Science.gov

Sample records for resolved hydrogen gas

  1. SPATIALLY AND SPECTRALLY RESOLVED HYDROGEN GAS WITHIN 0.1 AU OF T TAURI AND HERBIG Ae/Be STARS

    SciTech Connect

    Eisner, J. A.; Monnier, J. D.; Woillez, J.; Ragland, S.; Wizinowich, P.; Akeson, R. L.; Millan-Gabet, R.; Graham, J. R.; Hillenbrand, L. A.; Pott, J.-U.

    2010-08-01

    We present near-infrared observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milliarcseconds and a spectral resolution of {approx}2000. Our observations spatially resolve gas and dust in the inner regions of protoplanetary disks, and spectrally resolve broad-linewidth emission from the Br{gamma} transition of hydrogen gas. We use the technique of spectro-astrometry to determine centroids of different velocity components of this gaseous emission at a precision orders of magnitude better than the angular resolution. In all sources, we find the gaseous emission to be more compact than or distributed on similar spatial scales to the dust emission. We attempt to fit the data with models including both dust and Br{gamma}-emitting gas, and we consider both disk and infall/outflow morphologies for the gaseous matter. In most cases where we can distinguish between these two models, the data show a preference for infall/outflow models. In all cases, our data appear consistent with the presence of some gas at stellocentric radii of {approx}0.01 AU. Our findings support the hypothesis that Br{gamma} emission generally traces magnetospherically driven accretion and/or outflows in young star/disk systems.

  2. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  3. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  4. Gas controlled hydrogen fermentation.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Mohd-Zaki, Zuhaida; Zeng, Raymond J; Bernet, Nicolas; Pratt, Steven; Steyer, Jean-Philippe; Batstone, Damien John

    2012-04-01

    Acidogenic fermentation is an anaerobic process of double purpose, while treating organic residues it produces chemical compounds, such as hydrogen, ethanol and organic acids. Therefore, acidogenic fermentation arises as an attractive biotechnology process towards the biorefinery concept. Moreover, this process does not need sterile operating conditions and works under a wide range of pH. Changes of operating conditions produce metabolic shifts, inducing variability on acidogenic product yield. To induce those changes, experiments, based on reactor headspace N(2)-flushing (gas phase), were designed. A major result was the hydrogen yield increase from 1 to 3.25±0.4 ( [Formula: see text] ) at pH 4.5 and N(2)-flushing of 58.4 (L·d(-1)). This yield is close to the theoretical acidogenic value (4 [Formula: see text] ). The mechanisms that explain this increase on hydrogen yield shifts are related to the thermodynamics of three metabolic reactions: lactate hydrogenase, NADH hydrogenase and homoacetogenesis, which are affected by the low hydrogen partial pressures. PMID:22342590

  5. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  6. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  7. Hydrogen gas relief valve

    DOEpatents

    Whittlesey, Curtis C.

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  8. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  9. Device removes hydrogen gas from enclosed spaces

    NASA Technical Reports Server (NTRS)

    Carson, W. N.

    1966-01-01

    Hydrogen-oxidant galvanic cell removes small amounts of hydrogen gas continually released from equipment, such as vented silver-zinc batteries, in enclosed compartments where air venting is not feasible. These cells are used in satellite compartments.

  10. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  11. Hydrogen gas sensor and method of manufacture

    DOEpatents

    McKee, John M.

    1991-01-01

    A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.

  12. Conversion of glycerol to hydrogen rich gas.

    PubMed

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas. PMID:24043264

  13. Taxis Toward Hydrogen Gas by Methanococcus maripaludis

    PubMed Central

    Brileya, Kristen A.; Connolly, James M.; Downey, Carey; Gerlach, Robin; Fields, Matthew W.

    2013-01-01

    Knowledge of taxis (directed swimming) in the Archaea is currently expanding through identification of novel receptors, effectors, and proteins involved in signal transduction to the flagellar motor. Although the ability for biological cells to sense and swim toward hydrogen gas has been hypothesized for many years, this capacity has yet to be observed and demonstrated. Here we show that the average swimming velocity increases in the direction of a source of hydrogen gas for the methanogen, Methanococcus maripaludis using a capillary assay with anoxic gas-phase control and time-lapse microscopy. The results indicate that a methanogen couples motility to hydrogen concentration sensing and is the first direct observation of hydrogenotaxis in any domain of life. Hydrogenotaxis represents a strategy that would impart a competitive advantage to motile microorganisms that compete for hydrogen gas and would impact the C, S and N cycles. PMID:24189441

  14. Integrated Mirco-Machined Hydrogen Gas Sensors

    SciTech Connect

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  15. Probing Cosmic Gas Accretion with RESOLVE and ECO

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Eckert, Kathleen D.; Stark, David; Lagos, Claudia; Nasipak, Zachary; Moffett, Amanda J.; Baker, Ashley; Berlind, Andreas A.; Hoversten, Erik A.; Norris, Mark A.; RESOLVE Team

    2016-01-01

    We review results bearing on the existence, controlling factors, and mechanisms of cosmic gas accretion in the RESOLVE and ECO surveys. Volume-limited analysis of RESOLVE's complete census of HI-to-stellar mass ratios and star formation histories for ~1500 galaxies points to the necessity of an "open box" model of galaxy fueling, with the most gas-dominated galaxies doubling their stellar masses on ~Gyr timescales in a regime of rapid accretion. Transitions in gas richness and disk-building activity for isolated or central galaxies with halo masses near ~10^11.5 Msun and ~10^12 Msun plausibly correspond to the endpoints of a theoretically predicted transition in halo gas temperature that slows accretion across this range. The same mass range is associated with the initial grouping of isolated galaxies into common halos, where "isolated" is defined relative to the survey baryonic mass limits of >~10^9 Msun. Above 10^11.5 Msun, patterns in central vs. satellite gas richness as a function of group halo mass suggest that galaxy refueling is valved off from the inside out as the halo grows, with total quenching beyond the virial radius for halo masses >~10^13-13.5 Msun. Within the transition range from ~10^11.5-10^12 Msun, theoretical models predict >3 dex dispersion in ratios of uncooled halo gas to cold gas in galaxies (or more generally gas and stars). In RESOLVE and ECO, the baryonic mass function of galaxies in this transitional halo mass range displays signs of stripping or destruction of satellites, leading us to investigate a possible connection with halo gas heating using central galaxy color and group dynamics to probe group evolutionary state. Finally, we take a first look at how internal variations in metallicity, dynamics, and star formation constrain accretion mechanisms such as cold streams, induced extraplanar gas cooling, isotropic halo gas cooling, and gas-rich merging in different mass and environment regimes. The RESOLVE and ECO surveys have been

  16. Hydrogen-rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J. (Inventor)

    1976-01-01

    A process and apparatus are described for producing hydrogen-rich product gases. A spray of liquid hydrocarbon is mixed with a stream of air in a startup procedure and the mixture is ignited for partial oxidation. The stream of air is then heated by the resulting combustion to reach a temperature such that a signal is produced. The signal triggers a two way valve which directs liquid hydrocarbon from a spraying mechanism to a vaporizing mechanism with which a vaporized hydrocarbon is formed. The vaporized hydrocarbon is subsequently mixed with the heated air in the combustion chamber where partial oxidation takes place and hydrogen-rich product gases are produced.

  17. Regasification of liquefied natural gas and hydrogen

    NASA Astrophysics Data System (ADS)

    Tonkonog, V. G.; Tukmakov, A. L.; Muchitova, K. M.; Agalakov, U. A.; Serazetdinov, F. Sh; Gromov, B. C.

    2016-06-01

    Liquefied natural gas and hydrogen gasification process is suggested, in which vapor phase is generated by the decrease of internal energy of the liquid. Methane and hydrogen gasification processes have been numerically modeled. Flow rates of the methane and hydrogen through choke channel were defined. A satisfactory match between the modeled and experimental data for liquid nitrogen has been acquired. Technical suitability of the suggested process is proved. Based on the initial parameters of the cryogenic fluid, the amount of vapor phase is 5-20% of the flow rate.

  18. Spatially-resolved intracellular sensing of hydrogen peroxide in living cells

    PubMed Central

    Warren, Emilie A. K.; Netterfield, Tatiana S.; Sarkar, Saheli; Kemp, Melissa L.; Payne, Christine K.

    2015-01-01

    Understanding intracellular redox chemistry requires new tools for the site-specific visualization of intracellular oxidation. We have developed a spatially-resolved intracellular sensor of hydrogen peroxide, HyPer-Tau, for time-resolved imaging in live cells. This sensor consists of a hydrogen peroxide-sensing protein tethered to microtubules. We demonstrate the use of the HyPer-Tau sensor for three applications; dose-dependent response of human cells to exogenous hydrogen peroxide, a model immune response of mouse macrophages to stimulation by bacterial toxin, and a spatially-resolved response to localized delivery of hydrogen peroxide. These results demonstrate that HyPer-Tau can be used as an effective tool for tracking changes in spatially localized intracellular hydrogen peroxide and for future applications in redox signaling. PMID:26585385

  19. Mechanochemistry of lithium nitride under hydrogen gas.

    PubMed

    Li, Z; Zhang, J; Wang, S; Jiang, L; Latroche, M; Du, J; Cuevas, F

    2015-09-14

    Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiNH2 and LiH phases. The first reaction step comprises the transformation of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: β-Li3N + H2→ Li2NH + LiH. Reaction kinetics of the first step is zero-order. Its rate-limiting control is assigned to the collision frequency between milling balls and Li3N powder. In the second absorption step, lithium imide converts to lithium amide following the reaction scheme Li2NH + H2→ LiNH2 + LiH. Reaction kinetics is here limited by one-dimensional nucleation and the growth mechanism, which, in light of structural data, is assigned to the occurrence of lithium vacancies in the imide compound. This study provides new insights into the reaction paths and chemical kinetics of light hydrogen storage materials during their mechanochemical synthesis. PMID:26234206

  20. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  1. Sensoring hydrogen gas concentration using electrolyte made of proton

    SciTech Connect

    Ueda, Yoshikatsu; Kolesnikov, Alexander I; Koyanaka, Hideki

    2011-01-01

    Hydrogen gas promises to be a major clean fuel in the near future. Thus, sensors that can measure the concentrations of hydrogen gas over a wide dynamic range (e.g., 1 99.9%) are in demand for the production, storage, and utilization of hydrogen gas. However, it is difficult to directly measure hydrogen gas concentrations greater than 10% using conventional sensor [1 11]. We report a simple sensor using an electrolyte made of proton conductive manganese dioxide that enables in situmeasurements of hydrogen gas concentration over a wide range of 0.1 99.9% at room temperature.

  2. Site-Resolved Imaging with the Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Huber, Florian Gerhard

    The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.

  3. Spin- and angle-resolved spectroscopy of S 2p photoionization in the hydrogen sulfide molecule

    SciTech Connect

    Turri, G.; Snell, G.; Canton, S.E.; Bilodeau, R.C.; Langer, B.; Martins, M.; Kukk, E.; Cherepkov, N.; Bozek, J.D.; Kilcoyne, A.L.; Berrah, N.

    2004-08-01

    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed.

  4. TWRS hydrogen mitigation gas characterization system design and fabrication engineering task plan

    SciTech Connect

    Straalsund, E.K.

    1995-01-01

    The flammable gas watch-list (FGWL) tanks, which have demonstrated a gas release event (GRE) exceeding 0.625% hydrogen by volume will require additional characterization. The purpose of this additional characterization is to accurately measure the flammable and hazardous gas compositions and resulting lower flammability limit (LFL) of the tank vapor space during baseline and GRE emissions. Data from this characterization will help determine methods to resolve the unreviewed safety questions for the FGWL tanks. This document details organization responsibilities and engineering requirements for the design and fabrication of two gas characterization systems used to monitor flammable gas watch-list tanks.

  5. U-GAS process for production of hydrogen from coal

    SciTech Connect

    Dihu, R.J.; Patel, J.G.

    1982-01-01

    Today, hydrogen is produced mainly from natural gas and petroleum fractions. Tomorrow, because reserves of natural gas and oil are declining while demand continues to increase, they cannot be considered available for long-term, large-scale production of hydrogen. Hydrogen obtained from coal is expected to be the lowest cost, large-scale source of hydrogen in the future. The U-GAS coal gasification process and its potential application to the manufacture of hydrogen is discussed. Pilot plant results, the current status of the process, and economic projections for the cost of hydrogen manufactured are presented.

  6. Advanced IGCC/Hydrogen Gas Turbine Development

    SciTech Connect

    York, William; Hughes, Michael; Berry, Jonathan; Russell, Tamara; Lau, Y. C.; Liu, Shan; Arnett, Michael; Peck, Arthur; Tralshawala, Nilesh; Weber, Joseph; Benjamin, Marc; Iduate, Michelle; Kittleson, Jacob; Garcia-Crespo, Andres; Delvaux, John; Casanova, Fernando; Lacy, Ben; Brzek, Brian; Wolfe, Chris; Palafox, Pepe; Ding, Ben; Badding, Bruce; McDuffie, Dwayne; Zemsky, Christine

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  7. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  8. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  9. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  10. The properties of spatial resolved ionized gas uncovered by CALIFA

    NASA Astrophysics Data System (ADS)

    Sanchez, Sebastian

    2015-08-01

    We present here the last results we obtained on the spatial resolved analysis of the the stellar populations and ionized gas of disk-dominated galaxies based on CALIFA data. CALIFA is an ongoing IFS survey of galaxies in the Local Univese (0.005gas identifying the main properties of the HII-regions within the FoV. Both analyisis produce coherent analysis indicating that disk-galaxies growth inside out, with a chemical enrichment dominated by local processes, and limited effects of radial mixing or global outflows.

  11. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  12. Gas distribution equipment in hydrogen service - Phase II

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Huang, H. D.

    1980-01-01

    The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.

  13. Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies.

    PubMed

    Lawrence, David J; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H

    2010-03-01

    Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecraft's altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. PMID:20298147

  14. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  15. Two-stage coal liquefaction without gas-phase hydrogen

    DOEpatents

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  16. The RESOLVE Survey Atomic Gas Census and Environmental Influences on Galaxy Gas Content

    NASA Astrophysics Data System (ADS)

    Stark, David; Kannappan, Sheila; Eckert, Kathleen D.; Jonathan, Florez; Hall, Kirsten; Watson, Linda C.; Hoversten, Erik A.; Burchett, Joseph; Guynn, David; Baker, Ashley; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.; Haynes, Martha P.; Giovanelli, Riccardo; Leroy, Adam K.; Pisano, Daniel J.; Wei, Lisa H.; Gonzalez, Roberto; RESOLVE Team

    2016-01-01

    We present the >93% complete 21cm inventory for the RESOLVE survey, a volume-limited census of ~1500 galaxies spanning diverse environments and probing baryonic masses down to ~109 M⊙. A key strength of the 21cm observational program is its fractional mass limited design, which yields an unbiased inventory of atomic gas mass, with either clean detections or strong upper limits <5-10% of stellar mass. We combine this gas census with metrics that parameterize environment from group scales (group dark matter halo mass) up to large-scale structure (mass density of the cosmic web and classification into filaments, walls, and voids) to investigate the influence of small and large-scale environment on galaxy gas content. We show that satellites in groups down to 1012 M⊙ have lower gas fractions compared to centrals at similar stellar mass, suggesting that group processes that deplete gas content are active well below the large group/cluster scale. In addition, at fixed halo mass both centrals and satellites in large-scale walls have systematically lower gas fractions than galaxies in filaments or voids, and this trend cannot be fully explained by differing stellar mass distributions within these large-scale environments. Lastly, we show that the abundance of gas-poor (gas-to-stellar mass ratio < 0.1) low halo-mass (<1011.4 M⊙) centrals increases with large-scale structure density, and that these centrals tend to reside closer to the outskirts of >1012 M⊙ groups than do more gas-rich but otherwise analogous low halo-mass centrals, suggesting that the gas-poor centrals have lost their gas in flyby interactions with the nearby groups. We discuss how the observed trends may be shaped by a number of physical processes such as gas stripping, starvation, and halo assembly bias. This project has been supported by NSF funding for the RESOLVE survey (AST-0955368), the GBT Student Observing Support program, and a UNC Royster Society of Fellows Dissertation Completion

  17. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    NASA Technical Reports Server (NTRS)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  18. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  19. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    SciTech Connect

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  20. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  1. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  2. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    SciTech Connect

    Dixon, Sam Charles, Christine; Dedrick, James; Boswell, Rod; Gans, Timo; O'Connell, Deborah

    2014-07-07

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H{sub 2} gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  3. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  4. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    SciTech Connect

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  5. Quantitative determination of hydrogen in solids by gas chromatography.

    PubMed

    Addach, H; Berçot, P; Wery, M; Rezrazi, M

    2004-11-19

    Processes such as electroplating or acid cleaning are notorious causes of post-processing failure through hydrogen embrittlement. So, the determination of amounts of hydrogen in metals is of great importance. An analysis method for investigation of H content in solids has been established based on hot extraction and gas chromatography system. Hot extraction in inert gas enables complete and/or partial removal of the hydrogen from the samples. A gas chromatography system is used to determine quantitatively the amount of thermally desorbed hydrogen. An investigation of the baking operating conditions is made of the hydrogen desorption rate of zinc-plated steel parts. Then, an analysis of the polarisation conditions upon chromium electroplating is given. PMID:15584242

  6. Probing second-sphere hydrogen-bonding interactions in metal complexes with time-resolved photoacoustic

    NASA Astrophysics Data System (ADS)

    Borsarelli, C. D.

    2005-06-01

    Depending on the Lewis acid-base properties of the ligand moiety and the surrounding molecules, some coordination metal complexes can interact with the solvent molecules through second-sphere donor-acceptor (SSDA) interactions. In aqueous media, hydrogen bonding governs the solute-solvent interactions. In this report, the enthalpy content, δHMLCT, and the structural volume change, δVMLCT, associated with the formation and decay of the metal-to-ligand charge-transfer triplet state (^3MLCT) of ruthenium (II) bipyridine cyano complexes were determined using time-resolved photoacoustics (TRP), in water, water pools of reverse micelles, and in the presence of polyammonium macrocycle [32]ane-[N8H8]8+, for the formation of supercomplexes. The results are explained as function of the structure and properties of the hydrogen-bonding interactions between the metal complexes and the surrounding molecules.

  7. Gaseous fueled vehicles: A role for natural gas and hydrogen

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.

    1991-01-01

    The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

  8. Time-dependent gas phase kinetics in a hydrogen diluted silane plasma

    SciTech Connect

    Nunomura, S.; Kondo, M.; Yoshida, I.

    2009-02-16

    The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10{sup -2}-6x10{sup 2} s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in < or approx. 2x10{sup -1} s, nanoparticle formation and plasma density reduction in 10{sup -1}-10{sup 0} s, polysilane accumulation in 10{sup 0}-10{sup 2} s, and silane depletion and electrode heating in > or approx. 10{sup 1} s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

  9. Time-dependent gas phase kinetics in a hydrogen diluted silane plasma

    NASA Astrophysics Data System (ADS)

    Nunomura, S.; Yoshida, I.; Kondo, M.

    2009-02-01

    The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10-2-6×102 s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in ≲2×10-1 s, nanoparticle formation and plasma density reduction in 10-1-100 s, polysilane accumulation in 100-102 s, and silane depletion and electrode heating in ≳101 s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

  10. Para-Hydrogen-Enhanced Gas-Phase Magnetic Resonance Imaging

    SciTech Connect

    Bouchard, Louis-S.; Kovtunov, Kirill V.; Burt, Scott R.; Anwar,M. Sabieh; Koptyug, Igor V.; Sagdeev, Renad Z.; Pines, Alexander

    2007-02-23

    Herein, we demonstrate magnetic resonance imaging (MRI) inthe gas phase using para-hydrogen (p-H2)-induced polarization. A reactantmixture of H2 enriched in the paraspin state and propylene gas is flowedthrough a reactor cell containing a heterogenized catalyst, Wilkinson'scatalyst immobilized on modified silica gel. The hydrogenation product,propane gas, is transferred to the NMR magnet and is spin-polarized as aresult of the ALTADENA (adiabatic longitudinal transport and dissociationengenders net alignment) effect. A polarization enhancement factor of 300relative to thermally polarized gas was observed in 1D1H NMR spectra.Enhancement was also evident in the magnetic resonance images. This isthe first demonstration of imaging a hyperpolarized gaseous productformed in a hydrogenation reaction catalyzed by a supported catalyst.This result may lead to several important applications, includingflow-through porous materials, gas-phase reaction kinetics and adsorptionstudies, and MRI in low fields, all using catalyst-free polarizedfluids.

  11. Catalytic hydrogenation of polyaromatic compounds using coke-oven gas instead of pure hydrogen

    SciTech Connect

    Braekman-Danheux, C.E.; Fontana, A.H.; Laurent, Ph.M.; Lolivier, Ph.

    1995-12-31

    In order to improve the economy of the conversion process of polyaromatic molecules to their hydroaromatics analogs, catalytic hydrogenation of phenanthrene has been carried out under pressure of different simulated coke-oven gases instead of pure hydrogen. The influence of reaction time, temperature and pressure on the hydrogenation yields and on the nature of the obtained products has been studied. Comparisons have been made with reaction with pure hydrogen in the same conditions. The influence of the different components of a real coke-oven gas has also been pointed out. The results indicate that coke-oven gas can be used if the goal is not to obtain perhydroaromatics compounds for a thermal cracking, but to give partly hydrogenated compounds to be used as hydrogen donor solvent in a coal liquefaction process. The results have been applied to coal-tar highly aromatic fractions.

  12. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  13. Hydrogen mitigation Gas Characterization System: System design description

    SciTech Connect

    Schneider, T.C.

    1998-07-17

    The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

  14. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  15. Resolved Molecular Gas Properties in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine

    2015-08-01

    Luminous infrared galaxies (LIRGs) in the local universe are mergers of gas-rich galaxies. The merger event funnels the molecular gas towards the central kiloparsec, compressing the gas, and triggering an extreme starburst, making LIRGs the perfect laboratory for studying extreme modes of star formation. We use the Submillimeter Array sample and observations of Wilson et al. (2008), supplemented with new CARMA and ALMA observations, to constrain the physical conditions such as temperature, density and column density of the molecular gas in the sample of 7 LIRGs. We use the radiative transfer code RADEX (van der Tak et al. 2007) and a Bayesian likelihood code to fit the most probable physical conditions. Comparison of the molecular gas physical conditions shows that earlier merger stage LIRGs such as Arp 299 and NGC 1614 have denser (> 103cm-1) molecular gas than a later stage merger such as VV 114 and NGC 2623. We measure the CO luminosity to H2 mass conversion factor, αCO, using the radiative transfer analysis results and find that the values are a factor of 4-10 times lower than the Galactic value of 4.3 M⊙ (K km s-1 pc2)-1. We also find unusually large 12CO-to-13CO abundance ratios (> 130), more than 2 times the local Galactic value.

  16. Automated gas burette system for evolved hydrogen measurements

    SciTech Connect

    Zheng Feng; Rassat, Scot D.; Helderandt, David J.; Caldwell, Dustin D.; Aardahl, Christopher L.; Autrey, Tom; Linehan, John C.; Rappe, Kenneth G.

    2008-08-15

    This paper reports a simple and efficient gas burette system that allows automated determination of evolved gas volume in real time using only temperature and pressure measurements. The system is reliable and has been used successfully to study the hydrogen release kinetics of ammonia borane thermolysis. The system is especially suitable for bench scale studies involving small batches and potentially rapid reaction kinetics.

  17. Hydrogen gas getters: Susceptibility to poisoning

    SciTech Connect

    Mroz, E.J.; Dye, R.C.; Duke, J.R.; Weinrach, J.

    1998-12-31

    About 40% ({approximately}9,000) of the {approximately}23,000 transuranic (TRU) waste drums at Los Alamos National Laboratory (LANL) are presently unshippable because conservative calculations suggest that the hydrogen concentration may exceed the lower explosive limit for hydrogen. This situation extends across nearly all DOE sites holding and generating TRU waste. The incorporation of a hydrogen getter such as DEB into the waste drums (or the TRUPACT II shipping containers) could substantially mitigate the explosion risk. The result would be to increase the number of drums that qualify for transportation to the Waste Isolation Pilot Plant (WIPP) without having to resort to expensive re-packaging or waste treatment technologies. However, before this approach can be implemented, key technical questions must be answered. Foremost among these is the question of whether the presence of other chemical vapors and gases in the drum might poison the catalytic reaction between hydrogen and DEB. This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to obtain fundamental information on the chemical mechanism of the catalytic reaction of hydrogen with one commonly used hydrogen getter, DEB. Experiments with these materials showed that the method of exposure affects the nature of the reaction products. The results of this work contributed to the development of a mechanistic model of the reaction.

  18. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  19. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  20. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  1. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  2. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  3. Quantum state resolved gas-surface reaction dynamics experiments: a tutorial review.

    PubMed

    Chadwick, Helen; Beck, Rainer D

    2016-07-01

    We present a tutorial review of our quantum state resolved experiments designed to study gas-surface reaction dynamics. The combination of a molecular beam, state specific reactant preparation by infrared laser pumping, and ultrahigh vacuum surface analysis techniques make it possible to study chemical reactivity at the gas-surface interface in unprecedented detail. We describe the experimental techniques used for state specific reactant preparation and for detection of surface bound reaction products developed in our laboratory. Using the example of the reaction of methane on Ni and Pt surfaces, we show how state resolved experiments uncovered clear evidence for vibrational mode specificity and bond selectivity, as well as steric effects in chemisorption reactions. The state resolved experimental data provides valuable benchmarks for comparison with theoretical models for gas-surface reactivity aiding in the development of a detailed microscopic understanding of chemical reactivity at the gas-surface interface. PMID:26235656

  4. Molecular processes in astrophysics: Calculations of hydrogen + hydrogen gas excitation, de-excitation, and cooling

    NASA Astrophysics Data System (ADS)

    Kelley, Matthew Thomas

    The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium and deuterium. In order for structure to form in the universe, this primordial gas must form atoms and cool. One of the significant cooling mechanisms is the collision of neutral atomic hydrogen with a neutral diatomic hydrogen molecule. This work performs calculations to determine collisional cooling rates of hydrogen using two potential surfaces.

  5. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  6. The first spatially resolved spectra of the beta Pic gas disk

    NASA Astrophysics Data System (ADS)

    Brandeker, A.

    2014-09-01

    beta Pictoris was known to be surrounded by gas long before the disk itself was discovered. The spatial distribution of the circumstellar gas, however, was largely unconstrained until emission from the gas was spatially resolved from the star, and could be directly mapped. A puzzling result was that neutral sodium was observed to orbit the star, since the stellar gravity for this element is irrelevant compared to the strong stellar radiation pressure. A possible solution was suggested when the gas disk was found to be much more carbon rich than would be expected from cosmic abundances: the carbon could act as a braking agent. But why, then, is the disk gas so carbon rich? In this short focus, I will describe how the first spatially resolved observations of circumstellar gas emission around beta Pic came about, what we learned from them, and what questions they generated.

  7. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  8. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  9. Refrigerated hydrogen gas jet for the Fermilab antiproton accumulator

    SciTech Connect

    Allspach, D.H.; Kendziora, C.L.; Marinelli, M.

    1995-07-01

    A hydrogen gas jet has been built for use at Fermilab for the study of charmonium spectroscopy in proton-antiproton annihilations. The hydrogen gas jet is part of an upgrade to a previous experiment which ran in the Fermilab 1990-1991 fixed target program utilizing a jet cooled to 80 K with liquid nitrogen. The jet delivers a defined stream of hydrogen gas which travels through a series of vacuum chambers and then intersects the circulating antiproton beam. The goal of the upgrade is to provide a hydrogen gas stream at least twice as dense as used for the earlier experiment to increase the interaction rate and allow an improved study of rare processes. This is achieved by cooling the stream to below 30 K using a Gifford-McMahon refrigerator. The jet apparatus is designed to allow motion in the plane perpendicular to the gas stream as well as angular positioning at the jet nozzle to provide a means of optimizing the interaction rate. Two skimmers located in the vacuum chambers are used to define the gas stream dimensions. The jet target vacuum chambers require constant pumping with turbomolecular pumps. The vacuum space around the jet is designed to have a large system pumping speed so that the chamber pressure can be maintained below an absolute pressure of 1 Pa. The jet will operate in the next fixed target run at Fermilab. Details of the design and test results are discussed.

