-12-01

    In the summer of 2008 a large 3D multi-channel seismic dataset (expedition MGL0812) was collected over the 9°50’N Integrated Study Site at the East Pacific Rise, providing insight into the architecture of the magmatic system and its relationship with hydrothermal activity and volcanic/dyking events associated with the 2005-06 eruption. The main area of 3D coverage is located between 9°42’N and 9°57’N, spanning ~28km along-axis, and was acquired along 94 (1 partial) prime lines shot across-axis and each ~24km-long. Pre-processing of the data acquired in this area is now well under way, with significant efforts targeted at amplitude spike removal. Current work focuses on setting up the 3D processing sequence up to the stack stage for a small group of inlines (axis-perpendicular grid lines spaced 37.5m apart) located over the “bull’s eye” site at 9°50’N, a sequence that will subsequently be applied to the whole dataset. At the meeting we will present stacked and migrated sections - inlines, crosslines, time slices - obtained through 3D processing. We will discuss results focusing on the characteristics of the axial magma body, whose detailed structure and along-axis segmentation will be resolved by the 3D data.

  17. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties

    NASA Astrophysics Data System (ADS)

    Niri, Mohammad Emami; Lumley, David E.

    2017-10-01

    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  18. Accurately determining direction of arrival by seismic array based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Yu, H.

    2016-12-01

    Seismic array analysis method plays an important role in detecting weak signals and determining their locations and rupturing process. In these applications, reliably estimating direction of arrival (DOA) for the seismic wave is very important. DOA is generally determined by the conventional beamforming method (CBM) [Rost et al, 2000]. However, for a fixed seismic array generally the resolution of CBM is poor in the case of low-frequency seismic signals, and in the case of high frequency seismic signals the CBM may produce many local peaks, making it difficult to pick the one corresponding to true DOA. In this study, we develop a new seismic array method based on compressive sensing (CS) to determine the DOA with high resolution for both low- and high-frequency seismic signals. The new method takes advantage of the space sparsity of the incoming wavefronts. The CS method has been successfully used to determine spatial and temporal earthquake rupturing distributions with seismic array [Yao et al, 2011;Yao et al, 2013;Yin 2016]. In this method, we first form the problem of solving the DOA as a L1-norm minimization problem. The measurement matrix for CS is constructed by dividing the slowness-angle domain into many grid nodes, which needs to satisfy restricted isometry property (RIP) for optimized reconstruction of the image. The L1-norm minimization is solved by the interior point method. We first test the CS-based DOA array determination method on synthetic data constructed based on Shanghai seismic array. Compared to the CBM, synthetic test for data without noise shows that the new method can determine the true DOA with a super-high resolution. In the case of multiple sources, the new method can easily separate multiple DOAs. When data are contaminated by noise at various levels, the CS method is stable when the noise amplitude is lower than the signal amplitude. We also test the CS method for the Wenchuan earthquake. For different arrays with different apertures

  19. Multichannel-Hadamard calibration of high-order adaptive optics systems.

    PubMed

    Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai

    2014-06-02

    we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.

  20. Sideband analysis and seismic detection in a large ring laser

    NASA Astrophysics Data System (ADS)

    Stedman, G. E.; Li, Z.; Bilger, H. R.

    1995-08-01

    A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.

  1. Multi-channel retarding field analyzer for EAST

    NASA Astrophysics Data System (ADS)

    M, HENKEL; D, HÖSCHEN; Y, LIANG; Y, LI; S, C. LIU; D, NICOLAI; N, SANDRI; G, SATHEESWARAN; N, YAN; H, X. ZHANG; the EAST, team2

    2018-05-01

    A multi-channel retarding field analyzer (MC-RFA) including two RFA modules and two Langmuir probes to measure the ion and electron temperature profiles within the scrape-off layer was developed for investigations of the interplay between magnetic topology and plasma transport at the plasma boundary. The MC-RFA probe for the stellarator W7-X and first measurements at the tokamak EAST was designed. The probe head allows simultaneous multi-channel ion temperature as well as for electron temperature measurements. The usability for radial correlation measurements of the measured ion currents is also given.

  2. Multichannel audio monitor for detecting electrical signals.

    PubMed

    Friesen, W O; Stent, G S

    1978-12-01

    The multichannel audio monitor (MUCAM) permits the simultaneous auditory monitoring of concurrent trains of electrical signals generated by as many as eight different sources. The basic working principle of this device is the modulation of the amplitude of a given pure tone by the incoming signals of each input channel. The MUCAM thus converts a complex, multichannel, temporal signal sequence into a musical melody suitable for instant, subliminal pattern analysis by the human ear. Neurophysiological experiments requiring multi-electrode recordings have provided one useful application of the MUCAM.

  3. A Community Seismic Experiment in the ENAM Primary Site

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.

    2012-12-01

    chosen by application. Following the cruise, we propose to hold two short courses on multi-channel seismic reflection and wide-angle reflection and refraction data processing using the new seismic data. The acquisition of all seismic data, archiving of the data in existing data bases, and distribution to the community will take two years. Afterwards, proposals developed by any member of the science community can be submitted for further data analysis and testing of current scientific hypotheses regarding the evolution and dynamics of the ENAM margin.

  4. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  5. Study of multi-channel optical system based on the compound eye

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Fu, Yuegang; Liu, Zhiying; Dong, Zhengchao

    2014-09-01

    As an important part of machine vision, compound eye optical systems have the characteristics of high resolution and large FOV. By applying the compound eye optical systems to target detection and recognition, the contradiction between large FOV and high resolution in the traditional single aperture optical systems could be solved effectively and also the parallel processing ability of the optical systems could be sufficiently shown. In this paper, the imaging features of the compound eye optical systems are analyzed. After discussing the relationship between the FOV in each subsystem and the contact ratio of the FOV in the whole system, a method to define the FOV of the subsystem is presented. And a compound eye optical system is designed, which is based on the large FOV synthesized of multi-channels. The compound eye optical system consists with a central optical system and array subsystem, in which the array subsystem is used to capture the target. The high resolution image of the target could be achieved by the central optical system. With the advantage of small volume, light weight and rapid response speed, the optical system could detect the objects which are in 3km and FOV of 60°without any scanning device. The objects in the central field 2w=5.1°could be imaged with high resolution so that the objects could be recognized.

  6. High-resolution seismic sequence stratigraphy and history of relative sea level changes since the Late Miocene, northern continental margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhong, G.; Wang, L.

    2013-12-01

    The northern South China Sea (SCS) margin is suggested as one of the ideal sites for documenting the late Cenozoic sea level changes for its characteristics of rapid sedimentation and relatively stable structural subsidence since the Late Miocene. In this study, high-resolution seismic profiles acquired by the Guangzhou Marine Geological Survey, calibrated by well control from the ODP sites 1146 and 1148, were utilized to construct a time-significant sequence stratigraphic framework, from which the history of relative sea level changes since the Late Miocene on the northern SCS margin was derived. Our study area is situated in the middle segment of the margin, between the Hainan Island to the west and the Dongsha Islands to the east. This region is to a certain degree far away from the active structural zones and is suggested as the most stable region in the margin. Totally 4000 km seismic profiles were used, which controls an area of about 6×104 km2. The seismic data have a vertical resolution of 5 to 15 m for the Upper Miocene to Quaternary interval. Three regional seismic sequence boundaries were identified. They subdivide the Late Miocene to Quaternary into three mega-sequences, which correspond to the Quaternary, Pliocene and Late Miocene, respectively by tying to well control. The Late Miocene mega-sequence, including 13 component sequences, is characterized with a basal incised canyon-developed interval overlain by three sets of progradational sequences formed in deep-water slope environments. The Pliocene mega-sequence consists of four sets of progradational sequences. Each sequence set contains one to three component sequences. At least 7 component sequences can be identified. The Quaternary mega-sequence consists of five sets of progradational sequences, in which the lower two constitute a retrogressive sequence set and the upper three a progradational sequence set. At least 9 component sequences can be recognized. Most of the component sequences within

  7. Japan unified hIgh-resolution relocated catalog for earthquakes (JUICE): Crustal seismicity beneath the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Yano, Tomoko E.; Takeda, Tetsuya; Matsubara, Makoto; Shiomi, Katsuhiko

    2017-04-01

    We have generated a high-resolution catalog called the ;Japan Unified hIgh-resolution relocated Catalog for Earthquakes; (JUICE), which can be used to evaluate the geometry and seismogenic depth of active faults in Japan. We relocated > 1.1 million hypocenters from the NIED Hi-net catalog for events which occurred between January 2001 and December 2012, to a depth of 40 km. We apply a relative hypocenter determination method to the data in each grid square, in which entire Japan is divided into 1257 grid squares to parallelize the relocation procedure. We used a double-difference method, incorporating cross-correlating differential times as well as catalog differential times. This allows us to resolve, in detail, a seismicity distribution for the entire Japanese Islands. We estimated location uncertainty by a statistical resampling method, using Jackknife samples, and show that the uncertainty can be within 0.37 km in the horizontal and 0.85 km in the vertical direction with a 90% confidence interval for areas with good station coverage. Our seismogenic depth estimate agrees with the lower limit of the hypocenter distribution for a recent earthquake on the Kamishiro fault (2014, Mj 6.7), which suggests that the new catalog should be useful for estimating the size of future earthquakes for inland active faults.

  8. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have

  9. Palaeoceanographic significance of sedimentary features at the Argentine continental margin revealed by multichannel seismic reflection data

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2010-05-01

    The thermohaline circulation in the Argentine Basin today is characterized by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The transfer of heat and energy via both AABW and NADW constitutes an important component in maintaining the global conveyor belt. We aim at a better understanding of both paths and intensity of this current system in the past by investigating an extensive (> 11000 km) set of high quality seismic reflection profiles from the Argentine continental margin. The profiles show a significant contourite system containing both erosive and depositional features that formed through the evolution of water masses and their modifications (path, physical and chemical properties) due to plate tectonic events such as the opening of the Drake Passage or the extensive emplacement of volcanic flows at the Rio Grande Rise. Overall the depositional features indicate that along slope (contour current) transport dominates over down slope (turbiditic) processes at the southern Argentine margin south of 45° S. Further to the North down slope transport was more extensive as indicated by the presence of submarine canyons crossing the slope down to a depth of ~3500 m. Here we present preliminary results from the southern part of the continental margin (42°-50° S) where we focus on a set of ~50 km wide terraces on the slope and rise separated by contouritic channels. The terraces developed over time in alternating constructional (depositional) and erosive phases. An initial age frame was developed by mapping regional reflectors and seismic units known from previous studies. The sedimentary layer between regional reflectors AR 4 and AR 5 spanning roughly the time interval from the Eocene/Oligocene boundary to the early middle Miocene is thin (0.1 - 0.4 s TWT) below the Valentine Feilberg Terrace but

  10. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    NASA Astrophysics Data System (ADS)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  11. High Resolution Seismic Study of the Holocene Infill of the Elkhorn Slough, Central California

    EPA Science Inventory

    The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location ...

  12. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  13. A filter circuit board for the Earthworm Seismic Data Acquisition System

    USGS Publications Warehouse

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  14. Preliminary Studies of the Structural Characteristics of the Lubao Fault using 2D High Resolution Shallow Seismic Reflection Profile

    NASA Astrophysics Data System (ADS)

    Bonus, A. A. B.; Lagmay, A. M. A.; Rodolfo, K. S.

    2016-12-01

    The Lubao fault, located in the province of Pampanga, Philippines, is part of the Bataan Volcanic Arc Complex (BVAC). Active faults within and around the BVAC include the East Zambales and Iba faults; according to the official active faults map of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) there are no other existing active faults in the area. The Lubao Fault distinctly separates wetlands to the northeast and dry alluvial plains to the northwest of Manila Bay. Long term subsidence and high sedimentation rates were observed in the fault and over the past 1.5 thousand years, the northeastern block has dropped 3.5 meters. Along the southwest flank of Mount Natib, tectonic structures were identified using surface mapping and remote sensing. The Persistent Scattering Interferometric Synthetic Aperture Radar (PSInSAR) data results of Eco et al. in 2015 shows uplifts and subsidence in the BVAC area delineating the Lubao Fault. A 480-meter seismic reflection line was laid down perpendicular to the fault with a recording system consisting of 48 channels of Geometrics geophones spaced 10 meters apart. Acquired data were processed using the standard seismic reflection processing sequence by Yilmaz 2001. This preliminary study produced a high resolution subsurface profile of the Lubao fault in the village of San Rafael, Lubao where it is well manifested. The velocity model integrated by stratigraphic data of drilled core shows subsurface lithology. The depth converted profile reveals clear structures and dipping segments which indicates a history of movement along the Lubao fault. Discontinuity of reflectors, either offsets or breaks, are considered structures along the subsurface of the study area. Additional structural mapping and seismic lines along the projected fault are planned in the future to further detail the characteristics of the Lubao Fault. The surface observations made by other researchers coupled with the subsurface seismic profile

  15. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  16. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  17. Comparison of Amplitudes and Frequencies of Explosive vs. Hammer Seismic Sources for a 1-km Seismic Line in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.

    2016-12-01

    In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  18. Cruise Report for G1-03-GM, USGS Gas Hydrates Cruise, R/V Gyre, 1-14 May 2003, Northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Hart, Patrick E.

    2004-01-01

    This report gives a summary of the field program and instrumentation used on the R/V Gyre in the Gulf of Mexico in May, 2003, to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. Tabulated statistics, metadata, figures and maps are included to show the breadth of data collected and preliminary interpretations made during the field program. Geophysical data collected during this cruise will be released in a separate report. At the start of the cruise, three test lines were run to compare different source configurations in order to optimize data quality for the objectives of the cruise. The source chosen was the 13/13 in3 Generator-Injector (GI) Gun. Following these tests, a total of 101 lines (approximately 1033 km) of 24-channel high-resolution seismic reflection data were collected in the northern Gulf of Mexico. 59 lines (about 600 km) were collected in and around lease block Keathley Canyon 195. An additional 4 lines (85 km) provided a seismic tie between the Keathley Canyon data and USGS multichannel data collected in 1999. About 253 km of data were collected along 35 short lines in and around lease block Atwater Valley 14 on the floor of the Mississippi Canyon. Three lines (53 km) completed the cruise and provided a seismic tie to USGS multichannel data collected in 1998. Two on-board trained marine-mammal observers fulfilled the requirements determined by NOAA/National Marine Fisheries Service to avoid incidental harassment of marine mammals as established in the Marine Mammal Protection Act (MMPA). A total of three species of dolphins were observed during the cruise and one basking shark. No sperm whales were sighted. During the cruise, seismic operations were not delayed or terminated because of marine mammal activity.

  19. List mode multichannel analyzer

    DOEpatents

    Archer, Daniel E [Livermore, CA; Luke, S John [Pleasanton, CA; Mauger, G Joseph [Livermore, CA; Riot, Vincent J [Berkeley, CA; Knapp, David A [Livermore, CA

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  20. The WilkEs land GlAcial history (WEGA) Project (East Antarctica): Preliminary Results From the Analysis of Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    De Santis, L.; Brancolini, G.; Harris, P. T.; Donda, F.

    2001-12-01

    This work presents a preliminary interpretation of seismic reflection data collected in February-March 2000, from the Wilkes Land-George V continental margin (East Antarctica), in the frame of the international, multidisciplinary WEGA project (WilkEs basin GlAcial hystory), funded by the Italian (PNRA) and Australian (CRC) Antarctic agencies. The aim of the project is to reconstruct the Cenozoic evolution of the East Antarctic Ice Sheet, throughout the investigation of the sedimentary sequences deposited on the Wilkes Land continental margin between 68oS and 65oS of latitude and between 143oE and 148oE of longitude. The data used are gravity and piston cores up to 5.5 m in length, multichannel seismic reflection and subbottom - chirp profiles. On the inner continental shelf the expedition discovered and mapped a shelf sediment drift deposit covering about 400 km2, lying in an >800m deep section of the George Vth Basin west of the Mertz Glacier. The ``Mertz Drift'' is over 35 m thick and core samples demonstrate that it is composed of laminated, anoxic, olive green, siliceous mud and diatom ooze (SMO). On the continental rise there are 3 sediment mounds, elongated perpendicularly to the margin, each ca.150 km in length and more than 20 km wide (covering ca. 3000 km2) that have been surveyed. The present depth of the mound crests ranges from 2300 m to 3500 m. The crests dip ca. 0.5o downslope and they are bound by channels whose axes lie up to 500 m below the mound crests. In this work in particular we present a model for the origin and evolution of the rise mounds in the frame of Cenozoic glaciations. The evolution of the rise mounds and channels likely started in the early-mid Miocene and was influenced mainly by downslope currents, showing a strong variability both in space and in time. The main growth phase of the mounds is characterised by the incision of deep channels and the deposition of large levees with well developed sediment waves, likely formed on the

  1. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  2. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    NASA Astrophysics Data System (ADS)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  3. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  4. Super-resolution for imagery from integrated microgrid polarimeters.

    PubMed

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  5. Geometry and active tectonics of the Los Osos-Hosgri Fault Intersection in Estero Bay, CA: Reconciling seismicity patterns with near-surface geology

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.

    2016-12-01

    Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the

  6. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  7. High-resolution seismic-reflection profiling data from the inner continental shelf of southeastern Massachusetts

    USGS Publications Warehouse

    O'Hara, Charles J.

    1980-01-01

    Six hundred-seventy kilometers of closely spaced high-resolution seismic-­reflection data have been collected from eastern Rhode Island Sound and Vineyard Sound, Mass, by the U.S. Geological Survey in cooperation with the Massachusetts Department of Public Works. These data were obtained during the June 1975 cruise of the R/V ASTERIAS as part of a continuing regional study of the Massachusetts offshore area to assess potential mineral resources, to evaluate environmental impact of mining of resources and of offshore disposal of solid waste and harbor dredge-spoil materials, and to map the offshore geology and shallow structure.The data were obtained by using a surface-towed EG&G Unit Pulse Boomer* (300 joules: 400 Hz-8kHz frequency) sound source. Reflected acoustic energy was detected by a 4.6-m, a-element hydrophone array, was amplified, was actively filtered (400 Hz-4kHz bandpass), and was graphically displayed on an EPC* dry paper recorder at a 0.25-second sweep rate. System resolution was generally 1 to 1.5 m. Navigational control was provided by Loran C (posi­tional accuracy within 0.2 km) and was supplemented by radar and visual fixes. Positional information was logged at 15-minute intervals and at major course changes.The original records may be examined at the Data Library, U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, CO 80302.

  8. Seismic constraints on the crustal structure of the Bering shelf offshore southwestern Alaska

    NASA Astrophysics Data System (ADS)

    Vayavur, R.; Calvert, A. J.

    2016-12-01

    South-western Alaska comprises a collection of major dextral strike-slip fault bounded tectonostratigraphic terranes that were accreted during Mesozoic and early Tertiary time. In the interior of southern Alaska, the Denali strike-slip fault produced a M7.9 earthquake in 2002, but the westward continuation of this fault appears to evolve into a number of splays, such as the Togiak-Tichik fault, which can be traced to the coast and exhibit considerably less active seismicity. To characterize the offshore extension of the major terranes and the various major faults identified onshore, we have reprocessed three intersecting multichannel deep seismic reflection profiles totalling 750 line-km that were shot by the R/V Ewing across part of the inner Bering continental shelf in 1994. Since the upper most seismic section is often contaminated by high amplitude water layer multiples from the hard seafloor, we have supplemented the migrated reflection images with high-resolution P wave velocity models derived by travel time tomography of the recorded first arrivals to depths of 2000 m. The depth of the igneous basement increases from 100-500 m in the north, where it is characterized by velocities >5000 m/s, to at least 6000 m beneath the North Aleutian basin in the south. Where the basement is shallow, 1-D vertical sinusoidal checkerboard tests with 10% perturbation indicate that velocity anomalies with a half-width of >1500 m can be resolved to depths of at least 500 m, and we have identified several zones of lower velocity, 4000 m/s, that are up to 8000 m wide. Some of these low-velocity anomalies coincide with gravity and magnetic anomalies, and may be associated with faulting within or between accreted terranes. Where tomographic velocities are determined within the North Aleutian basin, they increase with depth from 2000 m/s to 3500 m/s, and agree with sonic logs from the COST-1 well up to 1500 m depth. Across much of the basin, the Eocene red unconformity, which marks

  9. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  10. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  11. Moon meteoritic seismic hum: Steady state prediction

    USGS Publications Warehouse

    Lognonne, P.; Feuvre, M.L.; Johnson, C.L.; Weber, R.C.

    2009-01-01

    We use three different statistical models describing the frequency of meteoroid impacts on Earth to estimate the seismic background noise due to impacts on the lunar surface. Because of diffraction, seismic events on the Moon are typically characterized by long codas, lasting 1 h or more. We find that the small but frequent impacts generate seismic signals whose codas overlap in time, resulting in a permanent seismic noise that we term the "lunar hum" by analogy with the Earth's continuous seismic background seismic hum. We find that the Apollo era impact detection rates and amplitudes are well explained by a model that parameterizes (1) the net seismic impulse due to the impactor and resulting ejecta and (2) the effects of diffraction and attenuation. The formulation permits the calculation of a composite waveform at any point on the Moon due to simulated impacts at any epicentral distance. The root-mean-square amplitude of this waveform yields a background noise level that is about 100 times lower than the resolution of the Apollo long-period seismometers. At 2 s periods, this noise level is more than 1000 times lower than the low noise model prediction for Earth's microseismic noise. Sufficiently sensitive seismometers will allow the future detection of several impacts per day at body wave frequencies. Copyright 2009 by the American Geophysical Union.

  12. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  13. Seismic shaking in the North China Basin expected from ruptures of a possible seismic gap

    NASA Astrophysics Data System (ADS)

    Duan, Benchun; Liu, Dunyu; Yin, An

    2017-05-01

    A 160 km long seismic gap, which has not been ruptured over 8000 years, was identified recently in North China. In this study, we use a dynamic source model and a newly available high-resolution 3-D velocity structure to simulate long-period ground motion (up to 0.5 Hz) from possibly worst case rupture scenarios of the seismic gap. We find that the characteristics of the earthquake source and the local geologic structure play a critical role in controlling the amplitude and distribution of the simulated strong ground shaking. Rupture directivity and slip asperities can result in large-amplitude (i.e., >1 m/s) ground shaking near the fault, whereas long-duration shaking may occur within sedimentary basins. In particular, a deep and closed Quaternary basin between Beijing and Tianjin can lead to ground shaking of several tens of cm/s for more than 1 min. These results may provide a sound basis for seismic mitigation in one of the most populated regions in the world.