  10. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  11. Ruthenium catalyzed hydrogenation of aldehyde with synthesis gas.

    PubMed

    Takahashi, Kohei; Nozaki, Kyoko

    2014-11-21

    The hydrogenation of aldehyde utilizing synthesis gas as a dihydrogen source was examined with various ruthenium catalysts, among which Ru-cyclopentadienone complexes (Shvo-type catalysts) exhibited higher activity than others. DFT calculations proved that the exchange of coordinated carbon monoxide by dihydrogen is relatively preferable in Shvo-type catalysts compared to others, which is a pre-equilibrium for the generation of the hydrogenation-active species. PMID:25372182

  12. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    SciTech Connect

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

  13. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  14. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  15. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  16. Automated gas burette system for evolved hydrogen measurements

    SciTech Connect

    Zheng, Feng; Rassat, Scot D.; Heldebrant, David J.; Caldwell, Dustin D.; Aardahl, Christopher L.; Autrey, Thomas; Linehan, John C.; Rappe, Kenneth G.

    2008-08-01

    The US Department of Energy has issued a Grand Challenge in Hydrogen Storage for Fuel Cell powered vehicles. New breakthroughs in materials and approaches are needed to facilitate the transition from an energy economy based upon fossil fuels to an energy economy based upon hydrogen. Consequently there is a need for readily accessible instrumentation to evaluate and quantify the potential of condensed phase hydrogen storage materials. Both the total system storage capacity (90 gm H2/kg system and 81 gm of H2/liter system) and rate of hydrogen gas desorption (2 gm H2/sec/100KW) are critical parameters specified by the experts in the automobile and energy industries that can be obtained with volumetric methods . In bench scale studies for material screening, gas burette systems have been routinely used to determine hydrogen gas release kinetics of sodium borohydride 1-14 and ammonia borane systems 15-23. Simple gas burettes with manual measurements at intervals are easy to set up but are not adequate to study fast kinetics or to carry out high throughput testing. Automated gas burettes of various designs have been reported in the literature 23-30. Piston-cylinder type burette systems can measure gas volume changes at constant pressure if they are equipped with a linear actuator that is driven by a pressure controller. The response time of the actuator motors does impose a limit on the rate of volume change allowed. Due to the response time limit and the complexity of such systems, gas burettes with constant pressure device have not found wide spread use in hydrogen storage studies 29,31. Some designs of automated gas burettes relied on measurements of the electrical resistance of the burette liquid to determine gas volume 23,27. In these systems, it is necessary to use special working fluids such as mercury or certain electrolyte solutions, requiring careful considerations of possible interactions among reaction compounds, electrode materials, and the burette fluid

  17. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    SciTech Connect

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  18. Gas storage materials, including hydrogen storage materials

    SciTech Connect

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  19. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  20. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  1. RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

    2015-09-01

    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass ˜ {10}9.1-9.3 {M}⊙ , probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H i mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well.

  2. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  3. Resolving gas-liquid interface geometry using light field imaging

    NASA Astrophysics Data System (ADS)

    Jafek, Alexander; Belden, Jesse; Truscott, Tadd

    2014-11-01

    We present a novel approach for reconstructing the geometry of a three-dimensional specular gas-liquid interface from an image captured by a light-field camera. Whereas the scanning of a diffuse surface can be accomplished with a simple projector-camera system, the local reconstruction of a specular surface is non-unique and requires a more constrained sampling method. In our set-up, a known array of laser points is reflected by the unknown specular surface onto the image plane of a light-field camera. For each illuminated pixel, possible surfaces are generated that are defined by a depth location and local surface normal vector. We show that when the aperture is sufficiently small we can find the exact location and orientation of the local surface. Further, we present an algorithm that allows us to reconstruct a reflective surface from images that are taken with wider apertures. The algorithm searches the possible surfaces for points and normal vectors that are most consistent with each other based on input parameters. We present our simulated results with experimental validation.

  4. Detection of hydrogen chloride gas in air

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1978-01-01

    Launch vehicle effluent (LVE) monitoring is part of NASA's overall tropospheric and stratospheric environmental program. Following nine techniques are evaluated and developed in report: bubbler method, pH measurements, indicator tubes, microcoulometers, modified condensation nuclei counter, dual-isotope absorption, gas-filter correlation, chemiluminescent nitric oxide detection, chemiluminescent luminol-oxidation detection.

  5. Development of a hydrogen gas sensor using microfabrication technology

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun; Wu, Qinghai; Stuczynski, Matthew; Madzsar, George C.

    1992-01-01

    Microfabrication and micromachining technologies are used to produce a hydrogen gas sensor based on a palladium-silver film. The sensor uses a heater that is fabricated by diffusing p-type borones into the substrate, forming a resistance heater. A diode for temperature measurement is produced using p-type boron and n-type phosphor diffused into the substrate. A thickness of the palladium-silver film is approximately 300 arcsec. The hydrogen gas sensor employs the proven palladium-silver diode structure and is surrounded by a phosphor doped resistance heater which can be heated up to a temperature of 250 C. Experimental results show that the sensor is capable of operating over a wide range of hydrogen concentration levels between 0-95 percent without any hysteresis effects.

  6. Dynamic gas bearing turbine technology in hydrogen plants

    NASA Astrophysics Data System (ADS)

    Ohlig, Klaus; Bischoff, Stefan

    2012-06-01

    Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004, axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants, the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna, Germany. Since its installation, this turbine has gathered more than 16,000 successful operating hours and has outperformed its oil bearing brother in terms of performance, maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper, this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology, both in terms of capital investment as well as operating expenses.

  7. Summary of gas release events detected by hydrogen monitoring

    SciTech Connect

    MCCAIN, D.J.

    1999-05-18

    This paper summarizes the results of monitoring tank headspace for flammable gas release events. In over 40 tank years of monitoring the largest detected release in a single-shell tank is 2.4 cubic meters of Hydrogen. In the double-shell tanks the largest release is 19.3 cubic meters except in SY-101 pre mixer pump installation condition.

  8. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    SciTech Connect

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  9. Vibrationally resolved charge transfer of O{sup 3+} with molecular hydrogen

    SciTech Connect

    Wang, J.G.; Stancil, P.C.; Turner, A.R.; Cooper, D.L.

    2004-06-01

    Charge transfer due to collisions of ground state O{sup 3+}(2s{sup 2}2p {sup 2}P{sup o}) ions with molecular hydrogen are investigated using the quantum-mechanical molecular-orbital (QMO) coupled-channel method. The QMO calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach for a representative range of orientation angles and diatom internuclear separations. Vibrationally resolved cross sections for nondissociative single electron capture are obtained for energies between 0.1 eV/u and 10 keV/u for H{sub 2} in its ground vibrational level using the infinite order sudden approximation (IOSA). Two further approximations are considered in which the electronic radial couplings are assumed to be independent of the diatom stretching. In the first case, vibrational motion is taken into account by multiplying the electronic radial couplings by Franck-Condon (FC) ionization factors while in the second, vibrational motion is completely neglected. We refer to these two approaches as the vibrational sudden approximation (VSA) and the electronic approximation (EA), respectively. In the latter, the resulting cross sections for electronic transitions are multiplied by FC factors to obtain relative vibrationally resolved cross sections which are independent of the collision energy (the centroid approximation). Comparison with existing experimental data for total and electronic state-selective cross sections shows best agreement with IOSA and VSA, but discrepancies for EA. The triplet-singlet electronic cross section ratio reveals a departure at low collision energies from the statistical value.

  10. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  11. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Yuhang; Russell, Armistead; Edgerton, Eric S.

    Four gas components (CO, SO 2, HNO 3 and NO y) and PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at four sites in Georgia and Alabama were analyzed with the positive matrix factorization (PMF) method. Multiple linear regression (MLR) was applied to regress the total PM mass against the estimated source contributions. The regression coefficients were used to scale the factor profiles. Nine factors were resolved at two urban sites (Atlanta, GA (JST) and Birmingham, AL (BHM)) and one rural site (Centerville, AL (CTR)). Eight factors were resolved at the other rural site (Yorkville, GA (YRK)). Six factors we refer to as soil, coal combustion/other, diesel emission, secondary sulfate, secondary nitrate, and wood smoke are common among the four sites. Two industry-related factors are similar at the two sites in the same state, but differ between states. Contrary to previous results using only PM 2.5 data with non-speciated EC and OC data, diesel and gasoline emission factors were resolved at the two urban sites instead of only one single motor vehicle factor; diesel and gasoline factors were also resolved at the CTR site and a diesel factor was found at YRK instead of no motor vehicle factors at the two rural sites. The inclusion of gas components also improved the identification of the coal combustion/other factor among the four sites. This study shows that inclusion of gas phase data and temperature-resolved fractional carbon data can enhance the resolving power of source apportionment studies, especially for the factors we refer to as gas, diesel, and coal combustion/other.

  12. Hydrogenation Reactions during Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Polymer Samples Using Hydrogen Carrier Gas.

    PubMed

    Watanabe, Atsushi; Watanabe, Chuichi; Freeman, Robert R; Teramae, Norio; Ohtani, Hajime

    2016-05-17

    Pyrolysis-gas chromatography/mass spectrometry of polymer samples is studied focusing on the effect of hydrogen (H2) carrier gas on chromatographic and spectral data. The pyrograms and the related mass spectra of high density polyethylene (HDPE), low density polyethylene, and polystyrene (PS) serve to illustrate the differences between the species formed in H2 and the helium environment. Differences in the pyrograms and the spectra are generally thought to be a result of the hydrogenation reaction of the pyrolyzates. From the peak intensity changes in the pyrograms of HDPE and PS, hydrogenation of unsaturated pyrolyzates is concluded to occur when the pyrolysis is done in H2. Moreover, additional hydrogenation of the pyrolyzates occurs in the electron ionization source of a MS detector when H2 is used as a carrier gas. Finally, the applicability of mass spectral libraries to characterize pyrograms obtained in H2 is illustrated using 24 polymers. The effect of the hydrogenation reaction on the library search results is found to be negligible for most polymer samples with polar and nonpolar monomer units. PMID:27125864

  13. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  14. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX. PMID:25318698

  15. Time-Resolved Pulsed Hydrogen/Deuterium Exchange Mass Spectrometry Probes Gaseous Proteins Structural Kinetics

    NASA Astrophysics Data System (ADS)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  16. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography.

    PubMed

    Fiorini, D; Boarelli, M C

    2016-07-01

    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). PMID:27236484

  17. Angle-resolved intensity and energy distributions of positive and negative hydrogen ions released from tungsten surface by molecular hydrogen ion impact

    NASA Astrophysics Data System (ADS)

    Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Tsumori, K.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Yamaoka, H.

    2015-08-01

    Hydrogen ion reflection properties have been investigated following the injection of H+, H2+ and H3+ ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H+ and H- ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H3+ ion injection and less than a half of that for H2+ ion injection. Other reflection properties are very similar to those of monoatomic H+ ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation.

  18. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  19. Hydrogen storage on high-surface-area carbon monoliths for Adsorb hydrogen Gas Vehicle

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Pfeifer, Peter

    2014-03-01

    Carbon briquetting can increase hydrogen volumetric storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed hydrogen gas vehicle storage tank. To optimize hydrogen storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis atmosphere. We found that carbon-to-binder ratio and pyrolysis atmosphere have influences on gravimetric excess adsorption. Compaction temperature has large influences on gravimetric and volumetric storage capacity. We have been able to optimize these parameters for high hydrogen storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument.

  20. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  1. Hydrogen gas embrittlement and the disc pressure test

    NASA Technical Reports Server (NTRS)

    Bachelet, E. J.; Troiano, A. R.

    1973-01-01

    A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.

  2. Instruction manual for UTEP weld gas hydrogen detector

    NASA Technical Reports Server (NTRS)

    Mcclure, John; Pang, Tonghui

    1992-01-01

    The instrument described in this manual was developed at the University of Texas at El Paso under contract from the National Aeronautics and Space Administration Marshall Space Flight Center. The instrument has been used to detect hydrogen in the shielding gas of Variable Polarity Plasma Arc (VPPA) welds at concentrations of less than 100 ppm. The instrument makes measurements in real time during the welding operation and provides the operator with an easily readable graphic display of the present level of hydrogen in the arc as well as the level of hydrogen over the past approximately five minutes. In this way the welder can not only tell if the present level of hydrogen is excessive, but can see what changes in weld parameters have done to the level of hydrogen. The welder can set the level of hydrogen that is considered critical and the instrument display will indicate when that level has been exceeded. All detection is from the torch side. All needed equipment is supplied by the developer except for an IBM PC compatible computer which must be supplied by the user. Source code is supplied in this manual so that the user can modify the control program as desired.

  3. Disposal pathway for tritiated reactive metals and tritiated hydrogen gas

    SciTech Connect

    Antoniazzi, A. B.; Morton, C. S.

    2008-07-15

    Kinectrics and its predecessor company Ontario Hydro Research Div. (a division of Ontario Hydro) had a fully operational tritium laboratory on site since the early 1980's. During those years numerous projects and experiments were undertaken using hydrogen and tritium for the most part. Metals with an affinity for hydrogen are commonly employed as scavengers of hydrogenic gases from process streams or as hydrogen storage mediums. The two most common of these metals used were depleted uranium and a zirconium-iron alloy (SAES St198). The break-up of Ontario Hydro through deregulation activities resulted in the building of a new, smaller, tritium laboratory and the decommissioning of the original tritium laboratory. Decommissioning activities resulted in the need to safely dispose of these reactive metals. Disposal of these metals is not straight forward. For safe, long term, disposal it has been decided to oxidize the metals in a controlled fashion. The oxidized beds, containing the metals, will be sent to a radioactive waste site for long term storage. Options for disposal of tritiated hydrogen gas are presented and discussed. This paper provides a disposal pathway for tritiated reactive metals and hydrogen thereby closing the loop in tritium handling. (authors)

  4. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1981-01-06

    A process for the removal of H/sub 2/S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO/sub 2/ at temperatures between 250* and 450* F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H/sub 2/, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H/sub 2/S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO/sub 2/ and H/sub 2/S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO, CS/sub 2/, SO/sub 3/ and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H/sub 2/S and subsequently removing the H/sub 2/S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  5. Process for removal of hydrogen sulfide from gas streams

    SciTech Connect

    Hansford, R.C.; Hass, R.H.

    1982-01-19

    A process for the removal of H2S from a feed gas, and the production of sulfur therefrom, is effected by oxidation with oxygen and/or SO2 at temperatures between 250 and 450/sup 0/F. The oxidation is conducted in the presence of an extremely stable oxidation catalyst comprising an oxide and/or sulfide of vanadium supported on a non-alkaline porous refractory oxide. Sulfur deposition and consequent catalyst deactivation are prevented by maintaining the partial pressure of free sulfur in the oxidation reactor below that necessary for condensation. H2, CO, and light hydrocarbons present in the feed gas are not oxidized. Typical uses of the process include the removal of H2S and the production of sulfur from sour natural gases or gases obtained from the gasification of coal. Feed gases which contain SO2 and H2S in mole ratios greater than 5, or which contain other gaseous sulfur compounds such as CO CS2, SO3 and mercaptans, can be desulfurized by hydrogenating all of such sulfur components to H2S and subsequently removing the H2S from the hydrogenated feed gas by the oxidation process of the invention. This hydrogenation-oxidation combination is especially contemplated for the desulfurization of claus tail gases and stack gas effluents.

  6. Laser Raman sensor for measurement of trace-hydrogen gas

    NASA Technical Reports Server (NTRS)

    Adler-Golden, Steven M.; Goldstein, Neil; Bien, Fritz; Matthew, Michael W.; Gersh, Michael E.; Cheng, Wai K.; Adams, Frederick W.

    1992-01-01

    A new optical hydrogen sensor based on spontaneous Raman scattering of laser light has been designed and constructed for rugged field use. It provides good sensitivity, rapid response, and the inherent Raman characteristics of linearity and background gas independence of the signal. Efficient light collection and discrimination by using fast optics and a bandpass interference filter compensate for the inefficiency of the Raman-scattering process. A multipass optical cavity with a Herriott-type configuration provides intense illumination from an air-cooled CW gas laser. The observed performance is in good agreement with the theoretical signal and noise level predictions.

  7. Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain.

    PubMed

    Chadwick, L J; Irgens, R L

    1991-02-01

    A hydrogen gas (H(2))-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H(2) with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H(2) production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity. PMID:16348423

  8. LOX vaporization in high-pressure, hydrogen-rich gas

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    LOX droplet vaporization in high-pressure hydrogen-rich gas is analyzed, with special attention to thermodynamic effects which compel the surface to heat to the critical state and to supercritical vaporization processes on heating to criticality. Subcritical vaporization is modeled using a quasi-steady diffusion-controlled gas-phase transport formulation coupled to an effective-conductivity internal-energy-transport model accounting for circulation effects. It is demonstrated how the droplet surface might heat to the critical state, for ambient pressures slightly greater than the critical pressure of oxygen, such that the bulk of propellant within the droplet remains substantially below the critical mixing temperature.

  9. Hydrogen and Oxygen Gas Production in the UT TRIGA Reflector

    SciTech Connect

    D. S. O'Kelly

    2000-11-12

    In December 1999, The University of Texas at Austin (UT) reported an unusual condition associated with the annular graphite reflector surrounding the Nuclear Engineering Teaching Laboratory (NETL) TRIGA reactor. The aluminum container encapsulating the graphite showed signs of bulging or swelling. Further, during an investigation of this occurrence, bubbles were detected coming from a weld in the aluminum. The gas composition was approximately 2:1 hydrogen to oxygen. After safety review and equipment fabrication, the reflector was successfully vented and flooded. The ratio of the gases produced is unusual, and the gas production mechanism has not yet been explained.

  10. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  11. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  12. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  13. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    SciTech Connect

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Mahoney, Lenna A.; Rassat, Scot D.; Wells, Beric E.; Bao, Jie; Boeringa, Gregory K.; Buchmiller, William C.; Burns, Carolyn A.; Chun, Jaehun; Karri, Naveen K.; Li, Huidong; Tran, Diana N.

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design

  14. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  15. Revisions to the hydrogen gas generation computer model

    SciTech Connect

    Jerrell, J.W.

    1992-08-31

    Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

  16. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    SciTech Connect

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  17. Hydrogen gettering the overpressure gas from highly radioactive liquids

    SciTech Connect

    Riley, D.L.; McCoy, J.C.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined.

  18. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  19. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

    2001-12-01

    Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

  1. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  2. Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy

    SciTech Connect

    Waslylenko, Walter; Frei, Heinz

    2007-01-31

    Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

  3. Silica membranes for hydrogen separation from coal gas. Final report

    SciTech Connect

    Gavalas, G.R.

    1996-01-01

    This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

  4. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  5. Selective permeation of hydrogen gas using cellulose nanofibril film.

    PubMed

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems. PMID:23594396

  6. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    SciTech Connect

    BRATZEL, D.R.

    2000-09-28

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks.

  7. Energy degradation of fast electrons in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Mccray, Richard

    1991-01-01

    An equation is derived for calculating the energy distribution of fast electrons in a partially ionized gas and a method is provided to solve for the electron degradation spectrum and the energy deposition in different forms (ionization, excitation, or heating). As an example, the energy degradation of fast electrons in a gas of pure hydrogen is calculated, considering excitations to the lowest 10 atomic levels. The Bethe approximation and the continuous slowing-down approximation are discussed and it is concluded that these approximations are accurate to the order of 20 percent for electrons with initial energy of greater than about keV. The method and results can be used to determine heating, excitations, and ionizations by high-energy photoelectrons or cosmic-ray particles in various astrophysical circumstances, such as the interstellar medium, supernova envelopes, and QSO emission-line clouds.

  8. Rotationally resolved spectroscopy of a librational fundamental band of hydrogen fluoride tetramer

    SciTech Connect

    Blake, Thomas A.; Sharpe, Steven W.; Xantheas, Sotiris S.

    2000-07-08

    The rotationally resolved spectrum of a fundamental band of hydrogen fluoride tetramer has been recorded using a pulsed slit-jet, diode laser spectrometer. The band has a parallel rotational structure and is assigned as the H-F out-of-plane libration fundamental with A{sub u} symmetry. Ninety-five ground state combination differences were fit to a symmetric top Hamiltonian to give the following ground state rotational constants: B{sup ''}=0.132 081(7) cm{sup -1}, D{sub J}{sup ''}=7.1(7)x10{sup -7} cm{sup -1}, D{sub JK}{sup ''}=-9(2)x10{sup -7} cm{sup -1}, H{sub JJJ}{sup ''}=6(2)x10{sup -10} cm{sup -1}, H{sub JJK}{sup ''}=9(7)x10{sup -10} cm{sup -1}, H{sub JKK}{sup ''}=-1.3(8)x10{sup -10} cm{sup -1}. A total of 190 transitions were fit to determine the upper state spectroscopic constants: v{sub 4}=714.7849(1) cm{sup -1}, B{sup '}=0.129 634(5) cm{sup -1}, {delta}(C-B)=0.001 344 cm{sup -1}, D{sub J}{sup '}=6.4(5)x10{sup -7} cm{sup -1}, D{sub JK}{sup '}=-4.5(6)x10{sup -7} cm{sup -1}, {delta}D{sub K}=2.92(8)x10{sup -6} cm{sup -1}, H{sub JJJ}{sup '}=3(1)x10{sup -10} cm{sup -1}, H{sub JKK}{sup '}=-1.55(6)x10{sup -8} cm{sup -1}; {delta}H{sub KKK}=-4.65(6)x10{sup -8} cm{sup -1}. Furthermore, a perpendicular band centered at 752.7 cm{sup -1} was observed. The band has a rotational line spacing that gives an approximate B{sup ''} value of 0.132 cm{sup -1}; it has been assigned as the E{sub u} symmetry, H-F in-plane libration fundamental of the HF tetramer. Finally, a parallel band was observed at 741.0 cm{sup -1} with B{sup ''}=0.076 cm{sup -1} and has been assigned as the A{sup ''} symmetry, H-F out-of-plane libration fundamental of the HF pentamer. Structural parameters and harmonic vibrational frequencies are estimated from first-principles, correlated MP2 and CCSD(T) calculations. These are the largest calculations performed to date for this system with respect to both orbital basis set and level of electron correlation. The CCSD(T) harmonic frequencies are, in particular

  9. Spatially Resolved Thermodynamics of the Partially Ionized Exciton Gas in GaAs.

    PubMed

    Bieker, S; Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W

    2015-06-01

    We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor. PMID:26196644

  10. Spatially Resolved Thermodynamics of the Partially Ionized Exciton Gas in GaAs

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Henn, T.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2015-06-01

    We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor.

  11. Resolve! Version 2.5: Flammable Gas Accident Analysis Tool Acceptance Test Plan and Test Results

    SciTech Connect

    LAVENDER, J.C.

    2000-10-17

    RESOLVE! Version 2 .5 is designed to quantify the risk and uncertainty of combustion accidents in double-shell tanks (DSTs) and single-shell tanks (SSTs). The purpose of the acceptance testing is to ensure that all of the options and features of the computer code run; to verify that the calculated results are consistent with each other; and to evaluate the effects of the changes to the parameter values on the frequency and consequence trends associated with flammable gas deflagrations or detonations.

  12. Hydrogenic Rydberg States of Molecular van der Waals Complexes: Resolved Rydberg Spectroscopy of DABCO-N2

    NASA Astrophysics Data System (ADS)

    Cockett, Martin C.; Watkins, Mark J.

    2004-01-01

    The complementary threshold ionization techniques of MATI and ZEKE spectroscopy have been used to reveal well-resolved, long-lived (>10 μs) hydrogenic Rydberg series (50≤n≤98) in a van der Waals complex formed between a polyatomic molecule and a diatomic molecule for the first time. The series are observed within 50 cm-1 of the adiabatic ionization threshold as well as two core-excited thresholds corresponding to excitation of up to two quanta in the van der Waals vibra­tional mode.

  13. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  14. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  15. Resolving flows around black holes: the impact of gas angular momentum

    NASA Astrophysics Data System (ADS)

    Curtis, Michael; Sijacki, Debora

    2016-08-01

    Cosmological simulations almost invariably estimate the accretion of gas onto supermassive black holes using a Bondi-Hoyle-like prescription. Doing so ignores the effects of the angular momentum of the gas, which may prevent or significantly delay accreting material falling directly onto the black hole. We outline a black hole accretion rate prescription using a modified Bondi-Hoyle formulation that takes into account the angular momentum of the surrounding gas. Meaningful implementation of this modified Bondi-Hoyle formulation is only possible when the inner vorticity distribution is well resolved, which we achieve through the use of a super-Lagrangian refinement technique around black holes within our simulations. We then investigate the effects on black hole growth by performing simulations of isolated as well as merging disc galaxies using the moving-mesh code AREPO. We find that the gas angular momentum barrier can play an important role in limiting the growth of black holes, leading also to a several Gyr delay between the starburst and the quasar phase in major merger remnants. We stress, however, that the magnitude of this effect is highly sensitive to the thermodynamical state of the accreting gas and to the nature of the black hole feedback present.

  16. Resolving Galactic Feedback and Gas Accretion in NaI Absorption with MaNGA

    NASA Astrophysics Data System (ADS)

    Rubin, Kate; MaNGA Team

    2016-01-01

    Current models of galaxy formation require that the buildup of galactic stellar mass proceeds at a rate much slower than the rate at which gas is accreted onto dark matter halos. The implementation of winds in these models, however, has been primarily via ad hoc prescriptions, as the relationship between outflow morphology and kinematics and star formation activity is not well understood. In addition, empirical evidence for the inflow of gas onto star-forming galaxies has remained elusive. To address these issues, we analyze absorption line profiles for the NaI λλ5890, 5896 transition in spatially-resolved spectroscopy of nearby galaxies observed in the MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) survey. We identify outflows of cool (T~102 K) gas via the blueshift of the absorption lines. Initial results suggest that in systems in which outflows are detected, the equivalent width of the flow varies significantly over the surface of the galaxy, revealing a changing flow covering fraction/velocity within individual objects. We also measure the incidence of redshifted NaI absorption in this sample for constraints on the frequency and cross section of cool gas accretion. This analysis offers unique insight into the morphology, surface density, and velocity of cool inflow and outflow around nearby galaxies. Accurate estimates of these quantities are fundamental to understanding the role of gas flows in regulating galaxy growth.

  17. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect

    Cárdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650 °C to decompose the methane, and the second at 110 °C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  18. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    SciTech Connect

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  19. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    DOE PAGESBeta

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  20. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  1. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases – (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  2. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  3. Gas phase selective hydrogenation over oxide supported Ni-Au.

    PubMed

    Cárdenas-Lizana, Fernando; Keane, Mark A

    2015-11-14

    The chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN). Selective hydrogenation rate was higher over smaller Au particles and can be attributed to increased surface hydrogen (from TPD measurements) at higher metal dispersion. (S)TEM analysis has confirmed an equivalent metal particle size for the supported bimetallics at the same Au loading where TPR indicates Ni-Au interaction and EDX surface mapping established Ni in close proximity to Au on isolated nanoparticles with a composition (Au/Ni) close to the bulk value (= 10). Increased spillover hydrogen due to the incorporation of Ni in the bimetallics resulted in elevated -NO2 group reduction rate. Full selectivity to p-CAN was maintained over all the bimetallic catalysts. Conversion of m-DNB over the lower loaded Ni-Au/Al2O3 generated m-NAN as sole product. An increase in Ni content (0.01 → 0.1 mol%) or a switch from Al2O3 to TiO2 as support resulted in full -NO2 reduction (to m-phenylenediamine). Our results demonstrate the viability of Ni-promotion of Au in the continuous production of functionalised anilines. PMID:25752655

  4. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  5. Resolving Gas Flows in the Ultraluminous Starburst IRAS 23365+3604 with Keck LGSAO/OSIRIS

    NASA Astrophysics Data System (ADS)

    Martin, Crystal L.; Soto, Kurt T.