  14. Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator

    NASA Astrophysics Data System (ADS)

    Kedar, Sharon; Andrade, Jose; Banerdt, Bruce; Delage, Pierre; Golombek, Matt; Grott, Matthias; Hudson, Troy; Kiely, Aaron; Knapmeyer, Martin; Knapmeyer-Endrun, Brigitte; Krause, Christian; Kawamura, Taichi; Lognonne, Philippe; Pike, Tom; Ruan, Youyi; Spohn, Tilman; Teanby, Nick; Tromp, Jeroen; Wookey, James

    2017-10-01

    InSight's Seismic Experiment for Interior Structure (SEIS) provides a unique and unprecedented opportunity to conduct the first geotechnical survey of the Martian soil by taking advantage of the repeated seismic signals that will be generated by the mole of the Heat Flow and Physical Properties Package (HP3). Knowledge of the elastic properties of the Martian regolith have implications to material strength and can constrain models of water content, and provide context to geological processes and history that have acted on the landing site in western Elysium Planitia. Moreover, it will help to reduce travel-time errors introduced into the analysis of seismic data due to poor knowledge of the shallow subsurface. The challenge faced by the InSight team is to overcome the limited temporal resolution of the sharp hammer signals, which have significantly higher frequency content than the SEIS 100 Hz sampling rate. Fortunately, since the mole propagates at a rate of ˜1 mm per stroke down to 5 m depth, we anticipate thousands of seismic signals, which will vary very gradually as the mole travels. Using a combination of field measurements and modeling we simulate a seismic data set that mimics the InSight HP3-SEIS scenario, and the resolution of the InSight seismometer data. We demonstrate that the direct signal, and more importantly an anticipated reflected signal from the interface between the bottom of the regolith layer and an underlying lava flow, are likely to be observed both by Insight's Very Broad Band (VBB) seismometer and Short Period (SP) seismometer. We have outlined several strategies to increase the signal temporal resolution using the multitude of hammer stroke and internal timing information to stack and interpolate multiple signals, and demonstrated that in spite of the low resolution, the key parameters—seismic velocities and regolith depth—can be retrieved with a high degree of confidence.

  15. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result

  16. Anatomy of the Holocene succession of the southern Venice lagoon revealed by very high-resolution seismic data

    NASA Astrophysics Data System (ADS)

    Zecchin, Massimo; Brancolini, Giuliano; Tosi, Luigi; Rizzetto, Federica; Caffau, Mauro; Baradello, Luca

    2009-05-01

    The southern portion of the Venice lagoon contains a relatively thick (up to 20 m) Holocene sedimentary body that represents a detailed record of the formation and evolution of the lagoon. New very high-resolution (VHR) seismic profiles provided a detailed investigation on depositional geometries, internal bounding surfaces and stratal relationships. These informations, combined with core analysis, allowed the identification of large- to medium-scale sedimentary structures (e.g. dunes, point bars), the corresponding sedimentary environment, and of retrogradational and progradational trends. In addition, the availability of dense seismic network produced a 3D reconstruction of the southern lagoon and the recognition of the along-strike and dip variability of the stratal architecture. Three main seismic units (H1-H3), separated by key stratal surfaces (S1-S3), form the Holocene succession in the southern Venice lagoon. This succession is bounded at the base by the Pleistocene/Holocene boundary (the surface S1), which consists of a surface of subaerial exposure locally subjected to river incision. The lower part of the Holocene succession (up to 13 m thick) consists of incised valley fills passing upward into lagoon and then shallow-marine sediments (Unit H1), and therefore shows a deepening-upward trend and a retrogradational stacking pattern. A prograding delta and adjacent shorelines, showing internal clinoforms downlapping onto the top of Unit H1 (the surface S2), form the middle part of the Holocene succession (Unit H2, up to 7.5 m thick). Unit H2 is interpreted as a result of a regressive phase started about 6 kyr BP and continued until recent time. The upper part of the Holocene succession (Unit H3) consists of lagoonal deposits, including tidal channel and tidal and subtidal flat sediments, that abruptly overlie Unit H2. Unit H3 is thought to represent a drowning of the area primarily due to human interventions that created rivers diversion and consequent

  17. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  18. Environmental considerations for 3D seismic in Louisianna wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, G.; Dillane, T.; Baaren, P. van

    1996-11-01

    Louisiana swamps have been host to seismic crews for many years. Results from recent 3D surveys indicate that well planned and executed seismic operations have a minimal and short term impact in these environmentally sensitive wetlands. Pre-planning identifies challenges that require use of improved technology and work procedures. These include multi-channel radio telemetry recording systems, ramming of dynamite and hydrophones as opposed to drilling, DGPS positioning and coordinated use of Airboats, buggies and helicopters. In addition to minimal environmental impact, increased data quality, reduced cost and shorter project duration have been achieved as a result of these efforts. Unlike 2Dmore » surveys, where profile positioning is flexible, 3D surveys involve high density coverage over many square miles operated by numerous personnel. Survey design includes minimizing repeated traffic and crossing points. Survey operations require environmental participation and commitment from every person involved in the project. This includes a thorough orientation and training program with strong emphasis on environmental sensitivity and awareness. Close co-ordination between regulatory agencies, clients and the contractor is a key factor in all aspects of the survey planning and operation. Benefits from these efforts are significant, measurable and continue to improve.« less

  19. Multichannel blind deconvolution of spatially misaligned images.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2005-07-01

    Existing multichannel blind restoration techniques assume perfect spatial alignment of channels, correct estimation of blur size, and are prone to noise. We developed an alternating minimization scheme based on a maximum a posteriori estimation with a priori distribution of blurs derived from the multichannel framework and a priori distribution of original images defined by the variational integral. This stochastic approach enables us to recover the blurs and the original image from channels severely corrupted by noise. We observe that the exact knowledge of the blur size is not necessary, and we prove that translation misregistration up to a certain extent can be automatically removed in the restoration process.

  20. Time-dependent seismic tomography

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  1. Obtaining high-resolution velocity spectra using weighted semblance

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati

    2017-02-01

    Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.

  2. The SRI24 multichannel brain atlas: construction and applications

    NASA Astrophysics Data System (ADS)

    Rohlfing, Torsten; Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2008-03-01

    We present a new standard atlas of the human brain based on magnetic resonance images. The atlas was generated using unbiased population registration from high-resolution images obtained by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises three anatomical channels (T I-weighted, early and late spin echo), three diffusion-related channels (fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by nonrigid transformations between the 24 subject images, as well as distortion-correction alignments between the image channels in each subject. The atlas can, therefore, be generated at essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without compounding interpolation artifacts. We demonstrate in this paper two different applications of the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the increased sharpness of our atlas compared with other available atlases, and (b) spatial normalization is enabled by its average shape property. In summary, our atlas has unique features and will be made available to the scientific community as a resource and reference system for future imaging-based studies of the human brain.

  3. Network Optimization for Induced Seismicity Monitoring in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Husen, S.; Wiemer, S.

    2012-12-01

    design that aims to minimize the error ellipsoid of the linearized location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data and existing seismic stations in the vicinity of the geotechnical site. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. In this talk we will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type. We will discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.

  4. Seismic Monitoring of Stability of Unique Historical Buildings in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Broz, M.; Strunc, J.; Buben, J.

    2008-05-01

    The persistence of unique Historical Buildings is restricted due to weathering of construction material enhanced by meteorological processes such as storms, driving rain and temperature variations beneath the freezing point. Dynamic forces endangering the mechanical stability of exposed elements of building structures could be caused also by impacts of seismic waves. The long-time decrease of earthquake resistance is monitored using empirical functions of seismic response. This method is based on evaluation the co-spectra of exciting and forced vibrations of foundations and the structure elements in question. This poster notifies three examples of utilization of this method as follows: 1) In the course of renovating the St. Barbora temple in the Kutná Hora village, the vibrations caused by meteorological processes, supersonic aircraft transit and blasting in quarries have been evaluated. After completing the renovation of endangered spire elements, the local maximum of co-spectral function at 4Hz was shifted to 7Hz and the function approached more likely a wide-band course. 2) In the course of installation of the third bell in the bell tower of the of the Sázava monastery, the co-spectra of forced vibrations of tower walls were monitored and a more convenient time-function of bell clang was adjusted. 3) In connection with the construction of a highway tunnel in the 1,4 km distance from the St. Vit cathedral in the Praha-Hradèany castle, the long-term schedule of motoring seismic vibrations was started. In the course of driving the tunnels, the mili-sec blasting of charges up to 5 kg is used. Seismic vibrations are recorded by pickups situated on the subsoil and on the voussoir arch. The digital multichannel seismic recording apparatus (256 samples per sec) is equipped for continuous telemetric data transfer and automated evaluation. (Grant Foundation of the Czech Republic, 103/07/1522).

  5. Continuous seismic-reflection survey defining shallow sedimentary layers in the Charlotte Harbor and Venice areas, southwest Florida

    USGS Publications Warehouse

    Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.

    1983-01-01

    A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)

  6. Using seismic derived lithology parameters for hydrocarbon indication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Riel, P.; Sisk, M.

    1996-08-01

    The last two decades have shown a strong increase in the use of seismic amplitude information for direct hydrocarbon indication. However, working with seismic amplitudes (and seismic attributes) has several drawbacks: tuning effects must be handled; quantitative analysis is difficult because seismic amplitudes are not directly related to lithology; and seismic amplitudes are reflection events, making it is unclear if amplitude changes relate to lithology variations above or below the interface. These drawbacks are overcome by working directly on seismic derived lithology data, lithology being a layer property rather than an interface property. Technology to extract lithology from seismic datamore » has made great strides, and a large range of methods are now available to users including: (1) Bandlimited acoustic impedance (AI) inversion; (2) Reconstruction of the low AI frequencies from seismic velocities, from spatial well log interpolation, and using constrained sparse spike inversion techniques; (3) Full bandwidth reconstruction of multiple lithology properties (porosity, sand fraction, density etc.,) in time and depth using inverse modeling. For these technologies to be fully leveraged, accessibility by end users is critical. All these technologies are available as interactive 2D and 3D workstation applications, integrated with seismic interpretation functionality. Using field data examples, we will demonstrate the impact of these different approaches on deriving lithology, and in particular show how accuracy and resolution is increased as more geologic and well information is added.« less

  7. Acousto-Optic Applications for Multichannel Adaptive Optical Processor

    DTIC Science & Technology

    1992-06-01

    AO cell and the two- channel line-scan camera system described in Subsection 4.1. The AO material for this IntraAction AOD-70 device was flint glass (n...Single-Channel 1.68 (flint glass ) 60,.0 AO Cell Multichannel 2.26 (TeO 2) 20.0 AO Cell Beam splitter 1.515 ( glass ) 50.8 Multichannel correlation was...Tone Intermodulation Dynamic Ranges of Longitudinal TeO2 Bragg Cells for Several Acoustic Power Densities 4-92 f f2 f 3 1 t SOURCE: Reference 21 TR-92

  8. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    location problem. Optimization for additional criteria (e.g., focal mechanism determination or installation costs) can be included. We consider a 3D seismic velocity model, an European ambient seismic noise model derived from high-resolution land-use data, and existing seismic stations in the vicinity of the geotechnical site. Additionally, we account for the attenuation of the seismic signal with travel time and ambient seismic noise with depth to be able to correctly deal with borehole station networks. Using this algorithm we are able to find the optimal geometry and size of the seismic monitoring network that meets the predefined application-oriented performance criteria. This talk will focus on optimal network geometries for deep geothermal projects of the EGS and hydrothermal type, and discuss the requirements for basic seismic surveillance and high-resolution reservoir monitoring and characterization.

  9. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  10. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method

    PubMed Central

    Zheng, Xuhui; Liu, Lei; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan’an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit. PMID:29883492

  11. Imaging of underground karst water channels using an improved multichannel transient Rayleigh wave detecting method.

    PubMed

    Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin

    2018-01-01

    Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.

  12. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods

    NASA Astrophysics Data System (ADS)

    Xia, Jianghai

    2014-04-01

    This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.

  13. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    NASA Astrophysics Data System (ADS)

    van Wagoner, T. M.; Crosson, R. S.; Creager, K. C.; Medema, G.; Preston, L.; Symons, N. P.; Brocher, T. M.