    2016-03-01

    Keck OSIRIS/LGSAO observations of the ultraluminous galaxy IRAS 23365+3604 resolve a circumnuclear bar (or irregular disk) of semimajor axis 0.″42 (520 pc) in Paα emission. The line-of-sight velocity of the ionized gas increases from the northeast toward the southwest; this gradient is perpendicular to the photometric major axis of the infrared emission. Two pairs of bends in the zero-velocity line are detected. The inner bend provides evidence for gas inflow onto the circumnuclear disk/bar structure. We interpret the gas kinematics on kiloparsec scales in relation to the molecular gas disk and multiphase outflow discovered previously. In particular, the fast component of the ouflow (detected previously in line wings) is not detected, adding support to the conjecture that the fast wind originates well beyond the nucleus. These data directly show the dynamics of gas inflow and outflow in the central kiloparsec of a late-stage, gas-rich merger and demonstrate the potential of integral field spectroscopy to improve our understanding of the role of gas flows during the growth phase of bulges and supermassive black holes. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The data were obtained with the OH Supressing Infrared Spectrograph (OSIRIS) behind the Laser Guide Star Adaptive Optics System.

  6. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film

    NASA Astrophysics Data System (ADS)

    Haija, Mohammad Abu; Ayesh, Ahmad I.; Ahmed, Sadiqa; Katsiotis, Marios S.

    2016-04-01

    Hydrogen gas sensors based on CuFe2O4 nanoparticle thin films are presented in this work. Each gas sensor was prepared by depositing CuFe2O4 thin film on a glass substrate by dc sputtering inside a high vacuum chamber. Argon inert gas was used to sputter the material from a composite sputtering target. Interdigitated metal electrodes were deposited on top of the thin films by thermal evaporation and shadow masking. The produced sensors were tested against hydrogen, hydrogen sulfide, and ethylene gases where they were found to be selective for hydrogen. The sensitivity of the produced sensors was maximum for hydrogen gas at 50 °C. In addition, the produced sensors exhibit linear response signal for hydrogen gas with concentrations up to 5%. Those sensors have potential to be used for industrial applications because of their low power requirement, functionality at low temperatures, and low production cost.

  7. Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development

    NASA Astrophysics Data System (ADS)

    Tenneti, Sudheer; Subramaniam, Shankar

    2014-01-01

    Gas-solid flows in nature and industrial applications are characterized by multiscale and nonlinear interactions that manifest as rich flow physics and pose unique modeling challenges. In this article, we review particle-resolved direct numerical simulation (PR-DNS) of the microscale governing equations for understanding gas-solid flow physics and obtaining quantitative information for model development. A clear connection between a microscale realization and meso/macroscale representation is necessary for PR-DNS to be used effectively for model development at the meso- and macroscale. Furthermore, the design of PR-DNS must address the computational challenges of parameterizing models in a high-dimensional parameter space and obtaining accurate statistics of flow properties from a finite number of realizations at acceptable grid resolution. This review also summarizes selected recent insights into the physics of momentum, kinetic energy, and heat transfer in gas-solid flows obtained from PR-DNS. Promising future applications of PR-DNS include the study of the effect of number fluctuations on hydrodynamics, instabilities in gas-solid flow, and wall-bounded flows.

  8. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis

    PubMed Central

    Zhou, Hao-xin; Han, Bing; Hou, Li-Min; An, Ting-Ting; Jia, Guang; Cheng, Zhuo-Xin; Ma, Yong; Zhou, Yi-Nan; Kong, Rui; Wang, Shuang-Jia; Wang, Yong-Wei; Sun, Xue-Jun; Pan, Shang-Ha; Sun, Bei

    2016-01-01

    Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP. PMID:27115738

  9. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

    2004-02-01

    This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space

  10. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  11. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions.

    PubMed

    Parigger, Christian G; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10(17) cm(-3) for time delays of 2.1 to 0.4 micros after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the Delta nu = +2 progression of the C(2) Swan system are discernable in the H(beta) and H(gamma) plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH(4) flow pressures of 2.7x10(5) Pa (25 psig) and 6.5x10(5) Pa (80 psig). PMID:19122690

  12. Why do the HIghMass Galaxies Have so Much Gas?: Studying Massive, Gas-Rich Galaxies at z~0 with Resolved HI and H2

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory L.; HIghMass Team

    2016-01-01

    In the standard ΛCDM cosmology, galaxies form via mergers of many smaller dark matter halos. Because mergers drive star formation, the most massive galaxies should also be the ones which have been the most efficient at converting their gas reservoirs into stars. This trend is seen observationally: in general, as stellar mass increases, gas fraction (GF = MHI/M*) decreases. Galaxies which have large reservoirs of atomic hydrogen (HI) are thus expected to be extremely rare, which was seemingly supported by earlier blind HI surveys.In seeming contradiction, ALFALFA, the Arecibo Legacy Fast ALFA Survey has observed a sample of 34 galaxies which are both massive (MHI>1010 M⊙) and have unusually high gas fractions (all ≥ 0.3; half are > 1). We call this sample HighMass. Unlike other extremely HI-massive samples, such galaxies are neither low surface brightness galaxies nor are they simply "scaled up" spirals. Could this gas be recently acquired, either from accreting small companions or directly from the cosmic web? Or is it primordial, and has been kept from forming stars, possibly because of an unusually high dark matter halo spin parameter?We present resolved HI, H2, and star formation properties of three of these HIghMass galaxies, and compare them with two HIghMass galaxies previously discussed in Hallenbeck et al. (2014). One of these galaxies, UGC 6168, appears in the process of transitioning from a quiescent to star-forming phase, as indicated by its bar and potential non-circular flows. A second, UGC 7899, has a clear warp, which could be evidence of recently accreted gas—but the presence of a warp is far from conclusive evidence. Both have moderately high dark matter halo spin parameters (λ' = 0.09), similar to the previously studied UGC 9037. The third, NGC 5230, looks undisturbed both optically and in its radio emission, but is in a group full of extragalactic gas. A neighboring galaxy has been significantly disrupted, and NGC 5230 may be in the

  13. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats

    PubMed Central

    Nielsen, Michael; Revsbech, Niels P.; Kühl, Michael

    2015-01-01

    We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5–5 pA per μmol L-1 H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8–10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1–2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats. PMID:26257714

  14. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    SciTech Connect

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  15. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  16. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    NASA Astrophysics Data System (ADS)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  17. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  18. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    SciTech Connect

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  20. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  1. Time-resolved measurements of desorbed gas during 1-MeV K+ pulsedbeam deposition in a stainless steel target

    SciTech Connect

    Bieniosek, F.M.; Prost, L.R.; Seidl, P.A.; Molvik, A.W.; KireeffCovo, M.

    2007-01-01

    Measurements were made of the density, species and velocity of the desorbed gas cloud on intense K{sup +} beam bombardment of a stainless steel target. RGA measurements indicate that the gas cloud consists of predominantly H{sub 2}. Energy analyzer measurements of doubly-ionized beam ions show that the ratio of hydrogen gas production to beam density was approximately 3000 at normal incidence. Optical measurements of the evolution of the gas cloud during the beam pulse show a distribution with an average expansion velocity of about 0.5 mm/{micro}s. Comparison is made with a simple model of the gas cloud behavior.

  2. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  3. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film

    NASA Astrophysics Data System (ADS)

    Yi, Liu; You-ping, Chen; Han, Song; Gang, Zhang

    2012-12-01

    Compared with the other hydrogen sensors, optical fiber hydrogen sensors based on thin films exhibits inherent safety, small volume, immunity to electromagnetic interference, and distributed remote sensing capability, but slower response characteristics. To improve response and recovery rate of the sensors, a novel reflection-type optical fiber hydrogen gas sensor with a 10 nm palladium and yttrium alloy thin film is fabricated. The alloy thin film shows a good hydrogen sensing property for hydrogen-containing atmosphere and a complete restorability for dry air at room temperature. The variation in response value of the sensor linearly increases with increased natural logarithm of hydrogen concentration (ln[H2]). The shortest response time and recovery response time to 4% hydrogen are 6 and 8 s, respectively. The hydrogen sensors based on Pd0.91Y0.09 alloy ultrathin film have potential applications in hydrogen detection and measurement.

  4. Formation of ordered gas-solid structures via solidification in metal-hydrogen systems

    SciTech Connect

    Shapovalov, V.I. |

    1998-12-31

    This work contains theoretical discussions concerning the large amount of previously published experimental data related to gas eutectic transformations in metal-hydrogen systems. Theories of pore nucleation and growth in these gas-solid materials will be presented and related to observed morphologies and structures. This work is intended to be helpful to theorists that work with metal-hydrogen systems, and experimentalists engaged in manufacturing technology development of these ordered gas-solid structures.

  5. Silica membranes for hydrogen separation in coal gas processing

    SciTech Connect

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  6. Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma

    PubMed

    van Der Heijden HW; Boogaarts; Mazouffre; van Der Mullen JA; Schram

    2000-04-01

    The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+/-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence. PMID:11088238

  7. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  8. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  9. Spatially and temporally resolved electron number density measurements in a decaying laser-induced plasma using hydrogen-alpha line profiles

    NASA Astrophysics Data System (ADS)

    Parigger, Christian; Plemmons, D. H.; Lewis, J. W. L.

    1995-06-01

    A Nd:YAG laser was operated at 1064 nm and with 6-ns pulse duration to achieve optical breakdown in gaseous hydrogen at pressures of 150 and 810 Torr. Spatially and temporally resolved laser-induced emission spectra were measured early in the plasma decay. With hydrogen-alpha line profiles, electron number density values were determined along the laser beam plasma in the range 1019 to 1016 cc -1.

  10. Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

    SciTech Connect

    Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-04-24

    We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

  11. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  12. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  13. Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts

    PubMed Central

    2015-01-01

    Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts. PMID:26618052

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  15. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  16. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with...

  17. A positive role for hydrogen gas in adventitious root development.

    PubMed

    Zhu, Yongchao; Liao, Weibiao

    2016-06-01

    Our recent study highlights the role of hydrogen gas (H2) in adventitious root development in cucumber. H2 is an effective gaseous signal molecule with the abilities to regulate plant growth and development and enhance plant resistance to environmental stimulus. In addition, the effect of H2 on fruit senescence and flowering time also has been reported. Adventitious root development is a critical step in plant vegetative propagation affected by a serious of signaling molecules, such as auxin, nitric oxide (NO), carbon oxide (CO), ethylene and Ca(2+). Observational evidence has shown that H2 can regulate adventitious root development in a dose-dependent manner. H2 may regulate HO-1/CO pathway through or not through NO pathway during adventitious rooting. Rooting-related enzymes, peroxidase, polyphenol oxidase, indoleacetic acid oxidase were required for H2-induced adventitious root. CsDNAJ-1, CsCPDK1/5, CsCDC6, CsAUX228-like, and CsAUX22D-like genes also were involved in this process. PMID:27171348

  18. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  19. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H{sub 2} {yields} H{sub 2} + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H{sub 2} reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H{sub 2} molecules. DH molecules formed in the D + H{sub 2} reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10{sup 3} molecules/cc. This thesis does not contain experimental results for the D + H{sub 2} reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  20. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies.

    PubMed

    Khanal, Anil; Pan, Yan; Brown, Leonid S; Konermann, Lars

    2012-12-01

    Kinetic folding experiments by pulsed hydrogen/deuterium exchange (HDX) mass spectrometry (MS) are a well-established tool for water-soluble proteins. To the best of our knowledge, the current study is the first that applies this approach to an integral membrane protein. The native state of bacteriorhodopsin (BR) comprises seven transmembrane helices and a covalently bound retinal cofactor. BR exposure to sodium dodecyl sulfate (SDS) induces partial unfolding and retinal loss. We employ a custom-built three-stage mixing device for pulsed-HDX/MS investigations of BR refolding. The reaction is triggered by mixing SDS-denatured protein with bicelles. After a variable folding time (10 ms to 24 h), the protein is exposed to excess D(2) O buffer under rapid exchange conditions. The HDX pulse is terminated by acid quenching after 24 ms. Subsequent off-line analysis is performed by size exclusion chromatography and electrospray MS. These measurements yield the number of protected backbone N-H sites as a function of folding time, reflecting the recovery of secondary structure. Our results indicate that much of the BR secondary structure is formed quite late during the reaction, on a time scale of 10 s and beyond. It is hoped that in the future it will be possible to extend the pulsed-HDX/MS approach employed here to membrane proteins other than BR. PMID:23280751

  1. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox.

    PubMed

    Zhang, Xi; Huang, Yongli; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Jiang, Qing; Sun, Chang Q

    2014-11-14

    The Mpemba paradox, that is, hotter water freezes faster than colder water, has baffled thinkers like Francis Bacon, René Descartes, and Aristotle since B.C. 350. However, a commonly accepted understanding or theoretical reproduction of this effect remains challenging. Numerical reproduction of observations, shown herewith, confirms that water skin supersolidity [Zhang et al., Phys. Chem. Chem. Phys., DOI: ] enhances the local thermal diffusivity favoring heat flowing outwardly in the liquid path. Analysis of experimental database reveals that the hydrogen bond (O:H-O) possesses memory to emit energy at a rate depending on its initial storage. Unlike other usual materials that lengthen and soften all bonds when they absorb thermal energy, water performs abnormally under heating to lengthen the O:H nonbond and shorten the H-O covalent bond through inter-oxygen Coulomb coupling [Sun et al., J. Phys. Chem. Lett., 2013, 4, 3238]. Cooling does the opposite to release energy, like releasing a coupled pair of bungees, at a rate of history dependence. Being sensitive to the source volume, skin radiation, and the drain temperature, the Mpemba effect proceeds only in the strictly non-adiabatic 'source-path-drain' cycling system for the heat "emission-conduction-dissipation" dynamics with a relaxation time that drops exponentially with the rise of the initial temperature of the liquid source. PMID:25253165

  2. Investigating the role of hydrogen in silicon deposition using an energy-resolved mass spectrometer and a Langmuir probe in an Ar/H{sub 2} radio frequency magnetron discharge

    SciTech Connect

    Mensah, S. L.; Naseem, Hameed H.; Abu-Safe, Husam; Gordon, M. H.

    2012-07-15

    The plasma parameters and ion energy distributions (IED) of the dominant species in an Ar-H{sub 2} discharge are investigated with an energy resolved mass spectrometer and a Langmuir probe. The plasmas are generated in a conventional magnetron chamber powered at 150 W, 13.56 MHz at hydrogen flow rates ranging from 0 to 25 sccm with a fixed argon gas flow rate of 15 sccm. Various H{sub n}{sup +}, SiH{sub n}{sup +}, SiH{sub n} fragments (with n = 1, 2, 3) together with Ar{sup +} and ArH{sup +} species are detected in the discharge. The most important species for the film deposition is SiH{sub n} (with n = 0, 1, 2). H fragments affect the hydrogen content in the material. The flux of Ar{sup +} decreases and the flux of ArH{sup +} increases when the hydrogen flow rate is increased; however, both fluxes saturate at hydrogen flow rates above 15 sccm. Electron density, n{sub e}, electron energy, T{sub e}, and ion density, n{sub i}, are estimated from the Langmuir probe data. T{sub e} is below 1.2 eV at hydrogen flow rates below 8 sccm, and about 2 eV at flow rates above 8 sccm. n{sub e} and n{sub i} decrease with increased hydrogen flow but the ratio of n{sub i} to n{sub e} increases. The formation of H{sup +} ions with energies above 36 eV and electrons with energies greater than 2 eV contributes to the decrease in hydrogen content at hydrogen flow rates above 8 sccm. Analysis of the IEDs indicates an inter-dependence of the species and their contribution to the thin film growth and properties.

  3. Refractory two-dimensional hole gas on hydrogenated diamond surface

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi

    2012-12-01

    Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al2O3 film on the diamond surface using an atomic-layer-deposition (ALD) method with an H2O oxidant at 450 °C. The 2DHG thus protected survived air annealing at 550 °C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 °C in vacuum and above 450 °C in an H2O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H2O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 °C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 °C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 °C and remained at least up to 290 °C. The identification of these adsorbates is open for further investigation.

  4. Refractory two-dimensional hole gas on hydrogenated diamond surface

    SciTech Connect

    Hiraiwa, Atsushi; Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi

    2012-12-15

    Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al{sub 2}O{sub 3} film on the diamond surface using an atomic-layer-deposition (ALD) method with an H{sub 2}O oxidant at 450 Degree-Sign C. The 2DHG thus protected survived air annealing at 550 Degree-Sign C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 Degree-Sign C in vacuum and above 450 Degree-Sign C in an H{sub 2}O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H{sub 2}O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 Degree-Sign C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 Degree-Sign C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 Degree-Sign C and remained at least up to 290 Degree-Sign C. The identification of these adsorbates is open for further investigation.

  5. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  6. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  7. First Operating Results of a Dynamic Gas Bearing Turbine in AN Industrial Hydrogen Liquefier

    NASA Astrophysics Data System (ADS)

    Bischoff, S.; Decker, L.

    2010-04-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  8. Study of the behavior of gas distribution equipment in hydrogen service, phase 2

    NASA Astrophysics Data System (ADS)

    Jasionowski, W. J.; Huang, H. D.

    1981-03-01

    The characteristics of gas distribution pipe in hydrogen service was studied. In experiments with three types of polyethylene natural gas piping, hydrogen permeation was found to be 4 to 6 times greater than methane permeation. Leakage experiments with methane/hydrogen blends showed no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow through leaks. Leak rates increased with increasing pressure and decreasing specific gravity. It is concluded that 13.7 x 10 to the 6th power SCF of natural gas could be lost annually in the U.S. by permeation; if hydrogen were distributed, the comparable loss would be 67.4 x 10 to the 6th power.

  9. FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER

    SciTech Connect

    Bischoff, S.; Decker, L.

    2010-04-09

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  10. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  11. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine.

    PubMed

    Ohta, Shigeo

    2014-10-01

    Molecular hydrogen (H2) has been accepted to be an inert and nonfunctional molecule in our body. We have turned this concept by demonstrating that H2 reacts with strong oxidants such as hydroxyl radical in cells, and proposed its potential for preventive and therapeutic applications. H2 has a number of advantages exhibiting extensive effects: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect signaling reactive oxygen species; therefore, there should be no or little adverse effects of H2. There are several methods to ingest or consume H2; inhaling H2 gas, drinking H2-dissolved water (H2-water), injecting H2-dissolved saline (H2-saline), taking an H2 bath, or dropping H2-saline into the eyes. The numerous publications on its biological and medical benefits revealed that H2 reduces oxidative stress not only by direct reactions with strong oxidants, but also indirectly by regulating various gene expressions. Moreover, by regulating the gene expressions, H2 functions as an anti-inflammatory and anti-apoptotic, and stimulates energy metabolism. In addition to growing evidence obtained by model animal experiments, extensive clinical examinations were performed or are under investigation. Since most drugs specifically act to their targets, H2 seems to differ from conventional pharmaceutical drugs. Owing to its great efficacy and lack of adverse effects, H2 has promising potential for clinical use against many diseases. PMID:24769081

  12. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  13. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  14. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples.

    PubMed

    Carr, R H; Bustin, R; Gibson, E K

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen. PMID:11542122

  15. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    NASA Technical Reports Server (NTRS)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  17. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  18. Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. Steel Mills.

    SciTech Connect

    Joseck, F.; Wang, M.; Wu, Y.; Energy Systems; DOE

    2008-02-01

    For this study, we examined the energy and emission effects of hydrogen production from coke oven gas (COG) on a well-to-wheels basis and compared these effects with those of other hydrogen production options, as well as with those of conventional gasoline and diesel options. We then estimated the magnitude of hydrogen production from COG in the United States and the number of hydrogen fuel cell vehicles (FCVs) that could potentially be fueled with the hydrogen produced from COG. Our analysis shows that this production pathway can achieve energy and greenhouse gas emission reduction benefits. This pathway is especially worth considering because first, the sources of COG are concentrated in the upper Midwest and in the Northeast United States, which would facilitate relatively cost-effective collection, transportation, and distribution of the produced hydrogen to refueling stations in these regions. Second, the amount of hydrogen that could be produced may fuel about 1.7 million cars, thus providing a vital near-term hydrogen production option for FCV applications.

  19. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    SciTech Connect

    Grubbs, R.K.; George, S.M.

    2006-05-15

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H{sub 2} pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H{sub 2} heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H{sub 2} flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H{sub 2} gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, {gamma}, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes.

  20. Thermal management of the adsorption-based vessel for hydrogeneous gas storage

    NASA Astrophysics Data System (ADS)

    Vasiliev, L. L.; Kanonchik, L. E.; Babenko, V. A.

    2012-09-01

    Thermal management is a design bottleneck in the creation of rational gas storage sorption systems. Inefficient heat transfer in a sorption bed is connected with a relatively low thermal conductivity (0.1-0.5 W/(mṡK)) and an appreciable sorption heat of activated gas storage materials. This work is devoted to the development of a thermally regulated onboard system of hydrogenous gas (methane and hydrogen) storage with the use of novel carbon sorbents. A hydrogenous gas storage system based on combined gas adsorption and compression at moderate pressures (3-6 MPa) and low temperatures (from the temperature of liquid nitrogen of about 77 K to a temperature of 273 K) is suggested.

  1. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  2. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  3. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  4. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  5. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  6. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  7. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a...

  9. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine....

  10. Gas-Assisted Annular Microsprayer for Sample Preparation for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Barnard, David; Shaikh, Tanvir R.; Meng, Xing; Mannella, Carmen A.; Yassin, Aymen; Agrawal, Rajendra; Wagenknecht, Terence; Lu, Toh-Ming

    2014-01-01

    Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 μm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 μm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction. PMID:25530679

  11. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  12. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  13. Insights into gas-phase reaction mechanisms of small carbon radicals using isomer-resolved product detection.

    PubMed

    Trevitt, Adam J; Goulay, Fabien

    2016-02-17

    For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth's atmosphere, the availability of quality chemical data is essential for predictive chemical models. These data include reaction rate coefficients and product branching fractions. This perspective overviews recent isomer-resolved production detection experiments for reactions of two of the most reactive gas phase radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational studies and other experiment techniques, flow tube isomer-resolved product detection have provided significant mechanistic details of these radical + neutral reactions with some general patterns emerging. PMID:26841339

  14. DIODE LASER-BASED MEASUREMENTS OF HYDROGEN FLUORIDE GAS DURING CHEMICAL SUPPRESSION OF FIRES

    EPA Science Inventory

    Near-infrared tunable diode laser (NIR-TDL) spectroscopy is used to quantify hydrogen fluoride (HF) gas produced during fire-suppressant testing of Halon alternatives. Results of comparisons with other techniques for measuring HF gas concentrations are discussed. Measurements of ...

  15. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  16. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    SciTech Connect

    Not Available

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  17. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    SciTech Connect

    Not Available

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  18. Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica.

    PubMed

    Daday, A; Platz, R A; Smith, G D

    1977-11-01

    An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5'-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described. PMID

  19. Anaerobic and Aerobic Hydrogen Gas Formation by the Blue-Green Alga Anabaena cylindrica

    PubMed Central

    Daday, Arlene; Platz, Rosalea A.; Smith, Geoffrey D.

    1977-01-01

    An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5′-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described. PMID

  20. Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen

    NASA Astrophysics Data System (ADS)

    San Marchi, C.; Somerday, B. P.; Zelinski, J.; Tang, X.; Schiroky, G. H.

    2007-11-01

    Thermal precharging of super duplex stainless steel 2507 with 125 wppm hydrogen significantly reduced tensile ductility and fracture toughness. Strain-hardened 2507 exhibited more severe ductility loss compared to the annealed microstructure. The reduction of area (RA) was between 80 and 85 pct for both microstructures in the noncharged condition, while reductions of area were 25 and 46 pct for the strain-hardened and annealed microstructures, respectively, after hydrogen precharging. Similar to the effect of internal hydrogen on tensile ductility, fracture toughness of strain-hardened 2507 was lowered from nearly 300 MPa m1/2 in the noncharged condition to less than 60 MPa m1/2 in the hydrogen-precharged condition. While precharging 2507 with hydrogen results in a considerable reduction in ductility and toughness, the absolute values are similar to high-strength austenitic steels that have been tested under the same conditions, and which are generally considered acceptable for high-pressure hydrogen gas systems. The fracture mode in hydrogen-precharged 2507 involved cleavage cracking of the ferrite phase and ductile fracture along oblique planes in the austenite phase, compared to 100 pct microvoid coalescence in the absence of hydrogen. Predictions from a strain-based micromechanical fracture toughness model were in good agreement with the measured fracture toughness of hydrogen-precharged 2507, implying a governing role of austenite for resistance to hydrogen-assisted fracture.

  1. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  2. On the formation of hydrogen gas on copper in anoxic water

    NASA Astrophysics Data System (ADS)

    Johansson, Adam Johannes; Lilja, Christina; Brinck, Tore

    2011-08-01

    Hydrogen gas has been detected in a closed system containing copper and pure anoxic water [P. Szakalos, G. Hultquist, and G. Wikmark, Electrochem. Solid-State Lett. 10, C63 (2007), 10.1149/1.2772085 and G. Hultquist, P. Szakalos, M. Graham, A. Belonoshko, G. Sproule, L. Grasjo, P. Dorogokupets, B. Danilov, T. Aastrup, G. Wikmark, G. Chuah, J. Eriksson, and A. Rosengren, Catal. Lett. 132, 311 (2009), 10.1007/s10562-009-0113-x]. Although bulk corrosion into any of the known phases of copper is thermodynamically forbidden, the present paper shows how surface reactions lead to the formation of hydrogen gas in limited amounts. While water cleavage on copper has been reported and investigated before, formation of molecular hydrogen at a single-crystal Cu[100] surface is here explored using density functional theory and transition state theory. It is found that although solvent catalysis seems possible, the fastest route to the formation of molecular hydrogen is the direct combination of hydrogen atoms on the copper surface. The activation free energy (△Gs‡f) of hydrogen formation in condensed phase is 0.70 eV, which corresponds to a rate constant of 10 s-1 at 298.15 K, i.e., a relatively rapid process. It is estimated that at least 2.4 ng hydrogen gas could form per cm2 on a perfect copper surface.

  3. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    PubMed Central

    Wongchoosuk, Chatchawal; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method. PMID:22163623

  4. Rotational excitation of hydrogen molecules by collisions with hydrogen atoms. [interstellar gas energetics

    NASA Technical Reports Server (NTRS)

    Green, S.; Truhlar, D. G.

    1979-01-01

    Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.

  5. Evaluation of Electrochemical Nitrogen/hydrogen Gas Separator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.; Sexton, R. W.

    1973-01-01

    An electrochemical nitrogen-hydrogen separator subsystem was investigated for use following catalytic dissociation of ammonia or hydrazine in a storage system being considered for long-duration manned space flight. An experimental cell with concentric tubular Pd-25Ag alloy hydrogen diffusion electrodes and hermetically sealed aqueous caustic electrolyte was developed.It was found that this cell operated satisfactorily at 210 C to 245 C and produced dry nitrogen and dry hydrogen with either or both gases at pressures up to 6.8 atmospheres (100 psia) or higher for storage. The final cell developed was operated satisfactorily for 176 days (4200 hours) with no evidence of deterioration of current-voltage performance. The best experimental performance was obtained at 245 C at currents up to 4 amperes (180 ma/sq cm and 360 ma/sq cm anode and cathode current densities, respectively) with a maximum steady-state cell voltage of 0.125 volt for an anode feed of pure hydrogen.

  6. Cerebral arterial gas embolism after pre-flight ingestion of hydrogen peroxide.

    PubMed

    Smedley, Ben L; Gault, Alan; Gawthrope, Ian C

    2016-06-01

    Cerebral arterial gas embolism (CAGE) is a feared complication of ambient depressurisation and can also be a complication of hydrogen peroxide ingestion. We present an unusual case of CAGE in a 57-year-old woman exposed to both of these risk factors. We describe her subsequent successful treatment with hyperbaric oxygen, despite a 72-hour delay in initial presentation and diagnosis, and discuss the safety of aero-medical transfer following hydrogen peroxide ingestions. PMID:27335000

  7. NMR properties of hydrogen-bonded glycine cluster in gas phase

    NASA Astrophysics Data System (ADS)

    Carvalho, Jorge R.; da Silva, Arnaldo Machado; Ghosh, Angsula; Chaudhuri, Puspitapallab

    2016-11-01

    Density Functional Theory (DFT) calculations have been performed to study the effect of the hydrogen bond formation on the Nuclear Magnetic Resonance (NMR) parameters of hydrogen-bonded clusters of glycine molecules in gas-phase. DFT predicted isotropic chemical shifts of H, C, N and O of the isolated glycine with respect to standard reference materials are in reasonable agreement with available experimental data. The variations of isotropic and anisotropic chemical shifts for all atoms constituting these clusters containing up to four glycine molecules have been investigated systematically employing gradient corrected hybrid B3LYP functional with three different types of extended basis sets. The clusters are mainly stabilized by a network of strong hydrogen bonds among the carboxylic (COOH) groups of glycine monomers. The formation of hydrogen bond influences the molecular structure of the clusters significantly which, on the other hand, gets reflected in the variations of NMR properties. The carbon (C) atom of the sbnd COOH group, the bridging hydrogen (H) and the proton-donor oxygen (O) atom of the Osbnd H bond suffer downfield shift due to the formation of hydrogen bond. The hydrogen bond lengths and the structural complexity of the clusters are found to vary with the number of participating monomers. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed in all cases. The individual variations of the principal axis elements in chemical shift tensor provide additional insight about the different nature of the monomers within the cluster.

  8. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  9. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  10. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Ohmiya, Kunio; Sakka, Kazuo

    2005-11-01

    Recently, we reported that refuse-derived fuel (RDF) pellets contain a relatively high number of viable bacterial cells and that these bacteria generate heat and hydrogen gas during fermentation under wet conditions. In this study we analyzed bacterial cell numbers of RDF samples manufactured with different concentrations of calcium hydroxide, which is usually added to waste materials for the prevention of rotting of food wastes and the acceleration of drying of solid wastes, and determined the amount of hydrogen gas produced by them under wet conditions. Furthermore, we analyzed microflora of the RDF samples before and during fermentation by denaturing gradient gel electrophoresis of 16S rDNA followed by sequencing. We found that the RDF samples contained various kinds of clostridia capable of producing hydrogen gas. PMID:16306688

  11. Generating hydrogen gas from methane with carbon captured as pure spheroidal nanomaterials.

    PubMed

    Cornejo, Andrew; Zhang, Weike; Gao, Lizhen; Varsani, Rahi R; Saunders, Martin; Iyer, K Swaminathan; Raston, Colin L; Chua, Hui Tong

    2011-08-01

    Energy production by using hydrogen gas as a feedstock is considered to be one of the keys to creating clean energy, with the proviso that the gas is generated in a sustainable way with no emissions. A simple, self-sustaining process generating hydrogen gas from methane using inexpensive stainless steel wire-mesh catalysts at elevated temperatures (800 °C) is reported. A theoretical analysis of the production of electricity by this process revealed peak chain energy efficiencies up to 21% (emission free) when using a percentage of the produced hydrogen (approximately 40% of purified yield) as the heat source. In addition, a practical method has been developed to purify the carbon byproduct, affording essentially pure highly graphitic spheroidal carbon for advanced materials applications. PMID:21732440

  12. Self-heated silicon nanowires for high performance hydrogen gas detection.

    PubMed

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes. PMID:25670503

  13. Self-heated silicon nanowires for high performance hydrogen gas detection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes.

  14. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  15. Method of washing hydrogen sulfide from coke oven gas by the ammonium sulfide method

    SciTech Connect

    Ritter, H.

    1985-05-21

    An improved coke oven gas washing process for removing hydrogen sulfide is proposed wherein the coke oven gas is treated in a hydrogen sulfide scrubber by counterflow with an aqueous ammonia wash water. A stream of aqueous weak ammonia liquor is cooled and sprayed through nozzles in the mid-region of the hydrogen sulfide scrubber. A quantity of aqueous ammonia liquor, corresponding to the quantity which is sprayed through the said nozzles, is withdrawn from the hydrogen sulfide scrubber at a level below the nozzles and is introduced into the top of the said hydrogen sulfide scrubber. Ammonia vapor released at the nozzles has a higher partial pressure than the ammonia partial pressure of the coke oven gas in the region of the nozzle. The aqueous ammonia liquor from the deacidifier is the source of the cooled aqueous ammonia liquor which is introduced through the nozzles. A portion of the aqueous ammonia liquor from the deacidifier is introduced directly into the top of the hydrogen sulfide scrubber as a portion of the required aqueous ammonia wash water.

  16. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  17. Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

    PubMed Central

    Noh, Jin-Seo; Lee, Jun Min; Lee, Wooyoung

    2011-01-01

    Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability. PMID:22346605

  18. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    SciTech Connect

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  19. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    SciTech Connect

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-18

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (V{sub pp}) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the V{sub pp} electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  20. The use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect

    Marakhovskii, L.F.; Rezunenko, Y.I.; Popov, A.A.

    1983-01-01

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution showed the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be used in the form of ethylenethiourea - a marketable byproduct.

  1. A study of the processes in the RF hydrogen gas dissociator

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    1980-01-01

    The role of the RF gas dissociator in the hydrogen maser is examined. Based on collisional and plasma transport processes, the performance of the source is investigated. It is found that while the complexity of the collisional processes in the RF dissociator prohibits an easily obtained quantitative expression for the performance of the source, it is nevertheless possible to make general inferences concerning the qualitative performance based on collisional effects. An analytical expression for the efficiency of the source in atom production is obtained based on plasma transport processes. On the basis of this study some recommendations are made for the development of more efficient RF hydrogen gas dissociators for use in masers.

  2. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-01

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (Vpp) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the Vpp electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  3. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  4. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  5. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  6. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    SciTech Connect

    Eichman, Joshua; Melaina, Marc

    2015-10-27

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential to provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that

  7. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  8. Hydrogen Gas Reduced Acute Hyperglycemia-Enhanced Hemorrhagic Transformation in a Focal Ischemia Rat Model

    PubMed Central

    CHEN, C.H.; ANATOL, M.; ZHAN, Y.; LIU, W.W.; OSTROWKI, R.P.; TANG, JIPING; ZHANG, J. H.

    2010-01-01

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague–Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H2); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H2 (MCAO+H2). All the rats received an injection of 50% dextrose (6ml/kg intraperitoneally) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 hr during reperfusion. We measured the level of blood glucose at 0 hr, 0.5 hr, 4 hr, and 6 hr after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluating by the level of 8OHG, HNE and nitrotyrosine), MMP-2/MMP-9 activity were measured at 24 hr after ischemia. We found that hydrogen inhalation for 2 hr reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen is accompanied by a reduction of the expressions of 8OHG, HNE, nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500±32.51 to 366±68.22 mg/dl at 4 hr after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occluding, collagen IV or AQP4. In conclusion, hydrogen gas reduced the infarction, hemorrhagic transformation, and improved neurological functions in rat. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. PMID:20423721

  9. Solar wind heating beyond 1 AU. [interplanetary atomic hydrogen gas effect on protons and electrons

    NASA Technical Reports Server (NTRS)

    Holzer, T. E.; Leer, E.

    1973-01-01

    The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and alpha-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the alpha-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling, the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas.

  10. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    SciTech Connect

    Clawson, L.G.; Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    2000-07-04

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone within the first vessel. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone directed into a steam reforming zone. High- and low-temperature shift reaction zones may be employed for further fuel processing.

  11. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    SciTech Connect

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  12. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Polyetherimide, cellulose acetate and ethylcellulose

    SciTech Connect

    Not Available

    1986-01-01

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  13. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control hydrogen chloride... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions. (a) General. The owner or operator must comply with the hydrogen chloride (HCl) and chlorine...

  14. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control hydrogen chloride... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions. (a) General. The owner or operator must comply with the hydrogen chloride (HCl) and chlorine...

  15. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control hydrogen chloride... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions. (a) General. The owner or operator must comply with the hydrogen chloride (HCl) and chlorine...

  16. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control hydrogen chloride... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions. (a) General. The owner or operator must comply with the hydrogen chloride (HCl) and chlorine...

  17. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control hydrogen chloride... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions. (a) General. The owner or operator must comply with the hydrogen chloride (HCl) and chlorine...

  18. Natural gas leaks detection by spatial-resolvable-CW-laser-based remote monitoring

    SciTech Connect

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M.; Ismagilow, Z.B.

    1996-12-31

    The opportunities of spatial-resolvable atmosphere monitoring and atmospheric pollutions remote chemical analysis based on the CW-laser radiants are investigated. A frequency-responsive processing peculiarities of atmosphere remote sensing signals are described. Application of the mentioned approach for the limited hydrocarbons remote detection and sensing is discussed. The requirements to the CW-LIDAR receiving and radiating systems parameters are formulated. The evaluations of the system sensitivity limit, measurement accuracy and accuracy increase ways are presented.

  19. Validation of hydrogen gas stratification and mixing models

    DOE PAGESBeta

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less

  20. Validation of hydrogen gas stratification and mixing models

    SciTech Connect

    Wu, Hsingtzu; Zhao, Haihua

    2015-05-26

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for a large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.

  1. Validation of hydrogen gas stratification and mixing models

    SciTech Connect

    Wu, Hsingtzu; Zhao, Haihua

    2015-11-01

    Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for a large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. Computing time for each BMIX++ model with a normal desktop computer is less than 5 min.

  2. Gas dynamic and time resolved imaging studies of single-wall carbon nanotubes growth in the laser ablation process

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Suzuki, S.; Kataura, H.; Achiba, Y.

    2001-10-01

    Single-wall carbon nanotubes (SWNTs) were synthesized by laser ablation of Ni-Co-graphite composite targets at 1200 °C under flowing argon. The effects of the temperature gradient near the target and the gas flow rate on the diameter distribution of SWNTs were studied in order to understand their growth dynamics. The diameter distribution of the SWNTs, analyzed by Raman spectroscopy, was dependent on the gas flow rate when there was a temperature gradient around the target. Time resolved scattering images from the ablated species at different flow rates indicated that velocities of backward moving species increased with increasing flow rate. These findings are used to estimate the time required for nucleation and the growth of SWNTs.

  3. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  4. Generation of hydrogen rich gas through fluidized bed gasification of biomass.

    PubMed

    Karmakar, M K; Datta, A B

    2011-01-01

    The objective of this study was to investigate the process of generating hydrogen rich syngas through thermo chemical fluidized bed gasification of biomass. The experiments were performed in a laboratory scale externally heated biomass gasifier. Rice husk had been taken as a representative biomass and, steam had been used as the fluidizing and gasifying media. A thermodynamic equilibrium model was used to predict the gasification process. The work included the parametric study of process parameters such as reactor temperature and steam biomass ratio which generally influence the percentage of hydrogen content in the product gas. Steam had been used here to generate nitrogen free product gas and also to increase the hydrogen concentration in syngas with a medium range heating value of around 12 MJ/Nm3. PMID:20797847

  5. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOEpatents

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  6. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  7. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  8. Protective Effect of Hydrogen Gas Therapy After Germinal Matrix Hemorrhage in Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Fathali, Nancy; Peterson, Mathew; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a neurological disease of very low birth weight premature infants leading to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hydrogen (H2) is a potent antioxidant shown to selectively reverse cytotoxic oxygen-radical injury in the brain. This study investigated the therapeutic effect of hydrogen gas after neonatal GMH injury. Methods Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor function, cerebral, cardiac and splenic growths were measured 1 week thereafter. Results Hydrogen gas inhalation markedly suppressed mental retardation and cerebral palsy outcomes in rats at the juvenile developmental stage. The administration of H2 gas, early after neonatal GMH, also normalized the brain atrophy, splenomegaly and cardiac hypertrophy 1 month after injury. Conclusion This study supports the role of cytotoxic oxygen-radical injury in early neonatal GMH. Hydrogen gas inhalation is an effective strategy to help protect the infant brain from the post-hemorrhagic consequences of brain atrophy, mental retardation and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these protective effects. PMID:21725762

  9. One-dimensional magnetohydrodynamic calculations of a hydrogen-gas puff

    SciTech Connect

    Maxon, S.; Nielsen, P.D.

    1981-04-20

    A one-dimensional Lagrangian calculation of the implosion of a hydrogen gas puff is presented. At maximum compression, 60% of the mass is located in a density spike .5 mm off the axis with a half width of 40 ..mu..m. The temperature on axis reaches 200 eV.

  10. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  11. Ceria-based Catalysts for the Production of H2 Through the Water-gas-shift Reaction: Time-Resolved XRD and XAFS Studies

    SciTech Connect

    Wang,X.; Rodriguez, J.; Hanson, J.; Gamarra, D.; Marinez-Arias, A.; Fernandez-Garcia, M.

    2008-01-01

    Hydrogen is a potential alternate energy source for satisfying many of our energy needs. In this work, we studied H2 production from the water-gas-shift (WGS) reaction over Ce1-x Cu x O2 catalysts, prepared with a novel microemulsion method, using two synchrotron-based techniques: time-resolved X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results are compared with those reported for conventional CuO x /CeO2 and AuO x /CeO2 catalysts obtained through impregnation of ceria. For the fresh Ce1-x Cu x O2 catalysts, the results of XAFS measurements at the Cu K-edge indicate that Cu is in an oxidation state higher than in CuO. Nevertheless, under WGS reaction conditions the Ce1-x Cu x O2 catalysts undergo reduction and the active phase contains very small particles of metallic Cu and CeO2-x . Time-resolved XRD and XAFS results also indicate that Cud+ and Aud+ species present in fresh CuO x /CeO2 and AuO x /CeO2 catalysts do not survive above 200 C under the WGS conditions. In all these systems, the ceria lattice displayed a significant increase after exposure to CO and a decrease in H2O, indicating that CO reduced ceria while H2O oxidized it. Our data suggest that H2O dissociation occurred on the Ovacancy sites or the Cu-Ovacancy and Au-Ovacancy interfaces. The rate of H2 generation by a Ce0.95Cu0.05O2 catalyst was comparable to that of a 5 wt% CuO x /CeO2 catalyst and much bigger than those of pure ceria or CuO.

  12. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  13. The influence of hydrogen on the fatigue behaviour of base and gas tungsten arc welded Eurofer

    NASA Astrophysics Data System (ADS)

    Maday, Marie-Françoise; Pilloni, Luciano

    2007-08-01

    Room temperature hydrogen embrittlement susceptibility of Eurofer base-metal and gas-tungsten-arc-welded joint has been investigated by fully-reversed load-control low cycle fatigue. The tests were run on specimens subjected to electrochemical charging before and during cyclic stressing. Compared to the uncharged condition, increasing amounts of hydrogen in base-steel caused fatigue life reduction by promoting premature cracking of either grain boundaries or cleavage planes. Examination of fracture morphologies indicated that the underlying embrittlement mechanisms likely correlated with plastic flow alteration and interatomic bond decohesion, both induced by hydrogen. Specimen-to-specimen response variability by test replication was accounted for in terms of Eurofer material heterogeneity, based on relevant experimental indexes. This interpretation was consistent with the well known sensitivity to microstructure of hydrogen embrittlement processes, and explained the large scatter of fatigue lives and failure modes subsequently observed in equivalently charged Eurofer weld samples.

  14. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    Energy Science and Technology Software Center (ESTSC)

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  15. Determination of water in hydrogen chloride gas by a condensation technique

    SciTech Connect

    Flaherty, E.; Herold, C.; Murray, D.; Thompson, S.R.

    1986-07-01

    The determination of trace amounts of water in gaseous hydrogen chloride has been of considerable interest to manufacturers of semiconductor materials. Many different methods have been postulated in the detection of water in hydrogen chloride, including Karl Fischer titrations, infrared spectrometric techniques, and gravimetric procedures using desiccants. Despite varying degrees of success at high-moisture concentration ranges, 1000 ppm (v/v) and up, these methods become tedious and unreliable for measuring water in hydrogen chloride in the 1-1000 ppm range. We have found a method for moisture in hydrogen chloride, analogous to dew point determinations used for inert gases, that is rapid and reproducible. A calibration curve of parts per million (v/v) water in hydrogen chloride vs. condensation temperature was constructed by dynamically blending a low part per million moisture balance nitrogen standard with dried hydrogen chloride gas. In addition, variation of the condensation temperature was monitored as the dried hydrogen chloride was diluted with dried gaseous nitrogen.

  16. Size Effects in Angle-Resolved Photoelectron Spectroscopy of Free Rare-Gas Clusters

    SciTech Connect

    Rolles, D.; Zhang, H.; Pesic, Z.D.; Bilodeau, R.C.; Wills, A.; Kukk, E.; Rude, B.S.; Ackerman, G.D.; Bozek, J.D.; Muino, R.D.; de Abajo, F.J.G.; Berrah, N.; /Western Michigan U. /LBNL, ALS /Turku U. /SLAC /Basque U., San Sebastian /Madrid, Inst. Optica

    2007-05-23

    The photoionization of free Xe clusters is investigated by angle-resolved time-of-flight photoelectron spectroscopy. The measurements probe the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. While the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the free atoms, distinct differences in the angular distribution point at cluster-size-dependent effects. Multiple scattering calculations trace their origin to elastic photoelectron scattering.

  17. Massive Cerebral Gas Embolism under Discectomy due to Hydrogen Peroxide Irrigation

    PubMed Central

    Zhang, Junjie; Zhang, Chengliang; Yan, Jianqin

    2015-01-01

    Massive cerebral and spinal gas embolism occurs rarely as a complication of discectomy. We report a 54-year-old female who had undergone a discectomy (L3/4 and L4/5) under epidural anesthesia in a local hospital developed multiple massive gas embolisms. At closure, surgeons irrigated the incision wound with hydrogen peroxide. Soon after the irrigation, the patient suddenly developed tachycardia, hypotension, and rapid oxygen desaturation. Subsequently, patient progressed into unconsciousness and right hemianopsia quadriplegia. Computed tomography (CT) scan showed multiple hypointensity spots around the brain due to cerebral gas embolism, which indicated the pneumoencephalos. The likely mechanism was the absorption of hydrogen peroxide into blood. When the amount of oxygen evolved exceeded its maximal blood solubility, venous embolization occurred. Though the patient was treated with supportive treatments and hyperbaric oxygen, she did not get full recovery and was left with severe long-term cerebral injury. PMID:25688310

  18. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  19. Gas chromatography flow rates for determining deuterium/hydrogen ratios of natural gas by gas chromatography/high-temperature conversion/isotope ratio mass spectrometry.

    PubMed

    Jia, Wanglu; Peng, Ping'an; Liu, Jinzhong

    2008-08-01

    The effects of the gas chromatography flow rate on the determination of the deuterium/hydrogen (D/H) ratios of natural gas utilising gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/TC/IRMS) have been evaluated. In general, the measured deltaD values of methane, ethane and propane decrease with increase in column flow rate. When the column flow rate is 1 mL/min or higher, which is commonly used for the determination of D/H ratios of natural gas, the organic H in gas compounds may not be completely converted into hydrogen gas. Based on the results of experiments conducted on a GC column with an i.d. of 0.32 mm, a GC flow rate of 0.6 mL/min is proposed for determining the D/H ratios of natural gas by GC/TC/IRMS. Although this value may be dependent on the instrument conditions used in this work, we believe that correct deltaD values of organic compounds with a few carbon atoms are obtained only when relatively low GC flow rates are used for D/H analysis by GC/TC/IRMS. Moreover, as the presence of trace water could significantly affect the determination of D/H ratios, a newly designed inlet liner was used to remove trace water contained in some gas samples. PMID:18636428

  20. Intermolecular Hydrogen Bonds Formed Between Amino Acid Molecules in Aqueous Solution Investigated by Temperature-jump Nanosecond Time-resolved Transient Mid-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Man-ping; Li, Heng; Zhang, Qing-li; Weng, Yu-xiang; Qiu, Xiang-gang

    2007-08-01

    Carboxyl (COO-) vibrational modes of two amino acids histidine and glycine in D2O solution were investigated by temperature-dependent FTIR spectroscopy and temperature-jump nanosecond time-resolved IR difference absorbance spectroscopy. The results show that hydrogen bonds are formed between amino acid molecules as well as between the amino acid molecule and the solvent molecules. The asymmetric vibrational frequency of COO- around 1600-1610 cm-1 is blue shifted when raising temperature, indicating that the strength of the hydrogen bonds becomes weaker at higher temperature. Two bleaching peaks at 1604 and 1612 cm-1 were observed for histidine in response to a temperature jump from 10 °C to 20 °C. The lower vibrational frequency at 1604 cm-1 is assigned to the chain COO- group which forms the intermolecular hydrogen bond with NH3+ group, while the higher frequency at 1612 cm-1 is assigned to the end COO- group forming hydrogen bonds with the solvent molecules. This is because that the hydrogen bonds in the former are expected to be stronger than the latter. In addition the intensities of these two bleaching peaks are almost the same. In contrast, only the lower frequency at 1604 cm-1 bleaching peak has been observed for glycine. The fact indicates that histidine molecules form a dimer-like intermolecular chain while glycine forms a relatively longer chain in the solution. The rising phase of the IR absorption kinetics in response to the temperature-jump detected at 1604 cm-1 for histidine is about 30+/-10 ns, within the resolution limit of our instrument, indicating that breaking or weakening the hydrogen bond is a very fast process.

  1. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  2. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts

    SciTech Connect

    Shin, E.J.; Keane, M.A.

    2000-04-01

    The gas-phase hydrogenation/hydrogenolysis of alcoholic solutions of phenol between 423 and 573 K has been studied using a Y zeolite-supported nickel catalyst (2.2% w/w Ni) and Ni/SiO{sub 2} catalysts (1.5--20.3% w/w Ni). This is a viable means of treating concentrated phenol streams to generate recyclable raw material. Phenol hydrogenation proceeded in a stepwise fashion with cyclohexanone as a reactive intermediate while a combination of hydrogenolysis and hydrogenation yielded cyclohexane. Hydrogenolysis to benzene is favored by high nickel loadings and elevated temperatures. A catalytic hydrogen treatment of cyclohexanone and cyclohexanol helped to establish the overall reaction network/mechanism. The possible role of thermodynamic limitations is considered and structure sensitivity is addressed; reaction data are subjected to a pseudo-first-order kinetic treatment. Hydrogen temperature-programmed desorption (H{sub 2}-TPD) has revealed the existence of different forms of surface hydrogen. Selectivity is interpreted on the basis of the H{sub 2}-TPD profiles and the possible phenol/catalyst interactions. The zeolite sample only catalyzed (via the surface Bronsted acidity) anisole formation in the presence of methanol, but this was suppressed when hexanol was used; the zeolite then promoted hydrogenolysis. The zeolite, however, deactivated and this was not reversed by heating in hydrogen. The results of the hydrogen treatment of aqueous rather than alcoholic phenol solutions are presented, where a switch from methanol to water was accompanied by a move from highly selective hydrogenolysis to highly selective hydrogenation.

  3. Inhalation of hydrogen gas reduces liver injury during major hepatotectomy in swine

    PubMed Central

    Xiang, Lei; Tan, Jing-Wang; Huang, Li-Jie; Jia, Lin; Liu, Ya-Qian; Zhao, Yu-Qiong; Wang, Kai; Dong, Jia-Hong

    2012-01-01

    AIM: To study the effect of H2 gas on liver injury in massive hepatectomy using the Intermittent Pringle maneuver in swine. METHODS: Male Bama pigs (n = 14) treated with ketamine hydrochloride and Sumianxin II as induction drugs followed by inhalation anesthesia with 2% isoflurane, underwent 70% hepatotectomy with loss of bleeding less than 50 mL, and with hepatic pedicle occlusion for 20 min, were divided into two groups: Hydrogen-group (n = 7), the pigs with inhalation of 2% hydrogen by the tracheal intubation during major hepatotectomy; Contrast-group (n = 7), underwent 70% hepatotectomy without inhalation of hydrogen. Hemodynamic changes and plasma concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in liver tissue were measured at pre-operation, post-hepatotectomy (PH) 1 h and 3 h. The apoptosis and proliferating cell nuclear antigen (PCNA) expression in liver remnant were evaluated at PH 3 h. Then we compared the two groups by these marks to evaluate the effect of the hydrogen in the liver injury during major hepatotectomy with the Pringle Maneuver in the swine. RESULTS: There were no significant differences in body weight, blood loss and removal liver weight between the two groups. There was no significant difference in changes of portal vein pressure between two groups at pre-operation, PH 30 min, but in hydrogen gas treated-group it slightly decrease and lower than its in Contrast-group at PH 3 h, although there were no significant difference (P = 0.655). ALT and AST in Hydrogen-group was significantly lower comparing to Contrast-group (P = 0.036, P = 0.011, vs P = 0.032, P = 0.013) at PH 1 h and 3 h, although the two groups all increased. The MDA level increased between the two group at PH 1 h and 3 h. In the hydrogen gas treated-group, the MDA level was not significantly significant at pre-operation and significantly

  4. National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Norris, Andrew T.; Shih, Tsan-Hsing

    2005-01-01

    Hydrogen, in the gas state, has been proposed to replace Jet-A (the fuel used for commercial jet engines) as a fuel for gas turbine combustion. For the combustion of hydrogen and oxygen only, water is the only product and the main greenhouse gas, carbon dioxide, is not produced. This is an obvious benefit of using hydrogen as a fuel. The situation is not as simple when air replaces oxygen in the combustion process. (Air is mainly a mixture of oxygen, nitrogen, and argon. Other components comprise a very small part of air and will not be mentioned.) At the high temperatures found in the combustion process, oxygen reacts with nitrogen, and this produces nitrogen oxide compounds, or NOx--the main component of atmospheric smog. The production of NOx depends mainly on two variables: the temperature at which combustion occurs, and the length of time that the products of combustion stay, or reside, in the combustor. Starting from a lean (excess air) air-to-fuel ratio, the goal of this research was to minimize hot zones caused by incomplete premixing and to keep the residence time short while producing a stable flame. The minimization of these two parameters will result in low- NOx hydrogen combustion.

  5. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  6. Effects of a Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Oda, Yasuji; Noguchi, Hiroshi; Higashida, Kenji

    In order to clarify the effects of a hydrogen gas environment on the fatigue crack growth characteristics of stable austenitic stainless steels, bending fatigue tests were carried out in a hydrogen gas, in a nitrogen gas at 1.0 MPa and in air on a SUS316L using the Japanese Industrial Standards (type 316L). Also, in order to discuss the difference in the hydrogen sensitivity between austenitic stainless steels, the fatigue tests were also carried out on a SUS304 using the Japanese Industrial Standards (type 304) metastable austenitic stainless steel as a material for comparison. The main results obtained are as follows. Hydrogen gas accelerates the fatigue crack growth rate of type 316L. The degree of the fatigue crack growth acceleration is low compared to that in type 304. The fracture surfaces of both the materials practically consist of two parts; the faceted area seemed to be brittle and the remaining area occupying a greater part of the fracture surface and seemed to be ductile. The faceted area does not significantly contribute to the fatigue crack growth rate in both austenitic stainless steels. The slip-off mechanism seems to be valid not only in air and in nitrogen, but also in hydrogen. Also, the main cause of the fatigue crack growth acceleration of both materials occurs by variation of the slip behaviour. The difference in the degree of the acceleration, which in type 316L is lower than in type 304, seems to be caused by the difference in the stability of the γ phase.

  7. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect

    CANNELL, G.R.

    2004-12-15

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  8. Pion transfer from hydrogen to deuterium in H2+D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Weber, P.; Armstrong, D. S.; Measday, D. F.; Noble, A. J.; Stanislaus, S.; Harston, M. R.; Aniol, K. A.; Horváth, D.

    1990-01-01

    The transfer of negative pions from pionic hydrogen to deuterium has been investigated in gas mixtures of H2 and D2 as a function of the D2 concentration (C). The concentration dependence of the transfer rate was fitted using a phenomenological model with two parameters. For C-->∞ (32+/-3)% of the pions undergo transfer. The fitted parameters reflect the ratio of pion capture to pion transfer in collisions of pionic hydrogen with protons or deuterons. No pressure dependence for pion transfer was found.