    2002-12-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent

  14. Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography

    USGS Publications Warehouse

    Van Wagoner, T. M.; Crosson, R.S.; Creager, K.C.; Medema, G.; Preston, L.; Symons, N.P.; Brocher, T.M.

    2002-01-01

    The availability of regional earthquake data from the Pacific Northwest Seismograph Network (PNSN), together with active source data from the Seismic Hazards Investigation in Puget Sound (SHIPS) seismic experiments, has allowed us to construct a new high-resolution 3-D, P wave velocity model of the crust to a depth of about 30 km in the central Puget Lowland. In our method, earthquake hypocenters and velocity model are jointly coupled in a fully nonlinear tomographic inversion. Active source data constrain the upper 10-15 km of the model, and earthquakes constrain the deepest portion of the model. A number of sedimentary basins are imaged, including the previously unrecognized Muckleshoot basin, and the previously incompletely defined Possession and Sequim basins. Various features of the shallow crust are imaged in detail and their structural transitions to the mid and lower crust are revealed. These include the Tacoma basin and fault zone, the Seattle basin and fault zone, the Seattle and Port Ludlow velocity highs, the Port Townsend basin, the Kingston Arch, and the Crescent basement, which is arched beneath the Lowland from its surface exposure in the eastern Olympics. Strong lateral velocity gradients, consistent with the existence of previously inferred faults, are observed, bounding the southern Port Townsend basin, the western edge of the Seattle basin beneath Dabob Bay, and portions of the Port Ludlow velocity high and the Tacoma basin. Significant velocity gradients are not observed across the southern Whidbey Island fault, the Lofall fault, or along most of the inferred location of the Hood Canal fault. Using improved earthquake locations resulting from our inversion, we determined focal mechanisms for a number of the best recorded earthquakes in the data set, revealing a complex pattern of deformation dominated by general arc-parallel regional tectonic compression. Most earthquakes occur in the basement rocks inferred to be the lower Tertiary Crescent

  15. High-resolution earthquake relocation in the Fort Worth and Permian Basins using regional seismic stations

    NASA Astrophysics Data System (ADS)

    Ogwari, P.; DeShon, H. R.; Hornbach, M.

    2017-12-01

    Post-2008 earthquake rate increases in the Central United States have been associated with large-scale subsurface disposal of waste-fluids from oil and gas operations. The beginning of various earthquake sequences in Fort Worth and Permian basins have occurred in the absence of seismic stations at local distances to record and accurately locate hypocenters. Most typically, the initial earthquakes have been located using regional seismic network stations (>100km epicentral distance) and using global 1D velocity models, which usually results in large location uncertainty, especially in depth, does not resolve magnitude <2.5 events, and does not constrain the geometry of the activated fault(s). Here, we present a method to better resolve earthquake occurrence and location using matched filters and regional relative location when local data becomes available. We use the local distance data for high-resolution earthquake location, identifying earthquake templates and accurate source-station raypath velocities for the Pg and Lg phases at regional stations. A matched-filter analysis is then applied to seismograms recorded at US network stations and at adopted TA stations that record the earthquakes before and during the local network deployment period. Positive detections are declared based on manual review of associated with P and S arrivals on local stations. We apply hierarchical clustering to distinguish earthquakes that are both spatially clustered and spatially separated. Finally, we conduct relative earthquake and earthquake cluster location using regional station differential times. Initial analysis applied to the 2008-2009 DFW airport sequence in north Texas results in time continuous imaging of epicenters extending into 2014. Seventeen earthquakes in the USGS earthquake catalog scattered across a 10km2 area near DFW airport are relocated onto a single fault using these approaches. These techniques will also be applied toward imaging recent earthquakes in the

  16. Seismic stratigraphy and tomography in the outer shelf and slope of the Central Basin, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Sookwan; De Santis, Laura; Böhm, Gualtiero; Kuk Hong, Jong; Jin, Young Keun; Geletti, Riccardo; Wardell, Nigel; Petronio, Lorenzo; Colizza, Ester

    2014-05-01

    The Ross Sea, located between Victoria Land and Marie Byrd Land in Antarctica, is one of the main drainage of the Antarctic Ice Sheet (AIS). Reflection seismic data acquired by many countries during several decades have provided insights into the history of the Ross Sea and the AIS evolution. However the majority of the existing seismic data are concentrated in the shelf area, where hiatus formed by grounding ice sheet erosion multiple events prevent to reconstruct the entire sedimentary sequences depositional evolution. On the outer shelf and upper slope, the sedimentary sequences are relatively well preserved. The main purpose of this study is the investigation of the Cenozoic Antarctic Ice Sheet evolution through the seismic sequence analysis of the outer shelf and slope of the Central Basin, in the Ross Sea. The data used are the new multi-channel seismic data, KSL12, were acquired on the outer shelf and upper slope of the Central Bain in February 2013 by Korea Polar Research Institute. The reflection seismic data, previously collected by the Italian Antarctic Program (PNRA) and other data available from the Seismic Data Library System (SDLS) are also used for velocity tomography and seismic sequence mapping. The seismic data were processed by a conventional processing flow to produce the seismic profiles. Preliminary results show well-developed prograding wedges at the mouth of glacial troughs, eroded by a major glacial unconformity, the Ross Sea Unconformity 4 (RSU-4), correlated to a main event between early- and mid-Miocene. The velocity anomalies shown along KSL12-1 can be interpreted as showing the occurrence of gas and fluids, diagenetic horizons and sediment compactions. The isopach maps of each sequence show the variation of thickness of the sediments depocenter shift. The seismic sequence stratigraphy and acoustic facies analysis provide information about different phases of ice sheet's advance and retreat related to the AIS Cenozoic dynamics.

  17. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  18. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  19. On seismic resolution of lateral heterogeneity in the Earth's outermost core

    NASA Astrophysics Data System (ADS)

    Garnero, Edward J.; Helmberger, Donald V.

    1995-03-01

    Issues concerning resolution of seismically determined outermost core properties are presented with an example from three earthquakes in the Fiji-Tonga region. Travel time behavior of the commonly used family of S mKS waves, which travel as S in the mantle, P in the core, reflecting m - 1 times at the underside of the core-mantle boundary (CMB), are analyzed over a large distance range (125-165°). Data having wavepaths through an area of known D″ heterogeneity (±2%) exhibit systematic anomalies in S mKS differential times. Two-dimensional wave propagation experiments demonstrate how large-scale lower-mantle velocity perturbations can explain long-wavelength behavior of such anomalous S mKS times, though heterogeneity on smaller scales may be responsible for the observed scatter about these trends. If lower-mantle heterogeneity is not properly accounted for in deriving a core model, misfit of the mantle model maps directly into core structure. The existence of outermost core heterogeneity is difficult to resolve at present, owing to uncertainties in global lower-mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult, owing to the same uncertainties. Inclusion of the slowly accruing broadband data should help in this regard. Restricting study to higher multiples of S mKS ( m = 2, 3, 4) can help reduce the effect of mantle heterogeneity, because of the closeness of the mantle legs of the wavepaths. S mKS waves are ideal in providing additional information on the details of lower-mantle heterogeneity.

  20. PICTURES (Pisagua/Iquique Crustal Tomography to Understand the Region of the Earthquake Source): seismic imaging of the source region of the April 1, 2014 Mw 8.2 earthquake offshore northern Chile

    NASA Astrophysics Data System (ADS)

    Trehu, A. M.

    2017-12-01

    The 2014 event partially filled a well-recognized seismic gap that had not experienced a large earthquake since a pair of devastating M9 events in 1868 and 1877. The rupture sequence was marked by an unusually long and distinct precursory period that was well recorded by onshore seismic and geodetic instruments of the Integrated Plate Boundary Observatory Chile (IPOC). The pattern of foreshock activity, which defined a "classic" Mogi donut, is correlated with a circular residual gravity high that surrounds the patch of greatest slip during the main shock. Aftershocks generally propagated to the south and stopped in a region of relatively low pre-earthquake coupling. The remaining nearly 300-km long seismic gap is correlated with a distinct forearc residual gravity high. The correlation between the pre-, syn- and post-earthquake deformation patterns and the residual gravity anomalies indicates that crustal structure affects the distribution of seismic and aseismic deformation in response to plate convergence. Because the non-uniqueness inherent in modeling gravity data does not allow for a detailed geologic interpretation of the correlation between structure and slip, we conducted an ambitious seismic experiment using the R/V Marcus Langseth to acquire 5000 km of multichannel seismic seismic data using an 8-12.5-km long streamer and a 6600 cubic inch tuned air-gun array. The 45000 shots were also recorded on 70 ocean-bottom and 50 land-based seismometers. Shipboard analysis of the data indicates that the Moho of the Nazca plate is well imaged west of the trench, that deformation is distributed throughout the outer 10 km of the accretionary wedge as the rough topography of the Nazca plate is subducted, and that a reflection tentatively interpreted to be the plate boundary can be imaged continuously from the trench to the coast on at least one transect across the margin. Post-cruise data analysis is underway to process the MCS data using various techniques to

  1. Variability of High Resolution Vp/Vs and Seismic Velocity Structure Along the Nicaragua/Costa Rica Segment of the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moore-Driskell, M. M.; DeShon, H. R.

    2012-12-01

    Previous studies of subduction zone earthquakes have shown that fault conditions control earthquake rupture and behavior. There are many potential properties that may vary along the subduction margin that could cause fault zone variability, including plate age, temperature, and/or geometry, convergence rate, state of hydration, overriding geology, subducting sediment packages, or subducting seamounts/ridges. The Nicaragua/Costa Rica segment of the Middle America subduction zone is highly variable along strike and down dip. We use this margin to examine how these variable conditions affect earthquake behavior by determining local ratios of compressional to shear wave velocities (Vp/Vs) and detailed seismic velocity structure. Vp/Vs is one of the best tools available to reliably define fault conditions because it is directly related to the Poisson's ratio of the fault material, and it is sensitive to the presence of fluids and changing permeability. Thus with well-resolved near source Vp/Vs measurements we can infer composition and/or high fluid pressures. Here, we use a technique developed by Lin and Shearer (2007) to determine local Vp/Vs in small areas (~2 x 2 x 2 km) with high seismicity. Within the seismogenic zone, we find the margin to be highly variable along strike in Vp/Vs and seismic velocity. These changes correlate to documented variability in incoming plate properties. Increased Vp/Vs is associated with intraplate earthquakes along Nicaragua and northern Costa Rica. We compare our results with other geophysical studies including new high-resolution images of seismic velocity structure, an extensive catalog of high quality relocated events, apparent stress calculations, coupling, and SSE/NVT occurrence. A better understanding of the connection between fault properties and earthquake behavior gives insight into the role of fluids in seismogenesis, the spectrum of earthquake rupture, and possible hazard at subduction zones.

  2. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  3. Seismic Symphonies

    NASA Astrophysics Data System (ADS)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    symbolize cosmic harmony. But here it is the earth, "nature", the ground beneath our feet that is moving. It speaks to us not of harmony, but of our fragility. For the oldest earthquakes considered, Seismic Symphonies drew on SISMOS archives, the INGV project for recovery, high resolution digital reproduction and distribution of the seismograms of earthquakes of the Euro-Mediterranean area from 1895 to 1984. After the first exposure to the Fondazione Bevilacqua La Masa in Venice, the organ was later exhibited in Taiwan, the Taipei Biennial, with seismograms provided from the Taiwanese Central Weather Bureau, and at the EACC Castello in Spain, with seismograms of Spanish earthquakes provided by the Instituto Geográfico Nacional.

  4. Detecting aseismic strain transients from seismicity data

    USGS Publications Warehouse

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  5. Hybrid Structure Multichannel All-Fiber Current Sensor.