  9. Two-chamber hydrogen generation and application: access to pressurized deuterium gas.

    PubMed

    Modvig, Amalie; Andersen, Thomas L; Taaning, Rolf H; Lindhardt, Anders T; Skrydstrup, Troels

    2014-06-20

    Hydrogen and deuterium gas were produced and directly applied in a two-chamber system. These gaseous reagents were generated by the simple reaction of metallic zinc with HCl in water for H2 and DCl in deuterated water for D2. The setup proved efficient in classical Pd-catalyzed reductions of ketones, alkynes, alkenes, etc. in near-quantitative yields. The method was extended to the synthesis and isotope labeling of quinoline and 1,2,3,4-tetrahydroquinoline derivatives. Finally, CX-546 and Olaparib underwent efficient Ir-catalyzed hydrogen isotope exchange reactions. PMID:24870212

  10. Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2005-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NOx) emissions and combustion performance at inlet conditions of 600 to 1000 deg F, 60 to 200 pounds per square inch absolute (psia), and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen based premixing combustion systems is flashback since hydrogen has a reaction rate over seven times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 2.5 and 3.5-in. diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NOx emissions and combustion efficiency for the hydrogen injectors at 1.0, 3.125, and 5.375 in. from the injector face. Results show that for some configurations, NOx emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  11. Hydrogen-bonded glycine-HCN complexes in gas phase: structure, energetics, electric properties and cooperativity

    NASA Astrophysics Data System (ADS)

    Machado da Silva, Arnaldo; Chakrabarty, Sumana; Chaudhuri, Puspitapallab

    2015-03-01

    Twelve hydrogen-bonded complexes of glycine and hydrogen cyanide have been studied using high-level quantum-chemical calculations in gas phase. In particular, six 1:1 glycine-HCN dimers and six 1:2 glycine-HCN trimers have been considered. Besides the characteristics of the hydrogen bonds and their effect on molecular structure and energetics, several molecular electric properties have been calculated utilising two different models: MP2/6-31++G(d,p) and DFT-B3LYP/6-31++G(d,p). Although the structural parameters calculated by the two models are similar, equilibrium electronic energies of the clusters show model dependence. The lowest energy dimer is same in both the models which is ca. 3.0 kcal/mol more stable than the highest energy dimer. However, the lowest energy trimer is different in two methods. The energetic difference of stability between the highest and lowest trimer is 4.2 kcal/mol (4.4 kcal/mol) at an MP2 (B3LYP) level of calculation. The bond angles of glycine, in particular, are quite sensitive to the hydrogen-bond formation. Four out of six trimers are found to be strongly cooperative in both the models. Significant changes of dipole moments and polarisabilities of isolated glycine and hydrogen cyanide are observed due to the formation of hydrogen bonding. The Rayleigh scattering intensities of all clusters are much larger than those of their constituent monomers.

  12. Low-Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2007-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NO(x)) emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 6.35- and 8.9-cm-diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NO(x) emissions and combustion efficiency for the hydrogen injectors at 2.540, 7.937, and 13.652 cm from the injector face. Results show that for some configurations, NO(x) emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  13. Spatially resolved physical conditions of molecular gas: a zoom-in from circumnuclear region of M83 to Carina nebula.

    NASA Astrophysics Data System (ADS)

    Wu, Ronin; Madden, Suzanne; Galliano, Frédéric; Wilson, Christine; Onaka, Takashi; Nakamura, Tomohiko

    2015-08-01

    Since the launch of the Herschel Space Observatory, our understanding about the photo-dissociation regions (PDR) has taken a step forward. In the bandwidth of the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board Herschel, ten CO rotational transitions, including J=4-3 to J=13-12, and three fine structure lines, including [CI] 609, [CI] 370, and [NII] 250 micron, are covered. This presentation focuses on the physical conditions of molecular gas probed by the Herschel SPIRE/FTS.Based on the spatially resolved physical parameters derived from the CO spectral line energy distribution (SLED) map and the comparisons with the dust properties and star-formation tracers, I will first present our findings at the circumnuclear region of M83, and then zoom in toward the young open cluster, Trumpler 14, in Carina nebula. I will discuss (1) the potential of using [NII] 250 and [CI] 370 micron as star-formation tracers; (2) the reliability of tracing molecular gas with CO; (3) the excitation mechanisms of warm CO; (4) the possibility of studying stellar feedback by tracing the thermal pressure of intersetllar molecular gas.

  14. Monte Carlo methods: Application to hydrogen gas and hard spheres

    NASA Astrophysics Data System (ADS)

    Dewing, Mark Douglas

    2001-08-01

    Quantum Monte Carlo (QMC) methods are among the most accurate for computing ground state properties of quantum systems. The two major types of QMC we use are Variational Monte Carlo (VMC), which evaluates integrals arising from the variational principle, and Diffusion Monte Carlo (DMC), which stochastically projects to the ground state from a trial wave function. These methods are applied to a system of boson hard spheres to get exact, infinite system size results for the ground state at several densities. The kinds of problems that can be simulated with Monte Carlo methods are expanded through the development of new algorithms for combining a QMC simulation with a classical Monte Carlo simulation, which we call Coupled Electronic-Ionic Monte Carlo (CEIMC). The new CEIMC method is applied to a system of molecular hydrogen at temperatures ranging from 2800K to 4500K and densities from 0.25 to 0.46 g/cm3. VMC requires optimizing a parameterized wave function to find the minimum energy. We examine several techniques for optimizing VMC wave functions, focusing on the ability to optimize parameters appearing in the Slater determinant. Classical Monte Carlo simulations use an empirical interatomic potential to compute equilibrium properties of various states of matter. The CEIMC method replaces the empirical potential with a QMC calculation of the electronic energy. This is similar in spirit to the Car-Parrinello technique, which uses Density Functional Theory for the electrons and molecular dynamics for the nuclei. The challenges in constructing an efficient CEIMC simulation center mostly around the noisy results generated from the QMC computations of the electronic energy. We introduce two complementary techniques, one for tolerating the noise and the other for reducing it. The penalty method modifies the Metropolis acceptance ratio to tolerate noise without introducing a bias in the simulation of the nuclei. For reducing the noise, we introduce the two-sided energy

  15. Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Myung, Nosang V.; Haberer, Elaine D.

    2014-12-01

    Gold-palladium (Au-Pd) nanopeapod-based H2 chemiresistors were fabricated using a gold binding M13 viral template. Peptides displayed along the length of this biological template served as affinity binding sites to direct gold nanoparticle assembly under ambient conditions in an aqueous environment. In addition, the geometry of this filamentous biomolecule readily facilitated the formation of the highly anisotropic nanopeapod structure. Pd electroless deposition controlled peapod diameter, as well as electrical resistance. Sensor performance was determined by overall peapod morphology. Thicker nanopeapods (i.e., ˜15 nm Pd layer) with fully encapsulated Au nanoparticle seeds showed strong evidence of oxygen inclusion during or after Pd deposition, and a modest response (i.e., 0.04%-2.6%) at 2000 ppmv H2 after device conditioning through extended H2 exposure. Thinner nanopeapods (i.e., ˜5 nm Pd layer) with discontinuous Au nanoparticle coverage showed superior performance with a response of 117% at 2000 ppmv H2 in air, a 70% response time (t70%) within 1 min, and a low detection limit of 25 ppmv. The bio-directed formation of these unique thin-shelled, Au-Pd peapod nanostructures and the development of a highly sensitive H2 detector advance both the fields of nanoassembly and gas sensing.

  16. Stimulated Raman scattering holography for time-resolved imaging of methane gas.

    PubMed

    Amer, Eynas; Gren, Per; Edenharder, Stefan; Sjödahl, Mikael

    2016-05-01

    In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922  cm-1). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4  MW/cm2 and a Stokes beam intensity of 0.16  MW/cm2 have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution. PMID:27140351

  17. Temporal-resolved characterization of laser-induced plasma for spectrochemical analysis of gas shales

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang

    2016-07-01

    Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the

  18. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November

  19. LAVA Subsystem Integration and Testing for the RESOLVE Payload of the Resource Prospector Mission: Mass Spectrometers and Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Stewart, Elaine M.

    2015-01-01

    The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.

  20. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution.

    PubMed

    Cheng, Yuan-Yuan; Liu, Ya-Jun

    2016-07-01

    Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state. PMID:27165852

  1. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream

    SciTech Connect

    Maston, V.A.

    1997-12-01

    International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

  2. The molecular hydrogen emission around L1551 IRS 5 - Shock-heated molecular gas at the base of the molecular outflow

    NASA Technical Reports Server (NTRS)

    Yamashita, Takuya; Tamura, Motohide

    1992-01-01

    Spatially resolved observations of the v = 1-0 S(1) molecular hydrogen emission toward L1551 IRS 5 using the grating spectrometer at KPNO are presented. The S(1) emission consists of a ridge component extending toward west along the optical jet from its peak on IRS 5 and a diffuse component which traces the innermost region of the cavity enclosed by the molecular outflow. The ridge component represents shock-heated molecular gas at the root of the optical jet. The diffuse component is too bright to be of scattered origin; it most likely arises from shock-heated gas within the cavity and could represent an acceleration process of the molecular outflow.

  3. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes

    NASA Astrophysics Data System (ADS)

    Paulose, Maggie; Varghese, Oomman K.; Mor, Gopal K.; Grimes, Craig A.; Ong, Keat G.

    2006-01-01

    A highly ordered array of micron-length undoped titania nanotubes exhibits an unprecedented variation in electrical resistance of about 8.7 orders of magnitude (50 000 000 000%), at room temperature, when exposed to alternating atmospheres of nitrogen containing 1000 ppm hydrogen and air. This represents the largest known change in electrical properties of any material, to any gas, at any temperature. The nanotube arrays were fabricated using anodic oxidation of titanium foil in a pH 4.0 electrolyte containing potassium fluoride, sodium hydrogen sulfate monohydrate and sodium citrate tribasic dihydrate. The dramatic change in resistance is believed to be due to the highly active surface states on the nanoscale walls of the tubes, high surface area of the nanotube architecture, and the well-ordered geometry allowing for hydrogen-sensitive tube-to-tube electrical connections.

  4. On physical nanoscale aspects of compatibility of steels with hydrogen and natural gas.

    PubMed

    Nechaev, Yu S; Ochsner, A

    2010-02-01

    The possibilities of effective solutions of relevant technological problems are considered based on the analysis of fundamental physical aspects, elucidation of the nano-structural mechanisms and interrelations of aging and hydrogen embrittlement of materials (steels) in the hydrogen industry and gas-main industries. The adverse effects which these mechanisms and processes have on the service properties and technological lifetime of materials are analyzed. The concomitant fundamental process of formation of carbohydride-like and other segregation nanostructures at dislocations (with the segregation capacity 1 to 1.5 orders of magnitude greater than in the widely used Cottrell 'atmosphere' model) and grain boundaries is discussed in the context of how these nanostructures affect technological processes (aging, hydrogen embrittlement, stress corrosion damage, and failure) and the physicomechanical properties of the metallic materials (including the technological lifetimes of pipeline steels). PMID:20352806

  5. Rapid determination of hydrogen peroxide in pulp bleaching effluents by headspace gas chromatography.

    PubMed

    Hu, Hui-Chao; Jin, Hui-Jun; Chai, Xin-Sheng

    2012-04-27

    A headspace gas chromatographic (HS-GC) method has been developed for the determination of residual hydrogen peroxide in pulp bleaching effluents. The method is based on the reaction of hydrogen peroxide and permanganate in an acidic medium (0.1 mol/L), in which hydrogen peroxide is quantitatively converted to oxygen within 10 min at 60°C in a sealed headspace sample vial. The released oxygen is then determined by GC equipped with a thermal conductivity detector. The method is robust, sensitive, and accurate, with reproducibility characterized by a relative standard deviation of <0.5%, a sensitivity whose limit of quantification (LOQ) is 0.96 μmol, and a demonstrated recovery ranging from 98 to 103%. Further, the method is simple, rapid, and automated. PMID:22444430

  6. SPATIALLY RESOLVED GAS KINEMATICS WITHIN A Lyα NEBULA: EVIDENCE FOR LARGE-SCALE ROTATION

    SciTech Connect

    Prescott, Moire K. M.; Martin, Crystal L.; Dey, Arjun

    2015-01-20

    We use spatially extended measurements of Lyα as well as less optically thick emission lines from an ≈80 kpc Lyα nebula at z ≈ 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C IV, He II, and C III] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He II line (∼100-200 km s{sup –1}), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: ≈500 km s{sup –1} over the central ≈50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(

  7. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    PubMed Central

    Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A

    2015-01-01

    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480

  8. Development of a hydrogen gas sensor using a double SAW resonator system at room temperature.

    PubMed

    Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Mohd Isa, Maryam; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A A

    2015-01-01

    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480

  9. Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating.

    PubMed

    Holder, Kevin M; Spears, Benjamin R; Huff, Molly E; Priolo, Morgan A; Harth, Eva; Grunlan, Jaime C

    2014-05-01

    Super gas barrier nanocoatings are recently demonstrated by combining polyelectrolytes and clay nanoplatelets with layer-by-layer deposition. These nanobrick wall thin films match or exceed the gas barrier of SiOx and metallized films, but they are relatively stiff and lose barrier with significant stretching (≥ 10% strain). In an effort to impart stretchability, hydrogen-bonding polyglycidol (PGD) layers are added to an electrostatically bonded thin film assembly of polyethylenimine (PEI) and montmorillonite (MMT) clay. The oxygen transmission rate of a 125-nm thick PEI-MMT film increases more than 40x after being stretched 10%, while PGD-PEI-MMT trilayers of the same thickness maintain its gas barrier. This stretchable trilayer system has an OTR three times lower than the PEI-MMT bilayer system after stretching. This report marks the first stretchable high gas barrier thin film, which is potentially useful for applications that require pressurized elastomers. PMID:24700525

  10. Quantum state-resolved, bulk gas energetics: Comparison of theory and experiment.

    PubMed

    McCaffery, Anthony J

    2016-05-21

    Until very recently, the computational model of state-to-state energy transfer in large gas mixtures, introduced by the author and co-workers, has had little experimental data with which to assess the accuracy of its predictions. In a novel experiment, Alghazi et al. [Chem. Phys. 448, 76 (2015)] followed the equilibration of highly vibrationally excited CsH(D) in baths of H2(D2) with simultaneous time- and quantum state-resolution. Modal temperatures of vibration, rotation, and translation for CsH(D) were obtained and presented as a function of pump-probe delay time. Here the data from this study are used as a test of the accuracy of the computational method, and in addition, the consequent changes in bath gas modal temperatures, not obtainable in the experiment, are predicted. Despite large discrepancies between initial CsH(D) vibrational states in the experiment and those available using the computational model, the quality of agreement is sufficient to conclude that the model's predictions constitute at least a very good representation of the overall equilibration that, for some measurements, is very accurate. PMID:27208946

  11. Quantum state-resolved, bulk gas energetics: Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2016-05-01

    Until very recently, the computational model of state-to-state energy transfer in large gas mixtures, introduced by the author and co-workers, has had little experimental data with which to assess the accuracy of its predictions. In a novel experiment, Alghazi et al. [Chem. Phys. 448, 76 (2015)] followed the equilibration of highly vibrationally excited CsH(D) in baths of H2(D2) with simultaneous time- and quantum state-resolution. Modal temperatures of vibration, rotation, and translation for CsH(D) were obtained and presented as a function of pump-probe delay time. Here the data from this study are used as a test of the accuracy of the computational method, and in addition, the consequent changes in bath gas modal temperatures, not obtainable in the experiment, are predicted. Despite large discrepancies between initial CsH(D) vibrational states in the experiment and those available using the computational model, the quality of agreement is sufficient to conclude that the model's predictions constitute at least a very good representation of the overall equilibration that, for some measurements, is very accurate.

  12. Colouration process of colloidal tungsten oxide nanoparticles in the presence of hydrogen gas

    NASA Astrophysics Data System (ADS)

    Tahmasebi Garavand, N.; Ranjbar, M.; Mahdavi, S. M.; Iraji zad, A.

    2012-10-01

    In this study, tungsten oxide nanoparticles were fabricated by pulsed laser ablation (PLA) of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.2 g/lit PdCl2 solution was added to activate the solution against the hydrogen gas. Dynamic light scattering and X-ray photoelectron spectroscopy were used to measure the average size and the surface chemical composition of the synthesized nanoparticles, respectively. The aim is to investigate the influence of hydrogen exposure time on colouration process of colloidal nanoparticles. According to optical measurements, hydrogen bubbling into the produced colloidal Pd-WO3 led to formation of several absorption peaks at ∼1.26, ∼1.6 and ∼1.97 eV. We observed the appearance and growth of a peak at 1.6 eV at the initial stages of hydrogen exposure. However, two other peaks became dominant at long exposure times. The coloration process is reversible in the presence of oxygen gas.

  13. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  14. Hydrogen gas generation from refuse-derived fuel (RDF) under wet conditions.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo; Ohmiya, Kunio

    2004-02-01

    An explosion has recently occurred at a silo containing refuse-derived fuels (RDF) in Japan. There is a possibility that microorganisms are involved in generation of combustible gas from RDF and this study was aimed at showing the presence of bacteria that can ferment RDF pellets. All RDF samples tested contained a relatively high number of viable bacterial cells, 1.4x10(5) to 3.2x10(6) viable cells/g. These bacteria in the RDF samples fermented them to generate heat and hydrogen gas. PMID:14981319

  15. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  16. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  17. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  18. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.

    PubMed

    Inoue, Kenichiro; Kawamoto, Katsuya

    2010-01-01

    To control of hydrocarbon content in waste pyrolysis-gasification and reforming processes, the use of a hydrogenation catalyst was examined in a test system with a model gas. To reduce the concentration of benzene in the reforming gas, benzene was hydrogenated with a nickel catalyst. The catalyst is usually used to convert gas-phase unsaturated hydrocarbons to saturated hydrocarbons, and the benzene was converted to cyclohexane at a temperature range of about 130 to 180 degrees C in the presence of steam. However, the conversion to methane occurred at about 250 to 300 degrees C. Methane seems to be a useful conversion compound because it does not cohere as a light tar. Sometimes the reforming gas needs to be cooled for use as generator fuel. In this case, it is possible to avoid the tar cohesion if the benzene in the gas is converted to methane at about 300 degrees C after the reforming. Reduction of the efficiency of conversion to methane was not observed over a 60h reaction period. The lower hydrocarbons (ethylene, ethane, and propylene) were also converted to methane at about 300 degrees C. Conversion of benzene was also possible when other hydrocarbons were present at high concentrations. PMID:20022077

  19. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent.

  20. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOEpatents

    Ooteghem, Suellen Van

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  1. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    SciTech Connect

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  2. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    SciTech Connect

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  3. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    NASA Technical Reports Server (NTRS)

    Hudson, Steven L.

    1988-01-01

    Hydrogen cooled, turbine powered space weapon systems require a relatively simple, but reasonably accurate hydrogen gas expansion turbine model. Such a simplified turbine model would require little computational time and allow incorporation into system level computer programs while providing reasonably accurate volume/mass estimates. This model would then allow optimization studies to be performed on multiparameter space power systems and provide improved turbine mass and size estimates for the various operating conditions (when compared to empirical and power law approaches). An axial flow gas expansion turbine model was developed for these reasons and is in use as a comparative bench mark in space power system studies at Sandia. The turbine model is based on fluid dynamic, thermodynamic, and material strength considerations, but is considered simplified because it does not account for design details such as boundary layer effects, shock waves, turbulence, stress concentrations, and seal leakage. Although the basic principles presented here apply to any gas or vapor axial flow turbine, hydrogen turbines are discussed because of their immense importance on space burst power platforms.

  4. Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere

    SciTech Connect

    Kin, Masane Tanaka, Masaaki; Hayashi, Yasushi; Hasaegawa, Jun; Kura, Hiroaki; Ogawa, Tomoyuki

    2015-05-07

    Fe nanoparticles (NPs) were synthesized by the thermal decomposition of Fe(CO){sub 5} and then post-annealing in a hydrogen gas atmosphere to produce highly monodisperse Fe NPs with high saturation magnetization (M{sub s}). The as-synthesized pre-anneal Fe NPs had an expanded α-Fe structure and M{sub s} was only 39% of that for bulk Fe because of the low crystallinity and the inclusion of a surfactant. Post-annealing of the Fe NPs in a hydrogen gas atmosphere at 200 °C improved the crystallinity of the Fe NPs from an amorphous-like structure to a body centered cubic (bcc) structure without any lattice expansion. This result indicates that hydrogen gas plays a significant role in improvement of the crystallinity of Fe NPs. Accompanying the improvement in crystallinity, M{sub s} for the Fe NPs increased from 86 to 190 emu/g{sub net} at 300 K, the values of which include the weight of surfactant. This enhanced M{sub s} is almost the same as that of bulk Fe (218 emu/{sub Fe}). It was concluded that the crystallinity has a significant influence on the M{sub s} of the Fe NPs because long-range ordering of the lattice can maintain strong direct exchange interactions between Fe atoms.

  5. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  6. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  7. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    PubMed

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed. PMID:25443672

  8. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  9. A resolved, au-scale gas disk around the B[e] star HD 50138

    NASA Astrophysics Data System (ADS)

    Ellerbroek, L. E.; Benisty, M.; Kraus, S.; Perraut, K.; Kluska, J.; le Bouquin, J. B.; Borges Fernandes, M.; Domiciano de Souza, A.; Maaskant, K. M.; Kaper, L.; Tramper, F.; Mourard, D.; Tallon-Bosc, I.; ten Brummelaar, T.; Sitko, M. L.; Lynch, D. K.; Russell, R. W.

    2015-01-01

    HD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the system contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Brγ line of HD 50138, obtained with VLTI/AMBER. The line emission originates in a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature. Based on observations performed with X-Shooter (program 090.D-0212) and CRIRES (program 084.C-0668), mounted on the ESO Very Large Telescope, on Cerro Paranal, Chile, and AMBER mounted on the Very Large Telescope Interferometer (programs 082.C-0621, 082.C-0657, 083.C-0144, 084.C-0187, 084.C-0668, 084.C-0983, 384.D-0482, and 092.C-0376(B)).Figure 4 and Appendix A are available in electronic form at http://www.aanda.org

  10. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  11. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  12. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  13. A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen.

    PubMed

    Park, Se-Chul; Yoon, Seung-Il; Lee, Chung-il; Kim, Yong-Jun; Song, Soonho

    2009-02-01

    This paper demonstrates the fabrication and performance of a micro-thermoelectric gas sensor for an effective and inexpensive gas analysis system. The proposed micro-thermoelectric gas sensor was fabricated by using a surface micromachining technique. The sensing mechanism, consisting of thermoelectric material and a novel metal catalyst, was fabricated on the highly thermally resistive layer for reduced heat transfer to the substrate allowing for a simple fabrication process. The micro-thermoelectric gas sensor detects target gas species by measuring the reaction heat of the catalytic reaction between the target gas and a novel metal catalyst using Cu-Bi thermopiles. The catalytic reaction occurs only on the hot junction of the sensing thermopile where the metal catalyst is deposited. In order to reduce the external thermal noise, a difference between the output voltage of the sensing and the reference thermopiles was measured by using a differential amplifier. The response of the fabricated sensor was linear to temperature difference. The fabricated sensor can be used to detect various concentrations of hydrogen and atomic oxygen, where the output voltage linearly increased with the gas concentration. PMID:19173043

  14. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  15. The alpha Centauri Line of Sight: D/H Ratio, Physical Properties of Local Interstellar Gas, and Measurement of Heated Hydrogen (The 'Hydrogen Wall') Near the Heliopause

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (b(sub HI) = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10(exp -6) . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data

  16. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    SciTech Connect

    Lord, Anna Snider

    2009-09-01

    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

  17. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    SciTech Connect

    Clemens, Noel

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  18. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  19. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications

    NASA Astrophysics Data System (ADS)

    Quartapelle, L.; Muzzio, A.

    2015-06-01

    This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse's original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.

  1. Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer

    SciTech Connect

    J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

    2000-06-19

    It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

  2. On the use of manned hydrogen-gas ballooning in boundary layer studies.

    PubMed

    Rappenglück, B; Reitmayer, H; Fabian, P

    2000-01-01

    Measurements of nitrogen dioxide, ozone and, for the first time, on-line, nonmethane hydrocarbons with a quasicontinuous gaschromatographic/flame ionization technique were performed on a manned hydrogen-gas balloon platform. A cycle time of 10 min allowed the determination of nonmethane hydrocarbons in the carbon number range of C(4)-C(10) with a detection limit of 10 pptv. In addition, meteorological parameters (atmospheric pressure, temperature, humidity) along with GPS-data (global positioning system) was accomplished during the balloon flights. Balloon measurements of trace compounds provide valuable information about photochemical processes in the boundary layer since gas ballooning offers the only technique that stays in the same air parcel along Langrangian trajectories. In addition, gas ballooning represents a unique tool to elucidate micrometeorological observations such as atmospheric stability oscillations and local wind fields. PMID:19005836

  3. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  4. Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dhall, Shivani; Jaggi, Neena

    2016-01-01

    In the present work, hydrogen (H2) gas sensing characteristics of hybrid composites prepared by sputtering of platinum (Pt) metal on the synthesized composites of functionalized multiwalled carbon nanotubes (F-MWCNTs) with selective metal oxides (nickel oxide and cuprous oxide) have been investigated. Both of these sensors are found to have fast response, complete resistance recovery, and good baseline stability at room temperature (25°C). These sensors stably and reversibly respond to 0.05% concentration of H2 gas at 25°C. This sensing material was characterized by x-ray diffraction, Raman spectroscopy ,and scanning electron microscopy. To the best of our knowledge, detection of such low concentration of H2 gas is reported here for the first time using F-MWCNTs/NiO/Pt and F-MWCNTs/Cu2O/Pt hybrid nanostructures at 25°C.

  5. Tensile Properties and Swelling Behavior of Sealing Rubber Materials Exposed to High-Pressure Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Yamabe, Junichiro; Nishimura, Shin

    Rubber O-rings exposed to high-pressure hydrogen gas swell, and the volume increase induced by swelling influences tensile properties of the O-rings. Samples of nonfilled (NF), carbon black-filled (CB), and silica-filled (SC) sulfur-vulcanized acrylonitrile-butadiene rubber were exposed to hydrogen at 30 °C and pressures of up to 100 MPa, and the effect of hydrogen exposure on the volume increase, hydrogen content, and tensile properties was investigated. The residual hydrogen content, measured 35 minutes after decompression, increased with increasing hydrogen pressure in the range 0.7-100 MPa for all three samples. In contrast, the volumes of NF, CB, and SC barely changed at pressures below 10 MPa, whereas they increased at pressures above 10 MPa. This nonlinear volume increase is probably related to the free volume of the rubber structure. The volume increase of the CB and SC samples was smaller than that of the NF samples, possibly because of the superior tensile properties of CB and SC. As the volumes of the NF, CB, and SC samples increased, their tensile elastic moduli decreased as a result of a decrease in crosslink density and elongation by volume increase. Although the true fracture stress of NF was barely dependent on the volume of the specimen, those of CB and SC clearly decreased as the volume increased. The decrease in the true fracture stress of CB and SC was related to the volume increase by swelling, showing that the boundary structure between the filler and the rubber matrix was changed by the volume increase.

  6. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    NASA Astrophysics Data System (ADS)

    Tabassum, Rana; Gupta, Banshi D.

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO(1-x)Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO(1-x)Pd x ) are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO(1-x)Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H2 and 4% H2 in N2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO(1-x)Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO(1-x)Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas.

  7. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

    NASA Astrophysics Data System (ADS)

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-01

    A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

  8. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-01

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. PMID:27067493

  9. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.

    PubMed

    Mehanna, Maha; Kiely, Patrick D; Call, Douglas F; Logan, Bruce E

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m(3) H(2)/m(3) d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. PMID:21077623

  10. The MuCap experiment: A measurement of the muon capture rate in hydrogen gas

    SciTech Connect

    Banks, T. I.

    2007-10-26

    We have recently measured the rate of nuclear muon capture by the proton, using a novel technique which involves a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S} = 725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2} = 0.88m{sub {mu}}{sup 2}) = 7.3{+-}1.1, is extracted. This result is consistent with theoretical predictions for g{sub P} that are based on the approximate chiral symmetry of QCD.

  11. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  12. Dissolution of Uranium Metal Without Hydride Formation or Hydrogen Gas Generation

    SciTech Connect

    Soderquist, Chuck Z.; Oliver, Brian M.; McNamara, Bruce K.

    2008-09-01

    This study shows that metallic uranium will cleanly dissolve in carbonate-peroxide solution without generation of hydrogen gas or uranium hydride. Metallic uranium shot, 0.5 to 1 mm diameter, were reacted with ammonium carbonate - hydrogen peroxide solution ranging in concentration from 0.13M to 1.0M carbonate and 0.50M to 2.0M peroxide. The uranium beads were weighed before and after reacting with the etch solution, and from the weights of the beads, their diameters were calculated, before and after the etch. The etch rate on the beads was then calculated from the reduction in bead diameter, and independently by uranium analysis of the solution. The calculated etch rate ranged from about 4 x 10-4 to 8 x 10-4 cm per hour, dependent primarily on the peroxide concentration. A hydrogen analysis of the etched beads showed that no detectable hydrogen was introduced into the uranium metal by the etching process.

  13. DESIGN NOTE: A compact catalytic converter for the production of para-hydrogen

    NASA Astrophysics Data System (ADS)

    Juarez, A. M.; Cubric, D.; King, G. C.

    2002-05-01

    The design and operation of a compact converter to produce a constant flow of para-hydrogen from normal hydrogen is described. The converter features a paramagnetic compound (nickel sulfate) that catalyses the conversion of ortho- to para-hydrogen at temperatures of 14-21 K. The converter has been tested by measuring rotationally resolved photoelectron spectra in the para-hydrogen produced. The percentage of the para-hydrogen species in the converted gas was determined to be >97%.

  14. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  15. Defect effect on tribological behavior of diamond-like carbon films deposited with hydrogen diluted benzene gas in aqueous environment

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Park, Se Jun; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Kim, Seock-Sam

    2009-05-01

    This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.

  16. Composition surveys of test gas produced by a hydrogen-oxygen-air burner. [for supersonic ramjet engine

    NASA Technical Reports Server (NTRS)

    Eggers, J. M.

    1974-01-01

    As a result of the need for a uniform hot gas test stream for fuel injector development for hydrogen fueled supersonic combustion ramjet engines, an experimental study of injector configuration effect on exit flow uniformity of a hydrogen fueled oxygen replenished, combustion burner was made. Measurements used to investigate the burner nozzle exit profiles were pitot and gas sample measurements. Gas composition and associated temperature profiles were reduced to an acceptable level by burner injector modifications. The effect of the injector modifications was to redistribute the hydrogen fuel, increase the air pressure drop, promote premixing of the oxygen and air, and establish a uniform flow pattern where the oxygen-air mixture comes into contact with the hydrogen fuel. The most sensitive phenomenon which affected the composition profiles was the uniformity of the air distribution supplied to the combustion chamber.

  17. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  18. Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Ochi, Kazuhiko; Oda, Yasuji; Noguchi, Hiroshi

    In order to clarify the hydrogen effect on the fatigue strength at 107 cycles in a plain specimen of type 316L austenitic stainless steel, rotating bending fatigue tests in laboratory air and plane bending fatigue tests in 1.0 MPa dry hydrogen gas and in air at 313 K were carried out. The main results obtained are as follows. The observed fatigue behavior showed that the fatigue strength at 107 cycles in both environments is determined by the non-propagation of a fatigue crack of the order of the grain size. Also, the strength at 107 cycles in hydrogen gas is slightly higher than that in air. In the region of high-cycle fatigue, the fatigue life in hydrogen gas is longer than that in air, which is mainly caused by the longer crack initiation life in hydrogen gas. The crack propagation life in hydrogen gas is shorter than that in air but has only a small ratio to the fatigue life in this region.

  19. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  20. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-07-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  1. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  2. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    DOEpatents

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  3. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1999-02-02

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  4. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    DOEpatents

    Siriwardane, R.V.

    1997-12-30

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  5. Self-dynamics of hydrogen gas as probed by means of inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Guarini, Eleonora; Orecchini, Andrea; Formisano, Ferdinando; Demmel, Franz; Petrillo, Caterina; Sacchetti, Francesco; Bafile, Ubaldo; Barocchi, Fabrizio

    2005-12-01

    The neutron double-differential cross-section of molecular hydrogen at low density has been measured at two rather low scattering angles and different final neutron energies by means of three-axis spectrometry. This first inelastic scattering determination of the single-particle roto-translational dynamics of room temperature H2 allows for a detailed test of the theoretical modelling of the spectral line-shapes of such a fundamental molecule, performed by referring both to a careful quantum-mechanical treatment and to a simpler semi-classical approximation. A comprehensive report on the neutron measurements and data analysis is presented, along with an overview of the theories used for comparison with the experimental results. An encouraging picture of the present capabilities in the calculation of the true dynamic response of hydrogen gas to slow and thermal neutrons is obtained, opening new perspectives for accurate data calibration in inelastic neutron spectroscopy, with special relevance for small-angle experiments.

  6. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    SciTech Connect

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequencies relevant to PSA vessel operation.

  7. Measurement of Fatigue Crack Growth Relationships in Hydrogen Gas for Pressure Swing Adsorber Vessel Steels

    DOE PAGESBeta

    Somerday, Brian P.; Barney, Monica

    2014-12-04

    We measured the hydrogen-assisted fatigue crack growth rates (da/dN) for SA516 Grade 70 steel as a function of stress-intensity factor range (ΔK) and load-cycle frequency to provide life-prediction data relevant to pressure swing adsorber (PSA) vessels. For ΔK values up to 18.5 MPa m1/2, the baseline da/dN versus ΔK relationship measured at 1Hz in 2.8 MPa hydrogen gas represents an upper bound with respect to crack growth rates measured at lower frequency. However, at higher ΔK values, we found that the baseline da/dN data had to be corrected to account for modestly higher crack growth rates at the lower frequenciesmore » relevant to PSA vessel operation.« less

  8. Flower-like Palladium Nanoclusters Decorated Graphene Electrodes for Ultrasensitive and Flexible Hydrogen Gas Sensing

    PubMed Central

    Shin, Dong Hoon; Lee, Jun Seop; Jun, Jaemoon; An, Ji Hyun; Kim, Sung Gun; Cho, Kyung Hee; Jang, Jyongsik

    2015-01-01

    Flower-like palladium nanoclusters (FPNCs) are electrodeposited onto graphene electrode that are prepared by chemical vapor deposition (CVD). The CVD graphene layer is transferred onto a poly(ethylene naphthalate) (PEN) film to provide a mechanical stability and flexibility. The surface of the CVD graphene is functionalized with diaminonaphthalene (DAN) to form flower shapes. Palladium nanoparticles act as templates to mediate the formation of FPNCs, which increase in size with reaction time. The population of FPNCs can be controlled by adjusting the DAN concentration as functionalization solution. These FPNCs_CG electrodes are sensitive to hydrogen gas at room temperature. The sensitivity and response time as a function of the FPNCs population are investigated, resulted in improved performance with increasing population. Furthermore, the minimum detectable level (MDL) of hydrogen is 0.1 ppm, which is at least 2 orders of magnitude lower than that of chemical sensors based on other Pd-based hybrid materials. PMID:26198416

  9. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  10. Carbothermal Reduction of Quartz in Methane-Hydrogen-Argon Gas Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Guangqing; Tang, Kai; Ostrovski, Oleg; Tronstad, Ragnar

    2015-10-01

    Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4-H2-Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz-graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

  11. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  12. Relation between the OH stretching frequency and the OO distance in time-resolved infrared spectroscopy of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bratos, Savo; Leicknam, Jean-Claude; Pommeret, Stanislas

    2009-05-01

    A non-empirical theory is presented to study the relation between the OH stretching frequency and the OO distance in ultrafast laser spectra of water. Diluted solutions HDO/DO rather than pure HO were considered to switch off resonant vibrational interactions between water molecules; the local structure of water as well as the OO distribution functions remain unchanged in this substitution. Only times superior to 100-200fs are considered to avoid perturbations generated by collisions between water molecules. It is then shown that the Novak-Mikenda type relations between the OH stretching frequency and the OO distance largely survive when going from equilibrium to laser perturbed non-equilibrium systems. It is also shown that temporally varying infrared pump-probe profiles of OH stretching bands in HDO/DO closely parallel the oxygen-oxygen distribution functions of these solutions. Infrared pump-probe spectroscopy can thus replace time-resolved X-ray diffraction in this particular case.

  13. Rate of the reduction of the iron oxides in red mud by hydrogen and converted gas

    NASA Astrophysics Data System (ADS)

    Teplov, O. A.; Lainer, Yu. A.

    2013-01-01

    The drying and gas reduction of the iron oxides in the red mud of bauxite processing are studied. It is shown that at most 25% of aluminum oxide are fixed by iron oxides in this red mud, and the other 75% are fixed by sodium aluminosilicates. A software package is developed to calculate the gas reduction of iron oxides, including those in mud. Small hematite samples fully transform into magnetite in hydrogen at a temperature below 300°C and a heating rate of 500 K/h, and complete reduction of magnetite to metallic iron takes place below 420°C. The densification of a thin red mud layer weakly affects the character and temperature range of magnetizing calcination, and the rate of reduction to iron decreases approximately twofold and reduction covers a high-temperature range (above 900°C). The substitution of a converted natural gas for hydrogen results in a certain delay in magnetite formation and an increase in the temperature of the end of reaction to 375°C. In the temperature range 450-550°C, the transformation of hematite into magnetite in red mud pellets 1 cm in diameter in a converted natural gas is 30-90 faster than the reduction of hematite to iron in hydrogen. The hematite-magnetite transformation rate in pellets is almost constant in the temperature range under study, and reduction occurs in a diffusion mode. At a temperature of ˜500°C, the reaction layer thickness of pellets in a shaft process is calculated to be ˜1 m at a converted-gas flow rate of 0.1 m3/(m2 s) and ˜2.5 m at a flow rate of 0.25 m3/(m2 s). The specific capacity of 1 m2 of the shaft cross section under these conditions is 240 and 600 t/day, respectively. The use of low-temperature gas reduction processes is promising for the development of an in situ optimum red mud utilization technology.

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    SciTech Connect

    Bromberger, H. Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  16. Electrochemical studies of hydrogen chloride gas in several room temperature ionic liquids: mechanism and sensing.

    PubMed

    Murugappan, Krishnan; Silvester, Debbie S

    2016-01-28

    The electrochemical behaviour of highly toxic hydrogen chloride (HCl) gas has been investigated in six room temperature ionic liquids (RTILs) containing imidazolium/pyrrolidinium cations and range of anions on a Pt microelectrode using cyclic voltammetry (CV). HCl gas exists in a dissociated form of H(+) and [HCl2](-) in RTILs. A peak corresponding to the oxidation of [HCl2](-) was observed, resulting in the formation of Cl2 and H(+). These species were reversibly reduced to H2 and Cl(-), respectively, on the cathodic CV scan. The H(+) reduction peak is also present initially when scanned only in the cathodic direction. In the RTILs with a tetrafluoroborate or hexafluorophosphate anion, CVs indicated a reaction of the RTIL with the analyte/electrogenerated products, suggesting that these RTILs might not be suitable solvents for the detection of HCl gas. This was supported by NMR spectroscopy experiments, which showed that the hexafluorophosphate ionic liquid underwent structural changes after HCl gas electrochemical experiments. The analytical utility was then studied in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) by utilising both peaks (oxidation of [HCl2](-) and reduction of protons) and linear calibration graphs for current vs. concentration for the two processes were obtained. The reactive behaviour of some ionic liquids clearly shows that the choice of the ionic liquid is very important if employing RTILs as solvents for HCl gas detection. PMID:26697927

  17. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  18. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  19. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.

    PubMed

    Rodriguez, José A; Hanson, Jonathan C; Stacchiola, Dario; Senanayake, Sanjaya D

    2013-08-01

    In this perspective article, we show how a series of in situ techniques {X-ray diffraction (XRD), pair-distribution-function analysis (PDF), X-ray absorption fine structure (XAFS), environmental transmission electron microscopy (ETEM), infrared spectroscopy (IR), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS)} can be combined to perform detailed studies of the structural, electronic and chemical properties of metal oxide catalysts used for the production of hydrogen through the water-gas shift reaction (WGS, CO + H2O → H2 + CO2). Under reaction conditions most WGS catalysts undergo chemical transformations that drastically modify their composition with respect to that obtained during the synthesis process. Experiments of time-resolved in situ XRD, XAFS, and PDF indicate that the active phase of catalysts which combine Cu, Au or Pt with oxides such as ZnO, CeO2, TiO2, CeOx/TiO2 and Fe2O3 essentially involves nanoparticles of the reduced noble metals. The oxide support undergoes partial reduction and is not a simple spectator, facilitating the dissociation of water and in some cases modifying the chemical properties of the supported metal. Therefore, to optimize the performance of these catalysts one must take into consideration the properties of the metal and oxide phases. IR and AP-XPS have been used to study the reaction mechanism for the WGS on metal oxide catalysts. Data of IR spectroscopy indicate that formate species are not necessarily involved in the main reaction path for the water-gas shift on Cu-, Au- and Pt-based catalysts. Thus, a pure redox mechanism or associative mechanisms that involve either carbonate-like (CO3, HCO3) or carboxyl (HOCO) species should be considered. In the last two decades, there have been tremendous advances in our ability to study catalytic materials under reaction conditions and we are moving towards the major goal of fully understanding how the active sites for the production of hydrogen through the WGS actually

  20. The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study

    NASA Astrophysics Data System (ADS)

    Kahng, Yung Ho; Lu, Wei; Tobin, R. G.; Loloee, Reza; Ghosh, Ruby N.

    2009-03-01

    We report several experiments under ultrahigh vacuum conditions that elucidate the role of oxygen in the functioning of silicon carbide field-effect gas sensors with nonporous platinum gates. The devices studied are shown to be sensitive both to hydrogen and to propene. All of the results are consistent with oxygen acting through its surface reactions with hydrogen. Three specific aspects are highlighted: the need, under some conditions, for oxygen to reset the device to a fully hydrogen-depleted state; competition between hydrogen oxidation and hydrogen diffusion to metal/oxide interface sites, leading to steplike behavior as a function of the oxygen:hydrogen ratio (λ-sensing); and the removal of sulfur contamination by oxygen.

  1. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent. Previously announced in STAR as N84-16955

  2. Hydrogen Gas Sensors Fabricated on Atomically Flat 4H-SiC Webbed Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Evans, Laura J.; Chen, Liang-Yu; Hunter, Gary W.; Androjna, Drago

    2007-01-01

    This paper reports on initial results from the first device tested of a "second generation" Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 +/- 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.

  3. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  4. NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa

    2016-08-01

    NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

  5. Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor

    SciTech Connect

    Koyanaka, Hideki; Ueda, Yoshikatsu; Takeuchi, K; Kolesnikov, Alexander I

    2012-01-01

    We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

  6. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    SciTech Connect

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  7. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  8. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  9. Fast Plasma Shutdowns By Massive Hydrogen, Noble and Mixed-Gas Injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Wesley, J. C.; van Zeeland, M. A.; Evans, T. E.; Humphreys, D. A.; Hyatt, A. W.; Parks, P. B.; Strait, E. J.; Wu, W.; Hollmann, E. M.; Boedo, J. A.; Izzo, V. A.; James, A. N.; Moyer, R. A.; Rudakov, D. L.; Yu, J. H.; Jernigan, T. C.; Baylor, L. R.; Combs, S. K.; Groth, M.

    2008-11-01

    Experiments conducted with hydrogenic, noble and mixed (H2 + Ar and D2 + Ne) gases injected into H-mode plasmas are described. Gas species, quantity, delivery rate and intrinsic and added impurities (mixtures) all affect the disruption mitigation attributes of the resulting fast plasma shutdowns. With sufficient quantity, effective mitigation is obtained for all species. Optimal results for disruption and runaway avalanche mitigation are with 3x10^22 He delivery in ˜2 ms. This yields a favorable combination of moderately-fast current quench, high free-electron densities, ˜2x10^21,m-3, gas assimilation fractions ˜0.3 and avalanche suppression ratios, ne/nRB˜0.1. Favorable scaling of assimilation with increasing quantity is seen for all low-Z gases. The experiments provide validation data for emerging MHD/radiation simulation models and insight about design of injection systems for disruption and avalanche mitigation in ITER.

  10. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  11. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  12. Indirect hydrogen analysis by gas chromatography coupled to mass spectrometry (GC-MS).

    PubMed

    Varlet, V; Smith, F; Augsburger, M

    2013-08-01

    Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. PMID:23893637

  13. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  14. Gas separation using ion exchange membranes for producing hydrogen from synthesis gas

    SciTech Connect

    Pellegrino, J.J.; Giarratano, P.J.

    1992-01-01

    The main goal of this project is to demonstrate the use of facilitated transport membranes to separate gases resulting from the formation of H{sub 2}, specifically C0{sub 2} and H{sub 2}S from CO and H{sub 2}. As part of this goal a field test is performed at a producing natural gas plant (Carter Creek Chevron Natural Gas Plant, Evanston, WY) to evaluate the performance and long term stability of candidate membranes. Laboratory work at the National Institute of Standard and Technology (NIST) leads and parallels the field tests. Through a series of tests in the WIST laboratory and at the Chevron/Carter Creek test rig, the investigators are establishing the apparent separation and productivity capabilities of polymer membranes imbibed with various solvents and chemical carriers. In some samples the membranes are also subjected to solvent-swelling heat treatment (gel-treatment). The polymer material is polyperfluorosufonic acid (PFSA-Nafion). The chemical carriers, e.g. methyldiethanolamine (EDA) and ethylenediamine (EDA) enhance the transport and selectivity of the membrane. They may be in solution with H{sub 2}0, glycerol, ethylene glycol, and n-methylpyrrolidone (NMP). Nafion 117 (NE117) is a commercial film, 200 microns thick, which is available from DuPont Co. A developmental polymer film, Nafion 111 (NE111) 30--40 microns thick was made available by the DuPont Co.

  15. CFD calculations of gas leak dispersion and subsequent gas explosions: validation against ignited impinging hydrogen jet experiments.

    PubMed

    Middha, Prankul; Hansen, Olav R; Grune, Joachim; Kotchourko, Alexei

    2010-07-15

    Computational fluid dynamics (CFD) tools are increasingly employed for quantifying incident consequences in quantitative risk analysis (QRA) calculations in the process industry. However, these tools must be validated against representative experimental data, involving combined release and ignition scenarios, in order to have a real predictive capability. Forschungszentrum Karlsruhe (FZK) has recently carried out experiments involving vertically upwards hydrogen releases with different release rates and velocities impinging on a plate in two different geometrical configurations. The dispersed cloud was subsequently ignited and resulting explosion overpressures recorded. Blind CFD simulations were carried out prior to the experiments to predict the results. The simulated gas concentrations are found to correlate reasonably well with observations. The overpressures subsequent to ignition obtained in the blind predictions could not be compared directly as the ignition points chosen in the experiments were somewhat different from those used in the blind simulations, but the pressure levels were similar. Simulations carried out subsequently with the same ignition position as those in the experiments compared reasonably well with the observations. This agreement points to the ability of the CFD tool FLACS to model such complex scenarios even with hydrogen as a fuel. Nevertheless, the experimental set-up can be considered to be small-scale. Future large-scale data of this type will be valuable to confirm ability to predict large-scale accident scenarios. PMID:20346585

  16. Effects of protein sources on concentrations of hydrogen sulphide in the rumen headspace gas of dairy cows.

    PubMed

    Fonseca, A J M; Cabrita, A R J; Pinho, L A O; Kim, E J; Dewhurst, R J

    2013-01-01

    Two Latin square design experiments investigated the relationship between hydrogen sulphide concentration in the rumen headspace gas of dairy cows and the early stages of protein degradation in the rumen. In Expt 1, three protein sources differing in rumen N (nitrogen) degradability (maize gluten feed (MGF); sunflower meal (SFM); and soyabean meal (SBM)) were used, whereas in Expt 2 four different batches of the same feed (MGF) differing in colour (CIE L*, a*, b* (CIELAB) scale) were used. After allowing the concentration of hydrogen sulphide in rumen gas to decline close to zero, a fixed amount of protein sources was offered to cows and the concentrations of hydrogen sulphide were recorded in rumen headspace gas at 30-min intervals. In Expt 1, the concentration of hydrogen sulphide showed considerable variation between protein sources, with MGF having the highest concentration followed by SFM and SBM resulting in very low concentrations. The N wash losses (zero time measurements with nylon bags) ranked the feeds in the same way, from MGF (highest; 61%) to SBM (lowest; 26%). There were marked differences in the degradation of cystine and methionine between protein sources, although the degradation of cystine was always higher than for methionine. MGF (Expt 2) led to increased concentrations of hydrogen sulphide, with peak concentrations achieved between 1 and 2 h after feeding. The concentrations of hydrogen sulphide were higher for MGF1, intermediate for MGF2 and lower for MGF3 and MGF4, agreeing with colour scale. Differences in the early stages of dietary sulphur degradation corresponded with differences in hydrogen sulphide concentrations in rumen gas. The results suggest that hydrogen sulphide concentrations in the rumen headspace gas could be useful to evaluate nutritional parameters not measured by the in sacco technique, contributing to a better understanding of the response of dairy cows to different protein supplements. PMID:23031538

  17. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency. PMID:16469434

  18. Use of an accelerometer and a microphone as gas detectors in the online quantitative detection of hydrogen released from ammonia borane by gas chromatography.

    PubMed

    He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang

    2013-03-19

    The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C. PMID:23419032

  19. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  20. The Role of Interfacial Molecular Structure and Hydrogen-Bonding in Gas-Surface Energy Exchange

    NASA Astrophysics Data System (ADS)

    Day, Scott; Fergusion, Melinda; Morris, John

    2004-03-01

    Atomic-beam scattering experiments using n-alkanethiol and w-functionalized alkanethiol self-assembled monolayers (SAMs) on gold are employed to explore the dynamics of gas-surface energy exchange in collisions with model organic surfaces. The studies are performed by directing a nearly monoenergetic beam of 80 kJ/mol Ar atoms onto a particular SAM at an incident angle of 30° with respect to the surface normal and recording the time-of-flight distributions for the atoms as they scatter from the surface at a final angle of 30°. Among the monolayers studied, long-chain methyl-terminated SAMs are found to be the most effective at dissipating the translational energy of impinging atoms. For alkanethiols with greater than seven total carbon atoms, we find that, for specular scattering conditions, over 80the incident energy is transferred to the surface and that over 60with the surface before scattering back into the gas phase. In contrast to methyl-terminated monolayers, SAMs constructed from hydrogen-bonding alkanethiols exhibit characteristics of more rigid collision partners. The Ar atoms transfer about 77with only 43equilibrium before recoiling. Further comparisons of mixed hydroxyl- and methyl-terminated SAMs and alkene-terminated SAMs suggest that intramonolayer hydrogen bonding of terminal functional groups may play an important role in determining the extent of energy transfer and thermalization.

  1. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics

    SciTech Connect

    Hongwei Cheng; Yuwen Zhang; Xionggang Lu; Weizhong Ding; Qian Li

    2009-01-15

    Hydrogen production from simulated hot coke oven gas (HCOG) was investigated in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor combined with a Ni/Mg(Al)O catalyst by the partial oxidation with toluene as a model tar compound under atmospheric pressure. The reaction results indicated that toluene was completely converted to H{sub 2} and CO in the catalytic reforming of the simulated HCOG in the temperature range from 825 to 875{sup o}C. Both thermodynamically predicated values and experimental data showed that the selective oxidation of toluene took precedence over that of CH{sub 4} in the reforming reaction. At optimized reaction conditions, the dense oxygen-permeable membrane has an oxygen permeation flux around 12.3 mL cm{sup -2} min{sup -1}, and a CH{sub 4} conversion of 86%, a CO{sub 2} conversion of 99%, a H{sub 2} yield of 88%, and a CO yield of 87% have been achieved. When the toluene and methane were reformed, the amount of H{sub 2} in the reaction effluent gas was about 2 times more than that of original H{sub 2} in simulated HCOG. The results reveal that it is feasible for hydrogen production from HCOG by reforming hydrocarbon compounds in a ceramic oxygen-permeable membrane reactor. 27 refs., 10 figs., 3 abs.

  2. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    NASA Astrophysics Data System (ADS)

    Aktas, K.; Acar, S.; Salamov, B. G.

    2011-08-01

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H2 is more stable than in air. The breakdown voltages are measured for H2 and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  3. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    PubMed Central

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR. PMID:24174911

  4. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  5. Resolving the shocked gas in HH 54 with Herschel. CO line mapping at high spatial and spectral resolution

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.; Liseau, R.; Brinch, C.; Olofsson, G.; Santangelo, G.; Cabrit, S.; Benedettini, M.; Black, J. H.; Herczeg, G.; Justtanont, , K.; Kristensen, L. E.; Larsson, B.; Nisini, B.; Tafalla, M.

    2014-11-01

    Context. The HH 54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Aims: Resolving the HH 54 shock wave in the far-infrared (FIR) cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. Methods: We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH 54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). Results: The FIR emission is confined to the HH 54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO (10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500 - 7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s-1. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([O i]63, 145 μm) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH 54 bow-shock. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-01

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported. PMID:26742539

  7. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  8. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  9. Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL

    SciTech Connect

    Khericha, S.; Bhatt, R.; Liekhus, K.

    2003-01-14

    The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

  10. Probing the Low-Barrier Hydrogen Bond in Hydrogen Maleate in the Gas Phase: A Photoelectron Spectroscopy and ab Initio Study

    SciTech Connect

    Woo, Hin-koon; Wang, Xue B.; Wang, Lai S.; Lau, Kai Chung

    2005-12-01

    The strength of the low-barrier hydrogen bond in hydrogen maleate in the gas phase was investigated by low-temperature photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of maleic and fumaric acid monoanions (cis-/trans-HO2CCHdCHCO2 -) were obtained at low temperatures and at 193 nm photon energy. Vibrational structure was observed for trans-HO2CCHdCHCO2 - due to the OCO bending modes; however, cis-HO2CCHdCHCO2 - yielded a broad and featureless spectrum. The electron binding energy of cis-HO2CCHdCHCO2 - is about 1 eV blue-shifted relative to trans-HO2CCHdCHCO2 - due to the formation of intramolecular hydrogen bond in the cis-isomer. Theoretical calculations (CCSD(T)/ aug-cc-pVTZ and B3LYP/aug-cc-pVTZ) were carried out to estimate the strength of the intramolecular hydrogen bond in cis-HO2CCHdCHCO2 -. Combining experimental and theoretical calculations yields an estimate of 21.5 ( 2.0 kcal/mol for the intramolecular hydrogen bond strength in hydrogen maleate.

  11. Features of hydrogen trapping and desorption during deposition of yttrium coating on zirconium in a gas discharge

    NASA Astrophysics Data System (ADS)

    Evsin, A. E.; Begrambekov, L. B.; Dovganyuk, S. S.

    2016-01-01

    Transport of hydrogen isotopes during the various regimes of deposition of yttrium coating on zirconium in argon plasma with addition of deuterium is studied. The influence of oxygen contamination in plasma-generating gas on the processes of trapping and desorption of hydrogen isotopes is also investigated. It is shown that deposition of yttrium coating on zirconium in Ar+5%D2 plasma enhances both hydrogen desorption from zirconium and deuterium trapping into zirconium in comparison to those under plasma exposure without deposition. Yttrium deposition in Ar+25%O2+5%D2 plasma, conversely, mitigates both hydrogen desorption and deuterium trapping. Hydrogen desorption from zirconium increases with the increase of energy of ions, bombarding the sample during deposition of the coating in oxygen-free plasma, but it, on the contrary, decreases in oxygen-containing plasma.

  12. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  13. Pt–Ti–O gate silicon–metal–insulator–semiconductor field-effect transistor hydrogen gas sensors in harsh environments

    NASA Astrophysics Data System (ADS)

    Usagawa, Toshiyuki; Ueda, Kazuhiro; Nambu, Akira; Yoneyama, Akio; Kikuchi, Yota; Watanabe, Atsushi

    2016-06-01

    The influence of radiation damages to developed hydrogen gas sensor chips from γ-rays (60Co) and/or X-rays (synchrotron radiation) is manageably avoided for sensor operations even at extremely high integral doses such as 1.8 and/or 18 MGy. Platinum–titanium–oxygen (Pt–Ti–O) gate silicon–metal–insulator–semiconductor field-effect transistor (Si-MISFET) hydrogen gas sensors can work stably as hydrogen sensors up to about 270 °C and also show environmental hardness as follows: When nitrogen-diluted 10-ppm hexamethyldisiloxane (HMDS) was exposed to the sensor FETs for 40 min at a working temperature of 115 °C, large sensing amplitude (ΔV g) changed little within repetition errors before and after HMDS exposures. The variations of ΔV g among relative humidity of 20 and 80% are very small within ±4.4% around 50% under 40 °C atmosphere. The Pt–Ti–O sensors have been found to show large ΔV g of 624.4 mV with σΔV g of 7.27 mV for nine times repeated measurements under nitrogen-diluted 1.0%-hydrogen gas, which are nearly the same values of 654.5 mV with σΔV g of 3.77 mV under air-diluted 1.0%-hydrogen gas.