    PubMed

    Jiang, Junzhen; Zhang, Hao; He, Youwu; Qiu, Yishen

    2017-08-02

    We have experimentally developed a hybrid-structure multi-channel all-fiber current sensor with ordinary silica fiber using fiber loop architecture. According to the rationale of time division multiplexing, the sensor combines parallel and serial structures. The purpose of the hybrid-structure multi-channel all-fiber current sensor is to get more information from the different measured points simultaneously. In addition, the hybrid-structure fiber current sensor exhibited a good linear response for each channel. A three-channel experiment was performed in the study and showed that the system could detect different current positions. Each channel could individually detect the current and needed a separate calibration system. Furthermore, the three channels will not affect each other.

  6. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.

    PubMed

    Cheng, Rui; Chrostowski, Lukas

    2018-03-01

    Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625  GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.

  7. Multi-channel imaging cytometry with a single detector

    NASA Astrophysics Data System (ADS)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  8. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  9. Probing the DPRK nuclear test-site to low magnitude using seismic pattern detectors

    NASA Astrophysics Data System (ADS)

    Kvaerna, T.; Gibbons, S. J.; Mykkeltveit, S.

    2017-12-01

    Six declared nuclear explosions at North Korea's Punggye-ri test-site between October 2006 and September 2017 were detected seismically both at regional and teleseismic distances. The similarity of body-wave signals from explosion to explosion allows us to locate these events relative to each other with high accuracy. Greater uncertainty in the relative time measurements for the most recent test on 3 September 2017 results in a greater uncertainty in the relative location estimate for this event, although it appears to have taken place below optimal overburden close to the peak of Mount Mantap. A number of smaller events, detected mainly at regional distances, have been identified as being at, or very close to, the test site. Due to waveform differences and available station coverage, a simple double-difference relative location is often not possible. In addition to the apparent collapse event some 8 minutes after the declared nuclear test, small seismic events have been detected on 25 May 2014, 11 September 2016, 23 September 2017, and 12 October 2017. The signals from these events differ significantly from those from the declared nuclear tests with far weaker Pn and far stronger Lg phases. Multi-channel correlation analysis and empirical matched field processing allow us to categorize these weaker seismic events with far greater confidence than classical waveform analysis allows.

  10. A simple algorithm for sequentially incorporating gravity observations in seismic traveltime tomography

    USGS Publications Warehouse

    Parsons, T.; Blakely, R.J.; Brocher, T.M.

    2001-01-01

    The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.

  11. Compact multichannel MEMS based spectrometer for FBG sensing

    NASA Astrophysics Data System (ADS)

    Ganziy, D.; Rose, B.; Bang, O.

    2017-04-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.

  12. Wide-angle seismic recordings from the 1998 Seismic Hazards Investigation of Puget Sound (SHIPS), western Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.

    1999-01-01

    This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide

  13. Multichannel error correction code decoder

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Ivancic, William D.

    1993-01-01

    A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.

  14. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    NASA Astrophysics Data System (ADS)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  15. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  16. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  17. High-resolution seismic-reflection and marine-magnetic data from offshore central California--San Gregorio to Point Sur

    USGS Publications Warehouse

    Sliter, Ray W.; Johnson, Samuel Y.; Watt, Janet T.; Scheirer, Daniel S.; Allwardt, Parker; Triezenberg, Peter J.

    2013-01-01

    The U.S. Geological Survey collected high-resolution seismic-reflection data on four surveys (S-N1-09-MB, S-15-10-NC, S-06-11-MB, and S-04-12-MB) and marine-magnetic data on one survey (S-06-11-MB) between 2009 and 2012, offshore of central California between San Gregorio and Point Sur. This work was supported in part by the California Seafloor Mapping Program. The survey areas span about 120 km of California's coast (including Monterey Bay). Most data were collected aboard the U.S. Geological Survey R/V Parke Snavely. Cumulatively, approximately 1,410 km of single-channel seismic-reflection data were acquired, mainly using a SIG 2mille minisparker. About 44 km of data were collected simultaneously using an EdgeTech Chirp 512. Subbottom acoustic penetration spanned tens to several hundreds of meters, variable by location. Marine magnetic data were collected on approximately 460 km of track lines (mainly in southern Monterey Bay) using a Geometrics G882 cesium-vapor marine magnetometer. This report includes maps and navigation files of the surveyed transects, linked to Google Earth™ software, as well as digital data files showing images of each transect in SEG-Y and JPEG formats. The images of bedrock, sediment deposits, and tectonic structure provide geologic information that is essential to hazard assessment, regional sediment management, and coastal and marine spatial planning at Federal, State and local levels, as well as to future research on the geomorphic, sedimentary, tectonic, and climatic record of central California.

  18. Seismic anisotropy in deforming salt bodies

    NASA Astrophysics Data System (ADS)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  19. High-resolution seismic reflection/refraction images near the outer margin of the Chesapeake Bay impact crater, York-James Peninsula, southeastern Virginia

    USGS Publications Warehouse

    Catchings, R.D.; Saulter, D.E.; Powars, D.S.; Goldman, M.R.; Dingler, J.A.; Gohn, G.S.; Schindler, J.S.; Johnson, G.H.

    2001-01-01

    faults and fractures in basement are not well determined. To better determine some of the unknowns associated with the CBIC, we conducted a 350-m-long, high-resolution seismic reflection and refraction survey, referred to here as the CBIC-1 seismic survey, on the York-James Peninsula in June 1999. In particular, we attempted to: better define the outer margin of the CBIC, understand lateral variations in the stratigraphic sequence, help assess potential hazards associated with regional seismicity, and determine acquisition parameters needed for shallow-depth seismic imaging in the Chesapeake Bay area.

  20. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  1. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibuleac, Ileana

    2016-06-30

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. The material included in this report demonstrates that, with the advantage of initial S-velocity models estimated from ambient noise surface waves, the seismic reflection survey, although with lower resolution, reproduces the results of the active survey when the ambient seismic noise is not contaminated by strong cultural noise. Ambient noise resolution is less at depth (below 1000m) compared to the active survey. In general, the results are promising and useful information can be recovered from ambient seismic noise,more » including dipping features and fault locations.« less

  2. a Comparative Case Study of Reflection Seismic Imaging Method

    NASA Astrophysics Data System (ADS)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  3. Landslide inventories: The essential part of seismic landslide hazard analyses

    USGS Publications Warehouse

    Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H.

    2011-01-01

    A detailed and accurate landslide inventory is an essential part of seismic landslide hazard analysis. An ideal inventory would cover the entire area affected by an earthquake and include all of the landslides that are possible to detect down to sizes of 1-5. m in length. The landslides must also be located accurately and mapped as polygons depicting their true shapes. Such mapped landslide distributions can then be used to perform seismic landslide hazard analysis and other quantitative analyses. Detailed inventory maps of landslide triggered by earthquakes began in the early 1960s with the use of aerial photography. In recent years, advances in technology have resulted in the accessibility of satellite imagery with sufficiently high resolution to identify and map all but the smallest of landslides triggered by a seismic event. With this ability to view any area of the globe, we can acquire imagery for any earthquake that triggers significant numbers of landslides. However, a common problem of incomplete coverage of the full distributions of landslides has emerged along with the advent of high resolution satellite imagery. ?? 2010.

  4. Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada

    NASA Astrophysics Data System (ADS)

    Malehmir, R.; Schmitt, D. R.; Chan, J.

    2014-12-01

    Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic

  5. Three-dimensional Seismic Survey of the Continental-Ocean Transition Zone of the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Wang, Q.; Sibuet, J. C.; Sun, L.; Sun, Z.; Qiu, X.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which has experienced extension, rifting, breakup, post-spreading magmatism on its northern margin during the Cenozoic era. The complexity of this margin is exacerbated by rifting and seafloor spreading processes, which developed at the expenses of the subducting proto-South China Sea. Based on Sun et al. (2014, 2016) proposals, 6 sites were drilled on the northern SCS margin from February to June 2017, during IODP Expeditions 367/368. The preliminary results indicate that the width of the COT is about 20 km and is different from the typical magma-poor Iberia margin whose width is around 100 km. The combination of three-dimensional (3D) Ocean Bottom Seismometers (OBS) refractive survey with IODP drilling results, will improve the drilling achievement and greatly contribute to the understanding of the specific mechanism of rifting and breakup processes of the northern SCS. In particular, it is expected to constrain: 1) the nature of the crust in the COT, 2) the degree of serpentinization of the upper mantle beneath the COT, and 3) the 3D extension of the COT, the oceanic crust and the serpentinized mantle. We firstly carry out the resolution tests and calculate the interval of OBSs using a ray tracing and travel time modelling software. 7-km interval between OBSs is the optimal interval for the resolution tests and ray coverage, which will provide optimal constraints for the characterization of the 20-km wide COT. The 3D seismic survey will be carried out in 2018. The design of the OBSs arrangement and the location of shooting lines are extremely important. At present, we propose 5 main profiles and 14 shooting lines along the multi-channel seismic lines already acquired in the vicinity of the 6 drilling sites. Any comments and suggestions concerning the OBSs arrangement will be appreciated. This work is supported by the Chinese National Natural Science Foundation (contracts

  6. Pockmarks, fluid flow, and sediments outboard of the deformation front at the Cascadia Subduction Zone from analysis of multi-channel seismic and multi-beam sonar data

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Carbotte, S. M.; Han, S.; Carton, H. D.; Canales, P.; Nedimovic, M. R.

    2013-12-01

    Evidence of active fluid flow and the nature of the sediment section near the Cascadia deformation front are explored using multi-channel (MCS) seismic and multi-beam sonar data collected in summer 2012 using the R/V Marcus G. Langseth during the Juan de Fuca Ridge to Trench Survey. The MCS data were collected along two full plate transects (the 'Oregon' and 'Washington' transects) and one trench parallel line using a 6600 cubic inch source, and an 8 km streamer with 636 channels (12.5 m spacing). The MCS data pre-stack processing sequence includes geometry definition, trace editing, F-K filter, and deconvolution. Velocity analysis is performed via semblance and constant velocity stacks in order to create a velocity model of the sediments and upper oceanic crust. The traces are then stacked, and post-stack time migrated. The sonar data were collected using the R/V Langseth's Kongsberg EM122 1°x1° multi-beam sonar with 288 beams and 432 total soundings across track. Using MB-system the sonar data are cleaned, and the bathymetry data are then gridded at 35 m, while the backscatter data are gridded at 15 m. From the high-resolution mapping data 48 pockmarks varying in diameter from 50 m - 1 km are identified within 60 km outboard of the deformation front. The surface expression of these large features in an area of heavy sedimentation is likely indicative of active fluid flow. In order to gain sub-seafloor perspective on these features the MCS data are draped below the bathymetry/backscatter grids using QPS Fledermaus. From this perspective, specific locations for detailed velocity and attribute analysis of the sediment section are chosen. Sediment velocity and attribute analysis also provide insight into apparent differences in the sediment section and décollement formation along the Oregon and Washington plate transects. While both lines intersect areas of dense pockmark concentration, the area around the Oregon transect has been shown to contain a continuous

  7. Seismic expression of the Chesapeake Bay impact crater: Structural and morphologic refinements based on new seismic data

    USGS Publications Warehouse

    Poag, C. Wylie; Hutchinson, Deborah R.; Colman, Steve M.; Lee, Myung W.; Dressler, B.O.; Sharpton, V.L.

    1999-01-01

    This work refines previous interpretations of the structure and morphology of the Chesapeake Bay impact crater on the basis of more than 1,200 km of multichannel and single-channel seismic reflection profiles collected in the bay and on the adjacent continental shelf. The outer rim, formed in sedimentary rocks, is irregularly circular, with an average diameter of ~85 km. A 20–25-km-wide annular trough separates the outer rim from an ovate, crystalline peak ring of ~200 m of maximum relief. The inner basin is 35–40 km in diameter, and at least 1.26 km deep. A crystalline(?) central peak, approximately 1 km high, is faintly imaged on three profiles, and also is indicated by a small positive Bouguer gravity anomaly. These features classify the crater as a complex peak-ring/central peak crater. Chesapeake Bay Crater is most comparable to the Ries and Popigai Craters on Earth; to protobasins on Mars, Mercury, and the Moon; and to type D craters on Venus.

  8. U.S. Geological Survey common-depth-point seismic-reflection survey between Mississippi River miles 195 to 210 (R/V NEECHO, cruise NE-80-3)

    USGS Publications Warehouse

    Winget, E.A.; Tirey, G.B.

    1984-01-01

    In December 1980, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (COE), conducted a seismic survey of the Mississippi River in the vicinity of Alton, Illinois, near St. Louis, Missouri (fig. 1). Seismic lines were run from the mouth of the Missouri River up the Mississippi River to a point approximately seven miles upriver from Lock and Dam No. 26 at Alton, Illinois (fig. 2a,b). Additional lines were run upriver from Lock and Dam No. 25 between the dam and River Mile 244, but these data are not reported because of mechanical problems with the larger sound-source equipment and inexact navigational control. The objective of the cooperative study was to utilize marine common-depth-point (CDP), digital, and multichannel techniques to locate a monoclinal flexure of the Cap au Gres Fault that earlier had been interpreted from land seismic data to be in the vicinity of Lock and Dam No 26 (Shannon and Wilson, 1980). A second objective was to demonstrate that the marine seismic system could be used for making relatively deep penetration seismic-reflection surveys on shallow (less than 10-m water depth) inland waterways that have organic sediment floors.

  9. A High Resolution Seismic Sequence Analysis of the Malta Plateau

    DTIC Science & Technology

    1999-05-01

    the SACLANTCEN Programme of Work. The document has been approved for release by The Director, SACLANTCEN. Jan L . Spoelstra Director NATO...the Plio- Quatemary. To the southwest of Sicily, Di Stefano et al. (1993) identified six sequence boundaries and estimated the ages by the...the location of the seismic reflection profiles in Di Stefano et al. (1993) do not overlap any of the profiles in this study and use a lower frequency

  10. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 2. Combining seismic and geodetic data

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    2001-01-01

    Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.

  11. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less

  12. Viability of using seismic data to predict hydrogeological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mela, K.

    1997-10-01

    Design of modem contaminant mitigation and fluid extraction projects make use of solutions from stochastic hydrogeologic models. These models rely heavily on the hydraulic parameters of hydraulic conductivity and the correlation length of hydraulic conductivity. Reliable values of these parameters must be acquired to successfully predict flow of fluids through the aquifer of interest. An inexpensive method of acquiring these parameters by use of seismic reflection surveying would be beneficial. Relationships between seismic velocity and porosity together with empirical observations relating porosity to permeability may lead to a method of extracting the correlation length of hydraulic conductivity from shallow highmore » resolution seismic data making the use of inexpensive high density data sets commonplace for these studies.« less

  13. Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: Relation to late Eocene obduction in New Caledonia, southwest Pacific

    NASA Astrophysics Data System (ADS)

    Collot, Julien; Geli, Louis; Lafoy, Yves; Vially, Roland; Cluzel, Dominique; Klingelhoefer, Frauke; Nouzé, Hervé

    2008-12-01

    New, high-quality multichannel seismic reflection data from the western New Caledonia offshore domain allow for the first time the direct, continuous connection of seismic reflectors between the Deep Sea Drilling Project 208 drill hole on the Lord Howe Rise and the New Caledonia Basin. A novel seismic interpretation is hence proposed for the northern New Caledonia Basin stratigraphy, which places the Eocene/Oligocene unconformity deeper than previously thought and revisits the actual thickness of the pre-Oligocene sequences. A causal link is proposed between the obduction of the South Loyalty Basin over New Caledonia (NC) and the tectonic history of the northern New Caledonia Basin. Here it is suggested that as the South Loyalty Basin was being obducted during early Oligocene times, the NC Basin subsided under the effect of the overloading and underthrusted to accommodate the compressional deformation, which resulted in (1) the uplift of the northern Fairway Ridge and (2) the sinking of the western flank of New Caledonia. This event also had repercussions farther west with the incipient subsidence of the Lord Howe Rise.

  14. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  15. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  16. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  17. Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Schaff, D.P.; Cole, A.

    2004-01-01

    Double-difference locations of ???8000 earthquakes from 1969-2002 on the Parkfield section of the San Andreas Fault reveal detailed fault structures and seismicity that is, although complex, highly organized in both space and time. Distinctive features of the seismicity include: 1) multiple recurrence of earthquakes of the same size at precisely the same location on the fault (multiplets), implying frictional or geometric controls on their location and size; 2) sub-horizontal alignments of hypocenters along the fault plane (streaks), suggestive of rheological transitions within the fault zone and/or stress concentrations between locked and creeping areas; 3) regions devoid of microearthquakes with typical dimensions of 1-5 km (holes), one of which contains the M6 1966 Parkfield earthquake hypocenter. These features represent long lived structures that persist through many cycles of individual event. Copyright 2004 by the American Geophysical Union.

  18. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  19. Towards a more comprehensive usage of reflection seismic in near-surface characterization

    NASA Astrophysics Data System (ADS)

    Blouin, M.; Gloaguen, E.; Bellefleur, G.; Pugin, A.

    2014-12-01

    For more than a decade, research groups such as the Geological Survey of Canada built the interest for near-surface reflection seismic by proposing small vibrating sources and three components (3C) landstreamers. Developments in the instrumentation combined with extensive use of shear-wave profiling to image stratigraphy of unconsolidated environments at high resolution got this geophysical method more versatile, more accurate, increased cost effectiveness and allowed to cover greater distance per day. With those major upgrades as a starting point and in a context of regional aquifer characterization in St-Lawrence Lowlands in the province of Quebec, Canada, the present study propose a workflow to further enhance reflection seismic usage for near-surface characterization. First, as high resolution near surface surveys require small shot intervals and multiple channels on three axis, a lot of the acquisition information is received under a raw form yielding to unproductive quality control (QC). Hence, a tool was developed to process data "on the fly" and allow adequate real-time QC and on-site decision making. The algorithm was constructed in a Python environment and is accessible through a graphical user interface where the user is prompted for geometry parameters inputs and desired processing flow steps. Second, at the scale of seismic wavelengths, fine grain and poorly consolidated sediments such as marine clay of the St-Lawrence Lowlands can be viewed as a homogeneous medium presenting anisotropy. This section of the study showed that such geological settings yield to significant seismic velocity variations with angle of propagation that should not be ignore for normal move-out correction, migration or time to depth conversion. Finally, accurate delineation of stratigraphic horizons is an important task of any environmental or hydrogeological characterization study. A methodology was put forward to help integrate geophysical measurements with geological

  20. Driving Processes of Earthquake Swarms: Evidence from High Resolution Seismicity

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Shelly, D. R.; Hill, D. P.; Hardebeck, J.; Hsieh, P. A.

    2017-12-01

    Earthquake swarms are transient increases in seismicity deviating from a typical mainshock-aftershock pattern. Swarms are most prevalent in volcanic and hydrothermal areas, yet also occur in other environments, such as extensional fault stepovers. Swarms provide a valuable opportunity to investigate source zone physics, including the causes of their swarm-like behavior. To gain insight into this behavior, we have used waveform-based methods to greatly enhance standard seismic catalogs. Depending on the application, we detect and precisely relocate 2-10x as many events as included in the initial catalog. Recently, we have added characterization of focal mechanisms (applied to a 2014 swarm in Long Valley Caldera, California), addressing a common shortcoming in microseismicity analyses (Shelly et al., JGR, 2016). In analysis of multiple swarms (both within and outside volcanic areas), several features stand out, including: (1) dramatic expansion of the active source region with time, (2) tendency for events to occur on the immediate fringe of prior activity, (3) overall upward migration, and (4) complex faulting structure. Some swarms also show an apparent mismatch between seismicity orientations (as defined by patterns in hypocentral locations) and slip orientations (as inferred from focal mechanisms). These features are largely distinct from those observed in mainshock-aftershock sequences. In combination, these swarm behaviors point to an important role for fluid pressure diffusion. Swarms may in fact be generated by a cascade of fluid pressure diffusion and stress transfer: in cases where faults are critically stressed, an increase in fluid pressure will trigger faulting. Faulting will in turn dramatically increase permeability in the faulted area, allowing rapid equilibration of fluid pressure to the fringe of the rupture zone. This process may perpetuate until fluid pressure perturbations drop and/or stresses become further from failure, such that any

  1. Multichannel imager for littoral zone characterization

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  2. A multi-channel isolated power supply in non-equipotential circuit

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  3. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  4. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    NASA Astrophysics Data System (ADS)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification

  5. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  6. Characterization of the Cottonwood Grove and Ridgely faults near Reelfoot Lake, Tennessee, from high-resolution seismic reflection data

    USGS Publications Warehouse

    Stephenson, William J.; Shedlock, Kaye M.; Odum, Jack K.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  7. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  8. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    NASA Astrophysics Data System (ADS)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can

  9. Seismic-reflection profiles of the New Madrid seismic zone-data along the Mississippi River near Caruthersville, Missouri

    USGS Publications Warehouse

    Crone, A.J.; Harding, S.T.; Russ, D.P.; Shedlock, K.M.

    1986-01-01

    Three major seismic-reflection programs have been conducted by the USGS in the New Madrid seismic zone. The first program consisted of 32 km of conventional Vibroseis profiling designed to investigate the subsurface structure associated with scarps and lineaments in northwestern Tennessee (Zoback, 1979). A second, more extensive Vibroseis program collected about 250 km of data from all parts of the New Madrid seismic zone in Missouri, Arkansas, and Tennessee (Hamilton and Zoback, 1979, 1982; Zoback and others, 1980). The profiles presented here are part of the third program that collected about 240 km of high-resolution seismic-reflection data from a boat along the Mississippi River between Osceola, Ark., and Wickliffe, Ky. (fig. 1). The data for profiles A, B, C, and D were collected between river miles 839-1/2 and 850-1/2 from near the Interstate-155 bridge to upstream of Caruthersville, Mo. (fig. 2). Profiles on this part of the river are important for three reasons: (1) they connect many of the land-based profiles on either side of the river, (2) they are near the northeast termination of a linear, 120km-long, northeast-southwest zone of seismicity that extends from northeast Arkansas to Caruthersville, Mo. (Stauder, 1982; fig. 1), and (3) they cross the southwesterly projection of the Cottonwood Grove fault (fig. 1), a fault having a substantial amount of vertical Cenozoic offset (Zoback and others, 1980).

  10. Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques

    NASA Astrophysics Data System (ADS)

    Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.

    2017-10-01

    It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.

  11. Development of slew-rate-limited time-over-threshold (ToT) ASIC for a multi-channel silicon-based ion detector

    NASA Astrophysics Data System (ADS)

    Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.

    2018-01-01

    High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.

  12. Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity

    NASA Astrophysics Data System (ADS)

    Koenraadt, K. L. M.; Duysens, J.; Smeenk, M.; Keijsers, N. L. W.