  14. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(methyl pentene) and poly(etherimide)

    SciTech Connect

    Not Available

    1986-01-01

    This report summarizes the development of polymer membranes useful in the separation of hydrogen from coal-derived synthesis gas during period 1 October 1985--30 September 1986. During the last year several high performance membranes were developed for the separation of hydrogen from nitrogen and carbon monoxide. The heat resistant resins poly(methyl pentene) (TPX), Mitsui Petrochemical Industries, New York, NY and poly(etherimide) (ULTEM, General Electric, Pittsfield, MA) have been selected as polymers with outstanding properties for membrane preparation. The properties of membranes prepared from these polymers are presented. TPX is an example of a moderately selective and highly permeable membrane; the poly(etherimide) membranes are more selective but have lower fluxes. These membranes will cover the range of properties required in our hydrogen separation program and the bulk of our future work will be on these membranes. A few experiments with palladium/silver membranes are also planned, as described in the Test Plan.

  15. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending September 30, 1986

    SciTech Connect

    Not Available

    1986-12-31

    This report summarizes the development of polymer membranes useful in the separation of hydrogen from coal-derived synthesis gas during period 1 October 1985--30 September 1986. During the last year several high performance membranes were developed for the separation of hydrogen from nitrogen and carbon monoxide. The heat resistant resins poly(methyl pentene) (TPX), Mitsui Petrochemical Industries, New York, NY and poly(etherimide) (ULTEM, General Electric, Pittsfield, MA) have been selected as polymers with outstanding properties for membrane preparation. The properties of membranes prepared from these polymers are presented. TPX is an example of a moderately selective and highly permeable membrane; the poly(etherimide) membranes are more selective but have lower fluxes. These membranes will cover the range of properties required in our hydrogen separation program and the bulk of our future work will be on these membranes. A few experiments with palladium/silver membranes are also planned, as described in the Test Plan.

  16. Influence of gridded gate structure on gas sensing behavior of hydrogen

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Mishra, Sunny, V. N.; Dwivedi, R.; Das, R. R.

    2014-05-01

    A gridded Pt/SiO2/Si MOS sensor for hydrogen detection has been fabricated on p-type ⟨100⟩ Si wafer having resistivity (1-6 Ω cm). The SiO2 and Platinum (Pt) gate thickness were kept about 10 nm and 35 nm. The performance of Pt gate MOS sensor was evaluated through C-V characteristics (capacitance vs voltage) upon exposure to H2 (250 ppm-4000ppm) at different frequencies (25 kHz and 50 kHz) in a closed chamber at air ambient atmosphere. The capacitance of the sensor decreases with increase in frequency as well as H2 gas concentration. The flat band voltage characteristics have been evaluated at different frequencies and concentrations. It decreases as the frequency and concentration of gas both increases. The maximum flat band voltage change was observed -0.6 V at 25 kHz. The sensor exhibits better sensitivity (˜88%) at low frequency (25 kHz). The high response of sensor is attributed to the side wall diffusion, increase in surface area caused by inner side wall and increase in porosity, increase in fixed surface state density, spill-over mechanism and change in interface state density on exposure of gas along with the formation of dipole layer.

  17. Capture and storage of hydrogen gas by zero-valent iron.

    PubMed

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. PMID:24389351

  18. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  19. Capture and storage of hydrogen gas by zero-valent iron

    NASA Astrophysics Data System (ADS)

    Reardon, Eric J.

    2014-02-01

    Granular Feo, used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Feo lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Feo treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Feo injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Feo for remediation purposes and may be accessible using physical or chemical means.

  20. Molecular hydrogen line ratios in four regions of shock-excited gas

    NASA Technical Reports Server (NTRS)

    Burton, M. G.; Brand, P. W. J. L.; Geballe, T. R.; Webster, A. S.

    1989-01-01

    Five emission lines of molecular hydrogen, with wavelengths in the ranges of 2.10-2.25 and 3.80-3.85 microns, have been observed in four objects of different type in which the line emission is believed to be excited by shocks. The relative intensities of the lines 1 - 0 S(1):1 - 0 S(O):2 - 1 S(1) are approximately 10.5:2.5:1.0 in all four objects. The 0 - 0 S(13):1 - 0 O(7) line ratio, however, varies from 1.05 in OMC-1 to about 2.3 in the Herbig-Haro object HH 7. The excitation temperature derived from the S(13) and O(7) lines is higher than that derived from the 1 - 0 and 2 - 1 S(1) lines in all four objects, so the shocked gas in these objects cannot be characterized by a single temperature. The constancy of the (1-0)/(2-1) S(1) line ratio between sources suggests that the post-shock gas is 'thermalized' in each source. The S(13)/O(7) ratio is particularly sensitive to the density and temperature conditions in the gas.

  1. Quantification of Conventional and Nonconventional Charge-Assisted Hydrogen Bonds in the Condensed and Gas Phases.

    PubMed

    Katsyuba, Sergey A; Vener, Mikhail V; Zvereva, Elena E; Fei, Zhaofu; Scopelliti, Rosario; Brandenburg, Jan Gerit; Siankevich, Sviatlana; Dyson, Paul J

    2015-11-01

    Charge-assisted hydrogen bonds (CAHBs) play critical roles in many systems from biology through to materials. In none of these areas has the role and function of CAHBs been explored satisfactorily because of the lack of data on the energy of CAHBs in the condensed phases. We have, for the first time, quantified three types of CAHBs in both the condensed and gas phases for 1-(2'-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]). The energy of conventional OH···[OAc](-) CAHBs is ∼10 kcal·mol(-1), whereas nonconventional C(sp2)H···[OAc](-) and C(sp3)H···[OAc](-) CAHBs are weaker by ∼5-7 kcal·mol(-1). In the gas phase, the strength of the nonconventional CAHBs is doubled, whereas the conventional CAHBs are strengthened by <20%. The influence of cooperativity effects on the ability of the [OAc](-) anion to deprotonate the imidazolium cation is evaluated. The ability to quantify CAHBs in the condensed phase on the basis of easier accessible gas-phase estimates is highlighted. PMID:26496074

  2. Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes.

    PubMed

    Zhao, Wenhui; Wang, Lu; Bai, Jaeil; Francisco, Joseph S; Zeng, Xiao Cheng

    2014-07-30

    We present molecular dynamics simulation evidence of spontaneous formation of quasi-one-dimensional (Q1D) hydrogen gas hydrates within single-walled carbon nanotubes (SW-CNTs) of nanometer-sized diameter (1-1.3 nm) near ambient temperature. Contrary to conventional 3D gas hydrates in which the guest molecules are typically contained in individual and isolated cages in the host lattice, the guest H2 molecules in the Q1D gas hydrates are contained within a 1D nanochannel in which the H2 molecules form a molecule wire. In particular, we show that in the (15,0) zigzag SW-CNT, the hexagonal H2 hydrate tends to form, with one H2 molecule per hexagonal prism, while in the (16,0) zigzag SW-CNT, the heptagonal H2 hydrate tends to form, with one H2 molecule per heptagonal prism. In contrast, in the (17,0) zigzag SW-CNT, the octagonal H2 hydrate can form, with either one H2 or two H2 molecules per pentagonal prism (single or double occupancy). Interestingly, in the hexagonal or heptagonal ice nanotube, the H2 wire is solid-like as the axial diffusion constant is very low (<5 × 10(-10) cm(2)/s), whereas in the octagonal ice nanotube, the H2 wire is liquid-like as its axial diffusion constant is comparable to 10(-5) cm(2)/s. PMID:24885238

  3. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-09-26

    A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

  4. Introduction to Radcalc: A computer program to calculate the radiolytic production of hydrogen gas from radioactive wastes in packages

    SciTech Connect

    Green, J.R.; Hillesland, K.E.; Field, J.G.

    1995-04-01

    A calculational technique for quantifying the concentration of hydrogen generated by radiolysis in sealed radioactive waste containers was developed in a U.S. Department of Energy (DOE) study conducted by EG&G Idaho, Inc., and the Electric Power Research Institute (EPRI) TMI-2 Technology Transfer Office. The study resulted in report GEND-041, entitled {open_quotes}A Calculational Technique to Predict Combustible Gas Generation in Sealed Radioactive Waste Containers{close_quotes}. The study also resulted in a presentation to the U.S. Nuclear Regulatory Commission (NRC) which gained acceptance of the methodology for use in ensuring compliance with NRC IE Information Notice No. 84-72 (NRC 1984) concerning the generation of hydrogen within packages. NRC IE Information Notice No. 84-72: {open_quotes}Clarification of Conditions for Waste Shipments Subject to Hydrogen Gas Generation{close_quotes} applies to any package containing water and/or organic substances that could radiolytically generate combustible gases. EPRI developed a simple computer program in a spreadsheet format utilizing GEND-041 calculational methodology to predict hydrogen gas concentrations in low-level radioactive wastes containers termed Radcalc. The computer code was extensively benchmarked against TMI-2 (Three Mile Island) EPICOR II resin bed measurements. The benchmarking showed that the model developed predicted hydrogen gas concentrations within 20% of the measured concentrations. Radcalc for Windows was developed using the same calculational methodology. The code is written in Microsoft Visual C++ 2.0 and includes a Microsoft Windows compatible menu-driven front end. In addition to hydrogen gas concentration calculations, Radcalc for Windows also provides transportation and packaging information such as pressure buildup, total activity, decay heat, fissile activity, TRU activity, and transportation classifications.

  5. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  6. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale.

    PubMed

    Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L

    2014-08-01

    Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas

  7. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons.

    PubMed

    Pak, Yusin; Kim, Sang-Mook; Jeong, Huisu; Kang, Chang Goo; Park, Jung Su; Song, Hui; Lee, Ryeri; Myoung, NoSoung; Lee, Byoung Hun; Seo, Sunae; Kim, Jin Tae; Jung, Gun-Young

    2014-08-13

    Polymer residue-free graphene nanoribbons (GNRs) of 200 nm width at 1 μm pitch were periodically generated in an area of 1 cm(2) via laser interference lithography using a chromium interlayer prior to photoresist coating. High-quality GNRs were evidenced by atomic force microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy measurements. Palladium nanoparticles were then deposited on the GNRs as catalysts for sensing hydrogen gases, and the GNR array was utilized as an electrically conductive path with less electrical noise. The palladium-decorated GNR array exhibited a rectangular sensing curve with unprecedented rapid response and recovery properties: 90% response within 60 s at 1000 ppm and 80% recovery within 90 s in nitrogen ambient. In addition, reliable and repeatable sensing behaviors were revealed when the array was exposed to various gas concentrations even at 30 ppm. PMID:25050896

  8. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  9. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  10. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  11. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  12. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  13. Certification Testing and Demonstration of Insulated Pressure Vessels for Vehicular Hydrogen and Natural Gas Storage

    SciTech Connect

    Aceves, S M; Martinez-Frias, J; Espinosa-Loza, F; Schaffer, R; Clapper, W

    2002-05-22

    We are working on developing an alternative technology for storage of hydrogen or natural gas on light-duty vehicles. This technology has been titled insulated pressure vessels. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept either liquid fuel or ambient-temperature compressed fuel. Insulated pressure vessels offer the advantages of cryogenic liquid fuel tanks (low weight and volume), with reduced disadvantages (fuel flexibility, lower energy requirement for fuel liquefaction and reduced evaporative losses). The work described in this paper is directed at verifying that commercially available pressure vessels can be safely used to store liquid hydrogen or LNG. The use of commercially available pressure vessels significantly reduces the cost and complexity of the insulated pressure vessel development effort. This paper describes a series of tests that have been done with aluminum-lined, fiber-wrapped vessels to evaluate the damage caused by low temperature operation. All analysis and experiments to date indicate that no significant damage has resulted. Future activities include a demonstration project in which the insulated pressure vessels will be installed and tested on two vehicles. A draft standard will also be generated for obtaining insulated pressure vessel certification.

  14. Nanocomposite thin films for high temperature optical gas sensing of hydrogen

    SciTech Connect

    Ohodnicki, Jr., Paul R.; Brown, Thomas D.

    2013-04-02

    The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  15. Plasma steam reforming of E85 for hydrogen rich gas production

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Hoang, Trung; Lobban, Lance L.; Mallinson, Richard G.

    2011-07-01

    E85 (85 vol% ethanol and 15 vol% gasoline) is a partly renewable fuel that is increasing in supply availability. Hydrogen production from E85 for fuel cell or internal combustion engine applications is a potential method for reducing CO2 emissions. Steam reforming of E85 using a nonthermal plasma (pulse corona discharge) reactor has been exploited at low temperature (200-300 °C) without external heating, diluent gas, oxidant or catalyst in this work. Several operational parameters, including the discharge current, E85 concentration and feed flow rate, have been investigated. The results show that hydrogen rich gases (63-67% H2 and 22-29% CO, with small amounts of CO2, C2 hydrocarbons and CH4) can be produced by this method. A comparison with ethanol reforming and gasoline reforming under identical conditions has also been made and the behaviour of E85 reforming is found to be close to that of ethanol reforming with slightly higher C2 hydrocarbons yields.

  16. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade. PMID:27010347

  17. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  18. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  19. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    SciTech Connect

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.

  20. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  1. Micro-machined thin film hydrogen gas sensor, and method of making and using the same

    NASA Technical Reports Server (NTRS)

    DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)

    2001-01-01

    A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

  2. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-01

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface. PMID:26043808

  3. Radcalc for windows benchmark study: A comparison of software results with Rocky Flats hydrogen gas generation data

    SciTech Connect

    MCFADDEN, J.G.

    1999-07-19

    Radcalc for Windows Version 2.01 is a user-friendly software program developed by Waste Management Federal Services, Inc., Northwest Operations for the U.S. Department of Energy (McFadden et al. 1998). It is used for transportation and packaging applications in the shipment of radioactive waste materials. Among its applications are the classification of waste per the US. Department of Transportation regulations, the calculation of decay heat and daughter products, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated (Green et al. 1995, McFadden et al. 1998) by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (RFETS) Residue Stabilization Program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II (Schierloh 1998). The residue/waste drums tested at RFETS contain contaminated, solid, inorganic materials in polyethylene bags. The contamination is predominantly due to plutonium and americium isotopes. The information provided by Schierloh (1 998) of RFETS includes decay heat, hydrogen gas generation rates, calculated G{sub eff} values, and waste material type, making the experimental data ideal for benchmarking Radcalc. The following sections discuss the RFETS data and the Radcalc cases modeled with the data. Results are tabulated and also provided graphically.

  4. RFNC-VNIIEF experience in development and operation of hydrogen isotopes gas-handling systems for basic research

    SciTech Connect

    Yukhimchuk, A. A.; Il'kaev, R. I.

    2008-07-15

    Application of hydrogen isotopes in different fields of fundamental physics obtained by RFNC-VNIIEF in the last decade are presented. Gas-handling systems for scientific experiments, some technologies and designs of the setup key elements are described, and results obtained with the developed equipment are outlined. (authors)

  5. Influence of hydrogen absorption on the electrochemical potential noise of an iron electrode under corrosion with gas evolution

    SciTech Connect

    Huet, F.; Jerome, M.; Manolatos, P.; Wenger, F.

    1996-12-31

    Using the electrochemical permeation technique and a model for hydrogen diffusion in a metal, the fluctuations of the concentration, {Delta}C(t), of hydrogen absorbed in the first atomic layers of an Armco iron membrane, under cathodic polarization and at the corrosion potential in sulfuric acid solution, were measured. The fluctuations of the electrode potential, {Delta}E(t), and of the electrolyte resistance, {Delta}R{sub e}(t), induced by bubble evolution were also simultaneously recorded. Under cathodic potential, {Delta}E(t) and {Delta}C(t) are clearly induced by the evolution of big hydrogen gas bubbles. However, at the corrosion potential, another source of {Delta}E(t) and {Delta}C(t) must be proposed. It has been shown that this difference is related to the influence of an intermediate reaction species which partly blocks the hydrogen absorption under cathodic polarization and disappears at the corrosion potential.

  6. In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen

    DOEpatents

    Capp, John P.; Bissett, Larry A.

    1978-01-01

    The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

  7. Structural and Optical Properties of GaS Single Crystals Irradiated by Hydrogen

    NASA Astrophysics Data System (ADS)

    Garibov, Adil; Madatov, Rahim; Mustafayev, Yusif; Ahmadov, Farid; Ahmadov, Gadir; Jahangirov, Murad

    2015-10-01

    Using Raman light scattering and Rutherford backscattering, we studied the structural disorder of layered GaS crystals before and after hydrogen (H2 + implantation with energy of 140 keV. Initially, the elemental components of GaS were distributed uniformly in depth, and this distribution remained stable up to a dose of 5 × 1015 at./cm2. Doses up to 1 × 1015 at./cm2 increased the photoresponse (from 0.66 to 5.3 times) over a wide wavelength range from 490 nm to 900 nm. Additionally, the irradiated samples displayed new photoresponse peaks with maximums at λ = 668 nm and λ = 739 nm, corresponding to new energy levels of 0.59 eV and 0.77 eV, respectively. However, further dose increase up to 5 × 1015 at./cm2 dramatically reduced the photoresponse due to structural disorder (amorphization). The experimental value of the critical dose for initial amorphization was greater than 1 × 1015 at./cm2, which agrees with the calculated value. Raman scattering confirmed the photoresponse results.

  8. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660

  9. Reduction of a detailed reaction mechanism for hydrogen combustion under gas turbine conditions

    SciTech Connect

    Stroehle, Jochen; Myhrvold, Tore

    2006-02-01

    The aim of this study is to find a reduced mechanism that accurately represents chemical kinetics for lean hydrogen combustion at elevated pressures, as present in a typical gas turbine combustor. Calculations of autoignition, extinction, and laminar premixed flames are used to identify the most relevant species and reactions and to compare the results of several reduced mechanisms with those of a detailed reaction mechanism. The investigations show that the species OH and H are generally the radicals with the highest concentrations, followed by the O radical. However, the accumulation of the radical pool in autoignition is dominated by HO{sub 2} for temperatures above, and by H{sub 2}O{sub 2} below the crossover temperature. The influence of H{sub 2}O{sub 2} reactions is negligible for laminar flames and extinction, but becomes significant for autoignition. At least 11 elementary reactions are necessary for a satisfactory prediction of the processes of ignition, extinction, and laminar flame propagation under gas turbine conditions. A 4-step reduced mechanism using steady-state approximations for HO{sub 2} and H{sub 2}O{sub 2} yields good results for laminar flame speed and extinction limits, but fails to predict ignition delay at low temperatures. A further reduction to three steps using a steady-state approximation for O leads to significant errors in the prediction of the laminar flame speed and extinction limit. (author)

  10. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.

    2000-01-01

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  11. The Influence of Hydrogen Bonding on Hydrogen-Atom Abstraction Reactions of Dehydropyridinium Cations in the Gas Phase

    PubMed Central

    Adeuya, Anthony; Nash, John J.; Kenttämaa, Hilkka I.

    2010-01-01

    The reactions of several substituted, positively-charged dehydropyridinium cations with cyclohexane, methanol and tetrahydrofuran have been examined in a Fourier-transform ion cyclotron resonance mass spectrometer. All of the charged monoradicals react with the neutral reagents exclusively via hydrogen atom abstraction. For cyclohexane, there is a good correlation between the reaction efficiencies and the calculated electron affinities at the radical sites; that is, the greater the electron affinity of the charged monoradical at the radical site, the faster the reaction. The reaction efficiencies with methanol and tetrahydrofuran, however, do not correlate with the calculated electron affinities. Density functional theory (DFT) calculations indicate that for these reagents a stabilizing hydrogen bonding interaction exists in the hydrogen atom abstraction transition states for some of the charged monoradicals but not for others. At both the MPW1K and G3MP2B3 levels of theory, there is a good correlation between the calculated activation enthalpies and the observed reaction efficiencies although the G3MP2B3 method provides a slightly better correlation than the MPW1K method. The extent of enhancement in the reaction efficiencies caused by the hydrogen bonding interactions parallels the calculated hydrogen bond lengths in the transition states. PMID:21080694

  12. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  13. In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission

    NASA Astrophysics Data System (ADS)

    Zheng, Zhao Qiang; Zhu, Lian Feng; Wang, Bing

    2015-07-01

    Indium oxide (In2O3) tower-shaped nanostructure gas sensors have been fabricated on Cr comb-shaped interdigitating electrodes with relatively narrower interspace of 1.5 μm using thermal evaporation of the mixed powders of In2O3 and active carbon. The Schottky contact between the In2O3 nanotower and the Cr comb-shaped interdigitating electrode forms the Cr/In2O3 nanotower Schottky diode, and the corresponding temperature-dependent I- V characteristics have been measured. The diode exhibits a low Schottky barrier height of 0.45 eV and ideality factor of 2.93 at room temperature. The In2O3 nanotower gas sensors have excellent gas-sensing characteristics to hydrogen concentration ranging from 2 to 1000 ppm at operating temperature of 120-275 °C, such as high response (83 % at 240 °C to 1000 ppm H2), good selectivity (response to H2, CH4, C2H2, and C3H8), and small deviation from the ideal value of power exponent β (0.48578 at 240 °C). The sensors show fine long-term stability during exposure to 1000 ppm H2 under operating temperature of 240 °C in 30 days. Lots of oxygen vacancies and chemisorbed oxygen ions existing in the In2O3 nanotowers according to the x-ray photoelectron spectroscopy (XPS) results, the change of Schottky barrier height in the Cr/In2O3 Schottky junction, and the thermoelectronic emission due to the contact between two In2O3 nanotowers mainly contribute for the H2 sensing mechanism. The growth mechanism of the In2O3 nanotowers can be described to be the Vapor-Solid (VS) process.

  14. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200°C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (α = 7-9) and H2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  15. Wide-range (0.33%-100%) 3C-SiC resistive hydrogen gas sensor development

    NASA Astrophysics Data System (ADS)

    Fawcett, Timothy J.; Wolan, John T.; Myers, Rachael L.; Walker, Jeremy; Saddow, Stephen E.

    2004-07-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. NiCr planar ohmic contacts were deposited on both a 4μm 3C-SiC epitaxial film grown on n-type Si(001) and directly on Si to form the resistive sensor structures. Detection at concentrations as low as 0.33% and as high as 100% (H2 in Ar) was observed with the 3C-SiC sensor while the Si sensor saturated at 40%. The 3C-SiC sensors show a remarkable range of sensitivity without any saturation effects typically seen in other solid-state hydrogen gas sensors. Under a constant 2V bias, these sensors demonstrated an increase in current up to 17mA upon exposure to pure H2. Preliminary experiments aimed at determining the gas sensing mechanism of these devices have been conducted and are also reported.

  16. Precursor of N atoms of hydrogenated amorphous carbon nitride films formed from the microwave discharge of C2H2/N2 gas mixture

    NASA Astrophysics Data System (ADS)

    Ito, Haruhiko; Tsudome, Hiroki; Mogi, Nobuyoshi; Saitoh, Hidetoshi

    2016-01-01

    Hydrogenated amorphous carbon nitride films with the [N]/([N] + [C]) ratios of 0.29-0.44 were formed from the microwave discharge of the gas mixture of C2H2 with an excess amount of N2. The ratio of the fluxes, s = Φa-CN/ΦCN(X), was evaluated in this study, where Φa-CN was the flux of N atoms incorporated into the films and ΦCN(X) was that of CN radicals in the gas phase. ΦCN(X) was evaluated from the density of CN radicals using the A2Πi-X2Σ+ laser-induced fluorescence spectra and from the flow speed using the time-resolved emission, and Φa-CN from the film mass calibrated against atomic compositions. The s value was in the range of 0.22-0.78, being 1.2-1.7 times the sticking probability of CN radicals corrected in this study, 0.19-0.45. Then, the contribution of CN radicals was evaluated to be 60-80% of the N source of the films. The chemical structure and mechanical property of the films were analyzed in terms of Raman scattering, IR absorption, and nanoindentation measurements.

  17. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  18. Silica membranes for hydrogen separation in coal gas processing. Final report, January 1993

    SciTech Connect

    Gavalas, G.R.

    1993-03-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO{sub 2} or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO{sub 2} deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl{sub 4} (or TiCl{sub 4}, AlCl{sub 3}, BCl{sub 3}) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  19. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    PubMed

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  20. Descriptions of the neutral gas outflow in Comets P/Halley and Wilson (1987 VII) from analyses of velocity-resolved H2O line profiles

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.; Hu, Hong-Yao; Hsieh, K. C.; Weaver, Harold A.; Mumma, Michael J.

    1991-01-01

    The spatial distribution and expansion velocity of the Comets Wilson (1987 VII) and pre- and postperihelion P/Halley are derived on the bases of velocity-resolved H2O spectral line profiles, using a kinematic model which synthesizes line profiles for comparison with observed line shapes. The results thus obtained demonstrate that the spherically symmetric outflow at constant velocity is a poor characterization of cometary neutral-gas outflow. While the radial dependence of the H2O expansion velocity is noted to be consistent with theoretically envisioned trends, the high H2O outflow velocity observed in Comet Wilson resists reconciliation with any existing kinematic model.

  1. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending March 31, 1986

    SciTech Connect

    Not Available

    1986-12-31

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  2. Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption

    SciTech Connect

    Redondas, V.; Gomez, X.; Garcia, S.; Pevida, C.; Rubiera, F.; Moran, A.; Pis, J.J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H

  3. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    NASA Astrophysics Data System (ADS)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  4. The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process.

    PubMed

    Zhou, Yuegui; Zhu, Xian; Peng, Jun; Liu, Yaobin; Zhang, Dingwang; Zhang, Mingchuan

    2009-10-15

    The present study attempts to use hydrogen peroxide solution to humidify Ca(OH)(2) particles to enhance the absorption of SO(2) to achieve higher removal efficiency and to solve the valuable reuse of the reaction product in the semidry flue gas desulfurization (FGD) process. Experiments were carried out to examine the effect of various operating parameters including hydrogen peroxide solution concentration, Ca/S molar ratio and approach to adiabatic saturation temperature on SO(2) removal efficiency in a laboratory scale spray reactor. The product samples were analyzed to obtain semi-quantitative measures of mineralogical composition by X-ray diffraction (XRD) with reference intensity ratio (RIR) method and the morphology of the samples was examined by scanning electron microscope (SEM). Compared with spraying water to humidify Ca(OH)(2), SO(2) removal efficiency was improved significantly by spraying hydrogen peroxide solution of 1-3 wt.% to humidify Ca(OH)(2) because hydrogen peroxide solution enhanced the dissolution and absorption rate of SO(2). Moreover, XRD and SEM analyses show that the desulfurization products contain less amount of unreacted Ca(OH)(2) and more amount of stable calcium sulfate with increasing hydrogen peroxide solution concentration. Thus, the process mechanism of the enhanced absorption of SO(2) by spraying hydrogen peroxide solution to humidify Ca(OH)(2) was elucidated on the basis of the experimental results. PMID:19464108

  5. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    SciTech Connect

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of the deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of {approx}7 GBq

  6. Hydrogen pellet acceleration with a two-stage system consisting of a gas gun and a fuseless electromagnetic railgun

    SciTech Connect

    Honig, J.; Kim, K.; Wedge, S.W.

    1986-05-01

    Hydrogen pellets are successfully accelerated for the first time using a two-stage system consisting of a pneumatic gun and an electromagnetic railgun. The pneumatic gun preaccelerator forms cylindrical hydrogen ice pellets (1.6-mm diam x 2.15-mm long) and accelerates them with high-pressure helium gas to velocities in excess of 500 m/s. The booster accelerator, which is a fuseless, circular-bore electromagnetic railgun, derives its propulsive force from a plasma arc armature. The plasma arc armature is formed by electrically breaking down the propellant gas which follows the pellet from the gas gun into the railgun. The diagnostics are for the monitoring of the main capacitor bank and rail currents, for the pellet detection and velocity measurements at the breech and muzzle ends of the railgun, for the recording of the plasma-arc-armature movement inside the railgun bore, and for the photographing of the hydrogen pellet exiting the railgun. Using the system, which is a 60-cm long proof-of-principle machine for refueling magnetic fusion devices, hyrogen pellet velocities exceeding 1 km/s have been achieved for pellets exiting the gas gun at velocities of approx.500 m/s.

  7. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  8. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide

    PubMed Central

    Toombs, Christopher F; Insko, Michael A; Wintner, Edward A; Deckwerth, Thomas L; Usansky, Helen; Jamil, Khurram; Goldstein, Brahm; Cooreman, Michael; Szabo, Csaba

    2010-01-01

    INTRODUCTION Hydrogen sulphide (H2S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H2S to the tissues. In the current study, we have measured H2S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. METHODS We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H2S concentrations using a custom-made device based on a sulphide gas detector (Interscan). RESULTS Administration of IK-1001, a parenteral formulation of Na2S (0.005–0.20 mg kg−1, i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1–5 min following administration of IK-1001 at 0.10 mg kg−1 dose and higher. In all subjects, basal exhaled H2S was observed to be higher than the ambient concentration of H2S gas in room air, indicative of on-going endogenous H2S production in human subjects. Upon intravenous administration of Na2S, a rapid elevation of exhaled H2S concentrations was observed. The amount of exhaled H2S rapidly decreased after discontinuation of the infusion of Na2S. CONCLUSION Exhaled H2S represents a detectable route of elimination after parenteral administration of Na2S. PMID:20565454

  9. Eley-Rideal surface chemistry: Direct reactivity of gas phase atomic hydrogen with adsorbed species

    SciTech Connect

    Weinberg, W.H.

    1996-10-01

    Selected examples of Eley-Rideal surface chemistry are presented in order to review this field. Reactions on Ru(100) only are considered. The specific examples employed are: (i) hydrogenation of oxygen atoms, (ii) hydrogenation of CO, (iii) formation of dihydrogen, and (iv) hydrogenation of formate. 80 refs., 8 figs.

  10. The Far-Infrared Absorption Spectrum of Low Temperature Hydrogen Gas.

    NASA Astrophysics Data System (ADS)

    Wishnow, Edward Hyman

    The far-infrared absorption spectrum of normal hydrogen gas has been measured from 20-320 cm^ {-1} (lambda = 500-31 mu M), over the temperature range 21-38 K, and the pressure range 0.6-3 atmospheres. The spectra cover the very weak and broad collision-induced translational absorption band of H_2 which at these low temperatures is observed well isolated from the H_2 rotational lines. Translational absorption occurs when two molecules collide and absorb a photon via a transient induced dipole moment. The molecules emerge from the collision with altered translational energies, and the rotational, vibrational, and electronic energy states remain unaffected. The present spectra are the lowest temperature, lowest pressure, and highest resolution studies of the H_2 translational spectrum. In order to observe the weak translational absorption band, a long pathlength multireflection absorption cell ('White cell'), cooled by the continuous flow of helium vapour, has been designed and constructed. The cell has an f/10 optical beam that allows long wavelength radiation to be transmitted, with low diffraction losses, over an optical path of up to 60 m. The cell is coupled to a Fourier transform interferometer and H_2^ectra are obtained at a spectral resolution of 0.24 cm ^{-1}, 10 times higher than previous experiments. Low temperature absorption spectra are due to not only transitions between molecular translational energy states, but also rotational transitions between the bound states of the van der Waals complex formed by two hydrogen molecules. The integrated absorption of the measured H _2 translational spectrum is consistent with the binary absorption coefficient calculated using the Poll and Van Kranendonk theory of collison-induced absorption. The calculation is based on the quantum mechanical pair distribution function derived from the Lennard-Jones intermolecular potential, and it includes contributions from H_2 dimer bound states. Although dimer transitions

  11. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting

    DOE PAGESBeta

    Mo, Jingke; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Jr, Johney Boyd; Zhang, Feng-Yuan

    2016-06-13

    Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm2 were asmore » low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less

  12. Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia.

    PubMed

    Nagatani, Kimihiro; Wada, Kojiro; Takeuchi, Satoru; Kobayashi, Hiroaki; Uozumi, Yoichi; Otani, Naoki; Fujita, Masanori; Tachibana, Shoichi; Nawashiro, Hiroshi

    2012-06-01

    Global cerebral ischemia and reperfusion (I/R) often result in high mortality. Free radicals have been reported to play an important role in global cerebral I/R, and therefore, reduction of these might improve the outcome. Here, we investigated the effect of hydrogen gas (H2) (a strong free radical scavenger) on the survival rate of mice following global cerebral I/R. We further examined the histopathological outcome and also the brain water content (as a possible determinant of mortality). Male C57BL/6J mice were subjected to global cerebral I/R by means of 45-min bilateral common carotid artery occlusion (BCCAO). A total of 160 mice were divided into three groups: sham surgery (sham group), BCCAO without H2 (BCCAO group), and BCCAO treated with 1.3% H2 (BCCAO + H2 group). We observed that H2 treatment significantly (P = 0.0232) improved the 7-day survival rate of mice, from 8.3% (BCCAO group, n = 12) to 50% (BCCAO + H2 group, n = 10). Histopathological analysis revealed that H2 treatment significantly attenuated neuronal injury and autophagy in the hippocampal cornu ammonis 1 sector and also brain edema, after 24 h of reperfusion. The beneficial effects of H2 treatment on brain injury were associated with significantly lower levels of oxidative stress markers (8-hydroxy-2'-deoxyguanosine and malondialdehyde) in the brain tissue. Thus, we believe that H2 may be an effective treatment for global cerebral I/R. PMID:22392146

  13. CFD study on Taconis thermoacoustic oscillation with cryogenic hydrogen as working gas

    NASA Astrophysics Data System (ADS)

    Sun, Daming; Wang, Kai; Guo, Yinan; Zhang, Jie; Xu, Ya; Zou, Jiang; Zhang, Xiaobin

    2016-04-01

    Taconis oscillation is a kind of typical self-excited thermoacoustic oscillation, the study of which is of great significance to reveal the thermoacoustic conversion effect and find ways to suppress self-excited oscillation in cryogenic systems. Based on computational fluid dynamics (CFD) method, the onset process of Taconis oscillation with low temperature hydrogen at atmospheric pressure as working gas is first simulated. It is shown that a standing-wave acoustic field operating at 91 Hz starts spontaneously and finally develops to a saturation state in the Taconis tube with length and inner diameter of 1 m and 0.01 m respectively. Parametric variations in both axial and radial directions of thermoacoustic field are then studied in detail. By combining the computational results with Rott's theory, the spatial distributions of viscous dissipation, thermal relaxation dissipation, and source/sink terms of Taconis thermoacoustic oscillation are obtained quantitatively. The dissipation and source terms are found to be mainly brought forth by the traveling-wave and standing-wave components of the acoustic field, respectively.

  14. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry.

    PubMed

    Takahashi, Hidenori; Sekiya, Sadanori; Nishikaze, Takashi; Kodera, Kei; Iwamoto, Shinichi; Wada, Motoi; Tanaka, Koichi

    2016-04-01

    Dissociation of gas-phase peptide ions through interaction with low-energy hydrogen (H) radical (∼0.15 eV) was observed with a quadrupole ion trap mass spectrometry. The H radical generated by thermal dissociation of H2 molecules passing through a heated tungsten capillary (∼2000 °C) was injected into the ion trap containing target peptide ions. The fragmentation spectrum showed abundant c-/z- and a-/x-type ions, attributable to H attachment/abstraction to/from peptide ion. Because the low-energy neutral H radical initiated the fragmentation, the charge state of the precursor ion was maintained during the dissociation. As a result, precursor ions of any charge state, including singly charged positive and negative ions, could be analyzed for amino acid sequence. The sequence coverage exceeding 90% was obtained for both singly protonated and singly deprotonated substance P peptide. This mass spectrometry also preserved labile post-translational modification bonds. The modification sites of triply phosphorylated peptide (kinase domain of insulin receptor) were identified with the sequence coverage exceeding 80%. PMID:27002918

  15. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine

    SciTech Connect

    Reksowardojo, I.K.; Ogawa, Hideyuki; Miyamoto, Noboru; Enomoto, Yoshiteru; Kitamura, Toru

    1996-09-01

    Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.

  16. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.

    PubMed

    Beheshti, Sayyed Mohsen; Ghassemi, Hojat; Shahsavan-Markadeh, Rasoul; Fremaux, Sylvain

    2015-01-01

    Gasification is a thermochemical process in which solid or liquid fuels are transformed into synthesis gas through partial oxidation. In this paper, a kinetic model of rice husk gasification has been developed, which is interesting for the applications of the syngas produced. It is a zero-dimensional, steady-state model based on global reaction kinetic, empirical correlation of pyrolysis and is capable of predicting hydrogen yield in the presence of sorbent CaO. The model can also be used as a useful tool to investigate the influence of process parameters including steam/biomass ratio, CaO/fuel ratio (CaO/Fuel), and gasification temperature on hydrogen efficiency, CO2 capture ratio (CCR), and average carbonation conversion (Save). Similar to hydrogen formation, CCR also increases with increasing CaO/Fuel, but an opposite trend is exhibited in Save. Model predictions were compared with available data from the literature, which showed fairly good agreement. PMID:25403373

  17. Radcalc: A computer program to calculate the radiolytic production of hydrogen gas from radioactive wastes in packages

    SciTech Connect

    Green, J.R.; Schwarz, R.A.; Hillesland, K.E.; Roetman, V.E.; Field, J.G.

    1995-11-01

    Radcalc for Windows` is a menu-driven Microsoft2 Windows-compatible computer code that calculates the radiolytic production of hydrogen gas in high- and low-level radioactive waste. In addition, the code also determines US Department of Transportation (DOT) transportation classifications, calculates the activities of parent and daughter isotopes for a specified period of time, calculates decay heat, and calculates pressure buildup from the production of hydrogen gas in a given package geometry. Radcalc for Windows was developed by Packaging Engineering, Transportation and Packaging, Westinghouse Hanford Company, Richland, Washington, for the US Department of Energy (DOE). It is available from Packaging Engineering and is issued with a user`s manual and a technical manual. The code has been verified and validated.

  18. Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack

    NASA Astrophysics Data System (ADS)

    Hamidi, S. M.; Ramezani, R.; Bananej, A.

    2016-03-01

    Nanostructured plasmonic H2 gas sensor has been designed and fabricated by palladium nanostructure onto one-dimensional photonic crystal. Our one dimensional photonic crystal has been designed and fabricated to have photonic band gap in visible spectrum and the palladium nanostructure has been designed and constructed as 11 nm thin film onto the above mentioned photonic crystal. All of fabrication processes have been done in vacuum chamber by the aid of electron gun and sputtering deposition methods. The ability of the devise as a Hydrogen gas sensor has been examined by recording the long range surface Plasmon resonance in different injection of H2 gas and our results show that this sensor head can be used to sense very little amount of H2 gas in ambient at room temperature. A reversible red shift of the reflectance deep of long range surface Plasmon resonance make this sensor as a good and useful device in medical, safety and energy related materials.

  19. Hydrogen stable isotopic constraints on methane emissions from oil and gas extraction in the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Botner, E. C.; Jimenez, K.; Blake, N. J.; Schroeder, J.; Meinardi, S.; Barletta, B.; Simpson, I. J.; Blake, D. R.; Flocke, F. M.; Pfister, G.; Bon, D.; Crawford, J. H.

    2015-12-01

    The climatic implications of a shift from oil and coal to natural gas depend on the magnitude of fugitive emissions of methane from the natural gas supply chain. Attempts to constrain methane emissions from natural gas production regions can be confounded by other sources of methane. Here we demonstrate the utility of stable isotopes, particularly hydrogen isotopes, for source apportionment of methane emissions. The Denver, Colorado area is home to a large oil and gas field with both conventional oil and gas wells and newer hydraulic fracturing wells. The region also has a large metropolitan area with several landfills and a sizable cattle population. As part of the DISCOVER-AQ and FRAPPE field campaigns in summer 2014, we collected three types of canister samples for analysis of stable isotopic composition of methane: 1), samples from methane sources; 2), samples from two stationary ground sites, one in the Denver foothills, and one in an oil and gas field; and 3), from the NCAR C-130 aircraft in samples upwind and downwind of the region. Our results indicate that hydrogen isotope ratios are excellent tracers of sources of methane in the region, as we have shown previously in California and Texas. Use of carbon isotope ratios is complicated by the similarity of natural gas isotope ratios to that of background methane. Our results indicate that, despite the large amount of natural gas production in the region, biological sources such as cattle feedlots and landfills account for at least 50% of total methane emissions in the Front Range. Future work includes comparison of isotopes and alkane ratios as tracers of methane sources, and calculation of total methane fluxes in the region using continuous measurements of methane concentrations during aircraft flights.

  20. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-Ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ~ 6 keV (~70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ~2200 km s-1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 1041 erg s-1, the diffuse hard X-ray emission is ~100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 108 M ⊙) and thermal energy (E th = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 105 M ⊙. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  1. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    SciTech Connect

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas; Pellegrini, Silvia; Max, Claire; U, Vivian

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  2. Development Program of IS Process Pilot Test Plant for Hydrogen Production With High-Temperature Gas-Cooled Reactor

    SciTech Connect

    Jin Iwatsuki; Atsuhiko Terada; Hiroyuki Noguchi; Yoshiyuki Imai; Masanori Ijichi; Akihiro Kanagawa; Hiroyuki Ota; Shinji Kubo; Kaoru Onuki; Ryutaro Hino

    2006-07-01

    At the present time, we are alarmed by depletion of fossil energy and effects on global environment such as acid rain and global warming, because our lives depend still heavily on fossil energy. So, it is universally recognized that hydrogen is one of the best energy media and its demand will be increased greatly in the near future. In Japan, the Basic Plan for Energy Supply and Demand based on the Basic Law on Energy Policy Making was decided upon by the Cabinet on 6 October, 2003. In the plan, efforts for hydrogen energy utilization were expressed as follows; hydrogen is a clean energy carrier without carbon dioxide (CO{sub 2}) emission, and commercialization of hydrogen production system using nuclear, solar and biomass, not fossil fuels, is desired. However, it is necessary to develop suitable technology to produce hydrogen without CO{sub 2} emission from a view point of global environmental protection, since little hydrogen exists naturally. Hydrogen production from water using nuclear energy, especially the high-temperature gas-cooled reactor (HTGR), is one of the most attractive solutions for the environmental issue, because HTGR hydrogen production by water splitting methods such as a thermochemical iodine-sulfur (IS) process has a high possibility to produce hydrogen effectively and economically. The Japan Atomic Energy Agency (JAEA) has been conducting the HTTR (High-Temperature Engineering Test Reactor) project from the view to establishing technology base on HTGR and also on the IS process. In the IS process, raw material, water, is to be reacted with iodine (I{sub 2}) and sulfur dioxide (SO{sub 2}) to produce hydrogen iodide (HI) and sulfuric acid (H{sub 2}SO{sub 4}), the so-called Bunsen reaction, which are then decomposed endo-thermically to produce hydrogen (H{sub 2}) and oxygen (O{sub 2}), respectively. Iodine and sulfur dioxide produced in the decomposition reactions can be used again as the reactants in the Bunsen reaction. In JAEA, continuous

  3. Mechanism of Hydrogenated Microcrystalline Si Film Deposition by Magnetron Sputtering Employing a Si Target and H2/Ar Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fukaya, Kota; Tabata, Akimori; Sasaki, Koichi

    2009-03-01

    The mechanism of hydrogenated microcrystalline silicon (µc-Si:H) film deposition by magnetron sputtering employing a Si target and H2/Ar gas mixture has been investigated by measuring Si and H atom densities in the gas phase by laser-induced fluorescence spectroscopy. The crystalline volume fraction of the film correlated positively with H atom density. The variation in Si atom density indicated the increase in sputtering yield from the Si target in the H2/Ar discharge. The surface of the Si target immersed in the H2/Ar discharge was hydrogenated. Therefore, it is reasonable to expect the production of SiHx molecules (typically SiH4) from the hydrogenated Si target via reactive ion etching. Since SiHx molecules produced from the target may function as a deposition precursor, the mechanism of µc-Si:H film deposition is considered to be similar to that of plasma-enhanced chemical vapor deposition (PECVD) employing a SiH4/H2 gas mixture. The advantage of magnetron sputtering deposition over PECVD is the production of SiHx molecules without using toxic, explosive SiH4.

  4. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  5. HIGH TIME-RESOLVED COMPARISONS FOR IN-DEPTH PROBING OF CMAQ FINE-PARTICLE AND GAS PREDICTIONS

    EPA Science Inventory

    Input errors affect model predictions. The diurnal behavior of two inputs NHx, which partitions in the inorganic system between gas and particle, and EC, a nonreactive emitted specie, is compared for CMAQ predictions and observations. A monthly average diurnal profile based on ho...

  6. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGESBeta

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H2 production, as well as the anode microbial community structure were investigated. The five compounds were completelymore » transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  7. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    SciTech Connect

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H2 production, as well as the anode microbial community structure were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H2 needed to

  8. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable

  9. Ethylene Oxide and Hydrogen Peroxide Gas Plasma Sterilization: Precautionary Practices in U.S. Hospitals

    PubMed Central

    Boiano, James M.; Steege, Andrea L.

    2015-01-01

    Objective Evaluate precautionary practices and extent of use of ethylene oxide (EtO) and hydrogen peroxide gas plasma (HPGP) sterilization systems, including use of single chamber EtO units. Design Modular, web-based survey. Participants Members of professional practice organizations who reported using EtO or HPGP in the past week to sterilize medical instruments and supplies. Participating organizations invited members via email which included a hyperlink to the survey. Methods Descriptive analyses were conducted including simple frequencies and prevalences. Results A total of 428 respondents completed the module on chemical sterilants. Because most respondents worked in hospitals (87%, n=373) analysis focused on these workers. Most used HPGP sterilizers (84%, n=373), 38% used EtO sterilizers, with 22% using both. Nearly all respondents using EtO operated single chamber units (94%, n=120); most of them reported that the units employed single use cartridges (83%, n=115). Examples of where engineering and administrative controls were lacking for EtO include: operational local exhaust ventilation (7%; n=114); continuous air monitoring (6%; n=113); safe handling training (6%; n=142); and standard operating procedures (4%; n=142). Examples of practices which may increase HPGP exposure risk included lack of standard operating procedures (9%; n=311) and safe handling training (8%; n=312). Conclusions Use of precautionary practices was good but not universal. EtO use appears to have diminished in favor of HPGP which affords higher throughput and minimal regulatory constraints. Separate EtO sterilization and aeration units were still being used nearly one year after U.S. EPA prohibited their use. PMID:26594097

  10. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2001-10-16

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

  11. Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices

    NASA Astrophysics Data System (ADS)

    Li, Cheng Chao; Yu, Hong; Yan, Qingyu; Hng, Huey Hoon

    2015-01-01

    Herein, we present a new strategy for the mass production of high-quality reduced graphene oxide (RGO) with a surface area of 354 m2 g-1 using high pressure hydrogen as a reducing agent under hydrothermal conditions. The high pressure used is solely generated from the packing of the gas cylinder itself and a pressure meter could simply fulfil the role of monitoring pressure. The reduction process is green without chemical wastes produced. Comparing to other reported methods, the significant advancements of our strategy lie not only in the high-quality RGO with high C/O ratio, conductivity and surface area, but also in the most environment-friendliness and cost-effectiveness, which make the large scale fabrication feasible. Moreover, clean noble metal nanocrystals such as Pt could be easily in situ deposited onto the surface of RGO nanosheets when noble metal salts are introduced into the system. In particular, the prepared RGO and Pt/RGO show exceptional electrochemical performances in supercapacitors and lithium oxygen batteries because of their clean electrochemical surface, good conductivity and large surface area. Our results reveal that the obtained RGO have a specific capacitance of 884.4 F g-1 at a current density of 0.5 A g-1, and the Pt/RGO electrode can deliver discharge-charge capacities of 1000 mAh g-1 for 40 cycles with a high round-trip efficiencies of 74.9% at 50 mA g-1 when used as Li-O2 battery electrodes.

  12. The Use of Liquid Isopropyl Alcohol and Hydrogen Peroxide Gas Plasma to Biologically Decontaminate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Tudryn, Carissa D.; Choi, Sun J.; Eulogio, Sebastian E.; Roberts, Timothy J.; Tudryn, Carissa D.

    2006-01-01

    Legitimate concern exists regarding sending spacecraft and their associated hardware to solar system bodies where they could possibly contaminate the body's surface with terrestrial microorganisms. The NASA approved guidelines for sterilization as set forth in NPG 8020.12C, which is consistent with the biological contamination control objectives of the Committee on Space Research (COSPAR), recommends subjecting the spacecraft and its associated hardware to dry heat-a dry heat regimen that could potentially employ a temperature of 110(deg)C for up to 200 hours. Such a temperature exposure could prove detrimental to the spacecraft electronics. The stimulated growth of intermetallic compounds (IMCs) in metallic interconnects and/or thermal degradation of organic materials composing much of the hardware could take place over a prolonged temperature regimen. Such detrimental phenomena would almost certainly compromise the integrity and reliability of the electronics. Investigation of sterilization procedures in the medical field suggests that hydrogen peroxide (H202) gas plasma (HPGP) technology can effectively function as an alternative to heat sterilization, especially for heat-sensitive items. Treatment with isopropyl alcohol (IPA) in liquid form prior to exposure of the hardware to HPGP should also prove beneficial. Although IPA is not a sterilant, it is frequently used as a disinfectant because of its bactericidal properties. The use of IPA in electronics cleaning is widely recognized and has been utilized for many years with no adverse affects reported. In addition, IPA is the principal ingredient of the test fluid used in ionic contamination testers to assess the amount of ionic contamination found on the surfaces of printed wiring assemblies. This paper will set forth experimental data confirming the feasibility of the IPA/H202 approach to reach acceptable microbial reduction (MR) levels of spacecraft electronic hardware. In addition, a proposed process flow in

  13. Operation of a cw rf driven ion source with hydrogen and deuterium gas{sup a}

    SciTech Connect

    Melnychuk, S.T.; Debiak, T.W.; Sredniawski, J.J.

    1996-04-01

    We will describe the operation of a cw rf driven multicusp ion source designed for extraction of high current hydrogen and deuterium beams. The source is driven at 2 MHz by a 2.5 turn induction antenna immersed in the plasma. Bare stainless-steel and porcelain-coated Cu antennas have been used. The plasma load is matched to the rf generator by a variable tap {ital N}:1 transformer isolated to 46 kV, and an LC network on the secondary. With H{sub 2} gas the source can be operated at pressures between 5 and 60 mT with power reflection coefficients {lt}0.01. The extracted ion current density with a porcelain-coated antenna is approximately given by 35 mA/cm{sup 2}/kW with an 80 G dipole filter field for input powers from 3.5 to 6.6 kW. The current density remained constant for operation with a 6 and an 8 mm aperture. The source has been operated for 260 h at 3.6 kW with a single-porcelain-coated antenna. Mass spectrometer measurements of the extracted beam at this power show a species mix for H{sup +}:H{sup +}{sub 2}:H{sup +}{sub 3}:OH{sup +} of 0.49: 0.04: 0.42: 0.04. The calculated beam divergence using the IGUN code is compared with the measured divergence from an electrostatic sweep emittance scanner designed for high-power cw beam diagnostics. Phase space measurements at 40 kV and 23 mA beam current result in a normalized rms emittance of 0.09 {pi}mmmrad. {copyright} {ital 1996 American Institute of Physics.}

  14. Thermofluid analysis of the SSME preburner using a gas-gas diffusion model for oxygen and hydrogen combustion at supercritical pressures

    NASA Technical Reports Server (NTRS)

    Prakash, C.; Singhal, A. K.; Shafer, C.

    1986-01-01

    The paper discusses the thermofluid analysis of the Space Shuttle Main Engine (SSME) fuelside preburner. The governing equations have been solved numerically to predict flow, heat transfer, mixing, and combustion. A two-fluid approach is adopted in which oxygen is regarded as one fluid and hydrogen is regarded as the other fluid. The chemical kinetics is assumed to be very fast so that combustion is primarily controlled by the rate of mixing between oxygen and hydrogen. The preburner pressure is much greater than the critical pressures of oxygen and hydrogen; hence, a gas-gas diffusion model (rather than an evaporation model) has been developed to compute the rate of interphase mixing. Empirical correlations have been incorporated to account for the effect of slip on the interphase exchange. A sensitivity study has been performed with various model parameters. It is observed that the model can predict possibility of incomplete combustion and local regions of high temperatures under steady operating conditions. Some of these anomalies have been observed in actual tests, and the numerical model is useful for understanding possible causes and remedies. At least some measurements are needed for quantitative verification of the model.

  15. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  16. IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers.

    PubMed

    Jeanne Dit Fouque, Kevin; Lavanant, Hélène; Zirah, Séverine; Steinmetz, Vincent; Rebuffat, Sylvie; Maître, Philippe; Afonso, Carlos

    2016-06-01

    Lasso peptides are natural products characterized by a mechanically interlocked topology. The conformation of lasso peptides has been probed in the gas phase using ion mobility-mass spectrometry (IM-MS) which showed differences in the lasso and their unthreaded branched-cyclic topoisomers depending on the ion charge states. To further characterize the evolution of gas phase conformations as a function of the charge state and to assess associated changes in the hydrogen bond network, infrared multiple photon dissociation (IRMPD) action spectroscopy was carried out on two representative lasso peptides, microcin J25 (MccJ25) and capistruin, and their branched-cyclic topoisomers. For the branched-cyclic topoisomers, spectroscopic evidence of a disruption of neutral hydrogen bonds were found when comparing the 3+ and 4+ charge states. In contrast, for the lasso peptides, the IRMPD spectra were found to be similar for the two charge states, suggesting very little difference in gas phase conformations upon addition of a proton. The IRMPD data were thus found consistent and complementary to IM-MS, confirming the stable and compact structure of lasso peptides in the gas phase. PMID:27171649

  17. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    SciTech Connect

    Dawood, Mahmoud S.; Hamdan, Ahmad E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  18. Development of a two-stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications

    SciTech Connect

    Combs, S.K.; Milora, S.L.; Foust, C.R.; Gouge, M.J.; Fehling, D.T.; Sparks, D.O.

    1988-01-01

    The development of a two-stage light gas gun to accelerate hydrogen isotope pellets to high speeds is under way at Oak Ridge National Laboratory. High velocities (>2 km/s) are desirable for plasma fueling applications, since the faster pellets can penetrate more deeply into large, hot plasmas and deposit atoms of fuel directly in a larger fraction of the plasma volume. In the initial configuration of the two-stage device, a 2.2-l volume (/<=/55-bar) provides the gas to accelerate a 25.4-mm-diam piston in a 1-m-long pump tube; a burst disk or a fast valve initiates the acceleration process in the first stage. As the piston travels the length of the pump tube, the downstream gas (initially at <1 bar) is compressed (to pressures up to 2600 bar) and thus is driven to high temperature (approx.5000 K). This provides the driving force for acceleration of a 4-mm pellet in a 1-m-long gun barrel. In preliminary tests using helium as the driver in both stages, 35-mg plastic pellets have been accelerated to speeds as high as 3.8 km/s. Projectiles composed of hydrogen ice will have a mass in the range from 5 to 20 mg (/rho/ approx. 0.087, 0.20, and 0.32 g/cm/sup 3/ for frozen hydrogen isotopes). However, the use of sabots to encase and protect the cryogenic pellets from the high peak pressures will probably be required to realize speeds of approx.3 km/s or greater. The experimental plan includes acceleration of hydrogen isotopes as soon as the gun geometry and operating parameters are optimized; theoretical models are being used to aid in this process. The hardware is being designed to accommodate repetitive operation, which is the objective of this research and is required for future applications. 25 refs., 6 figs., 1 tab.

  19. Spatially Resolved Molecular Gas Star Formation Law in CARMA Survey Towards Infrared-bright Nearby Galaxies (STING)

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Bolatto, A.; STING Collaboration

    2011-05-01

    The STING is a CARMA 3mm survey of nearby galaxies. We will present a comprehensive analysis of the relationship between the star formation rate surface density and molecular gas surface at the sub-kpc level in the STING sample. To construct the tracers of molecular gas and star formation rate surface densities, respectively, we will use high resolution (3-5") CO (J=1-0) data from CARMA and the mid-infrared 24 micron data of comparable resolution (6") from Spitzer Space Telescope. We measure the relation in the bright region of these galaxies. In our preliminary analysis we find an approximately linear relation and no strong trends for either the logarithmic slope or the molecular depletion time across the range of galaxy masses sampled (10^9-10^11.5 Msun).

  20. The 2011 Medical Molecular Hydrogen Symposium: An inaugural symposium of the journal Medical Gas Research

    PubMed Central

    2011-01-01

    This report summarizes a brief description/history of the Hydrogen Research Meetings as well as key presentations/oral abstracts delivered in the most recent symposium. Additionally, we introduced 38 diseases and physiological states for which hydrogen exhibits beneficial effects. PMID:22146082