    2012-08-01

    The poor spatial resolution of near-infrared spectroscopy (NIRS) makes it difficult to distinguish two closely located cortical areas from each other. Here, a combination of multi-channel NIRS and a centre of gravity (CoG) approach (widely accepted in the field of transcranial magnetic stimulation; TMS) was used to discriminate between closely located cortical areas activated during hand and foot movements. Similarly, the possibility of separating the more anteriorly represented discrete movements from rhythmic movements was studied. Thirteen healthy right-handed subjects performed rhythmic or discrete (‘task’) hand or foot (‘extremity’) tapping. Hemodynamic responses were measured using an 8-channel NIRS setup. For oxyhemoglobin (OHb) and deoxyhemoglobin (HHb), a CoG was determined for each condition using the mean hemodynamic responses and the coordinates of the channels. Significant hemodynamic responses were found for hand and foot movements. Based on the HHb responses, the NIRS-CoG of hand movements was located 0.6 cm more laterally compared to the NIRS-CoG of foot movements. For OHb responses no difference in NIRS-CoG was found for ‘extremity’ nor for ‘task’. This is the first NIRS study showing hemodynamic responses for isolated foot movements. Furthermore, HHb responses have the potential to be used in multi-channel NIRS experiments requiring differential activation of motor cortex areas linked to either hand or foot movements.

  13. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and

  14. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  15. New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research.

    PubMed

    Bína, David; Litvín, Radek; Vácha, Frantisek; Siffel, Pavel

    2006-06-01

    A multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam and differential optics has been constructed for measurements of light-induced absorbance and fluorescence yield changes in isolated chlorophyll-proteins, thylakoids and intact cells including algae and photosynthetic bacteria. The measuring beam, provided by a short (2 micros) pulse from a xenon flash lamp, is divided into a sample and reference channel by a broad band beam splitter. The spectrum in each channel is analyzed separately by a photodiode array. The use of flash measuring beam and differential detection yields high signal-to-noise ratio (noise level of 2 x 10(-4) in absorbance units per single flash) with negligible actinic effect. The instrument covers a spectral range between 300 and 1050 nm with a spectral resolution of 2.1, 6.4 or 12.8 nm dependent on the type of grating used. The optical design of the instrument enables measuring of the difference spectra during an actinic irradiation of samples with continuous light and/or saturation flashes. The time resolution of the spectrophotometer is limited by the length of Xe flash lamp pulses to 2 micros.

  16. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    NASA Astrophysics Data System (ADS)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  17. Decimetric-resolution stochastic inversion of shallow marine seismic reflection data; dedicated strategy and application to a geohazard case study

    NASA Astrophysics Data System (ADS)

    Provenzano, Giuseppe; Vardy, Mark E.; Henstock, Timothy J.

    2018-06-01

    Characterisation of the top 10-50 m of the subseabed is key for landslide hazard assessment, offshore structure engineering design and underground gas-storage monitoring. In this paper, we present a methodology for the stochastic inversion of ultra-high-frequency (UHF, 0.2-4.0 kHz) pre-stack seismic reflection waveforms, designed to obtain a decimetric-resolution remote elastic characterisation of the shallow sediments with minimal pre-processing and little a-priori information. We use a genetic algorithm in which the space of possible solutions is sampled by explicitly decoupling the short and long wavelengths of the P-wave velocity model. This approach, combined with an objective function robust to cycle skipping, outperforms a conventional model parametrisation when the ground-truth is offset from the centre of the search domain. The robust P-wave velocity model is used to precondition the width of the search range of the multi-parameter elastic inversion, thereby improving the efficiency in high dimensional parametrizations. Multiple independent runs provide a set of independent results from which the reproducibility of the solution can be estimated. In a real dataset acquired in Finneidfjord, Norway, we also demonstrate the sensitivity of UHF seismic inversion to shallow subseabed anomalies that play a role in submarine slope stability. Thus, the methodology has the potential to become an important practical tool for marine ground model building in spatially heterogeneous areas, reducing the reliance on expensive and time-consuming coring campaigns for geohazard mitigation in marine areas.

  18. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    NASA Astrophysics Data System (ADS)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  19. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  20. Miniature multichannel biotelemeter system

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.; Sumida, J. T. (Inventor)

    1974-01-01

    A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.

  1. Characterization of electrophysiological propagation by multichannel sensors

    PubMed Central

    Bradshaw, L. Alan; Kim, Juliana H.; Somarajan, Suseela; Richards, William O.; Cheng, Leo K.

    2016-01-01

    Objective The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (Second Order Blind Identification, SOBI and Surface Current Density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays. PMID:26595907

  2. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  3. Development of a multichannel hyperspectral imaging probe for food property and quality assessment

    USDA-ARS?s Scientific Manuscript database

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910-miscrometer fiber as a point light source and 30 light receiving fibers...

  4. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    NASA Astrophysics Data System (ADS)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad

  5. Multichannel sound reinforcement systems at work in a learning environment

    NASA Astrophysics Data System (ADS)

    Malek, John; Campbell, Colin

    2003-04-01

    Many people have experienced the entertaining benefits of a surround sound system, either in their own home or in a movie theater, but another application exists for multichannel sound that has for the most part gone unused. This is the application of multichannel sound systems to the learning environment. By incorporating a 7.1 surround processor and a touch panel interface programmable control system, the main lecture hall at the University of Michigan Taubman College of Architecture and Urban Planning has been converted from an ordinary lecture hall to a working audiovisual laboratory. The multichannel sound system is used in a wide variety of experiments, including exposure to sounds to test listeners' aural perception of the tonal characteristics of varying pitch, reverberation, speech transmission index, and sound-pressure level. The touch panel's custom interface allows a variety of user groups to control different parts of the AV system and provides preset capability that allows for numerous system configurations.

  6. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  7. High-Resolution Seismic Velocity and Attenuation Models of the Caucasus-Caspian Region

    DTIC Science & Technology

    2010-03-20

    investigators (Table 1) along with collaborating individuals from Kandilli Observatory (Dr. Niyazai Turkelli and Ugur Teoman), Azerbaijan Seismic Survey...student ( Ugur Teoman) visited the U.S. for several months in 2008 and worked at Missouri. A Georgian scientist (Dr. Tea Godaladze) also visited at

  8. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region

    NASA Astrophysics Data System (ADS)

    Meng, HaiYu; Xue, XiongXiong; Lin, Qi; Liu, GuiDong; Zhai, Xiang; Wang, LingLing

    2018-05-01

    A tunable, multi-channel plasmonic perfect absorber based on graphene is proposed. Simulated results reveal that the resonant wavelength can be effectively tuned in many ways (by changing the Fermi energy of graphene, radius of Si, or air gap between the Si and the graphene film). Furthermore, the multi-channel perfect absorber is obtained by changing the period of the system. Specifically, a high absorption is obtained by using a multilayer Bragg mirror in place of the metallic plate. We believe that such an absorber may have potential applications for multi-channel photodetectors, frequency selection, and electromagnetic-wave energy storage.

  9. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model.

    PubMed

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.

  10. Multichannel high-order harmonic generation from solids

    NASA Astrophysics Data System (ADS)

    Du, Tao-Yuan; Tang, Dong; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-04-01

    We studied the ultrafast dynamics of high-order harmonic generation (HHG) from solids numerically. It is found that a superposition of Bloch oscillation in the same band and Zenner tunneling to its neighboring conduction band (i.e., Bloch-Zener oscillation effect) play significant roles in HHG when the Bloch electrons cross the boundary of the first Brillouin zone. It increases the number of the harmonic emission channels. These multichannel signals extend the cutoff energy of the plateau in the HHG spectra and enhance both the intra- and interband contributions. The interference of different channels makes the structure of the HHG spectra complex. The multichannel dynamics in the monochromatic and two-color laser fields are demonstrated in a periodic potential model and single-crystal MgO, respectively. It provides an alternative way to control the ultrafast electron dynamics and HHG emission processes in solids.

  11. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  12. Improvement of coda phase detectability and reconstruction of global seismic data using frequency-wavenumber methods

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Thomas, Christine; Dokht, Ramin M. H.; Gu, Yu Jeffrey; Chen, Yunfeng

    2018-02-01

    Due to uneven earthquake source and receiver distributions, our abilities to isolate weak signals from interfering phases and reconstruct missing data are fundamental to improving the resolution of seismic imaging techniques. In this study, we introduce a modified frequency-wavenumber (fk) domain based approach using a `Projection Onto Convex Sets' (POCS) algorithm. POCS takes advantage of the sparsity of the dominating energies of phase arrivals in the fk domain, which enables an effective detection and reconstruction of the weak seismic signals. Moreover, our algorithm utilizes the 2-D Fourier transform to perform noise removal, interpolation and weak-phase extraction. To improve the directional resolution of the reconstructed data, we introduce a band-stop 2-D Fourier filter to remove the energy of unwanted, interfering phases in the fk domain, which significantly increases the robustness of the signal of interest. The effectiveness and benefits of this method are clearly demonstrated using both simulated and actual broadband recordings of PP precursors from an array located in Tanzania. When used properly, this method could significantly enhance the resolution of weak crust and mantle seismic phases.

  13. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    USGS Publications Warehouse

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  14. Co- and post-seismic shallow fault physics from near-field geodesy, seismic tomography, and mechanical modeling

    NASA Astrophysics Data System (ADS)

    Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.

    2017-12-01

    The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a

  15. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  16. Understanding perception of active noise control system through multichannel EEG analysis.

    PubMed

    Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad

    2018-06-01

    In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.

  17. Hydrocarbon Reservoir Prediction Using Bi-Gaussian S Transform Based Time-Frequency Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.

    2015-12-01

    Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the

  18. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    NASA Astrophysics Data System (ADS)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  19. Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill

    NASA Astrophysics Data System (ADS)

    Xu, Min; Stephen, R. A.; Canales, J. Pablo

    2017-12-01

    Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.

  20. Advantages of wet work for near-surface seismic reflection

    USGS Publications Warehouse

    Miller, R.D.; Markiewicz, R.D.; Rademacker, T.R.; Hopkins, R.; Rawcliffe, R.J.; Paquin, J.

    2007-01-01

    Benefits of shallow water settings (0.1 to 0.5 m) are pronounced on shallow, high-resolution seismic reflection images and, for examples discussed here, range from an order of magnitude increased signal-to-noise ratio to resolution potential elevated by more than 8 times. Overall data quality of high-resolution seismic reflection data at three sites notorious for poor near-surface reflection returns was improved by coupling the source and/or receivers to a well sorted and fully saturated surface. Half-period trace-to-trace static offsets evident in reflections from receivers planted into a creek bank were eliminated by moving the geophones to the base of a shallow creek at the toe of the bank. Reflections from a dipping bedrock were recorded with a dominant frequency approaching 1 KHz from hydrophones in 0.5 m of water at the toe of a dam using a hammer impact source. A tamper impacted by a dead blow hammer in a shallow (10-20 cm) deep creek produced reflections with a dominant frequency over 400 Hz at depths as shallow as 6 ms. ?? 2007 Society of Exploration Geophysicists.

  1. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline Staircases, Eddies, and Internal Waves

    NASA Astrophysics Data System (ADS)

    Buffett, G. G.; Krahmann, G.; Klaeschen, D.; Schroeder, K.; Sallarès, V.; Papenberg, C.; Ranero, C. R.; Zitellini, N.

    2017-11-01

    We use seismic oceanography to document and analyze oceanic thermohaline fine structure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline fine structure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface mesoscale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS, we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse toward the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin, the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double diffusion prevail.

  2. Efficiency analysis for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Rubel, Oleksii; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2016-10-01

    Modern remote sensing systems basically acquire images that are multichannel (dual- or multi-polarization, multi- and hyperspectral) where noise, usually with different characteristics, is present in all components. If noise is intensive, it is desirable to remove (suppress) it before applying methods of image classification, interpreting, and information extraction. This can be done using one of two approaches - by component-wise or by vectorial (3D) filtering. The second approach has shown itself to have higher efficiency if there is essential correlation between multichannel image components as this often happens for multichannel remote sensing data of different origin. Within the class of 3D filtering techniques, there are many possibilities and variations. In this paper, we consider filtering based on discrete cosine transform (DCT) and pay attention to two aspects of processing. First, we study in detail what changes in DCT coefficient statistics take place for 3D denoising compared to component-wise processing. Second, we analyze how selection of component images united into 3D data array influences efficiency of filtering and can the observed tendencies be exploited in processing of images with rather large number of channels.

  3. Development of a low cost method to estimate the seismic signature of a geothermal field from ambient seismic noise analysis, Authors: Tibuleac, I. M., J. Iovenitti, S. Pullammanapallil, D. von Seggern, F.H. Ibser, D. Shaw and H. McLahlan

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Iovenitti, J. L.; Pullammanappallil, S. K.; von Seggern, D. H.; Ibser, H.; Shaw, D.; McLachlan, H.

    2015-12-01

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. Seismic interferometry was used to extract Green's Functions (P and surface waves) from 21 days of continuous ambient seismic noise. With the advantage of S-velocity models estimated from surface waves, an ambient noise seismic reflection survey along a line (named Line 2), although with lower resolution, reproduced the results of the active survey, when the ambient seismic noise was not contaminated by strong cultural noise. Ambient noise resolution was less at depth (below 1000m) compared to the active survey. Useful information could be recovered from ambient seismic noise, including dipping features and fault locations. Processing method tests were developed, with potential to improve the virtual reflection survey results. Through innovative signal processing techniques, periods not typically analyzed with high frequency sensors were used in this study to obtain seismic velocity model information to a depth of 1.4km. New seismic parameters such as Green's Function reflection component lateral variations, waveform entropy, stochastic parameters (Correlation Length and Hurst number) and spectral frequency content extracted from active and passive surveys showed potential to indicate geothermal favorability through their correlation with high temperature anomalies, and showed potential as fault indicators, thus reducing the uncertainty in fault identification. Geothermal favorability maps along ambient seismic Line 2 were generated considering temperature, lithology and the seismic parameters investigated in this study and compared to the active Line 2 results. Pseudo-favorability maps were also generated using only the seismic parameters analyzed in this study.

  4. Variability in seismic properties of the décollement offshore Central Sumatra

    NASA Astrophysics Data System (ADS)

    Henstock, T.; Gardner, K.

    2016-12-01

    The plate boundary fault properties along subduction margins are primary controls on the magnitude, location and timing of megathrust earthquakes. We have reprocessed and analysed multichannel seismic reflection data from the Sumatra margin between Simeulue and Siberut; we have been careful to preserve amplitudes in order to allow us to investigate the properties of faults within the accretionary prism and the main plate boundary fault. Faults near the deformation front and beneath the initial folds clearly extend to oceanic basement, and the same is largely true where they can be clearly identified within the main part of the prism; limited exceptions appear to be present around topographic features on the downgoing plate. The biggest uncertainty in true amplitude studies is how to compensate for attenuation of the seismic waves. We use the variation in amplitude as a function of the prism thickness to estimate the effect of attenuation. Once the effects of attenuation are removed, absolute estimated reflection coefficients for the composite basement/decollement reflection are typically 0.1-0.15, although a small number of profiles show reflection coefficients as high as 0.2. The most likely cause of these variations is fluid content and pressure; we show examples where high amplitude prism faults link to a low amplitude decollement, suggesting hydraulic connectivity.

  5. Full Waveform Adjoint Seismic Tomography of the Antarctic Plate

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    Recent studies investigating the response and influence of the solid Earth on the evolution of the cryosphere demonstrate the need to account for 3D rheological structure to better predict ice sheet dynamics, stability, and future sea level impact, as well as to improve glacial isostatic adjustment models and more accurately measure ice mass loss. Critical rheological properties like mantle viscosity and lithospheric thickness may be estimated from shear wave velocity models that, for Antarctica, would ideally possess regional-scale resolution extending down to at least the base of the transition zone (i.e. 670 km depth). However, current global- and continental-scale seismic velocity models are unable to obtain both the resolution and spatial coverage necessary, do not take advantage of the full set of available Antarctic data, and, in most instance, employ traditional seismic imaging techniques that utilize limited seismogram information. We utilize 3-component earthquake waveforms from almost 300 Antarctic broadband seismic stations and 26 southern mid-latitude stations from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) between 2001-2003 and 2007-2016 to conduct a full-waveform adjoint inversion for Antarctica and surrounding regions of the Antarctic plate. Necessary forward and adjoint wavefield simulations are performed utilizing SPECFEM3D_GLOBE with the aid of the Texas Advanced Computing Center. We utilize phase observations from seismogram segments containing P, S, Rayleigh, and Love waves, including reflections and overtones, which are autonomously identified using FLEXWIN. The FLEXWIN analysis is carried out over a short (15-50 s) and long (initially 50-150 s) period band that target body waves, or body and surface waves, respectively. As our model is iteratively refined, the short-period corner of the long period band is gradually reduced to 25 s as the model converges over 20 linearized inversion iterations. We will briefly present this new high-resolution

  6. Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gallart, Josep; Carbonell, Ramon

    2016-04-01

    The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera

  7. Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.

    PubMed

    Richardson, James E; Melosh, H Jay; Greenberg, Richard

    2004-11-26

    High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters.

  8. 75 FR 59645 - Radio Broadcast Services and Multichannel Video and Cable Television Service; Clarification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 73 and 76 Radio Broadcast Services and Multichannel Video and Cable Television Service; Clarification Regarding Information Collection Requirements AGENCY... Commission has published a number of requirements related to Radio Broadcast Services and Multichannel Video...

  9. Morphologic and seismic evidence of rapid submergence offshore Cide-Sinop in the southern Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz

    2018-06-01

    Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.

  10. Seismic facies analysis based on self-organizing map and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Du, Hao-kun; Cao, Jun-xing; Xue, Ya-juan; Wang, Xing-jian

    2015-01-01

    Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and their time window have an obvious effect on the validity of classification and require iterative experimentation and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition (EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for validation. The application results show that seismic facies analysis can be improved and better help the interpretation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

  11. First images of the crustal structure across the central Algerian margin, off Tipaza (West Algiers) from deep penetrating seismic data: new information to constrain the opening of the Algerian basin

    NASA Astrophysics Data System (ADS)

    Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.

    2011-12-01

    The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and

  12. Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity

    NASA Astrophysics Data System (ADS)

    Montoya-Noguera, Silvana; Wang, Yu

    2017-04-01

    The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.

  13. The Sunda-Banda Arc Transition: New Insights From Marine Wide-Angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Planert, L.; Shulgin, A.; Kopp, H.; Mueller, C.; Flueh, E.; Lueschen, E.; Engels, M.; Dayuf Jusuf, M.

    2007-12-01

    End of 2006, RV SONNE cruise SO190 SINDBAD (Seismic and Geoacoustic Investigations along the Sunda- Banda Arc Transition) went south of the Indonesian archipelago to acquire various geophysical datasets between 112 °E and 122 °E. The main goal of the project is to investigate the modifications of the lower plate (variability in the plate roughness, transition from oceanic to continental lower plate) and their effects on the tectonics of the upper plate (development of an outer high and forearc basin, accretionary and erosive processes). The tectonic style changes in neighboring margin segments from an oceanic plate-island arc subduction along the eastern Sunda margin to a continental plate-island arc collision along the Banda margin. Moreover, the character of the incoming oceanic plate varies from the rough topography in the area where the Roo Rise is subducting off eastern Java, to the smooth oceanic seafloor of the Argo- Abyssal Plain subducting off Bali, Lombok, and Sumbawa. In order to cover the entire variations of the lower plate, seven seismic refraction profiles were conducted along four major north-south oriented corridors of the margin, at 113 °E, 116 °E, 119 °E, and 121 °E, as well as three profiles running perpendicular to the major corridors. A total of 239 ocean bottom hydrophone and seismometer deployments were successfully recovered. Shooting was conducted along 1020 nm of seismic profiles using a G-gun cluster of 64 l. Here, we present velocity models obtained by applying a tomographic approach which jointly inverts for refracted and reflected phases. Additional geometry and velocity information for the uppermost layers, obtained by prestack depth migration of multichannel seismic reflection data (see poster of Mueller et al. in this session), is incorporated into our models and held fixed during the iterations. geomar.de/index.php?id=sindbad

  14. Preliminary results from combined wide-angle and reflection seismic data in the Natal Valley, South Mozambique margin across the Almirante Leite volcanic ridge : MZ2 profile (MOZ3/5 cruise).

    NASA Astrophysics Data System (ADS)

    Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500

  15. Impact of Topography on Seismic Amplification During the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Khan, S.; van der Meijde, M.; van der Werff, H.; Shafique, M.

    2016-12-01

    This study assesses topographic amplification of seismic response during the 2005 Kashmir Earthquake in northern Pakistan. Topography scatters seismic waves, which causes variation in seismic response on the surface of the earth. During the Kashmir earthquake, topography induced amplification was suspected to have had major influence on the damage of infrastructure. We did a 3-dimensional simulation of the event using SPECFEM3D software. We first analyzed the impact of data resolution (mesh and Digital Elevation Model) on the derived seismic response. ASTER GDEM elevation data was used to build a 3D finite element mesh, and the parameters (latitude, longitude, depth, moment tensor) of the Kashmir earthquake were used in simulating the event. Our results show amplification of seismic response on ridges and de-amplification in valleys. It was also found that slopes facing away from the source receive an amplified seismic response when compared to slopes facing towards the source. The PGD would regularly fall within the range 0.23-5.8 meters. The topographic amplification causes local changes in the range of -2.50 to +3.50 meters; causing the PGD to fall in the range of 0.36-7.85 meters.

  16. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  17. Location, Reprocessing, and Analysis of Two Dimensional Seismic Reflection Data on the Jicarilla Apache Indian Reservation, New Mexico, Final Report, September 1, 1997-February 1, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis

    2000-06-08

    Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences

  18. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    PubMed

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  19. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear

  20. Finite-Difference Numerical Simulation of Seismic Gradiometry

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Haney, M. M.

    2006-12-01

    We use the phrase seismic gradiometry to refer to the developing research area involving measurement, modeling, analysis, and interpretation of spatial derivatives (or differences) of a seismic wavefield. In analogy with gradiometric methods used in gravity and magnetic exploration, seismic gradiometry offers the potential for enhancing resolution, and revealing new (or hitherto obscure) information about the subsurface. For example, measurement of pressure and rotation enables the decomposition of recorded seismic data into compressional (P) and shear (S) components. Additionally, a complete observation of the total seismic wavefield at a single receiver (including both rectilinear and rotational motions) offers the possibility of inferring the type, speed, and direction of an incident seismic wave. Spatially extended receiver arrays, conventionally used for such directional and phase speed determinations, may be dispensed with. Seismic wave propagation algorithms based on the explicit, time-domain, finite-difference (FD) numerical method are well-suited for investigating gradiometric effects. We have implemented in our acoustic, elastic, and poroelastic algorithms a point receiver that records the 9 components of the particle velocity gradient tensor. Pressure and particle rotation are obtained by forming particular linear combinations of these tensor components, and integrating with respect to time. All algorithms entail 3D O(2,4) FD solutions of coupled, first- order systems of partial differential equations on uniformly-spaced staggered spatial and temporal grids. Numerical tests with a 1D model composed of homogeneous and isotropic elastic layers show isolation of P, SV, and SH phases recorded in a multiple borehole configuration, even in the case of interfering events. Synthetic traces recorded by geophones and rotation receivers in a shallow crosswell geometry with randomly heterogeneous poroelastic models also illustrate clear P (fast and slow) and S